

http://getpedia.com/teethwhitening/default.htm

iIntroduction

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

201 West 103rd Street
Indianapolis, Indiana 46290

LINUX COMPLETE
Command Reference

For more information on the Linux operating system and
Red Hat Software, Inc., check http://www.redhat.com.

Compiled by J. Purcell

Red Hat Software, Inc.

President Richard K. Swadley
Publisher and Director of Acquisitions Jordan Gold

Director of Product Development Dean Miller
Managing Editor Kitty Wilson Jarrett

Indexing Manager Johnna L. VanHoose
Director of Marketing Kelli S. Spencer

Associate Product Marketing Manager Jennifer Pock
Marketing Coordinator Linda Beckwith

COPYRIGHT © 1997 BY RED HAT SOFTWARE, INC.
FIRST EDITION

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission from the publisher. No
patent liability is assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the preparation of this
book, the publisher and author assume no responsibility for errors or omissions.
Neither is any liability assumed for damages resulting from the use of the
information contained herein. For information, address Sams Publishing, 201
W. 103rd St., Indianapolis, IN 46290.

International Standard Book Number: 0-672-31104-6

Library of Congress Catalog Card Number: 97-66202

2000 99 98 97 4 3 2 1

Interpretation of the printing code: the rightmost double-digit number is the
year of the book’s printing; the rightmost single-digit, the number of the book’s
printing. For example, a printing code of 97-1 shows that the first printing of the
book occurred in 1997.

Composed in AGaramond and MCPdigital by Macmillan Computer Publishing

Printed in the United States of America

TRADEMARKS
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to the
accuracy of this information. Use of a term in this book should not be regarded
as affecting the validity of any trademark or service mark.

Acquisitions Editor
Grace M. Buechlein

Development Editor
Brian Proffitt

Software Development Specialist
Jack Belbot

Production Editor
Kitty Wilson Jarrett
Kate Shoup Welsh

Copy Editors
Kimberly K. Hannel
Carolyn Linn
Kristine Simmons

Indexer
Christine L. Nelsen

Technical Reviewer
Bill Ball

Editorial Coordinators
Mandie Rowell
Katie Wise

Technical Edit Coordinator
Lynette Quinn

Editorial Assistants
Carol Ackerman
Andi Richter
Rhonda Tinch-Mize
Karen Williams

Cover Designer
Karen Ruggles

Book Designer
Ann Jones

Copy Writer
David Reichwein

Production Team Supervisor
Beth Lewis

Production Team
Erin Danielson, Bryan Flores,
DiMonique Ford, Julie Geeting,
Kay Hoskin, Christy M. Lemasters,
Tony McDonald, Darlena Murray,
Julie Searls, Sossity Smith

Overview

Part I
User Commands 2

Part II
System Calls 738

Part III
Library Functions 892

Part IV
Special Files 1064

Part V
File Formats 1104

Part VI
Games 1210

Part VII
Miscellaneous 1214

Part VIII
Administration and Privileged Commands 1258

Part IX
Kernel Reference Guide 1424

Index

Linux Complete Command Referenceiv

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

Part I User Commands
Introduction ... 2
addftinfo ... 2
afmtodit .. 2
ansi2knr .. 4
anytopnm ... 4
appres ... 5
ar .. 5
arch ... 8
GNU as .. 8
asciitopgm... 10
atktopbm .. 10
bash .. 11
bdftopcf .. 47
beforelight ... 47
biff .. 48
bioradtopgm ... 48
bitmap, bmtoa, atobm .. 49
bmptoppm .. 57
brushtopbm .. 57
cal ... 58
cat ... 58
chattr .. 59
chfn .. 60
chgrp... 61
chkdupexe ... 61
chmod... 61
chown ... 62
chsh .. 63
ci ... 64
cidentd .. 69
cksum ... 70
clear .. 70
cmuwmtopbm .. 71
co .. 71
col ... 76
colcrt ... 77
colrm .. 77
column.. 78
comm.. 78

vIntroduction

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

convdate .. 79
cp .. 80
cccp, cpp ... 81
crontab.. 84
csplit ... 85
ctags .. 87
cu .. 88
cut .. 90
cvs ... 91
date ... 106
dd ... 108
depmod, modprobe ... 109
df .. 112
dig .. 113
dnsquery ... 117
domainname ... 119
dsplit ... 119
du ... 120
editres ... 121
elvis, ex, vi, view, input ... 126
elvprsv ... 128
elvrec ... 129
emacs .. 130
emacstool .. 134
etags .. 135
expand .. 137
find ... 137
fitstopnm .. 142
fmt .. 143
fold ... 143
free .. 144
fsinfo ... 145
fslsfonts ... 145
fstobdf ... 146
fstopgm ... 147
ftp ... 147
fuser .. 154
g++ .. 155
g3topbm ... 160
gawk ... 161

Linux Complete Command Referencevi

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

gcal ... 173
gcc, g++ ... 174
gemtopbm .. 201
geqn .. 202
getlist .. 206
getopt .. 207
giftopnm ... 208
gindxbib .. 209
glookbib .. 210
gnroff .. 210
gouldtoppm .. 211
gpic ... 211
gprof ... 216
grefer ... 217
grep, egrep, fgrep .. 224
grephistory .. 226
grodvi ... 227
groff .. 228
grog .. 230
grops ... 230
grotty .. 235
gsoelim.. 236
gtbl ... 236
gtroff ... 237
gzip, gunzip, zcatgzip, gunzip, zcat .. 248
gzexe ... 252
head .. 253
hexdump ... 254
hipstopgm ... 256
host ... 257
hostid .. 258
hostname .. 259
hpcdtoppm v0.3 .. 260
httpd ... 261
icontopbm .. 262
ident ... 262
ilbmtoppm .. 263
imake .. 264
imgtoppm ... 267
inews ... 267
info ... 269
innconfval ... 270
insmod .. 271
install .. 272
installit .. 273

viiIntroduction

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

ispell, buildhash, munchlist, findaffix, tryaffix, icombine, ijoin 274
join ... 282
kill .. 283
killall ... 284
ksyms .. 284
last .. 285
lbxproxy .. 286
ld .. 287
lispmtopgm ... 292
lkbib ... 292
ln .. 293
lndir .. 294
locate .. 295
logger .. 295
login .. 296
look ... 297
lpq .. 298
lpr ... 299
lprm .. 301
lptest ... 302
ls, dir, vdir ... 303
lsattr .. 304
lsmod .. 305
lynx ... 306
macptopbm ... 309
make ... 310
makedepend .. 312
makestrs .. 314
mattrib .. 315
mbadblocks ... 316
mcd ... 316
mcookie .. 317
mcopy ... 317
md5sum .. 318
mdel .. 318
mdeltree .. 319
mdir .. 319
merge .. 320
mesg .. 321
mformat .. 321
mgrtopbm ... 322
mkdir .. 323
mkdirhier .. 323
mkfifo ... 323
mkmanifest ... 324

Linux Complete Command Referenceviii

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

mknod .. 325
mlabel ... 325
mmd ... 326
mmount .. 326
mmove .. 327
more ... 327
mrd ... 329
mread .. 329
mren ... 329
mtest ... 330
mtools ... 330
mtvtoppm ... 333
mtype .. 333
mv .. 334
mwrite .. 335
namei .. 335
newaliases .. 336
newgrp .. 336
nl .. 337
nlmconv .. 338
nm .. 339
nntpget ... 340
objcopy ... 341
objdump ... 342
oclock ... 344
od ... 345
passwd .. 346
paste .. 347
pbmclean .. 348
pbmfilters .. 348
pbmlife ... 352
pbmmake .. 353
pbmmask .. 353
pbmpscale ... 354
pbmreduce .. 355
pbmtext .. 355
pbmto10x ... 356
pbmto4425 ... 357
pbmtoascii .. 357
pbmtoatk .. 358
pbmtobg ... 358
pbmtocmuwm .. 358
pbmtoepsi ... 359
pbmtoepson .. 359
pbmtog3 ... 360

ixIntroduction

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

pbmtogem .. 360
pbmtogo ... 360
pbmtoicon .. 361
pbmtolj ... 361
pbmtoln03 .. 362
pbmtolps ... 362
pbmtomacp ... 363
pbmtomgr ... 363
pbmtopgm .. 364
pbmtopi3 .. 364
pbmtopk ... 364
pbmtoplot ... 365
pbmtoptx .. 366
pbmtox10bm .. 366
pbmtoxbm .. 367
pgmtoybm .. 367
pbmtozinc ... 367
pbmupc .. 368
pcxtoppm .. 368
pfbtops .. 369
pgmbentley ... 369
pgmcrater .. 370
pgmedge ... 371
pgmenhance .. 371
pgmhist ... 372
pgmkernel ... 372
pgmnoise .. 373
pgmnorm .. 373
pgmoil .. 374
pgmramp .. 374
pgmtexture .. 375
pgmtofs ... 376
pgmtolispm ... 376
pgmtopbm .. 377
pgmtoppm .. 378
pi1toppm .. 378
pi3topbm .. 379
picttoppm ... 379
pjtoppm .. 381
pktopbm ... 381
pnmalias .. 381
pnmarith ... 382
pnmcat .. 383
pnmcomp ... 383
pnmconvol .. 384

Linux Complete Command Referencex

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

pnmcrop ... 385
pnmcut ... 385
pnmdepth ... 385
pnmenlarge ... 386
pnmfile ... 386
pnmflip ... 387
pnmgamma ... 387
pnmhistmap .. 388
pnmindex .. 388
pnminvert ... 389
pnmmargin ... 389
pnmnlfilt ... 390
pnmnoraw .. 391
pnmpad .. 392
pnmpaste .. 392
pnmrotate ... 393
pnmscale ... 393
pnmshear .. 394
pnmsmooth .. 395
pnmtile ... 395
pnmtoddif ... 396
pnmtofits .. 396
pnmtops .. 397
pnmtorast ... 398
pnmtosgi ... 398
pnmtosir ... 399
pnmtotiff .. 399
pnmtoxwd .. 400
ppm3d .. 400
ppmbrighten ... 401
ppmchange ... 401
ppmdim .. 402
ppmdist ... 402
ppmdither ... 403
ppmflash ... 404
ppmforge .. 404
ppmhist ... 408
ppmmake .. 408
ppmmix .. 408
ppmnorm .. 409
ppmntsc .. 409
ppmpat ... 410
ppmquant ... 411
ppmquantall .. 412
ppmqvga ... 412

xiIntroduction

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

ppmrelief .. 413
ppmshift ... 413
ppmspread .. 414
ppmtoacad .. 414
ppmtobmp .. 416
ppmtogif ... 416
ppmtoicr ... 417
ppmtoilbm .. 418
ppmtomap .. 419
ppmtomitsu .. 420
ppmtopcx .. 421
ppmtopgm .. 421
ppmtopi1 .. 422
ppmtopict ... 422
ppmtopj .. 423
ppmtopjxl ... 424
ppmtopuzz .. 424
ppmtorgb3 .. 425
ppmtosixel .. 425
ppmtotga .. 426
ppmtouil ... 427
ppmtoxpm .. 427
ppmtoyuv ... 428
ppmtoyuvsplit ... 428
pr .. 429
ps .. 430
psbb .. 433
psidtopgm ... 433
pstopnm.. 434
pstree .. 435
psupdate ... 436
qrttoppm .. 436
quota ... 437
ranlib .. 437
rasttopnm ... 438
rawtopgm .. 439
rawtoppm ... 439
rcp .. 440
rcs ... 441
rcsclean ... 443
rcsdiff .. 445
rcsfreeze .. 446
rcsintro ... 447
rcsmerge .. 449
rdist .. 451

Linux Complete Command Referencexii

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

reconfig ... 454
ref ... 455
reset .. 456
resize ... 456
rev ... 457
rgb3toppm .. 457
rlog ... 458
rlogin .. 460
rm ... 461
rmdir .. 462
rmmod .. 462
rnews .. 463
rpcgen ... 464
rsh ... 466
rstart ... 467
rstartd ... 468
rup .. 472
rusers .. 472
rwall .. 473
rwho ... 474
script ... 474
sed .. 475
sessreg ... 480
setterm .. 482
sgitopnm ... 483
shar ... 484
shlock.. 487
showrgb .. 488
shrinkfile ... 488
sirtopnm ... 488
size .. 489
sldtoppm ... 490
smproxy .. 491
sort .. 492
spctoppm .. 494
split ... 494
spottopgm ... 495
sputoppm .. 495
sq .. 496
startx ... 496
strings ... 498
strip .. 499
subst ... 500
sum ... 501
SuperProbe ... 501

xiiiIntroduction

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

tac ... 503
tail .. 504
talk .. 505
tcal .. 506
telnet ... 507
tfmtodit .. 513
tftp .. 514
tgatoppm .. 515
tifftopnm .. 515
tin, rtin, cdtin, tind ... 516
tload .. 533
top .. 533
touch .. 536
tr ... 536
tset, reset ... 539
tsort .. 542
twm .. 542
txt2gcal ... 558
ul .. 558
unexpand .. 559
uniq .. 560
unshar ... 560
updatedb ... 561
uptime .. 562
userlist ... 563
uucp .. 563
uuencode .. 565
uustat .. 566
uux .. 569
uuxqt .. 572
w ... 573
wall ... 574
wc ... 574
whereis .. 575
write .. 576
x11perf .. 577
x11perfcomp ... 585
xargs .. 586
xauth ... 587
xbmtopbm .. 592
xcmsdb.. 592
xclock .. 593
xclipboard ... 595
xconsole .. 597
xcutsel ... 598

Linux Complete Command Referencexiv

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

xdm .. 599
xdpyinfo .. 614
Xf86_Accel ... 614
XF86_Mono ... 624
XF86_SVGA .. 627
XF86_VGA16 .. 631
xf86config ... 633
xfd .. 633
XFree86 .. 636
xfs ... 641
xhost ... 643
xieperf ... 645
ximtoppm ... 654
xinetd .. 655
xinit .. 664
xkill ... 666
xlogo ... 667
xlsatoms .. 668
xlsclients .. 669
xlsfonts .. 670
xmag ... 671
xmkmf .. 672
xmodmap .. 672
xon .. 676
xpmtoppm .. 677
xprop .. 677
xrdb .. 681
xrefresh ... 684
Xserver .. 685
xset .. 690
xsetroot ... 693
xsm ... 694
xsmclient ... 698
xstdcmap ... 699
xterm .. 700
Xvfb .. 717
xvidtune .. 719
xvminitoppm .. 720
xwd ... 721
xwdtopnm .. 722
xwininfo .. 722
xwud ... 725
ybmtopbm .. 726
ytalk .. 727
yuvplittoppm .. 730

xvIntroduction

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

yuvtoppm ... 731
zcmp, zdiff .. 731
zeisstopnm .. 732
zforce .. 732
zgrep ... 733
zmore .. 733
znew.. 734

Part II System Calls
intro .. 738
exit .. 739
accept .. 740
access .. 741
acct ... 742
adjtimex .. 742
alarm ... 744
bdflush .. 744
bind .. 745
brk, sbrk .. 746
cacheflush ... 746
chdir, fchdir .. 747
chmod, fchmod ... 748
chown, fchown ... 749
chroot ... 750
clone ... 751
close .. 752
connect ... 752
dup, dup2 ... 753
execve .. 754
fcntl .. 755
fdatasync ... 756
flock .. 757
fork, vfork ... 758
fsync ... 758
getdents .. 759
getdomainname, setdomainname .. 760
getdtablesize .. 760
getgid, getegid ... 761
getgroups, setgroups .. 761
gethostid, sethostid ... 762
gethostname, sethostname ... 763
getitimer, setitimer .. 763
getpagesize .. 765
getpeername .. 765
getpid, getppid .. 766
getpriority, setpriority ... 766

Linux Complete Command Referencexvi

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

getrlimit, getrusage, setrlimit ... 767
getsid .. 768
getsockname.. 769
getsockopt, setsockopt ... 769
gettimeofday, settimeofday .. 772
getuid, geteuid .. 773
idle .. 774
ioctl ... 774
ioperm .. 788
iopl ... 788
ipc ... 789
kill .. 790
killpg ... 790
link ... 791
listen ... 792
llseek ... 793
lseek .. 793
mkdir .. 794
mknod .. 795
mlock .. 796
mlockall .. 797
mmap, munmap ... 799
modify_ldt .. 800
get_kernel_syms, create_module, init_module, delete_module 800
mount, umount .. 802
mprotect ... 804
mremap .. 805
msgctl ... 806
msgget ... 807
msgop ... 808
msync ... 811
munlock .. 811
munlockall .. 812
nanosleep .. 813
nice ... 814
oldfstat, oldlstat, oldstat, oldolduname, olduname .. 814
open, creat .. 815
outb, outw, outl, outsb, outsw, outsl ... 816
pause ... 817
personality .. 817
phys .. 818
pipe ... 818
profil ... 819
ptrace .. 820
quotactl ... 821

xviiIntroduction

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

read ... 822
readdir .. 823
readlink ... 823
readv, writev .. 824
reboot ... 825
recv, recvfrom, recvmsg ... 826
rename .. 828
rmdir .. 829
sched_get_priority_max, sched_get_priority_min ... 830
sched_rr_get_interval .. 831
sched_setparam, sched_getparam .. 832
sched_setscheduler, sched_getscheduler .. 833
sched_yield ... 835
select, FD_CLR, FD_ISSET, FD_SET, FD_ZERO... 835
semctl .. 837
semget ... 839
semop ... 840
send, sendto, sendmsg ... 842
setfsgid .. 843
setfsuid .. 844
setgid .. 845
setpgid, getpgid, setpgrp, getpgrp .. 845
setregid, setegid ... 846
setreuid, seteuid .. 847
setsid ... 848
setuid .. 848
setup ... 849
shmctl ... 849
shmget .. 851
shmop ... 853
shutdown .. 855
sigaction, sigprocmask, sigpending, sigsuspend.. 855
signal ... 857
sigblock, siggetmask, sigsetmask, sigmask .. 858
sigpause ... 858
sigreturn .. 859
sigvec .. 860
socket .. 860
socketcall ... 862
socketpair .. 862
stat, fstat, lstat ... 863
statfs, fstatfs ... 865
stime ... 866
swapon, swapoff .. 866
symlink ... 867

Linux Complete Command Referencexviii

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

sync ... 869
sysctl ... 869
sysfs ... 871
sysinfo ... 871
syslog .. 872
termios, tcgetattr, tcsetattr, tcsendbreak, tcdrain, tcflush, tcflow, cfgetospeed,

cfgetispeed, cfsetispeed, cfsetospeed, tcgetpgrp, tcsetpgrp 874
time .. 878
times ... 878
truncate, ftruncate ... 879
umask ... 880
uname ... 880
none .. 881
afs_syscall, break, gtty, lock, mpx, prof, quotactl, stty, ustat 881
unlink ... 882
uselib .. 883
ustat .. 883
utime, utimes .. 884
vhangup .. 885
vm86 .. 885
wait, waitpid ... 886
wait3, wait4 .. 888
write .. 889

Part III Library Functions
Intro ... 892
abort ... 892
abs .. 892
acos ... 893
acosh ... 893
alloca ... 894
asin ... 894
asinh ... 895
assert ... 895
atan ... 896
atan2 ... 896
atanh ... 897
atexit ... 897
atof ... 898
atoi .. 898
atol .. 899
bcmp... 899
bcopy .. 900
bsearch .. 900
bcmp, bcopy, bzero, memccpy, memchr, memcmp, memcpy, memfrob, memmem,

memmove, memset ... 901

xixIntroduction

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

htonl, htons, ntohl, ntohs ... 901
bzero ... 902
catgets ... 902
catopen, catclose ... 903
ceil .. 904
clientlib ... 904
clock ... 905
closedir .. 905
confstr ... 906
copysign .. 907
cos .. 907
cosh .. 908
crypt ... 908
ctermid ... 909
asctime, ctime, gmtime, localtime, mktime ... 909
difftime ... 911
div ... 911
drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48,

seed48, lcong48 .. 912
drem ... 913
ecvt, fcvt ... 913
erf, erfc .. 914
execl, execlp, execle, exect, execv, execvp ... 914
errno ... 916
exit .. 917
exp, log, log10, pow .. 917
expm1, log1p .. 918
fabs ... 919
fclose ... 919
clearerr, feof, ferror, fileno ... 919
fflush, fpurge ... 920
ffs .. 921
fgetgrent .. 921
fgetpwent .. 922
floor .. 923
fmod ... 923
fnmatch .. 924
fopen, fdopen, freopen .. 924
fpathconf, pathconf ... 925
fread, fwrite ... 926
frexp .. 927
fgetpos, fseek, fsetpos, ftell, rewind .. 927
ftime ... 928
ftok ... 929
ftw .. 930

Linux Complete Command Referencexx

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

gcvt ... 930
getcwd, get_current_dir_name, getwd... 931
getdirentries .. 931
getenv ... 932
getgrent, setgrent, endgrent ... 932
getgrnam, getgrgid .. 933
getlogin, cuserid .. 934
getmntent, setmntent, addmntent, endmntent, hasmntopt 935
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent 936
getopt .. 937
getpass ... 940
getprotoent, getprotobyname, getprotobynumber, setprotoent, endprotoent 941
getpw .. 942
getpwent, setpwent, endpwent .. 943
getpwnam, getpwuid ... 944
fgetc, fgets, getc, getchar, gets, ungetc ... 944
getservent, getservbyname, getservbyport, setservent, endservent 945
getusershell, setusershell, endusershell ... 946
getutent, getutid, getutline, pututline, setutent, endutent, utmpname 947
getw, putw .. 948
glob, globfree .. 949
hosts_access, hosts_ctl ... 950
hcreate, hdestroy, hsearch .. 951
hypot .. 953
index, rindex ... 953
inet_aton, inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof,

inet_netof ... 953
infnan ... 954
initgroups .. 955
inndcomm .. 956
insque, remque .. 957
isalnum, isalpha, isascii, isblank, iscntrl, isdigit, isgraph, islower, isprint,

ispunct, isspace, isupper, isxdigit ... 957
isatty ... 958
isinf, isnan, finite .. 959
j0, j1, jn, y0, y1, yn ... 959
killpg ... 960
labs ... 960
ldexp ... 961
ldiv .. 961
lgamma ... 962
libinn .. 962
libpbm .. 966
libpgm .. 969
libpnm .. 970

xxiIntroduction

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

libppm .. 973
localeconv ... 974
longjmp .. 975
lfind, lsearch .. 975
calloc, malloc, free, realloc ... 976
mblen .. 977
mbstowcs .. 977
mbtowc ... 978
memccpy .. 978
memchr .. 979
memcmp ... 979
memcpy .. 980
memfrob ... 980
memmem .. 981
memmove ... 981
memset ... 982
mkfifo ... 982
mkstemp ... 983
mktemp .. 983
modf ... 984
asctime, ctime, difftime, gmtime, localtime, mktime ... 984
tzset .. 986
on_exit .. 988
opendir ... 989
parsedate ... 989
perror .. 990
popen, pclose .. 991
printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf, vsnprintf 992
psignal .. 996
putenv ... 996
putpwent .. 997
fputc, fputs, putc, putchar, puts .. 997
qio .. 998
qsort .. 1000
raise .. 1000
rand, srand .. 1001
random, srandom, initstate, setstate .. 1001
readdir .. 1002
readv, writev .. 1003
realpath ... 1004
Re_comp, re_exec ... 1005
regcomp, regexec, regerror, regfree .. 1005
remove .. 1007
res_query, res_search, res_mkquery, res_send, res_init, dn_comp,

dn_expand .. 1008

Linux Complete Command Referencexxii

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

rewinddir .. 1011
rint .. 1011
rquota ... 1012
scandir, alphasort .. 1012
scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf ... 1013
seekdir ... 1015
setbuf, setbuffer, setlinebuf, setvbuf ... 1016
setenv .. 1017
setjmp ... 1018
setlocale ... 1018
siginterrupt ... 1019
sigemptyset, sigfillset, sigaddset, sigdelset, sigismember 1019
sin ... 1020
sinh ... 1021
sleep .. 1021
snprintf, vsnprintf ... 1022
sqrt .. 1023
stdarg .. 1023
stdio .. 1025
stpcpy ... 1027
strcasecmp, strncasecmp .. 1028
strcat, strncat ... 1028
strchr, strrchr .. 1029
strcmp, strncmp .. 1029
strcoll .. 1030
strcpy, strncpy ... 1030
strdup ... 1031
strerror .. 1032
strfry ... 1032
strftime ... 1032
strcasecmp, strcat, strchr, strcmp, strcoll, strcpy, strcspn, strdup, strfry,

strlen, strncat, strncmp, strncpy, strncasecmp, strpbrk, strrchr, strsep,
strspn, strstr, strtok, strxfrm, index, rindex ... 1034

strlen ... 1035
strpbrk .. 1035
strptime .. 1036
strsep ... 1037
strsignal ... 1038
strspn, strcspn ... 1038
strstr .. 1039
strtod .. 1039
strtok .. 1040
strtol ... 1041
strtoul ... 1041
strxfrm .. 1042

xxiiiIntroduction

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

swab .. 1043
sysconf .. 1043
closelog, openlog, syslog .. 1045
system ... 1047
tan .. 1047
tanh .. 1048
telldir .. 1048
tempnam .. 1049
termios, tcgetattr, tcsetattr, tcsendbreak, tcdrain, tcflush, tcflow, cfmakeraw,

cfgetospeed, cfgetispeed, cfsetispeed, cfsetospeed, tcgetpgrp, tcsetpgrp 1049
tmpfile .. 1053
tmpnam .. 1054
toascii .. 1055
toupper, tolower .. 1055
tsearch, tfind, tdelete, twalk .. 1056
ttyname ... 1058
tzset .. 1058
none .. 1060
usleep .. 1061
wcstombs .. 1061
wctomb ... 1061

Part IV Special Files
charsets ... 1064
console .. 1066
console_codes ... 1067
console ioctls ... 1074
fd .. 1080
hd ... 1083
ispell ... 1084
lp .. 1090
mem, kmem, port ... 1091
mouse ... 1092
null, zero ... 1094
ram ... 1094
sd .. 1095
st ... 1096
tty ... 1100
ttys .. 1101
vcs, vcsa .. 1101

Part V File Formats
intro .. 1104
active, active.times .. 1104
adduser.conf .. 1105
aliases .. 1106

Linux Complete Command Referencexxiv

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

cfingerd ... 1106
cfingerd.conf ... 1109
cfingerd text rules ... 1115
control.ctl ... 1115
cvs ... 1116
DEVINFO ... 1120
environ.. 1121
expire.ctl ... 1121
exports .. 1123
filesystems ... 1125
fstab .. 1126
groff_font .. 1127
groff_out ... 1129
group .. 1131
history ... 1131
hosts.nntp, hosts.nntp.nolimit .. 1132
hosts_access ... 1133
hosts_options .. 1137
inittab ... 1139
inn.conf .. 1141
innwatch.ctl .. 1142
ipc ... 1144
issue .. 1146
lilo.conf ... 1147
MAKEDEV.cfg .. 1151
moderators .. 1151
/etc/modules ... 1152
motd ... 1152
mtools ... 1152
newsfeeds .. 1158
newslog ... 1163
nfs ... 1165
nnrp.access .. 1167
nntpsend.ctl .. 1168
nologin ... 1168
overview.fmt ... 1168
passwd .. 1169
passwd.nntp .. 1170
pbm .. 1170
pgm .. 1171
pnm .. 1173
ppm .. 1173
/proc ... 1174
protocols ... 1180
rcsfile .. 1181

xxvIntroduction

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

resolver .. 1183
securetty .. 1184
services .. 1184
shells ... 1186
syslog.conf .. 1186
termcap ... 1188
ttytype ... 1197
tzfile .. 1197
utmp, wtmp .. 1198
uuencode .. 1200
XF86Config .. 1201

Part VI Games
intro .. 1210
banner ... 1210
ddate ... 1210

Part VII Miscellaneous
intro .. 1214
ascii ... 1214
bootparam .. 1216
groff_me ... 1225
groff_mm .. 1227
groff_ms .. 1234
hier ... 1236
hostname .. 1238
iso_8859_1 ... 1239
locale ... 1243
mailaddr .. 1244
man .. 1246
signal ... 1248
suffixes .. 1249
tr2tex .. 1252
Unicode .. 1253
UTF-8 .. 1255

Part VIII Administration and Privileged Commands
intro .. 1258
adduser, addgroup ... 1258
agetty .. 1259
archive .. 1262
arp .. 1263
badblocks .. 1264
buffchan .. 1264
cfdisk .. 1265
chat ... 1269

Linux Complete Command Referencexxvi

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

chroot ... 1273
clock ... 1273
comsat ... 1274
crond .. 1275
ctlinnd .. 1276
ctrlaltdel .. 1279
cvsbug ... 1279
cvtbatch .. 1281
cytune ... 1282
debugfs ... 1284
dip .. 1285
dmesg.. 1288
dumpe2fs .. 1289
e2fsck .. 1289
edquota ... 1291
expire .. 1292
expireover ... 1293
fastrm.. 1294
fdformat .. 1295
fdisk .. 1296
filechan ... 1297
fsck ... 1298
fsck.minix ... 1300
ftpd ... 1301
ifconfig .. 1304
inetd ... 1305
init, telinit ... 1307
innd, inndstart .. 1309
innxmit ... 1312
ipcrm .. 1313
ipcs ... 1314
kbdrate .. 1314
klogd ... 1315
lpc ... 1317
lpd .. 1318
MAKEDEV .. 1320
MAKEDEV .. 1321
mke2fs .. 1324
mkfs .. 1325
mkfs .. 1326
mklost+found.. 1327
mkswap ... 1327
mount, umount .. 1328
mountd ... 1332
named-xfer .. 1333

xxviiIntroduction

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

named ... 1334
named.reload .. 1338
named.restart .. 1338
ndc .. 1338
netstat ... 1339
makeactive, makehistory, newsrequeue .. 1342
news.daily ... 1344
newslog ... 1346
nfsd ... 1347
nnrpd .. 1347
nntpsend ... 1349
nslookup ... 1350
overchan ... 1353
pac .. 1354
pcnfsd ... 1355
plipconfig .. 1357
ping .. 1358
portmap .. 1358
powerd .. 1359
pppd ... 1360
pppstats ... 1369
prunehistory .. 1370
quotacheck .. 1371
quotaon, quotaoff ... 1372
rarp ... 1373
rdev ... 1373
renice .. 1375
repquota .. 1376
rexecd ... 1376
rlogind .. 1377
route ... 1379
routed ... 1380
rpc.rusersd .. 1382
rpc.rwalld .. 1383
rpcinfo .. 1383
rquotad, rpc.rquotad ... 1384
rshd ... 1385
rwhod ... 1386
sendmail .. 1387
setfdprm.. 1391
setserial ... 1391
setsid ... 1395
showmount ... 1396
shutdown .. 1396
simpleinit .. 1397

Linux Complete Command Referencexxviii

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

slattach .. 1399
sliplogin .. 1399
swapon, swapoff .. 1401
sync ... 1401
sysklogd .. 1402
syslogd .. 1404
talkd.. 1405
telnetd ... 1406
tftpd .. 1407
timed .. 1407
timedc ... 1408
traceroute .. 1409
tune2fs .. 1412
tunelp ... 1413
update_state .. 1414
uucico ... 1415
vmstat ... 1417
vipw .. 1418
zdump... 1419
zic ... 1419

Part IX Kernel Reference Guide
add_timer, del_timer, init_timer ... 1424
adjust_clock .. 1424
ctrl_alt_del .. 1425
file_table ... 1425
file_table_init .. 1427
filesystems ... 1427
get_empty_filp .. 1428
grow_files .. 1428
in_group_p ... 1429
insert_file_free .. 1429
kernel_mktime .. 1430
proc_sel ... 1430
put_file_last .. 1431
remove_file_free .. 1431

Tell Us What You Think!
As a reader, you are the most important critic of and commentator on our books. We value your opinion and
want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and
any other words of wisdom you’re willing to pass our way. You can help us make strong books that meet your
needs and give you the computer guidance you require.

Do you have access to the World Wide Web? Then check out our site at http://www.mcp.com.

NOTE

If you have a technical question about this book, call the technical support line at 317-581-3833 or e-mail
support@mcp.com.

As the team leader of the group that created this book, I welcome your comments. You can fax, e-mail, or
write me directly to let me know what you did or didn’t like about this book—as well as what we can do to
make our books stronger. Here’s the information:

Fax: 317-581-4669

E-mail: opsys_mgr@sams.mcp.com

Mail: Dean Miller
Comments Department
Sams Publishing
201 W. 103rd Street
Indianapolis, IN 46290

Linux Complete Command Referencexxx

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

Copyright
exit(2), access(2), alarm(2), close(2), dup(2), fcntl(2), link(2), mkdir(2), mknod(2), open(2), read(2), rename(2),
rmdir(2), symlink(2), write(2) copyright © 1992 Drew Eckhardt; 1993 Michael Haardt, Ian Jackson.

unlink(2), remove(3) copyright © 1992 Drew Eckhardt; 1993 Ian Jackson.

chdir(2), chmod(2), chown(2), chroot(2), clone(2), execve(2), fork(2), getrlimit(2), gettimeofday(2), kill(2),
nice(2), pause(2), pipe(2), reboot(2), setup(2), stime(2), swapon(2), sync(2), time(2), times(2), umask(2),
uname(2), uselib(2), utime(2) copyright © 1992 Drew Eckhardt (drew@cs.colorado.edu), March 28, 1992.

mprotect(2) copyright © 1995 Michael Shields (shields@tembel.org).

select(2) copyright © 1992 Drew Eckhardt, copyright © 1995 Michael Shields.

acct(2), brk(2), intro(2), ioperm(2), phys(2), ptrace(2), setsid(2), termios(2), ascii(7), crypt(3), environ(5),
ftime(3), ftw(3), group(5), hd(4), intro(1), intro(3), intro(4), intro(5), intro(6), intro(7), intro(8), isatty(3),
issue(5), longjmp(3), mem(4), motd(5), nologin(5), null(4), passwd(5), ram(4), securetty(5), setjmp(3), shells(5),
termcap(7), tty(4), ttys(4), ttytype(5), utmp(5), lp(4), perror(3) copyright © 1993, 1994, 1995 Michael
Haardt.

bind(2), connect(2), flock(2), fsync(2), getdomainname(2), getdtablesize(2), getgid(2), getgroups(2),
gethostid(2), gethostname(2), getpagesize(2), getpid(2), getuid(2), idle(2), iopl(2), profil(2), recv(2),
sigvec(2), undocumented(2), vhangup(2), vm86(2), acosh(3), getdiren-tries(3), ctrlaltdel(8), dmesg(8),
fdformat(8), fdisk(8), fsck.minix(8), ipcrm(8), ipcs(8), sync(8), sd(4), clear(1), clock(8), domainname(1),
mkfs.minix(8), mkswap(8), passwd(1), rdev(8), reset(1), setfdprm(8), setserial(8), shutdown(8), kbdrate(8),
update state(8), chkdupexe(1), cytune(8) copyright 1992, 1993, 1994, 1995 Rickard E. Faith
(faith@cs.unc.edu).

getdents(2), llseek(2), readdir(2), syslog(2), console.4 copyright 1994, 1995 Andries Brouwer (aeb@cwi.nl).

mount(2) copyright 1993 Rickard E. Faith (faith@cs.unc.edu), copyright 1994 Andries E. Brouwer
(aeb@cwi.nl).

adjtimex(2), bdflush(2), ipc(2), modify ldt(2), obsolete(2), socketcall(2), unimplemented(2) copyright © 1995
Michael Chastain (mec@shell.portal.com).

accept(2), getpeername(2), listen(2), lseek(2), getpriority(2), getsockname(2), getsockopt(2), ioctl(2),
killpg(2), mmap(2), readlink(2), send(2), setpgid(2), setregid(2), setreuid(2), shut-down(2), sigblock(2),
sigpause(2), socket(2), socketpair(2), statfs(2),truncate(2), alloca(3), fclose(3), ferror(3), fflush(3),
fread(3), fseek(3), getpass(3), mailaddr(7), popen(3), printf(3), scanf(3), setbuf(3), stdarg(3), stdio(3),
banner(6), cal(1), col(1), colcrt(1), colrm(1), column(1), fstab(5), getoptprog(1), logger(1), look(1), lpc(8),
lpd(8), lpq(1), lpr(1), lprm(1), lptest(1), mesg(1), mount(8), pac(8), ping(8), syslog.conf(5), syslogd(8),
tsort(8), vipw(1), write(1), vi(1), rev(1), biff(1), tset(1), w(1), aliases(5), ftp(1), ftpd(8), inetd(8),
newaliases(1), rcp(1), resolver(5), rexecd(8), rlogin(1), routed(8), rpc.rusersd(8), rpc.rwalld(8), rsh(1),
rshd(8), rup(1), rusers(1), rwall(1), rwho(1), rwhod(8), sendmail(8), sliplogin(8), talk(1), talkd(8), telnet(1),
telnetd(8), tftp(1), tftpd(8), timed(8), timedc(8), traceroute(8) copyright © 1980, 1983, 1985, 1989, 1990,
1991, 1992 The Regents of the University of California. All rights reserved.

getitimer(2) copyright 1993 by Darren Senn (sinster@scintilla.santa-clara.ca.us).

modules(2), ksyms(1), insmod(1), lsmod(1), rmmod(1) copyright © 1994, 1995 Bjorn Ekwall (bj0rn@blox.se).

msgctl(2), msgget(2), msgop(2), semctl(2), semget(2), semop(2), ftok(3), ipc(5) copyright 1993 Giorgio Ciucci
(giorgio@crcc.it).

setgid(2), setuid(2), realpath(3) copyright © 1994, Graeme W. Wilford.

xxxiIntroduction

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

shmctl(2), shmget(2), shmop(2) copyright © 1993 Luigi P. Bai (lpb@softint.com) July 28, 1993.

sigaction(2), signal(2), sigsetops(3) copyright © 1994 Mike Battersby (mike@starbug.apana.org.au).

stat(2) copyright © 1992 Drew Eckhardt (drew@cs.colorado.edu), March 28, 1992. Parts copyright © 1995
Nicolai Langfeldt (janl@ifi.uio.no), January 1, 1995.

sysinfo(2), adjustclock(9), ctrl-alt-del(9), filesystems(9), file table(9), file table init(9), get empty
filp(9), grow files(9), in group p(9), insert file free(9), kernel mktime(9), proc sel(9), put file last(9),
remove file free(9) copyright © 1993 by Dan Miner (dminer@nyx.cs.du.edu).

wait(2), wait4(2), confstr(3), ctermid(3), fnmatch(3), fpathconf(3), getcwd(3), getopt(3), gets(3), isalpha(3),
malloc(3), signal(7), sleep(3), suffixes(7), sysconf(3), system(3), hier(7), assert(3), glob(3), killpg(3),
locale(7), localeconv(3), puts(3), raise(3), readv(3), setlocale(3) copyright © 1993 by Thomas Koenig
(ig25@rz.uni-karlsruhe.de).

abort(3), abs(3), acos(3),asin(3), asinh(3),atan(3), atan2(3), atanh(3), atexit(3), atof(3), atoi(3), atol(3),
bcmp(3), bcopy(3), bstring(3), byteorder(3), bzero(3), ceil(3), closedir(3), confstr(3), copysign(3), cos(3),
cosh(3), ctime(3), difftime(3), div(3), drand48(3), drem(3), ecvt(3), erf(3), exec(3), exit(3), exp(3), fabs(3),
ffs(3), fgetgrent(3), fgetpwent(3), fmod(3), fopen(3), frexp(3), gcvt(3), getenv(3), getgrent(3), getgrnam(3),
gethostbyname(3), getm-ntent(3), getnetent(3), getprotoent(3), getpw(3), getpwent(3), getpwnam(3),
getservent(3), getusershell(3), hypot(3), index(3), inet(3), infnan(3), initgroups(3), isinf(3), j0(3), labs(3),
ldexp(3), ldiv(3), lgamma(3), mblen(3), mbstowcs(3), mbtowc(3), memccpy(3), mem-chr(3), memcmp(3), memcpy(3),
memfrob(3), memmem(3), memmove(3), memset(3), mkstemp(3), mktemp(3), modf(3), on exit(3), opendir(3),
psignal(3), putenv(3), putpwent(3), qsort(3), rand(3), random(3), readdir(3), resolver(3), rewinddir(3), rint(3),
scandir(3), seekdir(3), setenv(3), siginterrupt(3), sin(3), sinh(3), sqrt(3), strcmp(3), strcat(3), strchr(3),
strcmp(3), strcoll(3), strcpy(3), strdup(3), strerror(3), strfry(3), strftime(3), string(3), strlen(3), strp-
break(3), strptime(3), strsep(3), strsignal(3), strspn(3), strstr(3), strtod(3), strtok(3), str-tol(3),
strtoul(3), strxfrm(3), swab(3), tan(3), tanh(3), telldir(3), tempnam(3), tmpfile(3), tmpnam(3), toupper(3),
tzset(3), usleep(3), wcstombs(3), wctomb(3) copyright 1993 David Metcalfe (david@prism.demon.co.uk).

add timer(9), console ioctl(4), ttyname(3), vcs(4) copyright © 1995 Jim Van Zandt (jrv@vanzandt.mv.com).

catgets(3), catopen(3), hostid(1) copyright 1993 Mitchum DSouza (m.dsouza@mrc-applied-
psychology.cambridge.ac.uk).

fd(4) copyright © 1993 Michael Haardt (michael@cantor.informatik.rwth-aachen.de) and 1994, 1995 Alain
Knaff (Alain.Knaff@imag.fr).

getutent(3) copyright 1995 Mark D. Roth (roth@uiuc.edu).

hsearch(3) copyright 1993 Ulrich Drepper (drepper@karlsruhe.gmd.de).

iso88591(7), proc(5), sed(1) copyright 1993[nd]1995 Daniel Quinlan (quinlan@yggdrasil.com).

st(4) copyright 1995 Robert K. Nichols (Robert.K.Nichols@att.com).

agetty(8) copyright © by W.Z. Venema (wietse@wzv.win.tue.nl), Peter Orbaek (poe@daimi.aau.dk).

cfdisk(8) copyright 1994 Kevin E. Martin (martin@cs.unc.edu).

chfn(1), chsh.1 copyright © 1994 by Salvatore Valente (svalente@athena.mit.edu).

crond(8), crontab(1) copyright 1994 Matthew Dillon (dillon@apollo.west.oic.com).

kill(1) copyright 1994 Salvatore Valente (svalente@mit.edu), copyright 1992 Rickard E. Faith
(faith@cs.unc.edu).

klogd(8), sysklogd(8) copyright 1994 Greg Wettstein, Enjellic Systems Development.

Linux Complete Command Referencexxxii

gr11 Linux Complete Command Reference 31104-6 christy 11.6.97 FM lp3

setterm(1) copyright 1990 Gordon Irlam (gordoni@cs.ua.oz.au). Copyright 1992 Rickard E. Faith
(faith@cs.unc.edu).

tunelp(8), ps(1), psupdate(8) copyright © 1992 Michael K. Johnson (johnsonm@nigel.vnet.net).

xinetd(1) copyright © 1992 by Panagiotis Tsirigotis.

bash(1) copyright 1995 Chet Ramey (chet@ins.cwru.edu).

adduser(8) copyright 1995 by Ted Hajek, 1994 by Ian Murdock.

e2fsck(8) copyright 1993, 1994 by Theodore Ts’o.

free(1), tload(1) copyright © 1993 Matt Welsh (mdw@sunsite.unc.edu).

top(1) copyright 1992 Robert J. Nation.

vmstat(8) copyright © 1994 Henry Ware (al172@yfn.ysu.edu).

bdftopcf(1x), beforelight(1x), bitmap(1x), editres(1x), fsinfo(1x), flsfonts(1x),fstobdf(1x), iceauth(1x),
imake(1x), lbxproxy(1x), lndir(1x), makedepend(1x), makestrs(1x), mkdirhier(1x), mkfontdir(1x), oclock(1x),
resize(1x), sessreg(1x), showrgb(1x), smproxy(1x), startx(1x), x11perf(1x), x11perfcomp(1x), xauth(1x),
xclipboard(1x), xclock(1x), xcmsdb(1x), xcon-sole(1x), xcutsel(1x), xdm(1x), xdpyinfo(1x), xf86config(1x),
xfd(1x), xfs(1x), xhost(1x), xinit(1x), xkill(1x), xlogo(1x), xlsatoms(1x), xlsclients(1x), xlsfonts(1x),
xmag(1x), xmkmf(1x), xmodmap(1x), xon(1x), xprop(1x), xrdb(1x), xrefresh(1x), xset(1x), xsetroot(1x), xsm(1x),
xsmclient(1x), xstdcmap(1x), xterm(1x), xwd(1x), xwininfo(1x), xwud(1x) copyright © 1993, 1994 X Consor-
tium.

portmap(8) copyright © 1987 Sun Microsystems, copyright © 1990, 1991 The Regents of the University of
California.

rpcgen.new(1) copyright © 1988, 1990 Sun Microsystems, Inc.

rstart(1x), rstartd(1x) copyright © 1993 Quarterdeck Office Systems.

showmount(8) copyright 1993 Rick Sladkey (jrs@world.std.com).

twm(1x) copyright © 1993, 1994 X Consortium. Portions copyright 1988 Evans & Sutherland Computer
Corporation. Portions copyright 1989 Hewlett-Packard Company.

xieperf.1x copyright 1993, 1994 by AGE Logic, Inc.

Many thanks to all these contributors for providing excellent-quality man pages and also to the Free Software
Foundation for providing the rest.

1

User Commands

Part I:

Part I: User Commands2

Introduction
This section introduces and describes user commands.

AUTHORS
Look at the header of the manual page for the author(s) and copyright conditions. Note that these can be different from page
to page.

addftinfo
addftinfo—Add information to troff font files for use with groff

SYNOPSIS
addftinfo [–paramvalue...] res unitwidth font

DESCRIPTION
addftinfo reads a troff font file and adds some additional font-metric information that is used by the groff system. The font
file with the information added is written on the standard output. The information added is guessed using some parametric
information about the font and assumptions about the traditional troff names for characters. The main information added
is the heights and depths of characters. The res and unitwidth arguments should be the same as the corresponding param-
eters in the DESC file; font is the name of the file describing the font; if font ends with I, the font will be assumed to be italic.

OPTIONS
Each of the f options changes one of the parameters that is used to derive the heights and depths. Like the existing quantities
in the font file, each value is in inches/res for a font whose point size is unitwidth. param must be one of the following:

x-height The height of lowercase letters without ascenders such as x

fig-height The height of figures (digits)

asc-height The height of characters with ascenders, such as b, d, or l

body-height The height of characters such as parentheses

cap-height The height of uppercase letters such as A

comma-depth The depth of a comma

desc-depth The depth of characters with descenders, such as p, q, or y

body-depth The depth of characters such as parentheses

addftinfo makes no attempt to use the specified parameters to guess the unspecified parameters. If a parameter is not
specified, the default will be used. The defaults are chosen to have the reasonable values for a Times font.

SEE ALSO
font(5) groff_font(5), groff(1), groff_char(7)

Groff Version 1.09, 6 August 1992

afmtodit
afmtodit—Create font files for use with groff –Tps

SYNOPSIS
afmtodit [–ns][–ddesc_file][–eenc_file][–in][–an] afm_file map_file font

3

DESCRIPTION
afmtodit creates a font file for use with groff and grops. afmtodit is written in Perl; you must have Perl version 3 installed in
order to run afmtodit. afm_file is the AFM (Adobe Font Metric) file for the font. map_file is a file that says which groff
character names map onto each PostScript character name; this file should contain a sequence of lines of the form:

ps_char groff_char

where ps_char is the PostScript name of the character and groff_char is the groff name of the character (as used in the groff
font file.) The same ps_char can occur multiple times in the file; each groff_char must occur, at most, once. font is the groff
name of the font. If a PostScript character is in the encoding to be used for the font but is not mentioned in map_file, then
afmtodit will put it in the groff font file as an unnamed character, which can be accessed by the \N escape sequence in troff.
The groff_font file will be output to a file called font.

If there is a downloadable font file for the font, it may be listed in the file /usr/lib/groff/font/devps/download; see grops(1).

If the –i option is used, afmtodit will automatically generate an italic correction, a left italic correction, and a subscript
correction for each character (the significance of these parameters is explained in groff_font(5)); these parameters may be
specified for individual characters by adding to the afm_file lines of the form:

italicCorrectionps charn
leftItalicCorrectionps charn
subscriptCorrectionps charn

where ps_char is the PostScript name of the character, and n is the desired value of the corresponding parameter in thou-
sandths of an em. These parameters are normally needed only for italic (or oblique) fonts.

OPTIONS
–n Don’t output a ligatures command for this font. Use this with constant-width fonts.

–s The font is special. The effect of this option is to add the special command to the font file.

–ddesc_file The device description file is desc_file rather than the default DESC.

–eenc_file The PostScript font should be reencoded to use the encoding described in enc_file. The format of
enc_file is described in grops(1).

–an Use n as the slant parameter in the font file; this is used by groff in the positioning of accents. By
default, afmtodit uses the negative of the ItalicAngle specified in the afm_file; with true italic
fonts, it is sometimes desirable to use a slant that is less than this. If you find that characters from
an italic font have accents placed too far to the right over them, then use the –a option to give the
font a smaller slant.

–in Generate an italic correction for each character so that the character’s width plus the character’s
italic correction is equal to n thousandths of an em plus the amount by which the right edge of the
character’s bounding is to the right of the character’s origin. If this would result in a negative italic
correction, use a zero italic correction instead.

Also generate a subscript correction equal to the product of the tangent of the slant of the font and
four-fifths of the x-height of the font. If this would result in a subscript correction greater than the
italic correction, use a subscript correction equal to the italic correction instead.

Also generate a left italic correction for each character equal to n thousandths of an em plus the
amount by which the left edge of the character’s bounding box is to the left of the character’s
origin. The left italic correction may be negative.

This option is normally needed only with italic (or oblique) fonts. The font files distributed with
groff were created using an option of –i50 for italic fonts.

FILES
/usr/lib/groff/font/devps/DESC Device description file

/usr/lib/groff/font/devps/F Font description file for font F

/usr/lib/groff/font/devps/download List of downloadable fonts

afmtodit

Part I: User Commands4

/usr/lib/groff/font/devps/text.enc Encoding used for text fonts

/usr/lib/groff/font/devps/generate/textmap Standard mapping

SEE ALSO
groff(1), grops(1), groff_font(5), perl(1)

Groff Version 1.09, 14 February 1994

ansi2knr
ansi2knr—Convert ANSI C to Kernighan & Ritchie C

SYNOPSIS
ansi2knr input_file output_file

DESCRIPTION
If no output_file is supplied, output goes to stdout. There are no error messages.

ansi2knr recognizes functions by seeing a nonkeyword identifier at the left margin, followed by a left parenthesis, with a right
parenthesis as the last character on the line. It will recognize a multiline header if the last character on each line but the last is
a left parenthesis or comma. These algorithms ignore whitespace and comments, except that the function name must be the
first thing on the line.

The following constructs will confuse it:

■ Any other construct that starts at the left margin and follows the above syntax (such as a macro or function call)
■ Macros that tinker with the syntax of the function header

31 December 1990

anytopnm
anytopnm—Attempt to convert an unknown type of image file to a portable anymap

SYNOPSIS
anytopnm file

DESCRIPTION
anytopnm uses the file program, possibly augmented by the magic numbers file included with PBMPLUS, to try to figure out
what type of image file it is. If that fails (very few image formats have magic numbers), looks at the filename extension. If
that fails, punt.

The type of the output file depends on the input file.

SEE ALSO
pnmfile(1), pnm(5), file(1)

BUGS
It’s a script. Scripts are not portable to non-UNIX environments.

AUTHOR
Copyright  1991 by Jef Poskanzer

27 July 1990

5

appres
appres—List X application resource database

SYNOPSIS
appres [[class [instance]] [–1] [toolkitoptions]

DESCRIPTION
The appres program prints the resources seen by an application (or subhierarchy of an application) with the specified class
and instance names. It can be used to determine which resources a particular program will load. For example,

% appres XTerm

will list the resources that any xterm program will load. If no application class is specified, the class -AppResTest- is used.

To match a particular instance name, specify an instance name explicitly after the class name, or use the normal Xt toolkit
option. For example,

% appres XTerm myxterm

or

% appres XTerm –name myxterm

To list resources that match a subhierarchy of an application, specify hierarchical class and instance names. The number of
class and instance components must be equal, and the instance name should not be specified with a toolkit option. For
example,

% appres Xman.TopLevelShell.Form xman.topBox.form

will list the resources of widgets of xman topBox hierarchy. To list just the resources matching a specific level in the hierarchy,
use the –1 option. For example,

% appres XTerm.VT100 xterm.vt100 –1

will list the resources matching the xterm vt100 widget.

SEE ALSO
X(1), xrdb(1), listres(1)

AUTHOR
Jim Fulton (MIT X Consortium)

X Version 11 Release 6

ar
ar—Create, modify, and extract from archives

SYNOPSIS
ar [-] dmpqrtx[abcilosuvV] [membername] archive files ...

DESCRIPTION
The GNU ar program creates, modifies, and extracts from archives. An archive is a single file holding a collection of other
files in a structure that makes it possible to retrieve the original individual files (called members of the archive).

The original files’ contents, mode (permissions), timestamp, owner, and group are preserved in the archive, and may be
reconstituted on extraction.

ar

Part I: User Commands6

GNU ar can maintain archives whose members have names of any length; however, depending on how ar is configured on
your system, a limit on member-name length may be imposed (for compatibility with archive formats maintained with other
tools). If it exists, the limit is often 15 characters (typical of formats related to a.out) or 16 characters (typical of formats
related to coff).

ar is considered a binary utility because archives of this sort are most often used as libraries holding commonly needed
subroutines.

ar will create an index to the symbols defined in relocatable object modules in the archive when you specify the modifier s.
Once created, this index is updated in the archive whenever ar makes a change to its contents (save for the q update
operation). An archive with such an index speeds up linking to the library, and allows routines in the library to call each
other without regard to their placement in the archive.

You may use nm –s or nm —print–armap to list this index table. If an archive lacks the table, another form of ar called ranlib
can be used to add just the table.

ar insists on at least two arguments to execute: one keyletter specifying the operation (optionally accompanied by other
keyletters specifying modifiers), and the archive name to act on.

Most operations can also accept further files arguments, specifying particular files to operate on.

OPTIONS
GNU ar allows you to mix the operation code p and modifier flags mod in any order, within the first command-line
argument.

If you wish, you may begin the first command-line argument with a dash.

The p keyletter specifies what operation to execute; it may be any of the following, but you must specify only one of them:

d Delete modules from the archive. Specify the names of modules to be deleted as files ; the archive is
untouched if you specify no files to delete.

If you specify the v modifier, ar will list each module as it is deleted.

m Use this operation to move members in an archive.

The ordering of members in an archive can make a difference in how programs are linked using the
library if a symbol is defined in more than one member.

If no modifiers are used with m, any members you name in the files arguments are moved to the end of
the archive; you can use the a, b, or i modifiers to move them to a specified place instead.

p Print the specified members of the archive to the standard output file. If the v modifier is specified,
show the membername before copying its contents to standard output.

If you specify no files, all the files in the archive are printed.

q Quick append; add files to the end of archive without checking for replacement.

The modifiers a, b, and i do not affect this operation; new members are always placed at the end of the
archive.

The modifier v makes ar list each file as it is appended.

Since the point of this operation is speed, the archive’s symbol table index is not updated, even if it
already existed; you can use ar s or ranlib explicitly to update the symbol table index.

r Insert files into archive (with replacement). This operation differs from q in that any previously existing
members are deleted if their names match those being added.

If one of the files named in files doesn’t exist, ar displays an error message and leaves undisturbed any
existing members of the archive matching that name.

By default, new members are added at the end of the file, but you may use one of the modifiers a, b, or
i to request placement relative to some existing member.

The modifier v used with this operation elicits a line of output for each file inserted, along with one of
the letters a or r to indicate whether the file was appended (no old member deleted) or replaced.

7

t Display a table listing the contents of archive, or those of the files listed in files that are present in the
archive. Normally, only the membername is shown; if you also want to see the modes (permissions),
timestamp, owner, group, and size, you can request that by also specifying the v modifier.

If you do not specify any files, all files in the archive are listed.

If there is more than one file with the same name (say, fie) in an archive (say, b.a), ar t b.a fie will
list only the first instance; to see them all, you must ask for a complete listing—in our example, ar t
b.a.

x Extract members (named files) from the archive. You can use the v modifier with this operation to
request that ar list each name as it extracts it.

If you do not specify any files, all files in the archive are extracted.

A number of modifiers (mod) may immediately follow the p keyletter, to specify variations on an operation’s behavior, as
follows:

a Add new files after an existing member of the archive. If you use the modifier a, the name of an
existing archive member must be present as the membername argument, before the archive specifica-
tion.

b Add new files before an existing member of the archive. If you use the modifier b, the name of an
existing archive member must be present as the membername argument, before the archive specifica-
tion (same as i).

c Create the archive. The specified archive is always created if it didn’t exist when you request an update.
But a warning is issued unless you specify in advance that you expect to create it by using this modifier.

i Insert new files before an existing member of the archive. If you use the modifier i, the name of an
existing archive member must be present as the membername argument, before the archive specifica-
tion. (same as b).

l This modifier is accepted but not used.

o Preserve the original dates of members when extracting them. If you do not specify this modifier, files
extracted from the archive will be stamped with the time of extraction.

s Write an object-file index into the archive, or update an existing one, even if no other change is made
to the archive. You may use this modifier flag either with any operation, or alone. Running ar s on an
archive is equivalent to running ranlib on it.

u Normally, ar r... inserts all files listed into the archive. If you would like to insert only those of the
files you list that are newer than existing members of the same names, use this modifier. The u modifier
is allowed only for the operation r (replace). In particular, the combination qu is not allowed, since
checking the timestamps would lose any speed advantage from the operation q.

v This modifier requests the verbose version of an operation. Many operations display additional
information, such as filenames processed, when the modifier v is appended.

V This modifier shows the version number of ar.

SEE ALSO
binutils entry in info; The GNU Binary Utilities, Roland H. Pesch (October 1991); nm(1), anlib(1)

COPYING
Copyright  1991 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy
and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions
for modified versions, except that this permission notice may be included in translations approved by the Free Software
Foundation instead of in the original English.

Cygnus Support, 5 November 1991

ar

Part I: User Commands8

arch
arch—Print architecture

SYNOPSIS
arch

DESCRIPTION
arch displays machine architecture type.

SEE ALSO
uname(1), uname(2)

Debian GNU/Linux, 15 January 1994

GNU as
GNU as—The portable GNU assembler

SYNOPSIS
as [–a | –al | -as][–D][–f][–I path][–K][–L][–o objfile][–R][–v][–w][––\|\
files ...]

i960-only options:

[–ACA| –ACA A | –ACB | –ACC| –AKA| –AKB | –AKC| –AMC][–b][–no-relax]

m680x0-only options:

[–l][–mc68000| –mc68010| –mc68020]

DESCRIPTION
GNU as is really a family of assemblers. If you use (or have used) the GNU assembler on one architecture, you should find a
fairly similar environment when you use it on another architecture. Each version has much in common with the others,
including object file formats, most assembler directives (often called pseudo-ops) and assembler syntax.

For information on the syntax and pseudo-ops used by GNU as, see as entry in info (or the manual Using as: The GNU
Assembler).

as is primarily intended to assemble the output of the GNU C compiler gcc for use by the linker ld. Nevertheless, we’ve tried
to make as assemble correctly everything that the native assembler would. This doesn’t mean as always uses the same syntax
as another assembler for the same architecture; for example, we know of several incompatible versions of 680x0 assembly
language syntax.

Each time you run as, it assembles exactly one source program. The source program is made up of one or more files. (The
standard input is also a file.)

If as is given no filenames, it attempts to read one input file from the as standard input, which is normally your terminal.
You may have to type Ctrl-D to tell as there is no more program to assemble. Use –– if you need to explicitly name the
standard input file in your command line.

as may write warnings and error messages to the standard error file (usually your terminal). This should not happen when as
is run automatically by a compiler. Warnings report an assumption made so that as could keep assembling a flawed program;
errors report a grave problem that stops the assembly.

9

OPTIONS
–a|–al|–as Turn on assembly listings; –al, listing only, –as, symbols only, -a, everything.

–D This option is accepted only for script compatibility with calls to other assemblers; it
has no effect on as.

–f “Fast”–skip preprocessing (assume source is compiler output).

–I\path Add path to the search list for .include directives.

–K Issue warnings when difference tables altered for long displacements.

–L Keep (in symbol table) local symbols, starting with L.

–o\objfile Name the object-file output from as.

–R Fold data section into text section.

–v Announce as version.

–W Suppress warning messages.

––\|\files... Source files to assemble, or standard input (––).

–Avar (When configured for Intel 960.) Specify which variant of the 960 architecture is the
target.

–b (When configured for Intel 960.) Add code to collect statistics about branches taken.

–no-relax (When configured for Intel 960.) Do not alter compare-and-branch instructions for
long displacements; error if necessary.

–l (When configured for Motorola 68000.) Shorten references to undefined symbols to
one word instead of two.

–mc68000|–mc68010|–mc68020 (When configured for Motorola 68000.) Specify which processor in the 68000
family is the target (default 68020).

Options may be in any order, and may be before, after, or between filenames. The order of filenames is significant.

The double hyphens command (—) by itself names the standard input file explicitly, as one of the files for as to assemble.

Except for ––, any command line argument that begins with a hyphen (–) is an option. Each option changes the behavior of
as. No option changes the way another option works. An option is a hyphen followed by one or more letters; the case of the
letter is important. All options are optional.

The –o option expects exactly one filename to follow. The filename may either immediately follow the option’s letter
(compatible with older assemblers) or it may be the next command argument (GNU standard).

These two command lines are equivalent:

as –o my–object–file.o mumble.s

as –omy–object–file.o mumble.s

SEE ALSO
as entry in info; Using as: The GNU Assembler; gcc(1), ld(1).

COPYING
Copyright  1991, 1992 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of
this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to
copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire
resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions
for modified versions, except that this permission notice may be included in translations approved by the Free Software
Foundation instead of in the original English.

Cygnus Support, 21 January 1992

GNU as

Part I: User Commands10

asciitopgm
asciitopgm—Convert ASCII graphics into a portable graymap

SYNOPSIS
asciitopgm [-d divisor] height width [asciifile]

DESCRIPTION
Reads ASCII data as input. Produces a portable graymap with pixel values that are an approximation of the brightness of the
ASCII characters, assuming black-on-white printing. In other words, a capital M is very dark, a period is very light, and a
space is white. Input lines that are fewer than width characters are automatically padded with spaces.

The divisor argument is a floating-point number by which the output pixels are divided; the default value is 1.0. This can be
used to adjust the brightness of the graymap; for example, if the image is too dim, reduce the divisor.

In keeping with (I believe) FORTRAN line-printer conventions, input lines beginning with a + (plus) character are assumed
to overstrike the previous line, allowing a larger range of gray values.

This tool contradicts the message in the pbmtoascii manual: “Note that there is no asciitopbm tool—this transformation is
one-way.”

BUGS
The table of ASCII-to-gray values is subject to interpretation, and, of course, depends on the typeface intended for the input.

SEE ALSO
pbmtoascii(1), pgm(5)

AUTHOR
Wilson H. Bent, Jr. (whb@usc.edu)

26 December 1994

atktopbm
atktopbm—Convert Andrew Toolkit raster object to portable bitmap

SYNOPSIS
atktopbm [atkfile]

DESCRIPTION
atktopbm reads an Andrew Toolkit raster object as input and produces a portable bitmap as output.

SEE ALSO
pbmtoatk(1), pbm(5)

AUTHOR
Copyright  1991 by Bill Janssen

26 September 1991

11

bash
bash—GNU Bourne–again shell

SYNOPSIS
bash [options] [file]

DESCRIPTION
bash is an sh–compatible command language interpreter that executes commands read from the standard input or from a file.
bash also incorporates useful features from the Korn and C shells (ksh and csh).

bash is ultimately intended to be a conformant implementation of the IEEE POSIX Shell and Tools specification (IEEE
Working Group 10032).

OPTIONS
In addition to the single–character shell options documented in the description of the set built-in command, bash interprets
the following flags when it is invoked:

–c string If the –c flag is present, then commands are read from string. If there are arguments after the
string, they are assigned to the positional parameters, starting with $0.

–i If the –i flag is present, the shell is interactive.

–s If the –s flag is present, or if no arguments remain after option processing, then commands are
read from the standard input. This option allows the positional parameters to be set when
invoking an interactive shell.

– A single – signals the end of options and disables further option processing. Any arguments after
the – are treated as filenames and arguments. An argument of — is equivalent to an argument
of –.

bash also interprets a number of multicharacter options. To be recognized, these options must appear on the command line
before the single–character options.

–norc Do not read and execute the personal initialization file ˜/.bashrc if the shell is interactive. This
option is on by default if the shell is invoked as sh.

–noprofile Do not read either the system–wide startup file /etc/profile or any of the personal initializa-
tion files ˜/.bash_profile, ˜/.bash_login, or ˜/.profile. By default, bash normally reads these
files when it is invoked as a login shell. (See the “Invocation” section, later in this manual page.)

–rcfile file Execute commands from file instead of the standard personal initialization file ˜/.bashrc, if the
shell is interactive. (See “Invocation.”)

–version Show the version number of this instance of bash when starting.

–quiet Do not be verbose when starting up (do not show the shell version or any other information).
This is the default.

–login Make bash act as if it had been invoked as a login shell.

–nobraceexpansion Do not perform curly brace expansion. (See “Brace Expansion,” later in this manual page.)

–nolineediting Do not use the GNU readline library to read command lines if interactive.

–posix Change the behavior of bash where the default operation differs from the POSIX 1003.2
standard to match the standard.

ARGUMENTS
If arguments remain after option processing, and neither the –c nor the –s option has been supplied, the first argument is
assumed to be the name of a file containing shell commands. If bash is invoked in this fashion, is set to the name of the file,
and the positional parameters are set to the remaining arguments. bash reads and executes commands from this file, then
exits. bash’s exit status is the exit status of the last command executed in the script.

bash

Part I: User Commands12

DEFINITIONS
blank A space or tab.

word A sequence of characters considered as a single unit by the shell. Also known as a token.

name A word consisting only of alphanumeric characters and underscores and beginning with an
alphabetic character or an underscore. Also referred to as an identifier.

meta character A character that, when unquoted, separates words. One of the following:

|, &, ;, (,), <, >, space, tab

control operator A token that performs a control function. It is one of the following symbols:

||, &, &&, ;, ;;, (,), |, <newline>

RESERVED WORDS
Reserved words are words that have a special meaning to the shell. The following words are recognized as reserved when
unquoted and either the first word of a simple command (see “Shell Grammar,” next) or the third word of a case or for
command:

! case do done elif else esac fi for function if in select then until while { }

SHELL GRAMMAR
SIMPLE COMMANDS

A simple command is a sequence of optional variable assignments followed by words and redirections separated by blank and
terminated by a control operator. The first word specifies the command to be executed. The remaining words are passed as
arguments to the invoked command.

The return value of a simple command is its exit status, or 128+n if the command is terminated by signal n.

PIPELINES
A pipeline is a sequence of one or more commands separated by the character |. The format for a pipeline is

 [!]command [| command2 ...]

The standard output of command is connected to the standard input of command2. This connection is performed before any
redirections specified by the command. (See the “Redirection” section, later in this manual page.)

If the reserved word ! precedes a pipeline, the exit status of that pipeline is the logical NOT of the exit status of the last
command. Otherwise, the status of the pipeline is the exit status of the last command. The shell waits for all commands in
the pipeline to terminate before returning a value.

Each command in a pipeline is executed as a separate process (that is, in a subshell).

LISTS
A list is a sequence of one or more pipelines separated by one of these operators: ;, &, &&, or ||, and terminated by one of
these: ;, &, or <newline>.

Of these list operators, && and || have equal precedence, followed by ; and &, which have equal precedence.

If a command is terminated by the control operator &, the shell executes the command in the background in a subshell. The
shell does not wait for the command to finish, and the return status is 0. Commands separated by a ; are executed sequen-
tially; the shell waits for each command to terminate in turn. The return status is the exit status of the last command
executed.

The control operators && and || denote AND lists and OR lists, respectively. An AND list has the form:

command && command2

command2 is executed if, and only if, command returns an exit status of Zero.

13

An OR list has the form

command command2

command2 is executed if, and only if, command returns a non–zero exit status. The return status of AND and OR lists is the exit
status of the last command executed in the list.

COMPOUND COMMANDS
A compound command is one of the following:

(list)

list is executed in a subshell. Variable assignments and built-in commands that affect the shell’s environment do not remain
in effect after the command completes. The return status is the exit status of list.
{ list; }

list is simply executed in the current shell environment. This is known as a group command. The return status is the exit
status of list.
for name [in word;] do list ; done

The list of words following in is expanded, generating a list of items. The variable name is set to each element of this list in
turn, and list is executed each time. If the in word is omitted, the for command executes list once for each positional
parameter that is set. (See “Parameters,” later in this manual page.)
select name [in word;] do list ; done

The list of words following in is expanded, generating a list of items. The set of expanded words is printed on the standard
error, each preceded by a number. If the in word is omitted, the positional parameters are printed. (See “Parameters.”) The
PS3 prompt is then displayed and a line read from the standard input. If the line consists of the number corresponding to
one of the displayed words, then the value of name is set to that word. If the line is empty, the words and prompt are
displayed again. If EOF is read, the command completes. Any other value read causes name to be set to null. The line read is
saved in the variable REPLY. The list is executed after each selection until a break or return command is executed. The exit
status of select is the exit status of the last command executed in list, or zero if no commands were executed.
case word in [pattern [| pattern]

A case command first expands word, and tries to match it against each pattern in turn, using the same matching rules as for
pathname expansion. (See “Pathname Expansion,” later in this manual page.) When a match is found, the corresponding list
is executed. After the first match, no subsequent matches are attempted. The exit status is zero if no patterns are matches.
Otherwise, it is the exit status of the last command executed in list.
if list then list [elif list then list] ... [else list] fi

The if list is executed. If its exit status is zero, the then list is executed. Otherwise, each elif list is executed in turn, and if its
exit status is zero, the corresponding then list is executed and the command completes. Otherwise, the else list is executed, if
present. The exit status is the exit status of the last command executed, or zero if no condition tested True.
while list do list done

until list do list done

The while command continuously executes the do list as long as the last command in list returns an exit status of zero. The
until command is identical to the while command, except that the test is negated; the do list is executed as long as the last
command in list returns a non–zero exit status. The exit status of the while and until commands is the exit status of the last
do list command executed, or zero if none was executed.

[function] name () { list; }

This defines a function named name. The body of the function is the list of commands between { and }. This list is executed
whenever name is specified as the name of a simple command. The exit status of a function is the exit status of the last
command executed in the body. (See “Functions,” later in this manual page.)

bash

Part I: User Commands14

COMMENTS
In a noninteractive shell, or an interactive shell in which the -o interactive–comments option to the set builtin is enabled, a
word beginning with # causes that word and all remaining characters on that line to be ignored. An interactive shell without
the -o interactive–comments option enabled does not allow comments.

QUOTING
Quoting is used to remove the special meaning of certain characters or words to the shell. Quoting can be used to disable
special treatment for special characters, to prevent reserved words from being recognized as such, and to prevent parameter
expansion.

Each of the meta characters listed earlier under “Definitions” has special meaning to the shell and must be quoted if it is to
represent itself. There are three quoting mechanisms: the escape character, single quotes, and double quotes.

A nonquoted backslash (\) is the escape character. It preserves the literal value of the next character that follows, with the
exception of <newline>.If a \<newline> pair appears, and the backslash is not quoted, the \<newline> is treated as a line
continuation; that is, it is effectively ignored.

Enclosing characters in single quotes preserves the literal value of each character within the quotes. A single quote may not
occur between single quotes, even when preceded by a backslash.

Enclosing characters in double quotes preserves the literal value of all characters within the quotes, with the exception of $, ‘,
and \. The characters $ and ‘ retain their special meaning within double quotes. The backslash retains its special meaning
only when followed by one of the following characters: $, ‘, “, \, or <newline>. A double quote may be quoted within double
quotes by preceding it with a backslash.

The special parameters * and @ have special meaning when in double quotes. (See “Parameters,” next.)

PARAMETERS
A parameter is an entity that stores values, somewhat like a variable in a conventional programming language. It can be a
name, a number, or one of the special characters listed under “Special Parameters,” following. For the shell’s purposes, a
variable is a parameter denoted by a name.

A parameter is set if it has been assigned a value. The null string is a valid value. Once a variable is set, it may be unset only
by using the unset built-in command. (See “Shell Built-in Commands,” later in this manual page.)

A variable may be assigned to by a statement of the form:

name=[value]

If value is not given, the variable is assigned the null string. All values undergo tilde expansion, parameter and variable
expansion, command substitution, arithmetic expansion, and quote removal. If the variable has its –i attribute set (see
declare in “Shell Built-in Commands”) then value is subject to arithmetic expansion even if the $[...] syntax does not
appear. Word splitting is not performed, with the exception of “$@”, as explained under “Special Parameters.” Pathname
expansion is not performed.

POSITIONAL PARAMETERS
A positional parameter is a parameter denoted by one or more digits, other than the single digit 0. Positional parameters are
assigned from the shell’s arguments when it is invoked, and may be reassigned using the set built-in command. Positional
parameters may not be assigned to with assignment statements. The positional parameters are temporarily replaced when a
shell function is executed. (See “Functions,” later in this manual page.)

When a positional parameter consisting of more than a single digit is expanded, it must be enclosed in braces. (See
“Expansion,” later in this manual page.)

SPECIAL PARAMETERS
The shell treats several parameters specially. These parameters may only be referenced; assignment to them is not allowed.

15

* Expands to the positional parameters, starting from one. When the expansion occurs within double
quotes, it expands to a single word with the value of each parameter separated by the first character
of the IFS special variable. That is, “$*” is equivalent to “$1c$2c...”, where c is the first character of
the value of the IFS variable. If IFS is null or unset, the parameters are separated by spaces.

@ Expands to the positional parameters, starting from one. When the expansion occurs within double
quotes, each parameter expands as a separate word. That is, “$@” is equivalent to “$1””$2"
When there are no positional parameters, “$@” and $@ expand to nothing (in other words, they are
removed).

Expands to the number of positional parameters in decimal.

? Expands to the status of the most recently executed foreground pipeline.

– Expands to the current option flags as specified upon invocation, by the set built-in command, or
those set by the shell itself (such as the –i flag).

$ Expands to the process ID of the shell. In a () subshell, it expands to the process ID of the current
shell, not the subshell.

! Expands to the process ID of the most recently executed background (asynchronous) command.

0 Expands to the name of the shell or shell script. This is set at shell initialization. If bash is invoked
with a file of commands, is set to the name of that file. If bash is started with the –c option, then is
set to the first argument after the string to be executed, if one is present. Otherwise, it is set to the
pathname used to invoke bash, as given by argument zero.

_ Expands to the last argument to the previous command, after expansion. Also set to the full
pathname of each command executed and placed in the environment exported to that command.

SHELL VARIABLES
The following variables are set by the shell:

PPID The process ID of the shell’s parent.

PWD The current working directory as set by the cd command.

OLDPWD The previous working directory as set by the cd command.

REPLY Set to the line of input read by the read built-in command when no arguments are
supplied.

UID Expands to the user ID of the current user, initialized at shell startup.

EUID Expands to the effective user ID of the current user, initialized at shell startup.

BASH Expands to the full pathname used to invoke this instance of bash.

BASH_VERSION Expands to the version number of this instance of bash.

SHLVL Incremented by one each time an instance of bash is started.

RANDOM Each time this parameter is referenced, a random integer is generated. The sequence
of random numbers may be initialized by assigning a value to RANDOM. If RANDOM is
unset, it loses its special properties, even if it is subsequently reset.

SECONDS Each time this parameter is referenced, the number of seconds since shell invocation
is returned. If a value is assigned to SECONDS, the value returned upon subsequent
references is the number of seconds since the assignment plus the value assigned. If
SECONDS is unset, it loses its special properties, even if it is subsequently reset.

LINENO Each time this parameter is referenced, the shell substitutes a decimal number
representing the current sequential line number (starting with 1) within a script or
function. When not in a script or function, the value substituted is not guaranteed to
be meaningful. When in a function, the value is not the number of the source line
that the command appears on (that information has been lost by the time the
function is executed), but is an approximation of the number of simple commands
executed in the current function. If LINENO is unset, it loses its special properties, even
if it is subsequently reset.

bash

Part I: User Commands16

HISTCMD The history number, or index in the history list, of the current command. If HISTCMD
is unset, it loses its special properties, even if it is subsequently reset.

OPTARG The value of the last option argument processed by the getopts built-in command.
(See “Shell Built-in Commands,” later in this manual page).

OPTIND The index of the next argument to be processed by the getopts built-in command.
(See “Shell Built-in Commands.”)

HOSTTYPE Automatically set to a string that uniquely describes the type of machine on which
bash is executing. The default is system-dependent.

OSTYPE Automatically set to a string that describes the operating system on which bash is
executing. The default is system-dependent.

The following variables are used by the shell. In some cases, bash assigns a default value to a variable; these cases are noted in
the following list:

IFS The internal field separator that is used for word splitting after expansion and to split
lines into words with the read built-in command. The default value is
<space><tab><newline>.

PATH The search path for commands. It is a colon-separated list of directories in which the
shell looks for commands. (See “Command Execution,” later in this manual page).
The default path is system–dependent, and is set by the administrator who installs
bash. A common value is /usr/gnu/bin:/usr/local/bin:/usr/ucb:/bin:/usr/bin:.

HOME The home directory of the current user; the default argument for the cd built-in
command.

CDPATH The search path for the cd command. This is a colon-separated list of directories in
which the shell looks for destination directories specified by the cd command. A
sample value is .:˜:/usr.

ENV If this parameter is set when bash is executing a shell script, its value is interpreted as
a filename containing commands to initialize the shell, as in .bashrc. The value of
ENV is subjected to parameter expansion, command substitution, and arithmetic
expansion before being interpreted as a pathname. PATH is not used to search for the
resultant pathname.

MAIL If this parameter is set to a filename and the MAILPATH variable is not set, bash informs
the user of the arrival of mail in the specified file.

MAILCHECK Specifies how often (in seconds) bash checks for mail. The default is 60 seconds.
When it is time to check for mail, the shell does so before prompting. If this variable
is unset, the shell disables mail checking.

MAILPATH A colon-separated list of pathnames to be checked for mail. The message to be
printed may be specified by separating the pathname from the message with a
question mark (?). $_ stands for the name of the current mailfile.

Example:
MAILPATH\
=’/usr/spool/mail/bfox?”You have
mail”:˜/shell-mail?”$_has mail!”’

bash supplies a default value for this variable, but the location of the user mail files
that it uses is system-dependent (for example, /usr/spool/mail/$USER).

MAIL_WARNING If set, and a file that bash is checking for mail has been accessed since the last time it
was checked, the message “The mail in mail-file has been read” is printed.

PS1 The value of this parameter is expanded (see “Prompting,” later in this manual page)
and used as the primary prompt string. The default value is bash\$.

PS2 The value of this parameter is expanded and used as the secondary prompt string.
The default is >.

17

PS3 The value of this parameter is used as the prompt for the select command. (See
“Shell Grammar,” earlier in this manual page.)

PS4 The value of this parameter is expanded and the value is printed before each
command bash displays during an execution trace. The first character of PS4 is
replicated multiple times, as necessary, to indicate multiple levels of indirection. The
default is +.

HISTSIZE The number of commands to remember in the command history, (See “History,”
later in this manual page.) The default value is 500.

HISTFILE The name of the file in which command history is saved. (See “History.”) The
default value is ˜/.bash_history. If unset, the command history is not saved when an
interactive shell exits.

HISTFILESIZE The maximum number of lines contained in the history file. When this variable is
assigned a value, the history file is truncated, if necessary, to contain no more than
that number of lines. The default value is 500.

OPTERR If set to the value 1, bash displays error messages generated by the getopts built-in
command. (See “Shell Built-in Commands.”). OPTERR is initialized to 1 each time the
shell is invoked or a shell script is executed.

PROMPT_COMMAND If set, the value is executed as a command prior to issuing each primary prompt.

IGNOREEOF Controls the action of the shell on receipt of an EOF character as the sole input. If set,
the value is the number of consecutive EOF characters typed as the first characters on
an input line before bash exits. If the variable exists but does not have a numeric
value, or has no value, the default value is 10. If it does not exist, EOF signifies the end
of input to the shell. This is only in effect for interactive shells.

TMOUT If set to a value greater than zero, the value is interpreted as the number of seconds
to wait for input after issuing the primary prompt. bash terminates after waiting for
that number of seconds if input does not arrive.

FCEDIT The default editor for the fc built-in command.

FIGNORE A colon-separated list of suffixes to ignore when performing filename completion.
(See “Readline,” later in this manual page.) A filename whose suffix matches one of
the entries in FIGNORE is excluded from the list of matched filenames. A sample value
is .o:˜.

INPUTRC The filename for the readline startup file, overriding the default of ˜/.inputrc. (See
“Readline.”)

notify If set, bash reports terminated background jobs immediately, rather than waiting
until before printing the next primary prompt. (See also the –b option to the set
built-in command.)

history_control HISTCONTROL If set to a value of ignorespace, lines that begin with a space character are not entered
on the history list. If set to a value of ignoredups, lines matching the last history line
are not entered. A value of ignoreboth combines the two options. If unset, or if set to
any other value than the preceding, all lines read by the parser are saved on the
history list.

command_oriented_history If set, bash attempts to save all lines of a multiple–line command in the same history
entry. This allows easy reediting of multiline commands.

glob_dot_filenames If set, bash includes filenames beginning with a period (.) in the results of pathname
expansion.

allow-null_glob_expansion If set, bash allows pathname patterns which match no files (see “Pathname
Expansion”) to expand to a null string, rather than themselves.

histchars The two or three characters that control history expansion and tokenization. (See
“History Expansion,” later in this manual page.) The first character is the history
expansion character; that is, the character that signals the start of a history expansion,

bash

Part I: User Commands18

normally !. The second character is the quick substitution character, which is used as
shorthand for rerunning the previous command entered, substituting one string for
another in the command. The default is ^. The optional third character is the
character that signifies that the remainder of the line is a comment, when found as
the first character of a word, normally #. The history comment character causes
history substitution to be skipped for the remaining words on the line. It does not
necessarily cause the shell parser to treat the rest of the line as a comment.

nolinks If set, the shell does not follow symbolic links when executing commands that
change the current working directory. It uses the physical directory structure instead.
By default, bash follows the logical chain of directories when performing commands
that change the current directory, such as cd. See also the description of the –P
option to the set builtin (“Shell Built-in Commands”).

hostname_completion_file HOSTFILE Contains the name of a file in the same format as /etc/hosts that should be read
when the shell needs to complete a hostname. The file may be changed interactively;
the next time hostname completion is attempted bash adds the contents of the new
file to the already existing database.

noclobber If set, bash does not overwrite an existing file with the >, >&, and <> redirection
operators. This variable may be overridden when creating output files by using the
redirection operator >| instead of >. (See also the –C option to the set built-in
command.)

auto_resume This variable controls how the shell interacts with the user and job control. If this
variable is set, single word simple commands without redirections are treated as
candidates for resumption of an existing stopped job. There is no ambiguity allowed;
if there is more than one job beginning with the string typed, the job most recently
accessed is selected. The name of a stopped job, in this context, is the command line
used to start it. If set to the value exact, the string supplied must match the name of
a stopped job exactly; if set to substring, the string supplied needs to match a
substring of the name of a stopped job. The substring value provides functionality
analogous to the %? job ID. (See “Job Control,” later in this manual page.) If set to
any other value, the supplied string must be a prefix of a stopped job’s name; this
provides functionality analogous to the % job id.

no_exit_on_failed_exec If this variable exists, a noninteractive shell will not exit if it cannot execute the file
specified in the exec built-in command. An interactive shell does not exit if exec
fails.

cdable_vars If this is set, an argument to the cd built-in command that is not a directory is
assumed to be the name of a variable whose value is the directory to change to.

EXPANSION
Expansion is performed on the command line after it has been split into words. There are seven kinds of expansion
performed: brace expansion, tilde expansion, parameter and variable expansion, command substitution, arithmetic expan-
sion, word splitting, and pathname expansion.

The order of expansions is as follows: brace expansion, tilde expansion, parameter, variable, command, and arithmetic
substitution (done in a left–to–right fashion), word splitting, and pathname expansion.

On systems that can support it, there is an additional expansion available: process substitution.

Only brace expansion, word splitting, and pathname expansion can change the number of words of the expansion; other
expansions expand a single word to a single word. The single exception to this is the expansion of “$@”, as explained earlier.
(See “Parameters.”)

19

BRACE EXPANSION
Brace expansion is a mechanism by which arbitrary strings may be generated. This mechanism is similar to pathname
expansion, but the filenames generated need not exist. Patterns to be brace expanded take the form of an optional preamble,
followed by a series of comma-separated strings between a pair of braces, followed by an optional postamble. The preamble is
prepended to each string contained within the braces, and the postamble is then appended to each resulting string,
expanding left to right.

Brace expansions may be nested. The results of each expanded string are not sorted; left to right order is preserved. For
example, a{d,c,b}e expands into ade ace abe.

Brace expansion is performed before any other expansions, and any characters special to other expansions are preserved in the
result. It is strictly textual. bash does not apply any syntactic interpretation to the context of the expansion or the text
between the braces.

A correctly formed brace expansion must contain unquoted opening and closing braces, and at least one unquoted comma.
Any incorrectly formed brace expansion is left unchanged.

This construct is typically used as shorthand when the common prefix of the strings to be generated is longer than in the
preceding example, such as

mkdir /usr/local/src/bash/{old,new,dist,bugs}

or

chown root /usr/{ucb/{ex,edit},lib/{ex?.?*,how_ex}}

Brace expansion introduces a slight incompatibility with traditional versions of sh, the Bourne shell. sh does not treat
opening or closing braces specially when they appear as part of a word, and preserves them in the output. bash removes
braces from words as a consequence of brace expansion. For example, a word entered to sh as file{1,2} appears identically in
the output. The same word is output as file1 file2 after expansion by bash. If strict compatibility with sh is desired, start
bash with the –nobraceexpansion flag (see “Options,” earlier in this manual page) or disable brace expansion with the +o
braceexpand option to the set command. (See “Shell Built-in Commands.”)

TILDE EXPANSION
If a word begins with a tilde character (˜), all of the characters preceding the first slash (or all characters, if there is no slash)
are treated as a possible login name. If this login name is the null string, the tilde is replaced with the value of the parameter
HOME. If HOME is unset, the home directory of the user executing the shell is substituted instead.

If a + follows the tilde, the value of PWD replaces the tilde and + If a – follows, the value of OLDPWD is substituted. If the value
following the tilde is a valid login name, the tilde and login name are replaced with the home directory associated with that
name. If the name is invalid, or the tilde expansion fails, the word is unchanged.

Each variable assignment is checked for unquoted instances of tildes following a : or =. In these cases, tilde substitution is
also performed. Consequently, one may use pathnames with tildes in assignments to PATH, MAILPATH, and CDPATH, and the shell
assigns the expanded value.

PARAMETER EXPANSION
The $ character introduces parameter expansion, command substitution, or arithmetic expansion. The parameter name or
symbol to be expanded may be enclosed in braces, which are optional but serve to protect the variable to be expanded from
characters immediately following it which could be interpreted as part of the name.

${parameter} The value of parameter is substituted. The braces are required when parameter is a positional parameter
with more than one digit, or when parameter is followed by a character that is not to be interpreted as part
of its name.

In each of the following cases, word is subject to tilde expansion, parameter expansion, command substitution, and arithmetic
expansion. bash tests for a parameter that is unset or null; omitting the colon results in a test only for a parameter that is
unset.

bash

Part I: User Commands20

${parameter:–word} Use default values. If parameter is unset or null, the expansion of word is substituted. Otherwise, the
value of parameter is substituted.

${parameter:=word} Assign default values. If parameter is unset or null, the expansion of word is assigned to parameter.
The value of parameter is then substituted. Positional parameters and special parameters may not be
assigned to in this way.

${parameter:?word} Display Error if null or unset. If parameter is null or unset, the expansion of word (or a message to
that effect if word is not present) is written to the standard error and the shell, if it is not interactive,
exits. Otherwise, the value of parameter is substituted.

${parameter:+word} Use Alternate Value. If parameter is null or unset, nothing is substituted; otherwise, the expansion
of word is substituted.

${#parameter} The length in characters of the value of parameter is substituted. If parameter is * or @, the length
substituted is the length of * expanded within double quotes.

${parameter#word} The word is expanded to produce a pattern just as in pathname expansion. If the pattern matches
${parameter##word} the beginning of the value of parameter, then the expansion is the value of parameter with the

shortest matching pattern deleted (the # case) or the longest matching pattern deleted (the ## case).

${parameter%word} The word is expanded to produce a pattern just as in pathname expansion. If the pattern matches a
${parameter%%word} trailing portion of the value of parameter, then the expansion is the value of parameter with the

shortest matching pattern deleted (the % case) or the longest matching pattern deleted (the %% case).

COMMAND SUBSTITUTION
Command substitution allows the output of a command to replace the command name.

There are two forms:

$(command)

or

‘command’

performs the expansion by executing command and replacing the command substitution with the standard output of the
command, with any trailing newlines deleted.

When the old–style backquote form of substitution is used, backslash retains its literal meaning except when followed by $, ‘,
or \. When using the $(command) form, all characters between the parentheses make up the command; none are treated
specially.

Command substitutions may be nested. To nest when using the old form, escape the inner backquotes with backslashes.

If the substitution appears within double quotes, word splitting and pathname expansion are not performed on the results.

ARITHMETIC EXPANSION
Arithmetic expansion allows the evaluation of an arithmetic expression and the substitution of the result. There are two
formats for arithmetic expansion:

$[expression]
$((expression))

The expression is treated as if it were within double quotes, but a double quote inside the braces or parentheses is not treated
specially. All tokens in the expression undergo parameter expansion, command substitution, and quote removal. Arithmetic
substitutions may be nested.

The evaluation is performed according to the rules listed under “Arithmetic Evaluation,” later in this section. If expression is
invalid, bash prints a message indicating failure and no substitution occurs.

PROCESS SUBSTITUTION
Process substitution is supported on systems that support named pipes (FIFOs) or the /dev/fd method of naming open files.
It takes the form of <(list) or >(list). The process list is run with its input or output connected to a FIFO or some file in /

21

dev/fd. The name of this file is passed as an argument to the current command as the result of the expansion. If the >(list)
form is used, writing to the file will provide input for list. If the <(list) form is used, the file passed as an argument should
be read to obtain the output of list.

On systems that support it, process substitution is performed simultaneously with parameter and variable expansion,
command substitution, and arithmetic expansion.

WORD SPLITTING
The shell scans the results of parameter expansion, command substitution, and arithmetic expansion that did not occur
within double quotes for word splitting.

The shell treats each character of IFS as a delimiter, and splits the results of the other expansions into words on these
characters. If the value of IFS is exactly <space><tab><newline>, the default, then any sequence of IFS characters serves to
delimit words. If IFS has a value other than the default, then sequences of the whitespace characters space and tab are ignored
at the beginning and end of the word, as long as the whitespace character is in the value of IFS (an IFS whitespace character).
Any character in IFS that is not IFS whitespace, along with any adjacent IFS whitespace characters, delimits a field. A
sequence of IFS whitespace characters is also treated as a delimiter. If the value of IFS is null, no word splitting occurs. IFS
cannot be unset.

Explicit null arguments (“” or ‘’) are retained. Implicit null arguments, resulting from the expansion of parameters that have
no values, are removed.

Note that if no expansion occurs, no splitting is performed.

PATHNAME EXPANSION
After word splitting, unless the –f option has been set, bash scans each word for the characters *, ?, and [. If one of these
characters appears, then the word is regarded as a pattern and replaced with an alphabetically sorted list of pathnames
matching the pattern. If no matching pathnames are found, and the shell variable allow_null_glob_expansion is unset, the
word is left unchanged. If the variable is set, and no matches are found, the word is removed. When a pattern is used for
pathname generation, the character (.) at the start of a name or immediately following a slash must be matched explicitly,
unless the shell variable glob_dot_filenames is set. The slash character must always be matched explicitly. In other cases, the
(.) character is not treated specially.

The special pattern characters have the following meanings:

* Matches any string, including the null string.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of characters separated by a minus sign denotes a range;
any character lexically between those two characters, inclusive, is matched. If the first character following
the [is a ! or a ^, then any character not enclosed is matched. A – or] may be matched by including it as
the first or last character in the set.

QUOTE REMOVAL
After the preceding expansions, all unquoted occurrences of the characters \, ‘, and “ are removed.

REDIRECTION
Before a command is executed, its input and output may be redirected using a special notation interpreted by the shell.
Redirection may also be used to open and close files for the current shell execution environment. The following redirection
operators may precede or appear anywhere within a simple command or may follow a command. Redirections are processed
in the order they appear, from left to right.

In the following descriptions, if the file descriptor number is omitted, and the first character of the redirection operator is <,
the redirection refers to the standard input (file descriptor 0). If the first character of the redirection operator is >, the
redirection refers to the standard output (file descriptor 1).

bash

Part I: User Commands22

The word that follows the redirection operator in the following descriptions is subjected to brace expansion, tilde expansion,
parameter expansion, command substitution, arithmetic expansion, quote removal, and pathname expansion. If it expands to
more than one word, bash reports an error.

Note that the order of redirections is significant. For example, the command:

ls > dirlist 2>&1

directs both standard output and standard error to the file dirlist, while the command

ls 2>&1 > dirlist

directs only the standard output to file dirlist, because the standard error was duplicated as standard output before the
standard output was redirected to dirlist.

REDIRECTING INPUT
Redirection of input causes the file whose name results from the expansion of word to be opened for reading on file
descriptor n, or the standard input (file descriptor 0) if n is not specified.

The general format for redirecting input is

[n]<word

REDIRECTING OUTPUT
Redirection of output causes the file whose name results from the expansion of word to be opened for writing on file
descriptor n, or the standard output (file descriptor 1) if n is not specified. If the file does not exist, it is created; if it does
exist it is truncated to zero size.

The general format for redirecting output is

[n]>word

If the redirection operator is >|, then the value of the -C option to the set built-in command is not tested, and file creation is
attempted. (See also the description of noclobber under “Shell Variables,” earlier in this manual page.)

APPENDING REDIRECTED OUTPUT
Redirection of output in this fashion causes the file whose name results from the expansion of word to be opened for
appending on file descriptor n, or the standard output (file descriptor 1) if n is not specified. If the file does not exist, it is
created.

The general format for appending output is

[n]>>word

REDIRECTING STANDARD OUTPUT AND STANDARD ERROR
bash allows both the standard output (file descriptor 1) and the standard error output (file descriptor 2) to be redirected to
the file whose name is the expansion of word with this construct.

There are two formats for redirecting standard output and standard error:

&>word

and

>&word

Of the two forms, the first is preferred. This is semantically equivalent to

>word 2>&1

HERE-DOCUMENTS
This type of redirection instructs the shell to read input from the current source until a line containing only word (with no
trailing blanks) is seen. All of the lines read up to that point are then used as the standard input for a command.

23

The format of here-documents is as follows:

<<[–]word here-document delimiter

No parameter expansion, command substitution, pathname expansion, or arithmetic expansion is performed on word. If any
characters in word are quoted, the delimiter is the result of quote removal on word, and the lines in the here-document are not
expanded. Otherwise, all lines of the here-document are subjected to parameter expansion, command substitution, and
arithmetic expansion. In the latter case, the pair \<newline> is ignored, and \ must be used to quote the characters \, $, and ‘.

If the redirection operator is <<–, then all leading tab characters are stripped from input lines and the line containing
delimiter. This allows here-documents within shell scripts to be indented in a natural fashion.

DUPLICATING FILE DESCRIPTORS
The redirection operator:

[n]<&word

is used to duplicate input file descriptors. If word expands to one or more digits, the file descriptor denoted by n is made to be
a copy of that file descriptor. If word evaluates to –, file descriptor n is closed. If n is not specified, the standard input (file
descriptor 0) is used.

The operator:

[n]>&word

is used similarly to duplicate output file descriptors. If n is not specified, the standard output (file descriptor 1) is used. As a
special case, if n is omitted, and word does not expand to one or more digits, the standard output and standard error are
redirected as described previously.

OPENING FILE DESCRIPTORS FOR READING AND WRITING
The redirection operator:

[n]<>word

causes the file whose name is the expansion of word to be opened for both reading and writing on file descriptor n, or as the
standard input and standard output if n is not specified. If the file does not exist, it is created.

FUNCTIONS
A shell function, defined as described above under “Shell Grammar,” stores a series of commands for later execution.
Functions are executed in the context of the current shell; no new process is created to interpret them (contrast this with the
execution of a shell script). When a function is executed, the arguments to the function become the positional parameters
during its execution. The special parameter # is updated to reflect the change. Positional parameter 0 is unchanged.

Variables local to the function may be declared with the local built-in command. Ordinarily, variables and their values are
shared between the function and its caller.

If the built-in command return is executed in a function, the function completes and execution resumes with the next
command after the function call. When a function completes, the values of the positional parameters and the special
parameter # are restored to the values they had prior to function execution.

Function names may be listed with the –f option to the declare or typeset built-in commands. Functions may be exported
so that subshells automatically have them defined with the –f option to the export builtin.

Functions may be recursive. No limit is imposed on the number of recursive calls.

ALIASES
The shell maintains a list of aliases that may be set and unset with the alias and unalias built-in commands. (See “Shell
Built-in Commands.”). The first word of each command, if unquoted, is checked to see if it has an alias. If so, that word is
replaced by the text of the alias. The alias name and the replacement text may contain any valid shell input, including the
meta characters listed above, with the exception that the alias name may not contain =. The first word of the replacement text

bash

Part I: User Commands24

is tested for aliases, but a word that is identical to an alias being expanded is not expanded a second time. This means that
one may alias ls to ls –F, for instance, and bash does not try to recursively expand the replacement text. If the last character
of the alias value is a blank, then the next command word following the alias is also checked for alias expansion.

Aliases are created and listed with the alias command, and removed with the unalias command.

There is no mechanism for using arguments in the replacement text, as in csh. If arguments are needed, a shell function
should be used.

Aliases are not expanded when the shell is not interactive.

The rules concerning the definition and use of aliases are somewhat confusing. bash always reads at least one complete line of
input before executing any of the commands on that line. Aliases are expanded when a command is read, not when it is
executed. Therefore, an alias definition appearing on the same line as another command does not take effect until the next
line of input is read. This means that the commands following the alias definition on that line are not affected by the new
alias. This behavior is also an issue when functions are executed. Aliases are expanded when the function definition is read,
not when the function is executed, because a function definition is itself a compound command. As a consequence, aliases
defined in a function are not available until after that function is executed. To be safe, always put alias definitions on a
separate line, and do not use alias in compound commands.

Note that for almost every purpose, aliases are superseded by shell functions.

JOB CONTROL
Job control refers to the ability to selectively stop (suspend) the execution of processes and continue (resume) their execution
at a later point. A user typically employs this facility via an interactive interface supplied jointly by the system’s terminal
driver and bash.

The shell associates a job with each pipeline. It keeps a table of currently executing jobs, which may be listed with the jobs
command. When bash starts a job asynchronously (in the background), it prints a line that looks like this:

[1] 25647

indicating that this job is job number 1 and that the process ID of the last process in the pipeline associated with this job is
25647. All of the processes in a single pipeline are members of the same job. bash uses the job abstraction as the basis for job
control.

To facilitate the implementation of the user interface to job control, the system maintains the notion of a current terminal
process group ID. Members of this process group (processes whose process group ID is equal to the current terminal process
group ID) receive keyboard-generated signals such as SIGINT. These processes are said to be in the foreground. Background
processes are those whose process group ID differs from the terminal’s; such processes are immune to keyboard-generated
signals. Only foreground processes are allowed to read from or write to the terminal. Background processes that attempt to
read from (write to) the terminal are sent a SIGTTIN (SIGTTOU) signal by the terminal driver, which, unless caught, suspends
the process.

If the operating system on which bash is running supports job control, bash allows you to use it. Typing the suspend
character (typically ˆZ, Control-Z) while a process is running causes that process to be stopped and returns you to bash.
Typing the delayed suspend character (typically ˆY, Control-Y) causes the process to be stopped when it attempts to read
input from the terminal, and control to be returned to bash. You may then manipulate the state of this job, using the bg
command to continue it in the background, the fg command to continue it in the foreground, or the kill command to kill
it. A Ctrl+Z takes effect immediately, and has the additional side effect of causing pending output and typeahead to be
discarded.

There are a number of ways to refer to a job in the shell. The character % introduces a job name. Job number n may be
referred to as %n. A job may also be referred to using a prefix of the name used to start it, or using a substring that appears in
its command line. For example, %ce refers to a stopped ce job. If a prefix matches more than one job, bash reports an error.
Using %?ce, on the other hand, refers to any job containing the string ce in its command line. If the substring matches more
than one job, bash reports an error. The symbols %% and %+ refer to the shell’s notion of the current job, which is the last job

25

stopped while it was in the foreground. The previous job may be referenced using %–.In output pertaining to jobs (for
example, the output of the jobs command), the current job is always flagged with a +, and the previous job with a –.

Simply naming a job can be used to bring it into the foreground: %1 is a synonym for fg %1, bringing job 1 from the
background into the foreground. Similarly, %1 & resumes job 1 in the background, equivalent to bg %1.

The shell learns immediately whenever a job changes state. Normally, bash waits until it is about to print a prompt before
reporting changes in a job’s status so as to not interrupt any other output. If the -b option to the set built-in command is set,
bash reports such changes immediately. (See also the description of the notify variable in “Shell Variables,” earlier in this
manual page.)

If you attempt to exit bash while jobs are stopped, the shell prints a message warning you. You may then use the jobs
command to inspect their status. If you do this, or try to exit again immediately, you are not warned again, and the stopped
jobs are terminated.

SIGNALS
When bash is interactive, it ignores SIGTERM (so that kill 0 does not kill an interactive shell), and SIGINT is caught and
handled (so that the wait built-in is interruptible). In all cases, bash ignores SIGQUIT. If job control is in effect, bash ignores
SIGTTIN, SIGTTOU, and SIGTSTP.

Synchronous jobs started by bash have signals set to the values inherited by the shell from its parent. When job control is not
in effect, background jobs (jobs started with &) ignore SIGINT and SIGQUIT. Commands run as a result of command substitu-
tion ignore the keyboard-generated job control signals SIGTTIN, SIGTTOU, and SIGTSTP.

COMMAND EXECUTION
After a command has been split into words, if it results in a simple command and an optional list of arguments, the
following actions are taken.

If the command name contains no slashes, the shell attempts to locate it. If there exists a shell function by that name, that
function is invoked as described earlier in “Functions.” If the name does not match a function, the shell searches for it in the
list of shell builtins. If a match is found, that builtin is invoked.

If the name is neither a shell function nor a builtin, and contains no slashes, bash searches each element of the PATH for a
directory containing an executable file by that name. If the search is unsuccessful, the shell prints an error message and
returns a nonzero exit status.

If the search is successful, or if the command name contains one or more slashes, the shell executes the named program.
Argument 0 is set to the name given, and the remaining arguments to the command are set to the arguments given, if any.

If this execution fails because the file is not in executable format, and the file is not a directory, it is assumed to be a shell
script, a file containing shell commands. A subshell is spawned to execute it. This subshell reinitializes itself, so that the effect
is as if a new shell had been invoked to handle the script, with the exception that the locations of commands remembered by
the parent (see hash under “Shell Built-in Commands”) are retained by the child.

If the program is a file beginning with #!, the remainder of the first line specifies an interpreter for the program. The shell
executes the specified interpreter on operating systems that do not handle this executable format themselves. The arguments
to the interpreter consist of a single optional argument following the interpreter name on the first line of the program,
followed by the name of the program, followed by the command arguments, if any.

ENVIRONMENT
When a program is invoked, it is given an array of strings called the environment. This is a list of name/value pairs, of the
form name=value.

The shell allows you to manipulate the environment in several ways. On invocation, the shell scans its own environment and
creates a parameter for each name found, automatically marking it for export to child processes. Executed commands inherit
the environment. The export and declare –x commands allow parameters and functions to be added to and deleted from the
environment. If the value of a parameter in the environment is modified, the new value becomes part of the environment,

bash

Part I: User Commands26

replacing the old. The environment inherited by any executed command consists of the shell’s initial environment, whose
values may be modified in the shell, less any pairs removed by the unset command, plus any additions via the export and
declare –x commands.

The environment for any simple command or function may be augmented temporarily by prefixing it with parameter
assignments, as described earlier in “Parameters.” These assignment statements affect only the environment seen by that
command.

If the –k flag is set (see the set built-in command), then all parameter assignments are placed in the environment for a
command, not just those that precede the command name.

When bash invokes an external command, the variable is set to the full path name of the command and passed to that
command in its environment.

EXIT STATUS
For the purposes of the shell, a command which exits with a zero exit status has succeeded. An exit status of zero indicates
success. A non–zero exit status indicates failure. When a command terminates on a fatal signal, bash uses the value of
128+signal as the exit status.

If a command is not found, the child process created to execute it returns a status of 127. If a command is found but is not
executable, the return status is 126.

bash itself returns the exit status of the last command executed, unless a syntax error occurs, in which case it exits with a non–
zero value. (See also the exit built-in command.)

PROMPTING
When executing interactively, bash displays the primary prompt PS1 when it is ready to read a command, and the secondary
prompt PS2 when it needs more input to complete a command. bash allows these prompt strings to be customized by
inserting a number of backslash-escaped special characters that are decoded as follows:

\t The current time in HH:MM:SS format

\d The date in “Weekday Month Date” format (for example, “Tue May 26”)

\n Newline

\s The name of the shell, the basename of $0 (the portion following the final slash)

\w The current working directory

\W The basename of the current working directory

\u The username of the current user

\h The hostname

\# The command number of this command

\! The history number of this command

\$ If the effective UID is 0, a #, otherwise a $

\nnn The character corresponding to the octal number nnn

\\ A backslash

\[Begin a sequence of nonprinting characters, which could be used to embed a terminal control sequence
into the prompt

\] End a sequence of nonprinting characters

The command number and the history number are usually different: the history number of a command is its position in the
history list, which may include commands restored from the history file (see “History,” later in this manual page), while the
command number is the position in the sequence of commands executed during the current shell session. After the string is
decoded, it is expanded via parameter expansion, command substitution, arithmetic expansion, and word splitting.

27

READLINE
This is the library that handles reading input when using an interactive shell, unless the –nolineediting option is given. By
default, the line editing commands are similar to those of emacs. A vi-style line editing interface is also available.

In this section, the emacs-style notation is used to denote keystrokes. Control keys are denoted by C–key; for example, C–n
means Ctrl–N. Similarly, meta keys are denoted by M–key, so M–x means Meta–X. (On keyboards without a meta key, M–x
means Esc-X; that is, press the Escape key, then the X key. This makes ESC the meta prefix. The combination M–C–x means
Esc–Control–x, or press the Escape key then hold the Control key while pressing the X key.)

The default key-bindings may be changed with a /.inputrc file. The value of the shell variable INPUTRC, if set, is used instead
of ˜/.inputrc. Other programs that use this library may add their own commands and bindings.

For example, placing

M–Control–u: universal–argument

or

C–Meta–u: universal–argument

into the /.inputrc would make M–C–u execute the readline command universal–argument.The following symbolic character
names are recognized: RUBOUT, DEL, ESC, LFD, NEWLINE, RET, RETURN, SPC, SPACE, and TAB. In addition to command names,
readline allows keys to be bound to a string that is inserted when the key is pressed (a macro).

Readline is customized by putting commands in an initialization file. The name of this file is taken from the value of the
INPUTRC variable. If that variable is unset, the default is ˜/.inputrc. When a program that uses the readline library starts up,
the init file is read, and the key bindings and variables are set. There are only a few basic constructs allowed in the readline
init file. Blank lines are ignored. Lines beginning with a # are comments. Lines beginning with a $ indicate conditional
constructs. Other lines denote key bindings and variable settings.

The syntax for controlling key bindings in the ˜/.inputrc file is simple. All that is required is the name of the command or
the text of a macro and a key sequence to which it should be bound. The name may be specified in one of two ways: as a
symbolic key name, possibly with Meta- or Control- prefixes, or as a key sequence. When using the form keyname:function-
name or macro, keyname is the name of a key spelled out in English. For example,

Control-u: universal–argument
Meta-Rubout: backward-kill-word
Control-o: “>&output”

In the preceding example, C-u is bound to the function universal–argument, M-DEL is bound to the function backward–kill–
word,and C-o is bound to run the macro expressed on the righthand side (that is, to insert the text >&output into the line).

In the second form, “keyseq”:function-name or macro, keyseq differs from keyname in that strings denoting an entire key
sequence may be specified by placing the sequence within double quotes. Some GNU emacs-style key escapes can be used, as
in the following example:

“\C-u”: universal–argument
“\C-x\C-r”: re–read–init–file
“\e[11˜”: “Function Key 1”

In this example, C-u is again bound to the function universal–argument. C-x C-r is bound to the function re–read–init–file,
and ESC[11˜ is bound to insert the text Function Key 1. The full set of escape sequences is

\C– Control prefix

\M- Meta prefix

\e An escape character

\\ Backslash

\” Literal “

\’ Literal ‘

bash

Part I: User Commands28

When entering the text of a macro, single or double quotes should be used to indicate a macro definition. Unquoted text is
assumed to be a function name. Backslash will quote any character in the macro text, including “ and ‘.

bash allows the current readline key bindings to be displayed or modified with the bind built-in command. The editing
mode may be switched during interactive use by using the –o option to the set built-in command. (See “Shell Built-in
Commands.”)

Readline has variables that can be used to further customize its behavior. A variable may be set in the inputrc file with a
statement of the form:

set variable–name value

Except where noted, readline variables can take the values On or Off. The variables and their default values are as follows:

horizontal–scroll–mode (Off) When set to On, makes readline use a single line for display, scrolling the input
horizontally on a single screen line when it becomes longer than the screen width
rather than wrapping to a new line.

editing–mode (emacs) Controls whether readline begins with a set of key bindings similar to emacs or vi.
editing–mode can be set to either emacs or vi.

mark–modified–lines (Off) If set to On, history lines that have been modified are displayed with a preceding
asterisk (*).

bell–style (audible) Controls what happens when readline wants to ring the terminal bell. If set to none,
readline never rings the bell. If set to visible, readline uses a visible bell if one is
available. If set to audible, readline attempts to ring the terminal’s bell.

comment–begin (“#”) The string that is inserted in vi mode when the vi–comment command is executed.

meta–flag (Off) If set to On, readline will enable eight-bit input (that is, it will not strip the high bit
from the characters it reads), regardless of what the terminal claims it can support.

convert–meta (On) If set to On, readline will convert characters with the eighth bit set to an ASCII key
sequence by stripping the eighth bit and prepending an escape character (in effect,
using escape as the meta prefix).

output–meta (Off) If set to On, readline will display characters with the eighth bit set directly rather
than as a meta-prefixed escape sequence.

completion–query–items (100) This determines when the user is queried about viewing the number of possible
completions generated by the possible–completions command. It may be set to any
integer value greater than or equal to zero. If the number of possible completions is
greater than or equal to the value of this variable, the user is asked whether or not he
wishes to view them; otherwise, they are simply listed on the terminal.

keymap (emacs) Set the current readline keymap. The set of legal keymap names is emacs, emacs-
standard, emacs-meta, emacs-ctlx, vi, vi-move, vi-command, and vi-insert. vi is
equivalent to vi-command; emacs is equivalent to emacs-standard. The default value is
emacs; the value of editing–mode also affects the default keymap.

show–all–if–ambiguous (Off) This alters the default behavior of the completion functions. If set to On, words
which have more than one possible completion cause the matches to be listed
immediately instead of ringing the bell.

expand–tilde (Off) If set to On, tilde expansion is performed when readline attempts word completion.

Readline implements a facility similar in spirit to the conditional compilation features of the C preprocessor that allows key
bindings and variable settings to be performed as the result of tests. There are three parser directives used.

$if The $if construct allows bindings to be made based on the editing mode, the
terminal being used, or the application using readline. The text of the test extends
to the end of the line; no characters are required to isolate it.

29

mode The mode= form of the $if directive is used to test whether
readline is in emacs or vi mode. This may be used in conjunction
with the set keymap command, for instance, to set bindings in the
emacs-standard and emacs-ctlx keymaps only if readline is starting
out in emacs mode.

term The term= form may be used to include terminal-specific key
bindings, perhaps to bind the key sequences output by the
terminal’s function keys. The word on the right side of the = is
tested against the full name of the terminal and the portion of the
terminal name before the first –. This allows sun to match both
sun and sun–cmd, for instance.

application The application construct is used to include application–specific
settings. Each program using the readline library sets the
application name, and an initialization file can test for a particular
value. This could be used to bind key sequences to functions
useful for a specific program. For instance, the following
command adds a key sequence that quotes the current or previous
word in bash:
$if Bash
Quote the current or previous word
“\C-xq”: “\eb\”\ef\””
$endif

$endif This command, as shown in the preceding example, terminates an $if command.

$else Commands in this branch of the $if directive are executed if the test fails.

readline commands may be given numeric arguments, which normally act as a repeat count. Sometimes, however, it is the
sign of the argument that is significant. Passing a negative argument to a command that acts in the forward direction (such as
kill–line) causes that command to act in a backward direction. Commands whose behavior with arguments deviates from
this are noted.

When a command is described as killing text, the text deleted is saved for possible future retrieval (yanking). The killed text
is saved in a kill–ring. Consecutive kills cause the text to be accumulated into one unit, which can be yanked all at once.
Commands that do not kill text separate the chunks of text on the kill–ring.

The following is a list of the names of the commands and the default key sequences to which they are bound.

Commands for Moving

beginning–of–line (C–a) Move to the start of the current line.

end–of–line (C–e) Move to the end of the line.

forward–char (C–f) Move forward a character.

backward–char (C–b) Move back a character.

forward–word (M–f) Move forward to the end of the next word. Words are composed of alphanu-
meric characters (letters and digits).

backward–word (M–b) Move back to the start of this, or the previous, word. Words are composed of
alphanumeric characters (letters and digits).

clear–screen (C–l) Clear the screen leaving the current line at the top of the screen. With an
argument, refresh the current line without clearing the screen.

redraw–current–line Refresh the current line. By default, this is unbound.

bash

Part I: User Commands30

Commands for Manipulating the History

accept–line (Newline, Return) Accept the line regardless of where the cursor is. If this line is non–empty, add it
to the history list according to the state of the HIST-CONTROL variable. If the line is
a modified history line, then restore the history line to its original state.

previous–history (C–p) Fetch the previous command from the history list, moving back in the list.

next–history (C–n) Fetch the next command from the history list, moving forward in the list.

beginning–of–history (M–<) Move to the first line in the history.

end–of–history (M–>) Move to the end of the input history, that is, the line currently being entered.

reverse–search–history (C–r) Search backward starting at the current line and moving “up” through the
history as necessary. This is an incremental search.

forward–search–history (C–s) Search forward starting at the current line and moving “down” through the
history as necessary. This is an incremental search.

non–incremental–reverse– Search backward through the history, starting at the current line using a non–
search–history (M–p) incremental search for a string supplied by the user.

non–incremental–forward– Search forward through the history using a nonincremental search for a string
search–history (M–n) supplied by the user.

history–search–forward Search forward through the history for the string of characters between the start
of the current line and the current point. This is a nonincremental search. By
default, this command is unbound.

history–search–backward Search backward through the history for the string of characters between the start
of the current line and the current point. This is a nonincremental search. By
default, this command is unbound.

yank–nth–arg (M–C–y) Insert the first argument to the previous command (usually the second word on
the previous line) at point (the current cursor position). With an argument n,
insert the nth word from the previous command (the words in the previous
command begin with word 0). A negative argument inserts the nth word from
the end of the previous command.

yank–last–arg (M–., M–_) Insert the last argument to the previous command (the last word on the previous
line). With an argument, behave exactly like @codefyank-nth-argg.

shell–expand–line (M–C–e) Expand the line the way the shell does when it reads it. This performs alias and
history expansion as well as all of the shell word expansions. See “History
Expansion,” later in this manual page, for a description of history expansion.

history–expand–line (M–ˆ) Perform history expansion on the current line. See “History Expansion.”

insert–last–argument (M–., M–_) A synonym for yank–last–arg.

operate-and-get-next (C–o) Accept the current line for execution and fetch the next line relative to the
current line from the history for editing. Any argument is ignored.

Commands for Changing Text

delete–char (C–d) Delete the character under the cursor. If point is at the beginning of the line,
there are no characters in the line, and the last character typed was not C–d, then
return EOF.

backward–delete–char (Rubout) Delete the character behind the cursor. When given a numeric argument, save
the deleted text on the kill–ring.

quoted–insert (C–q, C–v) Add the next character that you type to the line verbatim. This is how to insert
characters like C–q, for example.

tab–insert (C-v Tab) Insert a tab character.

self–insert (a, b, A, 1, !, ...) Insert the character typed.

31

transpose–chars (C–t) Drag the character before point forward over the character at point. Point moves
forward as well. If point is at the end of the line, then transpose the two
characters before point. Negative arguments don’t work.

transpose–words (M–t) Drag the word behind the cursor past the word in front of the cursor, moving
the cursor over that word as well.

upcase–word (M–u) Uppercase the current (or following) word. With a negative argument, do the
previous word, but do not move point.

downcase–word (M–l) Lowercase the current (or following) word. With a negative argument, do the
previous word, but do not move point.

capitalize–word (M–c) Capitalize the current (or following) word. With a negative argument, do the
previous word, but do not move point.

Killing and Yanking

kill–line (C–k) Kill the text from the current cursor position to the end of the line.

backward–kill–line (C–x C–Rubout) Kill backward to the beginning of the line.

UNIX–line–discard (C–u) Kill backward from point to the beginning of the line.

kill–whole–line Kill all characters on the current line, no matter where the cursor is. By default,
this is unbound.

kill–word (M–d) Kill from the cursor to the end of the current word, or if between words, to the
end of the next word. Word boundaries are the same as those used by forward–
word.

backward–kill–word (M–Rubout) Kill the word behind the cursor. Word boundaries are the same as those used by
backward–word.

UNIX–word–rubout (C–w) Kill the word behind the cursor, using whitespace as a word boundary. The word
boundaries are different from backward–kill–word.

delete–horizontal–space Delete all spaces and tabs around point. By default, this is unbound.

yank (C–y) Yank the top of the kill ring into the buffer at the cursor.

yank–pop (M–y) Rotate the kill–ring, and yank the new top. Only works following yank or yank–
pop.

Numeric Arguments

digit–argument (M–0, M–1, ..., M—) Add this digit to the argument already accumulating, or start a new argument.
M— starts a negative argument.

universal–argument Each time this is executed, the argument count is multiplied by four. The
argument count is initially one, so executing this function the first time makes
the argument count four. By default, this is not bound to a key.

Completing

complete (TAB) Attempt to perform completion on the text before point. Bash attempts
completion treating the text as a variable (if the text begins with $), username (if
the text begins with ˜), hostname (if the text begins with @), or command
(including aliases and functions) in turn. If none of these produces a match,
filename completion is attempted.

possible–completions (M-?) List the possible completions of the text before point.

insert–completions Insert all completions of the text before point that would have been generated by
possible–completions. By default, this is not bound to a key.

complete–filename (M–/) Attempt filename completion on the text before point.

continues

bash

Part I: User Commands32

possible–filename–completions (C–x /) List the possible completions of the text before point, treating it as a filename.

complete–username (M–˜) Attempt completion on the text before point, treating it as a username.

possible–username–completions (C–x ˜) List the possible completions of the text before point, treating it as a username.

complete–variable (M–$) Attempt completion on the text before point, treating it as a shell variable.

possible–variable–completions (C–x $) List the possible completions of the text before point, treating it as a shell
variable.

complete–hostname (M–@) Attempt completion on the text before point, treating it as a hostname.

possible–hostname–completions (C–x @) List the possible completions of the text before point, treating it as a hostname.

complete–command (M–!) Attempt completion on the text before point, treating it as a command name.
Command completion attempts to match the text against aliases, reserved words,
shell functions, builtins, and finally executable filenames, in that order.

possible–command–completions (C–x !) List the possible completions of the text before point, treating it as a command
name.

dynamic–complete–history (M-TAB) Attempt completion on the text before point, comparing the text against lines
from the history list for possible completion matches.

complete–into–braces (M–{) Perform filename completion and return the list of possible completions enclosed
within braces so the list is available to the shell. (See “Brace Expansion,” earlier in
this manual page.)

Keyboard Macros

start–kbd–macro (C-x () Begin saving the characters typed into the current keyboard macro.

end–kbd–macro (C-x)) Stop saving the characters typed into the current keyboard macro and save the
definition.

call–last–kbd–macro (C-x e) Re-execute the last keyboard macro defined, by making the characters in the
macro appear as if typed at the keyboard.

Miscellaneous

re–read–init–file (C–x C–r) Read in the contents of your init file, and incorporate any bindings or variable
assignments found there.

abort (C–g) Abort the current editing command and ring the terminal’s bell (subject to the
setting of bell–style).

do–uppercase–version (M–a, M–b, ...) Run the command that is bound to the corresponding uppercase character.

prefix–meta (ESC) Metafy the next character typed. ESC-f is equivalent to Meta–f.

undo (C-_, C–x C–u) Incremental undo, separately remembered for each line.

revert–line (M–r) Undo all changes made to this line. This is like typing the undo command
enough times to return the line to its initial state.

tilde–expand (M–˜) Perform tilde expansion on the current word.

dump–functions Print all of the functions and their key bindings to the readline output stream. If
a numeric argument is supplied, the output is formatted in such a way that it can
be made part of an inputrc file.

display–shell–version (C–x C–v) Display version information about the current instance of bash.

emacs–editing–mode (C–e) When in vi editing mode, this causes a switch to emacs editing mode.

HISTORY
When interactive, the shell provides access to the command history, the list of commands previously typed. The text of the
last HISTSIZE commands (default 500) is saved in a history list. The shell stores each command in the history list prior to

Completing

33

parameter and variable expansion (see “Expansion,” earlier in this manual page) but after history expansion is performed,
subject to the values of the shell variables command_oriented_history and HISTCONTROL. On startup, the history is initialized
from the file named by the variable HISTFILE (default ˜/.bash_history). HISTFILE is truncated, if necessary, to contain no
more than HISTFILESIZE lines. The built-in command fc (see Shell Built-in Commands, later in this manual page) may be
used to list or edit and re-execute a portion of the history list. The history builtin can be used to display the history list and
manipulate the history file. When using the command-line editing, search commands are available in each editing mode that
provide access to the history list. When an interactive shell exits, the last HISTSIZE lines are copied from the history list to
HISTFILE. If HISTFILE is unset, or if the history file is unwritable, the history is not saved.

HISTORY EXPANSION
The shell supports a history expansion feature that is similar to the history expansion in csh. This section describes what
syntax features are available. This feature is enabled by default for interactive shells, and can be disabled using the H option to
the set built-in command. (See “Shell Built-in Commands,” later in this manual page.) Noninteractive shells do not perform
history expansion.

History expansion is performed immediately after a complete line is read, before the shell breaks it into words. It takes place
in two parts. The first is to determine which line from the previous history to use during substitution. The second is to select
portions of that line for inclusion into the current one. The line selected from the previous history is the event, and the
portions of that line that are acted upon are words. The line is broken into words in the same fashion as when reading input,
so that several meta character–separated words surrounded by quotes are considered as one word. Only the backslash (\) and
single quotes can quote the history escape character, which is ! by default.

The shell allows control of the various characters used by the history expansion mechanism. (See the description of histchars
under “Shell Variables,” earlier in this manual page.)

EVENT DESIGNATORS
An event designator is a reference to a command line entry in the history list.

! Start a history substitution, except when followed by a blank, newline, =, or (.

!! Refer to the previous command. This is a synonym for !–1.

!n Refer to command line n.

!–n Refer to the current command line minus n.

!string Refer to the most recent command starting with string.

!?string[?] Refer to the most recent command containing string.

ˆstring1ˆstring2ˆ Quick substitution. Repeat the last command, replacing string1 with string2. Equivalent to !!:s/
string1/string2/. (See “Modifiers,” later in this manual page.)

!# The entire command line typed so far.

WORD DESIGNATORS
A colon (:) separates the event specification from the word designator. It can be omitted if the word designator begins with a
^, $, *, or %. Words are numbered from the beginning of the line, with the first word being denoted by a 0 (zero).

0 (zero) The zeroth word. For the shell, this is the command word.

n The nth word.

ˆ The first argument. That is, word 1.

$ The last argument.

% The word matched by the most recent ?string? search.

x–y A range of words; –y abbreviates 0–y.

* All of the words but the zeroth. This is a synonym for 1–$. It is not an error to use * if there is just
one word in the event; the empty string is returned in that case.

x* Abbreviates x–$.

x– Abbreviates x–$ like x*, but omits the last word.

bash

Part I: User Commands34

MODIFIERS
After the optional word designator, you can add a sequence of one or more of the following modifiers, each preceded by a :

h Remove a trailing pathname component, leaving only the head.

r Remove a trailing suffix of the form .xxx, leaving the basename.

e Remove all but the trailing suffix.

t Remove all leading pathname components, leaving the tail.

p Print the new command but do not execute it.

q Quote the substituted words, escaping further substitutions.

x Quote the substituted words as with q, but break into words at blanks and newlines.

s/old/new/ Substitute new for the first occurrence of old in the event line. Any delimiter can be used in place of
/. The final delimiter is optional if it is the last character of the event line. The delimiter may be
quoted in old and new with a single backslash. If & appears in new, it is replaced by old. A single
backslash will quote the &.

& Repeat the previous substitution.

g Cause changes to be applied over the entire event line. This is used in conjunction with :s (for
example, :gs/old/new/) or :&. If used with :s, any delimiter can be used in place of /, and the final
delimiter is optional if it is the last character of the event line.

ARITHMETIC EVALUATION
The shell allows arithmetic expressions to be evaluated, under certain circumstances. (See the let built-in command and
“Arithmetic Expansion.”) Evaluation is done in long integers with no check for overflow, though division by 0 is trapped and
flagged as an error. The following list of operators is grouped into levels of equal-precedence operators. The levels are listed
in order of decreasing precedence.

– + Unary minus and plus

! ˜ Logical and bitwise negation

* / % Multiplication, division, remainder

+ – Addition, subtraction

<< >> Left and right bitwise shifts

<= >= <> Comparison

== != Equality and inequality

& Bitwise AND

^ Bitwise exclusive OR

| Bitwise OR

&& Logical AND

|| Logical OR

= *= /= %= += –= <<= >>=&=ˆ=|= Assignment

Shell variables are allowed as operands; parameter expansion is performed before the expression is evaluated. The value of a
parameter is coerced to a long integer within an expression. A shell variable need not have its integer attribute turned on to
be used in an expression.

Constants with a leading 0 are interpreted as octal numbers. A leading 0x or 0X denotes hexadecimal. Otherwise, numbers
take the form [base#]n, where base is a decimal number between 2 and 36 representing the arithmetic base, and n is a
number in that base. If base is omitted, then base 10 is used.

Operators are evaluated in order of precedence. Subexpressions in parentheses are evaluated first and may override the
precedence rules.

35

SHELL BUILT-IN COMMANDS
: [arguments] No effect; the command does nothing beyond expanding arguments and performing

any specified redirections. A zero exit code is returned.

. filename [arguments] Read and execute commands from filename in the current shell environment and
source filename [arguments] return the exit status of the last command executed from filename. If filename does

not contain a slash, pathnames in PATH are used to find the directory containing
filename. The file searched for in PATH need not be executable. The current directory
is searched if no file is found in PATH. If any arguments are supplied, they become the
positional parameters when file is executed. Otherwise, the positional parameters
are unchanged. The return status is the status of the last command exited within the
script (0 if no commands are executed), and False if filename is not found.

alias [name[=value] ...] alias with no arguments prints the list of aliases in the form name=value on standard
output. When arguments are supplied, an alias is defined for each name whose value
is given. A trailing space in value causes the next word to be checked for alias
substitution when the alias is expanded. For each name in the argument list for
which no value is supplied, the name and value of the alias is printed. alias returns
True unless a name is given for which no alias has been defined.

bg [jobspec] Place jobspec in the background, as if it had been started with &. If jobspec is not
present, the shell’s notion of the current job is used. bg jobspec returns 0 unless run
when job control is disabled or, when run with job control enabled, if jobspec was
not found or started without job control.

bind [–m keymap][–lvd][-q name] Display current readline key and function bindings, or bind a key sequence to a
bind [–m keymap] -f filename readline function or macro. The binding syntax accepted is identical to that of
bind [–m keymap] .inputrc, but each binding must be passed as a separate argument; for example,
keyseq:function-name “\C-x\C-r”: re–read–init–file. Options, if supplied, have the following meanings:

–m keymap Use keymap as the keymap to be affected by the subsequent
bindings. Acceptable keymap names are emacs, emacs-standard,
emacs-meta, emacs-ctlx, vi, vi-move, vi-command, and vi-insert.
vi is equivalent to vi-command; emacs is equivalent to emacs-
standard.

–l List the names of all readline functions.

–v List current function names and bindings.

–d Dump function names and bindings in such a way that they
can be reread.

–f filename Read key bindings from filename.

–q function Query about which keys invoke the named function.

The return value is 0 unless an unrecognized option is given or an error occurred.

break [n] Exit from within a for, while, or until loop. If n is specified, break n levels. n must
be 1. If n is greater than the number of enclosing loops, all enclosing loops are
exited. The return value is 0 unless the shell is not executing a loop when break is
executed.

builtin shell–builtin [arguments] Execute the specified shell builtin, passing it arguments, and return its exit status.
This is useful when you wish to define a function whose name is the same as a shell
builtin, but need the functionality of the builtin within the function itself. The cd
builtin is commonly redefined this way. The return status is False if shell–builtin is
not a shell builtin command.

cd [dir] Change the current directory to dir. The variable HOME is the default dir. The
variable CDPATH defines the search path for the directory containing dir. Alternative
directory names are separated by a colon (:). A null directory name in CDPATH is the
same as the current directory, that is, (.). If dir begins with a slash (/), then CDPATH is

bash

Part I: User Commands36

not used. An argument of – is equivalent to $OLDPWD. The return value is True if the
directory was successfully changed; False otherwise.

command [-pVv] command [arg ...] Run command with args suppressing the normal shell function lookup. Only built-
in commands or commands found in the PATH are executed. If the –p option is given,
the search for command is performed using a default value for PATH that is guaranteed
to find all of the standard utilities. If either the –V or –v option is supplied, a
description of command is printed. The –v option causes a single word indicating the
command or pathname used to invoke command to be printed; the –V option
produces a more verbose description. An argument of —disables option checking for
the rest of the arguments. If the –V or –v option is supplied, the exit status is 0 if
command was found, and 1 if not. If neither option is supplied and an error occurred
or command cannot be found, the exit status is 127. Otherwise, the exit status of the
command builtin is the exit status of command.

continue [n] Resume the next iteration of the enclosing for, while, or until loop. If n is specified,
resume at the nth enclosing loop. n must be 1. If n is greater than the number of
enclosing loops, the last enclosing loop (the top–level loop) is resumed. The return
value is 0 unless the shell is not executing a loop when continue is executed.

declare [–frxi][name[=value]] Declare variables and/or give them attributes. If no names are given, then display the
typeset [–frxi][name[=value]] values of variables instead. The options can be used to restrict output to variables

with the specified attribute.

–f Use function names only.

-r Make names read-only. These names cannot then be assigned
values by subsequent assignment statements.

–x Mark names for export to subsequent commands via the
environment.

–i The variable is treated as an integer; arithmetic evaluation (see
“Arithmetic Evaluation”) is performed when the variable is
assigned a value.

Using + instead of – turns off the attribute instead. When used in a function, makes
names local, as with the local command. The return value is 0 unless an illegal
option is encountered, an attempt is made to define a function using “-f foo=bar”,
one of the names is not a legal shell variable name, an attempt is made to turn off
read-only status for a read-only variable, or an attempt is made to display a
nonexistent function with -f.

dirs [-l][+/–n] Display the list of currently remembered directories. Directories are added to the list
with the pushd command; the popd command moves back up through the list.

+n Displays the nth entry counting from the left of the list shown
by dirs when invoked without options, starting with zero.

–n Displays the nth entry counting from the right of the list
shown by dirs when invoked without options, starting with
zero.

–l Produces a longer listing; the default listing format uses a tilde
to denote the home directory.

The return value is 0 unless an illegal option is supplied or n indexes beyond the end
of the directory stack.

echo [–neE][arg ...] Output the args, separated by spaces. The return status is always 0. If –n is specified,
the trailing newline is suppressed. If the –e option is given, interpretation of the
following backslash-escaped characters is enabled. The –E option disables the
interpretation of these escape characters, even on systems where they are interpreted
by default.

37

\a Alert (bell)

\b Backspace

\c Suppress trailing newline

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\\ Backslash

\nnn The character whose ASCII code is nnn (octal)

enable [–n][–all][name ...] Enable and disable builtin shell commands. This allows the execution of a disk
command that has the same name as a shell builtin without specifying a full
pathname. If –n is used, each name is disabled; otherwise, names are enabled. For
example, to use the test binary found via the PATH instead of the shell builtin version,
type enable -n test. If no arguments are given, a list of all enabled shell builtins is
printed. If only –n is supplied, a list of all disabled builtins is printed. If only –all is
supplied, the list printed includes all builtins, with an indication of whether or not
each is enabled. enable accepts –a as a synonym for –all. The return value is 0 unless
a name is not a shell builtin.

eval [arg ...] The args are read and concatenated together into a single command. This command
is then read and executed by the shell, and its exit status is returned as the value of
the eval command. If there are no args, or only null arguments, eval returns True.

exec [[–] command [arguments]] If command is specified, it replaces the shell. No new process is created. The arguments
become the arguments to command. If the first argument is –, the shell places a dash in
the zeroth arg passed to command. This is what login does. If the file cannot be
executed for some reason, a noninteractive shell exits, unless the shell variable
no_exit_on_failed_exec exists, in which case it returns failure. An interactive shell
returns failure if the file cannot be executed. If command is not specified, any
redirections take effect in the current shell, and the return status is 0.

exit [n] Cause the shell to exit with a status of n. If n is omitted, the exit status is that of the
last command executed. A trap on exit is executed before the shell terminates.

export [–nf][name[=word]] ... The supplied names are marked for automatic export to the environment of
export –p subsequently executed commands. If the –f option is given, the names refer to

functions. If no names are given, or if the –p option is supplied, a list of all names
that are exported in this shell is printed. The –n option causes the export property to
be removed from the named variables. An argument of — disables option checking
for the rest of the arguments. export returns an exit status of 0 unless an illegal
option is encountered, one of the names is not a legal shell variable name, or –f is
supplied with a name that is not a function.

fc [–e ename][–nlr][first][last] Fix command. In the first form, a range of commands from first to last is selected
fc –s [pat=rep][cmd] from the history list. first and last may be specified as a string (to locate the last

command beginning with that string) or as a number (an index into the history list,
where a negative number is used as an offset from the current command number). If
last is not specified, it is set to the current command for listing (so that fc –l
–10 prints the last 10 commands) and to first otherwise. If first is not specified, it
is set to the previous command for editing and –16 for listing.

The –n flag suppresses the command numbers when listing. The -r flag reverses the
order of the commands. If the –l flag is given, the commands are listed on standard
output. Otherwise, the editor given by ename is invoked on a file containing those
commands. If ename is not given, the value of the FCEDIT variable is used, and the

bash

Part I: User Commands38

value of EDITOR if FCEDIT is not set. If neither variable is set, vi is used. When editing
is complete, the edited commands are echoed and executed.

In the second form, command is reexecuted after each instance of pat is replaced by
rep. A useful alias to use with this is r=fc –s, so that typing r cc runs the last
command beginning with cc and typing r reexecutes the last command.

If the first form is used, the return value is 0 unless an illegal option is encountered
or first or last specify history lines out of range. If the –e option is supplied, the
return value is the value of the last command executed or failure if an error occurs
with the temporary file of commands. If the second form is used, the return status is
that of the command reexecuted, unless cmd does not specify a valid history line, in
which case fc returns failure.

fg [jobspec] Place jobspec in the foreground, and make it the current job. If jobspec is not
present, the shell’s notion of the current job is used. The return value is that of the
command placed into the foreground, or failure if run when job control is disabled
or, when run with job control enabled, if jobspec does not specify a valid job or
jobspec specifies a job that was started without job control.

getopts optstring name [args] getopts is used by shell procedures to parse positional parameters. optstring contains
the option letters to be recognized; if a letter is followed by a colon, the option is
expected to have an argument, which should be separated from it by whitespace.
Each time it is invoked, getopts places the next option in the shell variable name,
initializing name if it does not exist, and the index of the next argument to be
processed into the variable OPTIND. OPTIND is initialized to 1 each time the shell or a
shell script is invoked. When an option requires an argument, getopts places that
argument into the variable OPTARG. The shell does not reset OPTIND automatically; it
must be manually reset between multiple calls to getopts within the same shell
invocation if a new set of parameters is to be used.

getopts can report errors in two ways. If the first character of optstring is a colon,
silent error reporting is used. In normal operation, diagnostic messages are printed
when illegal options or missing option arguments are encountered. If the variable
OPTERR is set to 0, no error message will be displayed, even if the first character of
optstring is not a colon.

If an illegal option is seen, getopts places a question mark (?) into name and, if not
silent, prints an error message and unsets OPTARG. If getopts is silent, the option
character found is placed in OP-TARG and no diagnostic message is printed.

If a required argument is not found, and getopts is not silent, a question mark (?) is
placed in name, OPTARG is unset, and a diagnostic message is printed. If getopts is
silent, then a colon (:) is placed in name and OPTARG is set to the option character
found.

getopts normally parses the positional parameters, but if more arguments are given
in args, getopts parses those instead. getopts returns True if an option, specified or
unspecified, is found. It returns False if the end of options is encountered or an error
occurs.

hash [–r][name] For each name, the full pathname of the command is determined and remembered.
The -r option causes the shell to forget all remembered locations. If no arguments
are given, information about remembered commands is printed. An argument of —
disables option checking for the rest of the arguments. The return status is True
unless a name is not found or an illegal option is supplied.

help [pattern] Display helpful information about built-in commands. If pattern is specified, help
gives detailed help on all commands matching pattern; otherwise, a list of the
builtins is printed. The return status is 0 unless no command matches pattern.

39

history [n] With no options, display the command history list with line numbers. Lines listed
history –rwan [filename] with a * have been modified. An argument of n lists only the last n lines. If a

nonoption argument is supplied, it is used as the name of the history file; if not, the
value of HISTFILE is used. Options, if supplied, have the following meanings:

–a Append the “new” history lines (history lines entered since the
beginning of the current bash session) to the history file.

–n Read the history lines not already read from the history file
into the current history list. These are lines appended to the
history file since the beginning of the current bash session.

-r Read the contents of the history file and use them as the
current history.

w– Write the current history to the history file, overwriting the
history file’s contents.

The return value is 0 unless an illegal option is encountered or an error occurs while
reading or writing the history file.

jobs [–lnp][jobspec ...] The first form lists the active jobs. The –l option lists process IDs in addition to
jobs –x command [args ...] the normal information; the –p option lists only the process ID of the job’s process

group leader. The –n option displays only jobs that have changed status since last
notified. If jobspec is given, output is restricted to information about that job. The
return status is 0 unless an illegal option is encountered or an illegal jobspec is
supplied.

If the –x option is supplied, jobs replaces any jobspec found in command or args with
the corresponding process group ID, and executes command, passing it args, returning
its exit status.

kill [-s sigspec | –sigspec] Send the signal named by sigspec to the processes named by pid or jobspec. sigspec
[pid | jobspec] ... is either a signal name such as SIGKILL or a signal number. If sigspec is a signal
kill –l [signum] name, the name is not case sensitive and may be given with or without the SIG

prefix. If sigspec is not present, then SIGTERM is assumed. An argument of –l lists the
signal names. If any arguments are supplied when –l is given, the names of the
specified signals are listed, and the return status is 0. An argument of — disables
option checking for the rest of the arguments. kill returns True if at least one signal
was successfully sent, or False if an error occurs or an illegal option is encountered.

let arg [arg ...] Each arg is an arithmetic expression to be evaluated. (See “Arithmetic Evaluation.”)
If the last arg evaluates to 0, let returns 1; 0 is returned otherwise.

local [name[=value] ...] For each argument, create a local variable named name, and assign it value. When
local is used within a function, it causes the variable name to have a visible scope
restricted to that function and its children. With no operands, local writes a list of
local variables to the standard output. It is an error to use local when not within a
function. The return status is 0 unless local is used outside a function, or an illegal
name is supplied.

logout Exit a login shell.

popd [+/–n] Removes entries from the directory stack. With no arguments, removes the top
directory from the stack, and performs a cd to the new top directory.

+n Removes the nth entry counting from the left of the list shown
by dirs, starting with zero. For example, popd +0 removes the
first directory, popd +1 the second.

–n Removes the nth entry counting from the right of the list
shown by dirs, starting with zero. For example, popd -0
removes the last directory, popd -1 the next to last.

bash

Part I: User Commands40

If the popd command is successful, a dirs is performed as well, and the return status
is 0. popd returns False if an illegal option is encountered, the directory stack is
empty, a nonexistent directory stack entry is specified, or the directory change fails.

pushd [dir] pushd +/–n Adds a directory to the top of the directory stack, or rotates the stack, making the
new top of the stack the current working directory. With no arguments, exchanges
the top two directories and returns 0, unless the directory stack is empty.

+n Rotates the stack so that the nth directory (counting from the
left of the list shown by dirs) is at the top.

–n Rotates the stack so that the nth directory (counting from the
right) is at the top.

dir Adds dir to the directory stack at the top, making it the new
current working directory.

If the pushd command is successful, a dirs is performed as well. If the first form is
used, pushd returns 0 unless the cd to dir fails. With the second form, pushd returns 0
unless the directory stack is empty, a nonexistent directory stack element is specified,
or the directory change to the specified new current directory fails.

pwd Print the absolute pathname of the current working directory. The path printed
contains no symbolic links if the –P option to the set builtin command is set. (See
also the description of nolinks under “Shell Variables,” earlier in this manual page.)
The return status is 0 unless an error occurs while reading the pathname of the
current directory.

read [–r][name ...] One line is read from the standard input, and the first word is assigned to the first
name, the second word to the second name, and so on, with leftover words assigned
to the last name. Only the characters in IFS are recognized as word delimiters. If no
names are supplied, the line read is assigned to the variable REPLY. The return code is
zero, unless end-of-file is encountered. If the -r option is given, a backslash-newline
pair is not ignored, and the backslash is considered to be part of the line.

readonly [–f][name ...] The given names are marked readonly and the values of these names may not be
readonly -p changed by subsequent assignment. If the –f option is supplied, the functions

corresponding to the names are so marked. If no arguments are given, or if the
–p option is supplied, a list of all readonly names is printed. An argument of —
disables option checking for the rest of the arguments. The return status is 0 unless
an illegal option is encountered, one of the names is not a legal shell variable name,
or –f is supplied with a name that is not a function.

return [n] Causes a function to exit with the return value specified by n. If n is omitted, the
return status is that of the last command executed in the function body. If used
outside a function, but during execution of a script by the . (source) command, it
causes the shell to stop executing that script and return either n or the exit status of
the last command executed within the script as the exit status of the script. If used
outside a function and not during execution of a script by (. , the return status is
False.

set [—abefhkmnptuvxldCHP]

[-o option][arg ...]

–a Automatically mark variables that are modified or created for
export to the environment of subsequent commands.

–b Cause the status of terminated background jobs to be reported
immediately, rather than before the next primary prompt.
(Also see notify under “Shell Variables.”)

–e Exit immediately if a simple command (see “Shell Grammar,”
earlier in this manual page) exits with a non–zero status. The
shell does not exit if the command that fails is part of an until

41

or while loop, part of an if statement, part of a && or || list, or
if the command’s return value is being inverted via !.

–f Disable pathname expansion.

–h Locate and remember function commands as functions are
defined. Function commands are normally looked up when
the function is executed.

–k All keyword arguments are placed in the environment for a
command, not just those that precede the command name.

–m Monitor mode. Job control is enabled. This flag is on by
default for interactive shells on systems that support it. (See
“Job Control,” earlier in this manual page.) Background
processes run in a separate process group and a line containing
their exit status is printed upon their completion.

–n Read commands but do not execute them. This may be used
to check a shell script for syntax errors. This is ignored for
interactive shells.

–o option-name The option-name can be one of the following:

allexport—Same as –a.

braceexpand—The shell performs brace expansion. (See “Brace
Expansion,” earlier in this manual page.) This is on by default.

emacs—Use an emacs-style command line editing interface.
This is enabled by default when the shell is interactive, unless
the shell is started with the –nolineediting option.

errexit—Same as –e.

histexpand—Same as –H.

ignoreeof—The effect is as if the shell command
‘IGNOREEOF=10’ had been executed. (See “Shell Variables.”)

interactive–comments—Allow a word beginning with # to
cause that word and all remaining characters on that line to be
ignored in an interactive shell. (See “Comments,” earlier in
this manual page.)

monitor—Same as –m.

noclobber—Same as –C.

noexec—Same as –n.

noglob—Same as –f.

nohash—Same as –d.

notify—Same as –b.

nounset—Same as –u.

physical—Same as –P.

posix—Change the behavior of bash where the default
operation differs from the POSIX 1003.2 standard to match
the standard.

privileged—Same as –p.

verbose—Same as –v.

vi—Use a vi-style command line editing interface.

xtrace—Same as –x.

If no option-name is supplied, the values of the current options
are printed.

bash

Part I: User Commands42

–p Turn on privileged mode. In this mode, the $ENV file is not
processed, and shell functions are not inherited from the
environment. This is enabled automatically on startup if the
effective user (group) ID is not equal to the real user (group)
ID. Turning this option off causes the effective user and group
IDs to be set to the real user and group IDs.

–t Exit after reading and executing one command.

–u Treat unset variables as an error when performing parameter
expansion. If expansion is attempted on an unset variable, the
shell prints an error message, and, if not interactive, exits with
a non–zero status.

–v Print shell input lines as they are read.

–x After expanding each simple command, bash displays the
expanded value of PS4, followed by the command and its
expanded arguments.

–l Save and restore the binding of name in a for name [in word]
command. (See “Shell Grammar,” earlier in this manual page.)

–d Disable the hashing of commands that are looked up for
execution. Normally, commands are remembered in a hash
table, and once found, do not have to be looked up again.

–C The effect is as if the shell command noclobber= had been
executed. (See “Shell Variables.”)

–H Enable ! style history substitution. This flag is on by default
when the shell is interactive.

–P If set, do not follow symbolic links when performing
commands such as cd that change the current directory. The
physical directory is used instead.

— If no arguments follow this flag, then the positional parameters
are unset. Otherwise, the positional parameters are set to the
args, even if some of them begin with a –.

– Signal the end of options, cause all remaining args to be
assigned to the positional parameters. The –x and –v options
are turned off. If there are no args, the positional parameters
remain unchanged.

The flags are off by default unless otherwise noted. Using +
rather than – causes these flags to be turned off. The flags can
also be specified as options to an invocation of the shell. The
current set of flags may be found in $–. After the option
arguments are processed, the remaining n args are treated as
values for the positional parameters and are assigned, in order,
to $1, $2, ... $n. If no options or args are supplied, all shell
variables are printed. The return status is always True unless an
illegal option is encountered.

shift [n] The positional parameters from n+1 ... are renamed to Parameters represented
by the numbers $# down to $#–n+1 are unset. If n is 0, no parameters are changed. If
n is not given, it is assumed to be 1. n must be a non-negative number less than or
equal to $#. If n is greater than $#, the positional parameters are not changed. The
return status is greater than 0 if n is greater than or less than 0; otherwise 0.

suspend [–f] Suspend the execution of this shell until it receives a SIG-CONT signal. The –f option
says not to complain if this is a login shell; just suspend anyway. The return status is

43

0 unless the shell is a login shell and –f is not supplied, or if job control is not
enabled.

test expr[expr] Return a status of 0 (True) or 1 (False) depending on the evaluation of the
conditional expression expr. Expressions may be unary or binary. Unary expressions
are often used to examine the status of a file. There are string operators and numeric
comparison operators as well. Each operator and operand must be a separate
argument. If file is of the form /dev/fd/n, then file descriptor n is checked.

–b file—True if file exists and is block special.

–c file—True if file exists and is character special.

–d file—True if file exists and is a directory.

–e file—True if file exists.

–f file—True if file exists and is a regular file.

–g file—True if file exists and is set-group-id.

–k file—True if file has its “sticky” bit set.

–L file—True if file exists and is a symbolic link.

–p file—True if file exists and is a named pipe.

–r file—True if file exists and is readable.

–s file—True if file exists and has a size greater than zero.

–S file—True if file exists and is a socket.

–t fd—True if fd is opened on a terminal.

–u file—True if file exists and its set-user-id bit is set.

–w file—True if file exists and is writable.

–x file—True if file exists and is executable.

–O file—True if file exists and is owned by the effective user ID.

–G file—True if file exists and is owned by the effective group ID.

file1 –nt file2—True if file1 is newer (according to modification date) than
file2.

file1 –ot file2—True if file1 is older than file2.

file1 –ef file—True if file1 and file2 have the same device and inode
numbers.

–z string—True if the length of string is zero.

-n string—True if the length of string is non–zero.

string1 = string2—True if the strings are equal.

string1 != string2—True if the strings are not equal.

! expr—True if expr is False.

expr1 –a expr2—True if both expr1 AND expr2 are True.

expr1 –o expr2—True if either expr1 OR expr2 is True.

arg1 OP arg2 OP is one of –eq, –ne, –lt, –le, –gt, or –ge. These arithmetic binary
operators return True if arg1 is equal, not-equal, less-than, less-than-or-equal,
greater-than, or greater-than-or-equal than arg2, respectively. Arg1 and arg2 may
be positive integers, negative integers, or the special expression –l string, which
evaluates to the length of string.

times Print the accumulated user and system times for the shell and for processes run from
the shell. The return status is 0.

trap [–l][arg][sigspec] The command arg is to be read and executed when the shell receives signal(s)
sigspec. If arg is absent or –, all specified signals are reset to their original values (the

bash

Part I: User Commands44

values they had upon entrance to the shell). If arg is the null string, this signal is
ignored by the shell and by the commands it invokes. sigspec is either a signal name
defined in <signal.h>, or a signal number. If sigspec is EXIT (0), the command arg
is executed on exit from the shell. With no arguments, trap prints the list of
commands associated with each signal number. The –l option causes the shell to
print a list of signal names and their corresponding numbers. An argument of —
disables option checking for the rest of the arguments. Signals ignored upon entry to
the shell cannot be trapped or reset. Trapped signals are reset to their original values
in a child process when it is created. The return status is False if either the trap name
or number is invalid; otherwise, trap returns True.

type [–all][–type | –path] With no options, indicate how each name would be interpreted if used as a
name [name ...] command name. If the –type flag is used, type prints a phrase that is one of alias,

keyword, function, builtin, or file if name is an alias, shell reserved word, function,
builtin, or disk file, respectively. If the name is not found, then nothing is printed,
and an exit status of False is returned. If the –path flag is used, type either returns
the name of the disk file that would be executed if name were specified as a command
name, or nothing if –type would not return file. If a command is hashed, –path
prints the hashed value, not necessarily the file that appears first in PATH. If the –all
flag is used, type prints all of the places that contain an executable named name. This
includes aliases and functions, if and only if the –path flag is not also used. The table
of hashed commands is not consulted when using –all. type accepts –a, –t, and –p in
place of –all, –type, and –path, respectively. An argument of — disables option
checking for the rest of the arguments. type returns True if any of the arguments are
found, False if none are found.

ulimit [–SHacdfmstpnuv [limit]] ulimit provides control over the resources available to the shell and to processes
started by it, on systems that allow such control. The value of limit can be a number
in the unit specified for the resource, or the value unlimited. The H and S options
specify that the hard or soft limit is set for the given resource. A hard limit cannot be
increased once it is set; a soft limit may be increased up to the value of the hard
limit. If neither H nor S is specified, the command applies to the soft limit. If limit is
omitted, the current value of the soft limit of the resource is printed, unless the H
option is given. When more than one resource is specified, the limit name and unit
is printed before the value. Other options are interpreted as follows:

–a All current limits are reported.

–c The maximum size of core files created.

–d The maximum size of a process’s data segment.

–f The maximum size of files created by the shell.

–m The maximum resident set size.

–s The maximum stack size.

–t The maximum amount of cpu time in seconds.

–p The pipe size in 512-byte blocks. (This may not be set.)

–n The maximum number of open file descriptors. (Most systems
do not allow this value to be set, only displayed.)

–u The maximum number of processes available to a single user.

–v The maximum amount of virtual memory available to the
shell.

An argument of — disables option checking for the rest of the arguments. If limit is
given, it is the new value of the specified resource (the –a option is display only). If
no option is given, then –f is assumed. Values are in 1024-byte increments, except
for –t, which is in seconds; –p, which is in units of 512-byte blocks; and –n and –u,

45

which are unscaled values. The return status is 0 unless an illegal option is encoun-
tered, a non-numeric argument other than unlimited is supplied as limit, or an error
occurs while setting a new limit.

umask [–S][mode] The user file-creation mask is set to mode. If mode begins with a digit, it is interpreted
as an octal number; otherwise, it is interpreted as a symbolic mode mask similar to
that accepted by chmod(1). If mode is omitted, or if the –S option is supplied, the
current value of the mask is printed. The –S option causes the mask to be printed in
symbolic form; the default output is an octal number. An argument of — disables
option checking for the rest of the arguments. The return status is 0 if the mode was
successfully changed or if no mode argument was supplied, and False otherwise.

unalias [–a][name ...] Remove names from the list of defined aliases. If –a is supplied, all alias definitions
are removed. The return value is True unless a supplied name is not a defined alias.

unset [–fv][name ...] For each name, remove the corresponding variable or, given the –f option, function.
An argument of — disables option checking for the rest of the arguments. Note that
PATH, IFS, PPID, PS1, PS2, UID, and EUID cannot be unset. If any of RANDOM, SECONDS,
LINENO, or HISTCMD are unset, they lose their special properties, even if they are
subsequently reset. The exit status is True unless a name does not exist or is non-
unsettable.

wait [n] Wait for the specified process and return its termination status. n may be a process
ID or a job specification; if a job spec is given, all processes in that job’s pipeline are
waited for. If n is not given, all currently active child processes are waited for, and the
return status is zero. If n specifies a nonexistent process or job, the return status is
127. Otherwise, the return status is the exit status of the last process or job waited
for.

INVOCATION
A login shell is one whose first character of argument zero is a –, or one started with the –login flag.

An interactive shell is one whose standard input and output are both connected to terminals (as determined by isatty(3)), or
one started with the –i option. PS1 is set and includes i if bash is interactive, allowing a shell script or a startup file to test this
state.

Login shells:
On login (subject to the –noprofile option):
if /etc/profile exists, source it.
if ˜/.bash_profile exists, source it,
else if ˜/.bash_login exists, source it,
else if ˜/.profile exists, source it.
On exit:
if ˜/.bash_logout exists, source it.
Non-login interactive shells:
On startup (subject to the –norc and –rcfile options):
if ˜/.bashrc exists, source it.
Non-interactive shells:
On startup:
if the environment variable ENV is non-null, expand
it and source the file it names, as if the command
if [“$ENV”]; then . $ENV; fi
had been executed, but do not use PATH to search
for the pathname. When not started in Posix mode, bash
looks for BASH_ENV before ENV.

If Bash is invoked as sh, it tries to mimic the behavior of sh as closely as possible. For a login shell, it attempts to source only /
etc/profile and ˜/.profile, in that order. The –noprofile option may still be used to disable this behavior. A shell invoked
as sh does not attempt to source any other startup files.

bash

Part I: User Commands46

When bash is started in posix mode, as with the –posix command line option, it follows the POSIX standard for startup files.
In this mode, the ENV variable is expanded and that file sourced; no other startup files are read.

SEE ALSO
Bash Features, Brian Fox and Chet Ramey

The Gnu Readline Library, Brian Fox and Chet Ramey

The Gnu History Library, Brian Fox and Chet Ramey

A System V Compatible Implementation of 4.2BSD Job Control, David Lennert

Portable Operating System Interface (POSIX) Part 2: Shell and Utilities, IEEE

sh(1), ksh(1), csh(1), emacs(1), vi(1) readline(3)

FILES
/bin/bash The bash executable

/etc/profile The systemwide initialization file, executed for login shells

/.bash_profile The personal initialization file, executed for login shells

/.bashrc The individual per-interactive-shell startup file

/.inputrc Individual readline initialization file

AUTHORS
Brian Fox (Free Software Foundation; primary author; bfox@ai.MIT.Edu), Chet Ramey (Case Western Reserve University;
chet@ins.CWRU.Edu)

COPYRIGHT
Copyright  1989, 1991 by the Free Software Foundation, Inc.

BUG REPORTS
If you find a bug in bash, you should report it. But first, you should make sure that it really is a bug, and that it appears in
the latest version of bash that you have.

Once you have determined that a bug actually exists, mail a bug report to bash–maintainers@prep.ai.MIT.Edu. If you have a
fix, you are welcome to mail that as well! Suggestions and “philosophical” bug reports may be mailed to bug-
bash@prep.ai.MIT.Edu or posted to the Usenet newsgroup gnu.bash.bug.

ALL bug reports should include the following:

The version number of bash

The hardware and operating system

The compiler used to compile

A description of the bug behavior

A short script or “recipe” that exercises the bug

Comments and bug reports concerning this manual page should be directed to chet@ins.cwru.edu.

BUGS
It’s too big and too slow.

There are some subtle differences between bash and traditional versions of sh, mostly because of the POSIX specification.

Aliases are confusing in some uses.

GNU, 9 March 1995

47

bdftopcf
bdftopcf—Convert X font from Bitmap Distribution Format to Portable Compiled Format

SYNOPSIS
bdftopcf [–pn][–un][–m][–l][–M][–L][–t][–i][–o outputfile] fontfile.bdf

DESCRIPTION
bdftopcf is a font compiler for the X server and font server. Fonts in Portable Compiled Format can be read by any
architecture, although the file is structured to allow one particular architecture to read them directly without reformatting.
This allows fast reading on the appropriate machine, but the files are still portable (but read more slowly) on other machines.

OPTIONS
–pn Sets the font glyph padding. Each glyph in the font will have each scanline padded in to a multiple

of n bytes, where n is 1, 2, 4, or 8.

–un Sets the font scanline unit. When the font bit order is different from the font byte order, the
scanline unit n describes what unit of data (in bytes) are to be swapped; the unit i can be 1, 2, or 4
bytes.

–m Sets the font bit order to MSB (most significant bit) first. Bits for each glyph will be placed in this
order; that is, the leftmost bit on the screen will be in the highest valued bit in each unit.

–l Sets the font bit order to LSB (least significant bit) first. The leftmost bit on the screen will be in the
lowest valued bit in each unit.

–M Sets the font byte order to MSB first. All multibyte data in the file (metrics, bitmaps, and everything
else) will be written most significant byte first.

–L Sets the font byte order to LSB first. All multibyte data in the file (metrics, bitmaps, and everything
else) will be written least significant byte first.

–t When this option is specified, bdftopcf will convert fonts into terminal fonts when possible. A
terminal font has each glyph image padded to the same size; the X server can usually render these
types of fonts more quickly.

–i This option inhibits the normal computation of ink metrics. When a font has glyph images that do
not fill the bitmap image (that is, the “on” pixels don’t extend to the edges of the metrics), bdftopcf
computes the actual ink metrics and places them in the PCF file; the –t option inhibits this behavior.

–o output-file-name By default bdftopcf writes the PCF file to standard output; this option gives the name of a file to be
used instead.

SEE ALSO
X(1)

AUTHOR
Keith Packard, MIT X Consortium

X Version 11 Release 6

beforelight
beforelight—Screen saver

SYNOPSIS
beforelight [–toolkitoption ...]

beforelight

Part I: User Commands48

DESCRIPTION
The beforelight program is a sample implementation of a screen saver for X servers supporting the MIT-SCREEN-SAVER
extension.

AUTHORS
Keith Packard (MIT X Consortium)

X Version 11 Release 6

biff
biff—Be notified if mail arrives and who it is from

SYNOPSIS
biff [ny]

DESCRIPTION
biff informs the system whether you want to be notified when mail arrives during the current terminal session.

Options supported by biff:

n Disables notification

y Enables notification

When mail notification is enabled, the header and first few lines of the message will be printed on your screen whenever mail
arrives. A

biff y

command is often included in the file .login or .profile to be executed at each login.

Biff operates asynchronously. For synchronous notification use the MAIL variable of sh(1) or the mail variable of csh(1).

SEE ALSO
csh(1), mail(1), sh(1), comsat(8)

HISTORY
The biff command appeared in BSD 4.0.

BSD 4, 14 March 1991

bioradtopgm
bioradtopgm—Convert a Biorad confocal file into a portable graymap

SYNOPSIS
bioradtopgm [-image#][imagedata]

DESCRIPTION
Reads a Biorad confocal file as input. Produces a portable graymap as output. If the resulting image is upside down, run it
through pnmflip -tb.

49

OPTIONS
-image# A Biorad image file may contain more than one image. With this flag, you can specify which image to

extract (only one at a time). The first image in the file has number zero. If no image number is supplied,
only information about the image size and the number of images in the input is printed out. No output is
produced.

BUGS
A Biorad image may be in word format. If PbmPlus is not compiled with the BIGGRAYS flag, word files cannot be converted. See
the makefile.

SEE ALSO
pgm(5), pnmflip(1)

AUTHORS
Copyright  1993 by Oliver Trepte

28 June 1993

bitmap, bmtoa, atobm
bitmap, bmtoa, atobm—Bitmap editor and converter utilities for the X Window System

SYNOPSIS
bitmap [–options ...][filename][basename]

bmtoa [–chars ...][filename]

atobm [–chars cc][–name variable][–xhot number][–yhot number][filename]

DESCRIPTION
The bitmap program is a rudimentary tool for creating or editing rectangular images made up of 1s and 0s. Bitmaps are used
in X for defining clipping regions, cursor shapes, icon shapes, and tile and stipple patterns.

The bmtoa and atobm filters convert bitmap files (FILE FORMAT) to and from ASCII strings. They are most commonly used to
quickly print out bitmaps and to generate versions for including in text.

COMMAND-LINE OPTIONS
Bitmap supports the standard X Toolkit command-line arguments; see X(1). The following additional arguments are
supported as well:

–size WIDTHxHEIGHT Specifies size of the grid in squares.

–sw dimension Specifies the width of squares in pixels.

–sh dimension Specifies the height of squares in pixels.

–gt dimension Grid tolerance. If the square dimensions fall below the specified value, grid will be
automatically turned off.

–grid, +grid Turns on or off the grid lines.

–axes, +axes Turns on or off the major axes.

–dashed, +dashed Turns on or off dashing for the frame and grid lines.

–stippled, +stippled Turns on or off stippling of highlighted squares.

bitmap, bmtoa, atobm

Part I: User Commands50

–proportional, +proportional Turns proportional mode on or off. If proportional mode is on, square width is
equal to square height. If proportional mode is off, bitmap will use the smaller square
dimension, if they were initially different.

–dashes filename Specifies the bitmap to be used as a stipple for dashing.

–stipple filename Specifies the bitmap to be used as a stipple for highlighting.

–hl color Specifies the color used for highlighting.

–fr color Specifies the color used for the frame and grid lines.

filename Specifies the bitmap to be initially loaded into the program. If the file does not exist,
bitmap will assume it is a new file.

basename Specifies the basename to be used in the C code output file. If it is different than the
basename in the working file, bitmap will change it when saving the file.

bmtoa accepts the following option:

–chars cc This option specifies the pair of characters to use in the string version of the bitmap.
The first character is used for 0 bits and the second character is used for 1 bits. The
default is to use dashes (-) for 0s and number signs (#) for 1s.

atobm accepts the following options:

–chars cc This option specifies the pair of characters to use when converting string bitmaps
into arrays of numbers. The first character represents a 0 bit and the second
character represents a 1 bit. The default is to use dashes (–) for 0s and number signs
(#) for 1s.

–name variable This option specifies the variable name to be used when writing out the bitmap file.
The default is to use the basename of the filename command-line argument or leave
it blank if the standard input is read.

–xhot number This option specifies the X coordinate of the hot spot. Only positive values are
allowed. By default, no hot spot information is included.

–yhot number This option specifies the Y coordinate of the hot spot. Only positive values are
allowed. By default, no hot spot information is included.

USAGE
bitmap displays grid in which each square represents a single bit in the picture being edited. Actual size of the bitmap image,
as it would appear normally and inverted, can be obtained by pressing Meta-I. You are free to move the image pop-up out of
the way to continue editing. Pressing the left mouse button in the pop-up window or Meta-I again will remove the real size
bitmap image.

If the bitmap is to be used for defining a cursor, one of the squares in the images may be designated as the hot spot. This
determines where the cursor is actually pointing. For cursors with sharp tips (such as arrows or fingers), this is usually at the
end of the tip; for symmetric cursors (such as crosses or bulls-eyes), this is usually at the center.

Bitmaps are stored as small C code fragments suitable for including in applications. They provide an array of bits as well as
symbolic constants giving the width, height, and hot spot (if specified) that may be used in creating cursors, icons, and tiles.

EDITING
To edit a bitmap image, simply click on one of the buttons with drawing commands (Point, Curve, Line, Rectangle, and so
on) and move the pointer into the bitmap grid window. Press one of the buttons on your mouse and the appropriate action
will take place. You can either set, clear, or invert the grid squares. Setting a grid square corresponds to setting a bit in the
bitmap image to 1. Clearing a grid square corresponds to setting a bit in the bitmap image to 0. Inverting a grid square
corresponds to changing a bit in the bitmap image from 0 to 1 or 1 to 0, depending what its previous state was. The default
behavior of mouse buttons is as follows:

51

MouseButton1 Set
MouseButton2 Invert
MouseButton3 Clear
MouseButton4 Clear
MouseButton5 Clear

This default behavior can be changed by setting the button function resources. Here is an example:

bitmap*button1Function: Set
bitmap*button2Function: Clear
bitmap*button3Function: Invert
etc.

The button function applies to all drawing commands, including copying, moving and pasting, flood filling, and setting the
hot spot.

DRAWING COMMANDS
Here is the list of drawing commands accessible through the buttons at the left side of the application’s window. Some
commands can be aborted by pressing A inside the bitmap window, allowing the user to select different guiding points where
applicable.

Clear This command clears all bits in the bitmap image. The grid squares will be set to the
background color. Pressing C inside the bitmap window has the same effect.

Set This command sets all bits in the bitmap image. The grid squares will be set to the
foreground color. Pressing S inside the bitmap window has the same effect.

Invert This command inverts all bits in the bitmap image. The grid squares will be inverted
appropriately. Pressing I inside the bitmap window has the same effect.

Mark This command is used to mark an area of the grid by dragging out a rectangular
shape in the highlighting color. After the area is marked, it can be operated on by a
number of commands (see Up, Down, Left, Right, Rotate, Flip, Cut, and so on).
Only one marked area can be present at any time. If you attempt to mark another
area, the old mark will vanish. The same effect can be achieved by pressing Shift-
MouseButton1 and dragging out a rectangle in the grid window. Pressing Shift-
MouseButton2 will mark the entire grid area.

Unmark This command will cause the marked area to vanish. The same effect can be
achieved by pressing Shift-MouseButton3.

Copy This command is used to copy an area of the grid from one location to another. If
there is no marked grid area displayed, Copy behaves just like Mark. Once there is a
marked grid area displayed in the highlighting color, this command has two
alternative behaviors. If you click a mouse button inside the marked area, you will be
able to drag the rectangle that represents the marked area to the desired location.
After you release the mouse button, the area will be copied. If you click outside the
marked area, Copy will assume that you wish to mark a different region of the
bitmap image, thus it will behave like Mark again.

Move This command is used to move an area of the grid from one location to another. Its
behavior resembles the behavior of Copy command, except that the marked area will
be moved instead of copied.

Flip Horizontally This command will flip the bitmap image with respect to the horizontal axes. If a
marked area of the grid is highlighted, it will operate only inside the marked area.
Pressing H inside the bitmap window has the same effect.

Up This command moves the bitmap image one pixel up. If a marked area of the grid is
highlighted, it will operate only inside the marked area. Pressing UpArrow inside the
bitmap window has the same effect.

bitmap, bmtoa, atobm

Part I: User Commands52

Flip Vertically This command will flip the bitmap image with respect to the vertical axes. If a
marked area of the grid is highlighted, it will operate only inside the marked area.
Pressing V inside the bitmap window has the same effect.

Left This command moves the bitmap image one pixel to the left. If a marked area of the
grid is highlighted, it will operate only inside the marked area. Pressing LeftArrow
inside the bitmap window has the same effect.

Fold This command will fold the bitmap image so that the opposite corners become
adjacent. This is useful when creating bitmap images for tiling. Pressing F inside the
bitmap window has the same effect.

Right This command moves the bitmap image one pixel to the right. If a marked area of
the grid is highlighted, it will operate only inside the marked area. Pressing the right
arrow inside the bitmap window has the same effect.

Rotate Left This command rotates the bitmap image 90 degrees to the left (counter clockwise.)
If a marked area of the grid is highlighted, it will operate only inside the marked
area. Pressing L inside the bitmap window has the same effect.

Down This command moves the bitmap image one pixel down. If a marked area of the grid
is highlighted, it will operate only inside the marked area. Pressing the down arrow
inside the bitmap window has the same effect.

Rotate Right This command rotates the bitmap image 90 degrees to the right (clockwise.) If a
marked area of the grid is highlighted, it will operate only inside the marked area.
Pressing R inside the bitmap window has the same effect.

Point This command will change the grid squares underneath the mouse pointer if a
mouse button is being pressed down. If you drag the mouse button continuously,
the line may not be continuous, depending on the speed of your system and
frequency of mouse motion events.

Curve This command will change the grid squares underneath the mouse pointer if a
mouse button is being pressed down. If you drag the mouse button continuously, it
will make sure that the line is continuous. If your system is slow or bitmap receives
very few mouse motion events, it might behave quite strangely.

Line This command will change the grid squares in a line between two squares. Once you
press a mouse button in the grid window, bitmap will highlight the line from the
square where the mouse button was initially pressed to the square where the mouse
pointer is located. By releasing the mouse button, you will cause the change to take
effect, and the highlighted line will disappear.

Rectangle This command will change the grid squares in a rectangle between two squares.
Once you press a mouse button in the grid window, bitmap will highlight the
rectangle from the square where the mouse button was initially pressed to the square
where the mouse pointer is located. By releasing the mouse button you will cause the
change to take effect, and the highlighted rectangle will disappear.

Filled Rectangle This command is identical to Rectangle, except at the end the rectangle will be filled
rather than outlined.

Circle This command will change the grid squares in a circle between two squares. Once
you press a mouse button in the grid window, bitmap will highlight the circle from
the square where the mouse button was initially pressed to the square where the
mouse pointer is located. By releasing the mouse button you will cause the change to
take effect, and the highlighted circle will disappear.

Filled Circle This command is identical to Circle, except at the end the circle will be filled rather
than outlined.

Flood Fill This command will flood fill the connected area underneath the mouse pointer
when you click on the desired square. Diagonally adjacent squares are not considered
to be connected.

53

Set Hot Spot This command designates one square in the grid as the hot spot if this bitmap image
is to be used for defining a cursor. Pressing a mouse button in the desired square will
cause a diamond shape to be displayed.

Clear Hot Spot This command removes any designated hot spot from the bitmap image.

Undo This command will undo the last executed command. It has depth one, that is,
pressing Undo after Undo will undo itself.

FILE MENU
The File menu commands can be accessed by pressing the File button and selecting the appropriate menu entry, or by
pressing the Ctrl key with another key. These commands deal with files and global bitmap parameters, such as size,
basename, filename, and so forth.

New This command will clear the editing area and prompt for the name of the new file to
be edited. It will not load in the new file.

Load This command is used to load a new bitmap file into the bitmap editor. If the
current image has not been saved, user will be asked whether to save or ignore the
changes. The editor can edit only one file at a time. If you need interactive editing,
run a number of editors and use the cut and paste mechanism as described later in
this section. (See “Cut and Paste.”)

Insert This command is used to insert a bitmap file into the image being currently edited.
After being prompted for the filename, click inside the grid window and drag the
outlined rectangle to the location where you want to insert the new file.

Save This command will save the bitmap image. It will not prompt for the filename
unless it is said to be <none>. If you leave the filename undesignated or –, the output
will be piped to stdout.

Save As This command will save the bitmap image after prompting for a new filename. It
should be used if you want to change the filename.

Resize This command is used to resize the editing area to the new number of pixels. The
size should be entered in the widthheight format. The information in the image
being edited will not be lost unless the new size is smaller that the current image size.
The editor was not designed to edit huge files.

Rescale This command is used to rescale the editing area to the new width and height. The
size should be entered in the widthheight format. It will not do antialiasing and
information will be lost if you rescale to the smaller sizes. Feel free to add you own
algorithms for better rescaling.

Filename This command is used to change the filename without changing the basename nor
saving the file. If you specify – for a filename, the output will be piped to stdout.

Basename This command is used to change the basename, if a different one from the specified
filename is desired.

Quit This command will terminate the bitmap application. If the file was not saved, user
will be prompted and asked whether to save the image or not. Quit is preferred over
killing the process.

EDIT MENU
The Edit menu commands can be accessed by pressing the Edit button and selecting the appropriate menu entry, or by
pressing Meta key with another key. These commands deal with editing facilities such as grid, axes, zooming, cut and paste,
and so on.

Image This command will display the image being edited and its inverse in its actual size in
a separate window. The window can be moved away to continue with editing.
Pressing the left mouse button in the image window will cause it to disappear from
the screen.

bitmap, bmtoa, atobm

Part I: User Commands54

Grid This command controls the grid in the editing area. If the grid spacing is below the
value specified by gridTolerance resource (8 by default), the grid will be automati-
cally turned off. It can be enforced by explicitly activating this command.

Dashed This command controls the stipple for drawing the grid lines. The stipple specified
by dashes resource can be turned on or off by activating this command.

Axes This command controls the highlighting of the main axes of the image being edited.
The actual lines are not part of the image. They are provided to aid user when
constructing symmetrical images, or whenever having the main axes highlighted
helps your editing.

Stippled This command controls the stippling of the highlighted areas of the bitmap image.
The stipple specified by stipple resource can be turned on or off by activating this
command.

Proportional This command controls the proportional mode. If the proportional mode is on,
width and height of all image squares are forced to be equal, regardless of the
proportions of the bitmap window.

Zoom This command controls the zoom mode. If there is a marked area of the image
already displayed, bitmap will automatically zoom into it. Otherwise, the user will
have to highlight an area to be edited in the zoom mode and bitmap will automati-
cally switch into it. You can use all the editing commands and other utilities in the
zoom mode. When you zoom out, undo command will undo the whole zoom
session.

Cut This commands cuts the contents of the highlighted image area into the internal cut
and paste buffer.

Copy This command copies the contents of the highlighted image area into the internal
cut and paste buffer.

Paste This command will check if there are any other bitmap applications with a
highlighted image area, or if there is something in the internal cut and paste buffer
and copy it to the image. To place the copied image, click in the editing window and
drag the outlined image to the position where you want to place i, and then release
the button.

CUT AND PASTE
Bitmap supports two cut and paste mechanisms; the internal cut and paste and the global X selection cut and paste. The
internal cut and paste is used when executing copy and move drawing commands and also cut and copy commands from the
Edit menu. The global X selection cut and paste is used whenever there is a highlighted area of a bitmap image displayed
anywhere on the screen. To copy a part of image from another bitmap editor, simply highlight the desired area by using the
Mark command or pressing the shift key and dragging the area with the left mouse button. When the selected area becomes
highlighted, any other applications (such as xterm) that use primary selection will discard their selection values and
unhighlight the appropriate information. Now, use the Paste command from the Edit menu or control mouse button to
copy the selected part of image into another (or the same) bitmap application. If you attempt to do this without a visible
highlighted image area, the bitmap will fall back to the internal cut and paste buffer and paste whatever was stored there at
the moment.

WIDGETS
Following is the widget structure of the bitmap application. The widget class name is given first, followed by the widget
instance name. All widgets except the bitmap widget are from the standard Athena widget set.

Bitmap bitmap
TransientShell image
Box box
Label normalImage
Label invertedImage
TransientShell input

55

Dialog dialog
Command okay
Command cancel
TransientShell error
Dialog dialog
Command abort
Command retry
TransientShell qsave
Dialog dialog
Command yes
Command no
Command cancel
Paned parent
Form formy
MenuButton fileButton
SimpleMenu fileMenu
SmeBSB new
SmeBSB load
SmeBSB insert
SmeBSB save
SmeBSB saveAs
SmeBSB resize
SmeBSB rescale
SmeBSB filename
SmeBSB basename
SmeLine line
SmeBSB quit
MenuButton editButton
SimpleMenu editMenu
SmeBSB image
SmeBSB grid
SmeBSB dashed
SmeBSB axes
SmeBSB stippled
SmeBSB proportional
SmeBSB zoom
SmeLine line
SmeBSB cut
SmeBSB copy
SmeBSB paste
Label status
Pane pane
Bitmap bitmap
Form form
Command clear
Command set
Command invert
Toggle mark
Command unmark
Toggle copy
Toggle move
Command flipHoriz
Command up
Command flipVert
Command left
Command fold
Command right
Command rotateLeft
Command down
Command rotateRight

bitmap, bmtoa, atobm

Part I: User Commands56

Toggle point
Toggle curve
Toggle line
Toggle rectangle
Toggle filledRectangle
Toggle circle
Toggle filledCircle
Toggle floodFill
Toggle setHotSpot
Command clearHotSpot
Command undo

COLORS
If you would like bitmap to be viewable in color, include the following in the #ifdef COLOR section of the file you read with
xrdb:

*customization: –color

This will cause bitmap to pick up the colors in the app-defaults color customization file:

<XRoot>/lib/X11/app-defaults/Bitmap-color

where <XRoot> refers to the root of the X11 install tree.

BITMAP WIDGET
Bitmap widget is a standalone widget for editing raster images. It is not designed to edit large images, although it may be
used in that purpose as well. It can be freely incorporated with other applications and used as a standard editing tool. The
following are the resources provided by the bitmap widget:

Header file Bitmap.h

Class bitmapWidgetClass

Class Name Bitmap

Superclass Bitmap

All the Simple Widget resources plus…

Name Class Type Default Value

foreground Foreground Pixel XtDefaultForeground

highlight Highlight Pixel XtDefaultForeground

framing Framing Pixel XtDefaultForeground

gridTolerance GridTolerance Dimension 8

size Size String 32x32

dashed Dashed Boolean True

grid Grid Boolean True

stippled Stippled Boolean True

proportional Proportional Boolean True

axes Axes Boolean False

squareWidth SquareWidth Dimension 16

squareHeight SquareHeight Dimension 16

margin Margin Dimension 16

xHot XHot Position NotSet (–1)

yHot YHot Position NotSet (–1)

button1Function Button1Function DrawingFunction Set

57

button2Function Button2Function DrawingFunction Invert

button3Function Button3Function DrawingFunction Clear

button4Function Button4Function DrawingFunction Invert

button5Function Button5Function DrawingFunction Invert

filename Filename String None (“”)

basename Basename String None (“”)

AUTHOR
Davor Matic (MIT X Consortium)

X Version 11 Release 6

bmptoppm
bmptoppm—Convert a BMP file into a portable pixmap

SYNOPSIS
bmptoppm [bmpfile]

DESCRIPTION
bmptoppm reads a Microsoft Windows or OS/2 BMP file as input and produces a portable pixmap as output.

SEE ALSO
ppmtobmp(1), ppm(5)

AUTHOR
Copyright  1992 by David W. Sanderson

26 October 1992

brushtopbm
brushtopbm—Convert a doodle brush file into a portable bitmap

SYNOPSIS
brushtopbm [brushfile]

DESCRIPTION
brushtopbm reads a Xerox doodle brush file as input and produces a portable bitmap as output.

Note that there is currently no pbmtobrush tool.

SEE ALSO
pbm(5)

AUTHOR
Copyright  1988 by Jef Poskanzer

28 August 1988

Name Class Type Default Value

brushtopbm

Part I: User Commands58

cal
cal—Displays a calendar

SYNOPSIS
cal [–jy] [month [year]]

DESCRIPTION
cal displays a simple calendar. If arguments are not specified, the current month is displayed. The options are as follows:

–j Display Julian dates (days one-based, numbered from January 1)

–y Display a calendar for the current year

A single parameter specifies the year (1–9999) to be displayed; note the year must be fully specified:

cal 89

will not display a calendar for 1989. Two parameters denote the month (1–12) and year. If no parameters are specified, the
current month’s calendar is displayed.

A year starts on Jan 1.

The Gregorian Reformation is assumed to have occurred in 1752 on the 3rd of September. By this time, most countries had
recognized the reformation (although a few did not recognize it until the early 1900s.) Ten days following that date were
eliminated by the reformation, so the calendar for that month is a bit unusual.

HISTORY
A cal command appeared in version 6 AT&T UNIX

6 June 1993

cat
cat—Concatenate files and print on the standard output

SYNOPSIS
cat [–benstuvAET] [—number] [—number-nonblank] [—squeeze-blank]

[—show-nonprinting] [—show-ends] [—show-tabs] [—show-all]

[—help] [—version] [file...]

DESCRIPTION
This manual page documents the GNU version of cat. cat writes the contents of each given file, or the standard input if
none are given or when a file named – is given, to the standard output.

OPTIONS
–b, —number-nonblank Number all nonblank output lines, starting with 1.

–e Equivalent to –vE.

–n, —number Number all output lines, starting with 1.

–s, —squeeze-blank Replace multiple adjacent blank lines with a single blank line.

–t Equivalent to –vT.

–u Ignored; for UNIX compatibility.

59

–v, —show-nonprinting Display control characters except for LFD and TAB using ˆ notation and precede characters that
have the high bit set with M-.

–A, —show-all Equivalent to –vET.

–E, —show-ends Display a $ after the end of each line.

–T, —show-tabs Display tab characters as ˆI.

—help Print a usage message and exit with a nonzero status.

—version Print version information on standard output then exit.

GNU Text Utilities

chattr
chattr—Change file attributes on a Linux second extended file system

SYNOPSIS
chattr [–RV][-v version] [mode] files...

DESCRIPTION
chattr changes the files attributes on an second extended file system. The format of a symbolic mode is +-=[Sacdisu].

The operator + causes the selected attributes to be added to the existing attributes of the files; - causes them to be removed;
and = causes them to be the only attributes that the files have. The letters Sacdisu select the new attributes for the files:
synchronous updates (S), append only (a), compressed (χ), immutable(i), nodump (d), securedeletion (s), and undeletable
(u).

OPTIONS
-R Recursively change attributes of directories and their contents.

-V Verbosely describe changed attributes.

-v version Set the file’s version.

ATTRIBUTES
A file with the a attribute set can only be open in append mode for writing.

A file with the c attribute set is automatically compressed on the disk by the kernel. A read from this file returns
uncompressed data. A write to this file compresses data before storing them on the disk.

A file with the d attribute set is not candidate for backup when the dump(8) program is run.

A file with the i attribute cannot be modified: it cannot be deleted or renamed, no link can be created to this file and no data
can be written to the file. Only the superuser can set or clear this attribute.

When a file with the s attribute set is deleted, its blocks are zeroed and written back to the disk.

When a file with the u attribute set is modified, the changes are written synchronously on the disk; this is equivalent to the
syn’ mount option applied to a subset of the files.

When a file with the u attribute set is deleted, its contents is saved. This allows the user to ask for its undeletion.

AUTHOR
chattr has been written by Remy Card, <card@masi.ibp.fr>, the developer and maintainer of the ext2 fs.

BUGS AND LIMITATIONS
As of ext2 fs 0.5a, the c and u attributes are not honored by the kernel code.

These attributes will be implemented in a future ext2 fs version.

chattr

Part I: User Commands60

AVAILABILITY
chattr is available for anonymous ftp from ftp.ibp.fr and tsx-11.mit.edu in /pub/linux/packages/ext2fs.

SEE ALSO
lsattr(1)

Version 0.5b, November 1994

chfn
chfn—Change your finger information

SYNOPSIS
chfn [–f full-name][–o office][–p office-phone] [–h home-phone] [–u] [–v]
[username]

DESCRIPTION
chfn is used to change your finger information. This information is stored in the /etc/passwd file, and is displayed by the
finger program. The Linux finger command will display four pieces of information that can be changed by chfn: your real
name, your work room and phone, and your home phone.

COMMAND LINE
Any of the four pieces of information can be specified on the command line. If no information is given on the command
line, chfn enters interactive mode.

INTERACTIVE MODE
In interactive mode, chfn will prompt for each field. At a prompt, you can enter the new information, or just press return to
leave the field unchanged. Enter the keyword none to make the field blank.

OPTIONS
–f, —full-name Specify your real name.

–o, —office Specify your office room number.

–p, —office-phone Specify your office phone number.

–h, —home-phone Specify your home phone number.

–u, —help Print a usage message and exit.

-v, —version Print version information and exit.

SEE ALSO
finger(1), passwd(5)

AUTHOR
Salvatore Valente (<svalente@mit.edu>)

chfn, October 13 1994

61

chgrp
chgrp—Change the group ownership of files

SYNOPSIS
chgrp [–Rcfv] [—recursive] [—changes] [—silent] [—quiet] [—verbose] [—help]
[—version] group file...

DESCRIPTION
This manual page documents the GNU version of chgrp. chgrp changes the group ownership of each given file to the named
group, which can be either a group name or a numeric group ID.

OPTIONS
–c, —changes Verbosely describe only files whose ownership actually changes.

–f, —silent, —quiet Do not print error messages about files whose ownership cannot be changed.

–v, —verbose Verbosely describe ownership changes.

–R, —recursive Recursively change ownership of directories and their contents.

—help Print a usage message on standard output and exit successfully.

—version Print version information on standard output, then exit successfully.

GNU File Utilities

chkdupexe
chkdupexe—Find duplicate executables

SYNOPSIS
chkdupexe

DESCRIPTION
chkdupexe will scan many standard directories that hold executable, and report duplicates.

AUTHOR
Nicolai Langfeldt

BUGS
Requires GNU ls(1).

Search paths that point to the same directory will cause many bogus duplicates to be found. You might want to edit the
script to eliminate some paths that are equivalent on your machine.

11 March 1995

chmod
chmod—Change the access permissions of files

SYNOPSIS
chmod [–Rcfv] [—recursive] [—changes] [—silent] [—quiet] [—verbose] [—help]
[—version] mode file...

chmod

Part I: User Commands62

DESCRIPTION
This manual page documents the GNU version of chmod. chmod changes the permissions of each given file according to mode,
which can be either a symbolic representation of changes to make, or an octal number representing the bit pattern for the
new permissions.

The format of a symbolic mode is [ugoa...][[+-=][rwxXstugo...]...][,...]. Multiple symbolic operations can be given,
separated by commas.

A combination of the letters ugoa controls which users’ access to the file will be changed: the user who owns it (u), other users
in the file’s group (g), other users not in the file’s group (o), or all users (a). If none of these are given, the effect is as if a were
given, but bits that are set in the umask are not affected.

The operator + causes the permissions selected to be added to the existing permissions of each file; - causes them to be
removed; and = causes them to be the only permissions that the file has.

The letters rwxXstugo select the new permissions for the affected users: read (r), write (w), execute (or access for directories)
(x), execute only if the file is a directory or already has execute permission for some user (X), set user or group ID on
execution (s), save program text on swap device (t), the permissions that the user who owns the file currently has for it (u),
the permissions that other users in the file’s group have for it (g), and the permissions that other users not in the file’s group
have for it (o).

A numeric mode is from one to four octal digits (0–7), derived by adding up the bits with values 4, 2, and 1. Any omitted
digits are assumed to be leading zeros. The first digit selects the set user ID (4) and set group ID (2) and save text image (1)
attributes. The second digit selects permissions for the user who owns the file: read (4), write (2), and execute (1); the third
selects permissions for other users in the file’s group, with the same values; and the fourth for other users not in the file’s
group, with the same values.

chmod never changes the permissions of symbolic links; the chmod system call cannot change their permissions. This is not a
problem since the permissions of symbolic links are never used. However, for each symbolic link listed on the command line,
chmod changes the permissions of the pointed-to file. In contrast, chmod ignores symbolic links encountered during recursive
directory traversals.

OPTIONS
–c, —changes Verbosely describe only files whose permissions actually change.

–f, —silent, —quiet Do not print error messages about files whose permissions cannot be changed.

–v, —verbose Verbosely describe changed permissions.

–R, —recursive Recursively change permissions of directories and their contents.

—help Print a usage message on standard output and exit successfully.

—version Print version information on standard output, then exit successfully.

GNU File Utilities

chown
chown—Change the user and group ownership of files

SYNOPSIS
chown [–Rcfv] [—recursive] [—changes] [—help] [—version] [—silent] [—quiet]
[—verbose] [user][:.][group] file...

63

DESCRIPTION
This manual page documents the GNU version of chown. chown changes the user and/or group ownership of each given file,
according to its first nonoption argument, which is interpreted as follows. If only a username (or numeric user ID) is given,
that user is made the owner of each given file, and the files’ group is not changed. If the username is followed by a colon or
dot and a group name (or numeric group ID), with no spaces between them, the group ownership of the files is changed as
well. If a colon or dot but no group name follows the username, that user is made the owner of the files and the group of the
files is changed to that user’s login group. If the colon or dot and group are given, but the username is omitted, only the
group of the files is changed; in this case, chown performs the same function as chgrp.

OPTIONS
–c, —changes Verbosely describe only files whose ownership actually changes.

–f, —silent, —quiet Do not print error messages about files whose ownership cannot be changed.

–v, —verbose Verbosely describe ownership changes.

–R, —recursive Recursively change ownership of directories and their contents.

—help Print a usage message on standard output and exit successfully.

—version Print version information on standard output then exit successfully.

GNU File Utilities

chsh
chsh—Change your login shell

SYNOPSIS
chsh [–s shell] [–l] [–u] [–v] [username]

DESCRIPTION
chsh is used to change your login shell. If a shell is not given on the command line, chsh prompts for one.

VALID SHELLS
chsh will accept the full pathname of any executable file on the system. However, it will issue a warning if the shell is not
listed in the /etc/shells file.

OPTIONS
–s, —shell Specify your login shell.

–l, —list-shells Print the list of shells listed in /etc/shells and exit.

–u, —help Print a usage message and exit.

-v, —version Print version information and exit.

SEE ALSO
login(1), passwd(5), shells(5)

AUTHOR
Salvatore Valente (<svalente@mit.edu>)

chsh, 13 October 1994

chsh

Part I: User Commands64

ci
ci—Check in RCS revisions

SYNOPSIS
ci [options] file ...

DESCRIPTION
ci stores new revisions into RCS files. Each pathname matching an RCS suffix is taken to be an RCS file. All others are
assumed to be working files containing new revisions. ci deposits the contents of each working file into the corresponding
RCS file. If only a working file is given, ci tries to find the corresponding RCS file in an RCS subdirectory and then in the
working file’s directory. (For more details, see “File Naming,” later in this manual page.)

For ci to work, the caller’s login must be on the access list, unless the access list is empty or the caller is the superuser or the
owner of the file. To append a new revision to an existing branch, the tip revision on that branch must be locked by the
caller. Otherwise, only a new branch can be created. This restriction is not enforced for the owner of the file if non-strict
locking is used; see rcs(1). A lock held by someone else can be broken with the rcs command.

Unless the –f option is given, ci checks whether the revision to be deposited differs from the preceding one. If not, instead of
creating a new revision ci reverts to the preceding one. To revert, ordinary ci removes the working file and any lock; ci –l
keeps and ci –u removes any lock, and then they both generate a new working file much as if co –l or co –u had been applied
to the preceding revision. When reverting, any –n and -s options apply to the preceding revision.

For each revision deposited, ci prompts for a log message. The log message should summarize the change and must be
terminated by end-of-file or by a line containing . by itself. If several files are checked in, ci asks whether to reuse the
previous log message. If the standard input is not a terminal, ci suppresses the prompt and uses the same log message for all
files. (See also –m.)

If the RCS file does not exist, ci creates it and deposits the contents of the working file as the initial revision (default
number: 1.1). The access list is initialized to empty. Instead of the log message, ci requests descriptive text (See –t.)

The number rev of the deposited revision can be given by any of the options –f, –i, –I, –j, –k, –l, –M, –q, –r, or –u. rev can be
symbolic, numeric, or mixed. Symbolic names in rev must already be defined; see the –n and –N options for assigning names
during checkin. If rev is $, ci determines the revision number from keyword values in the working file.

If rev begins with a period, then the default branch (normally the trunk) is prepended to it. If rev is a branch number
followed by a period, then the latest revision on that branch is used.

If rev is a revision number, it must be higher than the latest one on the branch to which rev belongs, or must start a new
branch.

If rev is a branch rather than a revision number, the new revision is appended to that branch. The level number is obtained
by incrementing the tip revision number of that branch. If rev indicates a nonexistent branch, that branch is created with the
initial revision numbered rev.1.

If rev is omitted, ci tries to derive the new revision number from the caller’s last lock. If the caller has locked the tip revision
of a branch, the new revision is appended to that branch. The new revision number is obtained by incrementing the tip
revision number. If the caller locked a nontip revision, a new branch is started at that revision by incrementing the highest
branch number at that revision. The default initial branch and level numbers are 1.

If rev is omitted and the caller has no lock, but owns the file and locking is not set to strict, then the revision is appended to
the default branch. (Normally the trunk; see the –b option of rcs(1).)

Exception: On the trunk, revisions can be appended to the end, but not inserted.

65

OPTIONS
–rrev Check in revision rev.

–r The bare –r option (without any revision) has an unusual meaning in ci. With other RCS
commands, a bare -r option specifies the most recent revision on the default branch, but with ci, a
bare -r option reestablishes the default behavior of releasing a lock and removing the working file,
and is used to override any default –l or –u options established by shell aliases or scripts.

–l[rev] Works like -r, except it performs an additional co –l for the deposited revision. Thus, the
deposited revision is immediately checked out again and locked. This is useful for saving a revision
although one wants to continue editing it after the checkin.

–u[rev] Works like –l, except that the deposited revision is not locked. This lets one read the working file
immediately after checkin.

The –l, bare -r, and –u options are mutually exclusive and silently override each other. For example, ci –u -r is equivalent
to ci -r because bare -r overrides –u.

–f[rev] Forces a deposit; the new revision is deposited even it is not different from the preceding one.

–k[rev] Searches the working file for keyword values to determine its revision number, creation date, state,
and author—see co(1)—and assigns these values to the deposited revision, rather than computing
them locally. It also generates a default login message noting the login of the caller and the actual
checkin date. This option is useful for software distribution. A revision that is sent to several sites
should be checked in with the –k option at these sites to preserve the original number, date, author,
and state. The extracted keyword values and the default log message can be overridden with the
options –d, –m, –s, –w, and any option that carries a revision number.

–q[rev] Quiet mode; diagnostic output is not printed. A revision that is not different from the preceding
one is not deposited, unless –f is given.

-i[rev] Initial checkin; report an error if the RCS file already exists. This avoids race conditions in certain
applications.

–j[rev] Just check in and do not initialize; report an error if the RCS file does not already exist.

–I[rev] Interactive mode; the user is prompted and questioned even if the standard input is not a terminal.

–d[date] Uses date for the checkin date and time. The date is specified in free format as explained in co(1).
This is useful for lying about the checkin date, and for –k if no date is available. If date is empty,
the working file’s time of last modification is used.

–M[rev] Set the modification time on any new working file to be the date of the retrieved revision. For
example, ci –d –M –u f does not alter f’s modification time, even if f’s contents change due to
keyword substitution. Use this option with care; it can confuse make(1).

–mmsg Uses the string msg as the log message for all revisions checked in. By convention, log messages that
start with # are comments and are ignored by programs like GNU emacs’s vc package. Also, log
messages that start with clumpname (followed by whitespace) are meant to be clumped together if
possible, even if they are associated with different files; the clumpname label is used only for
clumping, and is not considered to be part of the log message itself.

–nname Assigns the symbolic name to the number of the checked-in revision. ci prints an error message if
that name is already assigned to another number.

–Nname Same as –n, except that it overrides a previous assignment of name.

–sstate Sets the state of the checked-in revision to the identifier state. The default state is Exp.

–tfile Writes descriptive text from the contents of the named file into the RCS file, deleting the existing
text. The file cannot begin with –.

–t–string Write descriptive text from the string into the RCS file, deleting the existing text.

The –t option, in both its forms, has effect only during an initial checkin; it is silently ignored otherwise.

During the initial checkin, if –t is not given, ci obtains the text from standard input, terminated by end-of-file or by a line
containing a dot (.) by itself. The user is prompted for the text if interaction is possible; see –I.

ci

Part I: User Commands66

For backwards compatibility with older versions of RCS, a bare –t option is ignored.

–T Set the RCS file’s modification time to the new revision’s time if the former precedes the latter and
there is a new revision; preserve the RCS file’s modification time otherwise. If you have locked a
revision, ci usually updates the RCS file’s modification time to the current time, because the lock is
stored in the RCS file and removing the lock requires changing the RCS file. This can create an
RCS file newer than the working file in one of two ways: first, ci –M can create a working file with
a date before the current time; second, when reverting to the previous revision the RCS file can
change while the working file remains unchanged. These two cases can cause excessive
recompilation caused by a make(1) dependency of the working file on the RCS file. The –T option
inhibits this recompilation by lying about the RCS file’s date. Use this option with care; it can
suppress recompilation even when a checkin of one working file should affect another working file
associated with the same RCS file. For example, suppose the RCS file’s time is 01:00, the (changed)
working file’s time is 02:00, some other copy of the working file has a time of 03:00, and the
current time is 04:00. Then ci –d –T sets the RCS file’s time to 02:00 instead of the usual 04:00;
this causes make(1) to think (incorrectly) that the other copy is newer than the RCS file.

–wlogin Uses login for the author field of the deposited revision. Useful for lying about the author, and for
–k if no author is available.

–V Print RCS’s version number.

–Vn Emulate RCS version n. See co(1) for details.

–xsuffixes Specifies the suffixes for RCS files. A nonempty suffix matches any pathname ending in the suffix.
An empty suffix matches any pathname of the form RCS/path or path1/RCS/path2. The –x option
can specify a list of suffixes separated by /. For example, –x,v/ specifies two suffixes: ,v and the
empty suffix. If two or more suffixes are specified, they are tried in order when looking for an RCS
file; the first one that works is used for that file. If no RCS file is found but an RCS file can be
created, the suffixes are tried in order to determine the new RCS file’s name. The default for
suffixes is installation-dependent; normally it is ,v/ for hosts like UNIX that permit commas in
filenames, and is empty (that is, just the empty suffix) for other hosts.

–zzone Specifies the date output format in keyword substitution, and specifies the default time zone for
date in the –ddate option. The zone should be empty, a numeric UTC offset, or the special string
LT for local time. The default is an empty zone, which uses the traditional RCS format of UTC
without any time-zone indication and with slashes separating the parts of the date; otherwise, times
are output in ISO 8601 format with time zone indication. For example, if local time is January 11,
1990, 8 p.m. Pacific Standard Time, eight hours west of UTC, then the time is output as follows:

Option Time Output

–z 1990/01/12 04:00:00 (default)

–zLT 1990-01-11 20:00:00–08

–z+05:30 1990-01-12 09:30:00+05:30

The –z option does not affect dates stored in RCS files, which are always UTC.

FILE NAMING
Pairs of RCS files and working files can be specified in three ways. (See also “Examples,” next.)

1. Both the RCS file and the working file are given. The RCS pathname is of the form path1/workfileX and the working
pathname is of the form path2/workfile where path1/ and path2/ are (possibly different or empty) paths, workfile is a
filename, and X is an RCS suffix. If X is empty, path1/ must start with RCS/ or must contain /RCS/.

2. Only the RCS file is given. Then the working file is created in the current directory and its name is derived from the
name of the RCS file by removing path1/ and the suffix X.

67

3. Only the working file is given. Then ci considers each RCS suffix X in turn, looking for an RCS file of the form path2/
RCS/workfileX or (if the former is not found and X is nonempty) path2/workfileX.

If the RCS file is specified without a path in one of the first two preceding scenarios, ci looks for the RCS file first in the
directory ./RCS and then in the current directory.

ci reports an error if an attempt to open an RCS file fails for an unusual reason, even if the RCS file’s pathname is just one
of several possibilities. For example, to suppress use of RCS commands in a directory d, create a regular file named d/RCS so
that casual attempts to use RCS commands in d fail because d/RCS is not a directory.

EXAMPLES
Suppose ,v is an RCS suffix and the current directory contains a subdirectory RCS with an RCS file io.c,v. Then each of
the following commands checks in a copy of io.c into RCS/io.c,v as the latest revision, removing io.c:

ci io.c; ci RCS/io.c,v; ci io.c,v;
ci io.c RCS/io.c,v; ci io.c io.c,v;
ci RCS/io.c,v io.c; ci io.c,v io.c;

Suppose instead that the empty suffix is an RCS suffix and the current directory contains a subdirectory RCS with an RCS
file io.c. Then each of the following commands checks in a new revision:

ci io.c; ci RCS/io.c;
ci io.c RCS/io.c;
ci RCS/io.c io.c;

FILE MODES
An RCS file created by ci inherits the read and execute permissions from the working file. If the RCS file exists already, ci
preserves its read and execute permissions. ci always turns off all write permissions of RCS files.

FILES
Temporary files are created in the directory containing the working file, and also in the temporary directory. (See TMPDIR
under “Environment.”) A semaphore file or files are created in the directory containing the RCS file. With a nonempty
suffix, the semaphore names begin with the first character of the suffix; therefore, do not specify an suffix whose first
character could be that of a working filename. With an empty suffix, the semaphore names end with an underscore (_), so
working filenames should not end in _. ci never changes an RCS or working file. Normally, ci unlinks the file and creates a
new one; but instead of breaking a chain of one or more symbolic links to an RCS file, it unlinks the destination file instead.
Therefore, ci breaks any hard or symbolic links to any working file it changes; and hard links to RCS files are ineffective, but
symbolic links to RCS files are preserved.

The effective user must be able to search and write the directory containing the RCS file. Normally, the real user must be
able to read the RCS and working files and to search and write the directory containing the working file; however, some
older hosts cannot easily switch between real and effective users, so on these hosts the effective user is used for all accesses.
The effective user is the same as the real user unless your copies of ci and co have setuid privileges. These privileges yield
extra security if the effective user owns all RCS files and directories, and if only the effective user can write RCS directories.

Users can control access to RCS files by setting the permissions of the directory containing the files; only users with write
access to the directory can use RCS commands to change its RCS files. For example, in hosts that allow a user to belong to
several groups, one can make a group’s RCS directories writable to that group only. This approach suffices for informal
projects, but it means that any group member can arbitrarily change the group’s RCS files, and can even remove them
entirely. Hence, more formal projects sometimes distinguish between an RCS administrator, who can change the RCS files
at will, and other project members, who can check in new revisions but cannot otherwise change the RCS files.

setuid USE
To prevent anybody but their RCS administrator from deleting revisions, a set of users can employ setuid privileges as
follows:

ci

Part I: User Commands68

■ Check that the host supports RCS setuid use. Consult a trustworthy expert if there are any doubts. It is best if the
setuid system calls works as described in POSIX 1003.1a Draft 5, because RCS can switch back and forth easily
between real and effective users, even if the real user is root. If not, the second best is if the setuid system call supports
saved setuid (the {_POSIX_SAVED_IDS} behavior of POSIX 1003.1-1990); this fails only if the real or effective user is root.
If RCS detects any failure in setuid, it quits immediately.

■ Choose a user A to serve as RCS administrator for the set of users. Only A can invoke the rcs command on the users’
RCS files. A should not be root or any other user with special powers. Mutually suspicious sets of users should use
different administrators.

■ Choose a pathname B to be a directory of files to be executed by the users.
■ Have A set up B to contain copies of ci and co that are setuid to A by copying the commands from their standard

installation directory D as follows:
mkdir B cp D/c[io] B chmod go–w,u+s B/c[io]

■ Have each user prepend B to his/her path as follows:
PATH=B:$PATH; export PATH # ordinary shell
set path=(B $path) # C shell

■ Have A create each RCS directory R with write access only to A as follows:
mkdir R chmod go–w R

■ If you want to let only certain users read the RCS files, put the users into a group G, and have A further protect the RCS
directory as follows:
chgrp G Rchmod g–w,o–rwx R

■ Have A copy old RCS files (if any) into R, to ensure that A owns them.
■ An RCS file’s access list limits who can check in and lock revisions. The default access list is empty, which grants

checkin access to anyone who can read the RCS file. If you want limit checkin access, have A invoke rcs –a on the file;
see rcs(1). In particular, rcs –e –aA limits access to just A.

■ Have A initialize any new RCS files with rcs -i before initial checkin, adding the –a option if you want to limit checkin
access.

■ Give setuid privileges only to ci, co, and rcsclean; do not give them to rcs or to any other command.
■ Do not use other setuid commands to invoke RCS commands; setuid is trickier than you think!

ENVIRONMENT
RCSINIT Options prepended to the argument list, separated by spaces. A backslash escapes spaces within an option.

The RCSINIT options are prepended to the argument lists of most RCS commands. Useful RCSINIT options
include –q, –V, –x, and –z.

TMPDIR Name of the temporary directory. If not set, the environment variables TMP and TEMPs0 are inspected
instead and the first value found is taken; if none of them are set, a host-dependent default is used,
typically /tmp.

DIAGNOSTICS
For each revision, ci prints the RCS file, the working file, and the number of both the deposited and the preceding revision.
The exit status is zero if and only if all operations were successful.

IDENTIFICATION
Author: Walter F. Tichy.

Manual page revision: 5.17; Release date 16 June 1995

Copyright  1982, 1988, 1989 Walter F. Tichy

Copyright  1990, 1991, 1992, 1993, 1994, 1995 Paul Eggert

69

SEE ALSO
co(1), emacs(1), ident(1), make(1), rcs(1), rcsclean(1), rcsdiff(1), rcsintro(1), rcsmerge(1), rlog(1), setuid(2), rcsfile(5)

Walter F. Tichy, “RCS—A System for Version Control,” Software Practice & Experience 15, 7 (July 1985), 637–654.

GNU, 16 June 1995

cidentd
cidentd—identd server

SYNOPSIS
cidentd [–usqvnah] [–f file] [–l file] [–t seconds]

DESCRIPTION
cidentd gives authentication information.

cidentd is an RFC 1314- and 931-compliant identd daemon. It accepts connections on a port (113 default) and answers
queries for port owner of a connection. command;

cidentd normally terminates when the remote command does. The options are as follows:

–u Turns on the use of the .authlie file in the user’s home directory to give the requesting system whatever
information the user provides. This file is overridden by the -a option and the system file the format is as
follows:

mynameis name-to-be-given # give this userid

hideme # hide user id

host-ip name-to-be-given # userid for them

host-ip no-info # hide you to them

host-ip can be an ip in dot notation or a name. The file is set so that whatever comes last is what they get.

–s Closes the connection after a single query.

–q Quits the daemon after 1 connection (default in 1.0b).

–v Turns on verbose logging to the syslogs.

–n Makes cident act like the old school identd with nothing special.

–a Enables the /etc/cident.users file for options, which overrides the user files if -u is specified. The format
is as follows:

username name-to-send # send this for username

username # must send there username

all name-to-send # send for every query

all no-info # send nothing every query

host-ip name-to-send # send to that host

host-ip no-info # send nothing to them

host-ip can be an ip in dot notation or a name. The file is set so that whatever comes last is what they get.

–h Displays the help list to the screen you might not want to do this from some terminal types.

–f Sets the file to find the ports and ids of connections. Use this to specify a file other than /proc/net/tcp.

–l Used to specify a file other than /etc/cident.users must be used with the -a option unless you like
redundancy.

–t Sets the time out of a connection in seconds. This does not work in this version to cidentd.

cidentd

Part I: User Commands70

If no arguments are specified, the program just runs as normal, almost like the –n.

cidentd –t 30 –a sets timer to 30 seconds and tells it to look at .authlie files.

FILES
/etc/cidentd.users
$(HOME)/.authlie

SEE ALSO
identd(1)

BUGS
None that I know of.

Linux/FreeBSD, May 1996

cksum
cksum—Checksum and count the bytes in a file

SYNOPSIS
cksum [—help] [—version] [file...]

DESCRIPTION
This manual page documents the GNU version of cksum. cksum computes a cyclic redundancy check (CRC) for each named
file, or the standard input if none are given or when a file named – is given. It prints the CRC for each file along with the
number of bytes in the file, and the filename unless no arguments were given.

cksum is typically used to make sure that files transferred by unreliable means (such as netnews) have not been corrupted. This
is accomplished by comparing the cksum output for the received files with the cksum output for the original files. The CRC
algorithm is specified by the POSIX.2 standard. It is not compatible with the BSD or System V sum programs; it is more
robust.

Available options are

—help Print a usage message and exit with a nonzero status.

—version Print version information on standard output then exit.

GNU Text Utilities

clear
clear—Clear terminal screen

SYNOPSIS
clear

DESCRIPTION
clear calls tput(1) with the clear argument. This causes tput to attempt to clear the screen, checking the data in /etc/termcap
(for the GNU or BSD tput) or in the terminfo database (for the ncurses tput) and sending the appropriate sequence to the
terminal. This command can be redirected to clear the screen of some other terminal.

71

SEE ALSO
reset(1), stty(1), tput(1)

AUTHOR
Rik Faith (faith@cs.unc.edu)

Linux 0.99, 10 October 1993

cmuwmtopbm
cmuwmtopbm—Convert a CMU window manager bitmap into a portable bitmap

SYNOPSIS
cmuwmtopbm [cmuwmfile]

DESCRIPTION
Reads a CMU window manager bitmap as input. Produces a portable bitmap as output.

SEE ALSO
pbmtocmuwm(1), pbm(5)

AUTHOR
Copyright  1989 by Jef Poskanzer

15 April 1989

co
co—Check out RCS revisions

SYNOPSIS
co [options] file ...

DESCRIPTION
co retrieves a revision from each RCS file and stores it into the corresponding working file.

Pathnames matching an RCS suffix denote RCS files; all others denote working files. Names are paired as explained in ci(1).

Revisions of an RCS file can be checked out locked or unlocked. Locking a revision prevents overlapping updates. A revision
checked out for reading or processing (for example, compiling) need not be locked. A revision checked out for editing and
later checkin must normally be locked. Checkout with locking fails if the revision to be checked out is currently locked by
another user. (A lock can be broken with rcs(1).) Checkout with locking also requires the caller to be on the access list of the
RCS file, unless he is the owner of the file or the superuser, or the access list is empty. Checkout without locking is not
subject to access list restrictions, and is not affected by the presence of locks.

A revision is selected by options for revision or branch number, checkin date/time, author, or state. When the selection
options are applied in combination, co retrieves the latest revision that satisfies all of them. If none of the selection options is
specified, co retrieves the latest revision on the default branch, normally the trunk; see the –b option of rcs(1). A revision or
branch number can be attached to any of the options –f, –I, –l, –M, –p, –q, -r, or –u. The options –d (date), –s (state), and –w
(author) retrieve from a single branch, the selected branch (which is specified by –f or –u), or the default branch.

A co command applied to an RCS file with no revisions creates a zero-length working file. co always performs keyword
substitution.

co

Part I: User Commands72

OPTIONS
-r[rev] Retrieves the latest revision whose number is less than or equal to rev. If rev indicates a branch

rather than a revision, the latest revision on that branch is retrieved. If rev is omitted, the latest
revision on the default branch is retrieved; see the –b option of rcs(1). If rev is $, co determines the
revision number from keyword values in the working file. Otherwise, a revision is composed of one
or more numeric or symbolic fields separated by periods. If rev begins with a period, then the
default branch (normally the trunk) is prepended to it. If rev is a branch number followed by a
period, then the latest revision on that branch is used. The numeric equivalent of a symbolic field is
specified with the –n option of the commands ci(1) and rcs(1).

–l[rev] Same as -r, except that it also locks the retrieved revision for the caller.

–u[rev] Same as -r, except that it unlocks the retrieved revision if it was locked by the caller. If rev is
omitted, –u retrieves the revision locked by the caller, if there is one; otherwise, it retrieves the latest
revision on the default branch.

–f[rev] Forces the overwriting of the working file; useful in connection with –q. (See also “File Modes,”
later in this manual page.)

–kkv Generate keyword strings using the default form, for example, $Revision: 5.13 $ for the Revision
keyword. A locker’s name is inserted in the value of the Header, Id, and Locker keyword strings only
as a file is being locked, that is, by ci –l and co –l. This is the default.

–kkvl Like –kkv, except that a locker’s name is always inserted if the given revision is currently locked.

–kk Generate only keyword names in keyword strings; omit their values. (See “Keyword Substitution,”
later in this manual page.) For example, for the Revision keyword, generate the string $Revision$
instead of $Revision: 5.13 $. This option is useful to ignore differences due to keyword substitu-
tion when comparing different revisions of a file. Log messages are inserted after Log keywords
even if –kk is specified, since this tends to be more useful when merging changes.

–ko Generate the old keyword string, present in the working file just before it was checked in. For
example, for the Revision keyword, generate the string $Revision: 1.1 $ instead of $Revision: 5.13
$ if that is how the string appeared when the file was checked in. This can be useful for file formats
that cannot tolerate any changes to substrings that happen to take the form of keyword strings.

–kb Generate a binary image of the old keyword string. This acts like –ko, except it performs all
working file input and output in binary mode. This makes little difference on POSIX and UNIX
hosts, but on DOS-like hosts one should use rcs -i –kb to initialize an RCS file normally refuses
to merge files when –kb is in effect.

–kv Generate only keyword values for keyword strings. For example, for the Revision keyword, generate
the string 5.13 instead of $Revision: 5.13 $. This can help generate files in programming languages
where it is hard to strip keyword delimiters like $Revision: $ from a string. However, further
keyword substitution cannot be performed once the keyword names are removed, so this option
should be used with care. Because of this danger of losing keywords, this option cannot be
combined with –l, and the owner write permission of the working file is turned off; to edit the file
later, check it out again without –kv.

–p[rev] Prints the retrieved revision on the standard output rather than storing it in the working file. This
option is useful when co is part of a pipe.

–q[rev] Quiet mode; diagnostics are not printed.

–I[rev] Interactive mode; the user is prompted and questioned even if the standard input is not a terminal.

–ddate Retrieves the latest revision on the selected branch whose checkin date/time is less than or equal to
date. The date and time can be given in free format. The time zone LT stands for local time; other
common time zone names are understood. For example, the following dates are equivalent if local
time is January 11, 1990, 8 p.m. Pacific Standard Time, eight hours west of Coordinated Universal
Time (UTC):

8:00 PM lt

4:00 AM, Jan. 12, 1990 Default is UTC

73

1990-01-12 04:00:00+00 ISO 8601 (UTC)

1990-01-11 20:00:00–08 ISO 8601 (local time)

1990/01/12 04:00:00 Traditional RCS format

Thu Jan 11 20:00:00 1990 LT Output of ctime(3) + LT

Thu Jan 11 20:00:00 PST 1990 Output of date(1)

Fri Jan 12 04:00:00 GMT 1990

Thu, 11 Jan 1990 20:00:00 –0800 Internet RFC 822

12-January-1990, 04:00 WET

Most fields in the date and time can be defaulted. The default time zone is normally UTC, but this can be overridden by the
–z option. The other defaults are determined in the order year, month, day, hour, minute, and second (most to least
significant). At least one of these fields must be provided. For omitted fields that are of higher significance than the highest
provided field, the time zone’s current values are assumed. For all other omitted fields, the lowest possible values are
assumed. For example, without –z, the date 20, 10:30 defaults to 10:30:00 UTC of the 20th of the UTC time zone’s current
month and year. The date/time must be quoted if it contains spaces.

–M[rev] Sets the modification time on the new working file to be the date of the retrieved revision. Use this
option with care; it can confuse make(1).

–sstate Retrieves the latest revision on the selected branch whose state is set to state.

–T Preserves the modification time on the RCS file even if the RCS file changes because a lock is
added or removed. This option can suppress extensive recompilation caused by a make(1) depen-
dency of some other copy of the working file on the RCS file. Use this option with care; it can
suppress recompilation even when it is needed, in other words, when the change of lock would
mean a change to keyword strings in the other working file.

–w[login] Retrieves the latest revision on the selected branch that was checked in by the user with login name
login. If the argument login is omitted, the caller’s login is assumed.

–jjoinlist Generates a new revision which is the join of the revisions on joinlist. This option is largely made
obsolete by rcsmerge(1), but is retained for backwards compatibility.

The joinlist is a comma-separated list of pairs of the form rev2:rev3, where rev2 and rev3 are
(symbolic or numeric) revision numbers. For the initial such pair, rev1 denotes the revision selected
by the options –f, –w. For all other pairs, rev1 denotes the revision generated by the previous pair.
(Thus, the output of one join becomes the input to the next.)

For each pair, co joins revisions rev1 and rev3 with respect to rev2. This means that all changes that
transform rev2 into rev1 are applied to a copy of rev3. This is particularly useful if rev1 and rev3
are the ends of two branches that have rev2 as a common ancestor. If rev1<rev2<rev3 on the same
branch, joining generates a new revision which is like rev3, but with all changes that lead from rev1
to rev2 undone. If changes from rev2 to rev1 overlap with changes from rev2 to rev3, co reports
overlaps as described in merge(1).

For the initial pair, rev2 can be omitted. The default is the common ancestor. If any of the
arguments indicate branches, the latest revisions on those branches are assumed. The options –l
and –u lock or unlock rev1.

–V Prints RCS’s version number.

–Vn Emulates RCS version n, where n can be 3, 4, or 5. This can be useful when interchanging RCS
files with others who are running older versions of RCS. To see which version of RCS your
correspondents are running, have them invoke rcs –V; this works with newer versions of RCS. If it
doesn’t work, have them invoke rlog on an RCS file; if none of the first few lines of output contain
the string branch:, it is version 3; if the dates’ years have just two digits, it is version 4; otherwise, it
is version 5. An RCS file generated while emulating version 3 loses its default branch. An RCS
revision generated while emulating version 4 or earlier has a timestamp that is off by up to 13
hours. A revision extracted while emulating version 4 or earlier contains abbreviated dates of the
form yy/mm/dd and can also contain different whitespace and line prefixes in the substitution for
Log.

co

Part I: User Commands74

–xsuffixes Uses suffixes to characterize RCS files. See ci(1) for details.

–zzone Specifies the date output format in keyword substitution, and specifies the default time zone for
date in the –ddate option. The zone should be empty, a numeric UTC offset, or the special string
LT for local time. The default is an empty zone, which uses the traditional RCS format of UTC
without any time zone indication and with slashes separating the parts of the date; otherwise, times
are output in ISO 8601 format with time zone indication. For example, if local time is January 11,
1990, 8 p.m. Pacific Standard Time, eight hours west of UTC, then the time is output as follows:

Option Time Output

–z 1990/01/12 04:00:00 (default)

–zLT 1990-01-11 20:00:00–08

–z+05:30 1990-01-12 09:30:00+05:30

The –z option does not affect dates stored in RCS files, which are always UTC.

KEYWORD SUBSTITUTION
Strings of the form $ keyword $ and $ keyword : ... $ embedded in the text are replaced with strings of the form $ keyword
: value $, where keyword and value are pairs in the following list. Keywords can be embedded in literal strings or comments
to identify a revision.

Initially, the user enters strings of the form $keyword$. On checkout, co replaces these strings with strings of the form
$keyword : value$. If a revision containing strings of the latter form is checked back in, the value fields will be replaced
during the next checkout. Thus, the keyword values are automatically updated on checkout. This automatic substitution can
be modified by the –k options.

Keywords and their corresponding values:

$Author$ The login name of the user who checked in the revision.

$Date$ The date and time the revision was checked in. With –zzone, a numeric time zone offset is
appended; otherwise, the date is UTC.

$Header$ A standard header containing the full pathname of the RCS file, the revision number, the date and
time, the author, the state, and the locker (if locked). With –zzone, a numeric time zone offset is
appended to the date; otherwise, the date is UTC.

Id Same as $Header$, except that the RCS filename is without a path.

$Locker$ The login name of the user who locked the revision (empty if not locked).

Log The log message supplied during checkin, preceded by a header containing the RCS filename, the
revision number, the author, and the date and time. With –zzone a numeric time zone offset is
appended; otherwise, the date is UTC. Existing log messages are not replaced. Instead, the new log
message is inserted after $Log: ... $. This is useful for accumulating a complete change log in a
source file.

Each inserted line is prefixed by the string that prefixes the Log line. For example, if the Log line is // $Log: tan.cc $,
RCS prefixes each line of the log with //. This is useful for languages with comments that go to the end of the line. The
convention for other languages is to use a * prefix inside a multiline comment. For example, the initial log comment of a C
program conventionally is of the following form:

 /*
* Log
*/

For backwards compatibility with older versions of RCS, if the log prefix is /* or (* surrounded by optional whitespace,
inserted log lines contain a space instead of / or (; however, this usage is obsolescent and should not be relied on.

$Name$ The symbolic name used to check out the revision, if any. For example, co -r Joe generates $Name:
Joe $. Plain co generates just $Name: $.

75

$RCSfile$ The name of the RCS file without a path.

$Revision$ The revision number assigned to the revision.

$Source$ The full pathname of the RCS file.

$State$ The state assigned to the revision with the –s option of rcs(1) or ci(1).

The following characters in keyword values are represented by escape sequences to keep keyword strings well-formed.

Character Escape Sequence

tab \t

newline \n

space \040

$ \044

\ \\

FILE MODES
The working file inherits the read and execute permissions from the RCS file. In addition, the owner write permission is
turned on, unless –kv is set or the file is checked out unlocked and locking is set to strict; see rcs(1).

If a file with the name of the working file exists already and has write permission, co aborts the checkout, asking beforehand
if possible. If the existing working file is not writable or –f is given, the working file is deleted without asking.

FILES
co accesses files much as ci(1) does, except that it does not need to read the working file unless a revision number of $ is
specified.

ENVIRONMENT
RCSINIT Options prepended to the argument list, separated by spaces. See ci(1) for details.

DIAGNOSTICS
The RCS pathname, the working pathname, and the revision number retrieved are written to the diagnostic output. The exit
status is zero if and only if all operations were successful.

IDENTIFICATION
Author: Walter F. Tichy.

Manual Page Revision: 5.13; Release Date: 1995/06/01.

Copyright  1982, 1988, 1989 Walter F. Tichy.

Copyright  1990, 1991, 1992, 1993, 1994, 1995 Paul Eggert.

SEE ALSO
rcsintro(1), ci(1), ctime(3), date(1), ident(1), make(1), rcs(1), rcsclean(1), rcsdiff(1), rc-smerge(1), rlog(1), rcsfile(5)

Walter F. Tichy, “RCS—A System for Version Control,” Software Practice & Experience 15, 7 (July 1985), 637-654.

LIMITS
Links to the RCS and working files are not preserved.

There is no way to selectively suppress the expansion of keywords, except by writing them differently. In nroff and troff,
this is done by embedding the null-character \& into the keyword.

GNU, 1 June 1995

co

Part I: User Commands76

col
col—Filter reverse line feeds from input

SYNOPSIS
col [-bfx] [-l num]

DESCRIPTION
col filters out reverse (and half-reverse) line feeds so the output is in the correct order with only forward and half-forward
line feeds, and replaces whitespace characters with tabs where possible. This can be useful in processing the output of
nroff(1) and tbl(1). col reads from standard input and writes to standard output.

The options are as follows:

-b Do not output any backspaces, printing only the last character written to each column position.

-f Forward half-line feeds are permitted (fine mode). Normally characters printed on a half-line boundary
are printed on the following line.

-x Output multiple spaces instead of tabs.

-lnum Buffer at least num lines in memory. By default, 128 lines are buffered.

The control sequences for carriage motion that col understands and their decimal values are listed in the following table:

Control Sequence Decimal Value

Esc+7 Reverse line feed (escape then 7)

Esc+8 Half-reverse line feed (escape then 8)

Esc+9 Half-forward line feed (escape then 9)

Backspace Moves back one column (8); ignored in the first column

Carriage return (13)

Newline Forward line feed (10); also does carriage return

Shift in Shift to normal character set (15)

Shift out Shift to alternate character set (14)

Space Moves forward one column (32)

Tab Moves forward to next tab stop (9)

Vertical tab Reverse line feed (11)

All unrecognized control characters and escape sequences are discarded.

col keeps track of the character set as characters are read and makes sure the character set is correct when they are output.

If the input attempts to back up to the last flushed line, col will display a warning message.

SEE ALSO
expand(1), nroff(1), tbl(1)

HISTORY
A col command appeared in version 6 AT&T UNIX.

17 June 1991

77

colcrt
colcrt—Filter nroff output for CRT previewing

SYNOPSIS
colcrt [–] [–2] [file ...]

DESCRIPTION
colcrt provides virtual half-line and reverse-line feed sequences for terminals without such capability, and on which
overstriking is destructive. Half-line characters and underlining (changed to dashing –) are placed on new lines in between
the normal output lines.

Available options:

– Suppress all underlining. This option is especially useful for previewing all boxed tables from tbl(1).

–2 Causes all half-lines to be printed, effectively double spacing the output. Normally, a minimal space
output format is used which will suppress empty lines. The program never suppresses two consecutive
empty lines, however. The -2 option is useful for sending output to the line printer when the output
contains superscripts and subscripts that would otherwise be invisible.

EXAMPLES
A typical use of colcrt would be

tbl exum2.n | nroff -ms | colcrt - | more

SEE ALSO
nroff(1), troff(1), col(1), more(1), ul(1)

BUGS
Should fold underlines onto blanks even with the - option so that a true underline character would show.

Can’t back up more than 102 lines.

General overstriking is lost; as a special case | overstruck with ‘’ or underline becomes +. Lines are trimmed to 132
characters.

Some provision should be made for processing superscripts and subscripts in documents that are already double-spaced.

HISTORY
The colcrt command appeared in BSD 3.0.

BSD 3, 30 June 1993

colrm
colrm—Remove columns from a file

SYNOPSIS
colrm [startcol [endcol]]

DESCRIPTION
colrm removes selected columns from a file. Input is taken from standard input. Output is sent to standard output.

If called with one parameter, the columns of each line will be removed starting with the specified column. If called with two
parameters, the columns from the first column to the last column will be removed.

Column numbering starts with column 1.

colrm

Part I: User Commands78

SEE ALSO
awk(1), column(1), expand(1), paste(1)

HISTORY
The colrm command appeared in BSD 3.0.

BSD 3, 14 March 1991

column
column—Columnate lists

SYNOPSIS
column [–tx] [–ccolumns] [–ssep] [...file]

DESCRIPTION
The column utility formats its input into multiple columns. Rows are filled before columns. Input is taken from file operands,
or, by default, from the standard input. Empty lines are ignored.

The options are as follows:

–c Output is formatted for a display columns wide.

-s Specify a set of characters to be used to delimit columns for the -t option.

-t Determine the number of columns the input contains and create a table. Columns are delimited with
whitespace, by default, or with the characters supplied using the -s option. Useful for pretty-printing
displays.

-x Fill columns before filling rows.

Column exits 0 on success, >0 if an error occurred.

ENVIRONMENT
The environment variable COLUMNS is used to determine the size of the screen if no other information is available.

EXAMPLES
(printf “PERM LINKS OWNER SIZE MONTH DAY HH:MM/YEAR NAME”; ls -l j sed 1d) j column -t

SEE ALSO
colrm(1), ls(1), paste(1), sort(1)

HISTORY
The column command appeared in BSD 4.3 Reno.

6 June 1993

comm
comm—Compare two sorted files line by line

SYNOPSIS
comm [–123] [—help] [—version] file1 file2

79

DESCRIPTION
This manual page documents the GNU version of comm. comm prints lines that are common, and lines that are unique, to two
input files. The two files must be sorted before comm can be used. The filename – means the standard input.

With no options, comm produces three column output. Column one contains lines unique to file1, column two contains
lines unique to file2, and column three contains lines common to both files.

OPTIONS
The options –1, –2, and –3 suppress printing of the corresponding columns.

—help Print a usage message and exit with a nonzero status.

—version Print version information on standard output then exit.

GNU Text Utilities

convdate
convdate—Convert time/date strings and numbers

SYNOPSIS
convdate [–c][–n][–s] arg...

DESCRIPTION
convdate translates the date/time strings specified as arguments on its command line, outputting the results one to a line.

If the –s flag is used, then each argument is taken as a date string to be parsed by parse-date(3) and is output as a string
formatted by ctime(3). This is the default.

If the –n flag is used, then each argument is converted the same way but is output as a time t; see time(2).

If the –c flag is used, then each argument is taken to be a time t and is output in ctime format.

Here’s an example:

% convdate ‘feb 10 10am’
Sun Feb 10 10:00:00 1991

% convdate 12pm 5/4/90
Fri Dec 13 00:00:00 1991
Fri May 4 00:00:00 1990

% convdate -n ‘feb 10 10am’ ’12pm 5/4/90'
666198000
641880000
% convdate -c 666198000
Sun Feb 10 10:00:00 1991

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net).

SEE ALSO
parsedate(3)

convdate

Part I: User Commands80

cp
cp—Copy files

SYNOPSIS
cp [options] source dest
cp [options] source... directory

Options:

[–abdfilprsuvxPR] [–S backup-suffix] [–V fnumbered,existing,simpleg] [—backup]
[—no-dereference] [—force] [—interactive] [—one-file-system] [—preserve]
[—recursive][—update] [—verbose] [—suffix=backup-suffix]
[—version-control=fnumbered,existing,simpleg] [—archive] [—parents] [—link]
[—symbolic-link] [—help] [—version]

DESCRIPTION
This manual page documents the GNU version of cp. If the last argument names an existing directory, cp copies each other
given file into a file with the same name in that directory. Otherwise, if only two files are given, it copies the first onto the
second. It is an error if the last argument is not a directory and more than two files are given. By default, it does not copy
directories.

OPTIONS
–a, —archive Preserve as much as possible of the structure and attributes of the original files in the copy.

The same as –dpR.

–b, —backup Make backups of files that are about to be overwritten or removed.

–d, —no-dereference Copy symbolic links as symbolic links rather than copying the files that they point to, and
preserve hard link relationships between source files in the copies.

–f, —force Remove existing destination files.

-i, —interactive Prompt whether to overwrite existing regular destination files.

–l, —link Make hard links instead of copies of nondirectories.

–P, —parents Form the name of each destination file by appending to the target directory a slash and the
specified name of the source file. The last argument given to cp must be the name of an
existing directory. For example, the command cp —parents a/b/c existing_dir copies the
file a/b/c to existing_dir/a/b/c, creating any missing intermediate directories.

–p, —preserve Preserve the original files’ owner, group, permissions, and timestamps.

-r Copy directories recursively, copying all nondirectories as if they were regular files.

–s, —symbolic-link Make symbolic links instead of copies of nondirectories. All source filenames must be
absolute (starting with /) unless the destination files are in the current directory. This
option produces an error message on systems that do not support symbolic links.

–u, —update Do not copy a nondirectory that has an existing destination with the same or newer
modification time.

–v, —verbose Print the name of each file before copying it.

–x, —one-file-system Skip subdirectories that are on different filesystems from the one that the copy started on.

–R, —recursive Copy directories recursively.

—help Print a usage message on standard output and exit successfully.

—version Print version information on standard output then exit successfully.

–S, —suffix backup-suffix The suffix used for making simple backup files can be set with the SIMPLE_BACKUP_SUFFIX
environment variable, which can be overridden by this option. If neither of those is given,
the default is ~, as it is in emacs.

81

–V, —version-control The type of backups made can be set with the VERSION_CONTROL environment variable, which
{numbered,existing,simple} can be overridden by this option. If VERSION_CONTROL is not set and this option is not given,

the default backup type is existing. The value of the VERSION_CONTROL environment variable
and the argument to this option are like the GNU emacs version- control variable; they
also recognize synonyms that are more descriptive. The valid values are (unique abbrevia-
tions are accepted) the following:

t or numbered Always make numbered backups

nil or existing Make numbered backups of files that already have them,
simple backups of the others

never or simple Always make simple backups

cccp, cpp
cccp, cpp—The GNU C-compatible compiler preprocessor

SYNOPSIS
cccp [–$][–A predicate [(value)]] [–C][–D name [= definition]]
 [–dD][–dM][–I\ directory][–H][–I–][–imacros file][–
 include file][–idirafter dir][–iprefix prefix][–iwithprefix dir]
 [–lang–c][–lang–c++][–lang–objc][–lang–objc++][–lint][–
 M[–MG]] [–MM[–MG]] [–MD file][–MMD file][–nostdinc]
 [–nostdinc++][–P][–pedantic][–pedantic–errors][–traditional]
 [–trigraphs][–U name][–undef][–Wtrigraphs][–Wcomment]
 [–Wall][–Wtraditional]
 [infile |–][outfile |–]

DESCRIPTION
The C preprocessor is a macro processor that is used automatically by the C compiler to transform your program before
actual compilation. It is called a macro processor because it allows you to define macros, which are brief abbreviations for
longer constructs.

The C preprocessor provides four separate facilities that you can use as you see fit:

■ Inclusion of header files. These are files of declarations that can be substituted into your program.
■ Macro expansion. You can define macros, which are abbreviations for arbitrary fragments of C code, and then the C

preprocessor will replace the macros with their definitions throughout the program.
■ Conditional compilation. Using special preprocessing directives, you can include or exclude parts of the program

according to various conditions.
■ Line control. If you use a program to combine or rearrange source files into an intermediate file which is then compiled,

you can use line control to inform the compiler of where each source line originally came from.

C preprocessors vary in some details. For a full explanation of the GNU C preprocessor, see the info file cpp.info, or the
manual The C Preprocessor . Both of these are built from the same documentation source file, cpp.texinfo. The GNU C
preprocessor provides a superset of the features of ANSI Standard C.

ANSI Standard C requires the rejection of many harmless constructs commonly used by today’s C programs. Such
incompatibility would be inconvenient for users, so the GNU C preprocessor is configured to accept these constructs by
default. Strictly speaking, to get ANSI Standard C, you must use the options –trigraphs, –undef, and –pedantic, but in
practice the consequences of having strict ANSI Standard C make it undesirable to do this.

When you use the C preprocessor, you will usually not have to invoke it explicitly: the C compiler will do so automatically.
However, the preprocessor is sometimes useful individually.

When you call the preprocessor individually, either name (cpp or cccp) will do; they are completely synonymous.

cccp, cpp

Part I: User Commands82

The C preprocessor expects two filenames as arguments, infile and outfile. The preprocessor reads infile together with
any other files it specifies with #include. All the output generated by the combined input files is written in outfile. Either
infile or outfile may be –, which as infile means to read from standard input and as outfile means to write to standard
output. Also, if outfile or both filenames are omitted, the standard output and standard input are used for the omitted
filenames.

OPTIONS
Here is a table of command options accepted by the C preprocessor. These options can also be given when compiling a C
program; they are passed along automatically to the preprocessor when it is invoked by the compiler.

–P Inhibit generation of # lines with line-number information in the output from the preprocessor.
This might be useful when running the preprocessor on something that is not C code and will be
sent to a program which might be confused by the # lines.

–C Do not discard comments: pass them through to the output file. Comments appearing in
arguments of a macro call will be copied to the output before the expansion of the macro call.

–traditional Try to imitate the behavior of old-fashioned C, as opposed to ANSI C.

–trigraphs Process ANSI standard trigraph sequences. These are three-character sequences, all starting with ??,
that are defined by ANSI C to stand for single characters. For example, ??/ stands for \, so ??/n is a
character constant for a newline. Strictly speaking, the GNU C preprocessor does not support all
programs in ANSI Standard C unless –trigraphs is used, but if you ever notice the difference, it
will be with relief. You don’t want to know any more about trigraphs.

–pedantic Issue warnings required by the ANSI C standard in certain cases such as when text other than a
comment follows #else or #endif.

–pedantic–errors Like –pedantic, except that errors are produced rather than warnings.

–Wtrigraphs Warn if any trigraphs are encountered (assuming they are enabled).

–Wcomment Warn whenever a comment-start sequence /* appears in a comment. (Both forms have the
–Wcomments same effect.)

–Wall Requests both –Wtrigraphs and –Wcomment (but not –Wtraditional).

–Wtraditional Warn about certain constructs that behave differently in traditional and ANSI C.

–I directory Add the directory directory to the end of the list of directories to be searched for header files. This
can be used to override a system header file, substituting your own version, since these directories
are searched before the system header file directories. If you use more than one –I option, the
directories are scanned in left-to-right order; the standard system directories come after.

–I– Any directories specified with –I options before the –I– option are searched only for the case of
#include “ file “; they are not searched for #include < file >.

If additional directories are specified with –I options after the –I–, these directories are searched for
all #include directives.

In addition, the –I– option inhibits the use of the current directory as the first search directory for
#include “ file “. Therefore, the current directory is searched only if it is requested explicitly with
–I followed by a period (.). Specifying both –I– and –I. allows you to control precisely which
directories are searched before the current one and which are searched after.

–nostdinc Do not search the standard system directories for header files. Only the directories you have
specified with –I options (and the current directory, if appropriate) are searched.

–nostdinc++ Do not search for header files in the C++-specific standard directories, but do still search the other
standard directories. (This option is used when building libg++.)

–D name Predefine name as a macro, with definition 1.

–D name=definition Predefine name as a macro, with definition definition. There are no restrictions on the contents of
definition, but if you are invoking the preprocessor from a shell or shell-like program, you may
need to use the shell’s quoting syntax to protect characters such as spaces that have a meaning in
the shell syntax. If you use more than one –D for the same name, the rightmost definition takes
effect.

83

–U name Do not predefine name. If both –U and –D are specified for one name, the –U beats the –D and the
name is not predefined.

–undef Do not predefine any nonstandard macros.

–A name(value) Assert (in the same way as the #assert directive) the predicate name with tokenlist value .
Remember to escape or quote the parentheses on shell command lines. You can use –A- to disable
all predefined assertions; it also undefines all predefined macros.

–dM Instead of outputting the result of preprocessing, output a list of #define directives for all the
macros defined during the execution of the preprocessor, including predefined macros. This gives
you a way of finding out what is predefined in your version of the preprocessor; assuming you have
no file foo.h, the command
touch foo.h; cpp –dM foo.h

will show the values of any predefined macros.
–dD Like –dM except in two respects: it does not include the predefined macros, and it outputs both the

#define directives and the result of preprocessing. Both kinds of output go to the standard output
file.

–M[–MG] Instead of outputting the result of preprocessing, output a rule suitable for make describing the
dependencies of the main source file. The preprocessor outputs one make rule containing the
object filename for that source file, a colon, and the names of all the included files. If there are
many included files then the rule is split into several lines using \\ (newline).
–MG says to treat missing header files as generated files and assume they live in the same directory as
the source file. It must be specified in addition to –M.
This feature is used in automatic updating of makefiles.

–MM[–MG] Like –M but mention only the files included with #include “ file “. System header files included
with #include < file > are omitted.

–MDfile Like –M but the dependency information is written to file. This is in addition to compiling the file
as specified. –MD does not inhibit ordinary compilation the way –M does.
When invoking gcc, do not specify the file argument. gcc will create filenames made by replacing
.c with .d at the end of the input filenames.

In Mach, you can use the utility md to merge multiple files into a single dependency file suitable for
using with the make command.

–MMDfile Like –M except mention only user header files, not system header files.
–H Print the name of each header file used, in addition to other normal activities.
–imacros file Process file as input, discarding the resulting output, before processing the regular input file.

Because the output generated from file is discarded, the only effect of –imacros file is to make the
macros defined in file available for use in the main input. The preprocessor evaluates any –D and –U
options on the command line before processing –imacros file.

–include file Process file as input, and include all the resulting output, before processing the regular input file.
-idirafter dir Add the directory dir to the second include path. The directories on the second include path are

searched when a header file is not found in any of the directories in the main include path (the one
that –I adds to).

-iprefix prefix Specify prefix as the prefix for subsequent –iwithprefix options.
-iwithprefix dir Add a directory to the second include path. The directory’s name is made by concatenating prefix

and dir, where prefix was specified previously with –iprefix.

–lang-c Specify the source language. –lang-c++ makes the preprocessor handle C++ comment syntax,
–lang-c++ and includes extra default include directories for C++, and –lang-objc enables the Objective C
–lang-objc #import directive. –lang-c explicitly turns off both of these extensions, and –lang-objc++ enables
–lang-objc++ both. These options are generated by the compiler driver gcc, but not passed from the gcc

command line.

–lint Look for commands to the program checker lint embedded in comments, and emit them preceded
by #pragma lint. For example, the comment /* NOTREACHED */ becomes #pragma lint NOTREACHED.

This option is available only when you call cpp directly; gcc will not pass it from its command line.

cccp, cpp

Part I: User Commands84

–$ Forbid the use of $ in identifiers. This is required for ANSI conformance. gcc automatically
supplies this option to the preprocessor if you specify –ansi, but gcc doesn’t recognize the –$
option itself; to use it without the other effects of –ansi, you must call the preprocessor directly.

SEE ALSO
cpp entry in info; The C Preprocessor, Richard M. Stallman.

gcc(1); gcc entry in info; Using and Porting GNU CC (for version 2.0), Richard M. Stallman.

COPYING
Copyright  1991, 1992, 1993 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim
copies of this manual provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions
for modified versions, except that this permission notice may be included in translations approved by the Free Software
Foundation instead of in the original English.

GNU Tools, 30 April 1993

crontab
crontab—Manipulate per-user crontabs (Dillon’s Cron)

SYNOPSIS
crontab file [-u user] Replace crontab from file

crontab - [-u user] Replace crontab from stdin

crontab -l [user] List crontab for user

crontab -e [user] Edit crontab for user

crontab -d [user] Delete crontab for user

crontab -c dir Specify crontab directory

DESCRIPTION
crontab manipulates the crontab for a particular user. Only the superuser may specify a different user and/or crontab
directory. Generally, the -e option is used to edit your crontab. crontab will use /usr/bin/vi or the editor specified by your
VISUAL environment variable to edit the crontab.

Unlike other crond/crontabs, this crontab does not try to do everything under the sun. Frankly, a shell script is much more
able to manipulate the environment than cron, and I see no particular reason to use the user’s shell (from his password entry)
to run cron commands when this requires special casing of nonuser crontabs, such as those for UUCP. When a crontab
command is run, this crontab runs it with /bin/sh and sets up only three environment variables: USER, HOME, and SHELL.

crond automatically detects changes in the time. Reverse-indexed time changes less then an hour old will NOT rerun crontab
commands already issued in the recovered period. Forward-indexed changes less then an hour into the future will issue
missed commands exactly once. Changes greater then an hour into the past or future cause crond to resynchronize and not
issue missed commands. No attempt will be made to issue commands lost due to a reboot, and commands are not reissued if
the previously issued command is still running. For example, if you have a crontab command sleep 70 that you wish to run
once a minute, cron will only be able to issue the command once every two minutes. If you do not like this feature, you can
run your commands in the background with an &.

85

The crontab format is roughly similar to that used by vixiecron, but without complex features. Individual fields may contain
a time, a time range, a time range with a skip factor, a symbolic range for the day of week and month in year, and additional
subranges delimited with commas. Blank lines in the crontab or lines that begin with a hash (#) are ignored. If you specify
both a day in the month and a day of week, the result is effectively ORd; the crontab entry will be run on the specified day of
week and on the specified day in the month.

MIN HOUR DAY MONTH DAYOFWEEK COMMAND
at 6:10 a.m. every day
10 6 ***date

every two hours at the top of the hour
0 */2 ***date

every two hours from 11p.m. to 7a.m., and at 8a.m.
0 23-7/2,8 ***date

at 11:00 a.m. on the 4th and on every mon, tue, wed
0 11 4 * mon-wed date

4:00 a.m. on january 1st
0 4 1 jan *date

once an hour, all output appended to log file
0 4 1 jan *date>>/var/log/messages 2>&1

The command portion of the line is run with /bin/sh –c <command>, and may therefore contain any valid Bourne shell
command. A common practice is to run your command with exec to keep the process table uncluttered. It is also common to
redirect output to a log file. If you do not, and the command generates output on stdout or stderr, the result will be mailed
to the user in question. If you use this mechanism for special users, such as UUCP, you may want to create an alias for the
user to direct the mail to someone else, such as root or postmaster.

Internally, this cron uses a quick indexing system to reduce CPU overhead when looking for commands to execute. Several
hundred crontabs with several thousand entries can be handled without using noticeable CPU resources.

BUGS
Ought to be able to have several crontab files for any given user, as an organizational tool.

AUTHOR
Matthew Dillon (dillon@apollo.west.oic.com)

1 May 1994

csplit
csplit—Split a file into sections determined by context lines

SYNOPSIS
csplit [–sqkz] [–f prefix] [–b suffix] [–n digits] [—prefix=prefix]
[—suffix–format=suffix] [—digits=digits] [—quiet] [—silent]
[—keep-files] [—elide–empty–files] [—help] [—version]
file pattern...

DESCRIPTION
This manual page documents the GNU version of csplit. csplit creates zero or more output files containing sections of the
given input file, or the standard input if the name – is given. By default, csplit prints the number of bytes written to each
output file after it has been created.

csplit

Part I: User Commands86

The contents of the output files are determined by the pattern arguments. An error occurs if a pattern argument refers to a
nonexistent line of the input file, such as if no remaining line matches a given regular expression. After all the given patterns
have been matched, any remaining output is copied into one last output file. The types of pattern arguments are

line Create an output file containing the current line up to (but not including) line line (a positive
integer) of the input file. If followed by a repeat count, also create an output file containing the
next line lines of the input file once for each repeat.

/regexp/[offset] Create an output file containing the current line up to (but not including) the next line of the
input file that contains a match for regexp. The optional offset is a + or – followed by a positive
integer. If it is given, the input up to the matching line plus or minus offset is put into the output
file, and the line after that begins the next section of input.

%regexp%[offset] Like the previous type, except that it does not create an output file, so that section of the input file
is effectively ignored.

{repeat-count} Repeat the previous pattern repeat-count (a positive integer) additional times. An asterisk may be
given in place of the (integer) repeat count, in which case the preceding pattern is repeated as many
times as necessary until the input is exhausted.

The output filenames consist of a prefix followed by a suffix. By default, the suffix is merely an ascending linear sequence of
two-digit decimal numbers starting with 00 and ranging up to 99; however, this default may be overridden by either the —
digits option or by the —suffix–format option. (See “Options,” next.) In any case, concatenating the output files in sorted
order by filename produces the original input file, in order. The default output filename prefix is xx.

By default, if csplit encounters an error or receives a hangup, interrupt, quit, or terminate signal, it removes any output files
that it has created so far before it exits.

OPTIONS
–f, —prefix=prefix Use prefix as the output filename prefix string.

–b, —suffix–format=suffix Use suffix as the output filename suffix string. When this option is specified, the suffix string
must include exactly one printf(3) style conversion specification (such as %d, possibly including
format specification flags, a field width, a precision specifications, or all of these kinds of
modifiers). The conversion specification must be suitable for converting a binary integer
argument to readable form. Thus, only d, i, u, o, x, and X format specifiers are allowed. The
entire suffix string is given (with the current output file number) to sprintf(3) to form the
filename suffixes for each of the individual output files in turn. Note that when this option is
used, the —digits option is ignored.

–n, —digits=digits Use output filenames containing numbers that are digits digits long instead of the default 2.

–k, —keep-files Do not remove output files when errors are encountered.

–z, —elide–empty–files Suppress the generation of zero-length output files. (In cases where the section delimiters of the
input file are supposed to mark the first lines of each of the sections, the first output file will
generally be a zero-length file unless you use this option.) Note that the output file sequence
numbers will always run consecutively, starting from 0, even in cases where zero-length output
sections are suppressed due to the use of this option.

–s, –q, —silent, —quiet Do not print counts of output file sizes.

—help Print a usage message and exit with a nonzero status.

—version Print version information on standard output, then exit.

GNU Text Utilities

87

ctags
ctags—Generates tags and (optionally) refs files

SYNOPSIS
ctags [-BSstvraT] filesnames...

DESCRIPTION
ctags generates the tags and refs files from a group of C source files. The tags file is used by the elvis :tag command,
control-] command, and -t option. The refs file is sometimes used by the ref(1) program.

Each C source file is scanned for #define statements and global function definitions. The name of the macro or function
becomes the name of a tag. For each tag, a line is added to the tags file that contains the following:

■ The name of the tag
■ A tab character
■ The name of the file containing the tag
■ A tab character
■ A way to find the particular line within the file

The filenames list will typically be the names of all C source files in the current directory, like this:

$ ctags -stv *.[ch]

OPTIONS
-B Normally, ctags encloses regular expressions in slashes (/regexp/), which causes elvis to search from the

top of the file. The -B flag causes ctags to enclose the regular expressions in question marks (?regexp?) so
elvis will search backward from the bottom of the file. This rarely matters.

-t Include typedefs. A tag will be generated for each user-defined type. Also tags will be generated for struct
and enum names. Types are considered to be global if they are defined in a header file, and static if they are
defined in a C source file.

-v Include variable declarations. A tag will be generated for each variable, except for those that are declared
inside the body of a function.

-s Include static tags. ctags will normally put global tags in the tags file, and silently ignore the static tags.
This flag causes both global and static tags to be added. The name of a static tag is generated by prefixing
the name of the declared item with the name of the file where it is defined, with a colon in between. For
example, static foo(){} in bar.c results in a tag named bar.c:foo.

-S Include static tags, but make them look like global tags. Most tags-aware programs don’t like the
filename:tagname tags produced by the -s flag, so -S was added as an alternative. If elvis and ref are the
only programs that read the tags file, then you don’t need -S; otherwise, you do.

-r This causes ctags to generate both tags and refs. Without -r, it would only generate tags.

-a Append to tags, and maybe refs. Normally, ctags overwrites these files each time it is invoked. This flag is
useful when you have too many files in the current directory for you to list them on a single command
line; it allows you to split the arguments among several invocations.

-T This flag isn’t available on all systems. UNIX has it, but most others don’t. The -T flag prevents ctags
from generating a tags file. This is useful when you want to generate a refs without changing tags.

FILES
tags A cross-reference that lists each tag name, the name of the source file that contains it, and a way to locate a

particular line in the source file.

refs The refs file contains the definitions for each tag in the tags file, and very little else. This file can be
useful, for example, when licensing restrictions prevent you from making the source code to the standard
C library readable by everybody, but you still want everybody to know what arguments the library
functions need.

ctags

Part I: User Commands88

BUGS
ctags is sensitive to indenting and line breaks. Consequently, it might not discover all of the tags in a file that is formatted in
an unusual way.

SEE ALSO
elvis(1), refs(1)

AUTHOR
Steve Kirkendall (kirkenda@cs.pdx.edu)

cu
cu—Call up another system

SYNOPSIS
cu [options] [system | phone | “dir”]

DESCRIPTION
The cu command is used to call up another system and act as a dial in terminal. It can also do simple file transfers with no
error checking.

cu takes a single argument, besides the options. If the argument is the string dir, cu will make a direct connection to the port.
This may only be used by users with write access to the port, as it permits reprogramming the modem.

Otherwise, if the argument begins with a digit, it is taken to be a phone number to call. Otherwise, it is taken to be the name
of a system to call. The –z or —system option may be used to name a system beginning with a digit, and the –c or —phone

option may be used to name a phone number that does not begin with a digit.

cu locates a port to use in the UUCP configuration files. If a simple system name is given, it will select a port appropriate for
that system. The –p, —port, –l, —line, –s, and —speed options may be used to control the port selection.

When a connection is made to the remote system, cu forks into two processes. One reads from the port and writes to the
terminal, while the other reads from the terminal and writes to the port.

cu provides several commands that may be used during the conversation. The commands all begin with an escape character,
initially ˜ (tilde). The escape character is only recognized at the beginning of a line. To send an escape character to the
remote system at the start of a line, it must be entered twice. All commands are either a single character or a word beginning
with % (percent sign).

cu recognizes the following commands:

 ˜. Terminate the conversation.

˜! command Run command in a shell. If command is empty, starts up a shell.

˜$ command Run command, sending the standard output to the remote system.

˜| command Run command, taking the standard input from the remote system.

˜+ command Run command, taking the standard input from the remote system and sending the standard
output to the remote system.

˜#, ˜%break Send a break signal, if possible.

˜c directory, ˜%cd directory Change the local directory.

˜> file Send a file to the remote system. This just dumps the file over the communication line. It is
assumed that the remote system is expecting it.

˜< Receive a file from the remote system. This prompts for the local filename and for the
remote command to execute to begin the file transfer. It continues accepting data until the
contents of the eofread variable are seen.

89

˜p from to, ˜%put from to Send a file to a remote UNIX system. This runs the appropriate commands on the remote
system.

˜t from to, ˜%take from to Retrieve a file from a remote UNIX system. This runs the appropriate commands on the
remote system.

˜s variable value Set a cu variable to the given value. If value is not given, the variable is set to True.

˜! variable Set a cu variable to False.

˜z Suspend the cu session. This is only supported on some systems. On systems for which ˆZ
may be used to suspend a job, ˜ˆZ will also suspend the session.

˜%nostop Turn off XON/XOFF handling.

˜%stop Turn on XON/XOFF handling.

˜v List all the variables and their values.

˜? List all commands.

cu also supports several variables. They may be listed with the ˜v command, and set with the
˜s or ˜! commands.

escape The escape character. Initially ˜ (tilde).

delay If this variable is True, cu will delay for a second after recognizing the escape character before
printing the name of the local system. The default is True.

eol The list of characters which are considered to finish a line. The escape character is only
recognized after one of these is seen. The default is carriage return, ˆU, ˆC, ˆO, ˆD, ˆS, ˆQ, ˆR.

binary Whether to transfer binary data when sending a file. If this is False, then newlines in the file
being sent are converted to carriage returns. The default is False.

binary-prefix A string used before sending a binary character in a file transfer, if the binary variable is
True. The default is ˆZ.

echo-check Whether to check file transfers by examining what the remote system echoes back. This
probably doesn’t work very well. The default is False.

echonl The character to look for after sending each line in a file. The default is carriage return.

timeout The timeout to use, in seconds, when looking for a character, either when doing echo
checking or when looking for the echonl character. The default is 30.

kill The character to use to delete a line if the echo check fails. The default is ˆU.

resend The number of times to resend a line if the echo check continues to fail. The default is 10.

eofwrite The string to write after sending a file with the ˜> command. The default is ˆD.

eofread The string to look for when receiving a file with the ˜< command. The default is $, which is
intended to be a typical shell prompt.

verbose Whether to print accumulated information during a file transfer. The default is True.

OPTIONS
The following options may be given to cu:

–e, —parity=even Use even parity.

–o, —parity=odd Use odd parity.

—parity=none Use no parity. No parity is also used if both –e and –o are given.

–h, —halfduplex Echo characters locally (half-duplex mode).

–z system, —system system The system to call.

–c phone-number, —phone phone-number The phone number to call.

–p port, —port port Name the port to use.

–a port Equivalent to —port port.

–l line, —line line Name the line to use by giving a device name. This may be used to dial out on
ports that are not listed in the UUCP configuration files. Write access to the device
is required.

cu

Part I: User Commands90

–s speed, —speed speed The speed (baud rate) to use.

–# Where # is a number, equivalent to —speed #.

–n, —prompt Prompt for the phone number to use.

–d Enter debugging mode. Equivalent to –debug all.

–x type, —debug type Turn on particular debugging types. The following types are recognized: abnormal,
chat, handshake, uucpproto, proto, port, config, spooldir, execute, incoming,
outgoing. Only abnormal, chat, handshake, port, config, incoming and outgoing are
meaningful for cu. Multiple types may be given, separated by commas, and the —
debug option may appear multiple times. A number may also be given, which will
turn on that many types from the foregoing list; for example, —debug 2 is
equivalent to —debug abnormal,chat. —debug all may be used to turn on all
debugging options.

–I file, —config file Set configuration file to use. This option may not be available, depending upon
how cu was compiled.

–v, —version Report version information and exit.

—help Print a help message and exit.

BUGS
This program does not work very well.

FILES
The filename may be changed at compilation time, so this is only an approximation. Configuration file:

/usr/lib/uucp/config

AUTHOR
Ian Lance Taylor (ian@airs.com)

Taylor UUCP 1.05

cut
cut—Remove sections from each line of files

SYNOPSIS
cut {–b byte-list, —bytes=byte-list} [–n] [—help] [—version] [file...]

cut {–c character-list, —characters=character-list} [—help] [—version] [file...]

cut {–f field-list, —fields=field-list} [–d delim] [–s] [—delimiter=delim]
[—only-delimited] [—help] [—version] [file...]

DESCRIPTION
This manual page documents the GNU version of cut. cut prints sections of each line of each input file, or the standard
input if no files are given. A filename of - means standard input. The sections to be printed are selected by the options.

OPTIONS
The byte-list, character-list, and field-list options are one or more numbers or ranges (two numbers separated by a
dash) separated by commas. The first byte, character, and field are numbered 1. Incomplete ranges may be given: –m means 1–
m; n– means n through end of line or last field.

91

–b, —bytes byte-list Print only the bytes in positions listed in byte-list. Tabs and backspaces are treated like
any other character; they take up one byte.

–c, —characters character-list Print only characters in positions listed in character-list. The same as –b for now, but
internationalization will change that. Tabs and backspaces are treated like any other
character; they take up one character.

–f, —fields field-list Print only the fields listed in field-list. Fields are separated by TAB by default.

–d, —delimiter delim For –f, fields are separated by the first character in delim instead of by TAB.

–n Do not split multibyte characters (no-op for now).

–s, —only-delimited For –f, do not print lines that do not contain the field separator character.

—help Print a usage message and exit with a nonzero status.

—version Print version information on standard output then exit.

GNU Text Utilities

cvs
cvs—Concurrent Versions System

SYNOPSIS
cvs [cvs_options] cvs-command [command_options][command_args]

DESCRIPTION
cvs is a front end to the rcs(1) revision control system, which extends the notion of revision control from a collection of files
in a single directory to a hierarchical collection of directories consisting of revision controlled files. These directories and files
can be combined together to form a software release. cvs provides the functions necessary to manage these software releases
and to control the concurrent editing of source files among multiple software developers.

cvs keeps a single copy of the master sources. This copy is called the source repository; it contains all the information to
permit extracting previous software releases at any time based on either a symbolic revision tag, or a date in the past.

ESSENTIAL COMMANDS
cvs provides a rich variety of commands (cvs_command in the Synopsis), each of which often has a wealth of options, to satisfy
the many needs of source management in distributed environments. However, you don’t have to master every detail to do
useful work with cvs; in fact, five commands are sufficient to use (and contribute to) the source repository.

cvs checkout modules... A necessary preliminary for most cvs work: creates your private copy of the source for
modules (named collections of source; you can also use a path relative to the source
repository here). You can work with this copy without interfering with others’ work. At
least one subdirectory level is always created.

cvs update Execute this command from within your private source directory when you wish to
update your copies of source files from changes that other developers have made to the
source in the repository.

cvs add file... Use this command to enroll new files in cvs records of your working directory. The files
will be added to the repository the next time you run cvs commit. Note: You should use
the cvs import command to bootstrap new sources into the source repository. cvs add is
only used for new files to an already checked-out module.

cvs remove file... Use this command (after erasing any files listed) to declare that you wish to eliminate
files from the repository. The removal does not affect others until you run cvs commit.

cvs commit file... Use this command when you wish to “publish” your changes to other developers, by
incorporating them in the source repository.

cvs

Part I: User Commands92

OPTIONS
The cvs command line can include cvs_options, which apply to the overall cvs program; a cvs_command, which specifies a
particular action on the source repository; and command_options and command_arguments to fully specify what the cvs_command
will do.

WARNING

You must be careful of precisely where you place options relative to the cvs_command. The same option can mean different
things depending on whether it is in the cvs_options position (to the left of a cvs command) or in the command_options
position (to the right of a cvs command).

There are only two situations where you may omit cvs_command: cvs –H or cvs –help elicits a list of available commands, and
cvs –v or cvs –version displays version information on cvs itself.

CVS OPTIONS
As of release 1.6, cvs supports GNU style long options as well as short options. Only a few long options are currently
supported; these are listed in brackets after the short options whose functions they duplicate.

Use these options to control the overall cvs program:

–H [–help] Display usage information about the specified cvs command (but do not actually execute the
command). If you don’t specify a command name, cvs –H displays a summary of all the
commands available.

–Q Causes the command to be really quiet; the command will generate output only for serious
problems.

–q Causes the command to be somewhat quiet; informational messages, such as reports of
recursion through subdirectories, are suppressed.

–b bindir Use bindir as the directory where RCS programs are located. Overrides the setting of the RCSBIN
environment variable. This value should be specified as an absolute pathname.

–d CVS_root_directory Use CVS_root_directory as the root directory pathname of the master RCS source repository.
Overrides the setting of the CVS-ROOT environment variable. This value should be specified as an
absolute pathname.

–e editor Use editor to enter revision log information. Overrides the setting of the CVSEDITOR and the
EDITOR environment variables.

–f Do not read the cvs startup file (˜/.cvsrc).

–l Do not log the cvs_command in the command history (but execute it anyway). See the descrip-
tion of the history command for information on command history.

–n Do not change any files. Attempt to execute the cvs_command, but only to issue reports; do
not remove, update, or merge any existing files, or create any new files.

–t Trace program execution; display messages showing the steps of cvs activity. Particularly useful
with –n to explore the potential impact of an unfamiliar command.

-r Makes new working files read-only. Same effect as if the CVS-READ environment variable is set.

–v [–version] Displays version and copyright information for cvs.

–w Makes new working files read-write (default). Overrides the setting of the CVSREAD environment
variable.

–z compression–level When transferring files across the network use gzip with compression level compression–level to
compress and decompress data as it is transferred. Requires the presence of the GNU gzip
program in the current search path at both ends of the link.

93

USAGE
Except when requesting general help with cvs –H, you must specify a cvs_command to cvs to select a specific release control
function to perform. Each cvs command accepts its own collection of options and arguments. However, many options are
available across several commands. You can display a usage summary for each command by specifying the –H option with the
command.

CVS STARTUP FILE
Normally, when cvs starts up, it reads the .cvsrc file from the home directory of the user reading it. This startup procedure
can be turned off with the –f flag.

The .cvsrc file lists cvs commands with a list of arguments, one command per line. For example, the following line in
.cvsrc:

diff –c

will mean that the cvs diff command will always be passed the –c option in addition to any other options that are specified
in the command line (in this case, it will have the effect of producing context sensitive diffs for all executions of cvs diff).

CVS COMMAND SUMMARY
Here are brief descriptions of all the cvs commands:

add Add a new file or directory to the repository, pending a cvs commit on the same file. Can only be done
from within sources created by a previous cvs checkout invocation. Use cvs import to place whole new
hierarchies of sources under cvs control. (Does not directly affect repository; changes working
directory.)

admin Execute RCS control functions on the source repository. (Changes repository directly; uses working
directory without changing it.)

checkout Make a working directory of source files for editing. (Creates or changes working directory.)

commit Apply to the source repository changes, additions, and deletions from your working directory.
(Changes repository.)

diff Show differences between files in working directory and source repository, or between two revisions in
source repository. (Does not change either repository or working directory.)

export Prepare copies of a set of source files for shipment off site. Differs from cvs checkout in that no cvs
administrative directories are created (and therefore cvs commit cannot be executed from a directory
prepared with cvs export), and a symbolic tag must be specified. (Does not change repository; creates
directory similar to working directories).

history Show reports on cvs commands that you or others have executed on a particular file or directory in the
source repository. (Does not change repository or working directory.) History logs are kept only if
enabled by creation of the $CVSROOT/CVSROOT/history file; see cvs(5).

import Incorporate a set of updates from off-site into the source repository, as a “vendor branch.” (Changes
repository.)

log Display RCS log information. (Does not change repository or working directory.)

rdiff Prepare a collection of diffs as a patch file between two releases in the repository. (Does not change
repository or working directory.)

release Cancel a cvs checkout, abandoning any changes. (Can delete working directory; no effect on
repository.)

remove Remove files from the source repository, pending a cvs commit on the same files. (Does not directly
affect repository; changes working directory.)

rtag Explicitly specify a symbolic tag for particular revisions of files in the source repository. See also cvs
tag. (Changes repository directly; does not require or affect working directory.)

status Show current status of files: latest version, version in working directory, whether working version has
been edited and, optionally, symbolic tags in the RCS file. (Does not change repository or working
directory.)

cvs

Part I: User Commands94

tag Specify a symbolic tag for files in the repository. By default, tags the revisions that were last synchro-
nized with your working directory. (Changes repository directly; uses working directory without
changing it.)

update Bring your working directory up to date with changes from the repository. Merges are performed
automatically when possible; a warning is issued if manual resolution is required for conflicting
changes. (Changes working directory; does not change repository.)

COMMON COMMAND OPTIONS
This section describes the command_options that are available across several cvs commands. Not all commands support all of
these options; each option is only supported for commands where it makes sense. However, when a command has one of
these options you can count on the same meaning for the option as in other commands. (Other command options, which
are listed with the individual commands, may have different meanings from one cvs command to another.)

WARNING

The history command is an exception; it supports many options that conflict even with these standard options.

–D date Use the most recent revision no later than date_spec (a single argument, date description specifying a
date in the past). A wide variety of date formats are supported by the underlying RCS facilities, similar
to those described in co(1), but not exactly the same. The date_spec is interpreted as being in the local
time zone, unless a specific time zone is specified. The specification is “sticky” when you use it to make
a private copy of a source file; that is, when you get a working file using –D, cvs records the date you
specified, so that further updates in the same directory will use the same date (unless you explicitly
override it; see the description of the update command). –D is available with the checkout, diff, history,
export, rdiff, rtag, and update commands. Examples of valid date specifications include the following:

1 month ago

2 hours ago

400000 seconds ago

last year

last Monday

yesterday

a fortnight ago

3/31/92 10:00:07 PST

January 23, 1987 10:05pm

22:00 GMT

–f When you specify a particular date or tag to cvs commands, they normally ignore files that do not
contain the tag (or did not exist on the date) that you specified. Use the –f option if you want files
retrieved even when there is no match for the tag or date. (The most recent version is used in this
situation.) –f is available with these commands: checkout, export, rdiff, rtag, and update.

–H Help; describe the options available for this command. This is the only option supported for all cvs
commands.

–k kflag Alter the default RCS processing of keywords; all the –k options described in co(1) are available. The –k
option is available with the add, checkout, diff, export, rdiff, and update commands. Your kflag
specification is “sticky” when you use it to create a private copy of a source file; that is, when you use
this option with the checkout or update commands, cvs associates your selected kflag with the file, and
continues to use it with future update commands on the same file until you specify otherwise.

Some of the more useful kflags are –ko and –kb (for binary files, only compatible with RCS version 5.7
or later), and –kv, which is useful for an export where you wish to retain keyword information after an
import at some other site.

95

–l Local; run only in current working directory, rather than recurring through subdirectories. Available
with the following commands: checkout, commit, diff, export, remove, rdiff, rtag, status, tag, and
update.

WARNING

This is not the same as the overall cvs –l option, which you can specify to the left of a cvs command.

–n Do not run any checkout/commit/tag/update program. (A program can be specified to run on each of
these activities, in the modules database; this option bypasses it.) Available with the checkout, commit,
export, and rtag commands.

WARNING

This is not the same as the overall cvs –n option, which you can specify to the left of a cvs command.

–P Prune (remove) directories that are empty after being updated, on checkout, or update. Normally, an
empty directory (one that is void of revision-controlled files) is left alone. Specifying –P will cause these
directories to be silently removed from your checked-out sources. This does not remove the directory
from the repository, only from your checked out copy. Note that this option is implied by the -r or –D
options of checkout and export.

–p Pipe the files retrieved from the repository to standard output, rather than writing them in the current
directory. Available with the checkout and update commands.

-r tag Use the revision specified by the tag argument instead of the default head revision. As well as arbitrary
tags defined with the tag or rtag command, two special tags are always available: HEAD refers to the
most recent version available in the repository, and BASE refers to the revision you last checked out into
the current working directory. The tag specification is “sticky” when you use this option with cvs
checkout or cvs update to make your own copy of a file: cvs remembers the tag and continues to use it
on future update commands, until you specify otherwise. tag can be either a symbolic or numeric tag,
in RCS fashion. Specifying the –q global option along with the -r command option is often useful, to
suppress the warning messages when the RCS file does not contain the specified tag. -r is available
with the checkout, commit, diff, history, export, rdiff, rtag, and update commands.

WARNING

This is not the same as the overall cvs -r option, which you can specify to the left of a cvs command.

cvs COMMANDS
Here (finally) are details on all the cvs commands and the options each accepts. The summary lines at the top of each
command’s description highlight three kinds of things:

Command Options and Arguments Special options are described in detail; common command options may appear only
in the summary line.

Working Directory, or Repository? Some cvs commands require a working directory to operate; some require a
repository. Also, some commands change the repository, some change the working
directory, and some change nothing.

Synonyms Many commands have synonyms, which you may find easier to remember (or type)
than the principal name.

cvs

Part I: User Commands96

■ add [–k kflag][–m ‘message’] files...

Requires: Repository, working directory

Changes: Working directory

Synonym: new

Use the add command to create a new file or directory in the RCS source repository. The files or directories specified with
add must already exist in the current directory (which must have been created with the checkout command). To add a whole
new directory hierarchy to the source repository (for example, files received from a third-party vendor), use the cvs import
command instead.

If the argument to cvs add refers to an immediate subdirectory, the directory is created at the correct place in the RCS source
repository, and the necessary cvs administration files are created in your working directory. If the directory already exists in
the source repository, cvs add still creates the administration files in your version of the directory. This allows you to use cvs
add to add a particular directory to your private sources even if someone else created that directory after your checkout of the
sources. You can do the following:

example% mkdir new_directory
example% cvs add new_directory
example% cvs update new_directory

An alternate approach using cvs update might be:

example% cvs update -d new_directory

(To add any available new directories to your working directory, it’s probably simpler to use cvs checkout or cvs update -d.)

The added files are not placed in the RCS source repository until you use cvs commit to make the change permanent. Doing
a cvs add on a file that was removed with the cvs remove command will resurrect the file, if no cvs commit command
intervened.

You will have the opportunity to specify a logging message, as usual, when you use cvs commit to make the new file
permanent. If you’d like to have another logging message associated with just creation of the file (for example, to describe the
file’s purpose), you can specify it with the –m message option to the add command.

The -k kflag option specifies the default way that this file will be checked out. The kflag argument is stored in the RCS file
and can be changed with cvs admin. Specifying -ko is useful for checking in binaries that shouldn’t have the RCS id strings
expanded.

■ admin [rcs-options] files...

Requires: Repository, working directory

Changes: Repository

Synonym: rcs

This is the cvs interface to assorted administrative RCS facilities, documented in rcs(1). cvs admin simply passes all its
options and arguments to the rcs command; it does no filtering or other processing. This command does work recursively,
however, so extreme care should be used.

■ checkout [options] modules...

Requires: Repository

Changes: Working directory

Synonyms: co, get

Make a working directory containing copies of the source files specified by modules. You must execute cvs checkout before
using most of the other cvs commands, since most of them operate on your working directory.

modules are either symbolic names [themselves defined as the module modules in the source repository; see cvs(5)] for some
collection of source directories and files, or paths to directories or files in the repository.

Depending on the modules you specify, checkout may recursively create directories and populate them with the appropriate
source files. You can then edit these source files at any time (regardless of whether other software developers are editing their

97

own copies of the sources); update them to include new changes applied by others to the source repository; or commit your
work as a permanent change to the RCS repository.

Note that checkout is used to create directories. The top-level directory created is always added to the directory where
checkout is invoked, and usually has the same name as the specified module. In the case of a module alias, the created
subdirectory may have a different name, but you can be sure that it will be a subdirectory, and that checkout will show the
relative path leading to each file as it is extracted into your private work area (unless you specify the –Q global option).

Running cvs checkout on a directory that was already built by a prior checkout is also permitted, and has the same effect as
specifying the –d option to the update command described later.

The options permitted with cvs checkout include the standard command options –P, –f, –k kflag, –l, –n, –p, -r tag, and –D
date. In addition to those, you can use several special command options with checkout, as detailed in the following para-
graphs.

Use the –A option to reset any sticky tags, dates, or –k options. (If you get a working file using one of the -r, –D, or –k
options, cvs remembers the corresponding tag, date, or kflag and continues using it on future updates; use the –A option to
make cvs forget these specifications, and retrieve the head version of the file).

The –j branch option merges the changes made between the resulting revision and the revision that it is based on (for
example, if the tag refers to a branch, cvs will merge all changes made in that branch into your working file).

With two -j options, cvs will merge in the changes between the two respective revisions. This can be used to “remove” a
certain delta from your working file.

In addition, each -j option can contain on optional date specification which, when used with branches, can limit the chosen
revision to one within a specific date. An optional date is specified by adding a colon (:) to the tag. An example might be
what cvs import tells you to do when you have just imported sources that have conflicts with local changes:

example% cvs checkout -jTAG:yesterday -jTAG module

Use the –N option with –d dir to avoid shortening module paths in your working directory. (Normally, cvs shortens paths as
much as possible when you specify an explicit target directory.)

Use the –c option to copy the module file, sorted, to the standard output, instead of creating or modifying any files or
directories in your working directory.

Use the –d dir option to create a directory called dir for the working files, instead of using the module name. Unless you
also use –N, the paths created under dir will be as short as possible.

Use the –s option to display per-module status information stored with the –s option within the modules file.

■ commit [–lnR][–m ‘log_message’ | –f file][-r revision][files...]

Requires: Working directory, repository

Changes: Repository

Synonym: ci

Use cvs commit when you want to incorporate changes from your working source files into the general source repository.

If you don’t specify particular files to commit, all of the files in your working current directory are examined. commit is
careful to change in the repository only those files that you have really changed. By default (or if you explicitly specify the -r
option), files in subdirectories are also examined and committed if they have changed; you can use the –l option to limit
commit to the current directory only. Sometimes you may want to force a file to be committed even though it is unchanged;
this is achieved with the –f flag, which also has the effect of disabling recursion (you can turn it back on with –R, of course).

commit verifies that the selected files are up-to-date with the current revisions in the source repository; it will notify you, and
exit without committing, if any of the specified files must be made current first with cvs update. commit does not call the
update command for you, but rather leaves that for you to do when the time is right.

When all is well, an editor is invoked to allow you to enter a log message that will be written to one or more logging
programs and placed in the RCS source repository file. You can instead specify the log message on the command line with

cvs

Part I: User Commands98

the –m option, thus suppressing the editor invocation, or use the –F option to specify that the argument file contains the log
message.

The -r option can be used to commit to a particular symbolic or numeric revision within the RCS file. For example, to bring
all your files up to the RCS revision 3.0 (including those that haven’t changed), you might use

example% cvs commit -r3.0

cvs will only allow you to commit to a revision that is on the main trunk (a revision with a single dot). However, you can
also commit to a branch revision (one that has an even number of dots) with the -r option. To create a branch revision, one
typically use the –b option of the rtag or tag commands. Then, either checkout or update can be used to base your sources on
the newly created branch. From that point on, all commit changes made within these working sources will be automatically
added to a branch revision, thereby not perturbing mainline development in any way. For example, if you had to create a
patch to the 1.2 version of the product, even though the 2.0 version is already under development, you might use this:

example% cvs rtag -b -rFCS1_2 FCS1_2 Patch product_module
example% cvs checkout -rFCS1_2_Patch product module
example% cd product module
[[hack away]]
example% cvs commit

Say you have been working on some extremely experimental software, based on whatever revision you happened to checkout
last week. If others in your group would like to work on this software with you, but without disturbing mainline develop-
ment, you could commit your change to a new branch. Others can then check out your experimental stuff and utilize the full
benefit of cvs conflict resolution. The scenario might look like this:

example% cvs tag -b EXPR1
example% cvs update -rEXPR1
[[hack away]]
example% cvs commit

Others would simply do cvs checkout -rEXPR1 whatever_module to work with you on the experimental change.

■ diff [–kl][rcsdiff_options][[-r rev1 | –D date1][-r rev2 | –D date2]] [files...]

Requires: Working directory, repository

Changes: Nothing

You can compare your working files with revisions in the source repository, with the cvs diff command. If you don’t specify
a particular revision, your files are compared with the revisions they were based on. You can also use the standard cvs
command option -r to specify a particular revision to compare your files with. Finally, if you use -r twice, you can see
differences between two revisions in the repository. You can also specify –D options to diff against a revision in the past. The
-r and –D options can be mixed together with at most two options ever specified.

See rcsdiff(1) for a list of other accepted options.

If you don’t specify any files, diff will display differences for all those files in the current directory (and its subdirectories,
unless you use the standard option –l) that differ from the corresponding revision in the source repository (that is, files that
you have changed), or that differ from the revision specified.

■ export [–f lNnQq] -r rev | –D date [–d dir][–k kflag] module...

Requires: Repository

Changes: Current directory

This command is a variant of cvs checkout; use it when you want a copy of the source for module without the cvs administra-
tive directories. For example, you might use cvs export to prepare source for shipment off-site. This command requires that
you specify a date or tag (with –D or -r), so that you can count on reproducing the source you ship to others.

The only nonstandard options are –d dir (write the source into directory dir) and –N (don’t shorten module paths). These
have the same meanings as the same options in cvs checkout.

99

The –kv option is useful when export is used. This causes any RCS keywords to be expanded such that an import done at
some other site will not lose the keyword revision information. Other kflag options may be used with cvs export and are
described in co(1).

■ history [-report][–flags][–options args][files...]

Requires: The file $CVSROOT/CVSROOT/history

Changes: Nothing

cvs keeps a history file that tracks each use of the checkout, commit, rtag, update, and release commands. You can use cvs
history to display this information in various formats.

WARNING

cvs history uses –f, –l, –n, and –p in ways that conflict with the descriptions in “Common Command Options,” earlier
in this manual page.

Several options (shown as [–report] in the preceding bulleted code line) control what kind of report is generated:

–c Report on each time commit was used (that is, each time the repository was modified).

–m module Report on a particular module. (You can meaningfully use –m more than once on the command line.)

–o Report on checked-out modules.

–T Report on all tags.

–x type Extract a particular set of record types X from the cvs history. The types are indicated by single letters,
which you may specify in combination. Certain commands have a single record type: check-out (type
O), release (type F), and rtag (type T). One of four record types may result from an update: W, when the
working copy of a file is deleted during update (because it was gone from the repository); U, when a
working file was copied from the repository; G, when a merge was necessary and it succeeded; and C,
when a merge was necessary but collisions were detected (requiring manual merging). Finally, one of
three record types results from commit: M, when a file was modified; A, when a file is first added; and R,
when a file is removed.

–e Everything (all record types); equivalent to specifying –xMACFROGWUT.

–z zone Use time zone zone when outputting history records. The zone name LT stands for local time; numeric
offsets stand for hours and minutes ahead of UTC. For example, +0530 stands for 5 hours and 30
minutes ahead of (that is, east of) UTC.

The options shown as –flags constrain the report without requiring option arguments:

–a Show data for all users. (The default is to show data only for the user executing cvs history.)

–l Show last modification only.

–w Show only the records for modifications done from the same working directory where cvs history is
executing.

The options shown as –options args constrain the report based on an argument:

–b str Show data back to a record containing the string str in either the module name, the filename, or the
repository path.

–D date Show data since date.

–p repository Show data for a particular source repository (you can specify several –p options on the same command
line).

-r rev Show records referring to revisions since the revision or tag named rev appears in individual RCS files.
Each RCS file is searched for the revision or tag.

–t tag Show records since tag tag was last added to the history file. This differs from the -r flag in that it
reads only the history file, not the RCS files, and is much faster.

–u name Show records for username.

cvs

Part I: User Commands100

■ import [–options] repository vendortag releasetag ...

Requires: Repository, source distribution directory

Changes: Repository

Use cvs import to incorporate an entire source distribution from an outside source (for example, a source vendor) into your
source repository directory. You can use this command both for initial creation of a repository, and for wholesale updates to
the module form the outside source.

The repository argument gives a directory name (or a path to a directory) under the CVS root directory for repositories; if
the directory did not exist, import creates it.

When you use import for updates to source that has been modified in your source repository (since a prior import), it will
notify you of any files that conflict in the two branches of development; use cvs checkout -j to reconcile the differences, as
import instructs you to do.

By default, certain filenames are ignored during cvs import: names associated with CVS administration, or with other
common source control systems; common names for patch files, object files, archive files, and editor backup files; and other
names that are usually artifacts of assorted utilities. Currently, the default list of ignored files includes files matching these
names:

RCSLOG RCS SCCS

CVS* cvslog.*

tags TAGS

.make.state .nse_depinfo

˜ #* .#* ,

.old *.bak *.BAK *.orig *.rej .del–*

.a *.o *.so *.Z *.elc *.ln core

The outside source is saved in a first-level RCS branch, by default 1.1.1. Updates are leaves of this branch; for example, files
from the first imported collection of source will be revision 1.1.1.1, then files from the first imported update will be revision
1.1.1.2, and so on.

At least three arguments are required. repository is needed to identify the collection of source. vendortag is a tag for the
entire branch (for example, for 1.1.1). You must also specify at least one releasetag to identify the files at the leaves created
each time you execute cvs import.

One of the standard cvs command options is available: –m message. If you do not specify a logging message with –m, your
editor is invoked (as with commit) to allow you to enter one.

There are three additional special options.

Use –d to specify that each file’s time of last modification should be used for the checkin date and time.

Use –b branch to specify a first-level branch other than 1.1.1.

Use –I name to specify filenames that should be ignored during import. You can use this option repeatedly. To avoid
ignoring any files at all (even those ignored by default), specify –I !.

■ log [–l] rlog-options [files...]

Requires: Repository, working directory

Changes: Nothing

Synonym: rlog

Display log information for files. cvs log calls the RCS utility rlog; all the options described in rlog(1) are available.
Among the more useful rlog options are –h to display only the header (including tag definitions, but omitting most of the
full log); -r to select logs on particular revisions or ranges of revisions; and –d to select particular dates or date ranges. See
rlog(1) for full explanations. This command is recursive by default, unless the –l option is specified.

101

■ rdiff [–flags][–V vn][–r t|–D d [–r t2|–D d2]] modules...

Requires: Repository

Changes: Nothing

Synonym: patch

Builds a Larry Wall format patch(1) file between two releases that can be fed directly into the patch program to bring an old
release up-to-date with the new release. (This is one of the few cvs commands that operates directly from the repository and
doesn’t require a prior checkout.) The diff output is sent to the standard output device. You can specify (using the standard
-r and –D options) any combination of one or two revisions or dates. If only one revision or date is specified, the patch file
reflects differences between that revision or date and the current head revisions in the RCS file.

Note that if the software release affected is contained in more than one directory, then it may be necessary to specify the –p
option to the patch command when patching the old sources, so that patch is able to find the files that are located in other
directories.

If you use the option –V vn, RCS keywords are expanded according to the rules current in RCS version vn (the expansion
format changed with RCS version 5).

The standard option flags –f and –l are available with this command. There are also several special options flags.

If you use the –s option, no patch output is produced. Instead, a summary of the changed or added files between the two
releases is sent to the standard output device. This is useful for finding out, for example, which files have changed between
two dates or revisions.

If you use the –t option, a diff of the top two revisions is sent to the standard output device. This is most useful for seeing
what the last change to a file was.

If you use the –u option, the patch output uses the newer unidiff format for context diffs.

You can use –c to explicitly specify the diff –c form of context diffs (which is the default), if you like.

■ release [–dQq] modules...

Requires: Working directory

Changes: Working directory, history log

This command is meant to safely cancel the effect of cvs checkout. Since cvs doesn’t lock files, it isn’t strictly necessary to use
this command. You can always simply delete your working directory, if you like; but you risk losing changes you may have
forgotten, and you leave no trace in the cvs history file that you’ve abandoned your checkout.

Use cvs release to avoid these problems. This command checks that no uncommitted changes are present; that you are
executing it from immediately above, or inside, a cvs working directory; and that the repository recorded for your files is the
same as the repository defined in the module database.

If all these conditions are true, cvs release leaves a record of its execution (attesting to your intentionally abandoning your
checkout) in the cvs history log.

You can use the –d flag to request that your working copies of the source files be deleted if the release succeeds.

■ remove [–lR][files...]

Requires: Working directory

Changes: Working directory

Synonyms: rm, delete

Use this command to declare that you wish to remove files from the source repository. Like most cvs commands, cvs remove
works on files in your working directory, not directly on the repository. As a safeguard, it also requires that you first erase the
specified files from your working directory.

The files are not actually removed until you apply your changes to the repository with commit; at that point, the correspond-
ing RCS files in the source repository are moved into the Attic directory (also within the source repository).

cvs

Part I: User Commands102

This command is recursive by default, scheduling all physically removed files that it finds for removal by the next commit. Use
the –l option to avoid this recursion, or just specify that actual files that you wish remove to consider.

■ rtag [–f alnRQq][–b][–d][–r tag | –D date] symbolic_tag modules...

Requires: Repository

Changes: Repository

Synonym: rfreeze

You can use this command to assign symbolic tags to particular, explicitly specified source versions in the repository. cvs
rtag works directly on the repository contents (and requires no prior checkout). Use cvs tag instead, to base the selection of
versions to tag on the contents of your working directory.

In general, tags (often the symbolic names of software distributions) should not be removed, but the –d option is available as
a means to remove completely obsolete symbolic names if necessary (as might be the case for an Alpha release, say).

cvs rtag will not move a tag that already exists. With the –F option, however, cvs rtag will relocate any instance of
symbolic_tag that already exists on that file to the new repository versions. Without the –F option, attempting to use cvs
rtag to apply a tag that already exists on that file will produce an error message.

The -b option makes the tag a branch tag, allowing concurrent, isolated development. This is most useful for creating a patch
to a previously released software distribution.

You can use the standard -r and –D options to tag only those files that already contain a certain tag. This method would be
used to rename a tag: tag only the files identified by the old tag, then delete the old tag, leaving the new tag on exactly the
same files as the old tag.

rtag executes recursively by default, tagging all subdirectories of modules you specify in the argument. You can restrict its
operation to top-level directories with the standard –l option; or you can explicitly request recursion with –R.

The modules database can specify a program to execute whenever a tag is specified; a typical use is to send electronic mail to
a group of interested parties. If you want to bypass that program, use the standard –n option.

Use the –a option to have rtag look in the Attic for removed files that contain the specified tag. The tag is removed from
these files, which makes it convenient to reuse a symbolic tag as development continues (and files get removed from the
upcoming distribution).

■ status [–lRqQ][–v][files ...]

Requires: Working directory, repository

Changes: Nothing

Display a brief report on the current status of files with respect to the source repository, including any sticky tags, dates, or –k
options. (Sticky options will restrict how cvs update operates until you reset them; see the description of cvs update –A....

You can also use this command to anticipate the potential impact of a cvs update on your working source directory. If you
do not specify any files explicitly, reports are shown for all files that cvs has placed in your working directory. You can limit
the scope of this search to the current directory itself (not its subdirectories) with the standard –l option flag; or you can
explicitly request recursive status reports with the –R option.

The –v option causes the symbolic tags for the RCS file to be displayed as well.

■ tag [–lQqR][–F][–b][–d][–r tag | –D date][–f] symbolic_tag [files ...]

Requires: Working directory, repository

Changes: Repository

Synonym: freeze

Use this command to assign symbolic tags to the nearest repository versions to your working sources. The tags are applied
immediately to the repository, as with rtag. One use for tags is to record a “snapshot” of the current sources when the
software freeze date of a project arrives. As bugs are fixed after the freeze date, only those changed sources that are to be part
of the release need be retagged.

103

The symbolic tags are meant to permanently record which revisions of which files were used in creating a software distribu-
tion. The checkout, export, and update commands allow you to extract an exact copy of a tagged release at any time in the
future, regardless of whether files have been changed, added, or removed since the release was tagged.

You can use the standard -r and –D options to tag only those files that already contain a certain tag. This method would be
used to rename a tag: tag only the files identified by the old tag, then delete the old tag, leaving the new tag on exactly the
same files as the old tag.

Specifying the –f flag in addition to the -r or –D flags will tag those files named on the command line even if they do not
contain the old tag or did not exist on the specified date.

By default (without a -r or –D flag), the versions to be tagged are supplied implicitly by the cvs records of your working files’
history rather than applied explicitly.

If you use cvs tag –d symbolic tag..., the symbolic tag you specify is deleted instead of being added.

WARNING

Be very certain of your ground before you delete a tag; doing this effectively discards some historical information, which
may later turn out to have been valuable.

cvs tag will not move a tag that already exists. With the –F option, however, cvs tag will relocate any instance of symbolic
tag that already exists on that file to the new repository versions. Without the –F option, attempting to use cvs tag to apply a
tag that already exists on that file will produce an error message.

The -b option makes the tag a branch tag, allowing concurrent, isolated development. This is most useful for creating a patch
to a previously released software distribution.

Normally, tag executes recursively through subdirectories; you can prevent this by using the standard –l option, or specify
the recursion explicitly by using –R.

■ update [–Adf lPpQqR][–d][–r tag|–D date] files...

Requires: Repository, working directory

Changes: Working directory

After you’ve run checkout to create your private copy of source from the common repository, other developers will continue
changing the central source. From time to time, when it is convenient in your development process, you can use the update
command from within your working directory to reconcile your work with any revisions applied to the source repository
since your last checkout or update.

update keeps you informed of its progress by printing a line for each file, prefaced with one of the characters U, A, R, M, C, or ?
to indicate the status of the file:

U file The file was brought up-to-date with respect to the repository. This is done for any file that exists in
the repository but not in your source, and for files that you haven’t changed but are not the most
recent versions available in the repository.

A file The file has been added to your private copy of the sources, and will be added to the RCS source
repository when you run cvs commit on the file. This is a reminder to you that the file needs to be
committed.

R file The file has been removed from your private copy of the sources, and will be removed from the RCS
source repository when you run cvs commit on the file. This is a reminder to you that the file needs to
be committed.

M file The file is modified in your working directory. M can indicate one of two states for a file you’re working
on: either there were no modifications to the same file in the repository, so that your file remains as
you last saw it; or there were modifications in the repository as well as in your copy, but they were
merged successfully, without conflict, in your working directory.

cvs

Part I: User Commands104

C file A conflict was detected while trying to merge your changes to file with changes from the source
repository. file (the copy in your working directory) is now the output of the rcsmerge(1) command
on the two versions; an unmodified copy of your file is also in your working directory, with the name
.#file.version, where version is the RCS revision that your modified file started from. (Note that
some systems automatically purge files that begin with .# if they have not been accessed for a few days.
If you intend to keep a copy of your original file, it is a very good idea to rename it.)

? file file is in your working directory, but does not correspond to anything in the source repository, and is
not in the list of files for cvs to ignore; see the description of the –I option.

Use the –A option to reset any sticky tags, dates, or –k options. (If you get a working copy of a file by using one of the -r, –D,
or –k options, cvs remembers the corresponding tag, date, or kflag and continues using it on future updates; use the –A
option to make cvs forget these specifications, and retrieve the head version of the file).

The –jbranch option merges the changes made between the resulting revision and the revision that it is based on. (For
example, if the tag refers to a branch, cvs will merge all changes made in that branch into your working file.)

With two -j options, cvs will merge in the changes between the two respective revisions. This can be used to “remove” a
certain delta from your working file. For example, if the file foo.c is based on revision 1.6 and I want to remove the changes
made between 1.3 and 1.5, I might do this:

example% cvs update -j1.5 -j1.3 foo.c # note the order...

In addition, each -j option can contain on optional date specification which, when used with branches, can limit the chosen
revision to one within a specific date. An optional date is specified by adding a colon (:) to the tag:

-jSymbolic Tag:Date Specifier

Use the –d option to create any directories that exist in the repository if they’re missing from the working directory.
(Normally, update acts only on directories and files that were already enrolled in your working directory.) This is useful for
updating directories that were created in the repository since the initial checkout; but it has an unfortunate side effect. If you
deliberately avoided certain directories in the repository when you created your working directory (either through use of a
module name or by listing explicitly the files and directories you wanted on the command line), then updating with –d will
create those directories, which may not be what you want.

Use –I name to ignore files whose names match name (in your working directory) during the update. You can specify –I more
than once on the command line to specify several files to ignore. By default, update ignores files whose names match any of
the following:

RCSLOG RCS SCCS
CVS* cvslog.*
tags TAGS
.make.state .nse_depinfo
˜ #* .#* ,
.old *.bak *.BAK *.orig *.rej .del–*
.a *.o *.so *.Z *.elc *.ln core

Use –I! to avoid ignoring any files at all.

The standard cvs command options –f, –k, –l, –P, –p, and –r are also available with update.

FILES
For more detailed information on cvs supporting files, see cvs(5).

Files in home directories:

.cvsrc The cvs initialization file. Lines in this file can be used to specify default options for each cvs
command. For example, the line diff –c will ensure that cvs diff is always passed the –c option in
addition to any other options passed on the command line.

.cvswrappers Specifies wrappers to be used in addition to those specified in the CVSROOT/cvswrappers file in the
repository.

105

Files in working directories:

CVS A directory of cvs administrative files. Do not delete.

CVS/Entries List and status of files in your working directory.

CVS/Entries.Backup A backup of CVS/Entries.

CVS/Entries.Static Flag: do not add more entries on cvs update.

CVS/Root Pathname to the repository (CVSROOT) location at the time of checkout. This file is used instead
of the CVSROOT environment variable if the environment variable is not set. A warning message
will be issued when the contents of this file and the CVSROOT environment variable differ. The
file may be overridden by the presence of the CVS_IGNORE_REMOTE_ROOT environment variable.

CVS/Repository Pathname to the corresponding directory in the source repository.

CVS/Tag Contains the per-directory sticky tag or date information. This file is created/updated when you
specify -r or –D to the checkout or update commands, and no files are specified.

CVS/Checkin.prog Name of program to run on cvs commit.

CVS/Update.prog Name of program to run on cvs update.

Files in source repositories:

$CVSROOT/CVSROOT Directory of global administrative files for repository.

CVSROOT/commitinfo,v Records programs for filtering cvs commit requests.

CVSROOT/cvswrappers,v Records cvs wrapper commands to be used when checking files into and out of the repository.
Wrappers allow the file or directory to be processed on the way in and out of CVS. The intended
uses are many; one possible use would be to reformat a C file before the file is checked in, so all
of the code in the repository looks the same.

CVSROOT/editinfo,v Records programs for editing/validating cvs commit log entries.

CVSROOT/history Log file of cvs transactions.

CVSROOT/loginfo,v Records programs for piping cvs commit log entries.

CVSROOT/modules,v Definitions for modules in this repository.

CVSROOT/rcsinfo,v Records pathnames to templates used during a cvs commit operation.

CVSROOT/taginfo,v Records programs for validating/logging cvs tag and cvs rtag operations.

MODULE/Attic Directory for removed source files.

#cvs.lock A lock directory created by cvs when doing sensitive changes to the RCS source repository.

#cvs.tfl.pid Temporary lock file for repository.

#cvs.rfl.pid A read lock.

#cvs.wfl.pid A write lock.

ENVIRONMENT VARIABLES
CVSROOT Should contain the full pathname to the root of the cvs source repository (where the RCS files

are kept). This information must be available to cvs for most commands to execute; if CVSROOT
is not set, or if you wish to override it for one invocation, you can supply it on the command
line: cvs –d cvsroot cvs command.... You may not need to set CVSROOT if your cvs binary has the
right path compiled in; use cvs –v to display all compiled-in paths.

CVSREAD If this is set, checkout and update will try hard to make the files in your working directory read-
only. When this is not set, the default behavior is to permit modification of your working files.

RCSBIN Specifies the full pathname where to find RCS programs, such as co(1)and ci(1). If not set, a
compiled-in value is used; see the display from cvs –v.

CVSEDITOR Specifies the program to use for recording log messages during commit. If not set, the EDITOR
environment variable is used instead. If EDITOR is not set either, the default is /usr/ucb/vi.

CVS_IGNORE_REMOTE_ROOT If this variable is set, then cvs will ignore all references to remote repositories in the CVS/Root
file.

cvs

Part I: User Commands106

CVS_RSH cvs uses the contents of this variable to determine the name of the remote shell command to use
when starting a cvs server. If this variable is not set then rsh is used.

CVS_SERVER cvs uses the contents of this variable to determine the name of the cvs server command. If this
variable is not set then cvs is used.

CVSWRAPPERS This variable is used by the cvswrappers script to determine the name of the wrapper file, in
addition to the wrappers defaults contained in the repository (CVSROOT/cvswrappers) and the
user’s home directory (˜/.cvswrappers).

AUTHORS
Dick Grune Original author of the cvs shell script version posted to comp.sources.unix in the volume 6

release of December, 1986. Credited with much of the cvs conflict resolution algorithms.

Brian Berliner Coder and designer of the cvs program itself in April, 1989, based on the original work done by
Dick.

Jeff Polk Helped Brian with the design of the cvs module and vendor branch support and author of the
checkin(1) shell script (the ancestor of cvs import).

SEE ALSO
ci(1), co(1), cvs(5), cvsbug(8), diff(1), grep(1), patch(1), rcs(1), rcsdiff(1), rcsmerge(1), rlogbug(8)

13 March 1996

date
date—Show and set date and time

SYNOPSIS
date [–u][–c][–n][–d dsttype] [–t minutes-west] [–a [+|-]sss.fff][+format][
[yyyy]mmddhhmm[yy][.ss]]

DESCRIPTION
Date without arguments writes the date and time to the standard output in the form:

Wed Mar 8 14:54:40 EST 1989

with EST replaced by the local time zone’s abbreviation (or by the abbreviation for the time zone specified in the TZ environ-
ment variable if set). The exact output format depends on the locale.

If a command-line argument starts with a plus sign (+), the rest of the argument is used as a format that controls what
appears in the output. In the format, when a percent sign (%) appears, it and the character after it are not output, but rather
identify part of the date or time to be output in a particular way (or identify a special character to output):

Argument Sample output Explanation

%a Wed Abbreviated weekday name*

%A Wednesday Full weekday name*

%b Mar Abbreviated month name*

%B March Full month name*

%c Wed Mar 08 14:54:40 1989 Date and time*

%C 19 Century

%d 08 Day of month (always two digits)

%D 03/08/89 Month/day/year (eight characters)

107

%e 8 Day of month (leading zero blanked)

%h Mar Abbreviated month name*

%H 14 24-hour-clock hour (two digits)

%I 02 12-hour-clock hour (two digits)

%j 067 Julian day number (three digits)

%k 2 12-hour-clock hour (leading zero blanked)

%l 14 24-hour-clock hour (leading zero blanked)

%m 03 Month number (two digits)

%M 54 Minute (two digits)

%n nn Newline character

%p PM AM/PM designation

%r 02:54:40 PM Hour:minute:second AM/PM designation

%R 14:54 Hour:minute

%S 40 Second (two digits)

%t nt Tab character

%T 14:54:40 Hour:minute:second

%U 10 Sunday-based week number (two digits)

%w 3 Day number (one digit, Sunday is 0)

%W 10 Monday-based week number (two digits)

%x 03/08/89 Date*

%X 14:54:40 Time*

%y 89 Last two digits of year

%Y 1989 Year in full

%Z EST Time zone abbreviation

%+ Wed Mar 8 14:54:40 EST 1989 Default output format*

* The exact output depends on the locale.

If a character other than one of those shown in the preceding table appears after a percent sign in the format, that following
character is output. All other characters in the format are copied unchanged to the output; a newline character is always
added at the end of the output.

In Sunday-based week numbering, the first Sunday of the year begins week 1; days preceding it are part of week 0. In
Monday-based week numbering, the first Monday of the year begins week 1.

To set the date, use a command-line argument with one of the following forms:

1454 24-hour-clock hours (first two digits) and minutes

081454 Month day (first two digits), hours, and minutes

03081454 Month (two digits, January is 01), month day, hours, minutes

8903081454 Year, month, month day, hours, minutes

0308145489 Month, month day, hours, minutes, year (on System V-compatible systems)

030814541989 Month, month day, hours, minutes, four-digit year

198903081454 Four-digit year, month, month day, hours, minutes

Argument Sample output Explanation

date

Part I: User Commands108

If the century, year, month, or month day is not given, the current value is used. Any of the preceding forms may be
followed by a period and two digits that give the seconds part of the new time; if no seconds are given, zero is assumed.

These options are available:

–u or –c Use GMT when setting and showing the date and time.

–n Do not notify other networked systems of the time change.

–d dsttype Set the kernel-stored Daylight Saving Time type to the given value. (The kernel-stored DST type is
used mostly by “old” binaries.)

–t minutes-west Set the kernel-stored “minutes west of GMT” value to the one given on the command line. (The
kernel-stored DST type is used mostly by “old” binaries.)

–a adjustment Change the time forward (or backward) by the number of seconds (and fractions thereof) specified
in the adjustment argument. Either the seconds part or the fractions part of the argument (but not
both) may be omitted. On BSD-based systems, the adjustment is made by changing the rate at
which time advances; on System-V–based systems, the adjustment is made by changing the time.

FILES
/usr/lib/locale/L/LC TIME Description of time locale L

/usr/local/etc/zoneinfo Time zone information directory

/usr/local/etc/zoneinfo/localtime Local time zone file

/usr/local/etc/zoneinfo/posixrules Used with POSIX-style TZs

/usr/local/etc/zoneinfo/GMT For UTC leap seconds

If /usr/local/etc/zoneinfo/GMT is absent, UTC leap seconds are loaded from /usr/local/etc/zoneinfo/posixrules.

dd
dd—Convert a file while copying it (data dumper)

SYNOPSIS
dd [—help] [—version] [if=file] [of=file] [ibs=bytes] [obs=bytes] [bs=bytes]
[cbs=bytes] [skip=blocks] [seek=blocks] [count=blocks] [conv={ascii,
ebcdic, ibm, block, unblock, lcase, ucase, swab, noerror, notrunc, sync}]

DESCRIPTION
This manual page documents the GNU version of dd. dd copies a file (from the standard input to the standard output, by
default) with a user-selectable blocksize, while optionally performing conversions on it.

OPTIONS
Numbers can be followed by a multiplier:

b=512, c=1, k=1024, w=2, xm=number m

These options are available:

—help Print a usage message on standard output and exit successfully.

—version Print version information on standard output then exit successfully.

if=file Read from file instead of the standard input.

of=file Write to file instead of the standard output. Unless conv=notrunc is given, truncate
file to the size specified by seek= (0 bytes if seek= is not given).

ibs=bytes Read bytes bytes at a time.

obs=bytes Write bytes bytes at a time.

bs=bytes Read and write bytes bytes at a time. Override ibs and obs.

109

cbs=bytes Convert bytes bytes at a time.

skip=blocks Skip blocks ibs-sized blocks at start of input.

seek=blocks Skip blocks obs-sized blocks at start of output.

count=blocks Copy only blocks ibs-sized input blocks.

conv=conversion[,conversion...] Convert the file as specified by the conversion arguments.

Conversions:

ascii Convert EBCDIC to ASCII.

ebcdic Convert ASCII to EBCDIC.

ibm Convert ASCII to alternate EBCDIC.

block Pad newline-terminated records to size of cbs, replacing newline with trailing spaces.

unblock Replace trailing spaces in cbs-sized block with newline.

lcase Change uppercase characters to lowercase.

ucase Change lowercase characters to uppercase.

swab Swap every pair of input bytes. Unlike the UNIX dd, this works when an odd
number of bytes are read. If the input file contains an odd number of bytes, the last
byte is simply copied (since there is nothing to swap it with).

noerror Continue after read errors.

notrunc Do not truncate the output file.

sync Pad every input block to size of ibs with trailing NULLs.

GNU File Utilities

depmod, modprobe
depmod, modprobe—Handle loadable modules automatically

SYNOPSIS
depmod [–a]
depmod module1.o module2.o ...

modprobe module.o [symbol=value ...]
modprobe –t tag pattern
modprobe –a –t tag pattern modprobe –l [–t tag] pattern
modprobe –r module
modprobe –c

DESCRIPTION
These utilities are intended to make a Linux modular kernel manageable for all users, administrators, and distribution
maintainers.

depmod creates a makefile-like dependency file, based on the symbols it finds in the set of modules mentioned on the
command line (or in a default place). This dependency file can later be used by modprobe to automatically load the relevant
module(s).

modprobe is used to load a set of modules—either a single module, a stack of dependent modules, or all modules that are
marked with a specified tag.

modprobe will automatically load all base modules needed in a module stack, as described by the dependency file modules.dep.
If the loading of one of these modules fails, the whole current stack of modules will be unloaded (by rmmod) automatically.

modprobe has two ways of loading modules. One way (the probe mode) will try to load a module out of a list (defined by
pattern). It stops loading as soon as one module load successfully. This can be used to autoload one Ethernet driver out of a
list, for example. The other way is to load all modules from a list. This can be used to load some modules at boot time.

depmod, modprobe

Part I: User Commands110

With the option -r, modprobe will automatically unload a stack of modules, similar to the way rmmod -r does.

Option -l combined with option -t lists all available modules of a certain type. An enhanced mount command could use the
command:

modprobe -l -t fs

to get the list of all file system drivers available and on request load the proper one. So, the mount command could become
more generic as well. (The kerneld solves this without changing the mount utility.)

Option -c will print all configuration (default + configuration file).

The normal use of depmod is to include the line /sbin/depmod -a in one of the rc-files in /etc/rc.d, so that the correct
module dependencies will be available immediately after booting the system.

Option -d puts depmod in debug mode. It outputs all commands it is issuing.

Option -e outputs the list of unresolved symbol for each module, Normally, depmod only outputs the list of unloadable
modules.

Option -v outputs the list of all processed modules.

Modules may be located at different place in the filesystem, but there will always be some need to override this, especially for
module developers. We expect some official standard will emerge, defined by the FSSTND. Until that time, you might as
well use this suggested directory structure.

CONFIGURATION
The behavior of depmod and modprobe can be adjusted by the (optional) configuration file /etc/conf.modules.

The configuration file consists of a set of lines. All empty lines, and all text on a line after a #, will be ignored. Lines may be
continued by ending the line with a \. The remaining lines should all conform to one of the following formats:

keep
parameter=value
options module symbol=value ...
alias module real_name
pre-install module command ...
install module command ...
post-install module command ...
pre-remove module command ...
remove module command ...
post-remove module command ...
parameter=value options module symbol=value ... alias module real_name

All values in the parameter lines will be processed by a shell, which means that shell tricks like wildcards and commands
enclosed in backquotes can be used:

path[misc]=/lib/modules/1.1.5?/misc
path[net]=/lib/modules/’uname -r’/net

Parameters may be repeated multiple times.

These are the legal parameters:

depfile=DEPFILE_PATH This is the path to the dependency file that will be created by depmod and used by modprobe.

path=SOME_PATH The path parameter specifies a directory to search for the modules.

path[tag]=SOME_PATH The path parameter can carry an optional tag. This tells us a little more about the purpose of the
modules in this directory and allows some automated operations by modprobe. The tag is appended
to the path keyword enclosed in square brackets. If the tag is missing, the tag misc is assumed. One
very useful tag is boot, which can be used to mark all modules that should be loaded at boot time.

If the configuration file /etc/conf.modules is missing, or if any parameter is not overridden, the following defaults are
assumed:

111

depfile=/lib/modules/’uname -r’/modules.dep
path[boot]=/lib/modules/boot

path[fs]=/lib/modules/’uname -r’/fs
path[misc]=/lib/modules/’uname -r’/misc
path[net]=/lib/modules/’uname -r’/net
path[scsi]=/lib/modules/’uname -r’/scsi

path[fs]=/lib/modules/default/fs
path[misc]=/lib/modules/default/misc
path[net]=/lib/modules/default/net
path[scsi]=/lib/modules/default/scsi

path[fs]=/lib/modules/fs
path[misc]=/lib/modules/misc
path[net]=/lib/modules/net
path[scsi]=/lib/modules/scsi

All option lines specify the default options that are needed for a module, as in

modprobe de620 bnc=1

These options will be overridden by any options given on the modprobe command line.

The alias lines can be used to give alias names to modules. A line in /etc/conf.modules that looks like this:

alias iso9660 isofs

makes it possible to write modprobe iso9660, although there is no such module available.

STRATEGY
The idea is that modprobe will look first at the directory containing modules compiled for the current release of the kernel. If
the module is not found there, modprobe will look in the directory containing modules for a default release.

When you install a new Linux, the modules should be moved to a directory related to the release (and version) of the kernel
you are installing. Then you should do a symlink from this directory to the default directory.

Each time you compile a new kernel, the command make modules_install will create a new directory, but won’t change the
default.

When you get a module unrelated to the kernel distribution, you should place it in one of the version-independent
directories under /lib/modules.

This is the default strategy, which can be overridden in /etc/conf.modules.

EXAMPLES
modprobe -t net Load one of the modules that are stored in the directory tagged net. Each module is tried until one

succeeds. (Default: /lib/modules/net).

modprobe -a -t boot All modules that are stored in the directory tagged boot will be loaded. (Default: /lib/modules/
boot).

modprobe slip.o This will attempt to load the module slhc.o if it was not previously loaded, since the slip module
needs the functionality in the slhc module. This dependency will be described in the file
modules.dep that was created automatically by depmod.

modprobe -r slip.o Will unload slip.o. It will also unload slhc.o automatically, unless it is used by some other module
as well (such as ppp.o).

FILES
/etc/conf.modules

/lib/modules/*/modules.dep

/lib/modules/*

depmod, modprobe

Part I: User Commands112

SEE ALSO
lsmod(1), kerneld(8), ksyms(1), modules(2)

REQUIRED UTILITIES
insmod(1), nm(1) rmmod(1)

NOTES
The pattern supplied to modprobe will often be escaped to ensure that it is evaluated in the proper context.

AUTHOR
Jacques Gelinas (jack@solucorp.qc.ca), Bjorn Ekwall (bj0rn@blox.se)

BUGS
Naah…

Linux, 14 May 1995

df
df—Summarize free disk space

SYNOPSIS
df [–aikPv] [–t fstype] [–x fstype] [—all] [—inodes] [—type=fstype]
[—exclude–type=fstype] [—kilobytes] [—portability] [—print–type]
[—help] [—version] [filename...]

DESCRIPTION
This manual page documents the GNU version of df. df displays the amount of disk space available on the filesystem
containing each filename argument. If no filename is given, the space available on all currently mounted filesystems is shown.
Disk space is shown in 1K blocks by default, unless the environment variable POSIXLY_CORRECT is set, in which case 512-byte
blocks are used.

If an argument is the absolute filename of a disk device node containing a mounted filesystem, df shows the space available
on that filesystem rather than on the filesystem containing the device node (which is always the root filesystem). This version
of df cannot show the space available on unmounted filesystems, because on most kinds of systems doing so requires very
nonportable, intimate knowledge of filesystem structures.

OPTIONS
–a, —all Include in the listing filesystems that have 0 blocks, which are omitted by default. Such

filesystems are typically special-purpose pseudo-filesystems, such as automounter entries. On
some systems, filesystems of type ignore or auto are also omitted by default and included in the
listing by this option.

-i, —inodes List inode usage information instead of block usage. An inode (short for “index node”) is a
special kind of disk block that contains information about a file, such as its owner, permissions,
timestamps, and location on the disk.

–k, —kilobytes Print sizes in 1K blocks instead of 512-byte blocks. This overrides the environment variable
POSIXLY_CORRECT.

–P, —portability Use the POSIX output format. This is like the default format except that the information about
each filesystem is always printed on exactly one line; a mount device is never put on a line by
itself. This means that if the mount device name is more than 20 characters long (as for some
network mounts), the columns are misaligned.

113

–T, —print–type Print a type string for each filesystem. Any such printed filesystem type name may be used as an
argument to either of the —type= or —exclude–type= options.

–t, —type=fstype Limit the listing to filesystems of type fstype. Multiple filesystem types can be shown by giving
multiple –t options. By default, all filesystem types are listed.

–x, —exclude–type=fstype Limit the listing to filesystems not of type fstype. Multiple filesystem types can be eliminated by
giving multiple –x options. By default, all filesystem types are listed.

–v Ignored; for compatibility with System V versions of df.

—help Print a usage message on standard output and exit successfully.

—version Print version information on standard output then exit successfully.

GNU File Utilities

dig
dig—Send domain name query packets to name servers

SYNOPSIS
dig [@server] domain [<query-type>][<query-class>][+<query-option>][–<dig-option>]
[%comment]

DESCRIPTION
dig (domain information groper) is a flexible command-line tool that can be used to gather information from the Domain
Name System servers. dig has two modes: simple interactive mode that makes a single query, and batch that executes a query
for each in a list of several query lines. All query options are accessible from the command line.

The usual simple use of dig takes the form:

dig @server domain query-type query-class

where

server May be either a domain name or a dot-notation Internet address. If this optional field is omitted,
dig will attempt to use the default name server for your machine.

NOTE

If a domain name is specified, this will be resolved using the domain name system resolver (BIND). If your system does not
support DNS, you may have to specify a dot-notation address. Alternatively, if there is a server at your disposal some-
where, all that is required is that /etc/resolv.conf be present and indicate where the default name servers reside, so that
server itself can be resolved. See resolver(5) for information on /etc/resolv.conf.

WARNING

Changing /etc/resolv.conf will affect the standard resolver library and potentially several programs that use it.) As an
option, the user may set the environment variable LOCALRES to name a file which is to be used instead of /etc/resolv.conf
(LOCALRES is specific to the dig resolver and not referenced by the standard resolver). If the LOCALRES variable is not set or
the file is not readable, then /etc/resolv.conf will be used.

domain The domain name for which you are requesting information. See “Options” [-x] for a convenient
way to specify inverse address query.

dig

Part I: User Commands114

query-type The type of information (DNS query type) that you are requesting. If omitted, the default is a (T_A
= address). The following types are recognized:

Type Example Description

a T_A Network address

any T_ANY All/any information about specified domain

mx T_MX Mail exchanger for the domain

ns T_NS Name servers

soa T_SOA Zone of authority record

hinfo T_HINFO Host information

axfr T_AXFR Zone transfer (must ask an authoritative server)

txt T_TXT Arbitrary number of strings

(See RFC 1035 for the complete list.)

query-class The network class requested in the query. If omitted, the default is in (C_IN = Internet). The
following classes are recognized:

in C_IN Internet class domain

any C_ANY All/any class information

(See RFC 1035 for the complete list.)

NOTE

any can be used to specify a class and/or a type of query. dig will parse the first occurrence of any to mean query-type =
T_ANY.

To specify query-class = C_ANY you must either specify any twice, or set query-class using –c option. (See “Other Op-
tions,” next.)

OTHER OPTIONS
%ignored-comment % is used to include an argument that is simply not parsed. This may be useful if running dig in

batch mode. Instead of resolving every @server-domain-name in a list of queries, you can avoid the
overhead of doing so, and still have the domain name on the command line as a reference.
Example:

dig @128.9.0.32 %venera.isi.edu mx isi.edu

–<dig option> – is used to specify an option that affects the operation of dig. The following options are currently
available (although not guaranteed to be useful):

–x dot-notation-address Convenient form to specify inverse address mapping. Instead of

dig 32.0.9.128.in-addr.arpa

one can simply use

dig -x 128.9.0.32

–f file File for dig batch mode. The file contains a list of query
specifications (dig command lines) which are to be executed
successively. Lines beginning with ;, #, or \n are ignored. Other
options may still appear on the command line, and will be in
effect for each batch query.

–T time Time in seconds between start of successive queries when running
in batch mode. Can be used to keep two or more batch dig
commands running roughly in sync. Default is zero.

115

–p port Port number. Query a name server listening to a nonstandard port
number. Default is 53.

–P[ping-string] After query returns, execute a ping(8) command for response time
comparison. This rather unelegantly makes a call to the shell. The
last three lines of statistics is printed for the command:

ping –s server_name 56 3

If the optional ping string is present, it replaces ping –s in the
shell command.

–t query-type Specify type of query. May specify either an integer value to be
included in the type field or use the abbreviated mnemonic as
discussed earlier (mx = T_MX).

–c query-class Specify class of query. May specify either an integer value to be
included in the class field or use the abbreviated mnemonic as
discussed earlier (in = C_IN).

–envsav This flag specifies that the dig environment (defaults, print options, and so on), after all of the
arguments are parsed, should be saved to a file to become the default environment. Useful if you do
not like the standard set of defaults and do not desire to include a large number of options each
time dig is used. The environment consists of resolver state variable flags, timeout, and retries as
well as the flags detailing dig output (see below). If the shell environment variable LOCALDEF is set to
the name of a file, this is where the default dig environment is saved. If not, the file DiG.env is
created in the current working directory.

NOTE

LOCALDEF is specific to the dig resolver, and will not affect operation of the standard resolver library.

Each time dig is executed, it looks for ./DiG.env or the file specified by the shell environment
variable LOCALDEF. If such file exists and is readable, then the environment is restored from this file
before any arguments are parsed.

–envset This flag only affects batch query runs. When –envset is specified on a line in a dig batch file, the
dig environment after the arguments are parsed, becomes the default environment for the duration
of the batch file, or until the next line which specifies –envset.

–[no]stick This flag only affects batch query runs. It specifies that the dig environment (as read initially or set
by –envset switch) is to be restored before each query (line) in a dig batch file. The default –nostick
means that the dig environment does not stick, hence options specified on a single line in a dig
batch file will remain in effect for subsequent lines (that is, they are not restored to the sticky
default).

+<query option> + is used to specify an option to be changed in the query packet or to change dig output specifics.
Many of these are the same parameters accepted by nslookup(8). If an option requires a parameter,
the form is as follows:

+keyword[=value]

Most keywords can be abbreviated. Parsing of the + options is very simplistic—a value must not be
separated from its keyword by whitespace. The following keywords are currently available:

Keyword Abbreviation Meaning (Default)

[no]debug (deb) Turn on/off debugging mode [deb]

[no]d2 Turn on/off extra debugging mode [nod2]

[no]recurse (rec) Use/don’t use recursive lookup [rec]

retry=# (ret) Set number of retries to # [4]

continues

dig

Part I: User Commands116

time=# (ti) Set timeout length to # seconds [4]

[no]ko Keep open option (implies vc) [noko]

[no]vc Use/don’t use virtual circuit [novc]

[no]defname (def) Use/don’t use default domain name [def]

[no]search (sea) Use/don’t use domain search list [sea]

domain=NAME (do) Set default domain name to NAME

[no]ignore (i) Ignore/don’t ignore trunc. errors [noi]

[no]primary (pr) Use/don’t use primary server [nopr]

[no]aaonly (aa) Authoritative query only flag [noaa]

[no]sort (sor) Sort resource records [nosor]

[no]cmd Echo parsed arguments [cmd]

[no]stats (st) Print query statistics [st]

[no]Header (H) Print basic header [H]

[no]header (he) Print header flags [he]

[no]ttlid (tt) Print TTLs [tt]

[no]cl Print class info [nocl]

[no]qr Print outgoing query [noqr]

[no]reply (rep) Print reply [rep]

[no]ques (qu) Print question section [qu]

[no]answer (an) Print answer section [an]

[no]author (au) Print authoritative section [au]

[no]addit (ad) Print additional section [ad]

pfdef Set to default print flags

pfmin Set to minimal default print flags

pfset=# Set print flags to # (# can be hex/octal/decimal)

pfand=# Bitwise and print flags with #

pfor=# Bitwise or print flags with #

The retry and time options affect the retransmission strategy used by resolver library when sending datagram queries. The
algorithm is as follows:

August 30, 1990
for i = 0 to retry – 1
for j = 1 to num_servers
send_query
wait((time * (2**i)) / num_servers)
end
end

Note that dig always uses a value of 1 for num_servers.

DETAILS
dig once required a slightly modified version of the BIND resolver (3) library. BIND’s resolver has (as of BIND 4.9) been
augmented to work properly with dig. Essentially, dig is a straightforward (albeit not pretty) effort of parsing arguments and
setting appropriate parameters. dig uses resolver routines res_init(), res_mkquery(), res_send() as well as accessing _res
structure.

Keyword Abbreviation Meaning (Default)

117

FILES
/etc/resolv.conf Initial domain name and name server addresses

ENVIRONMENT
LOCALRES file to use in place of /etc/resolv.conf

LOCALDEF default environment file

AUTHOR
Steve Hotz (hotz@isi.edu)

ACKNOWLEDGMENTS
dig uses functions from nslookup(8) authored by Andrew Cherenson.

BUGS
dig has a serious case of “creeping featurism,” the result of considering several potential uses during its development. It would
probably benefit from a rigorous diet. Similarly, the print flags and granularity of the items they specify make evident their
rather ad hoc genesis.

dig does not consistently exit nicely (with appropriate status) when a problem occurs somewhere in the resolver (Most of the
common exit cases are handled.) This is particularly annoying when running in batch mode. If it exits abnormally (and is not
caught), the entire batch aborts; when such an event is trapped, dig simply continues with the next query.

SEE ALSO
named(8), resolver(3), resolver(5), nslookup(8)

30 August 1990

dnsquery
dnsquery—Query domain name servers using resolver

SYNOPSIS
dnsquery [-n nameserver] [-t type] [-c class] [-r retry] [-p retry period]
[-d] [-s] [-v] host

DESCRIPTION
The dnsquery program is a general interface to nameservers via BIND resolver library calls. The program supports queries to the
nameserver with an opcode of QUERY. This program is intended to be a replacement or supplement to programs like nstest,
nsquery, and nslookup. All arguments except for host and ns are treated without case-sensitivity.

OPTIONS
–n The nameserver to be used in the query. Nameservers can appear as either Internet addresses of the form

w.x.y.z or can appear as domain names. (default: as specified in /etc/resolv.conf)

–t The type of resource record of interest. Types include:

A Address

NS Nameserver

CNAME Canonical name

PTR Domain name pointer

SOA Start of authority

dnsquery

Part I: User Commands118

WKS Well-known service

HINFO Host information

MINFO Mailbox information

MX Mail exchange

RP Responsible person

MG Mail group member

AFSDB DCE or AFS server

ANY Wildcard

NOTE

Any case may be used (the default is ANY)

–c The class of resource records of interest. Classes include the following:

IN Internet

HS Hesiod

CHAOS Chaos

ANY Wildcard

NOTE

Any case may be used (the default is IN).

-r The number of times to retry if the nameserver is not responding. (default: 4)

–p Period to wait before timing out. (default: RES_TIMEOUT) options field. (default: any answer)

–d Turn on debugging. This sets the RES_DEBUG bit of the resolver’s options field. (default: no debugging)

–s Use a stream rather than a packet. This uses a TCP stream connection with the nameserver rather than a
UDP datagram. This sets the RES_USEVC bit of the resolver’s options field. (default: UDP)

–v Synonym for the s flag.

host The name of the host (or domain) of interest.

FILES
/etc/resolv.conf To get the default ns and search lists.

<arpa/nameser.h> List of usable RR types and classes

<resolv.h> List of resolver flags

SEE ALSO
nslookup(8), nstest(1), nsquery(1), named(8), resolver(5)

DIAGNOSTICS
If the resolver fails to answer the query and debugging has not been turned on, dnsquery will simply print a message like this:

Query failed (rc = 1) : Unknown host

The value of the return code is supplied by h_errno.

119

BUGS
Queries of a class other than IN can have interesting results since ordinarily a nameserver only has a list of root nameservers
for class IN resource records.

Query uses a call to inet_addr() to determine if the argument for the -n option is a valid Internet address. Unfortunately,
inet_addr() seems to cause a segmentation fault with some (bad) addresses (for example, 1.2.3.4.5).

AUTHOR
Bryan Beecher

10 March 1990

domainname
domainname—Set or print domain of current host

SYNOPSIS
domainname [name]

DESCRIPTION
domainname prints the domain name of the current host, from the getdomainname(3) library call. If an argument is present and
the effective UID is 0, domainname changes the name of the host, with the setdomainname(2) system call. This is usually done at
boot time in the /etc/rc.local script.

FILES
/etc/rc.local

SEE ALSO
getdomainname(3), setdomainname(2), uname(1), uname(2)

AUTHOR
Lars Wirzenius by substituting in hostname.c

Linux 0.98, 26 December 1992

dsplit
dsplit—Split a large file into pieces

SYNOPSIS
dsplit [–size nnn][input_file [output_base]]

DESCRIPTION
dsplit splits binary files into smaller chunks so that they may be placed on floppy disks.

OPTIONS
–size nnn Specifies the size of each output file, in bytes. The default is 1457000, which is enough to will a

1.44MB floppy disk.

input_file Specifies the name of the file to split up. A – indicates standard input. The default is standard
input.

dsplit

Part I: User Commands120

output_base Specifies the name of the output files to be written. dsplit will append 000, 001, ..., to the
output_base. The default is dsplit.

AUTHOR’S NOTES
Submitted by: David Arnstein (arnstein@netcom.com)

Posting number: Volume 40, Issue 51

Archive name: dsplit/part01

Environment: MS-DOS, UNIX

Here is a portable binary file splitting program. It reads a binary file and splits it into pieces. I use this program to put large
binary files on floppy disks. For this reason, the default size of the output files is 1,457,000 bytes, which just about fills up a
1.44MB floppy disk.

Unlike other binary split programs I have seen, dsplit does not malloc a huge block of memory. dsplit is suitable for use
under MS-DOS and other primitive operating systems.

(The program came from gatekeeper.dec.com:/pub/usenet/comp.sources.misc/volume40/dsplit).

Linux 1.1, 5 July 1994

du
du—Summarize disk usage

SYNOPSIS
du [–abcklsxDLS] [—all] [—total] [—count-links] [—summarize] [—bytes]
[—kilobytes] [—one-file-system] [—separate-dirs] [—dereference]
[—dereference-args] [—help] [—-version] [filename...]

DESCRIPTION
This manual page documents the GNU version of du. du displays the amount of disk space used by each argument and for
each subdirectory of directory arguments. The space is measured in 1K blocks by default, unless the environment variable
POSIXLY_CORRECT is set, in which case 512-byte blocks are used.

OPTIONS
–a, —all Display counts for all files, not just directories.

–b, —bytes Print sizes in bytes.

–c, —total Write a grand total of all of the arguments after all arguments have been processed. This can
be used to find out the disk usage of a directory, with some files excluded.

–k, —kilobytes Print sizes in kilobytes. This overrides the environment variable POSIXLY_CORRECT.

–l, —count-links Count the size of all files, even if they have appeared already in another hard link.

–s, —summarize Display only a total for each argument.

–x, —one-file-system Skip directories that are on different filesystems from the one that the argument being
processed is on.

–D, —dereference-args Dereference symbolic links that are command-line arguments. Does not affect other
symbolic links. This is helpful for finding out the disk usage of directories like /usr/tmp
where they are symbolic links.

–L, —dereference Dereference symbolic links (show the disk space used by the file or directory that the link
points to instead of the space used by the link).

–S, —separate-dirs Count the size of each directory separately, not including the sizes of subdirectories.

—help Print a usage message on standard output and exit successfully.

—version Print version information on standard output, then exit successfully.

121

BUGS
On BSD systems, du reports sizes that are half the correct values for files that are NFS-mounted from HP-UX systems. On
HP-UX systems, it reports sizes that are twice the correct values for files that are NFS-mounted from BSD systems. This is
due to a flaw in HP-UX; it also affects the HP-UX du program.

GNU File Utilities

editres
editres—A dynamic resource editor for X Toolkit applications

SYNTAX
editres [–toolkitoption ...]

OPTIONS
editres accepts all of the standard X Toolkit command-line options (see X(1)). The order of the command-line options is not
important.

DESCRIPTION
editres is a tool that allows users and application developers to view the full widget hierarchy of any X Toolkit application
that speaks the editres protocol. In addition, editres will help the user construct resource specifications, allow the user to
apply the resource to the application and view the results dynamically. Once the user is happy with a resource specification,
editres will append the resource string to the user’s X Resources file.

USING editres
editres provides a window consisting of the following four areas:

Menu Bar A set of pop-up menus that allow you full access to editres’s features.

Panner The panner provides a more intuitive way to scroll the application tree display.

Message Area Displays information to the user about the action that editres expects.

Application Widget Tree This area is used to display the selected application’s widget tree.

To begin an editres session, select the Get Widget Tree menu item from the Command menu. This will change the pointer
cursor to crosshair. You should now select the application you wish look at by clicking on any of its windows. If this
application understands the editres protocol, editres will display the application’s widget tree in its tree window. If the
application does not understand the editres protocol, editres will inform you of this fact in the message area after a few
seconds delay.

After you have a widget tree, you may select any of the other menu options. The effect of each of these is described in
“Commands,” next.

COMMANDS
Get Widget Tree Allows the user to click on any application that speaks the editres protocol and receive its

widget tree.

Refresh Current Widget Tree editres only knows about the widgets that exist at the present time. Many applications
create and destroy widgets on the fly. Selecting this menu item will cause editres to ask the
application to resend its widget tree, thus updating its information to the new state of the
application.

For example, xman only creates the widgets for its topbox when it starts up. None of the
widgets for the manual page window are created until the user actually clicks on the Manual
Page button. If you retrieved xman’s widget tree before the manual page is active, you may
wish to refresh the widget tree after the manual page has been displayed. This will allow you
to also edit the manual page’s resources.

editres

Part I: User Commands122

Dump Widget Tree to a File When documenting applications it is often useful to be able to dump the entire application
widget tree to an ASCII file. This file can then be included in the manual page. When this
menu item is selected, a pop-up dialog is activated. Type the name of the file in this dialog,
and either select Okay, or type a carriage-return. editres will dump the widget tree to this
file. To cancel the file dialog, select the Cancel button.

Show Resource Box This command will pop up a resource box for the current application. This resource box
(described in detail later in this section) will allow the user to see exactly which resources
can be set for the widget that is currently selected in the widget tree display. Only one
widget may be currently selected; if greater or fewer are selected, editres will refuse to pop
up the resource box and put an error message in the Message Area.

Set Resource This command will pop up a simple dialog box for setting an arbitrary resource on all
selected widgets. You must type in the resource name, as well as the value. You can use the
Tab key to switch between the resource name field and the resource value field.

Quit Exits editres.

TREE COMMANDS
The Tree menu contains several commands that enable operations to be performed on the widget tree.

Select Widget in Client This menu item allows you to select any widget in the application; editres will then
highlight the corresponding element the widget tree display. After this menu item is
selected, the pointer cursor will again turn to a crosshair, and you must click any pointer
button in the widget you wish to have displayed. Since some widgets are fully obscured by
their children, it is not possible to get to every widget this way, but this mechanism does
give very useful feedback between the elements in the widget tree and those in the actual
application.

Select All, Unselect All, These functions allow the user to select, unselect, or invert all widgets in the widget tree.
Invert All

Select Children, These functions select the immediate parent or children of each of the currently selected
Select Parents widgets.

Select Descendants, These functions select all parents or children of each of the currently selected widgets. This
Select Ancestors is a recursive search.

Show Widget Names, When the tree widget is initially displayed, the labels of each widget in the tree correspond
Show Class Names, to the widget names. These functions will cause the label of all widgets in the tree to be
Show Widget Windows changed to show the class name, IDs, or window associated with each widget in the

application. The widget IDs, and windows are shown as hex numbers.

In addition, there are keyboard accelerators for each of the Tree operations. If the input
focus is over an individual widget in the tree, then that operation will only affect that
widget. If the input focus is in the Tree background, it will have exactly the same effect as
the corresponding menu item.

The translation entries shown may be applied to any widget in the application. If that
widget is a child of the Tree widget, then it will only affect that widget; otherwise, it will
have the same effect as the commands in the Tree menu.

Flash Active Widgets This command is the inverse of the Select Widget in Client command; it will show the user
each widget that is currently selected in the widget tree by flashing the corresponding widget
in the application numFlashes (three by default) times in the flash-Color.

Key Option Translation Entry

space Unselect Select(nothing)

w Select Select(widget)

s Select Select(all)

i Invert Select(invert)

123

c Select Children Select(children)

d Select Descendants Select(descendants)

p Select Parent Select(parent)

a Select Ancestors Select(ancestors)

N Show Widget Names Relabel(name)

C Show Class Names Relabel(class)

I Show Widget IDs Relabel(id)

W Show Widget Windows Relabel(window)

T Toggle Widget/Class Name Relabel(toggle)

Clicking button 1 on a widget adds it to the set of selected widgets. Clicking button 2 on a widget deselects all other widgets
and then selects just that widget. Clicking button 3 on a widget toggles its label between the widget’s instance name the
widget’s class name.

USING THE RESOURCE BOX
The resource box contains five different areas. Each of the areas, as they appear on the screen from top to bottom, are
discussed in the following list:

The Resource Line This area at the top of the resource box shows the current resource name exactly as it
would appear if you were to save it to a file or apply it.

The Widget Names and Classes This area enables you to select exactly which widgets this resource will apply to. The
area contains four lines; the first contains the name of the selected widget and all its
ancestors, and the more restrictive dot (.) separator. The second line contains less
specific class names of each widget, as well as the less restrictive star (*) separator.
The third line contains a set of special buttons called Any Widget that will generalize
this level to match any widget. The last line contains a set of special buttons called
Any Widget Chain that will turn the single level into something that matches zero or
more levels.

The initial state of this area is the most restrictive, using the resource names and the
dot separator. By selecting the other buttons in this area, you can ease the restrictions
to allow more and more widgets to match the specification. The extreme case is to
select all the Any Widget Chain buttons, which will match every widget in the
application. As you select different buttons, the tree display will update to show you
exactly which widgets will be affected by the current resource specification.

Normal and Constraint Resources The next area allows you to select the name of the normal or constraint resources
you wish to set. Some widgets may not have constraint resources, so that area will
not appear.

Resource Value This next area allows you to enter the resource value. This value should be entered
exactly as you would type a line into your resource file. Thus, it should contain no
unescaped newlines. There are a few special character sequences for this file:

\n- This will be replaced with a newline.

\###- Where # is any octal digit. This will be replaced with a single
byte that contains this sequence interpreted as an octal
number. For example, a value containing a NULL byte can be
stored by specifying \000.

\<new-line>- This will compress to nothing.

\\- This will compress to a single backslash.

Key Option Translation Entry

editres

Part I: User Commands124

Command Area This area contains several command buttons, described in the following list:

The Set Save File button allows the user to modify file that the resources will be
saved to. This button will bring up a dialog box that will ask you for a filename;
after the filename has been entered, either hit carriage-return or click on the
Okay button. To pop down the dialog box without changing the save file, click
the Cancel button.

The Save button will append the resource line already described to the end of the
current save file. If no save file has been set, the Set Save File dialog box will be
popped up to prompt the user for a filename.

The Apply button attempts to perform a XtSetValues call on all widgets that
match the resource line described earlier. The value specified is applied directly
to all matching widgets. This behavior is an attempt to give a dynamic feel to the
resource editor. Since this feature allows users to put an application in states it
may not be willing to handle, a hook has been provided to allow specific
applications to block these SetValues requests. (See “Blocking editres Requests,”
following).

Unfortunately, due to design constraints imposed on the widgets by the X
Toolkit and the Resource Manager, trying to coerce an inherently static system
into dynamic behavior can cause strange results. There is no guarantee that the
results of an apply will be the same as what will happen when you save the value
and restart the application. This functionality is provided to try to give you a
rough feel for what your changes will accomplish, and the results obtained
should be considered suspect at best. Having said that, this is one of the neatest
features of editres, and I strongly suggest that you play with it, and see what it
can do.

The Save and Apply button combines the Save and Apply actions described
earlier into one button.

The Popdown Resource Box button will remove the resource box from the
display.

BLOCKING editres REQUESTS
The editres protocol has been built into the Athena Widget set. This allows all applications that are linked against Xaw to be
able to speak to the resource editor. Although this provides great flexibility, and is a useful tool, it can quite easily be abused.
It is therefore possible for any Xaw application to specify a value for the editresBlock resource to keep editres from divulging
information about its internals, or to disable the SetValues part of the protocol.

editresBlock (Class Editresblock) specifies which type of blocking this application wishes to impose on the editres protocol.

The accepted values are as follows:

all Block all requests.

setValues Block all SetValues requests. As this is the only editres request that actually modifies the application, this
is in effect stating that the application is read-only.

none Allow all editres requests.

Remember that these resources are set on any Xaw application, not editres. They allow individual applications to keep all or
some of the requests editres makes from ever succeeding. Of course, editres is also an Xaw application, so it may also be
viewed and modified by editres (rather recursive, I know); these commands can be blocked by setting the editresBlock
resource on editres itself.

RESOURCES
For editres, the available application resources are as follows:

numFlashes (Class NumFlashes) specifies the number of times the widgets in the application will be flashed when the Show
Active Widgets command in invoked.

125

flashTime (Class FlashTime) specifies the mount of time between the flashes described in the preceding entry.

flashColor (Class flashColor) specifies the color used to flash application widgets. A bright color should be used that will
immediately draw your attention to the area being flashed, such as red or yellow.

saveResourcesFile (Class SaveResourcesFile) is the file the resource line will be append to when the Save button activated in
the resource box.

WIDGETS
In order to specify resources, it is useful to know the hierarchy of the widgets that compose editres. In the following
notation, indentation indicates hierarchical structure. The widget class name is given first, followed by the widget instance
name.

Editres editres
 Paned paned
 Box box
 MenuButton commands
 SimpleMenu menu
 SmeBSB sendTree
 SmeBSB refreshTree
 SmeBSB dumpTreeToFile
 SmeLine line SmeBSB getResourceList
 SmeLine line
 SmeBSB quit
 MenuButton treeCommands
 SimpleMenuumenu
 SmeBSB showClientWidget
 SmeBSB selectAll
 SmeBSB unselectAll
 SmeBSB invertAll
 SmeLine line
 SmeBSB selectChildren
 SmeBSB selectParent
 SmeBSB selectDescendants
 SmeBSB selectAncestors
 SmeLine line
 SmeBSB showWidgetNames
 SmeBSB showClassNames
 SmeBSB showWidgetIDs
 SmeBSB showWidgetWindows
 SmeLine line
 SmeBSB flashActiveWidgets
 Paned hPane
 Panner panner
 Label userMessage
 Grip grip
 Porthole porthole
 Tree tree
 Toggle <name of widget in application>
 .
 .
 .
 TransientShell resourceBox
 Paned pane
 Label resourceLabel
 Form namesAndClasses
 Toggle dot
 Toggle star
 Toggle any
 Toggle name

editres

Part I: User Commands126

 Toggle class
 .
 .
 .
 Label namesLabel
 List namesList
 Label constraintLabel
 List constraintList
 Form valueForm
 Label valueLabel
 Text valueText
 Box commandBox
 Command setFile
 Command save
 Command apply
 Command saveAndApply
 Command cancel
 Grip grip
 Grip grip

ENVIRONMENT
DISPLAY To get the default host and display number

XENVIRONMENT To get the name of a resource file that overrides the global resources stored in the RESOURCE_MANAGER
property.

FILES
<XRoot>/lib/X11/app-defaults/Editres specifies required resources.

SEE ALSO
X(1), xrdb(1), Athena Widget Set

RESTRICTIONS
This is a prototype. There are lots of nifty features I would love to add, but I hope this will give you some ideas about what a
resource editor can do.

AUTHOR
Chris D. Peterson (formerly MIT X Consortium)

X Version 11 Release 6

elvis, ex, vi, view, input
elvis, ex, vi, view, input—The editor

SYNOPSIS
elvis [flags][+cmd][files...]

DESCRIPTION
elvis is a text editor that emulates vi/ex.

On systems which pass the program name as an argument, such as UNIX and Minix, you may also install elvis under the
names ex, vi, view, and input. These extra names would normally be links to elvis; see the ln shell command.

127

When elvis is invoked as vi, it behaves exactly as though it was invoked as elvis. However, if you invoke elvis as view, then
the readonly option is set as though you had given it the -R flag. If you invoke elvis as ex, then elvis will start up in the
colon command mode instead of the visual command mode, as though you had given it the -e flag. If you invoke elvis as
input or edit, then elvis will start up in input mode, as though the -i flag was given.

OPTIONS
-r To the real vi, this flag means that a previous edit should be recovered. elvis, though, has a

separate program, called elvrec(1), for recovering files. When you invoke elvis with -r, elvis will
tell you to run elvrec.

-R This sets the readonly option, so you won’t accidentally overwrite a file.

-s This sets the safer option, which disables many potentially harmful commands. It has not been
rigorously proven to be absolutely secure, however.

-t tag This causes elvis to start editing at the given tag.

-m [file] elvis will search through file for something that looks like an error message from a compiler. It
will then begin editing the source file that caused the error, with the cursor sitting on the line where
the error was detected. If you don’t explicitly name a file, then errlist is assumed.

-e elvis will start up in colon command mode.

-v elvis will start up in visual command mode.

-i elvis will start up in input mode.

-w winsize Sets the window option’s value to winsize.

+command or -c command If you use the +command parameter, then after the first file is loaded, command is executed as an EX
command. A typical example would be elvis +237 foo, which would cause elvis to start editing
foo and then move directly to line 237. The -c command variant was added for UNIX SysV
compatibility.

FILES
/tmp/elv* During editing, elvis stores text in a temporary file. For UNIX, this file will usually be stored in

the /tmp directory, and the first three characters will be elv. For other systems, the temporary files
may be stored someplace else; see the version-specific section of the documentation.

tags This is the database used by the :tags command and the -t option. It is usually created by the
ctags(1) program.

.exrc or elvis.rc On UNIX-like systems, a file called .exrc in your home directory is executed as a series of ex
commands. A file by the same name may be executed in the current directory, too. On non-UNIX
systems, .exrc is usually an invalid filename; there, the initialization file is called elvis.rc instead.

ENVIRONMENT
TERM This is the name of your terminal’s entry in the termcap or terminfo database. The list of legal

values varies from one system to another.

TERMCAP Optional. If your system uses termcap, and the TERMCAP variable is unset, then elvis will read your
terminal’s definition from /etc/termcap. If TERMCAP is set to the full pathname of a file (starting with
a /) then elvis will look in the named file instead of /etc/termcap. If TERMCAP is set to a value which
doesn’t start with a /, then its value is assumed to be the full termcap entry for your terminal.

TERMINFO Optional. If your system uses terminfo, and the TERMINFO variable is unset, then elvis will read your
terminal’s definition from the database in the /usr/lib/terminfo database. If TERMINFO is set, then its
value is used as the database name to use instead of /usr/lib/terminfo.

LINES, COLUMNS Optional. These variables, if set, will override the screen size values given in the termcap/terminfo
for your terminal. On windowing systems such as X, elvis has other ways of determining the
screen size, so you should probably leave these variables unset.

EXINIT Optional. This variable can hold EX commands which will be executed instead of the .exrc file in
your home directory.

eluis, ex, vi, niew, input

Part I: User Commands128

SHELL Optional. The SHELL variable sets the default value for the shell option, which determines which
shell program is used to perform wildcard expansion in filenames, and also which is used to execute
filters or external programs. The default value on UNIX systems is /bin/sh.

Note: Under MS-DOS, this variable is called COMSPEC instead of SHELL.

HOME This variable should be set to the name of your home directory. elvis looks for its initialization file
there; if HOME is unset, then the initialization file will not be executed.

TAGPATH Optional. This variable is used by the ref program, which is invoked by the shift-K, control-],
and :tag commands. See ref for more information.

TMP, TEMP These optional environment variables are only used in non-UNIX versions of elvis. They allow
you to supply a directory name to be used for storing temporary files.

SEE ALSO
ctags(1), ref(1), elvprsv(1), elvrec(1)

Elvis—A Clone of Vi/Ex, the complete elvis documentation.

BUGS
There is no Lisp support. Certain other features are missing, too.

Auto-indent mode is not quite compatible with the real vi. Among other things, 0ˆD and ˆˆD don’t do what you might
expect.

Long lines are displayed differently. The real vi wraps long lines onto multiple rows of the screen, but elvis scrolls sideways.

AUTHOR
Steve Kirkendall (kirkenda@cs.pdx.edu)

Many other people have worked to port elvis to various operating systems. To see who deserves credit, run the :version
command from within elvis, or look in the system-specific section of the complete documentation.

elvprsv
elvprsv—Preserve the modified version of a file after a crash

SYNOPSIS
elvprsv [“–why elvis died”] /tmp/filename...
elvprsv -R /tmp/filename...

DESCRIPTION
elvprsv preserves your edited text after elvis dies. The text can be recovered later, via the elvprsv program.

For UNIX-like systems, you should never need to run this program from the command line. It is run automatically when
elvis is about to die, and it should be run (via /etc/rc) when the computer is booted. THAT’S ALL!

For non-UNIX systems such as MS-DOS or VMS, you can either use elvprsv the same way as under UNIX systems (by
running it from your AUTOEXEC.BAT file), or you can run it separately with the -R flag to recover the files in one step.

If you’re editing a file when elvis dies (due to a bug, system crash, power failure, and so on), then elvprsv will preserve the
most recent version of your text. The preserved text is stored in a special directory; it does not overwrite your text file
automatically. (If the preservation directory hasn’t been set up correctly, then elvprsv will simply send you a mail message
describing how to manually run elvprsv.)

elvprsv will send mail to any user whose work it preserves, if your operating system normally supports mail.

129

FILES
/tmp/elv* The temporary file that elvis was using when it died.

/usr/preserve/p* The text that is preserved by elvprsv.

/usr/preserve/Index A text file which lists the names of all preserved files, and the names of the /usr/preserve/p* files
that contain their preserved text.

BUGS
Due to the permissions on the /usr/preserve directory, on UNIX systems elvprsv must be run as superuser. This is
accomplished by making the elvprsv executable be owned by root and turning on its “set user id” bit.

If you’re editing a nameless buffer when elvis dies, then elvprsv will pretend that the file was named foo.

AUTHOR
Steve Kirkendall (kirkenda@cs.pdx.edu)

elvrec
elvrec— Recover the modified version of a file after a crash

SYNOPSIS
elvrec [preservedfile [newfile]]

DESCRIPTION
If you’re editing a file when elvis dies, the system crashes, or power fails, the most recent version of your text will be
preserved. The preserved text is stored in a special directory; it does not overwrite your text file automatically.

The elvrec program locates the preserved version of a given file, and writes it over the top of your text file—or to a new file,
if you prefer. The recovered file will have nearly all of your changes.

To see a list of all recoverable files, run elvrec with no arguments.

NOTE

If you haven’t set up a directory for file preservation, you’ll have to manually run the elvprsv program instead of elvrec.

FILES
/usr/preserve/p* The text that was preserved when elvis died.

/usr/preserve/Index A text file that lists the names of all preserved files, and the names of the /usr/preserve/p* files that
contain their preserved text.

BUGS
elvrec is very picky about filenames. You must tell it to recover the file using exactly the same pathname as when you were
editing it. The simplest way to do this is to go into the same directory that you were editing, and invoke elvrec with the
same filename as elvis. If that doesn’t work, then try running elvrec with no arguments, to see exactly which pathname it is
using for the desired file.

Due to the permissions on the /usr/preserve directory, on UNIX systems elvrec must be run as superuser. This is
accomplished by making the elvrec executable be owned by root and setting its “set user id” bit.

If you’re editing a nameless buffer when elvis dies, then elvrec will pretend that the file was named foo.

elvrec

Part I: User Commands130

AUTHOR
Steve Kirkendall (kirkenda@cs.pdx.edu)

emacs
emacs—GNU project emacs

SYNOPSIS
emacs [command-line switches] [files ...]

DESCRIPTION
GNU emacs is a version of emacs, written by the author of the original (PDP-10) emacs, Richard Stallman.

The primary documentation of GNU emacs is in the GNU Emacs Manual, which you can read online using info, a
subsystem of emacs. Please look there for complete and up-to-date documentation. This man page is updated only when
someone volunteers to do so; the emacs maintainers’ priority goal is to minimize the amount of time this man page takes
away from other more useful projects.

The user functionality of GNU emacs encompasses everything other emacs editors do, and it is easily extensible since its
editing commands are written in Lisp.

emacs has an extensive interactive help facility, but the facility assumes that you know how to manipulate emacs windows and
buffers. Ctrl+h (backspace or Ctrl+h) enters the Help facility. Help Tutorial (Ctrl+h t) requests an interactive tutorial that
can teach beginners the fundamentals of emacs in a few minutes. Help Apropos (Ctrl+h a) helps you find a command given
its functionality, Help Character (Ctrl+h c) describes a given character’s effect, and Help Function (Ctrl+h f) describes a
given Lisp function specified by name.

emacs’s Undo can undo several steps of modification to your buffers, so it is easy to recover from editing mistakes.

GNU emacs’s many special packages handle mail reading (RMail) and sending (Mail), outline editing (Outline), compiling
(Compile), running subshells within emacs windows (Shell), running a Lisp read-eval-print loop (Lisp-Interaction-Mode), and
automated psychotherapy (Doctor).

There is an extensive reference manual, but users of other emacses should have little trouble adapting even without a copy.
Users new to emacs will be able to use basic features fairly rapidly by studying the tutorial and using the self-documentation
features.

OPTIONS
The following options are of general interest:

file Edit file.

+number Go to the line specified by number (do not insert a space between the + sign and the number).

–q Do not load an init file.

–u user Load user’s init file.

–t file Use specified file as the terminal instead of using stdin/stdout. This must be the first argument specified
in the command line.

The following options are Lisp-oriented (these options are processed in the order encountered):

–f function Execute the Lisp function function.

–l file Load the Lisp code in the file file.

The following options are useful when running emacs as a batch editor:

–batch Edit in batch mode. The editor will send messages to stdout. This option must be the first in the
argument list. You must use -l and -f options to specify files to execute and functions to call.

–kill Exit emacs while in batch mode.

131

USING emacs WITH X
emacs has been tailored to work well with the X Window System. If you run emacs from under X windows, it will create its
own X window to display in. You will probably want to start the editor as a background process so that you can continue
using your original window.

emacs can be started with the following X switches:

–rn name Specifies the program name which should be used when looking up defaults in the
user’s X resources. This must be the first option specified in the command line.

–name name Specifies the name that should be assigned to the emacs window.

-r Display the emacs window in reverse video.

-i Use the “kitchen sink” bitmap icon when iconifying the emacs window.

–font font, –fn font Set the emacs window’s font to that specified by font. You will find the various X
fonts in the /usr/lib/X11/fonts directory. Note that emacs will only accept fixed
width fonts. Under the X11 Release 4 font-naming conventions, any font with the
value m or c in the eleventh field of the font name is a fixed width font. Furthermore,
fonts whose name are of the form width×height are generally fixed width, as is the
font fixed. See xlsfonts(1) for more information.

When you specify a font, be sure to put a space between the switch and the font
name.

–b pixels Set the emacs window’s border width to the number of pixels specified by pixels.
Defaults to one pixel on each side of the window.

–ib pixels Set the window’s internal border width to the number of pixels specified by pixels.
Defaults to one pixel of padding on each side of the window.

–geometry geometry Set the emacs window’s width, height, and position as specified. The geometry
specification is in the standard uformat; see X(1) for more information. The width
and height are specified in characters; the default is 80 by 24.

–fg color On color displays, sets the color of the text. See the file /usr/lib/X11/rgb.txt for a
list of valid color names.

–bg color On color displays, sets the color of the window’s background.

–bd color On color displays, sets the color of the window’s border.

–cr color On color displays, sets the color of the window’s text cursor.

–ms color On color displays, sets the color of the window’s mouse cursor.

–d displayname, –display displayname Create the emacs window on the display specified by displayname. Must be the first
option specified in the command line.

–nw Tells emacs not to use its special interface to X. If you use this switch when invoking
emacs from an xterm(1) window, display is done in that window. This must be the
first option specified in the command line.

You can set X default values for your emacs windows in your Xresources file; see xrdb(1). Use the following format:

emacs.keyword:value

where value specifies the default value of keyword. emacs lets you set default values for the following keywords:

font (class Font) Sets the window’s text font.

reverseVideo (class ReverseVideo) If reverseVideo’s value is set to on, the window will be displayed in reverse video.

bitmapIcon (class BitmapIcon) If bitmapIcon’s value is set to on, the window will iconify into the “kitchen sink.”

borderWidth (class BorderWidth) Sets the window’s border width in pixels.

internalBorder (class BorderWidth) Sets the window’s internal border width in pixels.

foreground (class Foreground) For color displays, sets the window’s text color.

background (class Background) For color displays, sets the window’s background color.

borderColor (class BorderColor) For color displays, sets the color of the window’s border.

emacs

Part I: User Commands132

cursorColor (class Foreground) For color displays, sets the color of the window’s text cursor.

pointerColor (class Foreground) For color displays, sets the color of the window’s mouse cursor.

geometry (class Geometry) Sets the geometry of the emacs window.

title (class Title) Sets the title of the emacs window.

iconName (class Title) Sets the icon name for the emacs window icon.

If you try to set color values while using a black-and-white display, the window’s characteristics will default as follows: The
foreground color will be set to black, the background color will be set to white, the border color will be set to gray, and the
text and mouse cursors will be set to black.

USING THE MOUSE
The following lists the mouse button bindings for the emacs window under X11.

Mouse Button Function

left Set point.

middle Paste text.

right Cut text into X cut buffer.

Shift+middle Cut text into X cut buffer.

Shift+right Paste text.

Ctrl+middle Cut text into X cut buffer and kill it.

Ctrl+right Select this window, then split it into two windows. Same as typing Ctrl+x 2.

Ctrl+Shift+left X buffer menu; hold the buttons and keys down, wait for menu to appear, select buffer, and
release. Move mouse out of menu and release to cancel.

Ctrl+Shift+middle X help menu; pop up index card menu for emacs help.

Ctrl+Shift+right Select window with mouse, and delete all other windows. Same as typing Ctrl+x 1.

MANUALS
You can order printed copies of the GNU Emacs Manual from the Free Software Foundation, which develops GNU
software. See the file ORDERS for ordering information.

Your local emacs maintainer might also have copies available. As with all software and publications from FSF, everyone is
permitted to make and distribute copies of the emacs manual. The TeX source to the manual is also included in the emacs
source distribution.

FILES
/usr/local/info Files for the info documentation browser (a subsystem of emacs) to

refer to. Currently not much of UNIX is documented here, but the
complete text of the emacs reference manual is included in a
convenient tree structured form.

/usr/local/lib/emacs/$VERSION/src C source files and object files.

/usr/local/lib/emacs/$VERSION/lisp Lisp source files and compiled files that define most editing com-
mands. Some are preloaded; others are autoloaded from this directory
when used.

/usr/local/lib/emacs/$VERSION/etc Various programs that are used with GNU emacs, and some files of
information.

/usr/local/lib/emacs/$VERSION/etc/DOC.* Contains the documentation strings for the Lisp primitives and
preloaded Lisp functions of GNU emacs. They are stored here to
reduce the size of emacs proper.

133

/usr/local/lib/emacs/$VERSION/etc/DIFF Discusses GNU emacs versus Twenex emacs.

/usr/local/lib/emacs/$VERSION/etc/CCADIFF Discusses GNU emacs versus CCA emacs.

/usr/local/lib/emacs/$VERSION/etc/GOSDIFF Discusses GNU emacs versus Gosling emacs.

/usr/local/lib/emacs/$VERSION/etc/SERVICE Lists people offering various services to assist users of GNU emacs,
including education, troubleshooting, porting, and customization.

These files also have information useful to anyone wanting to write
programs in the emacs Lisp extension language, which has not yet
been fully documented.

/usr/local/lib/emacs/lock Holds lock files that are made for all files being modified in emacs, to
prevent simultaneous modification of one file by two users.

/usr/local/lib/emacs/$VERSION/$ARCHITECTURE/cpp The GNU cpp, needed for building emacs on certain versions of
UNIX where the standard cpp cannot handle long names for macros.

/usr/lib/X11/rgb.txt List of valid X color names.

BUGS
There is a mailing list, bug-gnu-emacs@prep.ai.mit.edu on the Internet (ucbvax!prep.ai.mit.edu!bug-gnu-emacs on
UUCPnet), for reporting emacs bugs and fixes. But before reporting something as a bug, please try to be sure that it really is a
bug, not a misunderstanding or a deliberate feature. We ask you to read the section “Reporting emacs Bugs” near the end of
the reference manual (or info system) for hints on how and when to report bugs. Also, include the version number of the
emacs you are running in every bug report that you send in.

Do not expect a personal answer to a bug report. The purpose of reporting bugs is to get them fixed for everyone in the next
release, if possible. For personal assistance, look in the SERVICE file for a list of people who offer it.

Please do not send anything but bug reports to this mailing list. Send requests to be added to mailing lists to the special list
info-gnu-emacs-request@prep.ai.mit.edu (or the corresponding UUCP address). For more information about emacs mailing
lists, see the file /usr/local/emacs/etc/MAILINGLISTS. Bugs tend actually to be fixed if they can be isolated, so it is in your
interest to report them in such a way that they can be easily reproduced.

One bug that I know about: Shell will not work with programs running in Raw mode on some UNIX versions.

UNRESTRICTIONS
emacs is free; anyone may redistribute copies of emacs to anyone under the terms stated in the emacs General Public License, a
copy of which accompanies each copy of emacs and which also appears in the reference manual.

Copies of emacs may sometimes be received packaged with distributions of UNIX systems, but it is never included in the
scope of any license covering those systems. Such inclusion violates the terms on which distribution is permitted. In fact, the
primary purpose of the General Public License is to prohibit anyone from attaching any other restrictions to redistribution
of emacs.

Richard Stallman encourages you to improve and extend emacs, and urges that you contribute your extensions to the GNU
library. Eventually GNU (GNU’s Not UNIX) will be a complete replacement for Berkeley UNIX. Everyone will be free to
use, copy, study, and change the GNU system.

SEE ALSO
X(1), xlsfonts(1), xterm(1), xrdb(1)

AUTHORS
emacs was written by Richard Stallman and the Free Software Foundation. Joachim Martillo and Robert Krawitz added the X
features.

19 April 1994

emacs

Part I: User Commands134

emacstool
emacstool—Run emacs under Sun windows with function key and mouse support.

SYNOPSIS
emacstool [{window_args} {-rc run_command_path} args ...]

TYPICAL USAGE
In ˜/.suntools or ˜/.rootmenu, include a line like this:

“Emacstool” emacstool -WI emacs.icon -f emacstool-init

DESCRIPTION
emacstool creates a SunView frame and a tty subwindow within which mouse events and function keys are translated to
ASCII sequences that emacs can parse. The translated input events are sent to the process running in the tty subwindow,
which is typically GNU emacs. emacstool thereby allows GNU emacs users to make full use of the mouse and function keys.
GNU emacs can be loaded with functions to interpret the mouse and function-key events to make a truly fine screen-oriented
editor for the Sun Workstation.

NOTE

GNU emacs has a special interface to the X Window System as well. The X Window System has many technical advan-
tages, it is an industry standard, and it is also free software. The Free Software Foundation urges you to try X Windows,
and distributes a free copy of X on emacs distribution tapes.

Function keys are translated to a sequence of the form ^X*[a-o][lrt]. The last character is l, r, or t, corresponding to
whether the key is among the Left, Right, or Top function keys. The third character indicates which button of the group was
pressed. Thus, the function key in the lower-right corner will transmit the sequence ^X*or. In addition, the [lrt] is affected
by the Control, Meta, and Shift keys. Unshifted Ctrl keys will be nonalphabetic: C-l is [,], C-r is [2], C-t is [4].

Mouse buttons are encoded as ˆXˆ@([124] x y)\n. ˆXˆ@ is the standard GNU emacs mouse event prefix; it is followed by a list
indicating the button pressed and the character row and column of the point in the window where the mouse cursor is, and
followed by a newline character. In GNU emacs, the ˆXˆ@ dispatches to a mouse event handler which then reads the following
list.

OPTIONS
emacstool supports all the standard window arguments, including font and icon specifiers.

By default, emacstool runs the program emacs in the created subwindow. The value of the environment variable EMACSTOOL
can be used to override this if your version of emacs is not accessible on your search path by the name emacs. In addition, the
run command can be set by the pathname following the last occurrence of the –rc flag. This is convenient for using emacstool
to run on remote machines.

All other command-line arguments not used by the window system are passed as arguments to the program that runs in the
emacstool window.

For example,

local% (emacstool -rc rlogin remote -8 &)&

will create an emacstool window logged in to a machine named remote. If emacs is run from this window, emacstool will
encode mouse and function keys, and send them to rlogin. If emacs is run from this shell on the remote machine, it will see
the mouse and function keys properly. However, since the remote host does not have access to the screen, the cursor cannot
be changed, menus will not appear, and the selection buffer (STUFF) is limited.

135

USING WITH GNU emacs
The GNU emacs files lisp/term/sun.el, lisp/sun-mouse.el, lisp/sun-fns.el, and src/sunfns.c provide emacs support
for the emacstool and function keys. emacstool will automatically set the TERM environment variable to be sun and unset
the environment variable TERMCAP. That is, these variables will not be inherited from the shell that starts emacstool. Since the
terminal type is SUN (that is, the environment variable TERM is set to SUN), emacs will automatically load the file lisp/term/sun.
This, in turn, will ensure that sun-mouse.el is autoloaded when any mouse events are detected. It is suggested that sun-mouse
and sun-fns be loaded in your site-init.el file, so that they will always be loaded when running on a Sun workstation.

In addition, emacstool sets the environment variable IN_EMACSTOOL = “t”. Lisp code in your ˜/.emacs can use (getenv
“IN_EMACSTOOL”) to determine whether to do emacstool-specific initialization. Sun.el uses this to automatically call emacstool-
init if (getenv “IN_EMACSTOOL”) is defined.

The file src/sunfns.c defines several useful functions for emacs on the Sun. Among these are procedures to pop up SunView
menus, put and get from the SunView STUFF buffer, and a procedure for changing the cursor icon. If you want to define or
edit cursor icons, there is a rudimentary mouse-driven icon editor in the file lisp/sun-cursors.el. Try invoking (sc:edit-
cursor).

BUGS
It takes a few milliseconds to create a menu before it pops up.

ENVIRONMENT VARIABLES
EMACSTOOL, IN_EMACSTOOL, TERM, TERMCAP

FILES
emacs

SEE ALSO
emacs(1), .../etc/SUN-SUPPORT, .../lisp/term/sun.el

etags
etags—Generate tag file for emacs

ctags—Generate tag file for vi

SYNOPSIS
etags [–aCDSVH] [–i file][–o tagfile]
[--c++] [--no–defines] [--ignore–indentation] [--help] [--version]
[--include=file] [--output=tagfile] [--append] file ...

ctags [–aCdSVH] [–BtTuvwx] [–o tagfile]
[--c++] [--defines] [--ignore–indentation]
[--backward–search] [--forward–search] [--typedefs] [--typedefs–and–c++]
[--no–warn] [--cxref] [--help] [--version]
[--output=tagfile] [--append] [--update] file ...

DESCRIPTION
The etags program is used to create a tag table file, in a format understood by emacs(1); the ctags program is used to create a
similar table in a format understood by vi(1) . Both forms of the program understand the syntax of C, FORTRAN, Pascal,
LaTeX, Scheme, emacs Lisp/Common Lisp, and most assembler–like syntaxes. Both forms read the files specified on the
command line, and write a tag table (defaults: TAGS for etags, tags for ctags) in the current working directory. The programs
recognize the language used in an input file based on its filename and contents; there are no switches for specifying the
language.

etags

Part I: User Commands136

OPTIONS
Some options make sense only for the vi-style tag files produced by ctags; etags does not recognize them. The programs
accept unambiguous abbreviations for long option names.

–a, --append Append to existing tag file. (For vi-format tag files, see also --update.)

–B, --backward–search Tag files written in the format expected by vi contain regular expression search instructions;
the –B option writes them using the delimiter ?, to search backwards through files. The
default is to use the delimiter / to search forwards through files. Only ctags accepts this
option.

–C, --c++ Treat files with .c and .h extensions as C++ code, not C code. Files with .C, .H, .cxx, .hxx,
or .cc extensions are always assumed to be C++ code.

–d, --defines Create tag entries for C preprocessor definitions, too. This is the default behavior for etags,
so this option is only accepted by ctags.

–D, --no–defines Do not create tag entries for C preprocessor definitions. This may make the tags file much
smaller if many header files are tagged. This is the default behavior for ctags, so this option
is only accepted by etags.

-i file, --include=file Include a note in tag file indicating that, when searching for a tag, one should also consult
the tags file file after checking the current file. Only etags accepts this option.

–o tagfile, --output=tagfile Explicit name of file for tag table; overrides default TAGS or tags. (But ignored with –v or
–x.)

–S, --ignore–indentation Don’t rely on indentation as much as we normally do. Currently, this means not to assume
that a closing brace in the first column is the final brace of a function or structure definition
in C and C++.

–t, --typedefs Record typedefs in C code as tags. Since this is the default behavior of etags, only ctags
accepts this option.

–T, --typedefs–and–c++ Generate tag entries for typedefs, struct, enum, and union tags, and C++ member functions.
Since this is the default behavior of etags, only ctags accepts this option.

–u, --update Update tag entries for files specified on command line, leaving tag entries for other files in
place. Currently, this is implemented by deleting the existing entries for the given files and
then rewriting the new entries at the end of the tags file. It is often faster to simply rebuild
the entire tag file than to use this. Only ctags accepts this option.

–v, --vgrind Instead of generating a tag file, write index (in vgrind format) to standard output. Only
ctags accepts this option.

–w, --no–warn Suppress warning messages about duplicate entries. The etags program does not check for
duplicate entries, so this option is not allowed with it.

–x, --cxref Instead of generating a tag file, write a cross-reference (in cxref format) to standard output.
Only ctags accepts this option.

–H, --help Print usage information.

–V, --version Print the current version of the program (same as the version of the emacs etags is shipped
with).

SEE ALSO
emacs entry in info; GNU Emacs Manual, Richard Stallman.

cxref(1), emacs(1), vgrind(1), vi(1).

COPYING
Copyright  1992 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

137

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions
for modified versions, except that this permission notice may be included in translations approved by the Free Software
Foundation instead of in the original English.

GNU Tools, 19 April 1994

expand
expand—Convert tabs to spaces

SYNOPSIS
expand [–tab1[,tab2[,...]]] [–t tab1[,tab2[,...]]] [–i] [—tabs=tab1[,tab2[,...]]]
[--initial] [--help] [--version] [file...]

DESCRIPTION
This manual page documents the GNU version of expand. expand writes the contents of each given file, or the standard input
if none are given or when a file named – is given, to the standard output, with tab characters converted to the appropriate
number of spaces. By default, expand converts all tabs to spaces. It preserves backspace characters in the output; they
decrement the column count for tab calculations. The default action is equivalent to –8 (set tabs every 8 columns).

OPTIONS
–, –t, --tabs tab1[,tab2[,...]] If only one tab stop is given, set the tabs tab1 spaces apart instead of the default 8.

Otherwise, set the tabs at columns tab1, tab2, and so forth (numbered from 0) and
replace any tabs beyond the tab stops given with single spaces. If the tab-stops are
specified with the –t or --tabs option, they can be separated by blanks as well as by
commas.

-i, --initial Only convert initial tabs (those that precede all nonspace or tab characters) on each
line to spaces.

--help Print a usage message and exit with a nonzero status.

--version Print version information on standard output then exit.

GNU Text Utilities

find
find—Search for files in a directory hierarchy

SYNOPSIS
find [path...] [expression]

DESCRIPTION
This manual page documents the GNU version of find. find searches the directory tree rooted at each given filename by
evaluating the given expression from left to right, according to the rules of precedence (see “Operators,” later in this manual
page), until the outcome is known (the left side is False for AND operations, True for OR), at which point find moves on to the
next filename.

The first argument that begins with –, (,), ,, or ! is taken to be the beginning of the expression; any arguments before it are
paths to search, and any arguments after it are the rest of the expression. If no paths are given, the current directory is used. If
no expression is given, the expression –print is used.

find exits with status 0 if all files are processed successfully, greater than 0 if errors occur.

find

Part I: User Commands138

EXPRESSIONS
The expression is made up of options (which affect overall operation rather than the processing of a specific file, and always
return True), tests (which return a True or False value), and actions (which have side effects and return a True or False value),
all separated by operators. –and is assumed where the operator is omitted. If the expression contains no actions other than –
prune, –print is performed on all files for which the expression is true.

OPTIONS
All options always return True. They always take effect, rather than being processed only when their place in the expression is
reached. Therefore, for clarity, it is best to place them at the beginning of the expression.

–daystart Measure times (for –amin, –atime, –cmin, –ctime, –mmin, and –mtime) from the beginning of today
rather than from 24 hours ago.

–depth Process each directory’s contents before the directory itself.

–follow Dereference symbolic links. Implies –noleaf.

–help, —help Print a summary of the command-line usage of find and exit.

–maxdepth levels Descend at most levels (a nonnegative integer) levels of directories below the command-line
arguments. –maxdepth 0 means only apply the tests and actions to the command-line arguments.

–mindepth levels Do not apply any tests or actions at levels less than levels (a nonnegative integer). –mindepth 1
means process all files except the command-line arguments.

–mount Don’t descend directories on other filesystems. An alternate name for –xdev, for compatibility with
some other versions of find.

–noleaf Do not optimize by assuming that directories contain two fewer subdirectories than their hard link
count. This option is needed when searching filesystems that do not follow the UNIX directory-
link convention, such as CD-ROM or MS-DOS filesystems or AFS volume mount points. Each
directory on a normal UNIX filesystem has at least 2 hard links: its name and its . entry. Addition-
ally, its subdirectories (if any) each have a .. entry linked to that directory. When find is examining
a directory, after it has statted two fewer subdirectories than the directory’s link count, it knows
that the rest of the entries in the directory are nondirectories (leaf files in the directory tree). If
only the files’ names need to be examined, there is no need to stat them; this gives a significant
increase in search speed.

–version, —version Print the find version number and exit.

–xdev Don’t descend directories on other filesystems.

TESTS
Numeric arguments can be specified as

+n Greater than n.

–n Less than n.

n Exactly n.

–amin n File was last accessed n minutes ago.

–anewer file File was last accessed more recently than file was modified. –anewer is affected by –follow only if –
follow comes before –anewer on the command line.

–atime n File was last accessed n*24 hours ago.

–cmin n File’s status was last changed n minutes ago.

–cnewer file File’s status was last changed more recently than file was modified. –cnewer is affected by –follow
only if –follow comes before –cnewer on the command line.

–ctime n File’s status was last changed n*24 hours ago.

–empty File is empty and is either a regular file or a directory.

–false Always false.

139

–fstype type File is on a filesystem of type type. The valid filesystem types vary among different versions of
UNIX; an incomplete list of filesystem types that are accepted on some version of UNIX or another
is: ufs, 4.2, 4.3, nfs, tmp, mfs, S51K, S52K. You can use –printf with the %F directive to see the types
of your filesystems.

–gid n File’s numeric group ID is n.

–group gname File belongs to group gname (numeric group ID allowed).

–ilname pattern Like –lname, but the match is case-insensitive.

–iname pattern Like –name, but the match is case-insensitive. For example, the patterns fo* and F?? match the
filenames Foo, FOO, foo, fOo, and so on.

–inum n File has inode number n.

–ipath pattern Like –path, but the match is case-insensitive.

–iregex pattern Like –regex, but the match is case-insensitive.

–links n File has n links.

–lname pattern File is a symbolic link whose contents match shell pattern pattern. The meta characters do not treat
/ or . specially.

–mmin n File’s data was last modified n minutes ago.

–mtime n File’s data was last modified n*24 hours ago.

–name pattern Base of filename (the path with the leading directories removed) matches shell pattern pattern. The
meta characters (*, ?, and []) do not match a . at the start of the base name. To ignore a directory
and the files under it, use –prune; see an example in the description of –path.

–newer file File was modified more recently than file. –newer is affected by –follow only if –follow comes before
–newer on the command line.

–nouser No user corresponds to file’s numeric user ID.

–nogroup No group corresponds to file’s numeric group ID.

–path pattern Filename matches shell pattern pattern. The meta characters do not treat / or . specially; so, for
example,

find . –path ‘./sr*sc’

will print an entry for a directory called ./src/misc (if one exists). To ignore a whole directory tree,
use –prune rather than checking every file in the tree. For example, to skip the directory src/emacs
and all files and directories under it, and print the names of the other files found, do something like
this:

find . –path ‘./src/emacs’ -prune -o -print

–perm mode File’s permission bits are exactly mode (octal or symbolic). Symbolic modes use mode 0 as a point
of departure.

–perm –mode All of the permission bits mode are set for the file.

–perm +mode Any of the permission bits mode are set for the file.

–regex pattern Filename matches regular expression pattern. This is a match on the whole path, not a search. For
example, to match a file named ./fubar3, you can use the regular expression .*bar. or .*b.*3, but
not b.*r3.

–size n[bckw] File uses n units of space. The units are 512-byte blocks by default or if b follows n, bytes if c
follows n, kilobytes if k follows n, or 2-byte words if w follows n. The size does not count indirect
blocks, but it does count blocks in sparse files that are not actually allocated.

–true Always true.

–type c File is of type c. Possible types:

b Block (buffered) special

c Character (unbuffered) special

d Directory

p Named pipe (FIFO)

find

Part I: User Commands140

f Regular file l symbolic link

s Socket

–uid n File’s numeric user ID is n.

–used n File was last accessed n days after its status was last changed.

–user uname File is owned by user uname (numeric user ID allowed).

–xtype c The same as –type unless the file is a symbolic link. For symbolic links: if –follow has not been
given, True if the file is a link to a file of type c; if –follow has been given, True if c is l. In other
words, for symbolic links, –xtype checks the type of the file that –type does not check.

ACTIONS
–exec command; Execute command; True if 0 status is returned. All following arguments to find are taken to be

arguments to the command until an argument consisting of ; is encountered. The string {} is
replaced by the current filename being processed everywhere it occurs in the arguments to the
command, not just in arguments where it is alone, as in some versions of find. Both of these
constructions might need to be escaped (with a \) nor quoted to protect them from expansion by
the shell. The command is executed in the starting directory.

–fls file True; like –ls but write to file like –fprint.

–fprint file True; print the full filename into file file. If file does not exist when find is run, it is created; if it
does exist, it is truncated. The filenames /dev/stdout and /dev/stderr are handled specially; they
refer to the standard output and standard error output, respectively.

–fprint0 file True; like –print0 but write to file like –fprint.

–fprintf file format True; like –printf but write to file like –fprint.

–ok command; Like –exec but ask the user first (on the standard input); if the response does not start with y or Y,
do not run the command, and return False.

–print True; print the full filename on the standard output, followed by a newline.

–print0 True; print the full filename on the standard output, followed by a null character. This allows
filenames that contain newlines to be correctly interpreted by programs that process the find
output.

–printf format True; print format on the standard output, interpreting n escapes and % directives. Field widths and
precisions can be specified as with the printf C function. Unlike –print, –printf does not add a
newline at the end of the string. The escapes and directives are as follows:

\a Alarm bell

\b Backspace

\c Stop printing from this format immediately and flush the output

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\\ A literal backslash (‘\’)

A \ character followed by any other character is treated as an ordinary character, so they both are
printed:

%% A literal percent sign.

%a File’s last access time in the format returned by the C ctime function.

%Ak File’s last access time in the format specified by k, which is either @ or a directive for the C
strftime function. The possible values for k are listed below; some of them might not be
available on all systems, due to differences in strftime between systems.

@ seconds since Jan. 1, 1970, 00:00 GMT.

141

Time fields:

H Hour (00..23)

I Hour (01..12)

k Hour (0..23)

l Hour (1..12)

M Minute (00..59)

p Locale’s a.m. or p.m.

r Time, 12-hour (hh:mm:ss [AP]M)

u Second (00..61)

T Time, 24-hour (hh:mm:ss)

X Locale’s time representation (H:M:S)

Z Time zone (for example, EDT), or nothing if no time zone is
determinable

Date fields:

a Locale’s abbreviated weekday name (Sun..Sat)

A Locale’s full weekday name, variable length (Sunday..Saturday)

b Locale’s abbreviated month name (Jan..Dec)

B Locale’s full month name, variable length (January.. December)

c Locale’s date and time (Sat Nov 04 12:02:33 EST 1989)

d Day of month (01..31)

D Date (mm/dd/yy)

h Same as b

j Day of year (001..366)

m Month (01..12)

U Week number of year with Sunday as first day of week (00..53)

w Day of week (0..6)

W Week number of year with Monday as first day of week (00..53)

x Locale’s date representation (mm/dd/yy)

y Last two digits of year (00..99)

Y Year (1970...)

%b File’s size in 512-byte blocks (rounded up).

%c File’s last status change time in the format returned by the C ctime function.

%Ck File’s last status change time in the format specified by k, which is the same as for %A.

%d File’s depth in the directory tree; 0 means the file is a command-line argument.

%f File’s name with any leading directories removed (only the last element).

%F Type of the filesystem the file is on; this value can be used for –fstype.

%g File’s group name, or numeric group ID if the group has no name.

%G File’s numeric group ID.

%h Leading directories of file’s name (all but the last element).

%H Command-line argument under which file was found.

%i File’s inode number (in decimal).

%k File’s size in 1K blocks (rounded up).

%l Object of symbolic link (empty string if file is not a symbolic link).

find

Part I: User Commands142

%m File’s permission bits (in octal).

%n Number of hard links to file.

%p File’s name.

%P File’s name with the name of the command-line argument under which it was found
removed.

%s File’s size in bytes.

%t File’s last modification time in the format returned by the C ctime function.

%Tk File’s last modification time in the format specified by k, which is the same as for %A.

%u File’s username, or numeric user ID if the user has no name.

%U File’s numeric user ID.

A % character followed by any other character is discarded (but the other character is
printed).

–prune If –depth is not given, True; do not descend the current directory.

If –depth is given, False; no effect.

–ls True; list current file in ls –dils format on standard output. The block counts are of 1K blocks,
unless the environment variable POSIXLY_CORRECT is set, in which case 512- byte blocks are used.

OPERATORS
Listed in order of decreasing precedence:

(expr) Force precedence.

! expr True if expr is false.

–not expr Same as ! expr.

expr1 expr2 And (implied); expr2 is not evaluated if expr1 is false.

expr1 –a expr2 Same as expr1 expr2.

expr1 –and expr2 Same as expr1 expr2.

expr1 –o expr2 Or; expr2 is not evaluated if expr1 is true.

expr1 –or expr2 Same as expr1 –o expr2.

expr1, expr2 List; both expr1 and expr2 are always evaluated. The value of expr1 is discarded; the value of the list
is the value of expr2.

SEE ALSO
locate(1L), locatedb(5L), updatedb(1L), xargs(1L) Finding Files (online in info, or printed)

GNU File Utilities

fitstopnm
fitstopnm—Convert a FITS file into a portable anymap

SYNOPSIS
fitstopnm [-image N][-noraw][-scanmax][-printmax][-min f][-max f][FITSfile]

DESCRIPTION
Reads a FITS file as input. Produces a portable pixmap if the FITS file consists of 3 image planes (NAXIS = 3 and NAXIS3 = 3),
a portable graymap if the FITS file consists of 2 image planes (NAXIS = 2), or whenever the –image flag is specified. The
results may need to be flipped top for bottom; if so, just pipe the output through pnmflip -tb.

143

OPTIONS
The -image option is for FITS files with three axes. The assumption is that the third axis is for multiple images, and this
option lets you select which one you want.

Flags -min and -max can be used to override the min and max values as read from the FITS header or the image data if no
DATAMIN and DATAMAX keywords are found. Flag -scanmax can be used to force the program to scan the data even when DATAMIN
and DATAMAX are found in the header. If -printmax is specified, the program will just print the min and max values and quit.
Flag -noraw can be used to force the program to produce an ASCII portable anymap.

The program will tell what kind of anymap is writing. All flags can be abbreviated to their shortest unique prefix.

REFERENCES
FITS stands for Flexible Image Transport System. A full description can be found in Astronomy & Astrophysics Supplement
Series 44 (1981), page 363.

SEE ALSO
pnmtofits(1), pgm(5), pnmflip(1)

AUTHOR
Copyright  1989 by Jef Poskanzer, with modifications by Daniel Briggs (dbriggs@nrao.edu) and Alberto Accomazzi
(alberto@cfa.harvard.edu)

20 September 1989

fmt
fmt—Adjust line-length for paragraphs of text

SYNOPSIS
fmt [–width][files]...

DESCRIPTION
fmt is a simple text formatter. It inserts or deletes newlines, as necessary, to make all lines in a paragraph be approximately the
same width. It preserves indentation and word spacing.

The default line width is 72 characters. You can override this with the –width flag. If you don’t name any files on the
command line, then fmt will read from stdin.

It is typically used from within vi to adjust the line breaks in a single paragraph. To do this, move the cursor to the top of
the paragraph, type !gfmt, and press Return.

AUTHOR
Steve Kirkendall (kirkenda@cs.pdx.edu)

fold
fold—Wrap each input line to fit in specified width

SYNOPSIS
fold [–bs] [–w width] [—bytes] [—spaces] [—width=width] [—help]
[—version] [file...]

fold

Part I: User Commands144

DESCRIPTION
This manual page documents the GNU version of fold. fold prints the specified files, or the standard input when no files are
given or the filename – is encountered, on the standard output. It breaks long lines into multiple shorter lines by inserting a
newline at column 80. It counts screen columns, so tab characters usually take more than one column, backspace characters
decrease the column count, and carriage return characters set the column count back to zero.

OPTIONS
–b, —bytes Count bytes rather than columns, so that tabs, backspaces, and carriage returns are each counted as

taking up one column, just like other characters.

–s, —spaces Break at word boundaries. If the line contains any blanks, the line is broken after the last blank that
falls within the maximum line length. If there are no blanks, the line is broken at the maximum
line length, as usual.

–w, —width width Use a maximum line length of width columns instead of 80.
—help Print a usage message and exit with a nonzero status.

—version Print version information on standard output then exit.

GNU Text Utilities

free
free—Display amount of free and used memory in the system

SYNOPSIS
free [-b | -k | -m] [-o] [-s delay] [-t]

DESCRIPTION
free displays the total amount of free and used physical and swap memory in the system, as well as the shared memory and
buffers used by the kernel.

OPTIONS
The -b switch displays the amount of memory in bytes; the -k switch (set by default) displays it in kilobytes; the -m switch
displays it in megabytes.

The -t switch displays a line containing the totals.

The -o switch disables the display of a “buffer adjusted” line. Unless specified free subtracts/adds buffer memory from/to the
used/free memory reports (respectively!).

The -s switch activates continuous polling delay seconds apart. You may actually specify any floating point number for
delay, usleep(3) is used for microsecond resolution delay times.

FILES
/proc/meminfo Memory information

SEE ALSO
ps(1), top(1)

AUTHORS
Brian Edmonds

Cohesive Systems, 20 March 1993

145

fsinfo
fsinfo—X font server information utility

SYNOPSIS
fsinfo [–server servername]

DESCRIPTION
fsinfo is a utility for displaying information about an X font server. It is used to examine the capabilities of a server, the
predefined values for various parameters used in communicating between clients and the server, and the font catalogues and
alternate servers that are available.

EXAMPLE
The following is a sample produced by fsinfo.

name of server: hansen:7100
version number: 1
vendor string: Font Server Prototype
vendor release number: 17
maximum request size: 16384 longwords (65536 bytes)
number of catalogues: 1
all
Number of alternate servers: 2
#0 hansen:7101
#1 hansen:7102
number of extensions: 0

ENVIRONMENT
FONTSERVER To get the default fontserver

SEE ALSO
xfs(1), fslsfonts(1)

AUTHOR
Dave Lemke (Network Computing Devices, Inc.)

X Version 11 Release 6

fslsfonts
fslsfonts—List fonts served by X font server

SYNOPSIS
fslsfonts [–options ...] [–fn pattern]

DESCRIPTION
fslsfonts lists the fonts that match the given pattern. The wildcard character * may be used to match any sequence of
characters (including none), and ? to match any single character. If no pattern is given, * is assumed.

The * and ? characters must be quoted to prevent them from being expanded by the shell.

OPTIONS
–server host:port This option specifies the X font server to contact.

–l Lists some attributes of the font on one line in addition to its name.

fslsfonts

Part I: User Commands146

–ll Lists font properties in addition to –l output.

–lll Supported for compatibility with xlsfonts, but output is the same as for –ll.

–m This option indicates that long listings should also print the minimum and maximum bounds of
each font.

–C This option indicates that listings should use multiple columns. This is the same as –n 0.

–1 This option indicates that listings should use a single column. This is the same as –n 1.

–w width This option specifies the width in characters that should be used in figuring out how many
columns to print. The default is 79.

–n columns This option specifies the number of columns to use in displaying the output. The default is 0,
which will attempt to fit as many columns of font names into the number of character specified by
–w width.

–u This option indicates that the output should be left unsorted.

SEE ALSO
xfs(1), showfont(1), xlsfonts(1)

ENVIRONMENT
FONTSERVER To get the default host and port to use

BUGS
Doing fslsfonts –l can tie up your server for a very long time. This is really a bug with single-threaded nonpreemptable
servers, not with this program.

AUTHOR
Dave Lemke (Network Computing Devices, Inc.)

X Version 11 Release 6 1

fstobdf
fstobdf—Generate BDF font from X font server

SYNOPSIS
fstobdf [–server server] –fn fontname

DESCRIPTION
The fstobdf program reads a font from a font server and prints a BDF file on the standard output that may be used to
recreate the font. This is useful in testing servers, debugging font metrics, and reproducing lost BDF files.

OPTIONS
–server servername This option specifies the server from which the font should be read.

–fn fontname This option specifies the font for which a BDF file should be generated.

ENVIRONMENT
FONTSERVER Default server to use

SEE ALSO
xfs(1), bdftopcf(1), fslsfonts(1)

147

AUTHOR
Olaf Brandt (Network Computing Devices), Dave Lemke (Network Computing Devices), Jim Fulton (MIT X Consortium)

X Version 11 Release 6

fstopgm
fstopgm—Convert a Usenix FaceSaver file into a portable graymap

SYNOPSIS
fstopgm [fsfile]

DESCRIPTION
Reads a Usenix FaceSaver file as input. Produces a portable graymap as output.

FaceSaver files sometimes have rectangular pixels. Although fstopgm won’t rescale them into square pixels for you, it will give
you the precise pnmscale command that will do the job. Because of this, reading a FaceSaver image is a two-step process.
First you do

fstopgm > /dev/null

This will tell you whether you need to use pnmscale. Then use one of the following pipelines:

fstopgm | pgmnorm
fstopgm | pnmscale -whatever | pgmnorm

To go to PBM, you want something more like one of these:

fstopgm | pnmenlarge 3 | pgmnorm | pgmtopbm
fstopgm | pnmenlarge 3 | pnmscale <whatever> | pgmnorm | pgmtopbm

You want to enlarge when going to a bitmap because otherwise you lose information; but enlarging by more than 3 does not
look good.

FaceSaver is a registered trademark of Metron Computerware Ltd. of Oakland, CA.

SEE ALSO
pgmtofs(1), pgm(5), pgmnorm(1), pnmenlarge(1), pnmscale(1), pgmtopbm(1)

AUTHOR
Copyright  1989 by Jef Poskanzer

6 April 1989

ftp
ftp—ARPAnet file transfer program

SYNOPSIS
ftp [-v] [-d] [-i] [-n] [-g] [host]

DESCRIPTION
ftp is the user interface to the ARPAnet standard File Transfer Protocol. The program allows a user to transfer files to and
from a remote network site.

Options may be specified at the command line, or to the command interpreter.

ftp

Part I: User Commands148

-v Verbose option forces ftp to show all responses from the remote server, as well as
report on data transfer statistics.

-n Restrains ftp from attempting auto-login upon initial connection. If auto-login is
enabled, ftp will check the (see below) file in the user’s home directory for an entry
describing an account on the remote machine. If no entry exists, ftp will prompt for
the remote machine login name (default is the user identity on the local machine),
and, if necessary, prompt for a password and an account with which to login.

-i Turns off interactive prompting during multiple file transfers.

-d Enables debugging.

-g Disables filename globbing.

The client host with which ftp is to communicate may be specified on the command line. If this is done, ftp will immedi-
ately attempt to establish a connection to an FTP server on that host; otherwise, ftp will enter its command interpreter and
await instructions from the user. When ftp is awaiting commands from the user, the prompt

ftp>

is provided to the user. The following commands are recognized by ftp :

! [command] [args] Invoke an interactive shell on the local machine. If there are arguments, the first is
taken to be a command to execute directly, with the rest of the arguments as its
arguments.

$ macro-name [args] Execute the macro macro-name that was defined with the macdef command.
Arguments are passed to the macro unglobbed.

account [passwd] Supply a supplemental password required by a remote system for access to resources
once a login has been successfully completed. If no argument is included, the user
will be prompted for an account password in a nonechoing input mode.

append local-file [remote-file] Append a local file to a file on the remote machine. If remote-file is left unspecified,
the local filename is used in naming the remote file after being altered by any ntrans
or nmap setting. File transfer uses the current settings for type, format, mode, and
structure.

ascii Set the file transfer type to network ASCII. This is the default type.

bell Arrange that a bell be sounded after each file transfer command is completed.

binary Set the file transfer type to support binary image transfer.

bye Terminate the FTP session with the remote server and exit ftp. An end of file will
also terminate the session and exit.

case Toggle remote computer filename case mapping during mget commands. When case
is on (default is off), remote computer filenames with all letters in upper case are
written in the local directory with the letters mapped to lowercase.

cd remote-directory Change the working directory on the remote machine to remote-directory.

cdup Change the remote machine working directory to the parent of the current remote
machine working directory.

chmod mode file-name Change the permission modes of the file file-name on the remote system to mode.

close Terminate the FTP session with the remote server, and return to the command
interpreter. Any defined macros are erased.

cr Toggle carriage return stripping during ASCII type file retrieval. Records are
denoted by a carriage return/linefeed sequence during ASCII type file transfer.
When cr is on (the default), carriage returns are stripped from this sequence to
conform with the UNIX single linefeed record delimiter. Records on non-UNIX
remote systems may contain single linefeeds; when an ASCII type transfer is made,
these linefeeds may be distinguished from a record delimiter only when cr is off.

delete remote-file Delete the file remote-file on the remote machine.

149

debug [debug-value] Toggle debugging mode. If an optional debug-value is specified, it is used to set the
debugging level. When debugging is on, ftp prints each command sent to the
remote machine, preceded by the string —>.

dir [remote-directory] [local-file] Print a listing of the directory contents in the directory, remote-directory, and,
optionally, placing the output in local-file. If interactive prompting is on, ftp will
prompt the user to verify that the last argument is indeed the target local file for
receiving dir output. If no directory is specified, the current working directory on
the remote machine is used. If no local file is specified, or local-file is -, output
comes to the terminal.

disconnect A synonym for close.

form format Set the file transfer form to format. The default format is file.

get remote-file [local-file] Retrieve the remote-file and store it on the local machine. If the local filename is
not specified, it is given the same name it has on the remote machine, subject to
alteration by the current case, ntrans, and nmap settings. The current settings for
type, form, mode, and structure are used while transferring the file.

glob Toggle filename expansion for mdelete, mget, and mput. If globbing is turned off with
glob, the filename arguments are taken literally and not expanded. Globbing for mput
is done as in csh 1. For mdelete and mget, each remote filename is expanded
separately on the remote machine and the lists are not merged. Expansion of a
directory name is likely to be different from expansion of the name of an ordinary
file: the exact result depends on the foreign operating system and FTP server, and
can be previewed by doing mls remote-files Note: mget and mput are not meant to
transfer entire directory subtrees of files. That can be done by transferring a tar 1
archive of the subtree (in binary mode).

hash Toggle hash-sign (#) printing for each data block transferred. The size of a data block
is 1024 bytes.

help [command] Print an informative message about the meaning of command. If no argument is given,
ftp prints a list of the known commands.

idle [seconds] Set the inactivity timer on the remote server to seconds seconds. If seconds is
omitted, the current inactivity timer is printed.

lcd [directory] Change the working directory on the local machine. If no directory is specified, the
user’s home directory is used.

ls [remote-directory] [local-file] Print a listing of the contents of a directory on the remote machine. The listing
includes any system-dependent information that the server chooses to include; for
example, most systems will produce output from the command ls l. (See also
nlist.) If remote-directory is left unspecified, the current working directory is used.
If interactive prompting is on, ftp will prompt the user to verify that the last
argument is indeed the target local file for receiving ls output. If no local file is
specified, or if local-file is -, the output is sent to the terminal.

macdef macro-name Define a macro. Subsequent lines are stored as the macro macro-name; a null line
(consecutive newline characters in a file or carriage returns from the terminal)
terminates macro input mode. There is a limit of 16 macros and 4096 total
characters in all defined macros. Macros remain defined until a close command is
executed. The macro processor interprets $ and \ as special characters. A $ followed
by a number (or numbers) is replaced by the corresponding argument on the macro
invocation command line. A $ followed by an i signals that macro processor that the
executing macro is to be looped. On the first pass $i is replaced by the first argument
on the macro invocation command line, on the second pass it is replaced by the
second argument, and so on. A \ followed by any character is replaced by that
character. Use the \to prevent special treatment of the $.

mdelete [remote-files] Delete the remote-files on the remote machine.

ftp

Part I: User Commands150

mdir remote-files local-file Like dir, except multiple remote files may be specified. If interactive prompting is
on, ftp will prompt the user to verify that the last argument is indeed the target local
file for receiving mdir output.

mget remote-files Expand the remote-files on the remote machine and do a get for each filename thus
produced. See glob for details on the filename expansion. Resulting filenames will
then be processed according to case, ntrans, and nmap settings. Files are transferred
into the local working directory, which can be changed with lcd directory ; new local
directories can be created with !mkdir directory.

mkdir directory-name Make a directory on the remote machine.

mls remote-files local-file Like nlist, except multiple remote files may be specified, and the local-file must
be specified. If interactive prompting is on, ftp will prompt the user to verify that
the last argument is indeed the target local file for receiving mls output.

mode [mode-name] Set the file transfer mode to mode-name. The default mode is stream mode.

modtime file-name Show the last modification time of the file on the remote machine.

mput local-files Expand wildcards in the list of local files given as arguments and do a put for each
file in the resulting list. See glob for details of filename expansion. Resulting
filenames will then be processed according to ntrans and nmap settings.

newer file-name Get the file only if the modification time of the remote file is more recent that the
file on the current system. If the file does not exist on the current system, the remote
file is considered newer. Otherwise, this command is identical to get.

nlist [remote-directory] Print a list of the files in a directory on the remote machine. If remote-directory is
[local-file] left unspecified, the current working directory is used. If interactive prompting is on,

ftp will prompt the user to verify that the last argument is indeed the target local file
for receiving nlist output. If no local file is specified, or if local-file is -, the
output is sent to the terminal.

nmap [inpattern] outpattern Set or unset the filename mapping mechanism. If no arguments are specified, the
filename mapping mechanism is unset. If arguments are specified, remote filenames
are mapped during mput commands and put commands issued without a specified
remote target filename. If arguments are specified, local filenames are mapped during
mget commands and get commands issued without a specified local target filename.
This command is useful when connecting to a non-UNIX remote computer with
different file naming conventions or practices. The mapping follows the pattern set
by inpattern and outpattern. Inpattern is a template for incoming filenames (which
may have already been processed according to the ntrans and case settings). Variable
templating is accomplished by including the sequences $1, $2,..., $9 in inpattern.
Use \ to prevent this special treatment of the $ character. All other characters are
treated literally, and are used to determine the nmap inpattern variable values. For
example, given inpattern $1.$2 and the remote filename mydata.data, $1 would have
the value mydata, and $2 would have the value “data”. The outpattern determines the
resulting mapped filename. The sequences $1, $2,...., $9 are replaced by any value
resulting from the inpattern template. The sequence $0 is replaced by the original
filename. Additionally, the sequence seq1, seq2 is replaced by seq1 if seq1 is not a
null string; otherwise, it is replaced by seq2. For example, the command nmap
$1.$2.$3 [$1,$2].[$2,file] would yield the output filename myfile.data for
input filenames my-file. data and myfile.data.old, myfile.file for the input
filename my-file, and myfile.myfile for the input filename .myfile. Spaces may be
included in outpattern, as in the example: nmap $1 sed “s/ *$//” > $1. Use the \
character to prevent special treatment of the $, [, [, and , characters.

ntrans [inchars] [outchars] Set or unset the filename character translation mechanism. If no arguments are
specified, the filename character translation mechanism is unset. If arguments are
specified, characters in remote filenames are translated during mput commands and

151

put commands issued without a specified remote target filename. If arguments are
specified, characters in local filenames are translated during mget commands and get
commands issued without a specified local target filename. This command is useful
when connecting to a non-UNIX remote computer with different file naming
conventions or practices. Characters in a filename matching a character in inchars
are replaced with the corresponding character in outchars. If the character’s position
in inchars is longer than the length of outchars, the character is deleted from the
filename.

open host [port] Establish a connection to the specified host FTP server. An optional port number
may be supplied, in which case, ftp will attempt to contact an FTP server at that
port. If the auto-login option is on (default), ftp will also attempt to automatically
log the user in to the FTP server (see below).

prompt Toggle interactive prompting. Interactive prompting occurs during multiple file
transfers to allow the user to selectively retrieve or store files. If prompting is turned
off (default is on), any mget or mput will transfer all files, and any mdelete will delete
all files.

proxy ftp-command Execute an ftp command on a secondary control connection. This command allows
simultaneous connection to two remote FTP servers for transferring files between
the two servers. The first proxy command should be an open, to establish the
secondary control connection. Enter the command “proxy ?” to see other ftp
commands executable on the secondary connection. The following commands
behave differently when prefaced by proxy :, open will not define new macros during
the auto-login process, close will not erase existing macro definitions, get and mget
transfer files from the host on the primary control connection to the host on the
secondary control connection, and put, mput, and append transfer files from the host
on the secondary control connection to the host on the primary control connection.
Third-party file transfers depend upon support of the FTP protocol PASV command
by the server on the secondary control connection.

put local-file [remote-file] Store a local file on the remote machine. If remote-file is left unspecified, the local
filename is used after processing according to any ntrans or nmap settings in naming
the remote file. File transfer uses the current settings for type, format, mode, and
structure.

pwd Print the name of the current working directory on the remote machine.

quit A synonym for bye.

quote arg1 arg2... The arguments specified are sent, verbatim, to the remote FTP server.

recv remote-file [local-file] A synonym for get.

reget remote-file [local-file] Reget acts like get, except that if local-file exists and is smaller than remote-file,
local-file is presumed to be a partially transferred copy of remote-file and the
transfer is continued from the apparent point of failure. This command is useful
when transferring very large files over networks that are prone to dropping
connections.

remotehelp [command-name] Request help from the remote FTP server. If a command-name is specified, it is supplied
to the server as well.

remotestatus [file-name] With no arguments, show status of remote machine. If file-name is specified, show
status of file-name on remote machine.

rename [from] [to] Rename the file from on the remote machine, to the file to.

reset Clear reply queue. This command resynchronizes command/reply sequencing with
the remote FTP server. Resynchronization may be necessary following a violation of
the FTP protocol by the remote server.

restart marker Restart the immediately following get or put at the indicated marker. On UNIX
systems, marker is usually a byte offset into the file.

ftp

Part I: User Commands152

rmdir directory-name Delete a directory on the remote machine.

runique Toggle storing of files on the local system with unique filenames. If a file already
exists with a name equal to the target local filename for a get or mget command, a .1
is appended to the name. If the resulting name matches another existing file, a .2 is
appended to the original name. If this process continues up to .99, an error message
is printed, and the transfer does not take place. The generated unique filename will
be reported. Note that runique will not affect local files generated from a shell
command. The default value is off.

send local-file [remote-file] A synonym for put.

sendport Toggle the use of PORT commands. By default, ftp will attempt to use a PORT
command when establishing a connection for each data transfer. The use of PORT
commands can prevent delays when performing multiple file transfers. If the PORT
command fails, ftp will use the default data port. When the use of PORT commands is
disabled, no attempt will be made to use PORT commands for each data transfer. This
is useful for certain FTP implementations which do ignore PORT commands but,
incorrectly, indicate they’ve been accepted.

site arg1 arg2... The arguments specified are sent, verbatim, to the remote FTP server as a SITE
command.

size file-name Return size of file-name on remote machine.

status Show the current status of ftp.

struct [struct-name] Set the file transfer structure to struct-name. By default stream structure is used.

sunique Toggle storing of files on remote machine under unique filenames. Remote FTP
server must support ftp protocol STOU command for successful completion. The
remote server will report unique name. Default value is off.

system Show the type of operating system running on the remote machine.

tenex Set the file transfer type to that needed to talk to TENEX machines.

trace Toggle packet tracing.

type [type-name] Set the file transfer type to type-name. If no type is specified, the current type is
printed. The default type is network ASCII.

umask [newmask] Set the default umask on the remote server to newmask. If newmask is omitted, the
current umask is printed.

user user-name [password] [account] Identify yourself to the remote FTP server. If the password is not specified and the
server requires it, ftp will prompt the user for it (after disabling local echo). If an
account field is not specified, and the FTP server requires it, the user will be
prompted for it. If an account field is specified, an account command will be relayed
to the remote server after the login sequence is completed if the remote server did
not require it for logging in. Unless ftp is invoked with auto-login disabled, this
process is done automatically on initial connection to the FTP server.

verbose Toggle verbose mode. In verbose mode, all responses from the FTP server are
displayed to the user. In addition, if verbose is on, when a file transfer completes,
statistics regarding the efficiency of the transfer are reported. By default, verbose is
on.

? [command] A synonym for help.

Command arguments which have embedded spaces may be quoted with quotation marks (“).

ABORTING A FILE TRANSFER
To abort a file transfer, use the terminal interrupt key (usually Ctrl-C). Sending transfers will be immediately halted.
Receiving transfers will be halted by sending an FTP protocol ABOR command to the remote server, and discarding any
further data received. The speed at which this is accomplished depends upon the remote server’s support for ABOR processing.

153

If the remote server does not support the ABOR command, an ftp> prompt will not appear until the remote server has
completed sending the requested file.

The terminal interrupt key sequence will be ignored when ftp has completed any local processing and is awaiting a reply
from the remote server. A long delay in this mode may result from the ABOR processing described earlier in this section, or
from unexpected behavior by the remote server, including violations of the FTP protocol. If the delay results from unex-
pected remote server behavior, the local ftp program must be killed by hand.

FILE NAMING CONVENTIONS
Files specified as arguments to ftp commands are processed according to the following rules:

If the filename - is specified, the stdin (for reading) or stdout (for writing) is used.

If the first character of the filename is j, the remainder of the argument is interpreted as a shell command. ftp then forks a
shell, using popen 3 with the argument supplied, and reads (writes) from the stdout (stdin). If the shell command includes
spaces, the argument must be quoted; for example, ls -lt. A particularly useful example of this mechanism is: dir more.

Failing the preceding checks, if “globbing” is enabled, local filenames are expanded according to the rules used in the csh 1;
c.f. the glob command. If the ftp command expects a single local file (for example, put), only the first filename generated by
the “globbing” operation is used.

For mget commands and get commands with unspecified local filenames, the local filename is the remote filename, which
may be altered by a case, ntrans, or nmap setting. The resulting filename may then be altered if runique is on.

For mput commands and put commands with unspecified remote filenames, the remote filename is the local filename, which
may be altered by an ntrans or nmap setting. The resulting filename may then be altered by the remote server if sunique is on.

FILE TRANSFER PARAMETERS
The FTP specification specifies many parameters that may affect a file transfer. The type may be one of ASCII, image
(binary), ebcdic, and local byte size (for PDP Ns -10s and PDP Ns -20s mostly). ftp supports the ASCII and image types of
file transfer, plus local byte size 8 for tenex mode transfers.

ftp supports only the default values for the remaining file transfer parameters: mode, form, and struct.

THE .netrc FILE
The file contains login and initialization information used by the auto-login process. It resides in the user’s home directory.
The following tokens are recognized; they may be separated by spaces, tabs, or newlines:

machine name Identify a remote machine name. The auto-login process searches the file for a machine token that
matches the remote machine specified on the ftp command line or as an open command argument.
When a match is made, the subsequent tokens are processed, stopping when the end of file is
reached or another machine or a default token is encountered.

default This is the same as machine name except that default matches any name. There can be only one
default token, and it must be after all machine tokens. This is normally used as default login
anonymous password user@site, thereby giving the user automatic anonymous ftp login to machines
not specified. This can be overridden by using the -n flag to disable auto-login.

login name Identify a user on the remote machine. If this token is present, the auto-login process will initiate a
login using the specified name.

password string Supply a password. If this token is present, the auto-login process will supply the specified string if
the remote server requires a password as part of the login process. Note that if this token is present
in the file for any user other than anonymous, ftp will abort the auto-login process if the is readable
by anyone besides the user.

account string Supply an additional account password. If this token is present, the auto-login process will supply
the specified string if the remote server requires an additional account password, or the auto-login
process will initiate an ACCT command if it does not.

ftp

Part I: User Commands154

macdef name Define a macro. This token functions like the ftp macdef command functions. A macro is defined
with the specified name; its contents begin with the next line and continue until a null line
(consecutive newline characters) is encountered. If a macro named init is defined, it is automati-
cally executed as the last step in the auto-login process.

ENVIRONMENT
ftp utilizes the following environment variables:

HOME For default location of a file, if one exists

SHELL For default shell

SEE ALSO
ftpd(8)

HISTORY
The ftp command appeared in BSD 4.2.

BUGS
Correct execution of many commands depends upon proper behavior by the remote server.

An error in the treatment of carriage returns in the BSD 4.2 ASCII-mode transfer code has been corrected. This correction
may result in incorrect transfers of binary files to and from BSD 4.2 servers using the ASCII type. Avoid this problem by
using the binary image type.

BSD 4.2, 30 July 1991

fuser
fuser—Identify processes using files

SYNOPSIS
fuser [–a|–s][–signal][–kmuv] filename ... [–][–signal][–kmuv] filename ...
fuser [–l]

DESCRIPTION
fuser displays the PIDs of processes using the specified files or file systems. In the default display mode, each filename is
followed by a letter denoting the type of access:

c Current directory.

e Executable being run.

f Open file. f is omitted in default display mode.

r Root directory.

m mmap’ed file or shared library.

fuser returns a nonzero return code if none of the specified files is accessed or in case of a fatal error. If at least one access has
been found, fuser returns zero.

OPTIONS
–a Show all files specified on the command line. By default, only files that are accessed by at least one process

are shown.

–k Kill processes accessing the file. Unless changed with -signal, SIGKILL is sent. A fuser process never kills
itself, but may kill other fuser processes.

155

u List all known signal names.

–m filename specifies a file on a mounted file system or a block device that is mounted. All processes accessing
files on that file system are listed. If a directory file is specified, it is automatically changed to filename/. to
use any file system that might be mounted on that directory.

–s Silent operation. –a, –u, and –v are ignored in this mode.

–signal Use the specified signal instead of SIGKILL when killing processes. Signals can be specified either by name
(for example, –HUP) or by number (for example, –1).

–u Append the username of the process owner to each PID.

–v Verbose mode. Processes are shown in a ps-like style. The fields PID, USER, and COMMAND are similar to ps.
ACCESS shows how the process accesses the file.

– Reset all options and set the signal back to SIGKILL.

FILES
/proc Location of the proc file system

EXAMPLES
fuser -km /home kills all processes accessing the file system /home in any way.

In this example:

if fuser -s /dev/ttyS1; then :; else something

fi invokes something if no other process is using /dev/ttyS1.

RESTRICTIONS
Processes accessing the same file or filesystem several times in the same way are only shown once.

AUTHOR
Werner Almesberger (<almesber@di.epfl.ch>U)

SEE ALSO
kill(1), killall(1), ps(1), kill(2)

Linux, 11 October 1994

g++
g++—GNU project C++ Compiler

SYNOPSIS
g++ [option | filename]. ..

DESCRIPTION
The C and C++ compilers are integrated; g++ is a script to call gcc with options to recognize C++. gcc processes input files
through one or more of four stages: preprocessing, compilation, assembly, and linking. This man page contains full
descriptions for only C++ specific aspects of the compiler, though it also contains summaries of some general-purpose
options. For a fuller explanation of the compiler, see gcc(1).

C++ source files use one of the suffixes .C, .cc, .cxx, .cpp, or .c++; preprocessed C++ files use the suffix .ii.

OPTIONS
There are many command-line options, including options to control details of optimization, warnings, and code generation,
which are common to both gcc and g++. For full information on all options, see gcc(1).

g++

Part I: User Commands156

Options must be separate: –dr is quite different from –d -r.

Most –f and –W options have two contrary forms: –fname and –fno–name (or –Wname and –Wno–name). Only the nondefault
forms are shown here.

–c Compile or assemble the source files, but do not link. The compiler output is an
object file corresponding to each source file.

–Dmacro Define macro macro with the string 1 as its definition.

–Dmacro=defn Define macro macro as defn.

–E Stop after the preprocessing stage; do not run the compiler proper. The output is
preprocessed source code, which is sent to the standard output.

–fall–virtual Treat all possible member functions as virtual, implicitly. All member functions
(except for constructor functions and new or delete member operators) are treated as
virtual functions of the class where they appear.

This does not mean that all calls to these member functions will be made through
the internal table of virtual functions. Under some circumstances, the compiler can
determine that a call to a given virtual function can be made directly; in these cases
the calls are direct in any case.

–fdollars–in–identifiers Permit the use of $ in identifiers. Traditional C allowed the character $ to form part
of identifiers; by default, GNU C also allows this. However, ANSI C forbids $ in
identifiers, and GNU C++ also forbids it by default on most platforms (though on
some platforms it’s enabled by default for GNU C++ as well).

–felide–constructors Use this option to instruct the compiler to be smarter about when it can elide
constructors. Without this flag, GNU C++ and cfront both generate effectively the
same code for

A foo ();

A x (foo ()); // x initialized by ‘foo ()’, no ctor called

A y = foo (); // call to ‘foo ()’ heads to temporary, // y is initial-

ized from the temporary.

Note the difference. With this flag, GNU C++ initializes y directly from the call to
foo() without going through a temporary.

–fenum–int–equiv Normally GNU C++ allows conversion of enum to int, but not the other way
around. Use this option if you want GNU C++ to allow conversion of int to enum as
well.

–fexternal–templates Produce smaller code for template declarations, by generating only a single copy of
each template function where it is defined. To use this option successfully, you must
also mark all files that use templates with either #pragma implementation (the
definition) or #pragma interface (declarations).

When your code is compiled with –fexternal–templates, all template instantiations
are external. You must arrange for all necessary instantiations to appear in the
implementation file; you can do this with a typedef that references each instantiation
needed. Conversely, when you compile using the default option –fno– external–
templates, all template instantiations are explicitly internal.

–fno–gnu–linker Do not output global initializations (such as C++ constructors and destructors) in
the form used by the GNU linker (on systems where the GNU linker is the standard
method of handling them). Use this option when you want to use a non-GNU
linker, which also requires using the collect2 program to make sure the system
linker includes constructors and destructors. (collect2 is included in the GNU CC
distribution.) For systems which must use collect2, the compiler driver gcc is
configured to do this automatically.

–fmemoize–lookups–fsave–memorized These flags are used to get the compiler to compile programs faster using heuristics.
They are not on by default since they are only effective about half the time. The
other half of the time programs compile more slowly (and take more memory).

157

The first time the compiler must build a call to a member function (or reference to a
data member), it must (1) determine whether the class implements member
functions of that name; (2) resolve which member function to call (which involves
figuring out what sorts of type conversions need to be made); and (3) check the
visibility of the member function to the caller. All of this adds up to slower
compilation. Normally, the second time a call is made to that member function (or
reference to that data member), it must go through the same lengthy process again.
This means that code like this:

cout << “This “ << p << “has”<< n << “ legs.\n”;

makes six passes through all three steps. By using a software cache, a “hit” signifi-
cantly reduces this cost. Unfortunately, using the cache introduces another layer of
mechanisms which must be implemented, and so incurs its own overhead. –
fmemorize– lookups enables the software cache.

Because access privileges (visibility) to members and member functions may differ
from one function context to the next, g++ may need to flush the cache. With the –
fmemoize–lookups flag, the cache is flushed after every function that is compiled. The
–fsave–memorized flag enables the same software cache, but when the compiler
determines that the context of the last function compiled would yield the same
access privileges of the next function to compile, it preserves the cache. This is most
helpful when defining many member functions for the same class: with the
exception of member functions which are friends of other classes, each member
function has exactly the same access privileges as every other, and the cache need not
be flushed.

–fno–default–inline Do not make member functions inline by default merely because they are defined
inside the class scope. Otherwise, when you specify –O, member functions defined
inside class scope are compiled inline by default; that is, you don’t need to add
inline in front of the member function name.

–fno–strict–prototype Consider the declaration int foo;(). In C++, this means that the function foo takes
no arguments. In ANSI C, this is declared int foo(void);. With the flag –fno–
strict–prototype, declaring functions with no arguments is equivalent to declaring
its argument list to be untyped, that is, int foo(); is equivalent to saying int foo
(...);.–fnonnull–objects. Normally, GNU C++ makes conservative assumptions
about objects reached through references. For example, the compiler must check that
a is not null in code like the following:

obj &a = g ();

a.f (2);

Checking that references of this sort have non-null values requires extra code,
however, and it is unnecessary for many programs. You can use –fnonnull–objects to
omit the checks for null, if your program doesn’t require the default checking.

–fhandle–signatures– These options control the recognition of the signature and sigof constructs for
fno–handle–signatures specifying abstract types. By default, these constructs are not recognized.

–fthis–is–variable The incorporation of user-defined free store management into C++ has made
assignment to this an anachronism. Therefore, by default GNU C++ treats the type
of this in a member function of class X to be X *const. In other words, it is illegal to
assign to this within a class member function. However, for backwards compatibil-
ity, you can invoke the old behavior by using –fthis–is–variable.

–g Produce debugging information in the operating system’s native format (for DBX or
SDB or DWARF). GDB also can work with this debugging information. On most
systems that use DBX format, –g enables use of extra debugging information that
only GDB can use.

Unlike most other C compilers, GNU CC allows you to use –g with –0. The
shortcuts taken by optimized code may occasionally produce surprising results: some

g++

Part I: User Commands158

variables you declared may not exist at all; flow of control may briefly move where
you did not expect it; some statements may not be executed because they compute
constant results or their values were already at hand; some statements may execute in
different places because they were moved out of loops.

Nevertheless, it proves possible to debug optimized output. This makes it reasonable
to use the optimizer for programs that might have bugs.

–Idir Append directory dir to the list of directories searched for include files.

–Ldir Add directory dir to the list of directories to be searched for –l.

–llibrary Use the library named library when linking. (C++ programs often require –lg++ for
successful linking.)

–nostdinc Do not search the standard system directories for header files. Only the directories
you have specified with –I options (and the current directory, if appropriate) are
searched.

–nostdinc++ Do not search for header files in the standard directories specific to C++, but do still
search the other standard directories. (This option is used when building libg++.)

–O Optimize. Optimizing compilation takes somewhat more time, and a lot more
memory for a large function.

–o file Place output in file file.

–S Stop after the stage of compilation proper; do not assemble. The output is an
assembler code file for each nonassembler input file specified.

–traditional Attempt to support some aspects of traditional C compilers. Specifically, for both C
and C++ programs:

In the preprocessor, comments convert to nothing at all, rather than to a space. This
allows traditional token concatenation.

In the preprocessor, macro arguments are recognized within string constants in a
macro definition (and their values are stringified, though without additional quote
marks, when they appear in such a context). The preprocessor always considers a
string constant to end at a newline.

The preprocessor does not predefine the macro STDC when you use –traditional, but
still predefines GNUC (since the GNU extensions indicated by GNUC are not affected by
–traditional). If you need to write header files that work differently depending on
whether –traditional is in use, by testing both of these predefined macros you can
distinguish four situations: GNU C, traditional GNU C, other ANSI C compilers,
and other old C compilers.

In the preprocessor, comments convert to nothing at all, rather than to a space. This
allows traditional token concatenation.

String “constants” are not necessarily constant; they are stored in writable space, and
identical looking constants are allocated separately. For C++ programs only (not C),
–traditional has one additional effect: assignment to this is permitted. This is the
same as the effect of –fthis–is–variable.

–Umacro Undefine macro macro.

–Wall Issue warnings for conditions that pertain to usage that we recommend avoiding and
that we believe is easy to avoid, even in conjunction with macros.

–Wenum–clash Warn when converting between different enumeration types.

–Woverloaded–virtual In a derived class, the definitions of virtual functions must match the type signature
of a virtual function declared in the base class. Use this option to request warnings
when a derived class declares a function that may be an erroneous attempt to define
a virtual function; that is, warn when a function with the same name as a virtual
function in the base class, but with a type signature that doesn’t match any virtual
functions from the base class.

159

–Wtemplate–debugging When using templates in a C++ program, warn if debugging is not yet fully
available.

–w Inhibit all warning messages.

+eN Control how virtual function definitions are used, in a fashion compatible with
cfront 1.x.

PRAGMAS
Two #pragma directives are supported for GNU C++, to permit using the same header file for two purposes: as a definition of
interfaces to a given object class, and as the full definition of the contents of that object class.

#pragma interface Use this directive in header files that define object classes, to save space in most of
the object files that use those classes. Normally, local copies of certain information
(backup copies of inline member functions, debugging information, and the internal
tables that implement virtual functions) must be kept in each object file that
includes class definitions. You can use this pragma to avoid such duplication. When
a header file containing #pragma interface is included in a compilation, this auxiliary
information will not be generated (unless the main input source file itself uses
#pragma implementation). Instead, the object files will contain references to be
resolved at link time.

#pragma implementation Use this pragma in a main input file, when you want full output from included
#pragma implementation !objects.h! header files to be generated (and made globally visible). The included header file, in

turn, should use #pragma interface. Backup copies of inline member functions,
debugging information, and the internal tables used to implement virtual functions
are all generated in implementation files.

If you use #pragma implementation with no argument, it applies to an include file
with the same basename as your source file; for example, in allclass.cc, #pragma
implementation by itself is equivalent to #pragma implementation “allclass.h”. Use
the string argument if you want a single implementation file to include code from
multiple header files.

There is no way to split up the contents of a single header file into multiple
implementation files.

FILES
file.h C header (preprocessor) file

file.i Preprocessed C source

file file.C C++ source file

file.cc C++ source file

file.cxx C++ source file

file.s Assembly language file

file.o Object file

a.out Link edited output

TMPDIR/cc Temporary files

LIBDIR/cpp Preprocessor

LIBDIR/cc1plus Compiler

LIBDIR/collect Linker front end needed on some machines

LIBDIR/libgcc.a GCC subroutine library

/lib/crt[01n].o Start-up routine

LIBDIR/ccrt0 Additional start-up routine for C++

/lib/libc.a Standard C library; see intro(3)

g++

Part I: User Commands160

/usr/include Standard directory for #include files

LIBDIR/include Standard gcc directory for #include files

LIBDIR/g++–include Additional g++ directory for #include

LIBDIR is usually /usr/local/lib/machine/version.

TMPDIR comes from the environment variable TMPDIR (default /usr/tmp if available, else /tmp).

SEE ALSO
gcc(1), cpp(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1), gcc, cpp, as, ld, and gdb entries in info.

Using and Porting GNU CC (for version 2.0), Richard M. Stallman; The C Preprocessor, Richard M. Stallman; Debugging
with GDB: the GNU Source-Level Debugger, Richard M. Stallman and Roland H. Pesch; Using as: the GNU Assembler, Dean
Elsner, Jay Fenlason and friends; gld: the GNU linker, Steve Chamberlain and Roland Pesch.

BUGS
For instructions on how to report bugs, see the GCC manual.

COPYING
Copyright  1991, 1992, 1993 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim
copies of this manual provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions
for modified versions, except that this permission notice may be included in translations approved by the Free Software
Foundation instead of in the original English.

AUTHORS
See the GNU CC Manual for the contributors to GNU CC.

GNU Tools, 30 April 1993

g3topbm
g3topbm—Convert a Group 3 fax file into a portable bitmap

SYNOPSIS
g3topbm [-kludge][-reversebits][-stretch][g3file]

DESCRIPTION
Reads a Group 3 fax file as input. Produces a portable bitmap as output.

OPTIONS
-kludge Tells g3topbm to ignore the first few lines of the file; sometimes fax files have some junk at the beginning.

-reversebits Tells g3topbm to interpret bits least-significant first, instead of the default most-significant first.
Apparently, some fax modems do it one way and others do it the other way. If you get a whole bunch of
“bad code word” messages, try using this flag.

-stretch Tells g3topbm to stretch the image vertically by duplicating each row. This is for the low-quality transmis-
sion mode.

All flags can be abbreviated to their shortest unique prefix.

161

REFERENCES
The standard for Group 3 fax is defined in CCITT Recommendation T.4.

BUGS
Probably.

SEE ALSO
pbmtog3(1), pbm(5)

AUTHOR
Copyright  1989 by Paul Haeberli (paul@manray.sgi.com)

2 October 1989

gawk
gawk—Pattern scanning and processing language

SYNOPSIS
gawk [POSIX or GNU style options] –f program-file [––] file ...
gawk [POSIX or GNU style options] [––] program-text file ...

DESCRIPTION
gawk is the GNU Project’s implementation of the awk programming language. It conforms to the definition of the language
in the 1003.2 Command Language and Utilities Standard. This version in turn is based on the description in The AWK
Programming Language, by Aho, Kernighan, and Weinberger, with the additional features defined in the System V Release 4
version of awk. gawk also provides some GNU-specific extensions.

The command line consists of options to gawk itself, the awk program text (if not supplied via the –f or ––file options), and
values to be made available in the ARGC and ARGV predefined awk variables.

OPTIONS
gawk options may be either the traditional one-letter options, or the GNU-style long options. Traditional style options start
with a single –, while GNU long options start with ––. GNU-style long options are provided for both GNU-specific features
and for mandated features. Other implementations of the awk language are likely to only accept the traditional one-letter
options.

Following the standard, gawk-specific options are supplied via arguments to the –W option. Multiple –W options may be
supplied, or multiple arguments may be supplied together if they are separated by commas, or enclosed in quotes and
separated by whitespace. Case is ignored in arguments to the –W option. Each –W option has a corresponding GNU-style long
option, as detailed below. Arguments to GNU-style long options are either joined with the option by an = sign, with no
intervening spaces, or they may be provided in the next command-line argument.

gawk accepts the following options:

–F fs, ––field-separator=fs Use fs for the input field separator (the value of the FS-predefined variable).

–v var=val, ––assign=var=val Assign the value val, to the variable var, before execution of the program begins. Such
variable values are available to the BEGIN block of an awk program.

–f program-file, Read the awk program source from the file program-file, instead of from the first
––file=program-file command-line argument. Multiple –f (or ––file) options may be used.

–mf=NNN, –mr=NNN Set various memory limits to the value NNN. The f flag sets the maximum number of fields,
and the r flag sets the maximum record size. These two flags and the –m option are from the
AT&T Bell Labs research version of awk. They are ignored by gawk, since gawk has no
predefined limits.

gawk

Part I: User Commands162

–W compat, ––compat Run in compatibility mode. In compatibility mode, gawk behaves identically to awk; none of
the GNU-specific extensions are recognized. See “GNU Extensions,” later in this manual
page, for more information.

–W copyleft, –W copyright, Print the short version of the GNU copyright information message on the error output.
––copyleft, ––copyright

–W help, –W usage Print a relatively short summary of the available options on the error output. Per the GNU
––help, ––usage Coding Standards, these options cause an immediate, successful exit.

–W lint, ––lint Provide warnings about constructs that are dubious or nonportable to other awk implemen-
tations.

–W posix, ––posix This turns on compatibility mode, with the following additional restrictions:\x escape
sequences are not recognized.

The synonym func for the keyword function is not recognized.

The operators ** and **= cannot be used in place of ˆ and ˆ=.

–W source=program-text, Use program-text as awk program source code. This option allows the easy intermixing of
––source=program-text library functions (used via the –f and ––file options) with source code entered on the

command line. It is intended primarily for medium to large awk programs used in shell
scripts.

The –W source= form of this option uses the rest of the command-line argument for
program-text; no other options to –W will be recognized in the same argument.

–W version, ––version Print version information for this particular copy of gawk on the error output. This is useful
mainly for knowing if the current copy of gawk on your system is up-to-date with respect to
whatever the Free Software Foundation is distributing. Per the GNU Coding Standards,
these options cause an immediate, successful exit.

–– Signal the end of options. This is useful to allow further arguments to the awk program itself
to start with a –. This is mainly for consistency with the argument-parsing convention used
by most other programs.

In compatibility mode, any other options are flagged as illegal, but are otherwise ignored. In normal operation, as long as
program text has been supplied, unknown options are passed on to the awk program in the ARGV array for processing. This is
particularly useful for running awk programs via the #! executable interpreter mechanism.

awk PROGRAM EXECUTION
An awk program consists of a sequence of pattern-action statements and optional function definitions:

pattern { action statements }
function name(parameter list) { statements }

gawk first reads the program source from the program-file(s) if specified, from arguments to –W source=, or from the first
nonoption argument on the command line. The –f and –W source= options may be used multiple times on the command
line. gawk will read the program text as if all the program-files and command-line source texts had been concatenated
together. This is useful for building libraries of awk functions, without having to include them in each new awk program that
uses them. It also provides the ability to mix library functions with command-line programs.

The environment variable AWKPATH specifies a search path to use when finding source files named with the –f option. If this
variable does not exist, the default path is .:/usr/lib/awk:/usr/local/lib/awk.

If a filename given to the –f option contains a / character, no path search is performed.

gawk executes awk programs in the following order. First, all variable assignments specified via the –v option are performed.
Next, gawk compiles the program into an internal form. Then, gawk executes the code in the BEGIN block(s) (if any), and then
proceeds to read each file named in the ARGV array. If there are no files named on the command line, gawk reads the standard
input.

If a filename on the command line has the form var=val, it is treated as a variable assignment. The variable var will be
assigned the value val. (This happens after any BEGIN block(s) have been run.) Command-line variable assignment is most

163

useful for dynamically assigning values to the variables awk uses to control how input is broken into fields and records. It is
also useful for controlling state if multiple passes are needed over a single data file.

If the value of a particular element of ARGV is empty (“”), gawk skips over it.

For each line in the input, gawk tests to see if it matches any pattern in the awk program. For each pattern that the line
matches, the associated action is executed. The patterns are tested in the order they occur in the program.

Finally, after all the input is exhausted, gawk executes the code in the END block(s) (if any).

VARIABLES AND FIELDS
awk variables are dynamic; they come into existence when they are first used. Their values are either floating-point numbers
or strings, or both, depending upon how they are used. awk also has one-dimensional arrays; arrays with multiple dimensions
may be simulated. Several predefined variables are set as a program runs; these will be described as needed and summarized
in the “Built-In Variables” subsection.

FIELDS
As each input line is read, gawk splits the line into fields, using the value of the FS variable as the field separator. If FS is a
single character, fields are separated by that character. Otherwise, FS is expected to be a full regular expression. In the special
case that FS is a single blank, fields are separated by runs of blanks or tabs. Note that the value of IGNORECASE (see the
following) will also affect how fields are split when FS is a regular expression.

If the FIELDWIDTHS variable is set to a space separated list of numbers, each field is expected to have fixed width, and gawk will
split up the record using the specified widths. The value of FS is ignored. Assigning a new value to FS overrides the use of
FIELDWIDTHS, and restores the default behavior.

Each field in the input line may be referenced by its position, $1, $2, and so on. $0 is the whole line. The value of a field may
be assigned to as well. Fields need not be referenced by constants:

n =5
print $n

prints the fifth field in the input line. The variable NF is set to the total number of fields in the input line.

References to nonexistent fields (that is, fields after $NF) produce the null-string. However, assigning to a nonexistent field
(for example, $(NF+2) = 5) will increase the value of NF, create any intervening fields with the null string as their value, and
cause the value of $0 to be recomputed, with the fields being separated by the value of OFS. References to negative-numbered
fields cause a fatal error.

BUILT-IN VARIABLES
awk’s built-in variables are the following:

ARGC The number of command-line arguments (does not include options to gawk, or the program source).

ARGIND The index in ARGV of the current file being processed.

ARGV Array of command-line arguments. The array is indexed from 0 to ARGC – 1. Dynamically changing the
contents of ARGV can control the files used for data.

CONVFMT The conversion format for numbers, “%.6g”, by default.

ENVIRON An array containing the values of the current environment. The array is indexed by the environment
variables, each element being the value of that variable (for example, ENVIRON[“HOME”] might be /u/arnold).
Changing this array does not affect the environment seen by programs which gawk spawns via redirection
or the system() function. (This may change in a future version of gawk.)

ERRNO If a system error occurs either doing a redirection for getline, during a read for getline, or during a
close(), then ERRNO will contain a string describing the error.

FIELDWIDTHS A whitespace-separated list of fieldwidths. When set, gawk parses the input into fields of fixed width,
instead of using the value of the FS variable as the field separator. The fixed field width facility is still
experimental; expect the semantics to change as gawk evolves over time.

gawk

Part I: User Commands164

FILENAME The name of the current input file. If no files are specified on the command line, the value of FILENAME is –.
However, FILENAME is undefined inside the BEGIN block.

FNR The input record number in the current input file.

FS The input field separator, a blank by default.

IGNORECASE Controls the case-sensitivity of all regular expression operations. If IGNORECASE has a nonzero value, then
pattern matching in rules, field splitting with FS, regular expression matching with ˜ and !˜, and the
gsub(), index(), match(), split(),and sub() predefined functions will all ignore case when doing regular
expression operations. Thus, if IGNORECASE is not equal to zero, /aB/ matches all of the strings ab, aB, Ab,
and AB. As with all awk variables, the initial value of IGNORECASE is zero, so all regular expression operations
are normally case-sensitive.

NF The number of fields in the current input record.

NR The total number of input records seen so far.

OFMT The output format for numbers, “%.6g”, by default.

OFS The output field separator, a blank by default.

ORS The output record separator, by default a newline.

RS The input record separator, by default a newline. RS is exceptional in that only the first character of its
string value is used for separating records. (This will probably change in a future release of gawk.) If RS is set
to the null string, then records are separated by blank lines. When RS is set to the null string, then the
newline character always acts as a field separator, in addition to whatever value FS may have.

RSTART The index of the first character matched by match(); 0 if no match.

RLENGTH The length of the string matched by match(); –1 if no match.

SUBSEP The character used to separate multiple subscripts in array elements, by default n034.

ARRAYS
Arrays are subscripted with an expression between square brackets. If the expression is an expression list (expr, expr ...)
then the array subscript is a string consisting of the concatenation of the (string) value of each expression, separated by the
value of the SUBSEP variable. This facility is used to simulate multiply dimensioned arrays. For example,

i = “A” ; j = “B” ; k = “C”
x[i, j, k] = “hello, world\n”

assigns the string hello, world\n to the element of the array x which is indexed by the string “A\034B\034C”. All arrays in awk
are associative, that is indexed by string values.

The special operator in may be used in an if or while statement to see if an array has an index consisting of a particular
value:

if (val in array)
print array[val]

If the array has multiple subscripts, use (i,j)in array.

The in construct may also be used in a for loop to iterate over all the elements of an array.

An element may be deleted from an array using the delete statement. The delete statement may also be used to delete the
entire contents of an array.

VARIABLE TYPING AND CONVERSION
Variables and fields may be floating-point numbers, or strings, or both. How the value of a variable is interpreted depends
upon its context. If used in a numeric expression, it will be treated as a number; if used as a string, it will be treated as a
string.

To force a variable to be treated as a number, add 0 to it; to force it to be treated as a string, concatenate it with the null
string.

165

When a string must be converted to a number, the conversion is accomplished using atof(3). A number is converted to a
string by using the value of CONVFMT as a format string for sprintf(3), with the numeric value of the variable as the argument.
However, even though all numbers in awk are floating-point, integral values are always converted as integers. Thus, given this:

CONVFMT = “%2.2f”
a =12
b =a””

the variable b has a string value of 12 and not 12.00.

gawk performs comparisons as follows: If two variables are numeric, they are compared numerically. If one value is numeric
and the other has a string value that is a “numeric string,” then comparisons are also done numerically. Otherwise, the
numeric value is converted to a string and a string comparison is performed. Two strings are compared, of course, as strings.
According to the standard, even if two strings are numeric strings, a numeric comparison is performed. However, this is
clearly incorrect, and gawk does not do this.

Uninitialized variables have the numeric value 0 and the string value “” (the null, or empty, string).

PATTERNS AND ACTIONS
awk is a line-oriented language. The pattern comes first, and then the action. Action statements are enclosed in and .BR.
Either the pattern may be missing, or the action may be missing, but, of course, not both. If the pattern is missing, the action
will be executed for every single line of input. A missing action is equivalent to

{ print }

which prints the entire line.

Comments begin with the # character, and continue until the end of the line. Blank lines may be used to separate state-
ments. Normally, a statement ends with a newline, however, this is not the case for lines ending in a ,, {, ?, :, &&, or ||. Lines
ending in do or else also have their statements automatically continued on the following line. In other cases, a line can be
continued by ending it with a \, in which case the newline will be ignored.

Multiple statements may be put on one line by separating them with a semicolon. This applies to both the statements within
the action part of a pattern-action pair (the usual case), and to the pattern-action statements themselves.

PATTERNS
awk patterns may be one of the following:

BEGIN
END
/regular expression/
relational expression
pattern && pattern
pattern jj pattern
pattern ? pattern : pattern
(pattern)
! pattern
pattern1, pattern2

BEGIN and END are two special kinds of patterns that are not tested against the input. The action parts of all BEGIN patterns are
merged as if all the statements had been written in a single BEGIN block. They are executed before any of the input is read.
Similarly, all the END blocks are merged, and executed when all the input is exhausted (or when an exit statement is
executed). BEGIN and END patterns cannot be combined with other patterns in pattern expressions. BEGIN and END patterns
cannot have missing action parts.

For /regular expression/ patterns, the associated statement is executed for each input line that matches the regular
expression. Regular expressions are the same as those in egrep(1), and are summarized as follows:

gawk

Part I: User Commands166

A relational expression may use any of the operators defined later in the section on actions. These generally test whether
certain fields match certain regular expressions.

The &&, ||, and ! operators are logical AND, logical OR, and logical NOT, respectively, as in C. They do short-circuit evaluation,
also as in C, and are used for combining more primitive pattern expressions. As in most languages, parentheses may be used
to change the order of evaluation.

The ?: operator is like the same operator in C. If the first pattern is true, then the pattern used for testing is the second
pattern; otherwise, it is the third. Only one of the second and third patterns is evaluated.

The pattern1, pattern2 form of an expression is called a range pattern. It matches all input records starting with a line that
matches pattern1, and continuing until a record that matches pattern2, inclusive. It does not combine with any other sort of
pattern expression.

REGULAR EXPRESSIONS
Regular expressions are the extended kind found in egrep. They are composed of characters as follows:

c Matches the non-meta-character c.

\c Matches the literal character c.

. Matches any character except newline.

ˆ Matches the beginning of a line or a string.

$ Matches the end of a line or a string.

[abc...] Character class, matches any of the characters abc....

[ˆabc...] Negated character class, matches any character except abc... and newline.

r1|r2 Alternation: matches either r1 or r2.

r1r2 Concatenation: matches r1, and then r2.

r+ Matches one or more rs.

r* Matches zero or more rs.

r? Matches zero or one rs.

(r) Grouping: matches r.

The escape sequences that are valid in string constants are also legal in regular expressions.

ACTIONS
Action statements are enclosed in braces, { and }. Action statements consist of the usual assignment, conditional, and looping
statements found in most languages. The operators, control statements, and input/output statements available are patterned
after those in C.

OPERATORS
The operators in awk, in order of increasing precedence, are

=+=–= Assignment. Both absolute assignment (var = value) and operator-assignment (the other forms) are
*= /= %= ˆ= supported.

?: The C conditional expression. This has the form expr1 ? expr2 : expr3 .If expr1 is true, the value of the
expression is expr2; otherwise, it is expr3. Only one of expr2 and expr3 is evaluated.

|| Logical OR.

&& Logical AND.

˜!˜ Regular expression match, negated match. NOTE: Do not use a constant regular expression (/foo/) to the
left of a ˜ or !˜. Only use one on the right side. The expression /foo/ ˜ exp has the same meaning as (($0
˜ /foo/) ˜ exp). This is usually not what was intended.

< >, <=>= The regular relational operators.

blank String concatenation.

+– Addition and subtraction.

167

*/% Multiplication, division, and modulus.

+–! Unary plus, unary minus, and logical negation.

^ Exponentiation (** may also be used, and **= for the assignment operator).

++ –– Increment and decrement, both prefix and postfix.

$ Field reference.

CONTROL STATEMENTS
The control statements are as follows:

if (condition) statement [else statement]
while (condition) statement
do statement while (condition)
for (expr1; expr2; expr3) statement
for (var in array) statementbreak
 continue
 delete array[index]
delete array
exit [expression]
{ statements }

I/O STATEMENTS
The input/output statements are as follows:

close(filename) Close file (or pipe, see paragraph following this list).

getline Set $0 from next input record; set NF, NR, FNR.

getline <file Set $0 from next record of file; set NF.

getline var Set var from next input record; set NF, FNR.

getline var <file Set var from next record of file.

next Stop processing the current input record. The next input record is read and processing starts
over with the first pattern in the awk program. If the end of the input data is reached, the
END block(s), if any, are executed.

next file Stop processing the current input file. The next input record read comes from the next
input file. FILENAME is updated, FNR is reset to 1, and processing starts over with the first
pattern in the awk program. If the end of the input data is reached, the END block(s), if any,
are executed.

print Prints the current record.

print expr-list Prints expressions. Each expression is separated by the value of the OFS variable. The output
record is terminated with the value of the ORS variable.

print expr-list >file Prints expressions on file. Each expression is separated by the value of the OFS variable. The
output record is terminated with the value of the ORS variable.

printf fmt, expr-list Format and print.

printf fmt, expr-list >file Format and print on file.

system(cmd-line) Execute the command cmd-line, and return the exit status. (This may not be available on -
POSIX systems.)

Other input/output redirections are also allowed. For print and printf, >>file appends output to the file, while | command
writes on a pipe. In a similar fashion, command | getline pipes into getline. The getline command will return 0 on end of
file, and –1 on an error.

THE printf STATEMENT
The awk versions of the printf statement and sprintf() function accept the following conversion specification formats:

%c An ASCII character. If the argument used for %c is numeric, it is treated as a character and printed.
Otherwise, the argument is assumed to be a string, and the only first character of that string is printed.

gawk

Part I: User Commands168

%d A decimal number (the integer part).

%i Just like %d.

%e A floating-point number of the form [–]d.ddddddE[+–]dd.

%f A floating-point number of the form [–]ddd.dddddd.

%g Use e or f conversion, whichever is shorter, with nonsignificant zeros suppressed.

%o An unsigned octal number (again, an integer).

%s A character string.

%x An unsigned hexadecimal number (an integer).

%X Like %x, but using ABCDEF instead of abcdef.

%% A single % character; no argument is converted.

There are optional, additional parameters that may lie between the % and the control letter:

– The expression should be left-justified within its field.

width The field should be padded to this width. If the number has a leading zero, then the field will be padded
with zeros. Otherwise, it is padded with blanks. This applies even to the nonnumeric output formats.

.prec A number indicating the maximum width of strings or digits to the right of the decimal point.

The dynamic width and prec capabilities of the C printf() routines are supported. A * in place of either the width or prec
specifications will cause their values to be taken from the argument list to printf or sprintf().

SPECIAL FILENAMES
When doing I/O redirection from either print or printf into a file, or via getline from a file, gawk recognizes certain special
filenames internally. These filenames allow access to open file descriptors inherited from gawk’s parent process (usually the
shell). Other special filenames provide access information about the running gawk process. The filenames are

/dev/pid Reading this file returns the process ID of the current process, in decimal, terminated with a newline.

/dev/ppid Reading this file returns the parent process ID of the current process, in decimal, terminated with a
newline.

/dev/pgrpid Reading this file returns the process group ID of the current process, in decimal, terminated with a
newline.

/dev/user Reading this file returns a single record terminated with a newline. The fields are separated with blanks. $1
is the value of the getuid(2) system call, $2 is the value of the geteuid(2) system call, $3 is the value of the
getgid(2) system call, and $4 is the value of the getegid(2) system call. If there are any additional fields,
they are the group IDs returned by getgroups(2). Multiple groups may not be supported on all systems.

/dev/stdin The standard input.

/dev/stdout The standard output.

/dev/stderr The standard error output.

/dev/fd/n The file associated with the open file descriptor n.

These are particularly useful for error messages. For example, you could use

print “You blew it!” > “/dev/stderr”

whereas you would otherwise have to use

print “You blew it!” j “cat 1>&2”

These filenames may also be used on the command line to name data files.

NUMERIC FUNCTIONS
awk has the following predefined arithmetic functions:

atan2(y, x) Returns the arctangent of y/x in radians.

cos(expr) Returns the cosine in radians.

169

exp(expr) The exponential function.

int(expr) Truncates to integer.

log(expr) The natural logarithm function.

rand() Returns a random number between 0 and 1.

sin(expr) Returns the sine in radians.

sqrt(expr) The square root function.

srand(expr) Use expr as a new seed for the random number generator. If no expr is provided, the time of day will be
used. The return value is the previous seed for the random number generator.

STRING FUNCTIONS
awk has the following predefined string functions:

gsub(r, s, t) For each substring matching the regular expression r in the string t, substitute the string s,
and return the number of substitutions. If t is not supplied, use $0.

index(s, t) Returns the index of the string t in the string s,or 0 if t is not present.

length(s) Returns the length of the string s, or the length of $0 if s is not supplied.

match(s, r) Returns the position in s where the regular expression r occurs, or 0 if u is not present, and
sets the values of RSTART and RLENGTH.

split(s, a, r) Splits the string s into the array a on the regular expression r, and returns the number of
fields. If r is omitted, FS is used instead. The array a is cleared first.

sprintf(fmt, expr-list) Prints expr-list according to fmt, and returns the resulting string.

sub(r, s, t) Just like gsub(), but only the first matching substring is replaced.

substr(s, i, n) Returns the n-character substring of s starting at i. If n is omitted, the rest of s is used.

tolower(str) Returns a copy of the string str, with all the uppercase characters in str translated to their
corresponding lowercase counterparts. Nonalphabetic characters are left unchanged.

toupper(str) Returns a copy of the string str, with all the lowercase characters in str translated to their
corresponding uppercase counterparts. Nonalphabetic characters are left unchanged.

TIME FUNCTIONS
Since one of the primary uses of awk programs is processing log files that contain time stamp information, gawk provides the
following two functions for obtaining time stamps and formatting them.

systime() Returns the current time of day as the number of seconds since the Epoch (Midnight UTC,
January 1, 1970 on systems).

strftime(format, timestamp) Formats timestamp according to the specification in format. The timestamp should be of the
same form as returned by systime(). If timestamp is missing, the current time of day is used.
See the specification for the strftime() function in C for the format conversions that are
guaranteed to be available. A public-domain version of strftime(3) and a man page for it are
shipped with gawk; if that version was used to build gawk, then all of the conversions
described in that man page are available to gawk.

STRING CONSTANTS
String constants in awk are sequences of characters enclosed between double quotes (“). Within strings, certain escape
sequences are recognized, as in C. These are

\\ A literal backslash.

\a The “alert” character; usually the ASCII BEL character.

\b Backspace.

\f Formfeed.

\n Newline.

gawk

Part I: User Commands170

\r Carriage return.

\t Horizontal tab.

\v Vertical tab.

\xhex digits The character represented by the string of hexadecimal digits following the \x. As in C, all following
hexadecimal digits are considered part of the escape sequence. (This feature should tell us something about
language design by committee.) For example, “\x1B” is the ASCII ESC (escape) character.

\ddd The character represented by the 1-, 2-, or 3-digit sequence of octal digits. For example, “\033” is the
ASCII ESC (escape) character.

\c The literal character c.

The escape sequences may also be used inside constant regular expressions (for example, /[\\t\f\n\r\v]/ matches whitespace
characters).

FUNCTIONS
Functions in awk are defined as follows:

function name(parameter list) { statements }

Functions are executed when called from within the action parts of regular pattern-action statements. Actual parameters
supplied in the function call are used to instantiate the formal parameters declared in the function. Arrays are passed by
reference, other variables are passed by value.

Functions were not originally part of the awk language, so the provision for local variables is rather clumsy: They are declared
as extra parameters in the parameter list. The convention is to separate local variables from real parameters by extra spaces in
the parameter list. For example

function f(p, q, a, b) { # a & b are local
..... }
/abc/ { ... ; f(1, 2) ; ... }

The left parenthesis in a function call is required to immediately follow the function name, without any intervening
whitespace. This is to avoid a syntactic ambiguity with the concatenation operator. This restriction does not apply to the
built-in functions listed earlier.

Functions may call each other and may be recursive. Function parameters used as local variables are initialized to the null
string and the number zero upon function invocation.

The word func may be used in place of function.

EXAMPLES
Print and sort the login names of all users:

BEGIN { FS = “:” }
{ print $1 j “sort” }

Count lines in a file:

{ nlines++ }
END { print nlines }

Precede each line by its number in the file:

{ print FNR, $0 }

Concatenate and line number (a variation on a theme):

{ print NR, $0 }

171

SEE ALSO
egrep(1), getpid(2), getppid(2), getpgrp(2), getuid(2), geteuid(2), getgid(2), getegid(2), get-groups(2)

The AWK Programming Language, Alfred V. Aho, Brian W. Kernighan, Peter J. Weinberger, Addison-Wesley, 1988. ISBN
0-201-07981-X.

The GAWK Manual, Edition 0.15, published by the Free Software Foundation, 1993.

POSIX COMPATIBILITY
A primary goal for gawk is compatibility with the standard, as well as with the latest version of awk. To this end, gawk
incorporates the following user-visible features that are not described in the awk book, but are part of awk in System V
Release 4, and are in the standard.

The –v option for assigning variables before program execution starts is new. The book indicates that command-line variable
assignment happens when awk would otherwise open the argument as a file, which is after the BEGIN block is executed.
However, in earlier implementations, when such an assignment appeared before any filenames, the assignment would happen
before the BEGIN block was run. Applications came to depend on this “feature.” When awk was changed to match its
documentation, this option was added to accommodate applications that depended upon the old behavior. (This feature was
agreed on by both the AT&T and GNU developers.)

The –W option for implementation-specific features is from the standard.

When processing arguments, gawk uses the special option –– to signal the end of arguments. In compatibility mode, it will
warn about, but otherwise ignore, undefined options. In normal operation, such arguments are passed on to the awk program
for it to process.

The awk book does not define the return value of srand(). The System V Release 4 version of awk (and the standard) has it
return the seed it was using, to allow keeping track of random number sequences. Therefore, srand() in gawk also returns its
current seed.

Other new features are: the use of multiple –f options (from MKS awk); the ENVIRON array; the \a, and \v escape sequences
(done originally in gawk and fed back into AT&T’s version); the tolower() and toupper() built-in functions (from AT&T);
and the C conversion specifications in printf (done first in AT&T’s version).

GNU EXTENSIONS
gawk has some extensions to awk. They are described in this section. All the extensions described here can be disabled by
invoking gawk with the –W compat option.

The following features of gawk are not available in awk:

The \x escape sequence.

The systime() and strftime() functions.

The special filenames available for I/O redirection are not recognized.

The ARGIND and ERRNO variables are not special.

The IGNORECASE variable and its side effects.

The FIELDWIDTHS variable and fixed width field splitting.

No path search is performed for files named via the –f option. Therefore, the AWKPATH environment variable is not special.

The use of next file to abandon processing of the current input file.

The use of delete array to delete the entire contents of an array.

The awk book does not define the return value of the close() function. gawk’s close() returns the value from fclose(3), or
pclose(3), when closing a file or pipe, respectively.

When gawk is invoked with the –W compat option, if the fs argument to the –F option is t, then FS will be set to the tab
character. Since this is a rather ugly special case, it is not the default behavior. This behavior also does not occur if –Wposix
has been specified.

gawk

Part I: User Commands172

HISTORICAL FEATURES
There are two features of historical awk implementations that gawk supports. First, it is possible to call the length() built-in
function not only with no argument, but even without parentheses! Thus, this:

a = length

is the same as either of these:

a = length()
a = length($0)

This feature is marked as “deprecated” in the standard, and gawk will issue a warning about its use if –W lint is specified on
the command line.

The other feature is the use of either the continue or the break statements outside the body of a while, for, or do loop.
Traditional awk implementations have treated such usage as equivalent to the next statement. gawk will support this usage
if –W compat has been specified.

ENVIRONMENT VARIABLES
If POSIXLY_CORRECT exists in the environment, then gawk behaves exactly as if — -posix had been specified on the command
line. If —-lint has been specified, gawk will issue a warning message to this effect.

BUGS
The –F option is not necessary given the command-line variable assignment feature; it remains only for backwards compat-
ibility.

If your system actually has support for /dev/fd and the associated /dev/stdin, /dev/stdout, and /dev/stderr files, you may get
different output from gawk than you would get on a system without those files. When gawk interprets these files internally, it
synchronizes output to the standard output with output to /dev/stdout, while on a system with those files, the output is
actually to different open files. Caveat emptor.

VERSION INFORMATION
This man page documents gawk, version 2.15.

Starting with the 2.15 version of gawk, the –c, –V, –C, –D, –a, and –e options of the 2.11 version are no longer recognized. This
fact will not even be documented in the manual page for the next major version.

AUTHORS
The original version of awk was designed and implemented by Alfred Aho, Peter Weinberger, and Brian Kernighan of AT&T
Bell Labs. Brian Kernighan continues to maintain and enhance it.

Paul Rubin and Jay Fenlason, of the Free Software Foundation, wrote gawk, to be compatible with the original version of awk
distributed in the seventh edition. John Woods contributed a number of bug fixes. David Trueman, with contributions from
Arnold Robbins, made gawk compatible with the new version of awk. Arnold Robbins is the current maintainer.

The initial DOS port was done by Conrad Kwok and Scott Garfinkle. Scott Deifik is the current DOS maintainer. Pat
Rankin did the port to VMS, and Michal Jaegermann did the port to the Atari ST. The port to OS/2 was done by Kai Uwe
Rommel, with contributions and help from Darrel Hankerson.

BUG REPORTS
If you find a bug in gawk, please send electronic mail to

bug-gnu-utils@prep.ai.mit.edu,

with a copy to arnold@gnu.ai.mit.edu. Please include your operating system and its revision, the version of gawk, what C
compiler you used to compile it, and a test program and data that are as small as possible for reproducing the problem.

173

Before sending a bug report, please do two things. First, verify that you have the latest version of gawk. Many bugs (usually
subtle ones) are fixed at each release, and if yours is out of date, the problem may already have been solved. Second, please
read this man page and the reference manual carefully to be sure that what you think is a bug really is, instead of just a quirk
in the language.

ACKNOWLEDGMENTS
Brian Kernighan of Bell Labs provided valuable assistance during testing and debugging.

We thank him.

Free Software Foundation, 24 November 1994

gcal
gcal—Displays month/year calendar sheets, eternal holiday lists for Julian and Gregorian years, and fixed date warning
lists—all in a variety of ways.

SYNOPSIS
gcal [[Option...][%Date][@File...]] [Command]

DESCRIPTION
gcal is a program similar the standard calendar programs BSD–’cal’ and calendar.

gcal displays Gregorian calendars, Julian calendars (before September 1752).

If gcal is started without any options or commands, a calendar of the current month is displayed.

If the calendar of a definite year is wanted, the year must be fully specified. For example, gcal 94 displays a year calendar of
the year 94, not of the year 1994.

If two arguments are given in the command part, the first argument denotes the month and the second argument denotes the
year. In case any illegal commands are given running gcal, the program will use internal defaults.

The Gregorian Reformation is assumed to have occurred in 1752 on the 3rd of September. Ten days following that date
were eliminated by the reformation, so the calendar for that month is a bit unusual.

MORE PROGRAM INFORMATION
You get more program information if you start gcal as follows:

gcal -h gcal -? gcal –help
resp.,
gcal -hh gcal -?? gcal –long-help[=ARG]j[=?] gcal –usage[=ARG]j[=?]

A hypertext file gcal.info containing detailed online information should be available, which you can inspect using your
GNU Infobrowser.

COPYRIGHT
gcal copyright  1994, 1995, 1996 by Thomas Esken. This software doesn’t claim completeness, correctness, or usability.
On principle, I will not be liable for any damages or losses (implicit or explicit), which result from using or handling my
software. If you use this software, you agree without any exception to this agreement, which binds you legally.

gcal is free software and distributed under the terms of the GNU General Public License; published by the Free Software
Foundation; version 2 or (at your option) any later version.

Any suggestions, improvements, extensions, bug reports, donations, proposals for contract work, and so forth are welcome!
If you like this tool, I’d appreciate a postcard from you!

Enjoy it =8ˆ)

gcal

Part I: User Commands174

AUTHOR
Thomas Esken (esken@uni-muenster.de)

Im Hagenfeld 84

D-48147 Muenster; Germany

Phone : +49 251 232585

SEE ALSO
cal(1), calendar(1)

16 July 1996

gcc, g++
gcc, g++—GNU project C and C++ Compiler (v2.7)

SYNOPSIS
gcc [option j filename]. . .
g++ [option j filename]...

WARNING
The information in this man page is an extract from the full documentation of the GNU C compiler and is limited to the
meaning of the options.

This man page is not kept up-to-date except when volunteers want to maintain it. If you find a discrepancy between the man
page and the software, please check the info file, which is the authoritative documentation.

If we find that the things in this man page that are out of date cause significant confusion or complaints, we will stop
distributing the man page. The alternative, updating the man page when we update the info file, is impossible because the
rest of the work of maintaining GNU CC leaves us no time for that. The GNU project regards man pages as obsolete and
should not let them take time away from other things.

For complete and current documentation, refer to the info file gcc or the manual Using and Porting GNU CC (for version
2.0). Both are made from the Texinfo source file gcc.texinfo.

DESCRIPTION
The C and C++ compilers are integrated. Both process input files through one or more of four stages: preprocessing,
compilation, assembly, and linking. Source filename suffixes identify the source language, but which name you use for the
compiler governs default assumptions:

gcc Assumes preprocessed (.i) files are C and assumes C-style linking.

g++ Assumes preprocessed (.i) files are C++ and assumes C++-style linking.

Suffixes of source filenames indicate the language and kind of processing to be done:

.c C source; preprocess, compile, assemble

.C C++ source; preprocess, compile, assemble

.cc C++ source; preprocess, compile, assemble

.cxx C++ source; preprocess, compile, assemble

.m Objective-C source; preprocess, compile, assemble

.i Preprocessed C; compile, assemble

.ii Preprocessed C++; compile, assemble

.s Assembler source; assemble

175

.S Assembler source; preprocess, assemble

.h Preprocessor file; not usually named on command line

Files with other suffixes are passed to the linker. Common cases include

.o Object file

.a Archive file

Linking is always the last stage unless you use one of the –c, –S, or –E options to avoid it (or unless compilation errors stop
the whole process). For the link stage, all .o files corresponding to source files, –l libraries, unrecognized filenames (including
named .o object files, and .a archives) are passed to the linker in command-line order.

OPTIONS
Options must be separate: –dr is quite different from –d –r.

Most –f and –W options have two contrary forms: –fname and –fno-name (or –Wname and –Wno–name). Only the nondefault forms
are shown here.

Here is a summary of all the options, grouped by type. Explanations are in the following sections.

Overall Options

–c –S –E –o file –pipe –v –x language

Language Options

–ansi –fall–virtual –fcond–mismatch

–fdollars–in–identifiers –fenum–int–equiv –fexternal–templates

–fno–asm –fno–builtin –fno–strict–prototype

–fsigned–bitfields –fsigned–char –fthis–is–variable

–funsigned–bitfields –funsigned–char –fwritable–strings

–traditional –traditional–cpp –trigraphs

Warning Options

–fsyntax–only –pedantic –pedantic–errors

–w –W –Wall –Waggregate–return –Wcast–align

–Wcast–qual –Wchar–subscript –Wcomment

–Wconversion –Wenum–clash –Werror

–Wformat –Wid–clash–len –Wimplicit

–Winline –Wmissing–prototypes –Wmissing–declarations

–Wnested–externs –Wno–import –Wparentheses

–Wpointer–arith –Wredundant–decls –Wreturn–type

–Wshadow –Wstrict–prototypes –Wswitch

–Wtemplate–debugging –Wtraditional –Wtrigraphs

–Wuninitialized –Wunused –Wwrite–strings

Debugging Options

–a –dletters –fpretend–float –g –glevel –gcoff –gxcoff –gxcoff+ –gdwarf –gdwarf+ –gstabs –gstabs+ –ggdb –p –pg –

save– temps –print–file–name=library –print–libgcc–file–name – print–prog–name=program

Optimization Options

–fcaller–saves –fcse–follow–jumps –fcse–skip–blocks

–fdelayed–branch –felide–constructors –fexpensive–optimizations

–ffast–math –ffloat–store –fforce–addr

–fforce–mem –finline–functions –fkeep–inline–functions

gcc, g++

Part I: User Commands176

–fmemorize–lookups –fno–default–inline –fno–defer–pop

–fno–function–cse –fno–inline –fno–peephole

–fomit–frame–pointer –frerun–cse–after–loop –fschedule–insns

–fschedule–insns2 –fstrength–reduce –fthread–jumps

–funroll–all–loops –funroll–loops –O –O2

Preprocessor Options

–Aassertion –C –dD –dM –dN –Dmacro[=defn]–E –H– idirafter dir –include file –imacros file –iprefix file –

iwithprefix dir –M –MD –MM –MMD –nostdinc –P –Umacro –undef

Assembler Option

–Wa,option

Linker Options

–llibrary –nostartfiles –nostdlib –static –shared –symbolic –Xlinkernoption –Wl,option –u symbol

Directory Options

–Bprefix –Idir –I– –Ldir

Target Options

–b machine –V version

Configuration-Dependent Options

M680x0 Options

–m68000–m68020 –m68020–40–m68030–m68040–m68881 –mbitfield –mc68000 –mc68020 –mfpa –mnobitfield –mrtd –mshort –msoft–

float

VAX Options

–mg –mgnu –munix

SPARC Options

–mepilogue –mfpu –mhard–float –mno–fpu –mno–epilogue –msoft–float –msparclite –mv8 –msupersparc –mcypress

Convex Options

–margcount –mc1 –mc2 –mnoargcount

AMD29K Options

–m29000–m29050 –mbw –mdw –mkernel–registers –mlarge –mnbw –mnodw –msmall –mstack–check –muser–registers

M88K Options

–m88000 –m88100 –m88110 –mbig–pic

–mcheck–zero–division –mhandle–large–shift

–midentify–revision –mno–check–zero–division

–mno–ocs–debug–info –mno–ocs–frame–position

–mno–optimize–arg–area –mno–serialize–volatile

–mno–underscores –mocs–debug–info

–mocs–frame–position –moptimize–arg–area

–mserialize–volatile –mshort–data–num

–msvr3 –msvr4 –mtrap–large–shift

–muse–div–instruction –mversion–03.00

–mwarn–passed–structs

177

RS6000 Options

–mfp–in–toc –mno–fop–in–toc

RT Options

–mcall–lib–mul –mfp–arg–in–fpregs –mfp–arg–in–gregs

–mfull–fp–blocks –mhc–struct–return –min–line–mul

–mminimum–fp–blocks –mnohc–struct–return

MIPS Options

–mcpu=cpu type –mips2 –mips3 –mint64 –mlong64

–mlonglong128 –mmips–as –mgas –mrnames

–mno–rnames –mgpopt –mno–gpopt –mstats

–mno–stats –mmemcpy –mno–memcpy –mno–mips–tfile

–mmips–tfile –msoft–float –mhard–float –mabicalls

–mno–abicalls –mhalf–pic –mno–half–pic –G num –nocpp

i386 Options

–m486 –mno–486 –msoft–float –mno–fp–ret–in–387

HPPA Options

–mpa–risc–1–0 –mpa–risc–1–1 –mkernel –mshared–libs – mno–shared–libs –mlong–calls –mdisable–fpregs –mdisable–
indexing –mtrailing–colon

i960 Options

–mcpu-type

–mnumerics –msoft–float –mleaf–procedures

–mno–leaf–procedures –mtail–call –mno–tail–call

–mcomplex–addr –mno–complex–addr –mcode–align

–mno–code–align –mic–compat –mic2.0–compat

–mic3.0–compat –masm–compat –mintel–asm

–mstrict–align –mno–strict–align –mold–align

–mno–old–align

DEC Alpha Options

–mfp–regs –mno–fp–regs –mno–soft–float –msoft–float

System V Options

–G –Qy –Qn –YP,paths –Ym,dir

Code-Generation Options

–fcall–saved–reg –fcall–used–

reg –ffixed–reg –finhibit–

size–directive –fnonnull–

objects –fno–common –fno–ident

–fno–gnu–linker –fpcc–struct–

return –fpic –fPIC –freg–

struct– return –fshared–data –

fshort–enums –fshort–double –

fvolatile –fvolatile–global –

fverbose–asm

gcc, g++

Part I: User Commands178

OVERALL OPTIONS
–x language Specify explicitly the language for the following input files (rather than choosing a default based on the

filename suffix). This option applies to all following input files until the next –x option. Possible values of
language are c, objective–c, c–header, c++, cpp–output, assembler, and assembler–with–cpp.

–x none Turn off any specification of a language, so that subsequent files are handled according to their filename
suffixes (as they are if –x has not been used at all).

If you want only some of the four stages (preprocess, compile, assemble, link), you can use –x (or filename suffixes) to tell gcc
where to start, and one of the options –c, –S, or –E to say where gcc is to stop. Note that some combinations (for example, –x
cpp–output –E) instruct gcc to do nothing at all.

–c Compile or assemble the source files, but do not link. The compiler output is an object file corresponding
to each source file.

By default, gcc makes the object filename for a source file by replacing the suffix .c, .i, .s, and so on, with
.o. Use –o to select another name.

gcc ignores any unrecognized input files (those that do not require compilation or assembly) with the –c
option.

–S Stop after the stage of compilation proper; do not assemble. The output is an assembler code file for each
nonassembler input file specified.

By default, gcc makes the assembler filename for a source file by replacing the suffix .c, .i, and so on, with
.s. Use –o to select another name.

gcc ignores any input files that don’t require compilation.

–E Stop after the preprocessing stage; do not run the compiler proper. The output is preprocessed source
code, which is sent to the standard output.

gcc ignores input files that don’t require preprocessing.

–o file Place output in file file. This applies regardless to whatever sort of output gcc is producing, whether it be
an executable file, an object file, an assembler file, or preprocessed C code.

Since only one output file can be specified, it does not make sense to use –o when compiling more than
one input file, unless you are producing an executable file as output.

If you do not specify –o, the default is to put an executable file in a.out, the object file for source.suffix in
source.o, its assembler file in source.s, and all preprocessed C source on standard output.

–v Print (on standard error output) the commands executed to run the stages of compilation. Also print the
version number of the compiler driver program and of the preprocessor and the compiler proper.

–pipe Use pipes rather than temporary files for communication between the various stages of compilation. This
fails to work on some systems where the assembler cannot read from a pipe; but the GNU assembler has
no trouble.

LANGUAGE OPTIONS
The following options control the dialect of C that the compiler accepts:

–ansi Support all ANSI standard C programs.

This turns off certain features of GNU C that are incompatible with ANSI C, such as the asm,
inline, and typeof keywords, and predefined macros such as unix and vax that identify the type
of system you are using. It also enables the undesirable and rarely used ANSI trigraph feature,
and disallows $ as part of identifiers. The alternate keywords __asm__, __extension__,
__inline__, and __typeof__ continue to work despite –ansi. You would not want to use them
in an ANSI C program, of course, but it is useful to put them in header files that might be
included in compilations done with –ansi. Alternate predefined macros such as __unix__ and
__vax__ are also available, with or without –ansi.

The –ansi option does not cause non-ANSI programs to be rejected gratuitously. For that, –
pedantic is required in addition to –ansi.

179

The preprocessor predefines a macro __STRICT_ANSI__ when you use the –ansi option. Some
header files may notice this macro and refrain from declaring certain functions or defining
certain macros that the ANSI standard doesn’t call for; this is to avoid interfering with any
programs that might use these names for other things.

–fno–asm Do not recognize asm, inline, or typeof as a keyword. These words may then be used as
identifiers. You can use __asm__, __inline__, and __typeof__ instead. –ansi implies –fno–asm.

–fno–builtin Don’t recognize built-in functions that do not begin with two leading underscores. Currently,
the functions affected include _exit, abort, abs, alloca, cos, exit, fabs, labs, memcmp, memcpy,
sin, sqrt, strcmp, strcpy,and strlen.

The –ansi option prevents alloca and _exit from being built-in functions.

–fno–strict–prototype Treat a function declaration with no arguments, such as int foo();, as C would treat it—as
saying nothing about the number of arguments or their types (C++ only). Normally, such a
declaration in C++ means that the function foo takes no arguments.

–trigraphs Support ANSI C trigraphs. The –ansi option implies –trigraphs.

–traditional Attempt to support some aspects of traditional C compilers. For details, see the GNU C
Manual; the duplicate list here has been deleted so that we won’t get complaints when it is out
of date.

But one note about C++ programs only (not C). –traditional has one additional effect for
C++: assignment to this is permitted. This is the same as the effect of –fthis–is–variable.

–traditional–cpp Attempt to support some aspects of traditional C preprocessors. This includes the items that
specifically mention the preprocessor previously, but none of the other effects of –traditional.

–fdollars–in–identifiers Permit the use of $ in identifiers (C++ only). You can also use –fno–dollars–in–identifiers to
explicitly prohibit use of $. (GNU C++ allows $ by default on some target systems but not
others.)

–fenum–int–equiv Permit implicit conversion of int to enumeration types (C++ only). Normally GNU C++
allows conversion of enum to int, but not the other way around.

–fexternal–templates Produce smaller code for template declarations, by generating only a single copy of each
template function where it is defined (C++ only). To use this option successfully, you must also
mark all files that use templates with either #pragma implementation (the definition) or #pragma
interface (declarations).

When your code is compiled with –fexternal–templates, all template instantiations are external.
You must arrange for all necessary instantiations to appear in the implementation file; you can
do this with a typedef that references each instantiation needed. Conversely, when you compile
using the default option –fno–external–templates, all template instantiations are explicitly
internal.

–fall–virtual Treat all possible member functions as virtual, implicitly. All member functions (except for
constructor functions and new or delete member operators) are treated as virtual functions of
the class where they appear. This does not mean that all calls to these member functions will be
made through the internal table of virtual functions. Under some circumstances, the compiler
can determine that a call to a given virtual function can be made directly; in these cases, the
calls are direct in any case.

–fcond–mismatch Allow conditional expressions with mismatched types in the second and third arguments. The
value of such an expression is void.

–fthis–is–variable Permit assignment to this (C++ only). The incorporation of user-defined free store manage-
ment into C++ has made assignment to this an anachronism. Therefore, by default it is invalid
to assign to this within a class member function. However, for backwards compatibility, you
can make it valid with –fthis-is-variable.

–funsigned–char Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is either like unsigned char by
default or like signed char by default.

gcc, g++

Part I: User Commands180

Ideally, a portable program should always use signed char or unsigned char when it depends on
the signedness of an object. But many programs have been written to use plain char and expect
it to be signed, or expect it to be unsigned, depending on the machines they were written for.
This option, and its inverse, lets you make such a program work with the opposite default.

The type char is always a distinct type from each of signed char and unsigned char, even though
its behavior is always just like one of those two.

–fsigned–char Let the type char be signed, like signed char.

Note that this is equivalent to –fno–unsigned–char, which is the negative form of –funsigned–
char. Likewise, –fno–signed–char is equivalent to –funsigned–char.

–fsigned–bitfields These options control whether a bitfield is signed or unsigned, when declared with no explicit
–funsigned–bitfields or unsigned qualifier.

–fno–signed–bitfields By default, such a bitfield is signed, because this is consistent: The basic integer types such as
int

–fno–unsigned–bitfields signed are signed types.

However, when you specify –traditional, bitfields are all unsigned no matter what.

–fwritable–strings Store string constants in the writable data segment and don’t uniquize them. This is for
compatibility with old programs which assume they can write into string constants. –tradi-
tional also has this effect.

Writing into string constants is a very bad idea; constants should be constant.

PREPROCESSOR OPTIONS
These options control the C preprocessor, which is run on each C source file before actual compilation.

If you use the –E option, gcc does nothing except preprocessing. Some of these options make sense only together with –E
because they cause the preprocessor output to be unsuitable for actual compilation.

–include file Process file as input before processing the regular input file. In effect, the contents of file
are compiled first. Any –D and –U options on the command line are always processed before
–include file, regardless of the order in which they are written. All the –include and –imacros
options are processed in the order in which they are written.

–imacros file Process file as input, discarding the resulting output, before processing the regular input file.
Because the output generated from file is discarded, the only effect of –imacros file is to make
the macros defined in file available for use in the main input. The preprocessor evaluates any
–D and –U options on the command line before processing –imacros file, regardless of the order
in which they are written. All the –include and –imacros options are processed in the order in
which they are written.

–idirafter dir Add the directory dir to the second include path. The directories on the second include path
are searched when a header file is not found in any of the directories in the main include path
(the one that –I adds to).

–iprefix prefix Specify prefix as the prefix for subsequent –iwithprefix options.

–iwithprefix dir Add a directory to the second include path. The directory’s name is made by concatenating
prefix and dir, where prefix was specified previously with –iprefix.

–nostdinc Do not search the standard system directories for header files. Only the directories you have
specified with –I options (and the current directory, if appropriate) are searched.

By using both –nostdinc and –I–, you can limit the include file search file to only those
directories you specify explicitly.

–nostdinc++ Do not search for header files in the C++–specific standard directories, but do still search the
other standard directories. (This option is used when building libg++.)

–undef Do not predefine any nonstandard macros (including architecture flags).

–E Run only the C preprocessor. Preprocess all the C source files specified and output the results to
standard output or to the specified output file.

–C Tell the preprocessor not to discard comments. Used with the –E option.

181

–P Tell the preprocessor not to generate #line commands. Used with the –E option.

–M [–MG] Tell the preprocessor to output a rule suitable for make describing the dependencies of each
object file. For each source file, the preprocessor outputs one make -rule whose target is the
object filename for that source file and whose dependencies are all the files that have been
included with #include. This rule may be a single line or may be continued with \-newline if it
is long. The list of rules is printed on standard output instead of the preprocessed C program.

–M implies –E.

–MG says to treat missing header files as generated files and assume they live in the same directory
as the source file. It must be specified in addition to –M.

–MM [–MG] Like –M but the output mentions only the user header files included with #include “ file “.
System header files included with #include < file > are omitted.

–MD Like –M but the dependency information is written to files with names made by replacing .o
with .d at the end of the output filenames. This is in addition to compiling the file as specified;
–MD does not inhibit ordinary compilation the way –M does.

The Mach utility md can be used to merge the .d files into a single dependency file suitable for
using with the make command.

–MMD Like –MD except mention only user header files, not system header files.

–H Print the name of each header file used, in addition to other normal activities.

–Aquestion(answer) Assert the answer answer for question, in case it is tested with a preprocessor conditional such as
#if #question(answer). –A– disables the standard assertions that normally describe the target
machine.

–Aquestion (answer) Assert the answer answer for question, in case it is tested with a preprocessor conditional such as
#if # question (answer). –A–disables the standard assertions that normally describe the target
machine.

–Dmacro Define macro macro with the string 1 as its definition.

–Dmacro=defn Define macro macro as defn. All instances of –D on the command line are processed before any
–U options.

–Umacro Undefine macro macro. –U options are evaluated after all –D options, but before any –include and
–imacros options.

–dM Tell the preprocessor to output only a list of the macro definitions that are in effect at the end
of preprocessing. Used with the –E option.

–dD Tell the preprocessor to pass all macro definitions into the output, in their proper sequence in
the rest of the output.

–dN Like –dD except that the macro arguments and contents are omitted. Only #define name is
included in the output.

ASSEMBLER OPTION
–Wa,option Pass option as an option to the assembler. If option contains commas, it is split into multiple

options at the commas.

LINKER OPTIONS
These options come into play when the compiler links object files into an executable output file. They are meaningless if the
compiler is not doing a link step.

object-file-name A filename that does not end in a special recognized suffix is considered to name an object file
or library. (Object files are distinguished from libraries by the linker according to the file
contents.) If gcc does a link step, these object files are used as input to the linker.

–llibrary Use the library named library when linking.

The linker searches a standard list of directories for the library, which is actually a file named
lib library.a. The linker then uses this file as if it had been specified precisely by name.

gcc, g++

Part I: User Commands182

The directories searched include several standard system directories plus any that you specify
with –L.

Normally, the files found this way are library files—archive files whose members are object files.
The linker handles an archive file by scanning through it for members that define symbols that
have so far been referenced but not defined. However, if the linker finds an ordinary object file
rather than a library, the object file is linked in the usual fashion. The only difference between
using an –l option and specifying a filename is that –l surrounds library with lib and .a and
searches several directories.

–lobjc You need this special case of the –l option in order to link an Objective C program.

–nostartfiles Do not use the standard system startup files when linking. The standard libraries are used
normally.

–nostdlib Don’t use the standard system libraries and startup files when linking. Only the files you specify
will be passed to the linker.

–static On systems that support dynamic linking, this prevents linking with the shared libraries. On
other systems, this option has no effect.

–shared Produce a shared object which can then be linked with other objects to form an executable.
Only a few systems support this option.

–symbolic Bind references to global symbols when building a shared object. Warn about any unresolved
references (unless overridden by the link editor option –Xlinker –z –Xlinker defs). Only a few
systems support this option.

–Xlinker option Pass option as an option to the linker. You can use this to supply system-specific linker options
which GNU CC does not know how to recognize.

If you want to pass an option that takes an argument, you must use –Xlinker twice: once for the
option and once for the argument. For example, to pass –assert definitions, you must write –
Xlinker –assert –Xlinker definitions. It does not work to write –Xlinker “–assert
definitions”, because this passes the entire string as a single argument, which is not what the
linker expects.

–Wl,option Pass option as an option to the linker. If option contains commas, it is split into multiple
options at the commas.

–u symbol Pretend the symbol symbol is undefined, to force linking of library modules to define it. You
can use –u multiple times with different symbols to force loading of additional library modules.

DIRECTORY OPTIONS
These options specify directories to search for header files, for libraries, and for parts of the compiler:

–Idir Append directory dir to the list of directories searched for include files.

–I– Any directories you specify with –I options before the –I– option are searched only for the case
of #include “file”; they are not searched for #include <file>.

If additional directories are specified with –I options after the –I–, these directories are searched
for all #include directives. (Ordinarily all –I directories are used this way.)

In addition, the –I– option inhibits the use of the current directory (where the current input file
came from) as the first search directory for #include “ file “. There is no way to override this
effect of –I–. With –I. you can specify searching the directory that was current when the
compiler was invoked. That is not exactly the same as what the preprocessor does by default,
but it is often satisfactory.

–I– does not inhibit the use of the standard system directories for header files. Thus, –I– and
–nostdinc are independent.

–Ldir Add directory dir to the list of directories to be searched for –l.

–Bprefix This option specifies where to find the executables, libraries, and data files of the compiler itself.

The compiler driver program runs one or more of the subprograms cpp, cc1 (or, for C++,
cc1plus), as, and ld. It tries prefix as a prefix for each program it tries to run, both with and
without machine / version /.

183

For each subprogram to be run, the compiler driver first tries the –B prefix, if any. If that name
is not found, or if –B was not specified, the driver tries two standard prefixes, which are /usr/
lib/gcc/ and /usr/local/lib/gcc-lib/. If neither of those results in a filename that is found, the
compiler driver searches for the unmodified program name, using the directories specified in
your PATH environment variable.

The runtime support file libgcc.a is also searched for using the –B prefix, if needed. If it is not
found there, the two standard prefixes (preceding paragraph) are tried, and that is all. The file is
left out of the link if it is not found by those means. Most of the time, on most machines,
libgcc.a is not actually necessary.

You can get a similar result from the environment variable GCC_EXEC_PREFIX; if it is defined, its
value is used as a prefix in the same way. If both the –B option and the GCC_EXEC_PREFIX variable
are present, the –B option is used first and the environment variable value second.

WARNING OPTIONS
Warnings are diagnostic messages that report constructions that are not inherently erroneous but are risky or suggest there
may have been an error.

These options control the amount and kinds of warnings produced by GNU CC:

–fsyntax–only Check the code for syntax errors, but don’t emit any output.

–w Inhibit all warning messages.

–Wno–import Inhibit warning messages about the use of #import.

–pedantic Issue all the warnings demanded by strict ANSI standard C; reject all programs that use
forbidden extensions.

Valid ANSI standard C programs should compile properly with or without this option (though
a rare few will require –ansi). However, without this option, certain GNU extensions and
traditional C features are supported as well. With this option, they are rejected. There is no
reason to use this option; it exists only to satisfy pedants.

–pedantic does not cause warning messages for use of the alternate keywords whose names begin
and end with ‘__’. Pedantic warnings are also disabled in the expression that follows extension.
However, only system header files should use these escape routes; application programs should
avoid them.

–pedantic–errors Like –pedantic, except that errors are produced rather than warnings.

–W Print extra warning messages for these events:

A nonvolatile automatic variable might be changed by a call to longjmp. These warnings are
possible only in optimizing compilation. The compiler sees only the calls to setjmp. It cannot
know where longjmp will be called; in fact, a signal handler could call it at any point in the code.
As a result, you may get a warning even when there is in fact no problem because longjmp
cannot in fact be called at the place which would cause a problem.

A function can return either with or without a value. (Falling off the end of the function body
is considered returning without a value.) For example, this function would evoke such a
warning:
foo (a)
{
if (a > 0)
return a;
}

Spurious warnings can occur because GNU CC does not realize that certain functions
(including abort and longjmp) will never return.

An expression-statement or the left side of a comma expression contains no side effects. To
suppress the warning, cast the unused expression to void. For example, an expression such as
x[i,j] will cause a warning, but x[(void)i,j] will not.

An unsigned value is compared against zero with > or <=.

gcc, g++

Part I: User Commands184

–Wimplicit Warn whenever a function or parameter is implicitly declared.

–Wreturn–type Warn whenever a function is defined with a return-type that defaults to int. Also warn about
any return statement with no return-value in a function whose return-type is not void.

–Wunused Warn whenever a local variable is unused aside from its declaration, whenever a function is
declared static but never defined, and whenever a statement computes a result that is explicitly
not used.

–Wswitch Warn whenever a switch statement has an index of enumeral type and lacks a case for one or
more of the named codes of that enumeration. (The presence of a default label prevents this
warning.) case labels outside the enumeration range also provoke warnings when this option is
used.

–Wcomment Warn whenever a comment-start sequence / appears in a comment.

–Wtrigraphs Warn if any trigraphs are encountered (assuming they are enabled).

–Wformat Check calls to printf and scanf, and so on, to make sure that the arguments supplied have
types appropriate to the format string specified.

–Wchar–subscripts Warn if an array subscript has type char. This is a common cause of error, as programmers
often forget that this type is signed on some machines.

–Wuninitialized An automatic variable is used without first being initialized.
These warnings are possible only in optimizing compilation, because they require data flow
information that is computed only when optimizing. If you don’t specify –O, you simply won’t
get these warnings.

These warnings occur only for variables that are candidates for register allocation. Therefore,
they do not occur for a variable that is declared volatile, or whose address is taken, or whose size
is other than 1, 2, 4, or 8 bytes. Also, they do not occur for structures, unions, or arrays, even
when they are in registers.
Note that there may be no warning about a variable that is used only to compute a value that
itself is never used, because such computations may be deleted by data flow analysis before the
warnings are printed.
These warnings are made optional because GNU CC is not smart enough to see all the reasons
why the code might be correct despite appearing to have an error. Here is one example of how
this can happen:
{
int x;
switch (y)
{
case 1: x = 1;
break;
case 2: x = 4;
break;
case 3: x = 5;
}
foo (x);
}

If the value of y is always 1, 2, or 3, then x is always initialized, but GNU CC doesn’t know this.
Here is another common case:
{
int save_y;
if (change_y) save_y =y,y =new_y;
...
if (change_y)y =save_y;
}

This has no bug because save_y is used only if it is set.

Some spurious warnings can be avoided if you declare as volatile all the functions you use that
never return.

185

–Wparentheses Warn if parentheses are omitted in certain contexts.

–Wtemplate–debugging When using templates in a C++ program, warn if debugging is not yet fully available (C++
only).

–Wall All of the preceding –W options combined. These are all the options that pertain to usage that
we recommend avoiding and that we believe is easy to avoid, even in conjunction with macros.

The remaining –W... options are not implied by –Wall because they warn about constructions that we consider reasonable to
use, on occasion, in clean programs.

–Wtraditional Warn about certain constructs that behave differently in traditional and ANSI C:

Macro arguments occurring within string constants in the macro body. These would substitute
the argument in traditional C, but are part of the constant in ANSI C.

A function declared external in one block and then used after the end of the block.

A switch statement has an operand of type long.

–Wshadow Warn whenever a local variable shadows another local variable.

–Wid–clash–len Warn whenever two distinct identifiers match in the first len characters. This may help you
prepare a program that will compile with certain obsolete, brain-damaged compilers.

–Wpointer–arith Warn about anything that depends on the size of a function type or of void. GNU C assigns
these types a size of 1, for convenience in calculations with void pointers and pointers to
functions.

–Wcast–qual Warn whenever a pointer is cast so as to remove a type qualifier from the target type. For
example, warn if a const char is cast to an ordinary char.

–Wcast–align Warn whenever a pointer is cast such that the required alignment of the target is increased. For
example, warn if a char is cast to an int on machines where integers can only be accessed at
two- or four-byte boundaries.

–Wwrite–strings Give string constants the type const char[length] so that copying the address of one into a
non-const char pointer will get a warning. These warnings will help you find at compile time
code that can try to write into a string constant, but only if you have been very careful about
using const in declarations and prototypes. Otherwise, it will just be a nuisance; this is why we
did not make –Wall request these warnings.

–Wconversion Warn if a prototype causes a type conversion that is different from what would happen to the
same argument in the absence of a prototype. This includes conversions of fixed point to
floating and vice versa, and conversions changing the width or signedness of a fixed point
argument except when the same as the default promotion.

–Waggregate–return Warn if any functions that return structures or unions are defined or called. (In languages
where you can return an array, this also elicits a warning.)

–Wstrict–prototypes Warn if a function is declared or defined without specifying the argument types. (An old-style
function definition is permitted without a warning if preceded by a declaration which specifies
the argument types.)

–Wmissing–prototypes Warn if a global function is defined without a previous prototype declaration. This warning is
issued even if the definition itself provides a prototype. The aim is to detect global functions
that fail to be declared in header files.

–Wmissing–declarations Warn if a global function is defined without a previous declaration. Do so even if the definition
itself provides a prototype. Use this option to detect global functions that are not declared in
header files.

–Wredundant-decls Warn if anything is declared more than once in the same scope, even in cases where multiple
declaration is valid and changes nothing.

–Wnested-externs Warn if an extern declaration is encountered within an function.

–Wenum–clash Warn about conversion between different enumeration types (C++ only).

–Woverloaded–virtual (C++ only.) In a derived class, the definitions of virtual functions must match the type signature
of a virtual function declared in the base class. Use this option to request warnings when a
derived class declares a function that may be an erroneous attempt to define a virtual function;

gcc, g++

Part I: User Commands186

that is, warn when there is a function with the same name as a virtual function in the base class,
but with a type signature that doesn’t match any virtual functions from the base class.

–Winline Warn if a function cannot be inlined, and either it was declared as inline, or else the –finline–
functions option was given.

–Werror Treat warnings as errors; abort compilation after any warning.

DEBUGGING OPTIONS
GNU CC has various special options that are used for debugging either your program or gcc:

–g Produce debugging information in the operating system’s native format (stabs, COFF, XCOFF,
or DWARF). GDB (the GNU debugger) can work with this debugging information.

On most systems that use stabs format, –g enables use of extra debugging information that only GDB
can use; this extra information makes debugging work better in GDB but will probably make
other debuggers crash or refuse to read the program. If you want to control for certain whether
to generate the extra information, use –gstabs, –gstabs, –gxcoff+, –gxcoff, –gdwarf+, or –gdwarf.

Unlike most other C compilers, GNU CC allows you to use –g with –O. The shortcuts taken by
optimized code may occasionally produce surprising results: Some variables you declared may
not exist at all; flow of control may briefly move where you did not expect it; some statements
may not be executed because they compute constant results or their values were already at hand;
some statements may execute in different places because they were moved out of loops.

Nevertheless, it proves possible to debug optimized output. This makes it reasonable to use the
optimizer for programs that might have bugs.

The following options are useful when GNU CC is generated with the capability for more than one debugging format.

–ggdb Produce debugging information in the native format (if that is supported), including GDB
extensions if at all possible.

–gstabs Produce debugging information in stabs format (if that is supported), without GDB exten-
sions. This is the format used by DBX on most BSD systems.

–gstabs+ Produce debugging information in stabs format (if that is supported), using GNU extensions
understood only by the GNU debugger (GDB). The use of these extensions is likely to make
other debuggers crash or refuse to read the program.

–gcoff Produce debugging information in COFF format (if that is supported). This is the format used
by SDB on most System V systems prior to System V Release 4.

–gxcoff Produce debugging information in XCOFF format (if that is supported). This is the format
used by the DBX debugger on IBM RS/6000 systems.

–gxcoff+ Produce debugging information in XCOFF format (if that is supported), using GNU
extensions understood only by the GNU debugger (GDB). The use of these extensions is likely
to make other debuggers crash or refuse to read the program.

–gdwarf Produce debugging information in DWARF format (if that is supported). This is the format
used by SDB on most System V Release 4 systems.

–gdwarf+ Produce debugging information in DWARF format (if that is supported), using GNU
extensions understood only by the GNU debugger (GDB). The use of these extensions is likely
to make other debuggers crash or refuse to read the program.
–glevel
–ggdblevel
–gstabslevel
–gcofflevel –gxcofflevel

–gdwarflevel Request debugging information and also use level to specify how much information. The
default level is 2.

Level 1 produces minimal information, enough for making backtraces in parts of the program
that you don’t plan to debug. This includes descriptions of functions and external variables, but
no information about local variables and no line numbers.

187

Level 3 includes extra information, such as all the macro definitions present in the program.
Some debuggers support macro expansion when you use –g3.

–p Generate extra code to write profile information suitable for the analysis program prof.

–pg Generate extra code to write profile information suitable for the analysis program gprof.

–a Generate extra code to write profile information for basic blocks, which will record the number
of times each basic block is executed. This data could be analyzed by a program like tcov. Note,
however, that the format of the data is not what tcov expects. Eventually, GNU gprof should
be extended to process this data.

–dletters Says to make debugging dumps during compilation at times specified by letters. This is used
for debugging the compiler. The filenames for most of the dumps are made by appending a
word to the source filename (for example, foo.c.rtl or foo.c.jump).

–dM Dump all macro definitions at the end of preprocessing, and write no output.

–dN Dump all macro names, at the end of preprocessing.

–dD Dump all macro definitions at the end of preprocessing, in addition to normal output.

–dy Dump debugging information during parsing, to standard error.

–dr Dump after RTL generation, to file.rtl.

–dx Just generate RTL for a function instead of compiling it. Usually used with r.

–dj Dump after first jump optimization, to file .jump.

–ds Dump after CSE (including the jump optimization that sometimes follows CSE), to file .cse.

–dL Dump after loop optimization, to file .loop.

–dt Dump after the second CSE pass (including the jump optimization that sometimes follows
CSE), to file .cse2.

–df Dump after flow analysis, to file .flow.

–dc Dump after instruction combination, to file .combine.

–dS Dump after the first instruction scheduling pass, to file .sched.

–dl Dump after local register allocation, to file .lreg.

–dg Dump after global register allocation, to file .greg.

–dR Dump after the second instruction scheduling pass, to file .sched2.

–dJ Dump after last jump optimization, to file .jump2.

–dd Dump after delayed branch scheduling, to file .dbr.

–dk Dump after conversion from registers to stack, to file .stack.

–da Produce all the dumps listed previously.

–dm Print statistics on memory usage, at the end of the run, to standard error.

–dp Annotate the assembler output with a comment indicating which pattern and alternative was
used.

–fpretend–float When running a cross-compiler, pretend that the target machine uses the same floating-point
format as the host machine. This causes incorrect output of the actual floating constants, but
the actual instruction sequence will probably be the same as GNU CC would make when
running on the target machine.

–save–temps Store the usual temporary intermediate files permanently; place them in the current directory
and name them based on the source file. Thus, compiling foo.c with –c –save–temps would
produce files foo.cpp and foo.s, as well as foo.o.

–print–file–name=library Print the full absolute name of the library file library would be used when linking, and do not
do anything else. With this option, GNU CC does not compile or link anything; it just prints
the filename.

–print–libgcc–file–name Same as –print–file–name=libgcc.a.

–print–prog–name=program Like –print–file–name, but searches for a program such as cpp.

gcc, g++

Part I: User Commands188

OPTIMIZATION OPTIONS
These options control various sorts of optimizations:

–O, –O1 Optimize. Optimizing compilation takes somewhat more time, and a lot more memory for a
large function.

Without –O, the compiler’s goal is to reduce the cost of compilation and to make debugging
produce the expected results. Statements are independent: If you stop the program with a
breakpoint between statements, you can then assign a new value to any variable or change the
program counter to any other statement in the function and get exactly the results you would
expect from the source code.

Without –O, only variables declared register are allocated in registers. The resulting compiled
code is a little worse than produced by PCC without –O.

With –O, the compiler tries to reduce code size and execution time.

When you specify –O, the two options –fthread–jumps and –fdefer–pop are turned on. On
machines that have delay slots, the –fdelayed–branch option is turned on. For those machines
that can support debugging even without a frame pointer, the –fomit–frame–pointer option is
turned on. On some machines other flags may also be turned on.

–O2 Optimize even more. Nearly all supported optimizations that do not involve a space-speed
tradeoff are performed. Loop unrolling and function inlining are not done, for example. As
compared to –O, this option increases both compilation time and the performance of the
generated code.

–O3 Optimize yet more. This turns on everything –O2 does, along with also turning on –finline–
functions.

–O0 Do not optimize.

If you use multiple –O options, with or without level numbers, the last such option is the one
that is effective.

Options of the form –f flag specify machine-independent flags. Most flags have both positive and negative forms; the
negative form of –ffoo would be –fno–foo. The following list shows only one form—the one which is not the default. You
can figure out the other form by either removing no– or adding it.

–ffloat–store Do not store floating-point variables in registers. This prevents undesirable excess precision on
machines such as the 68000 where the floating registers (of the 68881) keep more precision
than a double is supposed to have.

For most programs, the excess precision does only good, but a few programs rely on the precise
definition of IEEE floating point. Use –ffloat–store for such programs.

–fmemorize–lookups Use heuristics to compile faster (C++ only). These heuristics are not enabled by default,
–fsave–memorized since they are only effective for certain input files. Other input files compile more slowly.

The first time the compiler must build a call to a member function (or reference to a data
member), it must (1) determine whether the class implements member functions of that name;
(2) resolve which member function to call (which involves figuring out what sorts of type
conversions need to be made); and (3) check the visibility of the member function to the caller.
All of this adds up to slower compilation. Normally, the second time a call is made to that
member function (or reference to that data member), it must go through the same lengthy
process again. This means that code like this:

cout << “This “ << p << “has”<< \ << “ legs.\n”

makes six passes through all three steps. By using a software cache, a hit significantly reduces
this cost. Unfortunately, using the cache introduces another layer of mechanisms which must
be implemented, and so incurs its own overhead. –fmemorize– lookups enables the software
cache.

Because access privileges (visibility) to members and member functions may differ from one
function context to the next, g++ may need to flush the cache. With the –fmemorize–lookups
flag, the cache is flushed after every function that is compiled. The –fsave–memorized flag

189

enables the same software cache, but when the compiler determines that the context of the last
function compiled would yield the same access privileges of the next function to compile, it
preserves the cache. This is most helpful when defining many member functions for the same
class: with the exception of member functions which are friends of other classes, each member
function has exactly the same access privileges as every other, and the cache need not be flushed.

–fno–default–inline Don’t make member functions inline by default merely because they are defined inside the class
scope (C++ only).

–fno–defer–pop Always pop the arguments to each function call as soon as that function returns. For machines
which must pop arguments after a function call, the compiler normally lets arguments
accumulate on the stack for several function calls and pops them all at once.

–fforce–mem Force memory operands to be copied into registers before doing arithmetic on them. This may
produce better code by making all memory references potential common subexpressions. When
they are not common subexpressions, instruction combination should eliminate the separate
register-load. I am interested in hearing about the difference this makes.

–fforce–addr Force memory address constants to be copied into registers before doing arithmetic on them.
This may produce better code just as –fforce–mem may. I am interested in hearing about the
difference this makes.

–fomit–frame–pointer Don’t keep the frame pointer in a register for functions that don’t need one. This avoids the
instructions to save, set up and restore frame pointers; it also makes an extra register available in
many functions. It also makes debugging impossible on most machines.

On some machines, such as the VAX, this flag has no effect because the standard calling
sequence automatically handles the frame pointer and nothing is saved by pretending it doesn’t
exist. The machine-description macro FRAME_POINTER_REQUIRED controls whether a target
machine supports this flag.

–finline–functions Integrate all simple functions into their callers. The compiler heuristically decides which
functions are simple enough to be worth integrating in this way.

If all calls to a given function are integrated, and the function is declared static, then gcc
normally does not output the function as assembler code in its own right.

–fcaller–saves Enable values to be allocated in registers that will be clobbered by function calls, by emitting
extra instructions to save and restore the registers around such calls. Such allocation is done
only when it seems to result in better code than would otherwise be produced.

This option is enabled by default on certain machines, usually those which have no call-
preserved registers to use instead.

–fkeep–inline–functions Even if all calls to a given function are integrated, and the function is declared static,
nevertheless output a separate runtime callable version of the function.

–fno–function–cse Do not put function addresses in registers; make each instruction that calls a constant function
contain the function’s address explicitly.

This option results in less efficient code, but some strange hacks that alter the assembler output
may be confused by the optimizations performed when this option is not used.

–fno–peephole Disable any machine-specific peephole optimizations.

–ffast-math This option allows gcc to violate some ANSI or IEEE specifications in the interest of optimiz-
ing code for speed. For example, it allows the compiler to assume arguments to the sqrt
function are nonnegative numbers.

This option should never be turned on by any –O option because it can result in incorrect
output for programs which depend on an exact implementation of IEEE or ANSI rules/
specifications for math functions.

The following options control specific optimizations. The –O2 option turns on all of these optimizations except –funroll–
loops and –funroll–all–loops.

The –O option usually turns on the –fthread–jumps and –fdelayed–branch options, but specific machines may change the
default optimizations.

gcc, g++

Part I: User Commands190

You can use the following flags in the rare cases when fine-tuning of optimizations to be performed is desired:

–fstrength–reduce Perform the optimizations of loop strength reduction and elimination of iteration variables.

–fthread–jumps Perform optimizations where we check to see if a jump branches to a location where another
comparison subsumed by the first is found. If so, the first branch is redirected to either the
destination of the second branch or a point immediately following it, depending on whether
the condition is known to be true or false.

–funroll–loops Perform the optimization of loop unrolling. This is only done for loops whose number of
iterations can be determined at compile time or runtime.

–funroll–all–loops Perform the optimization of loop unrolling. This is done for all loops. This usually makes
programs run more slowly.

–fcse–follow–jumps In common subexpression elimination, scan through jump instructions when the target of the
jump is not reached by any other path. For example, when CSE encounters an if statement
with an else clause, CSE will follow the jump when the condition tested is false.

–fcse–skip–blocks This is similar to –fcse–follow–jumps, but causes CSE to follow jumps which conditionally skip
over blocks. When CSE encounters a simple if statement with no else clause, –fcse–skip–
blocks causes CSE to follow the jump around the body of the if.

–frerun–cse–after–loop Rerun common subexpression elimination after loop optimizations has been performed.

–felide–constructors Elide constructors when this seems plausible (C++ only). With this flag, GNU C++ initializes y
directly from the call to foo without going through a temporary in the following code:

A foo (); A y = foo ();

Without this option, GNU C++ first initializes y by calling the appropriate constructor for type
A; then assigns the result of foo to a temporary; and, finally, replaces the initial value of y with
the temporary.

The default behavior (–fno–elide–constructors) is specified by the draft ANSI C++ standard. If
your program’s constructors have side effects, using –felide-constructors can make your
program act differently, since some constructor calls may be omitted.

–fexpensive–optimizations Perform a number of minor optimizations that are relatively expensive.

–fdelayed–branch If supported for the target machine, attempt to reorder instructions to exploit instruction slots
available after delayed branch instructions.

–fschedule–insns If supported for the target machine, attempt to reorder instructions to eliminate execution stalls
due to required data being unavailable. This helps machines that have slow floating point or
memory load instructions by allowing other instructions to be issued until the result of the load
or floating point instruction is required.

–fschedule–insns2 Similar to –fschedule–insns, but requests an additional pass of instruction scheduling after
register allocation has been done. This is especially useful on machines with a relatively small
number of registers and where memory load instructions take more than one cycle.

TARGET OPTIONS
By default, GNU CC compiles code for the same type of machine that you are using.

However, it can also be installed as a cross-compiler, to compile for some other type of machine. In fact, several different
configurations of GNU CC, for different target machines, can be installed side by side. Then you specify which one to use
with the –b option.

In addition, older and newer versions of GNU CC can be installed side by side. One of them (probably the newest) will be
the default, but you may sometimes want to use another.

–b machine The argument machine specifies the target machine for compilation. This is useful when you
have installed GNU CC as a cross-compiler.

The value to use for machine is the same as was specified as the machine type when configuring
GNU CC as a cross-compiler. For example, if a cross-compiler was configured with configure

191

i386v, meaning to compile for an 80386 running System V, then you would specify –b i386v to
run that cross compiler.

When you do not specify –b, it normally means to compile for the same type of machine that
you are using.

–V version The argument version specifies which version of GNU CC to run. This is useful when multiple
versions are installed. For example, version might be 2.0, meaning to run GNU CC version
2.0.

The default version, when you do not specify –V, is controlled by the way GNU CC is installed.
Normally, it will be a version that is recommended for general use.

MACHINE-DEPENDENT OPTIONS
Each of the target machine types can have its own special options, starting with –m, to choose among various hardware
models or configurations—for example, 68010 versus 68020, floating coprocessor or none. A single installed version of the
compiler can compile for any model or configuration, according to the options specified.

Some configurations of the compiler also support additional special options, usually for command-line compatibility with
other compilers on the same platform.

These are the –m options defined for the 68000 series:

–m68000 Generate output for a 68000. This is the default when the compiler is configured for 68000-
–mc68000 based systems.

–m68020 Generate output for a 68020 (rather than a 68000). This is the default when the compiler is
–mc68020 configured for 68020-based systems.

–m68881 Generate output containing 68881 instructions for floating point. This is the default for most
68020-based systems unless –nfp was specified when the compiler was configured.

–m68030 Generate output for a 68030. This is the default when the compiler is configured for 68030-
based systems.

–m68040 Generate output for a 68040. This is the default when the compiler is configured for 68040-
based systems.

–m68020–40 Generate output for a 68040, without using any of the new instructions. This results in code
which can run relatively efficiently on either a 68020/68881 or a 68030 or a 68040.

–mfpa Generate output containing Sun FPA instructions for floating point.

–msoft–float Generate output containing library calls for floating point.

WARNING

The requisite libraries are not part of GNU CC. Normally, the facilities of the machine’s usual C compiler are used, but
this can’t be done directly in cross-compilation. You must make your own arrangements to provide suitable library func-
tions for cross-compilation.

–mshort Consider type int to be 16 bits wide, like short int.

–mnobitfield Do not use the bit-field instructions. –m68000 implies –mnobitfield.

–mbitfield Do use the bit-field instructions. –m68020 implies –mbitfield. This is the default if you use the
unmodified sources.

–mrtd Use a different function-calling convention, in which functions that take a fixed number of
arguments return with the rtd instruction, which pops their arguments while returning. This
saves one instruction in the caller since there is no need to pop the arguments there.

This calling convention is incompatible with the one normally used on UNIX, so you cannot
use it if you need to call libraries compiled with the UNIX compiler.

gcc, g++

Part I: User Commands192

Also, you must provide function prototypes for all functions that take variable numbers of
arguments (including printf); otherwise, incorrect code will be generated for calls to those
functions.

In addition, seriously incorrect code will result if you call a function with too many arguments.
(Normally, extra arguments are harmlessly ignored.)

The rtd instruction is supported by the 68010 and 68020 processors, but not by the 68000.

These –m options are defined for the VAX:

–munix Do not output certain jump instructions (aobleq and so on) that the UNIX assembler for the
VAX cannot handle across long ranges.

–mgnu Do output those jump instructions, on the assumption that you will assemble with the GNU
assembler.

–mg Output code for g-format floating-point numbers instead of d-format.

These –m switches are supported on the SPARC:

–mfpu Generate output containing floating-point instructions. This is the default.
–mhard–float

–mno–fpu Generate output containing library calls for floating point.
–msoft–float

WARNING

There is no GNU floating-point library for SPARC. Normally, the facilities of the machine’s usual C compiler are used,
but this cannot be done directly in cross-compilation. You must make your own arrangements to provide suitable library
functions for cross-compilation.

–msoft–float Changes the calling convention in the output file; therefore, it is only useful if you compile all
of a program with this option.

–mno–epilogue With –mepilogue (the default), the compiler always emits code for function exit at the end of
–mepilogue each function. Any function exit in the middle of the function (such as a return statement in C)

will generate a jump to the exit code at the end of the function. With –mno–epilogue, the
compiler tries to emit exit code inline at every function exit.

–mno–v8 These three options select variations on the SPARC architecture. By default (unless specifically
–mv8 configured for the Fujitsu SPARClite), gcc generates code for the v7 variant of the SPARC
msparclite architecture.

–mv8 will give you SPARC v8 code. The only difference from v7 code is that the compiler emits
the integer multiply and integer divide instructions that exist in SPARC v8 but not in SPARC v7.

–msparclite will give you SPARClite code. This adds the integer multiply, integer divide step
and scan (ffs) instructions that exist in SPARClite but not in SPARC v7.

–mcypress These two options select the processor for which the code is optimized.

–msupersparc With –mcypress (the default), the compiler optimizes code for the Cypress CY7C602 chip, as
used in the SparcStation and SparcServer 3xx series. This is also appropriate for the older
SparcStation 1, 2, IPX, and so on.

With –msupersparc the compiler optimizes code for the SuperSparc cpu, as used in the
SparcStation 10, 1000, and 2000 series. This flag also enables use of the full SPARC v8
instruction set.

These –m options are defined for the Convex:

–mc1 Generate output for a C1. This is the default when the compiler is configured for a C1.

–mc2 Generate output for a C2. This is the default when the compiler is configured for a C2.

193

–margcount Generate code which puts an argument count in the word preceding each argument list. Some
nonportable Convex and VAX programs need this word. (Debuggers don’t, except for
functions with variable-length argument lists; this information is in the symbol table.)

–mnoargcount Omit the argument count word. This is the default if you use the unmodified sources.

These –m options are defined for the AMD Am29000:

–mdw Generate code that assumes the DW bit is set, that is, that byte and half-word operations are
directly supported by the hardware. This is the default.

–mnodw Generate code that assumes the DW bit is not set.

–mbw Generate code that assumes the system supports byte and halfword write operations. This is the
default.

–mnbw Generate code that assumes the systems does not support byte and halfword write operations.
This implies –mnodw.

–msmall Use a small memory model that assumes that all function addresses are either within a single
256KB segment or at an absolute address of less than 256K. This allows the call instruction to
be used instead of a const, consth, calli sequence.

–mlarge Do not assume that the call instruction can be used; this is the default.

–m29050 Generate code for the Am29050.

–m29000 Generate code for the Am29000. This is the default.

–mkernel–registers Generate references to registers gr64–gr95 instead of gr96–gr127. This option can be used when
compiling kernel code that wants a set of global registers disjoint from that used by user-mode
code.

Note that when this option is used, register names in –f flags must use the normal, user-mode,
names.

–muser–registers Use the normal set of global registers, gr96–gr127. This is the default.

–mstack–check Insert a call to msp check after each stack adjustment. This is often used for kernel code.

These –m options are defined for Motorola 88K architectures:

–m88000 Generate code that works well on both the m88100 and the m88110.

–m88100 Generate code that works best for the m88100, but that also runs on the m88110.

–m88110 Generate code that works best for the m88110, and may not run on the m88100.

–midentify–revision Include an ident directive in the assembler output recording the source filename, compiler
name and version, timestamp, and compilation flags used.

–mno–underscores In assembler output, emit symbol names without adding an underscore character at the
beginning of each name. The default is to use an underscore as prefix on each name.

–mcheck–zero–division Early models of the 88K architecture had problems with division by zero; in particular, many of
–mno–check–zero–division them didn’t trap. Use these options to avoid including (or to include explicitly) additional code

to detect division by zero and signal an exception. All gcc configurations for the 88K use
–mcheck–zero–division by default.

–mocs–debug–info Include (or omit) additional debugging information (about registers used in each stack frame)
–mno–ocs–debug–info as specified in the 88Open Object Compatibility Standard, OCS. This extra information is not

needed by GDB. The default for DG/UX, SVr4, and Delta 88 SVr3.2 is to include this
information; other 88K configurations omit this information by default.

–mocs–frame–position Force (or do not require) register values to be stored in a particular place in stack frames, as
–mno–ocs–frame–position specified in OCS. The DG/UX, Delta88 SVr3.2, and BCS configurations use –mocs–frame–

position; other 88K configurations have the default –mno–ocs– frame–position.

–moptimize–arg–area Control how to store function arguments in stack frames. –moptimize–arg–area saves space, but
–mno–optimize–arg–area may break some debuggers (not GDB). –mno–optimize–arg–area conforms better to standards.

By default gcc does not optimize the argument area.

gcc, g++

Part I: User Commands194

–mshort–data–num Generate smaller data references by making them relative to r0, which allows loading a value
using a single instruction (rather than the usual two). You control which data references are
affected by specifying num with this option. For example, if you specify –mshort–data–512,
then the data references affected are those involving displacements of less than 512 bytes.
–mshort–data-num is not effective for num greater than 64K.

–mserialize-volatile Do, or do not, generate code to guarantee sequential consistency of volatile memory references.

–mno-serialize-volatile GNU CC always guarantees consistency by default, for the preferred processor submodel. How
this is done depends on the submodel.

The m88100 processor does not reorder memory references and so always provides sequential
consistency. If you use –m88100, GNU CC does not generate any special instructions for
sequential consistency.

The order of memory references made by the m88110 processor does not always match the
order of the instructions requesting those references. In particular, a load instruction may
execute before a preceding store instruction. Such reordering violates sequential consistency of
volatile memory references, when there are multiple processors. When you use –m88000 or
–m88110, GNU CC generates special instructions when appropriate, to force execution in the
proper order.

The extra code generated to guarantee consistency may affect the performance of your
application. If you know that you can safely forgo this guarantee, you may use the option
–mno-serialize-volatile.

If you use the –m88100 option but require sequential consistency when running on the m88110
processor, you should use –mserialize-volatile.

–msvr4, –msvr3 Turn on (–msvr4) or off (–msvr3) compiler extensions related to System V release 4 (SVr4). This
controls the following:

Which variant of the assembler syntax to emit (which you can select independently using
–mversion–03.00).

–msvr4 makes the C preprocessor recognize #pragma weak.

–msvr4 makes gcc issue additional declaration directives used in SVr4.

–msvr3 is the default for all m88K configurations except the SVr4 configuration.

–mtrap–large–shift Include code to detect bit-shifts of more than 31 bits; respectively, trap such shifts or emit code
–mhandle–large–shift to handle them properly. By default, gcc makes no special provision for large bit shifts.

–muse–div–instruction Very early models of the 88K architecture didn’t have a divide instruction, so gcc avoids that
instruction by default. Use this option to specify that it’s safe to use the divide instruction.

–mversion–03.00 In the DG/UX configuration, there are two flavors of SVr4. This option modifies –msvr4 to
select whether the hybrid-COFF or real-ELF flavor is used. All other configurations ignore this
option.

–mwarn–passed–structs Warn when a function passes a struct as an argument or result. Structure-passing conventions
have changed during the evolution of the C language, and are often the source of portability
problems. By default, gcc issues no such warning.

These options are defined for the IBM RS6000:

–mfp–in–toc Control whether or not floating-point constants go in the table of contents (TOC), a table of
–mno–fp–in–toc all global variable and function addresses. By default gcc puts floating-point constants there; if

the TOC overflows, –mno–fp–in–toc will reduce the size of the TOC, which may avoid the
overflow.

These –m options are defined for the IBM RT PC:

–min–line–mul Use an inline code sequence for integer multiplies. This is the default.

–mcall–lib–mul Call lmul$$ for integer multiples.

–mfull–fp–blocks Generate full-size floating-point data blocks, including the minimum amount of scratch space
recommended by IBM. This is the default.

195

–mminimum–fp–blocks Do not include extra scratch space in floating-point data blocks. This results in smaller code,
but slower execution, since scratch space must be allocated dynamically.

–mfp–arg–in–fpregs Use a calling sequence incompatible with the IBM calling convention in which floating-point
arguments are passed in floating-point registers. Note that varargs.h and stdargs.h will not
work with floating-point operands if this option is specified.

–mfp–arg–in–gregs Use the normal calling convention for floating-point arguments. This is the default.

–mhc–struct–return Return structures of more than one word in memory, rather than in a register. This provides
compatibility with the MetaWare HighC (hc) compiler. Use –fpcc–struct–return for compat-
ibility with the Portable C Compiler (PCC).

–mnohc–struct–return Return some structures of more than one word in registers, when convenient. This is the
default. For compatibility with the IBM-supplied compilers, use either –fpcc–struct–return or
–mhc–struct–return.

These –m options are defined for the MIPS family of computers:

–mcpu=cpu-type Assume the defaults for the machine type cpu-type when scheduling instructions. The default
cpu-type is default, which picks the longest cycles times for any of the machines, in order that
the code run at reasonable rates on all MIPS CPUs. Other choices for cpu-type are r2000, r3000,
r4000,and r6000. While picking a specific cpu-type will schedule things appropriately for that
particular chip, the compiler will not generate any code that does not meet level 1 of the MIPS
ISA (instruction set architecture) with-out the –mips2 or –mips3 switches being used.

–mips2 Issue instructions from level 2 of the MIPS ISA (branch likely, square root instructions).

The –mcpu=r4000 or –mcpu=r6000 switch must be used in conjunction with –mips2.

–mips3 Issue instructions from level 3 of the MIPS ISA (64-bit instructions). The –mcpu=r4000 switch
must be used in conjunction with –mips2.

–mint64, –mlong64 These options don’t work at present.
–mlonglong128

–mmips–as Generate code for the MIPS assembler, and invoke mips–tfile to add normal debug informa-
tion. This is the default for all platforms except for the OSF/1 reference platform, using the
OSF/rose object format. If any of the –ggdb, –gstabs, or –gstabs+ switches are used, the mips–
tfile program will encapsulate the stabs within MIPS ECOFF.

–mgas Generate code for the GNU assembler. This is the default on the OSF/1 reference platform,
using the OSF/rose object format.

–mrnames, –mno–rnames The –mrnames switch says to output code using the MIPS software names for the registers,
instead of the hardware names (for example, a0 instead of $4). The GNU assembler does not
support the –mrnames switch, and the MIPS assembler will be instructed to run the MIPS C
preprocessor over the source file. The –mno–rnames switch is default.

–mgpopt, –mno–gpopt The –mgpopt switch says to write all of the data declarations before the instructions in the text
section, to all the MIPS assembler to generate one-word memory references instead of using
two words for short global or static data items. This is on by default if optimization is selected.

–mstats, –mno–stats For each noninline function processed, the –mstats switch causes the compiler to emit one line
to the standard error file to print statistics about the program (number of registers saved, stack
size, and so on).

–mmemcpy, –mno–memcpy The –mmemcpy switch makes all block moves call the appropriate string function (memcpy or
bcopy) instead of possibly generating inline code.

–mmips–tfile The –mno–mips–tfile switch causes the compiler to not post-process the object file with the
–mno–mips–tfile mips–tfile program, after the MIPS assembler has generated it to add debug support. If mips–

tfile is not run, then no local variables will be available to the debugger. In addition, stage2
and stage3 objects will have the temporary filenames passed to the assembler embedded in the
object file, which means the objects will not compare the same.

–msoft–float Generate output containing library calls for floating point.

gcc, g++

Part I: User Commands196

WARNING

The requisite libraries are not part of GNU CC. Normally, the facilities of the machine’s usual C compiler are used, but
this can’t be done directly in cross-compilation. You must make your own arrangements to provide suitable library func-
tions for cross-compilation.

–mhard–float Generate output containing floating point instructions. This is the default if you use the
unmodified sources.

–mfp64 Assume that the FR bit in the status word is on, and that there are 32 64-bit floating-point
registers, instead of 32 32-bit floating-point registers. You must also specify the –mcpu=r4000 and
–mips3 switches.

–mfp32 Assume that there are 32 32-bit floating-point registers. This is the default.

–mabicalls Emit (or do not emit) the .abicalls, .cpload, and .cprestore pseudo operations that some
–mno–abicalls System V.4 ports use for position-independent code.

–mhalf–pic The –mhalf–pic switch says to put pointers to extern references into the data section and load
–mno–half–pic them up, rather than put the references in the text section. This option does not work at

present.

–Gnum Put global and static items less than or equal to num bytes into the small data or bss sections
instead of the normal data or bss section. This allows the assembler to emit one-word memory
reference instructions based on the global pointer (gp or $28), instead of the normal two words
used. By default, num is 8 when the MIPS assembler is used, and 0 when the GNU assembler is
used. The –Gnum switch is also passed to the assembler and linker. All modules should be
compiled with the same –Gnum value.

–nocpp Tell the MIPS assembler to not run its preprocessor over user assembler files (with an .s suffix)
when assembling them.

These –m options are defined for the Intel 80386 family of computers:

–m486, –mno–486 Control whether or not code is optimized for a 486 instead of a 386. Code generated for a 486
will run on a 386 and vice versa.

–msoft–float Generate output containing library calls for floating point.

WARNING

The requisite libraries are not part of GNU CC. Normally, the facilities of the machine’s usual C compiler are used, but
this can’t be done directly in cross-compilation. You must make your own arrangements to provide suitable library func-
tions for cross-compilation.

On machines where a function returns floating point results in the 80387 register stack, some
floating-point opcodes may be emitted even if –msoft-float is used.

–mno-fp-ret-in-387 Do not use the FPU registers for return values of functions.

The usual calling convention has functions return values of types float and double in an FPU
register, even if there is no FPU. The idea is that the operating system should emulate an FPU.

The option –mno-fp-ret-in-387 causes such values to be returned in ordinary CPU registers
instead.

These –m options are defined for the HPPA family of computers:

–mpa-risc-1-0 Generate code for a PA 1.0 processor.

–mpa-risc-1-1 Generate code for a PA 1.1 processor.

197

–mkernel Generate code which is suitable for use in kernels. Specifically, avoid add instructions in which
one of the arguments is the DP register; generate addil instructions instead. This avoids a rather
serious bug in the HP-UX linker.

–mshared-libs Generate code that can be linked against HP-UX shared libraries. This option is not fully
functioning yet, and is not on by default for any PA target. Using this option can cause
incorrect code to be generated by the compiler.

–mno-shared-libs Don’t generate code that will be linked against shared libraries. This is the default for all PA
targets.

–mlong-calls Generate code which allows calls to functions greater than 256K away from the caller when the
caller and callee are in the same source file. Do not turn this option on unless code refuses to
link with branch out of range errors from the linker.

–mdisable-fpregs Prevent floating-point registers from being used in any manner. This is necessary for compiling
kernels that perform lazy context switching of floating-point registers. If you use this option
and attempt to perform floating-point operations, the compiler will abort.

–mdisable-indexing Prevent the compiler from using indexing address modes. This avoids some rather obscure
problems when compiling MIG-generated code under MACH.

–mtrailing-colon Add a colon to the end of label definitions (for ELF assemblers).

These –m options are defined for the Intel 80960 family of computers:

–mcpu-type Assume the defaults for the machine type cpu-type for instruction and addressing-mode
availability and alignment. The default cpu-type is kb; other choices are ka, mc, ca, cf, sa, and sb.

–mnumerics The –mnumerics option indicates that the processor does support floating-point instructions.
–msoft–float The –msoft–float option indicates that floating-point support should not be assumed.

–mleaf–procedures Do (or do not) attempt to alter leaf procedures to be callable with the bal instruction as well as
–mno–leaf–procedures call. This will result in more efficient code for explicit calls when the bal instruction can be

substituted by the assembler or linker, but less efficient code in other cases, such as calls via
function pointers, or using a linker that doesn’t support this optimization.

–mtail–call Do (or do not) make additional attempts (beyond those of the machine-independent portions
–mno–tail–call of the compiler) to optimize tail-recursive calls into branches. You may not want to do this

because the detection of cases where this is not valid is not totally complete. The default is
–mno–tail–call.

–mcomplex–addr Assume (or do not assume) that the use of a complex addressing mode is a win on this imple-
–mno–complex–addr mentation of the i960. Complex addressing modes may not be worthwhile on the K-series, but

they definitely are on the C-series. The default is currently –mcomplex–addr for all processors
except the CB and CC.

–mcode–align Align code to 8-byte boundaries for faster fetching (or don’t bother). Currently turned on by
–mno–code–align default for C-series implementations only.

–mic–compat Enable compatibility with iC960 v2.0 or v3.0.
–mic2.0–compat

–mic3.0–compat

–masm–compat Enable compatibility with the iC960 assembler.
–mintel–asm

–mstrict–align Do not permit (do permit) unaligned accesses.
–mno–strict–align

–mold–align Enable structure-alignment compatibility with Intel’s gcc release version 1.3 (based on gcc
1.37). Currently this is buggy in that #pragma align 1 is always assumed as well, and cannot be
turned off.

gcc, g++

Part I: User Commands198

These –m options are defined for the DEC Alpha implementations:

–mno-soft-float Use (do not use) the hardware floating-point instructions for floating-point operations. When
–msoft-float –msoft-float is specified, functions in libgcc1.c will be used to perform floating-point

operations. Unless they are replaced by routines that emulate the floating-point operations, or
compiled in such a way as to call such emulations routines, these routines will issue floating-
point operations. If you are compiling for an Alpha without floating-point operations, you
must ensure that the library is built so as not to call them.

Note that Alpha implementations without floating-point operations are required to have
floating-point registers.

–mfp-reg, –mno-fp-regs Generate code that uses (does not use) the floating-point register set. –mno-fp-regs implies
–msoft-float. If the floating-point register set is not used, floating-point operands are passed in
integer registers as if they were integers and floating-point results are passed in $0 instead of $f0.
This is a nonstandard calling sequence, so any function with a floating-point argument or
return value called by code compiled with –mno-fp-regs must also be compiled with that
option.

A typical use of this option is building a kernel that does not use, and hence need not save and
restore, any floating-point registers.

These additional options are available on System V Release 4 for compatibility with other compilers on those systems:

–G On SVr4 systems, gcc accepts the option –G (and passes it to the system linker), for compatibil-
ity with other compilers. However, we suggest you use –symbolic or –shared as appropriate,
instead of supplying linker options on the gcc command line.

–Qy Identify the versions of each tool used by the compiler, in an .ident assembler directive in the
output.

–Qn Refrain from adding .ident directives to the output file (this is the default).

–YP,dirs Search the directories dirs, and no others, for libraries specified with –l. You can separate
directory entries in dirs from one another with colons.

–Ym,dir Look in the directory dir to find the M4 preprocessor. The assembler uses this option.

CODE GENERATION OPTIONS
These machine-independent options control the interface conventions used in code generation.

Most of them begin with –f. These options have both positive and negative forms; the negative form of –ffoo would be –fno–
foo. In the following table, only one of the forms is listed—the one which is not the default. You can figure out the other
form by either removing no– or adding it.

–fnonnull–objects Assume that objects reached through references are not null (C++ only).

Normally, GNU C++ makes conservative assumptions about objects reached through
references. For example, the compiler must check that a is not null in code like the following:

obj &a = g (); a.f (2);

Checking that references of this sort have nonnull values requires extra code, however, and it is
unnecessary for many programs. You can use –fnonnull-objects to omit the checks for null, if
your program doesn’t require checking.

–fpcc–struct–return Use the same convention for returning struct and union values that is used by the usual C
compiler on your system. This convention is less efficient for small structures, and on many
machines it fails to be reentrant; but it has the advantage of allowing intercallability between
gcc-compiled code and pcc-compiled code.

–freg–struct–return Use the convention that struct and union values are returned in registers when possible. This is
more efficient for small structures than –fpcc–struct–return.

If you specify neither –fpcc–struct–return nor –freg–struct–return, GNU CC defaults to
whichever convention is standard for the target. If there is no standard convention, GNU CC
defaults to –fpcc–struct–return.

199

–fshort–enums Allocate to an enum type only as many bytes as it needs for the declared range of possible values.
Specifically, the enum type will be equivalent to the smallest integer type that has enough room.

–fshort–double Use the same size for double as for float.

–fshared–data Requests that the data and non-const variables of this compilation be shared data rather than
private data. The distinction makes sense only on certain operating systems, where shared data
is shared between processes running the same program, while private data exists in one copy per
process.

–fno–common Allocate even uninitialized global variables in the bss section of the object file, rather than
generating them as common blocks. This has the effect that if the same variable is declared
(without extern) in two different compilations, you will get an error when you link them. The
only reason this might be useful is if you want to verify that the program will work on other
systems which always work this way.

–fno–ident Ignore the #ident directive.

–fno–gnu–linker Do not output global initializations (such as C++ constructors and destructors) in the form
used by the GNU linker (on systems where the GNU linker is the standard method of handling
them). Use this option when you want to use a non-GNU linker, which also requires using the
collect2 program to make sure the system linker includes constructors and destructors.
(collect2 is included in the GNU CC distribution.) For systems that must use collect2, the
compiler driver gcc is configured to do this automatically.

–finhibit-size-directive Don’t output a .size assembler directive, or anything else that would cause trouble if the
function is split in the middle, and the two halves are placed at locations far apart in memory.
This option is used when compiling crtstuff.c; you should not need to use it for anything else.

–fverbose-asm Put extra commentary information in the generated assembly code to make it more readable.
This option is generally only of use to those who actually need to read the generated assembly
code (perhaps while debugging the compiler itself).

–fvolatile Consider all memory references through pointers to be volatile.

–fvolatile–global Consider all memory references to extern and global data items to be volatile.

–fpic If supported for the target machines, generate position-independent code, suitable for use in a
shared library.

–fPIC If supported for the target machine, emit position-independent code, suitable for dynamic
linking, even if branches need large displacements.

–ffixed–reg Treat the register named reg as a fixed register; generated code should never refer to it (except
perhaps as a stack pointer, frame pointer, or in some other fixed role).

reg must be the name of a register. The register names accepted are machine-specific and are
defined in the REGISTER_NAMES macro in the machine description macro file.

This flag does not have a negative form, because it specifies a three-way choice.

–fcall–used–reg Treat the register named reg as an allocable register that is clobbered by function calls. It may
be allocated for temporaries or variables that do not live across a call. Functions compiled this
way will not save and restore the register reg.

Use of this flag for a register that has a fixed pervasive role in the machine’s execution model,
such as the stack pointer or frame pointer, will produce disastrous results.

This flag does not have a negative form, because it specifies a three-way choice.

–fcall–saved–reg Treat the register named reg as an allocable register saved by functions. It may be allocated even
for temporaries or variables that live across a call. Functions compiled this way will save and
restore the register reg if they use it.

Use of this flag for a register that has a fixed pervasive role in the machine’s execution model,
such as the stack pointer or frame pointer, will produce disastrous results.

A different sort of disaster will result from the use of this flag for a register in which function
values may be returned.

This flag does not have a negative form, because it specifies a three-way choice.

gcc, g++

Part I: User Commands200

PRAGMAS
Two #pragma directives are supported for GNU C++ to permit using the same header file for two purposes: as a definition of
interfaces to a given object class, and as the full definition of the contents of that object class.

#pragma interface (C++ only.) Use this directive in header files that define object classes, to save space in most of
the object files that use those classes. Normally, local copies of certain information (backup
copies of inline member functions, debugging information, and the internal tables that
implement virtual functions) must be kept in each object file that includes class definitions. You
can use this pragma to avoid such duplication. When a header file containing #pragma
interface is included in a compilation, this auxiliary information will not be generated (unless
the main input source file itself uses #pragma implementation). Instead, the object files will
contain references to be resolved at link time.

#pragma implementation (C++ only.) Use this pragma in a main input file, when you want full output from included
#pragma implementation header files to be generated (and made globally visible). The included header file, in turn,
”objects.h” should use #pragma interface. Backup copies of inline member functions, debugging informa-

tion, and the internal tables used to implement virtual functions are all generated in implemen-
tation files.

If you use #pragma implementation with no argument, it applies to an include file with the same
basename as your source file; for example, in allclass.cc, #pragma implementation by itself is
equivalent to #pragma i-plementation “allclass.h”. Use the string argument if you want a
single implementation file to include code from multiple header files.
There is no way to split up the contents of a single header file into multiple implementation
files.

FILES
file.c C source file

file.h C header (preprocessor) file

file.i Preprocessed C source file

file.C C++ source file

file.cc C++ source file

file.cxx C++ source file

file.m Objective-C source file

file.s Assembly language file

file.o Object file

a.out Link edited output

TMPDIR/cc Temporary files

LIBDIR/cpp Preprocessor

LIBDIR/cc1 Compiler for C

LIBDIR/cc1plus Compiler for C++

LIBDIR/collect Linker front end needed on some machines

LIBDIR/libgcc.a gcc subroutine library

/lib/crt[01n].o Startup routine

LIBDIR/ccrt0 Additional startup routine for C++

/lib/libc.a Standard C library; see intro(3)

/usr/include Standard directory for #include files

LIBDIR/include Standard gcc directory for #include files

LIBDIR/g++–include Additional g++ directory for #include

LIBDIR is usually /usr/local/lib/machine/version.

TMPDIR comes from the environment variable TMPDIR (default /usr/tmp if available; otherwise, /tmp.).

201

SEE ALSO
cpp(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1)

gcc, cpp, as, ld, and gdb entries in info.

Using and Porting GNU CC (for version 2.0), Richard M. Stallman; The C Preprocessor, Richard M. Stallman; Debugging
with GDB: the GNU Source-Level Debugger, Richard M. Stallman and Roland H. Pesch; Using as: the GNU Assembler, Dean
Elsner, Jay Fenlason & friends; ld: the GNU Linker, Steve Chamberlain and Roland Pesch.

BUGS
For instructions on reporting bugs, see the GCC manual.

COPYING
Copyright 1991, 1992, 1993 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this
permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the preceding
conditions for modified versions, except that this permission notice may be included in translations approved by the Free
Software Foundation instead of in the original English.

AUTHORS
See the GNU CC manual for the contributors to GNU CC.

GNU Tools, 13 October 1993

gemtopbm
gemtopbm—Convert a GEM IMG file into a portable bitmap

SYNOPSIS
gemtopbm [-d] [gemfile]

DESCRIPTION
Reads a GEM IMG file as input. Reads from stdin if input file is omitted. Produces a portable bitmap as output.

OPTIONS
-d Produce output describing the contents of the IMG file.

BUGS
Does not support files containing more than one plane.

SEE ALSO
pbmtogem(1), pbm(5)

AUTHOR
Copyright 1988 Diomidis D. Spinellis (dds@cc.ic.ac.uk).

11 July 1992

gemtopbm

Part I: User Commands202

geqn
geqn—Format equations for troff

SYNOPSIS
geqn [–rvCNR][–dcc][–Tname][–Mdir][–fF][–sn][–pn][–mn][files ...]

DESCRIPTION
This manual page describes the GNU version of eqn, which is part of the groff document formatting system. eqn compiles
descriptions of equations embedded within troff input files into commands that are understood by troff. Normally, it
should be invoked using the –e option of groff. The syntax is quite compatible with UNIX eqn. The output of GNU eqn
cannot be processed with UNIX troff; it must be processed with GNU troff. If no files are given on the command line, the
standard input will be read. A filename of – will cause the standard input to be read.

eqn searches for the file eqnrc using the path .:/usr/lib/groff/tmac:/usr/lib/tmac. If it exists, eqn will process it before the
other input files. The –R option prevents this.

GNU eqn does not provide the functionality of neqn: it does not support low-resolution, typewriter-like devices (although it
may work adequately for very simple input).

OPTIONS
–C Recognize .EQ and .EN even when followed by a character other than space or newline.

–N Don’t allow newlines within delimiters. This option allows eqn to recover better from missing closing
delimiters.

–v Print the version number.

–r Only one size reduction.

–mn The minimum point-size is n. eqn will not reduce the size of subscripts or superscripts to a smaller size
than n.

–Tname The output is for device name. The only effect of this is to define a macro name with a value of 1. Typically,
eqnrc will use this to provide definitions appropriate for the output device. The default output device is ps.

–Mdir Search dir for eqnrc before the default directories.

–R Don’t load eqnrc.

–fF This is equivalent to a gfontF command.

–sn This is equivalent to a gsizen command. This option is deprecated. eqn will normally set equations at
whatever the current pointsize is when the equation is encountered.

–pn This says that subscripts and superscripts should be n points smaller than the surrounding text. This option
is deprecated. Normally, eqn makes sets subscripts and superscripts at 70 percent of the size of the
surrounding text.

USAGE
Only the differences between GNU eqn and UNIX eqn are described here.

Most of the new features of GNU eqn are based on TeX. There are some references to the differences between TeX and
GNU eqn as follows; these may safely be ignored if you do not know TeX.

AUTOMATIC SPACING
eqn gives each component of an equation a type, and adjusts the spacing between components using that type. Possible types
are

ordinary An ordinary character such as 1 or x

operator A large operator such as ;

binary A binary operator such as +

relation A relation such as =

203

opening An opening bracket such as (

closing A closing bracket such as)

punctuation A punctuation character such as ,

inner A subformula contained within brackets

suppress Spacing that suppresses automatic spacing adjustment

Components of an equation get a type in one of two ways:

typete This yields an equation component that contains e but that has type t, where t is one of the types
mentioned previously. For example, times is defined as

type “binary” \(mu

The name of the type doesn’t have to be quoted, but quoting protects from macro expansion.

chartypettext Unquoted groups of characters are split up into individual characters, and the type of each character is
looked up; this changes the type that is stored for each character; it says that the characters in text from
now on have type t. For example

chartype “punctuation” .,;:

would make the characters .,;: have type punctuation whenever they subsequently appeared in an
equation. The type t can also be letter or digit; in these cases, chartype changes the font type of the
characters. See the “Fonts” section, later in this manual page.

NEW PRIMITIVES
e1smallovere2 This is similar to over; smallover reduces the size of e1 and e2; it also puts less vertical space between e1 or

e2 and the fraction bar. The over primitive corresponds to the \over primitive in display styles; smallover
corresponds to \over in nondisplay styles.

vcentere This vertically centers e about the math axis. The math axis is the vertical position about which characters
such as + and - are centered; also it is the vertical position used for the bar of fractions. For example, sum is
defined as

{ type “operator” vcenter size +5 \(*S }

e1accente2 This sets e2 as an accent over e1. e2 is assumed to be at the correct height for a lowercase letter; e2 will be
moved down according if e1 is taller or shorter than a lowercase letter. For example, hat is defined as

accent { “ˆ” }

dotdot, dot, tilde, vec, and dyad are also defined using the accent primitive.

e1uaccente2 This sets e2 as an accent under e1. e2 is assumed to be at the correct height for a character without a
descender; e2 will be moved down if e1 has a descender. utilde is predefined using uaccent as a tilde accent
below the baseline.

splittext This has the same effect as simply text, but text is not subject to macro expansion because it is quoted;
text will be split up and the spacing between individual characters will be adjusted.

nosplittext This has the same effect as text, but because text is not quoted it will be subject to macro expansion; text
will not be split up and the spacing between individual characters will not be adjusted.

eopprime This is a variant of prime that acts as an operator on e.It produces a different result from prime in a case
such as Aopprimesub1: With opprime the 1 will be tucked under the prime as a subscript to the A (as is
conventional in mathematical typesetting), whereas with prime the 1 will be a subscript to the prime
character. The precedence of opprime is the same as that of bar and under, which is higher than that of
everything except accent and uaccent. In unquoted text, a ‘ that is not the first character will be treated
like opprime.

specialtexte This constructs a new object from e using a gtroff(1) macro named text. When the macro is called, the
string 0s will contain the output for e, and the number registers 0w, 0h, 0d, 0skern and 0skew will contain
the width, height, depth, subscript kern, and skew of e. (The subscript kern of an object says how much a
subscript on that object should be tucked in; the skew of an object says how far to the right of the center of
the object an accent over the object should be placed.) The macro must modify 0s so that it will output
the desired result with its origin at the current point, and increase the current horizontal position by the
width of the object. The number registers must also be modified so that they correspond to the result.

geqn

Part I: User Commands204

For example, suppose you wanted a construct that cancels an expression by drawing a diagonal line through it:

.EQ
define cancel ‘special Ca’
.EN
.de Ca
.ds 0s \Z’*(0s’\v’\\n(0du’\D’l \\n(0wu -\\n(0hu-\\n(0du’\v’\\n(0hu’
..

Then you could cancel an expression U with cancel e.

Here’s a more complicated construct that draws a box around an expression:

.EQ
define box ‘special Bx’
.EN
.de Bx
.ds 0s \Z’\h’1n’*(0s’\
\Z’\v’\\n(0du+1n’\D’l \\n(0wu+2n 0'\D’l 0 -\\n(0hu-\\n(0du-2n’\
\D’l -\\n(0wu-2n 0'\D’l 0 \\n(0hu+\\n(0du+2n”\h’\\n(0wu+2n’
.nr 0w +2n
.nr 0d +1n
.nr 0h +1n
..

CUSTOMIZATION
The appearance of equations is controlled by a large number of parameters. These can be set using the set command.

setpn This sets parameter p to value n; n is an integer. For example

set x_height 45

says that eqn should assume an x height of 0.45 ems.

Possible parameters are as follows. Values are in units of hundredths of an em unless otherwise stated. These descriptions are
intended to be expository rather than definitive.

minimum_size eqn will not set anything at a smaller point size than this. The value is in points.

fat_offset The fat primitive emboldens an equation by overprinting two copies of the equation horizontally
offset by this amount.

over_hang A fraction bar will be longer by twice this amount than the maximum of the widths of the
numerator and denominator; in other words, it will overhang the numerator and denominator by
at least this amount.

accent_width When bar or under is applied to a single character, the line will be this long. Normally, bar or
under produces a line whose length is the width of the object to which it applies; in the case of a
single character, this tends to produce a line that looks too long.

delimiter_factor Extensible delimiters produced with the left and right primitives will have a combined height and
depth of at least this many thousandths of twice the maximum amount by which the subequation
that the delimiters enclose extends away from the axis.

delimiter_shortfall Extensible delimiters produced with the left and right primitives will have a combined height and
depth not less than the difference of twice the maximum amount by which the subequation that
the delimiters enclose extends away from the axis and this amount.

null_delimiter_space This much horizontal space is inserted on each side of a fraction.

script_space The width of subscripts and superscripts is increased by this amount.

thin_space This amount of space is automatically inserted after punctuation characters.

medium_space This amount of space is automatically inserted on either side of binary operators.

thick_space This amount of space is automatically inserted on either side of relations.

205

x_height The height of lowercase letters without ascenders such as x.

axis_height The height above the baseline of the center of characters such as + and -. It is important that this
value be correct for the font you are using.

default_rule_thickness This should set to the thickness of the \(ru character, or the thickness of horizontal lines produced
with the \D escape sequence.

num1 The over command will shift up the numerator by at least this amount.

num2 The smallover command will shift up the numerator by at least this amount.

denom1 The over command will shift down the denominator by at least this amount.

denom2 The smallover command will shift down the denominator by at least this amount.

sup1 Normally superscripts will be shifted up by at least this amount.

sup2 Superscripts within superscripts or upper limits or numerators of smallover fractions will be shifted
up by at least this amount. This is usually less than sup1.

sup3 Superscripts within denominators or square roots or subscripts or lower limits will be shifted up by
at least this amount. This is usually less than sup2.

sub1 Subscripts will normally be shifted down by at least this amount.

sub2 When there is both a subscript and a superscript, the subscript will be shifted down by at least this
amount.

sup_drop The baseline of a superscript will be no more than this amount below the top of the object on
which the superscript is set.

sub_drop The baseline of a subscript will be at least this much below the bottom of the object on which the
subscript is set.

big_op_spacing1 The baseline of an upper limit will be at least this much above the top of the object on which the
limit is set.

big_op_spacing2 The baseline of a lower limit will be at least this much below the bottom of the object on which the
limit is set.

big_op_spacing3 The bottom of an upper limit will be at least this much above the top of the object on which the
limit is set.

big_op_spacing4 The top of a lower limit will be at least this much below the bottom of the object on which the
limit is set.

big_op_spacing5 This much vertical space will be added above and below limits.

baseline_sep The baselines of the rows in a pile or matrix will normally be this far apart. In most cases, this
should be equal to the sum of num1 and denom1.

shift_down The midpoint between the top baseline and the bottom baseline in a matrix or pile will be shifted
down by this much from the axis. In most cases, this should be equal to axis_height.

column_sep This much space will be added between columns in a matrix.

matrix_side_sep This much space will be added at each side of a matrix.

draw_lines If this is nonzero, lines will be drawn using the \D escape sequence, rather than with the \l escape
sequence and the \(ru character.

body_height The amount by which the height of the equation exceeds this will be added as extra space before
the line containing the equation (using \x.) The default value is 85.

body_depth The amount by which the depth of the equation exceeds this will be added as extra space after the
line containing the equation (using \x.) The default value is 35.

nroff If this is nonzero, then ndefine will behave like define and tdefine will be ignored; otherwise,
tdefine will behave like define and ndefine will be ignored. The default value is 0. (This is typically
changed to 1 by the eqnrc file for the ascii and latin1 devices.)

A more precise description of the role of many of these parameters can be found in Appendix H of The TeXbook.

geqn

Part I: User Commands206

MACROS
Macros can take arguments. In a macro body, $ n where n is between 1 and 9, will be replaced by the nth argument if the
macro is called with arguments; if there are fewer than n arguments, it will be replaced by nothing. A word containing a left
parenthesis where the part of the word before the left parenthesis has been defined using the define command will be
recognized as a macro call with arguments; characters following the left parenthesis up to a matching right parenthesis will be
treated as comma-separated arguments; commas inside nested parentheses do not terminate an argument.

sdefinenameXanythingX This is like the define command, but name will not be recognized if called with arguments.

includefile Include the contents of file. Lines of file beginning with .EQ or .EN will be ignored.

ifdefnameXanythingX If name has been defined by define (or has been automatically defined because name is the output
device), process anything; otherwise ignore anything.

X can be any character not appearing in anything.

FONTS
eqn normally uses at least two fonts to set an equation: an italic font for letters, and a Roman font for everything else. The
existing gfont command changes the font that is used as the italic font. By default this is I. The font that is used as the
Roman font can be changed by using the new grfont command.

grfontf Set the Roman font to f.

The italic primitive uses the current italic font set by gfont; the Roman primitive uses the current Roman font set by grfont.
There is also a new gbfont command, which changes the font used by the bold primitive. If you only use the Roman, italic,
and bold primitives to change fonts within an equation, you can change all the fonts used by your equations just by using
gfont, grfont, and gbfont commands.

You can control which characters are treated as letters (and therefore set in italic) by using the chartype command described
earlier. A type of letter will cause a character to be set in italic type. A type of digit will cause a character to be set in Roman
type.

FILES
/usr/lib/groff/tmac/eqnrc Initialization file

BUGS
Inline equations will be set at the pointsize that is current at the beginning of the input line.

SEE ALSO
groff(1), gtroff(1), groff_font(5), The TeXbook

getlist
getlist—Get a list from an NNTP server

SYNOPSIS
getlist [–h host][list [pattern [types]]]

DESCRIPTION
The getlist program obtains a list from an NNTP server and sends it to standard output.

The list may be one of active, active.times, distributions, or newsgroups. These values request the active(5),
active.times, /news/lib/distributions, or /news/lib/newsgroups files, respectively.

If the –h flag is used, then the program connects to the server on the specified host. The default is to connect to the server
specified in the inn.conf(5) file.

207

If the list parameter is active, then the pattern and types parameters may be used to limit the output. When pattern is
used, only active lines with groups that match according to wildmat(3) are printed. When types is also given, only active lines
that have a fourth field starting with a character found in types are printed.

For example, the following command will obtain the one-line descriptions of all newsgroups found on UUNET:

getlist -h news.uu.net newsgroups

The following line lists all groups where local postings are permitted, moderated, or aliased:

getlist active ‘*’ ym=

Note that the listing files other than the active file is a common extension to the NNTP protocol and may not be available
on all servers.

HISTORY
Written by Landon Curt Noll (<chongo@toad.com>) for InterNetNews.

SEE ALSO
active(5), nnrpd(8), wildmat(3)

getopt
getopt—Parse command options

SYNOPSIS
set – ‘getopt optstring $*’

DESCRIPTION
getopt is used to break up options in command lines for easy parsing by shell procedures, and to check for legal options.
optstring is a string of recognized option letters; see getopt(3). If a letter is followed by a colon, the option is expected to
have an argument that may or may not be separated from it by whitespace. The special option —- is used to delimit the end
of the options. getopt will place —- in the arguments at the end of the options, or recognize it if used explicitly. The shell
arguments ($1 $2 ...) are reset so that each option is preceded by a – and in its own shell argument; each option argument
is also in its own shell argument.

EXAMPLE
The following code fragment shows how one might process the arguments for a command that can take the options a and b,
and the option o, which requires an argument:

set — ‘getopt abo: $*‘
 if test $? != 0
 then
 echo ‘Usage: ...’
 exit 2
 fi
 for i
 do
 case “$i”
 in
 -a|-b)
 flag=$i; shift;;
 -o)
 oarg=$2; shift; shift;;
 --)
 shift; break;;
 esac
 done

getopt

Part I: User Commands208

This code will accept any of the following as equivalent:

cmd -aoarg file file
cmd -a -o arg file file
cmd -oarg -a file file
cmd -a -oarg -- file file

SEE ALSO
sh(1), getopt(3)

DIAGNOSTICS
getopt prints an error message on the standard error output when it encounters an option letter not included in optstring.

HISTORY
Written by Henry Spencer, working from a Bell Labs manual page. Behavior believed identical to the Bell version.

BUGS
Whatever getopt(3) has.

Arguments containing whitespace or embedded shell meta characters generally will not survive intact; this looks easy to fix
but isn’t.

The error message for an invalid option is identified as coming from getopt rather than from the shell procedure containing
the invocation of getopt; this, again, is hard to fix.

The precise best way to use the set command to set the arguments without disrupting the value(s) of shell options varies
from one shell version to another.

21 June 1993

giftopnm
giftopnm—Convert a GIF file into a portable anymap

SYNOPSIS
giftopnm [-verbose][-comments][-image N][GIFfile]

DESCRIPTION
Reads a GIF file for input, and outputs portable anymap.

OPTIONS
-verbose Produces verbose output about the GIF file input.

-comments Only outputs GIF89 comment fields.

-image Outputs the specified GIF image from the input GIF archive (where N is 1, 2, 20...). Normally, there is
only one image per file, so this option is not needed.

All flags can be abbreviated to their shortest unique prefix.

BUGS
This does not correctly handle the Plain Text Extension of the GIF89 standard, since I did not have any example input files
containing them.

209

SEE ALSO
ppmtogif(1), ppm(5)

AUTHOR
Copyright  1993 by David Koblas (koblas@netcom.com)

29 September 1993

gindxbib
gindxbib—Make inverted index for bibliographic databases

SYNOPSIS
gindxbib [–vw] [–c file] [–d dir] [–f file] [–h n] [–i string]
[–k n] [–l n] [–n n] [–o file] [–t n] [filename ...]

DESCRIPTION
gindxbib makes an inverted index for the bibliographic databases in filename... for use with grefer(1), glookbib(1), and
lkbib(1). The index will be named filename.i; the index is written to a temporary file which is then renamed to this. If no
filenames are given on the command line because the –f option has been used, and no –o option is given, the index will be
named Ind.i.

Bibliographic databases are divided into records by blank lines. Within a record, each fields starts with a % character at the
beginning of a line. Fields have a one-letter name that follows the % character.

The values set by the –c, –n, –l, and –t options are stored in the index; when the index is searched, keys will be discarded and
truncated in a manner appropriate to these options; the original keys will be used for verifying that any record found using
the index actually contains the keys. This means that a user of an index need not know whether these options were used in
the creation of the index, provided that not all the keys to be searched for would have been discarded during indexing and
that the user supplies at least the part of each key that would have remained after being truncated during indexing. The value
set by the –i option is also stored in the index and will be used in verifying records found using the index.

OPTIONS
–v Print the version number.

–w Index whole files. Each file is a separate record.

–cfile Read the list of common words from file instead of /usr/lib/groff/eign.

–ddir Use dir as the pathname of the current working directory to store in the index, instead of the path printed
by pwd(1). Usually dir will be a symbolic link that points to the directory printed by pwd(1).

–ffile Read the files to be indexed from file. If file is –, files will be read from the standard input. The –f option
can be given at most once.

–istring Don’t index the contents of fields whose names are in string. Initially, string is XYZ.
–hn Use the first prime greater than or equal to n for the size of the hash table. Larger values of n will usually

make searching faster, but will make the index larger and gindxbib use more memory. Initially, n is 997.

–kn Use at most n keys per input record. Initially, n is 100.

–ln Discard keys that are shorter than n. Initially, n is 3.

–nn Discard the n most common words. Initially, n is 100.

–obasename The index should be named basename.i.

–tn Truncate keys to n. Initially, n is 6.

gindxbib

Part I: User Commands210

FILES
filename.i Index

Ind.i Default index name

/usr/lib/groff/eign List of common words

indxbibXXXXXX Temporary file

SEE ALSO
grefer(1), lkbib(1), glookbib(1)

Groff Version 1.09, 16 April 1993

glookbib
glookbib—Search bibliographic databases

SYNOPSIS
glookbib [–v][–istring][–tn] filename ...

DESCRIPTION
glookbib prints a prompt on the standard error (unless the standard input is not a terminal), reads from the standard input a
line containing a set of keywords, searches the bibliographic databases filename ... for references containing those keywords,
prints any references found on the standard output, and repeats this process until the end of input. For each database
filename to be searched, if an index filename.i created by gindxbib(1) exists, then it will be searched instead; each index can
cover multiple databases.

OPTIONS
–v Print the version number.

–istring When searching files for which no index exists, ignore the contents of fields whose names are in string.

–tn Only require the first n characters of keys to be given. Initially, n is 6.

FILE
filename.i Index files

SEE ALSO
grefer(1), lkbib(1), gindxbib(1)

gnroff
gnroff—Emulate nroff command with groff

SYNOPSIS
gnroff [–h][–i][–mname][–nnum][–olist][–rcn][–Tname][file...]

DESCRIPTION
The gnroff script emulates the nroff command using groff. The –T option with an argument other than ascii and latin1
will be ignored. The –h option is equivalent to the grotty –h option. The –i, –n, –m, –o, and –r options have the effect
described in gtroff(1). In addition, gnroff silently ignores options of –e, –q, or –s.

211

SEE ALSO
groff(1), gtroff(1), grotty(1)

Groff Version 1.09, 17 May 1993

gouldtoppm
gouldtoppm—Convert Gould scanner file into a portable pixmap

SYNOPSIS
gouldtoppm[gouldfile]

DESCRIPTION
Reads a file produced by the Gould scanner as input. Produces a portable pixmap as output.

SEE ALSO
ppm(5)

AUTHOR
Copyright 1990 by Stephen Paul Lesniewski

20 May 1990

gpic
gpic—Compile pictures for troff or TeX

SYNOPSIS
gpic [–nvC][filename ...] gpic –t [–cvzC][filename ...]

DESCRIPTION
This manual page describes the GNU version of pic, which is part of the groff document formatting system. pic compiles
descriptions of pictures embedded within troff or TeX input files into commands that are understood by TeX or troff.
Each picture starts with a line beginning with .PS and ends with a line beginning with .PE. Anything outside of .PS and .PE
is passed through without change.

It is the user’s responsibility to provide appropriate definitions of the PS and PE macros. When the macro package being used
does not supply such definitions (for example, old versions of –ms), appropriate definitions can be obtained with –mpic: These
will center each picture.

OPTIONS
Options that do not take arguments may be grouped behind a single –. The special option –– can be used to mark the end of
the options. A filename of – refers to the standard input.

–C Recognize .PS and .PE even when followed by a character other than space or newline.

–n Don’t use the groff extensions to the troff drawing commands. You should use this if you are using a
postprocessor that doesn’t support these extensions. The extensions are described in groff_out(5). The –n option
also causes pic not to use zero-length lines to draw dots in troff mode.

–t TeX mode.

–c Be more compatible with tpic. Implies –t. Lines beginning with n are not passed through transparently. Lines
beginning with . are passed through with the initial . changed to \. A line beginning with .ps is given special

gpic

Part I: User Commands212

treatment: It takes an optional integer argument specifying the line thickness (pen size) in milli-inches; a missing
argument restores the previous line thickness; the default line thickness is 8 milli-inches. The line thickness thus
specified takes effect only when a nonnegative line thickness has not been specified by use of the thickness
attribute or by setting the linethick variable.

–v Print the version number.

–z In TeX mode draw dots using zero-length lines.

The following options supported by other versions of pic are ignored:

–D Draw all lines using the \D escape sequence. pic always does this.

–Tdev Generate output for the troff device dev. This is unnecessary because the troff output generated by pic is device-
independent.

USAGE
This section describes only the differences between GNU pic and the original version of pic. Many of these differences also
apply to newer versions of UNIX pic.

mode
mode is enabled by the –t option. In mode, pic will define a vbox called ngraph for each picture. You must yourself print that
vbox using, for example, the command:

\centerline{\box\graph}

Actually, since the vbox has a height of zero, this will produce slightly more vertical space above the picture than below it, the
line

\centerline{\raise 1em\box\graph}

would avoid this.

You must use a driver that supports the tpic specials, version 2.

Lines beginning with \are passed through transparently; a % is added to the end of the line to avoid unwanted spaces. You
can safely use this feature to change fonts or to change the value of \baselineskip. Anything else may well produce undesir-
able results; use at your own risk. Lines beginning with a period are not given any special treatment.

COMMANDS
for variable = expr1 to expr2 While the value of variable is less than or equal to expr2, do body and increment
by [*]expr3] do X body X variable by expr3; if by is not given, increment variable by 1. If expr3 is prefixed
[Set variable to expr1 by * then variable will instead be multiplied by expr3. X can be any character not

occurring in body.

if expr then X if-true X Evaluate expr; if it is nonzero,do if-true; otherwise, do if-false. u can be any
[else Y if-false Y] character not occurring in if-true. Y can be any character not occurring in if-false.

print arg ... Concatenate the arguments and print as a line on stderr. Each arg must be an
expression, a position, or text. This is useful for debugging.

command arg ... Concatenate the arguments and pass them through as a line to troff or TeX. Each
arg must be an expression, a position, or text. This has a similar effect to a line
beginning with . or \, but allows the values of variables to be passed through.

sh X command X Pass command to a shell. X can be any character not occurring in command.

copy “filename” Include filename at this point in the file.

copy [“filename”] thru X body X This construct does body once for each line of filename; the line is split into blank-
[until “word”] delimited words, and occurrences of $ i in body, for i between 1 and 9, are replaced
copy [“filename”] thru macro by the i-th word of the line. If filename is not given, lines are taken from the current
[until “word”] input up to .PE. If an until clause is specified, lines will be read only until a line the

first word of which is word; that line will then be discarded. X can be any character
not occurring in body. For example,

213

.PS
copy thru % circle at ($1,$2) % until “END”
1 2
3 4
5 6
END
box
.PE

is equivalent to
.PS
circle at (1,2)
circle at (3,4)
circle at (5,6)
box
.PE

The commands to be performed for each line can also be taken from a macro
defined earlier by giving the name of the macro as the argument to thru.

reset variable1, variable2 ... Reset predefined variables variable1, variable2 ... to their default values. If no
arguments are given, reset all predefined variables to their default values. Note that
assigning a value to scale also causes all predefined variables that control dimensions
to be reset to their default values times the new value of scale.

plot expr [“text”] This is a text object which is constructed by using as a format string for text sprintf
with an argument of expr. If text is omitted, a format string of %g is used. Attributes
can be specified in the same way as for a normal text object. Be very careful that you
specify an appropriate format string; pic does only very limited checking of the
string. This is deprecated in favor of sprintf.

variable:=expr This is similar to = except variable must already be defined, and the value of
variable will be changed only in the innermost block in which it is defined. (By
contrast, = defines the variable in the current block if it is not already defined there,
and then changes the value in the current block.)

Arguments of the form

XanythingX

are also allowed to be of the form:

anything

In this case, anything can contain balanced occurrences of and .BR. Strings may contain X or imbalanced occurrences of
and .BR.

EXPRESSIONS
The syntax for expressions has been significantly extended:

xˆy (exponentiation)
sin(x)
cos(x)
atan2(y,x)
log(x) (base 10)
exp(x) (base 10, ie 10'-.4m’x’.4m’)
sqrt(x)
int(x)
rand() (return a random number between 0 and 1)
rand(x) (return a random number between 1 and x; deprecated)
max(e1,e2)
min(e1,e2)
!e

gpic

Part I: User Commands214

e1 && e2
e1 || e2
e1 == e2
e1 != e2
e1 >= e2
e1 > e2
e1 <= e2
e1 < e2
“str1”==”str2"
“str1”!=”str2"

String comparison expressions must be parenthesized in some contexts to avoid ambiguity.

OTHER CHANGES
A bare expression, expr, is acceptable as an attribute; it is equivalent to direxpr, where dir is the current direction. For
example

line 2i

means draw a line 2 inches long in the current direction.

The maximum width and height of the picture are taken from the variables maxpswid and maxpsht. Initially, these have values
8.5 and 11.

Scientific notation is allowed for numbers. For example

x = 5e–2

Text attributes can be compounded. For example

“foo” above ljust

is legal.

There is no limit to the depth to which blocks can be examined. For example

[A: [B: [C: box]]] with .A.B.C.sw at 1,2
circle at last [].A.B.C

is acceptable.

Arcs now have compass points determined by the circle of which the arc is a part.

Circles and arcs can be dotted or dashed. In mode, splines can be dotted or dashed.

Boxes can have rounded corners. The rad attribute specifies the radius of the quarter-circles at each corner. If no rad or diam
attribute is given, a radius of boxrad is used. Initially, boxrad has a value of 0. A box with rounded corners can be dotted or
dashed.

The .PS line can have a second argument specifying a maximum height for the picture. If the width of zero is specified, the
width will be ignored in computing the scaling factor for the picture. Note that GNU pic will always scale a picture by the
same amount vertically as horizontally. This is different from the DWB 2.0 pic, which may scale a picture by a different
amount vertically than horizontally if a height is specified.

Each text object has an invisible box associated with it. The compass points of a text object are determined by this box. The
implicit motion associated with the object is also determined by this box. The dimensions of this box are taken from the
width and height attributes; if the width attribute is not supplied, then the width will be taken to be textwid; if the height
attribute is not supplied, then the height will be taken to be the number of text strings associated with the object times
textht. Initially textwid and textht have a value of 0.

In places where a quoted text string can be used, an expression of the form:

sprintf(format,arg,...)

215

can also be used; this will produce the arguments formatted according to format, which should be a string as described in
printf(3), appropriate for the number of arguments supplied, using only the e, f, g, or % format characters.

The thickness of the lines used to draw objects is controlled by the linethick variable. This gives the thickness of lines in
points. A negative value means use the default thickness: in output mode, this means use a thickness of 8 milli-inches; in
output mode with the -c option, this means use the line thickness specified by .ps lines; in troff output mode, this means
use a thickness proportional to the point size. A zero value means draw the thinnest possible line supported by the output
device. Initially, it has a value of -1. There is also a thick[ness] attribute. For example,

circle thickness 1.5

would draw a circle using a line with a thickness of 1.5 points. The thickness of lines is not affected by the value of the scale
variable, nor by the width or height given in the .PS line.

Boxes (including boxes with rounded corners), circles, and ellipses can be filled by giving then an attribute of fill[ed]. This
takes an optional argument of an expression with a value between 0 and 1; 0 will fill it with white, 1 with black, values in
between with a proportionally gray shade. A value greater than 1 can also be used: this means fill with the shade of gray that
is currently being used for text and lines. Normally this will be black, but output devices may provide a mechanism for
changing this. Without an argument, then the value of the variable fillval will be used. Initially, this has a value of 0.5. The
invisible attribute does not affect the filling of objects. Any text associated with a filled object will be added after the object
has been filled, so that the text will not be obscured by the filling.

Arrowheads will be drawn as solid triangles if the variable arrowhead is nonzero and either mode is enabled or the –x option
has been given. Initially, arrowhead has a value of 1.

The troff output of pic is device-independent. The –T option is therefore redundant. All numbers are taken to be in inches;
numbers are never interpreted to be in troff machine units.

Objects can have an aligned attribute. This will only work when the postprocessor is grops. Any text associated with an
object having the aligned attribute will be rotated about the center of the object so that it is aligned in the direction from the
start point to the end point of the object. Note that this attribute will have no effect for objects whose start and end points
are coincident.

In places where nth is allowed, expr’th is also allowed. Note that ‘th is a single token: no space is allowed between the ‘ and
the th. For example,

fori =1 to 4 do{
line from ‘i’th box.nw to ‘i+1’th box.se
}

FILE
/usr/lib/groff/tmac/tmac.pic Sample definitions of the PS and PE macros.

SEE ALSO
gtroff(1), groff_out(5), tex(1)

TPIC: PIC for AT&T Bell Laboratories, Computing Science Technical Report No. 116, PIC—A Graphics Language for
Typesetting. (This can be obtained by sending an e-mail message to netlib@research.att.com with a body of “send 116 from
research/cstr.”)

BUGS
Input characters that are illegal for groff (those with ASCII code 0 or between 013 and 037 octal or between 0200 and 0237
octal) are rejected even in mode.

The interpretation of fillval is incompatible with the pic in 10th edition UNIX, which interprets 0 as black and 1 as white.

gpic

Part I: User Commands216

gprof
gprof—Display call graph profile data

SYNOPSIS
gprof [–abcsz] [–ej–E name] [–fj–F name][–k fromname toname] [objfile [gmon.out]]

DESCRIPTION
gprof produces an execution profile of C, Pascal, or Fortran77 programs. The effect of called routines is incorporated in the
profile of each caller. The profile data is taken from the call graph profile file (gmon.out default), which is created by programs
that are compiled with the –pg option of cc(1), pc(1),and f77(1). The –pg option also links in versions of the library routines
that are compiled for profiling. gprof reads the given object file (the default is a.out) and establishes the relation between its
symbol table and the call graph profile from gmon.out. If more than one profile file is specified, the gprof output shows the
sum of the profile information in the given profile files.

gprof calculates the amount of time spent in each routine. Next, these times are propagated along the edges of the call graph.
Cycles are discovered, and calls into a cycle are made to share the time of the cycle. The first listing shows the functions
sorted according to the time they represent, including the time of their call graph descendants. Below each function entry is
shown its (direct) call graph children, and how their times are propagated to this function. A similar display above the
function shows how this function’s time and the time of its descendants is propagated to its (direct) call graph parents.

Cycles are also shown, with an entry for the cycle as a whole and a listing of the members of the cycle and their contributions
to the time and call counts of the cycle.

Second, a flat profile is given, similar to that provided by prof(1). This listing gives the total execution times, the call counts,
the time in milliseconds, the call spent in the routine itself, and the time in milliseconds the call spent in the routine itself,
including its descendants.

Finally, an index of the function names is provided.

OPTIONS
The following options are available:

–a Suppresses the printing of statically declared functions. If this option is given, all relevant information
about the static function (for example, time samples, calls to other functions, calls from other
functions) belongs to the function loaded just before the static function in the objfile file.

–b Suppresses the printing of a description of each field in the profile.

–c The static call graph of the program is discovered by a heuristic that examines the text space of the
object file. Static-only parents or children are shown with call counts of 0.

–e name Suppresses the printing of the graph profile entry for routine name and all its descendants (unless they
have other ancestors that aren’t suppressed). More than one –e option may be given. Only one name
may be given with each –e option.

–E name Suppresses the printing of the graph profile entry for routine name (and its descendants) as –e,
previously and also excludes the time spent in name (and its descendants) from the total and percentage
time computations. (For example, –E mcount –E mcleanup is the default.)

–f name Prints the graph profile entry of only the specified routine name and its descendants. More than one –f
option may be given. Only one name may be given with each –f option.

–F name Prints the graph profile entry of only the routine name and its descendants (as –f, previously) and also
uses only the times of the printed routines in total time and percentage computations. More than one
–F option may be given. Only one name may be given with each –F option. The –F option overrides the
–E option.

–k fromname toname Will delete any arcs from routine fromname to routine toname. This can be used to break undesired
cycles. More than one –k option may be given. Only one pair of routine names may be given with each
–k option.

217

–s A profile file gmon.sum is produced that represents the sum of the profile information in all the specified
profile files. This summary profile file may be given to later executions of gprof (probably also with an
–s) to accumulate profile data across several runs of an objfile file.

-v Prints the version number for gprof, and then exits.

-z Displays routines that have zero usage (as shown by call counts and accumulated time). This is useful
with the –c option for discovering which routines were never called.

FILES
a.out The name list and text space

gmon.out Dynamic call graph and profile

gmon.sum Summarized dynamic call graph and profile

SEE ALSO
monitor(3), profil(2), cc(1), prof(1)

“An Execution Profiler for Modular Programs,” by S. Graham, P. Kessler, M. McKusick; Software—Practice and Experience,
Vol. 13, pp. 671-685, 1983.

“gprof: A Call Graph Execution Profiler,” by S. Graham, P. Kessler, M. McKusick; Proceedings of the SIGPLAN ’82
Symposium on Compiler Construction, SIGPLAN Notices, Vol. 17, No 6, pp. 120-126, June 1982.

HISTORY
gprof appeared in 4.2 BSD.

BUGS
The granularity of the sampling is shown, but remains statistical at best. We assume that the time for each execution of a
function can be expressed by the total time for the function divided by the number of times the function is called. Thus, the
time propagated along the call graph arcs to the function’s parents is directly proportional to the number of times that arc is
traversed.

Parents that are not themselves profiled will have the time of their profiled children propagated to them, but they will appear
to be spontaneously invoked in the call graph listing, and will not have their time propagated further. Similarly, signal
catchers, even though profiled, will appear to be spontaneous (although for more obscure reasons). Any profiled children of
signal catchers should have their times propagated properly, unless the signal catcher was invoked during the execution of the
profiling routine, in which case all is lost.

The profiled program must call exit(2) or return normally for the profiling information to be saved in the gmon.out file.

29 January 1993

grefer
grefer—Preprocess bibliographic references for groff

SYNOPSIS
grefer [–benvCPRS] [–a n] [–c fields] [–f n] [–i fields] [–k field] [–l m,n] [–p filename] [–s fields] [–t n] [–B
field.macro] [filename...]

DESCRIPTION
This file documents the GNU version of refer, which is part of the groff document formatting system. refer copies the
contents of filename... to the standard output, except that lines between .[and .] are interpreted as citations, and lines
between .R1 and .R2 are interpreted as commands about how citations are to be processed.

grefer

Part I: User Commands218

Each citation specifies a reference. The citation can specify a reference that is contained in a bibliographic database by giving
a set of keywords that only that reference contains. Alternatively, it can specify a reference by supplying a database record in
the citation. A combination of these alternatives is also possible.

For each citation, refer can produce a mark in the text. This mark consists of some label that can be separated from the text
and from other labels in various ways. For each reference, it also outputs groff commands that can be used by a macro
package to produce a formatted reference for each citation. The output of refer must therefore be processed using a suitable
macro package. The –ms and –me macros are both suitable. The commands to format a citation’s reference can be output
immediately after the citation, or the references may be accumulated, and the commands output at some later point. If the
references are accumulated, then multiple citations of the same reference will produce a single formatted reference.

The interpretation of lines between .R1 and .R2 as commands is a new feature of GNU refer. Documents making use of this
feature can still be processed by UNIX refer just by adding the lines:

.de R1

.ig R2

..

to the beginning of the document. This will cause troff to ignore everything between .R1 and .R2. The effect of some
commands can also be achieved by options. These options are supported mainly for compatibility with UNIX refer. It is
usually more convenient to use commands.

refer generates .lf lines so that filenames and line numbers in messages produced by commands that read refer output will
be correct; it also interprets lines beginning with .lf so that filenames and line numbers in the messages and .lf lines that it
produces will be accurate even if the input has been preprocessed by a command such as gsoelim(1).

OPTIONS
Most options are equivalent to commands (for a description of these commands, see “Commands,” later in this manual
page):

–b no-label-in-text; no-label-in-reference

–e accumulate

–n no-default-database

–C compatible

–P move-punctuation

–S label “(A.n|Q) ‘, ‘ (D.y|D)”; bracket-label “ (“) “; “

–an reverse An

–cfields capitalize fields

–fn label %n

–ifields search-ignore fields

–k label L%a

–kfield label field%a

–l label A.nD.y%a

–lm label A.n+mD.y%a

–l,n label A.nD.y–n%a

–lm,n label A.n+mD.y–n%a

–pfilename database filename

–sspec sort spec

–tn search-truncate n

These options are equivalent to the following commands with the addition that the filenames specified on the command line
are processed as if they were arguments to the bibliography command instead of in the normal way:

–B Annotate X AP; no-label-in-reference

–Bfield.macro Annotate field macro; no-label-in-reference

219

The following options have no equivalent commands:

–v Print the version number

–R Don’t recognize lines beginning with .R1/.R2

USAGE
BIBLIOGRAPHIC DATABASES

The bibliographic database is a text file consisting of records separated by one or more blank lines. Within each record, fields
start with a % at the beginning of a line. Each field has a one-character name that immediately follows the %. It is best to use
only uppercase and lowercase letters for the names of fields. The name of the field should be followed by exactly one space,
and then by the contents of the field. Empty fields are ignored. The conventional meaning of each field is as follows:

A The name of an author. If the name contains a title such as Jr. at the end, it should be separated from the
last name by a comma. There can be multiple occurrences of the A field. The order is significant. It is a
good idea always to supply an A field or a Q field.

B For an article that is part of a book, the title of the book.

C The place (city) of publication.

D The date of publication. The year should be specified in full. If the month is specified, the name rather
than the number of the month should be used, but only the first three letters are required. It is a good idea
always to supply a D field; if the date is unknown, a value such as in press or unknown can be used.

E For an article that is part of a book, the name of an editor of the book. Where the work has editors and no
authors, the names of the editors should be given as A fields (ed) or (eds) should be appended to the last
author.

G U.S. government ordering number.

I The publisher (issuer).

J For an article in a journal, the name of the journal.

K Keywords to be used for searching.

L Label.

N Journal issue number.

O Other information. This is usually printed at the end of the reference.

P Page number. A range of pages can be specified as m–n.

Q The name of the author, if the author is not a person. This will only be used if there are no A fields. There
can only be one Q field.

R Technical report number.

S Series name.

T Title. For an article in a book or journal, this should be the title of the article.

V Volume number of the journal or book.

X Annotation.

For all fields except A and E, if there is more than one occurrence of a particular field in a record, only the last such field will
be used.

If accent strings are used, they should follow the character to be accented. This means that the AM macro must be used with
the –ms macros. Accent strings should not be quoted: use one \ rather than two.

CITATIONS
The format of a citation is

.[opening-text
flags keywords
fields
.]closing-text

grefer

Part I: User Commands220

The opening-text, closing-text, and flags components are optional. Only one of the keywords and fields components need
be specified.

The keywords component says to search the bibliographic databases for a reference that contains all the words in keywords. It
is an error if more than one reference if found.

The fields components specifies additional fields to replace or supplement those specified in the reference. When references
are being accumulated and the keywords component is nonempty, then additional fields should be specified only on the first
occasion that a particular reference is cited, and will apply to all citations of that reference.

The opening-text and closing-text component specifies strings to be used to bracket the label instead of the strings specified
in the bracket-label command. If either of these components is nonempty, the strings specified in the bracket-label
command will not be used; this behavior can be altered using the [and] flags. Note that leading and trailing spaces are
significant for these components.

The flags component is a list of nonalphanumeric characters, each of which modifies the treatment of this particular
citation. UNIX refer will treat these flags as part of the keywords and so will ignore them because they are
nonalphanumeric. The following flags are currently recognized:

This says to use the label specified by the short-label command, instead of that specified by the label command.
If no short label has been specified, the normal label will be used. Typically, the short label is used with author-
date labels and consists of only the date and possibly a disambiguating letter; the # is supposed to be suggestive of
a numeric type of label.

[Precede opening-text with the first string specified in the bracket-label command.

] Follow closing-text with the second string specified in the bracket-label command.

One advantage of using the [and] flags rather than including the brackets in opening-text and closing-text is that you can
change the style of bracket used in the document just by changing the bracket-label command. Another advantage is that
sorting and merging of citations will not necessarily be inhibited if the flags are used.

If a label is to be inserted into the text, it will be attached to the line preceding the .[line. If there is no such line, then an
extra line will be inserted before the .[line and a warning will be given.

There is no special notation for making a citation to multiple references. Just use a sequence of citations, one for each
reference. Don’t put anything between the citations. The labels for all the citations will be attached to the line preceding the
first citation. The labels may also be sorted or merged. (See the description of the <> label expression, and of the sort-
adjacent- labels and abbreviate-label-ranges command.) A label will not be merged if its citation has a nonempty opening-
text or closing-text. However, the labels for a citation using the] flag and without any closing-text immediately followed
by a citation using the [flag and without any opening-text may be sorted and merged even though the first citation’s
opening-text or the second citation’s closing-text is nonempty. (If you want to prevent this, just make the first citation’s
closing-text \&.)

COMMANDS
Commands are contained between lines starting with .R1 and .R2. Recognition of these lines can be prevented by the –R
option. When an .R1 line is recognized, any accumulated references are flushed out. Neither .R1 nor .R2 lines, nor anything
between them, is output.

Commands are separated by newlines or semicolons. # introduces a comment that extends to the end of the line (but does
not conceal the newline). Each command is broken up into words. Words are separated by spaces or tabs. A word that begins
with an open quote (“) extends to the next close quote (”) that is not followed by another open quote (“). If there is no such
open quote (“) the word extends to the end of the line. Pairs of open quotes (“) in a word beginning with collapse to a single
open quote (“). Neither # nor ; is recognized inside open quotes (“). A line can be continued by ending it with \; this works
everywhere except after a #.

Each command name that is marked with * has an associated negative command no-name that undoes the effect of name. For
example, the no-sort command specifies that references should not be sorted. The negative commands take no arguments.

221

In the following description, each argument must be a single word; field is used for a single uppercase or lowercase letter
naming a field; fields is used for a sequence of such letters; m and n are used for a nonnegative numbers; string is used for an
arbitrary string; filename is used for the name of a file.

abbreviate*fieldsstring1 Abbreviate the first names of fields. An initial letter will be separated from another
string2string3string4 initial letter by string1, from the last name by string2, and from anything else (such

as a von or de) by string3. These default to a period followed by a space. In a
hyphenated first name, the initial of the first part of the name will be separated from
the hyphen by string4; this defaults to a period. No attempt is made to handle any
ambiguities that might result from abbreviation. Names are abbreviated before
sorting and before label construction.

abbreviate-label-ranges*string Three or more adjacent labels that refer to consecutive references will be abbreviated
to a label consisting of the first label, followed by string, followed by the last label.
This is mainly useful with numeric labels. If string is omitted it defaults to –.

accumulate* Accumulate references instead of writing out each reference as it is encountered.
Accumulated references will be written out whenever a reference of the form:
.[
$LIST$
.]

is encountered, after all input files have been processed, and whenever an .R1 line is
recognized.

annotate*fieldstring field is an annotation; print it at the end of the reference as a paragraph preceded by
the line

.string

If macro is omitted, it will default to AP;if field is also omitted, it will default to X.
Only one field can be an annotation.

articlesstring ... These are definite or indefinite articles, and should be ignored at the beginning of T
string ... fields when sorting. Initially, the, a, and an are recognized as articles.

bibliographyfilename ... Write out all the references contained in the bibliographic databases filename ...

bracket-labelstring In the text, bracket each label with string1 and string2. An occurrence of string2
1string2string3 immediately followed by string1 will be turned into string3. The default behavior is

bracket-label *([. *(.] “, “

capitalizefields Convert fields to caps and small caps.

compatible* Recognize .R1 and .R2 even when followed by a character other than space or
newline.

databasefilename... Search the bibliographic databases filename... For each filename if an index
filename.i created by gindxbib(1) exists, then it will be searched instead; each index
can cover multiple databases.

date-as-label*string string is a label expression that specifies a string with which to replace the D field
after constructing the label. See “Label Expressions,” later in this manual page, for a
description of label expressions. This command is useful if you do not want explicit
labels in the reference list, but instead want to handle any necessary disambiguation
by qualifying the date in some way. The label used in the text would typically be
some combination of the author and date. In most cases, you should also use the no-
label-in-reference command. For example,

date-as-label D.+yD.y%a*D.-y

would attach a disambiguating letter to the year part of the D field in the reference.

default-database* The default database should be searched. This is the default behavior, so the negative
version of this command is more useful. refer determines whether the default
database should be searched on the first occasion that it needs to do a search. Thus, a
no-default-database command must be given before then, in order to be effective.

grefer

Part I: User Commands222

discard*fields When the reference is read, fields should be discarded; no string definitions for
fields will be output. Initially, fields are XYZ.

et-al*stringmn Control use of et al in the evaluation of @ expressions in label expressions. If the
number of authors needed to make the author sequence unambiguous is u and the
total number of authors is t, then the last t – u authors will be replaced by string,
provided that t – u is not less than m and t is not less than n. The default behavior is
et-al “ et al” 2 3.

includefilename Include filename and interpret the contents as commands.

join-authorsstring1 This says how authors should be joined together. When there are exactly two
string2string3 authors, they will be joined with string1. When there are more than two authors, all

but the last two will be joined with string2, and the last two authors will be joined
with string3. If string3 is omitted, it will default to string1; if string2 is also
omitted, it will also default to string1. For example,

join-authors “ and “ “, “ “, and “

will restore the default method for joining authors.

label-in-reference* When outputting the reference, define the string [F to be the reference’s label. This
is the default behavior; so the negative version of this command is more useful.

label-in-text* For each reference, output a label in the text. The label will be separated from the
surrounding text as described in the bracket-label command. This is the default
behavior; so the negative version of this command is more useful.

labelstring string is a label expression describing how to label each reference.

separate-label-second-parts When merging two-part labels, separate the second part of the second label from the
string first label with string. See the description of the <> label expression.

move-punctuation* In the text, move any punctuation at the end of line past the label. It is usually a
good idea to give this command unless you are using superscripted numbers as
labels.

reverse*string Reverse the fields whose names are in string. Each field name can be followed by a
number that says how many such fields should be reversed. If no number is given for
a field, all such fields will be reversed.

search-ignore*fields While searching for keys in databases for which no index exists, ignore the contents
of fields. Initially, fields XYZ are ignored.

search-truncate*n Only require the first n characters of keys to be given. In effect, when searching for a
given key, words in the database are truncated to the maximum of n and the length
of the key. Initially, n is 6.

short-label*string string is a label expression that specifies an alternative (usually shorter) style of label.
This is used when the # flag is given in the citation. When using author-date style
labels, the identity of the author or authors is sometimes clear from the context, and
so it may be desirable to omit the author or authors from the label. The short-label
command will typically be used to specify a label containing just a date and possibly
a disambiguating letter.

sort*string Sort references according to string. References will automatically be accumulated.
string should be a list of field names, each followed by a number, indicating how
many fields with the name should be used for sorting. + can be used to indicate that
all the fields with the name should be used. Also, . can be used to indicate the
references should be sorted using the (tentative) label. (The “Label Expressions”
subsection describes the concept of a tentative label.)

sort-adjacent-labels* Sort labels that are adjacent in the text according to their position in the reference
list. This command should usually be given if the abbreviate-label-ranges
command has been given, or if the label expression contains a <> expression. This
will have no effect unless references are being accumulated.

223

LABEL EXPRESSIONS
Label expressions can be evaluated both normally and tentatively. The result of normal evaluation is used for output. The
result of tentative evaluation, called the tentative label, is used to gather the information that normal evaluation needs to
disambiguate the label. Label expressions specified by the date-as-label and short-label commands are not evaluated
tentatively. Normal and tentative evaluation are the same for all types of expression other than @, *, and % expressions. The
following description applies to normal evaluation, except where otherwise specified.

field, field n The nth part of field. If n is omitted, it defaults to 1.

‘string’ The characters in string literally.

@ All the authors joined as specified by the join-authors command. The whole of each author’s name
will be used. However, if the references are sorted by author (that is the sort specification starts with
A+), then authors’ last names will be used instead, provided that this does not introduce ambiguity, and
also an initial subsequence of the authors may be used instead of all the authors, again provided that
this does not introduce ambiguity. The use of only the last name for the i-th author of some reference
is considered to be ambiguous if there is some other reference, such that the first i - 1 authors of the
references are the same, the i-th authors are not the same, but the i-th authors’ last names are the
same. A proper initial subsequence of the sequence of authors for some reference is considered to be
ambiguous if there is a reference with some other sequence of authors that also has that subsequence as
a proper initial subsequence. When an initial subsequence of authors is used, the remaining authors are
replaced by the string specified by the et-al command; this command may also specify additional
requirements that must be met before an initial subsequence can be used. @ tentatively evaluates to a
canonical representation of the authors, such that authors that compare equally for sorting purpose will
have the same representation.

%n, %a, %A, %i, %I The serial number of the reference formatted according to the character following the %. The serial
number of a reference is 1 plus the number of earlier references with same tentative label as this
reference. These expressions tentatively evaluate to an empty string.

expr* If there is another reference with the same tentative label as this reference, then expr; otherwise, an
empty string. It tentatively evaluates to an empty string.

expr+n, expr–n The first (+) or last (–) n uppercase or lowercase letters or digits of expr. troff special characters (such
as \(‘a) count as a single letter. Accent strings are retained but do not count toward the total.

expr.l expr converted to lowercase.

expr.u expr converted to uppercase.

expr.c expr converted to caps and small caps.

expr.r expr reversed so that the last name is first.

expr.a expr with first names abbreviated. Note that fields specified in the abbreviate command are abbrevi-
ated before any labels are evaluated. Thus .a is useful only when you want a field to be abbreviated in a
label but not in a reference.

expr.y The year part of expr.

expr.+y The part of expr before the year, or the whole of expr if it does not contain a year.

expr.–y The part of expr after the year, or an empty string if expr does not contain a year.

expr.n The last name part of expr.

expr1expr2 expr1 except that if the last character of expr1 is – then it will be replaced by expr2.

expr1 expr2 The concatenation of expr1 and expr2.

expr1|expr2 If expr1 is nonempty, then expr1; otherwise, expr2.

expr1&expr2 If expr1 is nonempty, then expr2; otherwise, an empty string.

expr1?expr2:expr3 If expr1 is nonempty, then expr2; otherwise, expr3.

<expr> The label is in two parts, which are separated by expr. Two adjacent two-part labels that have the same
first part will be merged by appending the second part of the second label onto the first label separated
by the string specified in the separate-label-second-parts command (initially, a comma followed by a

grefer

Part I: User Commands224

space); the resulting label will also be a two-part label with the same first part as before merging, and so
additional labels can be merged into it. Note that it is permissible for the first part to be empty; this
may be desirable for expressions used in the short-label command.

(expr) The same as expr. Used for grouping.

The preceding expressions are listed in order of precedence (highest first); & and | have the same precedence.

MACRO INTERFACE
Each reference starts with a call to the macro]-. The string [F will be defined to be the label for this reference, unless the no-
label-in-reference command has been given. There then follows a series of string definitions, one for each field: string [X
corresponds to field X. The number register [P is set to 1 if the P field contains a range of pages. The [T, [A, and [O number
registers are set to 1 according as the T, A, and O fields end with one of the characters .?!. The [E number register will be set
to 1 if the [E string contains more than one name. The reference is followed by a call to the][macro. The first argument to
this macro gives a number representing the type of the reference. If a reference contains a J field, it will be classified as type 1;
otherwise, if it contains a B field, it will be type 3; otherwise, if it contains a G or R field it will be type 4, otherwise if it
contains an I field, it will be type 2; otherwise, it will be type 0. The second argument is a symbolic name for the type: other,
journal-article, book, article-in-book, or tech-report. Groups of references that have been accumulated or are produced by
the bibliography command are preceded by a call to the]< macro and followed by a call to the]> macro.

FILES
/usr/dict/papers/Ind Default database

file.i Index files

SEE ALSO
gindxbib(1), glookbib(1), lkbib(1)

BUGS
In label expressions, <> expressions are ignored inside .char expressions.

Groff Version 1.09

grep, egrep, fgrep
grep, egrep, fgrep—Print lines matching a pattern

SYNOPSIS
grep [–[[AB]]num][–[CEFGVBchilnsvwx]][–e] pattern j –ffile][files...]

DESCRIPTION
grep searches the named input files (or standard input if no files are named, or the filename – is given) for lines containing a
match to the given pattern. By default, grep prints the matching lines.

There are three major variants of grep, controlled by the following options:

–G Interpret pattern as a basic regular expression (see the list following this one). This is the default.

–E Interpret pattern as an extended regular expression.

–F Interpret pattern as a list of fixed strings, separated by newlines, any of which is to be matched.

In addition, two variant programs, egrep and fgrep, are available. egrep is similar (but not identical) to grepn–E, and is
compatible with the historical UNIX egrep. Fgrep is the same as grepn–F.

All variants of grep understand the following options:

225

–num Matches will be printed with num lines of leading and trailing context. However, grep will never print
any given line more than once.

–A num Print num lines of trailing context after matching lines.

–B num Print num lines of leading context before matching lines.

–C Equivalent to –2.

–V Print the version number of grep to standard error. This version number should be included in all bug
reports.

–b Print the byte offset within the input file before each line of output.

–c Suppress normal output; instead print a count of matching lines for each input file. With the –v
option, count nonmatching lines.

–e pattern Use pattern as the pattern; useful to protect patterns beginning with –.

–f file Obtain the pattern from file.

–h Suppress the prefixing of filenames on output when multiple files are searched.

–i Ignore case distinctions in both the pattern and the input files.

–L Suppress normal output; instead print the name of each input file from which no output would
normally have been printed.

–l Suppress normal output; instead print the name of each input file from which output would normally
have been printed.

–n Prefix each line of output with the line number within its input file.

–q Quiet; suppress normal output.

–s Suppress error messages about nonexistent or unreadable files.

–v Invert the sense of matching, to select nonmatching lines.

–w Select only those lines containing matches that form whole words. The test is that the matching
substring must either be at the beginning of the line, or preceded by a nonword constituent character.
Similarly, it must be either at the end of the line or followed by a nonword-constituent character.
Word-constituent characters are letters, digits, and the underscore.

–x Select only those matches that exactly match the whole line.

REGULAR EXPRESSIONS
A regular expression is a pattern that describes a set of strings. Regular expressions are constructed analogously to arithmetic
expressions, by using various operators to combine smaller expressions.

grep understands two different versions of regular expression syntax: basic and extended. In GNU\grep, there is no difference
in available functionality using either syntax. In other implementations, basic regular expressions are less powerful. The
following description applies to extended regular expressions; differences for basic regular expressions are summarized
afterwards.

The fundamental building blocks are the regular expressions that match a single character. Most characters, including all
letters and digits, are regular expressions that match themselves. Any meta character with special meaning may be quoted by
preceding it with a backslash.

A list of characters enclosed by [and] matches any single character in that list; if the first character of the list is the caret (ˆ)
then it matches any character not in the list. For example, the regular expression [0123456789] matches any single digit. A
range of ASCII characters may be specified by giving the first and last characters, separated by a hyphen. Finally, certain
named classes of characters are predefined. Their names are self-explanatory, and they are [:alnum:], [:alpha:], [:cntrl:],
[:digit:], [:graph:], [:lower:], [:print:], [:punct:], [:space:], [:upper:], and [:xdigit:]. For example, [[:alnum:]]
means [0-9A-Za- z], except the latter form is dependent upon the ASCII character encoding, whereas the former is portable.
(Note that the brackets in these class names are part of the symbolic names, and must be included in addition to the brackets
delimiting the bracket list.) Most meta characters lose their special meaning inside lists. To include a literal], place it first in
the list. Similarly, to include a literal ^, place it anywhere but first. Finally, to include a literal -–, place it last.

The period matches any single character. The symbol \w is a synonym for [[:alnum:]] and \W is a synonym for [^[:alnum]].

grep, egrep, fgrep

Part I: User Commands226

The caret and the dollar sign are meta characters that respectively match the empty string at the beginning and end of a line.
The symbols \< and \>, respectively, match the empty string at the beginning and end of a word. The symbol \b matches the
empty string at the edge of a word, and \B matches the empty string provided it’s not at the edge of a word.

A regular expression matching a single character may be followed by one of several repetition operators:

? The preceding item is optional and matched at most once.

* The preceding item will be matched zero or more times.

+ The preceding item will be matched one or more times.

n The preceding item is matched exactly n times.

n, The preceding item is matched n or more times.

,m The preceding item is optional and is matched at most m times.

n,m The preceding item is matched at least n times, but not more than m times.

Two regular expressions may be concatenated; the resulting regular expression matches any string formed by concatenating
two substrings that respectively match the concatenated subexpressions.

Two regular expressions may be joined by the infix operator |; the resulting regular expression matches any string matching
either subexpression.

Repetition takes precedence over concatenation, which in turn takes precedence over alternation. A whole subexpression may
be enclosed in parentheses to override these precedence rules.

The back reference \n, where n is a single digit, matches the substring previously matched by the nth parenthesized
subexpression of the regular expression.

In basic regular expressions, the meta characters |, (, and) lose their special meaning; instead use the backslashed versions
\?, \+, \f, \j, \(, and \).

In egrep, the meta character { loses its special meaning; instead use \{.

DIAGNOSTICS
Normally, exit status is 0 if matches were found, and 1 if no matches were found. (The .B –v option inverts the sense of the
exit status.) Exit status is 2 if there were syntax errors in the pattern, inaccessible input files, or other system errors.

BUGS
E-mail bug reports to bug-gnu-utils@prep.ai.mit.edu. Be sure to include the word grep somewhere in the “Subject:” field.

Large repetition counts in the m ,n construct may cause grep to use lots of memory. In addition, certain other obscure regular
expressions require exponential time and space, and may cause grep to run out of memory.

Back references are very slow, and may require exponential time.

GNU Project, 10 September 1992

grephistory
grephistory—Display filenames from Usenet history file

SYNOPSIS
grephistory [–f filename][–e][–n][–q][–l][–i][–s][messageid]

DESCRIPTION
grephistory queries the dbz(3) index into the history(5) file for an article having a specified Message ID.

If messageid cannot be found in the database, the program prints “Not found” and exits with a nonzero status. If messageid is
in the database, the program prints the pathname and exits successfully. If no pathname exists, the program will print /dev/

227

null and exit successfully. This can happen when an article has been canceled, or if it has been expired but its history is still
retained. This is default behavior, which can be obtained by using the –n flag.

If the –q flag is used, then no message is displayed. The program will still exit with the appropriate exit status. If the –e flag is
used, then grephistory will only print the filename of an existing article.

If the –l flag is used, then the entire line from the history file will be displayed.

If the –i flag is used, then grephistory will read a list of Message-IDs on standard input, one per line. Leading and trailing
whitespace is ignored, as are any malformed lines. It will print on standard output those Message-IDs that are not found in
the history database. This flag is used in processing ihave control messages.

If the –s flag is used, then grephistory will read a similar list from its standard input. It will print on standard output a list of
filenames for each article that is still available. This flag is used in processing sendme control messages.

To specify a different value for the history file and database, use the –f flag.

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
dbz(3), history(5)

grodvi
grodvi—Convert groff output to TeX dvi format

SYNOPSIS
grodvi [–dv][–wn][–Fdir][files ...]

DESCRIPTION
grodvi is a driver for groff that produces dvi format. Normally, it should be run by groff–Tdvi. This will run gtroff–Tdvi; it
will also input the macros /usr/lib/groff/tmac/tmac.dvi; if the input is being preprocessed with geqn, it will also input /usr/
lib/groff/font/devdvi/eqnchar.

The dvi file generated by grodvi can be printed by any correctly written dvi driver. The troff drawing primitives are
implemented using the tpic version 2 specials. If the driver does not support these, the \D commands will not produce any
output.

There is an additional drawing command available:

\D’Rdhdv’ Draw a rule (solid black rectangle), with one corner at the current position, and the diagonally
opposite corner at the current position +(dh,dv). Afterwards, the current position will be at the
opposite corner. This produces a rule in the dvi file and so can be printed even with a driver that does
not support the tpic specials, unlike the other \D commands.

The groff command \X’anything’ is translated into the same command in the dvi file as would be produced by \special{
anything } in TeX; anything may not contain a newline.

Font files for grodvi can be created from tfm files using tfmtodit(1). The font description file should contain the following
additional commands:

internalname name The name of the tfm file (without the .tfm extension) is name.

checksum n The checksum in the tfm file is n.

designsize n The designsize in the tfm file is n.

These are automatically generated by tfmtodit.

grodvi

Part I: User Commands228

In troff, the \N escape sequence can be used to access characters by their position in the corresponding tfm file; all characters
in the tfm file can be accessed this way.

OPTIONS
–d Do not use tpic specials to implement drawing commands. Horizontal and vertical lines will be implemented by

rules. Other drawing commands will be ignored.

–v Print the version number.

–wn Set the default line thickness to n thousandths of an em.

–Fdir Search directory dir/devdvi for font and device description files.

FILES
/usr/lib/groff/font/devdvi/DESC Device description file

/usr/lib/groff/font/devdvi/ F Font description file for font F

/usr/lib/groff/tmac/tmac.dvi Macros for use with grodvi

BUGS
dvi files produced by grodvi use a different resolution (57,816 units per inch) than those produced by TeX. Incorrectly
written drivers that assume the resolution used by TeX, rather than using the resolution specified in the dvi file, will not
work with grodvi.

When using the –d option with boxed tables, vertical and horizontal lines can sometimes protrude by one pixel. This is a
consequence of the way TeX requires that the heights and widths of rules be rounded.

SEE ALSO
tfmtodit(1), groff(1), gtroff(1), geqn(1), groff_out(5), groff_font(5), groff_char(7)

Groff Version 1.09 14

groff
groff—Front end for the groff document formatting system

SYNOPSIS
groff [–tpeszaivhblCENRVXZ][–wname][–Wname][–mname][–Fdir][–Tdev] [–ffam][–Mdir][–dcs][–rcn][–nnum]
[–olist][–Parg][files ...]

DESCRIPTION
groff is a front-end to the groff document formatting system. Normally, it runs the gtroff program and a postprocessor
appropriate for the selected device. Available devices are

ps For PostScript printers and previewers

dvi For TeX dvi format

X75 For a 75 dpi X11 previewer

X100 For a 100dpi X11 previewer

ascii For typewriter-like devices

latin1 For typewriter-like devices using the ISO Latin-1 character set.

The postprocessor to be used for a device is specified by the postpro command in the device description file. This can be
overridden with the –X option.

The default device is ps. It can optionally preprocess with any of gpic, geqn, gtbl, grefer, or gsoelim.

229

Options without an argument can be grouped behind a single –. A filename of – denotes the standard input.

The grog command can be used to guess the correct groff command to use to format a file.

OPTIONS
–h Print a help message.

–e Preprocess with geqn.

–t Preprocess with gtbl.

–p Preprocess with gpic.

–s Preprocess with gsoelim.

–R Preprocess with grefer. No mechanism is provided for passing arguments to grefer because most grefer options
have equivalent commands that can be included in the file. See grefer(1) for more details.

–v Make programs run by groff print out their version number.

–V Print the pipeline on stdout instead of executing it.

–z Suppress output from gtroff. Only error messages will be printed.

–Z Do not postprocess the output of gtroff. Normally, groff will automatically run the appropriate postprocessor.

–Parg Pass arg to the postprocessor. Each argument should be passed with a separate –P option. Note that groff does not
prepend – to arg before passing it to the postprocessor.

–l Send the output to a printer. The command used for this is specified by the print command in the device
description file.

–Larg Pass arg to the spooler. Each argument should be passed with a separate –L option. Note that groff does not
prepend – to arg before passing it to the postprocessor.

–Tdev Prepare output for device dev. The default device is ps.

–X Preview with gxditview instead of using the usual postprocessor. This is unlikely to produce good results except
with –Tps.

–N Don’t allow newlines with eqn delimiters. This is the same as the –N option in geqn.

The options –a, –b, –i, –C, –E, –wname, –Wname, –mname, –olist, –dcs, –rcn, –Fdir, –Mdir, –ffam, and –nnum are described in
gtroff(1).

ENVIRONMENT
GROFF_COMMAND_PREFIX If this is set X, then groff will run Xtroff instead of gtroff. This also applies to tbl, pic, eqn, refer,

and soelim. It does not apply to grops, grodvi, grotty, and gxditview.

GROFF_TMAC_PATH A colon-separated list of directories in which to search for macro files.

GROFF_TYPESETTER Default device.

GROFF_FONT_PATH A colon-separated list of directories in which to search for the devname directory.

PATH The search path for commands executed by groff.

GROFF_TMPDIR The directory in which temporary files will be created. If this is not set and TMPDIR is set, temporary
files will be created in that directory. Otherwise, temporary files will be created in /tmp. The
grops(1) and grefer(1) commands can create temporary files.

FILES
/usr/lib/groff/font/devname/DESC Device description file for device name.
/usr/lib/groff/font/devname/F Font file for font F of device name.

AUTHOR
James Clark (jjc@jclark.com)

groff

Part I: User Commands230

BUGS
Report bugs to bug-groff@prep.ai.mit.edu. Include a complete, self-contained example that will allow the bug to be
reproduced, and say which version of groff you are using.

COPYRIGHT
Copyright 1989, 1990, 1991, 1992 Free Software Foundation, Inc.

groff is free software; you can redistribute it or modify it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your option) any later version.

groff is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty of
merchantability or fitness for a particular purpose. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with groff; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.

AVAILABILITY
The most recent released version of groff is always available for anonymous ftp from prep.ai.mit.edu (18.71.0.38) in the
directory pub/gnu.

SEE ALSO
grog(1), gtroff(1), gtbl(1), gpic(1), geqn(1), gsoelim(1), grefer(1), grops(1), grodvi(1), grotty(1), gxditview(1),
groff_font(5), grof_out(5), groff_ms(7), groff_me(7), groff_char(7)

Groff Version 1.09, 29 October 1992

grog
grog—Guess options for groff command

SYNOPSIS
grog [–option ...][files ...]

DESCRIPTION
grog reads files and guesses which of the groff(1) options –e, –man, –me, –mm, –ms, –p, –s,and –t are required for printing
files, and prints the groff command including those options on the standard output. A filename of – is taken to refer to the
standard input. If no files are specified, the standard input will be read. Any specified options will be included in the printed
command. No space is allowed between options and their arguments. For example,

‘grog –Tdvi paper.ms’

will guess the appropriate command to print paper.ms and then run it after adding the –Tdvi option.

SEE ALSO
doctype(1), groff(1), gtroff(1), gtbl(1), gpic(1), geqn(1), gsoelim(1)

Groff Version 1.09 14

grops
grops—PostScript driver for groff

SYNOPSIS
grops [–glv][–bn][–cn][–wn][–Fdir][files ...]

231

DESCRIPTION
grops translates the output of GNU troff to PostScript. Normally, grops should be invoked by using the groff command
with a –Tps option. If no files are given, grops will read the standard input. A filename of – will also cause grops to read the
standard input. PostScript output is written to the standard output. When grops is run by groff, options can be passed to
grops by using the groff –P option.

OPTIONS
–bn Work around broken spoolers and previewers. Normally grops produces output that conforms the Document

Structuring Conventions version 3.0. Unfortunately, some spoolers and previewers can’t handle such output. The
value of n controls what grops does to its output acceptable to such programs. A value of 0 will cause grops not to
employ any workarounds. Add 1 if no %%BeginDocumentSetup and %%EndDocumentSetup comments should be
generated; this is needed for early versions of TranScript that get confused by anything between the %%EndProlog
comment and the first %%Page comment. Add 2 if lines in included files beginning with %! should be stripped out;
this is needed for Sun’s pageview previewer. Add 4 if %%Page, %%Trailer, and %%EndProlog comments should be
stripped out of included files; this is needed for spoolers that don’t understand the %%BeginDocument and
%%EndDocument comments. Add 8 if the first line of the PostScript output should be %!PS-Adobe-2.0 rather than
%!PS-Adobe-3.0; this is needed when using Sun’s Newsprint with a printer that requires page reversal. The default
value can be specified by a brokenn command in the DESC file. Otherwise, the default value is 0.

–cn Print n copies of each page.

–g Guess the page length. This generates PostScript code that guesses the page length. The guess will be correct only
if the imageable area is vertically centered on the page. This option allows you to generate documents that can be
printed both on letter (8.5×11) paper and on A4 paper without change.

–l Print the document in landscape format.

–Fdir Search the directory dir/devname for font and device description files; name is the name of the device, usually ps.

–wn Lines should be drawn using a thickness of n thousandths of an em.

–v Print the version number.

USAGE
There are styles called R, I, B, and BI mounted at font positions 1 to 4. The fonts are grouped into families A, BM, C, H, HN, N,
P, and T having members in each of these styles:

AR AvantGarde-Book

AI AvantGarde-BookOblique

AB AvantGarde-Demi

ABI AvantGarde-DemiOblique

BMR Bookman-Light

BMI Bookman-LightItalic

BMB Bookman-Demi

BMBI Bookman-DemiItalic

CR Courier

CI Courier-Oblique

CB Courier-Bold

CBI Courier-BoldOblique

HR Helvetica

HI Helvetica-Oblique

HB Helvetica-Bold

HBI Helvetica-BoldOblique

HNR Helvetica-Narrow

HNI Helvetica-Narrow-Oblique

grops

Part I: User Commands232

HNB Helvetica-Narrow-Bold

HNBI Helvetica-Narrow-BoldOblique

NR NewCenturySchlbk-Roman

NI NewCenturySchlbk-Italic

NB NewCenturySchlbk-Bold

NBI NewCenturySchlbk-BoldItalic

PR Palatino-Roman

PI Palatino-Italic

PB Palatino-Bold

PBI Palatino-BoldItalic

TR Times-Roman

TI Times-Italic

TB Times-Bold

TBI Times-BoldItalic

There is also the following font which is not a member of a family:

ZCMI ZapfChancery-MediumItalic

There are also some special fonts called SS and S. Zapf Dingbats is available as ZD and a reversed version of ZapfDingbats
(with symbols pointing in the opposite direction) is available as ZDR; most characters in these fonts are unnamed and must be
accessed using \N.

grops understands various X commands produced using the \X escape sequence; grops will only interpret commands that
begin with a ps: tag.

\X’ps:execcode’ This executes the arbitrary PostScript commands in code. The PostScript currentpoint will be set to
the position of the \nX command before executing code. The origin will be at the top left corner of
the page, and y coordinates will increase down the page. A procedure u will be defined that converts
groff units to the coordinate system in effect. For example,

\X’ps: exec \nx u 0 rlineto stroke’

will draw a horizontal line one inch long. code may make changes to the graphics state, but any
changes will persist only to the end of the page. A dictionary containing the definitions specified by
def and mdef will be on top of the dictionary stack. If your code adds definitions to this dictionary,
you should allocate space for them using \X’psmdefn’. Any definitions will persist only until the end
of the page. If you use the \Y escape sequence with an argument that names a macro, code can
extend over multiple lines. For example,
.nr x 1i
.de y
ps: exec
\nx u 0 rlineto
stroke
..
\Yy

is another way to draw a horizontal line one inch long.

\X’ps:filename’ This is the same as the exec command except that the PostScript code is read from file name.

\X’ps:defcode’ Place a PostScript definition contained in code in the prologue. There should be at most one
definition per \X command. Long definitions can be split over several \X commands; all the code
arguments are simply joined together separated by newlines. The definitions are placed in a
dictionary which is automatically pushed on the dictionary stack when an exec command is
executed. If you use the \Y escape sequence with an argument that names a macro, code can extend
over multiple lines.

233

\X’ps:mdefncode’ Like def, except that code may contain up to n definitions. grops needs to know how many
definitions code contains so that it can create an appropriately sized PostScript dictionary to contain
them.

\X’ps:importfile Import a PostScript graphic from file. The arguments llx, lly, urx, and ury give the bounding box
llxllyurxurywidth of the graphic in the default PostScript coordinate system; they should all be integers; llx and lly
[height]’ are the x and y coordinates of the lower-left corner of the graphic; urx and ury are the x and y

coordinates of the upper-right corner of the graphic; width and height are integers that give the
desired width and height in groff units of the graphic. The graphic will be scaled so that it has this
width and height and translated so that the lower-left corner of the graphic is located at the
position associated with \X command. If the height argument is omitted, it will be scaled uniformly
in the x and y directions so that it has the specified width. Note that the contents of the \X
command are not interpreted by troff; so vertical space for the graphic is not automatically added,
and the width and height arguments are not allowed to have attached scaling indicators. If the
PostScript file complies with the Adobe Document Structuring Conventions and contains a
%%BoundingBox comment, then the bounding box can be automatically extracted from within groff
by using the sy request to run the psbb command.

The –mps macros (which are automatically loaded when grops is run by the groff command) include a PSPIC macro that
allows a picture to be easily imported. This has the format:

.PSPIC file [–L j -R j –I n][width [height]]

file is the name of the file containing the illustration; width and height give the desired width and height of the graphic. The
width and height arguments may have scaling indicators attached; the default scaling indicator is i. This macro will scale the
graphic uniformly in the x and y directions so that it is no more than width wide and height high. By default, the graphic will
be horizontally centered. The –L and –R cause the graphic to be left-aligned and right-aligned, respectively. The –I option
causes the graphic to be indented by n.

\X’ps: invis’, \X’ps: endinvis’ No output will be generated for text and drawing commands that are bracketed with
these \X commands. These commands are intended for use when output from troff will
be previewed before being processed with grops; if the previewer is unable to display
certain characters or other constructs, then other substitute characters or constructs can
be used for previewing by bracketing them with these \X commands.

For example, gxditview is not able to display a proper \(em character because the standard X11 fonts do not provide it; this
problem can be overcome by executing the following request:

.char \(em \X’ps: invis’\
\Z’\v’-.25m’\h’.05m’\D’l .9m 0'\h’.05m”\
\X’ps: endinvis’\(em

In this case, gxditview will be unable to display the \(em character and will draw the line, whereas grops will print the \(em
character and ignore the line.

The input to grops must be in the format output by gtroff(1). This is described in groff_out(1). In addition, the device and
font description files for the device used must meet certain requirements. The device and font description files supplied for
ps device meet all these requirements. afmtodit(1) can be used to create font files from AFM files. The resolution must be an
integer multiple of 72 times the sizescale. The ps device uses a resolution of 72000 and a sizescale of 1000. The device
description file should contain a command:

paperlengthn

which says that output should be generated that is suitable for printing on a page whose length is n machine units. Each font
description file must contain a command:

internalnamepsname

which says that the PostScript name of the font is psname. It may also contain a command:

encodingenc file

grops

Part I: User Commands234

which says that the PostScript font should be reencoded using the encoding described in enc_file; this file should consist of a
sequence of lines of the form:

pschar code

where pschar is the PostScript name of the character, and code is its position in the encoding expressed as a decimal integer.
The code for each character given in the font file must correspond to the code for the character in encoding file, or to the
code in the default encoding for the font if the PostScript font is not to be reencoded. This code can be used with the \N
escape sequence in troff to select the character, even if the character does not have a groff name. Every character in the font
file must exist in the PostScript font, and the widths given in the font file must match the widths used in the PostScript font.
grops will assume that a character with a groff name of space is blank (makes no marks on the page); it can make use of such
a character to generate more efficient and compact PostScript output.

grops can automatically include the downloadable fonts necessary to print the document. Any downloadable fonts which
should, when required, be included by grops must be listed in the file /usr/lib/groff/font/devps/download; this should
consist of lines of the form:

font filename

where font is the PostScript name of the font, and filename is the name of the file containing the font; lines beginning with #
and blank lines are ignored; fields may be separated by tabs or spaces; filename will be searched for using the same mecha-
nism that is used for groff font metric files. The download file itself will also be searched for using this mechanism.

If the file containing a downloadable font or imported document conforms to the Adobe Document Structuring Conven-
tions, then grops will interpret any comments in the files sufficiently to ensure that its own output is conforming. It will also
supply any needed font resources that are listed in the download file as well as any needed file resources. It is also able to
handle interresource dependencies. For example, suppose that you have a downloadable font called Garamond, and also a
downloadable font called Garamond-Outline that depends on Garamond (typically, it would be defined to copy Garamond’s
font dictionary, and change the PaintType), then it is necessary for Garamond to appear before Garamond-Outline in the
PostScript document. grops will handle this automatically provided that the downloadable font file for Garamond-Outline
indicates its dependence on Garamond by means of the Document Structuring Conventions, for example by beginning with
the following lines:

%!PS-Adobe-3.0 Resource-Font
%%DocumentNeededResources: font Garamond
%%EndComments
%%IncludeResource: font Garamond

In this case, both Garamond and Garamond-Outline would need to be listed in the download file. A downloadable font
should not include its own name in a %%DocumentSuppliedResources comment.

grops will not interpret %%DocumentFonts comments.

The %%DocumentNeededResources, %%DocumentSuppliedResources, %%IncludeResource, %%BeginResource, and %%EndResource
comments (or possibly the old %%DocumentNeededFonts, %%DocumentSuppliedFonts, %%IncludeFont, %%BeginFont, and %%EndFont
comments) should be used.

FILES
/usr/lib/groff/font/devps/DESC Device description file

/usr/lib/groff/font/devps/F Font description file for font F
/usr/lib/groff/font/devps/download List of downloadable fonts.

/usr/lib/groff/font/devps/text.enc Encoding used for text fonts

/usr/lib/groff/tmac/tmac.ps Macros for use with grops; automatically loaded by troffrc

/usr/lib/groff/tmac/tmac.pspic Definition of PSPIC macro, automatically loaded by tmac.ps

/usr/lib/groff/tmac/tmac.psold Macros to disable use of characters not present in older PostScript printers;
automatically loaded by tmac.ps

/usr/lib/groff/tmac/tmac.psnew Macros to undo the effect of tmac.psold

/tmp/gropsXXXXXX Temporary file

235

SEE ALSO
afmtodit(1), groff(1), gtroff(1), psbb(1), groff_out(5), groff_font(5), groff_char(7)

Groff Version 1.09, 14 February 1995

grotty
grotty—groff driver for typewriter-like devices

SYNOPSIS
grotty [–hfbuodBUv][–Fdir][files ...]

DESCRIPTION
grotty translates the output of GNU troff into a form suitable for typewriter-like devices. Normally, grotty should invoked
by using the groff command with a –Tascii or –Tlatin1 option. If no files are given, grotty will read the standard input. A
filename of – will also cause grotty to read the standard input. Output is written to the standard output.

Normally, grotty prints a bold character c using the sequence ‘c BACKSPACE c’ and an italic character c by the sequence
‘_BACKSPACE c’. These sequences can be displayed on a terminal by piping through ul(1). Pagers such as more(1) or less(1)
are also able to display these sequences. Use either –B or –U when piping into less(1); use –b when piping into more(1). There
is no need to filter the output through col(1) since grotty never outputs reverse line feeds.

The font description file may contain a command:

internalnamen

where n is a decimal integer. If the 01 bit in n is set, then the font will be treated as an italic font; if the 02 bit is set, then it
will be treated as a bold font. The code field in the font description field gives the code that will be used to output the
character. This code can also be used in the \N escape sequence in troff.

OPTIONS
–Fdir Search the directory dir/devname for font and device description files; name is the name of the device, usually ascii

or latin1.

–h Use horizontal tabs in the output. Tabs are assumed to be set every 8 columns.

–f Use form feeds in the output. A form feed will be output at the end of each page that has no output on its last
line.

–b Suppress the use of overstriking for bold characters.

–u Suppress the use of underlining for italic characters.

–B Use only overstriking for bold-italic characters.

–U Use only underlining for bold-italic characters.

–o Suppress overstriking (other than for bold or underlined characters).

–d Ignore all \D commands. Without this, grotty will render \D’l ...’ commands that have at least one zero
argument (and so are either horizontal or vertical) using –, |, and + characters.

–v Print the version number.

FILES
/usr/lib/groff/font/devascii/DESC Device description file for ascii device.

/usr/lib/groff/font/devascii/F Font description file for font F of ascii device.

/usr/lib/groff/font/devlatin1/DESC Device description file for latin1 device.

/usr/lib/groff/font/devlatin1/F Font description file for font F of latin1 device.

/usr/lib/groff/tmac/tmac.tty Macros for use with grotty.

/usr/lib/groff/tmac/tmac.tty-char Additional kludgy character definitions for use with grotty.

grotty

Part I: User Commands236

BUGS
grotty is intended only for simple documents.

There is no support for fractional horizontal or vertical motions.

There is no support for \D commands other than horizontal and vertical lines.

Characters above the first line (that is, with a vertical position of 0) cannot be printed.

SEE ALSO
groff(1), gtroff(1), groff_out(5), groff_font(5), groff_char(7), ul(1), more(1), less(1)

Groff Version1.09, 14 February 1995

gsoelim
gsoelim—Interpret .so requests in groff input

SYNOPSIS
gsoelim [–Cv][files ...]

DESCRIPTION
gsoelim reads files and replaces lines of the form

.sofile

by the contents of file. It is useful if files included with so need to be preprocessed. Normally, gsoelim should be invoked
with the –s option of groff.

OPTIONS
–C Recognize .so even when followed by a character other than space or newline

–v Print the version number

SEE ALSO
groff(1)

Groff Version1.09, 15 September 1992

gtbl
gtbl—Format tables for troff

SYNOPSIS
gtbl [–Cv][files ...]

DESCRIPTION
This manual page describes the GNU version of tbl, which is part of the groff document formatting system. tbl compiles
descriptions of tables embedded within troff input files into commands that are understood by troff. Normally, it should
be invoked using the –t option of groff. It is highly compatible with UNIX tbl. The output generated by GNU tbl cannot
be processed with UNIX troff; it must be processed with GNU troff. If no files are given on the command line, the
standard input will be read. A filename of – will cause the standard input to be read.

237

OPTIONS
–C Recognize .TS and .TE even when followed by a character other than space or newline

–v Print the version number

USAGE
Only the differences between GNU tbl and UNIX tbl are described here.

Normally, tbl attempts to prevent undesirable breaks in the table by using diversions. This can sometimes interact badly
with macro packages’ own use of diversions, when footnotes, for example, are used. The nokeep option tells tbl not to try to
prevent breaks in this way.

The decimalpoint option specifies the character to be recognized as the decimal point character in place of the default period.
It takes an argument in parentheses, which must be a single character, as for the tab option.

The f format modifier can be followed by an arbitrary length font name in parentheses.

There is a d format modifier that means that a vertically spanning entry should be aligned at the bottom of its range.

There is no limit on the number of columns in a table, nor any limit on the number of text blocks. All the lines of a table are
considered in deciding column widths, not just the first 200. Table continuation (.T&) lines are not restricted to the first 200
lines.

Numeric and alphabetic items may appear in the same column.

Numeric and alphabetic items may span horizontally.

tbl uses register, string, macro and diversion names beginning with 3. When using tbl, you should avoid using any names
beginning with a 3.

BUGS
You should use .TSH/.TH in conjunction with a supporting macro package for all multipage boxed tables. If there is no header
that you want to appear at the top of each page of the table, place the .TH line immediately after the format section. Do not
enclose a multipage table within keep/release macros, or divert it in any other way.

A text block within a table must be able to fit on one page.

The bp request cannot be used to force a page-break in a multipage table. Instead, define BP as follows:

.de BP

.ie ‘\\n(.z” .bp \\$1

.el \!.BP \\$1

..

and use BP instead of bp.

SEE ALSO
groff(1), gtroff(1)

Groff Version 1.09, 1 April 1993

gtroff
gtroff—Format documents

SYNOPSIS
gtroff [–abivzCER] [–w name] [–W name] [–d cs] [–f fam] [–m name] [–n num] [–o list] [–r cn] [–T name] [–F dir] [–M
dir] [nfiles...n]

gtroff

Part I: User Commands238

DESCRIPTION
This manual page describes the GNU version of troff, which is part of the groff document formatting system. It is highly
compatible with UNIX troff. Usually, it should be invoked using the groff command, which will also run preprocessors and
postprocessors in the appropriate order and with the appropriate options.

OPTIONS
–a Generate an ASCII approximation of the typeset output.

–b Print a backtrace with each warning or error message. This backtrace should help track down the cause of
the error. The line numbers given in the backtrace may not always correct: troff’s idea of line numbers
gets confused by as or am requests.

–i Read the standard input after all the named input files have been processed.

–v Print the version number.

–wname Enable warning name. Available warnings are described in the “Warnings” subsection as follows. Multiple
–w options are allowed.

–Wname Inhibit warning name. Multiple –W options are allowed.

–E Inhibit all error messages.

–z Suppress formatted output.

–C Enable compatibility mode.

–dcs, –dname=s Define c or name to be a string s; c must be a one-letter name.

–ffam Use fam as the default font family.

–mname Read in the file tmac.name. Normally, this will be searched for in /usr/lib/groff/tmac.

–R Don’t load troffrc.

–nnum Number the first page num.

–olist Output only pages in list, which is a comma-separated list of page ranges; n means print page n, m–n
means print every page between m and n, –n means print every page up to n, n– means print every page
from n. Troff will exit after printing the last page in the list.

–rcn, –rname=n Set number register c or name to n; c must be a one-character name; n can be any troff numeric expression.

–Tname Prepare output for device name, rather than the default ps.

–Fdir Search dir for subdirectories devname (name is the name of the device) for the DESC file and font files before
the normal /usr/lib/groff/font.

–Mdir Search directory dir for macro files before the normal /usr/lib/groff/tmac.

USAGE
Only the features not in UNIX troff are described here.

LONG NAMES
The names of number registers, fonts, strings/macros/diversions, special characters can be of any length. In escape
sequences, where you can use (xx for a two-character name, you can use [xxx] for a name of arbitrary length:

\[xxx] Print the special character called xxx.

\f[xxx] Set font xxx.

*[xxx] Interpolate string xxx.

\n[xxx] Interpolate number register xxx.

FRACTIONAL POINT SIZES
A scaled point is equal to 1/sizescale points, where sizescale is specified in the DESC file (1 by default.) There is a new scale
indicator z that has the effect of multiplying by sizescale. Requests and escape sequences in troff interpret arguments that
represent a point size as being in units of scaled points, but they evaluate each such argument using a default scale indicator

239

of z. Arguments treated in this way are the argument to the ps request, the third argument to the cs request, the second and
fourth arguments to the tkf request, the argument to the \H escape sequence, and those variants of the \s escape sequence
that take a numeric expression as their argument.

For example, suppose sizescale is 1,000; then a scaled point will be equivalent to a millipoint; the request .ps 10.25 is
equivalent to .ps 10.25z, and so sets the point size to 10,250 scaled points, which is equal to 10.25 points.

The number register \n(.s returns the point size in points as decimal fraction. There is also a new number register \n[.ps]
that returns the point size in scaled points.

It would make no sense to use the z scale indicator in a numeric expression whose default scale indicator was neither u nor z,
and so troff disallows this. Similarly, it would make no sense to use a scaling indicator other than z or u in a numeric
expression whose default scale indicator was z, and so troff disallows this as well.

There is also new scale indicator s that multiplies by the number of units in a scaled point. So, for example, \n[.ps]s is equal
to 1m. Be sure not to confuse the s and z scale indicators.

NUMERIC EXPRESSIONS
Spaces are permitted in a number expression within parentheses.

M indicates a scale of hundredths of an em.

e1>?e2 The maximum of e1 and e2.

e1<?e2 The minimum of e1 and e2.

(c;e) Evaluate e using c as the default scaling indicator. If c is missing, ignore scaling indicators in the evaluation
of e.

NEW ESCAPE SEQUENCES
\A’anything’ This expands to 1 or 0 according to whether anything is or is not acceptable as the name of a string,

macro, diversion, number register, environment, or font. It will return 0 if anything is empty. This
is useful if you want to look up user input in some sort of associative table.

\C’xxx’ Typeset character named xxx. Normally it is more convenient to use \[xxx]. But \C has the
advantage that it is compatible with recent versions of UNIX and is available in compatibility
mode.

\E This is equivalent to an escape character, but it’s not interpreted in copy mode. For example,
strings to start and end superscripting could be defined like this:
.ds { \v’–.3m’\s’\En[.s]*6u/10u’
.ds { \s0\v’.3m’

The use of \E ensures that these definitions will work even if *f gets interpreted in copy-mode (for example, by being used
in a macro argument).

\N’n’ Typeset the character with code n in the current font. n can be any integer. Most devices only have
characters with codes between 0 and 255. If the current font does not contain a character with that
code, special fonts will not be searched. The \N escape sequence can be conveniently used on
conjunction with the char request:

.char \[phone] \f(ZDnN’37'

The code of each character is given in the fourth column in the font description file after the
charset command. It is possible to include unnamed characters in the font description file by using
a name of —; the \N escape sequence is the only way to use these.

\R’namen’ This has the same effect as .nrnamen

\s(nn Set the point size to nn points; nn must be exactly two digits.

\s[n], \s’n’ Set the point size to n scaled points; n is a numeric expression with a default scale indicator of z.

\Vx\V(xx \V[xxx] Interpolate the contents of the environment variable xxx, as returned by getenv(3). \V is interpreted
in copy-mode.

gtroff

Part I: User Commands240

\Yx\Y(xx \Y[xxx] This is approximately equivalent to \X’*[xxx]’. However, the contents of the string or macro xxx
are not interpreted; also, it is permitted for xxx to have been defined as a macro and thus contain
newlines (it is not permitted for the argument to \X to contain newlines). The inclusion of newlines
requires an extension to the UNIX troff output format and will confuse drivers that do not know
about this extension.

\Z’anything’ Print anything and then restore the horizontal and vertical position; anything may not contain tabs
or leaders.

\$0 The name by which the current macro was invoked. The als request can make a macro have more
than one name.

\$* In a macro, the concatenation of all the arguments separated by spaces.

\$@ In a macro, the concatenation of all the arguments with each surrounded by double quotes, and
separated by spaces.

\$(nn, \$[nnn] In a macro, this gives the nnth or nnnth argument. Macros can have an unlimited number of
arguments.

\?anything\? When used in a diversion, this will transparently embed anything in the diversion. anything is read
in copy mode. When the diversion is reread, anything will be interpreted. anything may not contain
newlines; use \! if you want to embed newlines in a diversion. The escape sequence \? is also
recognized in copy mode and turned into a single internal code; it is this code that terminates
anything. Thus
.nr x 1
.nf
.di d
\?\\?\\\\?\\\\\\\\nx\\\\?\\?\?
.di
.nr x 2
.di e
.d
.di
.nr x 3
.di f
.e
.di
.nr x 4
.f

will print 4.

\/ This increases the width of the preceding character so that the spacing between that character and
the following character will be correct if the following character is a Roman character. For example,
if an italic f is immediately followed by a Roman right parenthesis, then in many fonts the top right
portion of the f will overlap the top left of the right parenthesis, producing f), which is ugly.
Inserting \/ produces and avoids this problem. It is a good idea to use this escape sequence
whenever an italic character is immediately followed by a Roman character without any intervening
space.

\, This modifies the spacing of the following character so that the spacing between that character and
the preceding character will correct if the preceding character is a Roman character. For example,
inserting \, between the parenthesis and the f changes to (f. It is a good idea to use this escape
sequence whenever a Roman character is immediately followed by an italic character without any
intervening space.

\) Like \& except that it behaves like a character declared with the cflags request to be transparent for
the purposes of end-of-sentence recognition.

\˜ This produces an unbreakable space that stretches like a normal interword space when a line is
adjusted.

\# Everything up to and including the next newline is ignored. This is interpreted in copy mode. This
is like \% except that \% does not ignore the terminating newline.

241

NEW REQUESTS
.alnxxyy Create an alias xx for number register object named yy. The new name and the old name will be

exactly equivalent. If yy is undefined, a warning of type reg will be generated, and the request will
be ignored.

.alsxxyy Create an alias xx for request, string, macro, or diversion object named yy. The new name and the
old name will be exactly equivalent (it is similar to a hard rather than a soft link). If yy is unde-
fined, a warning of type mac will be generated, and the request will be ignored. The de, am, di, da,
ds, and as requests only create a new object if the name of the macro, diversion, or string diversion
is currently undefined or if it is defined to be a request; normally, they modify the value of an
existing object.

.asciifyxx This request only exists in order to make it possible to make certain gross hacks work with GNU
troff. It unformats the diversion xx in such a way that ASCII characters that were formatted and
diverted into xx will be treated like ordinary input characters when xx is reread. For example, this:
.tr @.
.di x
@nr\n\1
.br
.di
.tr @@
.asciify x
.x

will set register n to 1.

.backtrace Print a backtrace of the input stack on stderr.

.break Break out of a while loop. See also the while and continue requests. Be sure not to confuse this with
the br request.

.cflagsnc1c2... Characters c1, c2, ... have properties determined by n, which is ORed from the following.

1 The character ends sentences. (Initially, characters .?! have this property.)

2 Lines can be broken before the character (initially, no characters have this property); a line will not
be broken at a character with this property unless the characters on each side both have nonzero
hyphenation codes.

4 Lines can be broken after the character (initially, characters –\(hy\(em have this property); a line
will not be broken at a character with this property unless the characters on each side both have
nonzero hyphenation codes.

8 The character overlaps horizontally (initially, characters \(ul\(rn\(ru have this property).

16 The character overlaps vertically (initially, character \(br has this property).

32 An end-of-sentence character followed by any number of characters with this property will be
treated as the end of a sentence if followed by a newline or two spaces; in other words, the character
is transparent for the purposes of end-of-sentence recognition; this is the same as having a zero
space factor in TeX (initially, characters ‘)]*\(dg\(rq have this property).

.charcstring Define character c to be string. Every time character c needs to be printed, string will be processed
in a temporary environment and the result will be wrapped up into a single object. Compatibility
mode will be turned off and the escape character will be set to \ while string is being processed.
Any emboldening, constant spacing, or track kerning will be applied to this object rather than to
individual characters in string. A character defined by this request can be used just like a normal
character provided by the output device. In particular, other characters can be translated to it with
the tr request; it can be made the leader character by the lc request; repeated patterns can be drawn
with the character by using the \l and \L escape sequences; words containing the character can be
hyphenated correctly, if the hcode request is used to give the character a hyphenation code. There is
a special antirecursion feature: Use of character within the character’s definition will be handled
like normal characters not defined with char. A character definition can be removed with the rchar
request.

gtroff

Part I: User Commands242

.chopxx Chop the last character off macro, string, or diversion xx. This is useful for removing the newline
from the end of diversions that are to be interpolated as strings.

.closestream Close the stream named stream; stream will no longer be an acceptable argument to the write
request. See the open request.

.continue Finish the current iteration of a while loop. See also the while and break requests.

.cpn If n is nonzero or missing, enable compatibility mode; otherwise, disable it. In compatibility mode,
long names are not recognized, and the incompatibilities caused by long names do not arise.

.doxxx Interpret .xxx with compatibility mode disabled. For example, .do fam T would have the same
effect as .fam T except that it would work even if compatibility mode had been enabled. Note that
the previous compatibility mode is restored before any files sourced by xxx are interpreted.

.famxx Set the current font family to xx. The current font family is part of the current environment. See
the description of the sty request for more information on font families.

.fspecialfs1s2 ... When the current font is f, fonts s1, s2, ... will be special; that is, they will searched for
characters not in the current font. Any fonts specified in the special request will be searched after
fonts specified in the fspecial request.

.ftrfg Translate font f to g. Whenever a font named f is referred to in \f escape sequence, or in the ft,
ul, bd, cs, tkf, special, fspecial, fp, or sty requests, font g will be used. If g is missing, or equal to
f, then font f will not be translated.

.hcodec1code1c2code2... Set the hyphenation code of character c1 to code1 and that of c2 to code2. A hyphenation code must
be a single input character (not a special character) other than a digit or a space. Initially, each
lowercase letter has a hyphenation code, which is itself, and each uppercase letter has a hyphenation
code which is the lowercase version of itself. See also the hpf request.

.hlalang Set the current hyphenation language to lang. Hyphenation exceptions specified with the hw
request and hyphenation patterns specified with the hpf request are both associated with the
current hyphenation language. The hla request is usually invoked by the troffrc file.

.hlmn Set the maximum number of consecutive hyphenated lines to n. If n is negative, there is no
maximum. The default value is –1. This value is associated with the current environment. Only
lines output from an environment count towards the maximum associated with that environment.
Hyphens resulting from \% are counted; explicit hyphens are not.

.hpffile Read hyphenation patterns from file; this will be searched for in the same way that tmac.name is
searched for when the –mname option is specified. It should have the same format as the argument to
the \patterns primitive in TeX; the letters appearing in this file are interpreted as hyphenation
codes. A % character in the patterns file introduces a comment that continues to the end of the line.
The set of hyphenation patterns is associated with the current language set by the hla request. The
hpf request is usually invoked by the troffrc file.

.hymn Set the hyphenation margin to n: when the current adjustment mode is not b, the line will not be
hyphenated if the line is no more than n short. The default hyphenation margin is 0. The default
scaling indicator for this request is m. The hyphenation margin is associated with the current
environment. The current hyphenation margin is available in the \n[.hym] register.

.hysn Set the hyphenation space to n: when the current adjustment mode is b, don’t hyphenate the line if
the line can be justified by adding no more than n extra space to each word space. The default
hyphenation space is 0. The default scaling indicator for this request is m. The hyphenation space is
associated with the current environment. The current hyphenation space is available in the
\n[.hys] register.

.kernn If n is nonzero or missing, enable pairwise kerning; otherwise, disable it.

.msofile The same as the so request except that file is searched for in the same way that tmac.name is
searched for when the –mname option is specified.

.nroff Make the n built-in condition true and the t built-in condition false. This can be reversed using
the troff request.

.openstreamfilename Open filename for writing and associate the stream named stream with it. See also the close and
write requests.

243

.openastreamfilename Like open, but if filename exists, append to it instead of truncating it.

.pnr Print the names and contents of all currently defined number registers on stderr.

.psocommand This behaves like the so request except that input comes from the standard output of command.

.ptr Print the names and positions of all traps (not including input line traps and diversion traps) on
stderr. Empty slots in the page trap list are printed as well, because they can affect the priority of
subsequently planted traps.

.rcharc1c2... Remove the definitions of characters c1, c2, ... This undoes the effect of a char request.

.rj, .rjn Right justify the next n input lines. Without an argument, right justify the next input line. The
number of lines to be right justified is available in the \n[.rj] register. This implicitly does .ce0.
The ce request implicitly does .rj0.

.rnnxxyy Rename number register xx to yy.

.shcc Set the soft hyphen character to c. If c is omitted, the soft hyphen character will be set to the
default \(hy. The soft hyphen character is the character that will be inserted when a word is
hyphenated at a line break. If the soft hyphen character does not exist in the font of the character
immediately preceding a potential break point, then the line will not be broken at that point.
Neither definitions (specified with the char request) nor translations (specified with the tr request)
are considered when finding the soft hyphen character.

.shiftn In a macro, shift the arguments by n positions: argument i becomes argument i–n; arguments 1 to n
will no longer be available. If n is missing, arguments will be shifted by 1. Shifting by negative
amounts is currently undefined.

.specials1s2... Fonts s1, s2 are special and will be searched for characters not in the current font.

.stynf Associate style f with font position n. A font position can be associated either with a font or with a
style. The current font is the index of a font position and so is also either a font or a style. When it
is a style, the font that is actually used is the font the name of which is the concatenation of the
name of the current family and the name of the current style. For example, if the current font is 1
and font position 1 is associated with style R and the current font family is T, then font TR will be
used. If the current font is not a style, then the current family is ignored. When the requests cs, bd,
tkf, uf, or fspecial are applied to a style, then they will instead be applied to the member of the
current family corresponding to that style. The default family can be set with the –f option. The
styles command in the DESC file controls which font positions (if any) are initially associated with
styles rather than fonts.

.tkffs1n1s2n2 Enable track kerning for font f. When the current font is f, the width of every character will be
increased by an amount between n1 and n2; when the current point size is less than or equal to s1,
the width will be increased by n1; when it is greater than or equal to s2, the width will be increased
by n2; when the point size is greater than or equal to s1 and less than or equal to s2, the increase in
width is a linear function of the point size.

.trffilename Transparently output the contents of file filename. Each line is output as it would be were it
preceded by \!; however, the lines are not subject to copy-mode interpretation. If the file does not
end with a newline, then a newline will be added. For example, you can define a macro x
containing the contents of file f, using
.dix
.trff
.di

Unlike with the cf request, the file cannot contain characters such as NUL that are not legal troff
input characters.

.trnt abcd This is the same as the tr request except that the translations do not apply to text that is transpar-
ently throughput into a diversion with \!. For example,
.tr ab
.di x
\!.tm a

gtroff

Part I: User Commands244

.di

.x

will print b; if trnt is used instead of tr, it will print a.

.troff Make the n built-in condition false, and the t built-in condition true. This undoes the effect of the
nroff request.

.vptn Enable vertical position traps if n is nonzero, disable them otherwise. Vertical position traps are
traps set by the wh or dt requests. Traps set by the it request are not vertical position traps. The
parameter that controls whether vertical position traps are enabled is global. Initially, vertical
position traps are enabled.

.warnn Control warnings. n is the sum of the numbers associated with each warning that is to be enabled;
all other warnings will be disabled. The number associated with each warning is listed in the
“Warnings” subsection. For example, .warn 0 will disable all warnings, and .warn 1 will disable all
warnings except that about missing characters. If n is not given, all warnings will be enabled.

.whilecanything While condition c is true, accept anything as input; c can be any condition acceptable to an if
request; anything can comprise multiple lines if the first line starts with \{ and the last line ends
with \}. See also the break and continue requests.

.writestreamanything Write anything to the stream named stream. stream must previously have been the subject of an
open request. anything is read in copy mode; a leading will be stripped.

EXTENDED REQUESTS
.cffilename When used in a diversion, this will embed in the diversion an object which, when reread, will cause

the contents of filename to be transparently copied through to the output. In UNIX troff, the
contents of filename are immediately copied through to the output regardless of whether there is a
current diversion; this behavior is so anomalous that it must be considered a bug.

.evxx If xx is not a number, this will switch to a named environment called xx. The environment should
be popped with a matching ev request without any arguments, just as for numbered environments.
There is no limit on the number of named environments; they will be created the first time that
they are referenced.

.fpnf1f2 The fp request has an optional third argument. This argument gives the external name of the font,
which is used for finding the font description file. The second argument gives the internal name of
the font, which is used to refer to the font in troff after it has been mounted. If there is no third
argument, then the internal name will be used as the external name. This feature allows you to use
fonts with long names in compatibility mode.

.ssmn When two arguments are given to the ss request, the second argument gives the sentence space size.
If the second argument is not given, the sentence space size will be the same as the word space size.
Like the word space size, the sentence space is in units of one twelfth of the spacewidth parameter
for the current font. Initially, both the word space size and the sentence space size are 12. The
sentence space size is used in two circumstances: If the end of a sentence occurs at the end of a line
in fill mode, then both an interword space and a sentence space will be added; if two spaces follow
the end of a sentence in the middle of a line, then the second space will be a sentence space. Note
that the behavior of UNIX troff will be exactly that exhibited by GNU troff if a second argument
is never given to the ss request. In GNU troff, as in UNIX troff, you should always follow a
sentence with either a newline or two spaces.

.tan1n2...nnTr1r2...rn Set tabs at positions n1, n2,...,nn and then set tabs at nn+r1, nn+r2,...., nn+rn and then at
nn+rn+r1, nn+rn+r2,..., nn+rn+rn, and so on. For example, .ta T .5i will set tabs every half an
inch.

245

\n[.fam] The current font family. This is a string-valued register.

\n[.fp] The number of the next free font position.

\n[.g] Always 1. Macros should use this to determine whether they are running under GNU troff.

\n[.hla] The current hyphenation language as set by the hla request.

\n[.hlc] The number of immediately preceding consecutive hyphenated lines.

\n[.hlm] The maximum allowed number of consecutive hyphenated lines, as set by the hlm request.

\n[.hy] The current hyphenation flags (as set by the hy request.)

\n[.hym] The current hyphenation margin (as set by the hym request.)

\n[.hys] The current hyphenation space (as set by the hys request.)

\n[.in] The indent that applies to the current output line.

\n[.kern] 1 if pairwise kerning is enabled, 0 otherwise.

\n[.lg] The current ligature mode (as set by the lg request.)

\n[.ll] The line length that applies to the current output line.

\n[.lt] The title length as set by the lt request.

\n[.ne] The amount of space that was needed in the last ne request that caused a trap to be sprung. Useful in
conjunction with the \n[.trunc] register.

\n[.pn] The number of the next page: either the value set by a pn request, or the number of the current page
plus 1.

\n[.ps] The current pointsize in scaled points.

\n[.psr] The last requested pointsize in scaled points.

\n[.rj] The number of lines to be right-justified as set by the rj request.

\n[.sr] The last requested pointsize in points as a decimal fraction. This is a string-valued register.

\n[.tabs] A string representation of the current tab settings suitable for use as an argument to the ta request.

\n[.trunc] The amount of vertical space truncated by the most recently sprung vertical position trap, or, if the trap
was sprung by an ne request, minus the amount of vertical motion produced by the ne request. In other
words, at the point a trap is sprung, it represents the difference of what the vertical position would have
been but for the trap, and what the vertical position actually is. Useful in conjunction with the \n[.ne]
register.

\n[.ss] These give the values of the parameters set by the first and second arguments of the ss request.

\n[.sss]

\n[.vpt] 1 if vertical position traps are enabled, 0 otherwise.

\n[.warn] The sum of the numbers associated with each of the currently enabled warnings. The number associated
with each warning is listed in the “Warnings” subsection.

\n(.x The major version number. For example, if the version number is 1.03 then \n(.x will contain 1.

\n(.y The minor version number. For example, if the version number is 1.03 then \n(.y will contain 03.

gtroff

Part I: User Commands246

The following registers are set by the \w escape sequence:

\n[rst]

\n[rsb] Like the st and sb registers, but takes account of the heights and depths of characters.

\n[ssc] The amount of horizontal space (possibly negative) that should be added to the last character before a
subscript.

\n[skw] How far to right of the center of the last character in the \w argument, the center of an accent from a
roman font should be placed over that character.

The following read/write number registers are available:

\n[systat] The return value of the system() function executed by the last sy request.

\n[slimit] If greater than 0, the maximum number of objects on the input stack. If less than or equal to 0, there is no
limit on the number of objects on the input stack. With no limit, recursion can continue until virtual
memory is exhausted.

MISCELLANEOUS
Fonts not listed in the DESC file are automatically mounted on the next available font position when they are referenced.
If a font is to be mounted explicitly with the fp request on an unused font position, it should be mounted on the first unused
font position, which can be found in the \n[.fp] register; although troff does not enforce this strictly, it will not allow a font
to be mounted at a position whose number is much greater than that of any currently used position.

Interpolating a string does not hide existing macro arguments. Thus in a macro, a more efficient way of doing

.xx\\$@

is

*[xx]\\

If the font description file contains pairwise kerning information, characters from that font will be kerned. Kerning between
two characters can be inhibited by placing a \& between them.

In a string comparison in a condition, characters that appear at different input levels to the first delimiter character will not
be recognized as the second or third delimiters. This applies also to the tl request. In a \w escape sequence, a character that
appears at a different input level to the starting delimiter character will not be recognized as the closing delimiter character.
When decoding a macro argument that is delimited by double quotes, a character that appears at a different input level to
the starting delimiter character will not be recognized as the closing delimiter character. The implementation of \$@ ensures
that the double quotes surrounding an argument will appear the same input level, which will be different to the input level
of the argument itself. In a long escape name] will not be recognized as a closing delimiter except when it occurs at the same
input level as the opening]. In compatibility mode, no attention is paid to the input level.

There are some new types of condition:

.ifrxxx True if there is a number register named xxx.

.ifdxxx True if there is a string, macro, diversion, or request named xxx.

.ifcch True if there is a character ch available; ch is either an ASCII character or a special character \(xx or \[xxx]; the
condition will also be true if ch has been defined by the char request.

WARNINGS
The warnings that can be given by troff are divided into the following categories. The name associated with each warning is
used by the –w and –W options; the number is used by the warn request, and by the .warn register.

char1 Nonexistent characters. This is enabled by default.

number2 Invalid numeric expressions. This is enabled by default.

break4 In fill mode, lines which could not be broken so that their length was less than the line length. This is
enabled by default.

delim8 Missing or mismatched closing delimiters.

247

el16 Use of the el request with no matching ie request.

scale32 Meaningless scaling indicators.

range64 Out of range arguments.

syntax128 Dubious syntax in numeric expressions.

di256 Use of di or da without an argument when there is no current diversion.

mac512 Use of undefined strings, macros, and diversions. When an undefined string, macro, or diversion is used,
that string is automatically defined as empty. So, in most cases, at most one warning will be given for each
name.

reg1024 Use of undefined number registers. When an undefined number register is used, that register is automati-
cally defined to have a value of 0. A definition is automatically made with a value of 0. So, in most cases, at
most one warning will be given for use of a particular name.

tab2048 Inappropriate use of a tab character. Either use of a tab character where a number was expected, or use of
tab character in an unquoted macro argument.

right-brace4096 Use of \g where a number was expected.

missing8192 Requests that are missing nonoptional arguments.

input16384 Illegal input characters.

escape32768 Unrecognized escape sequences. When an unrecognized escape sequence is encountered, the escape
character is ignored.

space65536 Missing space between a request or macro and its argument. This warning will be given when an
undefined name longer than two characters is encountered, and the first two characters of the name make
a defined name. The request or macro will not be invoked. When this warning is given, no macro is
automatically defined. This is enabled by default. This warning will never occur in compatibility mode.

font131072 Nonexistent fonts. This is enabled by default.

ig262144 Illegal escapes in text ignored with the ig request. These are conditions that are errors when they do not
occur in ignored text.

There are also names that can be used to refer to groups of warnings:

all All warnings except di, mac, and reg. It is intended that this covers all warnings that are useful with
traditional macro packages.

w All warnings.

INCOMPATIBILITIES
Long names cause some incompatibilities. UNIX troff will interpret

.dsabcd

as defining a string ab with contents cd. Normally, GNU troff will interpret this as a call of a macro named dsabcd. Also
UNIX troff will interpret *[or \n[as references to a string or number register called [. In GNU troff, however, this will
normally be interpreted as the start of a long name. In compatibility mode GNU troff will interpret these things in the
traditional way. In compatibility mode, however, long names are not recognized. Compatibility mode can be turned on with
the –C command-line option, and turned on or off with the cp request. The number register \n(.C is 1 if compatibility mode
is on, 0 otherwise.

GNU troff does not allow the use of the escape sequences in names of strings, macros, diversions, number registers, fonts, or
environments; UNIX troff does. The \A escape sequence may be helpful in avoiding use of these escape sequences in names.

Fractional point sizes cause one noteworthy incompatibility. In UNIX troff the ps request ignores scale indicators and so

.ps 10u

will set the pointsize to 10 points, whereas in GNU troff it will set the pointsize to 10 scaled points.

gtroff

Part I: User Commands248

In GNU troff there is a fundamental difference between unformatted, input characters, and formatted, output characters.
Everything that affects how an output character will be output is stored with the character; after an output character has been
constructed, it is unaffected by any subsequent requests that are executed, including bd, cs, tkf, tr, or fp requests. Normally
output characters are constructed from input characters at the moment immediately before the character is added to the
current output line. Macros, diversions, and strings are all, in fact, the same type of object; they contain lists of input
characters and output characters in any combination. An output character does not behave like an input character for the
purposes of macro processing; it does not inherit any of the special properties that the input character from which it was
constructed might have had. For example, this:

.di x
\\\\
.br
.di
.x

will print \\ in GNU troff; each pair of input \s is turned into one output \ and the resulting output \s are not interpreted
as escape characters when they are reread. UNIX troff would interpret them as escape characters when they were reread and
would end up printing one \. The correct way to obtain a printable \ is to use the \e escape sequence: this will always print a
single instance of the current escape character, regardless of whether or not it is used in a diversion; it will also work in both
GNU troff and UNIX troff. If you wish for some reason to store in a diversion an escape sequence that will be interpreted
when the diversion is reread, you can either use the traditional \! transparent output facility, or, if this is unsuitable, the new
\? escape sequence.

ENVIRONMENT
GROFF_TMAC_PATH A colon-separated list of directories in which to search for macro files.

GROFF_TYPESETTER Default device.

GROFF_FONT_PATH A colon-separated list of directories in which to search for the devname directory. troff will search
in directories given in the –F option before these, and in standard directories (:/usr/lib/groff/font,
:/usr/lib/font, and :/usr/lib/font) after these.

FILES
/usr/lib/groff/font/devname/DESC

/usr/lib/groff/tmac/troffrc Initialization file

/usr/lib/groff/tmac/tmac.name Macro files

/usr/lib/groff/font/devname/DESC Device description file for device name

/usr/lib/groff/font/devname/F Font file for font F of device name

SEE ALSO
groff(1) gtbl(1), gpic(1), geqn(1), grops(1), grodvi(1), grotty(1), groff_font(5), groff_out(5), groff_char(7)

Groff Version 1.09, 14 February 1994

gzip, gunzip, zcatgzip, gunzip, zcat
gzip, gunzip, zcatgzip, gunzip, zcat—Compress or expand files

SYNOPSIS
gzip [–acdfhlLnNrtvV19][–Ssuffix] [name ...]
gunzip [–acfhlLnNrtvV][–Ssuffix] [name ...]
zcat [–fhLV][name ...]

249

DESCRIPTION
gzip reduces the size of the named files using Lempel-Ziv coding (LZ77). Whenever possible, each file is replaced by one
with the extension .gz, while keeping the same ownership modes, access, and modification times. (The default extension is
–gz for VMS, z for MS-DOS, OS/2 FAT, Windows NT FAT and Atari.) If no files are specified, or if a filename is -, the
standard input is compressed to the standard output. gzip will only attempt to compress regular files. In particular, it will
ignore symbolic links.

If the compressed filename is too long for its filesystem, gzip truncates it. gzip attempts to truncate only the parts of the
filename longer than three characters. (A part is delimited by dots.) If the name consists of small parts only, the longest parts
are truncated. For example, if filenames are limited to 14 characters, gzip.msdos.exe is compressed to gzi.msd.exe.gz. Names
are not truncated on systems that do not have a limit on filename length.

By default, gzip keeps the original filename and timestamp in the compressed file. These are used when decompressing the
file with the –N option. This is useful when the compressed filename was truncated or when the time stamp was not preserved
after a file transfer.

Compressed files can be restored to their original form using gzip -d or gunzip or zcat. If the original name saved in the
compressed file is not suitable for its filesystem, a new name is constructed from the original one to make it legal.

gunzip takes a list of files on its command line and replaces each file whose name ends with .gz, -gz, .z, -z, z, or .Z and which
begins with the correct magic number with an uncompressed file without the original extension. gunzip also recognizes the
special extensions .tgz and .taz as shorthands for .tar.gz and .tar.Z respectively. When compressing, gzip uses the .tgz
extension if necessary instead of truncating a file with a .tar extension.

gunzip can currently decompress files created by gzip, zip, compress, compress -H, or pack. The detection of the input format
is automatic. When using the first two formats, gunzip checks a 32-bit CRC. For pack, gunzip checks the uncompressed
length. The standard compress format was not designed to allow consistency checks. However, gunzip is sometimes able to
detect a bad .Z file. If you get an error when uncompressing a .Z file, do not assume that the .Z file is correct simply because
the standard uncompress does not complain. This generally means that the standard uncompress does not check its input, and
happily generates garbage output. The SCO compress -H format (lzh compression method) does not include a CRC but also
allows some consistency checks.

Files created by zip can be uncompressed by gzip only if they have a single member compressed with the deflation method.
This feature is only intended to help conversion of tar.zip files to the tar.gz format. To extract zip files with several
members, use unzip instead of gunzip.

zcat is identical to gunzip –c. (On some systems, zcat may be installed as gzcat to preserve the original link to compress.)
zcat uncompresses either a list of files on the command line or its standard input and writes the uncompressed data on
standard output. zcat will uncompress files that have the correct magic number whether they have a .gz suffix or not.

gzip uses the Lempel-Ziv algorithm used in zip and PKZIP. The amount of compression obtained depends on the size of the
input and the distribution of common substrings. Typically, text such as source code or English is reduced by 60 to 70
percent. Compression is generally much better than that achieved by LZW (as used in compress), Huffman coding (as used
in pack), or adaptive Huffman coding (compact).

Compression is always performed, even if the compressed file is slightly larger than the original. The worst case expansion is a
few bytes for the gzip file header, plus 5 bytes every 32KB block, or an expansion ratio of 0.015 percent for large files. Note
that the actual number of used disk blocks almost never increases. gzip preserves the mode, ownership, and timestamps of
files when compressing or decompressing.

OPTIONS
–a –ascii ASCII text mode: convert end-of-lines using local conventions. This option is supported

only on some non-UNIX systems. For MS-DOS, CR LF is converted to LF when compress-
ing, and LF is converted to CR LF when decompressing.

–c –stdout –to-stdout Write output on standard output; keep original files unchanged. If there are several input
files, the output consists of a sequence of independently compressed members. To obtain
better compression, concatenate all input files before compressing them.

gzip, gunzip, zcatgzip, gunzip, zcat

Part I: User Commands250

–d –decompress –uncompress Decompress.

–f –force Force compression or decompression even if the file has multiple links or the corresponding
file already exists, or if the compressed data is read from or written to a terminal. If the
input data is not in a format recognized by gzip, and if the option –stdout is also given,
copy the input data without change to the standard output; let zcat behave as cat. If –f is
not given, and when not running in the background, gzip prompts to verify whether an
existing file should be overwritten.

–h –help Display a help screen and quit.

–l –list For each compressed file, list the following fields: compressed size (size of the compressed
file), uncompressed size (size of the uncompressed file), ratio (compression ratio—0.0% if
unknown), uncompressed name (name of the uncompressed file). The uncompressed size is
given as -1 for files not in gzip format, such as compressed .Z files. To get the uncompressed
size for such a file, you can use:

zcat file.Z | wc -c

In combination with the –verbose option, the following fields are also displayed: method
(compression method), crc (the 32-bit CRC of the uncompressed data), date & time
(timestamp for the uncompressed file). The compression methods currently supported are
deflate, compress, lzh (SCO compress -H) and pack. The crc is given as ffffffff for a file
not in gzip format.
With –name, the uncompressed name, date and time are those stored within the compressed
file if present.

With –verbose, the size totals and compression ratio for all files is also displayed, unless
some sizes are unknown. With –quiet, the title and totals lines are not displayed.

–L –license Display the gzip license and quit.
–n –no-name When compressing, do not save the original filename and timestamp by default. (The

original name is always saved if the name had to be truncated.) When decompressing, do
not restore the original filename if present (remove only the gzip suffix from the compressed
filename) and do not restore the original timestamp if present (copy it from the compressed
file). This option is the default when decompressing.

–N –name When compressing, always save the original filename and timestamp; this is the default.
When decompressing, restore the original filename and timestamp if present. This option is
useful on systems that have a limit on filename length or when the timestamp has been lost
after a file transfer.

–q –quiet Suppress all warnings.
–r –recursive Travel the directory structure recursively. If any of the filenames specified on the command

line are directories, gzip will descend into the directory and compress all the files it finds
there (or decompress them in the case of gunzip).

–S .suf –suffix .suf Use suffix .suf instead of .gz. Any suffix can be given, but suffixes other than .z and .gz
should be avoided to avoid confusion when files are transferred to other systems. A null
suffix forces gunzip to try decompression on all given files regardless of suffix, as in the
following:

gunzip -S “” * (*.* for MS-DOS)
Previous versions of gzip used the .z suffix. This was changed to avoid a conflict with
pack(1).

–t –test Test. Check the compressed file integrity.

–v –verbose Verbose. Display the name and percentage reduction for each file compressed or decom-
pressed.

–V –version Version. Display the version number and compilation options, then quit.

–# –fast –best Regulate the speed of compression using the specified digit #, where –1 or --fast indicates
the fastest compression method (less compression) and –9 or --best indicates the slowest
compression method (best compression). The default compression level is –6 (that is, biased
towards high compression at expense of speed).

251

ADVANCED USAGE
Multiple compressed files can be concatenated. In this case, gunzip will extract all members at once. For example,

gzip -c file1 >foo.gz gzip -c file2>>> foo.gz

Then

gunzip -c foo

is equivalent to

cat file1 file2

In case of damage to one member of a .gz file, other members can still be recovered (if the damaged member is removed).
However, you can get better compression by compressing all members at once.

cat file1 file2 | gzip > foo.gz

compresses better than

gzip -c file1 file2 >foo.gz

If you want to recompress concatenated files to get better compression, use

gzip -cd old.gz | gzip > new.gz

If a compressed file consists of several members, the uncompressed size and CRC reported by the –list option applies to the
last member only. If you need the uncompressed size for all members, you can use

gzip -cd file.gz | wc -c

If you wish to create a single archive file with multiple members so that members can later be extracted independently, use an
archiver such as tar or zip. GNU tar supports the -z option to invoke gzip transparently. gzip is designed as a complement
to tar, not as a replacement.

ENVIRONMENT
The environment variable GZIP can hold a set of default options for gzip. These options are interpreted first and can be
overwritten by explicit command-line parameters. For example,

For sh: GZIP=”-8v –name”

Export GZIP for csh: setenv GZIP “-8v –name”

For MS-DOS: set GZIP=-8v –name

On Vax/VMS, the name of the environment variable is GZIP_OPT, to avoid a conflict with the symbol set for invocation of the
program.

SEE ALSO
znew(1), zcmp(1), zmore(1), zforce(1), gzexe(1), zip(1), unzip(1), compress(1), pack(1), compact(1)

DIAGNOSTICS
Exit status is normally 0; if an error occurs, exit status is 1. If a warning occurs, exit status is 2.

Usage: gzip [-cdfhlLnNrtvV19] [-S suffix] [file ...]

Invalid options were specified on the command line.

file: not in gzip format

The file specified to gunzip has not been compressed.

file: Corrupt input. Use zcat to recover some data.

The compressed file has been damaged. The data up to the point of failure can be recovered using

zcat file > recover

gzip, gunzip, zcatgzip, gunzip, zcat

Part I: User Commands252

file: compressed with xx bits, can only handle yy bits

file was compressed (using LZW) by a program that could deal with more bits than the decompress code on this machine.
Recompress the file with gzip, which compresses better and uses less memory.

file: already has .gz suffix--no change

The file is assumed to be already compressed. Rename the file and try again.

file already exists; do you wish to overwrite (y or n)?

Respond y if you want the output file to be replaced; n if not.

gunzip: corrupt input

A SIGSEGV violation was detected, which usually means that the input file has been corrupted.

xx.x%

Percentage of the input saved by compression. (Relevant only for –v and –l.)

– not a regular file or directory: ignored

When the input file is not a regular file or directory, (such as a symbolic link, socket, FIFO, device file), it is left unaltered.

– has xx other links: unchanged

The input file has links; it is left unchanged. See ln(1) for more information.

Use the –f flag to force compression of files that are multiply linked.

CAVEATS
When writing compressed data to a tape, it is generally necessary to pad the output with zeroes up to a block boundary.
When the data is read and the whole block is passed to gunzip for decompression, gunzip detects that there is extra trailing
garbage after the compressed data and emits a warning by default. You have to use the –quiet option to suppress the
warning. This option can be set in the GZIP environment variable as in the following:

for sh: GZIP=”-q” tar -xfz –block-compress /dev/rst0 for csh:
(setenv GZIP -q; tar -xfz –block-compr /dev/rst0

In the preceding example, gzip is invoked implicitly by the -z option of GNU tar. Make sure that the same block size (-b
option of tar) is used for reading and writing compressed data on tapes. (This example assumes you are using the GNU
version of tar.)

BUGS
The –list option reports incorrect sizes if they exceed two gigabytes. The –list option reports sizes as -1 and crc as ffffffff
if the compressed file is on a nonseekable media.

In some rare cases, the –best option gives worse compression than the default compression level (-6). On some highly
redundant files, compress compresses better than gzip.

Local

gzexe
gzexe—Compress executable files in place

SYNOPSIS
gzexe [name ...]

253

DESCRIPTION
The gzexe utility enables you to compress executables in place and have them automatically uncompress and execute when
you run them (at a penalty in performance). For example if you execute gzexe /bin/cat, it will create the following two files:

-r-xr-xr-x 1 root bin 9644 Feb 11 11:16 /bin/cat
-r-xr-xr-x 1 bin bin 24576 Nov 23 13:21 /bin/cat˜

/bin/cat˜ is the original file and /bin/cat is the self-uncompressing executable file. You can remove /bin/cat˜ when you are
sure that /bin/cat works properly.

This utility is most useful on systems with very small disks.

OPTIONS
–d Decompress the given executables instead of compressing them

SEE ALSO
gzip(1), znew(1), zmore(1), zcmp(1), zforce(1)

CAVEATS
The compressed executable is a shell script. This may create some security holes. In particular, the compressed executable
relies on the PATH environment variable to find gzip and some other utilities (tail, chmod, ln, sleep).

BUGS
gzexe attempts to retain the original file attributes on the compressed executable, but you may have to fix them manually in
some cases, using chmod or chown.

head
head—Output the first part of files

SYNOPSIS
head [–c N[bkm]] [–n N] [–qv] [--bytes=N[bkm]] [--lines=N] [--quiet] [--silent]
[--verbose] [--help] [--version] [file...]

head [–Nbcklmqv] [file...]

DESCRIPTION
This manual page documents the GNU version of head. head prints the first part (10 lines by default) of each given file; it
reads from standard input if no files are given or when a filename of – is encountered. If more than one file is given, it prints
a header consisting of the file’s name enclosed in ==> and <== before the output for each file.

OPTIONS
head accepts two option formats: the new one, in which numbers are arguments to the option letters; and the old one, in
which the number precedes any option letters.

–c N, --bytes N Print first N bytes. N is a nonzero integer, optionally followed by one of the following characters to
specify a different unit.

b 512-byte blocks.

k 1-kilobyte blocks.

m 1-megabyte blocks.

–l, –n N, --lines N Print first N lines.

–q, --quiet, --silent Never print filename headers.

head

Part I: User Commands254

–v, --verbose Always print filename headers.

--help Print a usage message and exit with a nonzero status.

--version Print version information on standard output, then exit.

GNU Text Utilities

hexdump
hexdump—ASCII, decimal, hexadecimal, octal dump

SYNOPSIS
hexdump [-bcdovx] [-e format_string] [-f format_file] [-n length] [-s skip] [file ...]

DESCRIPTION
The hexdump utility is a filter that displays the specified files, or the standard input, if no files are specified, in a user-specified
format.

The options are as follows:

-b One-byte octal display. Display the input offset in hexadecimal, followed by sixteen space-
separated, three-column, zero-filled bytes of input data, in octal, per line.

-c One-byte character display. Display the input offset in hexadecimal, followed by sixteen space-
separated, three-column, space-filled, characters of input data per line.

-d Two-byte decimal display. Display the input offset in hexadecimal, followed by eight space-
separated, five-column, zero-filled, two-byte units of input data, in unsigned decimal, per line.

-e format_string Specify a format string to be used for displaying data.

-f format_file Specify a file that contains one or more newline separated format strings. Empty lines and lines
whose first nonblank character is a hash mark (#) are ignored.

-n length Interpret only length bytes of input.

-o Two-byte octal display. Display the input offset in hexadecimal, followed by eight space-separated,
six-column, zero-filled, two-byte quantities of input data, in octal, per line.

-s offset Skip offset bytes from the beginning of the input. By default, offset is interpreted as a decimal
number. With a leading 0x or 0X, offset is interpreted as a hexadecimal number; otherwise, with a
leading 0, offset is interpreted as an octal number. Appending the character b, k, or m to offset
causes it to be interpreted as a multiple of 512, 1024, or 1048576, respectively.

-v The -v option causes hexdump to display all input data. Without the -v option, any number of
groups of output lines, which would be identical to the immediately preceding group of output
lines (except for the input offsets), are replaced with a line comprised of a single asterisk.

-x Two-byte hexadecimal display. Display the input offset in hexadecimal, followed by eight, space-
separated, four-column, zero-filled, two-byte quantities of input data, in hexadecimal, per line.

For each input file, hexdump sequentially copies the input to standard output, transforming the data according to the format
strings specified by the -e and -f options, in the order that they were specified.

FORMATS
A format string contains any number of format units, separated by whitespace. A format unit contains up to three items: an
iteration count, a byte count, and a format.

The iteration count is an optional positive integer, which defaults to one. Each format is applied iteration count times.

The byte count is an optional positive integer. If specified, it defines the number of bytes to be interpreted by each iteration
of the format.

255

If an iteration count and/or a byte count is specified, a single slash must be placed after the iteration count and/or before the
byte count to disambiguate them. Any whitespace before or after the slash is ignored.

The format is required and must be surrounded by double quote (“ ”) marks. It is interpreted as an fprintf-style format
string (see fprintf(3)) with the following exceptions:

■ An asterisk (*) may not be used as a field width or precision.
■ A byte count or field precision is required for each s conversion character (unlike the fprintf(3) default, which prints

the entire string if the precision is unspecified).
■ The conversion characters h, l, n, p, and q are not supported.
■ The single-character escape sequences described in the C standard are supported:

NUL \0

Alert character \a

Backspace \b

Form-feed \f

Newline \n

Carriage return \r

Tab \t

Vertical tab \v

hexdump also supports the following additional conversion strings:

a[dox] Display the input offset, cumulative across input files, of the next byte to be displayed. The appended characters
d, o, and x specify the display base as decimal, octal, or hexadecimal respectively.

A[dox] Identical to the a conversion string except that it is only performed once, when all of the input data has been
processed.

c Output characters in the default character set. Nonprinting characters are displayed in three-character, zero-
padded octal, except for those representable by standard escape notation (see preceding list), which are displayed
as two-character strings.

p Output characters in the default character set. Nonprinting characters are displayed as a single period.

u Output U.S. ASCII characters, with the exception that control characters are displayed using the lowercase names
in the following mini-table. Characters greater than 0xff, hexadecimal, are displayed as hexadecimal strings.

000 nul 001 soh 002 stx 003 etx 004 eot 005 enq

006 ack 007 bel 008 bs 009 ht 00A lf 00B vt

00C ff 00D cr 00E so 00F si 010 dle 011 dc1

012 dc2 013 dc3 014 dc4 015 nak 016 syn 017 etb

018 can 019 em 01A sub 01B esc 01C fs 01D gs

01E rs 01F us 0FF del

The default and supported byte counts for the conversion characters are as follows:

%_c, %_p, %_u, %c One-byte counts only.

%d, %i, %o, %u, %X, %x Four-byte default; one-, two-, and four-byte counts supported.

%E, %e, %f, %G, %g Eight-byte default, four-byte counts supported.

The amount of data interpreted by each format string is the sum of the data required by each format unit, which is the
iteration count times the byte count, or the iteration count times the number of bytes required by the format if the byte
count is not specified.

The input is manipulated in blocks; a block is defined as the largest amount of data specified by any format string. Format
strings interpreting less than an input block’s worth of data, whose last format unit both interprets some number of bytes
and does not have a specified iteration count, have the iteration count incremented until the entire input block has been
processed or there is not enough data remaining in the block to satisfy the format string.

hexdump

Part I: User Commands256

If, either as a result of user specification or hexdump modifying the iteration count as described, an iteration count is greater
than one, no trailing whitespace characters are output during the last iteration.

It is an error to specify a byte count as well as multiple conversion characters or strings unless all but one of the conversion
characters or strings is a or A. If, as a result of the specification of the -n option or end-of-file being reached, input data only
partially satisfies a format string, the input block is zero-padded sufficiently to display all available data (that is, any format
units overlapping the end of data will display some number of the zero bytes).

Further output by such format strings is replaced by an equivalent number of spaces. An equivalent number of spaces is
defined as the number of spaces output by an s conversion character with the same field width and precision as the original
conversion character or conversion string but with any +, “ ”, # conversion flag characters removed, and referencing a NULL
string.

If no format strings are specified, the default display is equivalent to specifying the -x option.

hexdump exits 0 on success and >0 if an error occurred.

EXAMPLES
Display the input in perusal format:

“%06.6_ao “ 12/1 “%3_u “
“\t\t” “%_p “
“\n”

Implement the –x option:

“%07.7_Ax\n”
“%07.7_ax “ 8/2 “%04x “ “\n”

SEE ALSO
adb(1)

18 April 1994

hipstopgm
hipstopgm—Convert a HIPS file into a portable graymap

SYNOPSIS
hipstopgm [hipsfile]

DESCRIPTION
Hipstopgm reads a HIPS file as input and produces a portable graymap as output.

If the HIPS file contains more than one frame in sequence, hipstopgm will concatenate all the frames vertically.

HIPS is a format developed at the Human Information Processing Laboratory, NYU.

SEE ALSO
pgm(5)

AUTHOR
Copyright  1989 by Jef Poskanzer

24 August 1989

257

host
host—Look up hostnames using domain server

SYNOPSIS
host [-l] [-v] [-w] [-r] [-d] [-t querytype] [-a] host [server]

DESCRIPTION
host looks for information about Internet hosts. It gets this information from a set of interconnected servers that are spread
across the country. By default, it simply converts between hostnames and Internet addresses. However with the -t or -a
options, it can be used to find all of the information about this host that is maintained by the domain server.

The arguments can be either hostnames or host numbers. The program first attempts to interpret them as host numbers. If
this fails, it will treat them as hostnames. A host number consists of first decimal numbers separated by dots, for example,
128.6.4.194. A hostname consists of names separated by dots, for example, topaz.rutgers.edu. Unless the name ends in a
dot, the local domain is automatically tacked on the end. Thus, a Rutgers user can say “host topaz”, and it will actually look
up topaz.rutgers.edu. If this fails, the name is tried unchanged (in this case, topaz). This same convention is used for mail
and other network utilities. The actual suffix to tack on the end is obtained by looking at the results of a hostname call, and
using everything starting at the first dot. (Following is a description of how to customize the hostname lookup.)

The first argument is the hostname you want to look up. If this is a number, an inverse query is done; that is, the domain
system looks in a separate set of databases used to convert numbers to names.

The second argument is optional. It allows you to specify a particular server to query. If you don’t specify this argument, the
default server (normally the local machine) is used.

If a name is specified, you may see output of three different kinds. Here is an example that shows all of them:

% host sun4
sun4.rutgers.edu is a nickname for ATHOS.RUTGERS.EDU
ATHOS.RUTGERS.EDU has address 128.6.5.46
ATHOS.RUTGERS.EDU has address 128.6.4.4
ATHOS.RUTGERS.EDU mail is handled by ARAMIS.RUTGERS.EDU

The user has typed the command host sun4. The first line indicates that the name sun4.rutgers.edu is actually a nickname.
The official hostname is ATHOS.RUTGERS.EDU. The next two lines show the address. If a system has more than one network
interface, there will be a separate address for each. The last line indicates that ATHOS.RUTGERS.EDU does not receive its own
mail. Mail for it is taken by ARAMIS.RUTGERS.EDU. There may be more than one such line, as some systems have more than one
other system that will handle mail for them. Technically, every system that can receive mail is supposed to have an entry of
this kind. If the system receives its own mail, there should be an entry the mentions the system itself, for example “XXX mail
is handled by XXX.” However many systems that receive their own mail do not bother to mention that fact. If a system has a
“mail is handled by” entry, but no address, this indicates that it is not really part of the Internet, but a system that is on the
network will forward mail to it. Systems on Usenet, bitnet, and a number of other networks have entries of this kind.

There are a number of options that can be used before the hostname. Most of these options are meaningful only to the staff
who have to maintain the domain database.

The option -w causes host to wait forever for a response. Normally it will time out after around a minute.

The option -v causes printout to be in a verbose format. This is the official domain master file format, which is documented
in the man page for named. Without this option, output still follows this format in general terms, but some attempt is made
to make it more intelligible to normal users. Without -v, a, mx, and cname records are written out as has address, mail is
handled by, and is a nickname for, and TTL and class fields are not shown.

The option -r causes recursion to be turned off in the request. This means that the name server will return only data it has in
its own database. It will not ask other servers for more information.

The option -d turns on debugging. Network transactions are shown in detail.

host

Part I: User Commands258

The option -t allows you to specify a particular type of information to be looked up. The arguments are defined in the man
page for named. Currently supported types are a, ns, md, mf, cname, soa, mb, mg, mr, null, wks, ptr, hinfo, minfo, mx, uinfo, uid,
gid, unspec, and the wildcard, which may be written as either any or *. Types must be given in lowercase. Note that the
default is to look first for a, and then mx, except that if the verbose option is turned on, the default is only a.

The option -a (for “all”) is equivalent to -v -t any.

The option -l causes a listing of a complete domain. For example,

host -l rutgers.edu

will give a listing of all hosts in the rutgers.edu domain. The -t option is used to filter what information is presented, as you
would expect. The default is address information, which also include PTR and NS records. The command host:

-l -v -t any rutgers.edu

will give a complete download of the zone data for rutgers.edu, in the official master file format. (However the SOA record
is listed twice, for arcane reasons.)

NOTE

 -l is implemented by doing a complete zone transfer and then filtering out the information you have asked for. This
command should be used only if it is absolutely necessary.

CUSTOMIZING HOSTNAME LOOKUP
In general, if the name supplied by the user does not have any dots in it, a default domain is appended to the end. This
domain can be defined in /etc/resolv.conf, but is normally derived by taking the local hostname after its first dot. The user
can override this, and specify a different default domain, using the environment variable LOCALDOMAIN. In addition, the user
can supply his own abbreviations for hostnames. They should be in a file consisting of one line per abbreviation. Each line
contains an abbreviation, a space, and then the full hostname. This file must be pointed to by an environment variable
HOSTALIASES, which is the name of the file.

SEE ALSO
named(8)

BUGS
Unexpected effects can happen when you type a name that is not part of the local domain. Please always keep in mind that
the local domain name is tacked onto the end of every name, unless it ends in a dot. Only if this fails is the name used
unchanged.

The -l option only tries the first name server listed for the domain that you have requested. If this server is dead, you may
need to specify a server manually. For example, to get a listing of foo.edu, you could try host -t ns foo.edu to get a list of all
the name servers for foo.edu, and then try host -l foo.edu xxx for all xxx on the list of name servers, until you find one that
works.

hostid
hostid—Set or print system’s host ID.

SYNTAX
hostid [–v] [decimal-id]

259

DESCRIPTION
The hostid command prints the current host ID number in hexadecimal and both decimal and hexadecimal in parenthesis if
the –v option is given. This numeric value is expected to be unique across all hosts and is normally set to resemble the host’s
Internet address.

Only the superuser can set the hostid by giving an argument. This value is stored in the file /etc/hostid and need only be
performed once.

AUTHOR
hostid is written by Mitch D’Souza (m.dsouza@mrc-apu.cam.ac.uk).

SEE ALSO
gethostid(2), sethostid(2)

hostname
hostname—Show or set the system’s hostname

dnsdomainname--Show the system’s domain name

SYNOPSIS
hostname [–d][--domain][–Ffilename] [--filefilename] [–f][--fqdn][–h][--help]
[--long][–s][--short][–v][--version][name]
dnsdomainname

DESCRIPTION
hostname is the program that is used to either set the hostname or display the current host or domain name of the system.
This name is used by many of the networking programs to identify the machine.

When called without any arguments, the program displays the current name as set by the hostname command. You can
change the output format to display always the short or the long hostname (FQDN). When called with arguments, the
program will set the value of the hostname to the value specified. This usually is done only once, at system startup time, by
the /etc/rc.d/rc.inet1 configuration script.

Note that only the superuser can change the hostname.

If the program was called as dnsdomainname, it will show the domain name server (DNS) domain name. You can’t change the
DNS domain name with dnsdomainname. (See the following subsection.)

OPTIONS
–d, --domain Display the name of the DNS domain. Don’t use the com-mand domainname to get the DNS

domain name because it will show the NIS domain name and not the DNS domain name.

–F, --file filename Read the hostname from the specified file. Comments (lines starting with a #) are ignored.

–f, --fqdn, --long Display the FQDN (fully-qualified domain name). An FQDN consists of a short hostname and
the DNS domain name. Unless you are using bind or NIS for host lookups, you can change the
FQDN and the DNS domain name (which is part of the FQDN) in the /etc/hosts file.

–h, --help Print a usage message on standard output and exit successfully.

–s, --short Display the short hostname.

–v, --version Print version information on standard output and exit successfully.

FILES
/etc/hosts

hostname

Part I: User Commands260

AUTHOR
Peter Tobias, (tobias@server.et-inf.fho-emden.de)

Linux, 28 July 1994

hpcdtoppm v0.3
hpcdtoppm v0.3—Convert a Photo-CD file into a portable pixmap

SYNOPSIS
hpcdtoppm [options] pcd-file [ppm-file]

DESCRIPTION
hpcdtoppm reads a Photo-CD image file or overview file, and outputs a portable pixmap. Image files you can find on the
Photo-CD in photo_cd/images are named as imgnnnn.pcd, where nnnn is a 4-digit-number. The Overview file is at photo_cd/
overview.pcd. If there is no ppm-file given, output will be printed to stdout. hpcdtoppm stands for “Hadmut’s pcdtoppm” to
make it distinguishable in case someone else is building the same thing and calling it pcdtoppm.

OPTIONS
-i Give some information from the fileheader to stderr. It works only for image files. (It is not

working correctly, just printing some strings.)

-s Apply simple sharpness-operator on the luma channel.

-d Do not show the complete image, but only the decompressed difference. It works only on
the 4Base and the 16Base resolution. It does not have any deeper sense, but it was simple to
implement and it shows what causes different sizes of image files.

-r Rotate the picture clockwise for portraits.

-l Rotate the picture counter-clockwise for portraits.

-a Try to find out the image orientation. This doesn’t work for overview files yet. It is very
experimental and depends on one byte. Please tell me if it doesn’t work.

-x Overskip mode. Works on Base/16, Base/4, Base, and 4Base. In Photo-CD images, the
luma channel is stored in full resolution, the two chroma channels are stored in half
resolution only and have to be interpolated. In the Overskip mode, the chroma channels of
the next higher resolution are taken instead of interpolating. To see the difference, generate
one ppm with and one ppm without this flag. Use pnmarith to generate the difference image of
these two images. Call ppmhist for this difference or show it with xv (push the HistEq
button in the color editor).

-1 | -Base/16 | -128x192 Extract the Base/16 size picture (size 128×192 pixels). Note that you can only give one size
option.

-2 | -Base/4 | -256x384 Extract the Base/4 size picture.

-3 | -Base | -512x768 Extract the Base size picture.

-4 | -4Base | -1024x1536 Extract the 4Base size picture.

-5 | -16Base | -2048x3072 Extract the 16Base size picture.

-0 | -Overview | -O Extract all pictures from an Overview file. A ppm filename must be given. If the given name
is foo, the files are named foonnnn, where nnnn is a 4-digit number. They are stored in
Base/16 format, so they are extracted in this format.

-ycc Suppress the ycc to rgb conversion. This is experimental only. You can use this and apply
ppmtorgb3 on the file. Then you will get three pgm files, one luma and two chroma files.

261

BUGS
I still don’t have enough information about the Photo-CD to take care of all data structures. The information I have is quite
vague and this program was developed by staring at the hexdumps and using the famous trial-and-error-method. :-) If
anything doesn’t work, please send me a report and perhaps you could try to find out why it doesn’t work.

SEE ALSO
ppm(5), ppmquant(1), ppmtopgm(1), ppmhist(1), pnmarith(1), ppmtorgb3(1), xv(1)

AUTHOR
Copyright 1992 by Hadmut Danisch (danisch@ira.uka.de). Permission to use and distribute this software and its
documentation for noncommercial use and without fee is hereby granted, provided that the preceding copyright notice
appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation.
This software may not be sold in any way. This software is not public domain.

28 November 1992

httpd
httpd—Apache Hypertext Transfer Protocol server

SYNOPSIS
httpd [–vX?][–d serverroot][–f config]

DESCRIPTION
httpd is the Apache Hypertext Transfer Protocol (HTTP) server process. The server may be invoked by the Internet daemon
inetd(1M) each time a connection to the HTTP service is made, or alternatively it may run as a daemon.

OPTIONS
–d serverroot Set the initial value for the ServerRoot variable to serverroot. This can be overridden by the ServerRoot

command in the configuration file. The default is /usr/local/etc/httpd.

–f config Execute the commands in the file config on startup. If config does not begin with a /, then it is taken to
be a path relative to the ServerRoot. The default is conf/httpd.conf.

–X Run in single-process mode, for internal debugging purposes only; the daemon does not detach from the
terminal or fork any children. Do not use this mode to provide ordinary Web service.

–v Print the version of httpd, and then exit.

–? Print a list of the httpd options, and then exit.

FILES
/usr/local/etc/httpd/conf/httpd.conf
/usr/local/etc/httpd/conf/srm.conf
/usr/local/etc/httpd/conf/access.conf
/usr/local/etc/httpd/conf/mime.types
/usr/local/etc/httpd/logs/error_log
/usr/local/etc/httpd/logs/access_log
/usr/local/etc/httpd/logs/httpd.pid

SEE ALSO
inetd(1m)

Documentation for the Apache HTTP server is available from http://www.apache.org.

October 1995

httpd

Part I: User Commands262

icontopbm
icontopbm—Convert a Sun icon into a portable bitmap

SYNOPSIS
icontopbm [iconfile]

DESCRIPTION
icontopbm reads a Sun icon as input and produces a portable bitmap as output.

SEE ALSO
pbmtoicon(1), pbm(5)

AUTHOR
Copyright 1988 by Jef Poskanzer

31 August 1988

ident
ident—Identify RCS keyword strings in files

SYNOPSIS
ident [–q][–V][file ...]

DESCRIPTION
ident searches for all instances of the pattern $ keyword : text $ in the named files or, if no files are named, the standard
input.

These patterns are normally inserted automatically by the RCS command co(1), but can also be inserted manually. The
option –q suppresses the warning given if there are no patterns in a file. The option –V prints ident’s version number.

ident works on text files as well as object files and dumps. For example, if the C program in f.c contains

#include <stdio.h>
static char const rcsid[] =
“$Id: f.c,v 5.4 1993/11/09 17:40 eggert Exp $”;
int main() { return printf(“%s\n”, rcsid) == EOF; }

and f.c is compiled into f.o, then the command

ident f.c f.o

will output

f.c:
$Id: f.c,v 5.4 1993/11/09 17:40 eggert Exp $
f.o:
$Id: f.c,v 5.4 1993/11/09 17:40 eggert Exp $

If a C program defines a string like the rcsid but does not use it, lint(1) may complain, and some C compilers will optimize
away the string. The most reliable solution is to have the program use the rcsid string, as shown in the example.

ident finds all instances of the $ keyword : text $ pattern, even if keyword is not actually an RCS-supported keyword. This
gives you information about nonstandard keywords like $XConsortium$.

263

KEYWORDS
Here is the list of keywords currently maintained by co(1). All times are given in Coordinated Universal Time (UTC,
sometimes called GMT by default), but if the files were checked out with co’s –zzone option, times are given with a numeric
time zone indication appended.

$Author$ The login name of the user who checked in the revision.

$Date$ The date and time the revision was checked in.

$Header$ A standard header containing the full pathname of the RCS file, the revision number, the date and time,
the author, the state, and the locker (if locked).

Id Same as $Header$, except that the RCS filename is without a path.

$Locker$ The login name of the user who locked the revision (empty if not locked).

Log The log message supplied during checkin. For ident’s purposes, this is equivalent to $RCSfile$.

$Name$ The symbolic name used to check out the revision, if any.

$RCSfile$ The name of the RCS file without a path.

$Revision$ The revision number assigned to the revision.

$Source$ The full pathname of the RCS file.

$State$ The state assigned to the revision with the –s option of rcs(1) or ci(1).

co(1) represents the following characters in keyword values by escape sequences to keep keyword strings well formed.

Character Escape Sequence

Tab \t

Newline \n

Space \040

$ \044

\ \\

IDENTIFICATION
Author: Walter F. Tichy

Manual Page Revision: 5.4; Release date September 11, 1993.

Copyright 1982, 1988, 1989 Walter F. Tichy. Copyright 1990, 1992, 1993 Paul Eggert.

SEE ALSO
ci(1), co(1), rcs(1), rcsdiff(1), rcsintro(1), rcsmerge(1), rlog(1), rcsfile(5)

Walter F. Tichy, RCS—A System for Version Control, Software–Practice & Experience 15, 7 (July 1985), 637–654.

GNU, 9 November 1993

ilbmtoppm
ilbmtoppm—Convert an ILBM file into a portable pixmap

SYNOPSIS
ilbmtoppm [-verbose][-ignore<chunkID>] [-isham|-isehb][-adjustcolors][ILBMfile]

DESCRIPTION
ilbmtoppm reads an IFF ILBM file as input and produces a portable pixmap as output. Supported ILBM types are Normal
ILBMs with 1–16 planes.

ilbmtoppm

Part I: User Commands264

Amiga Extra Halfbrite (EHB)

Amiga HAM with 3–16 planes

24-bit

Multiplatte (normal or HAM) pictures

Colormap (BMHD and CMAP chunk only, nPlanes = 0)

Unofficial direct color; 1–16 planes for each color component.

Chunks used: BMHD, CMAP, CAMG (only HAM and EHB flags used), PCHG, BODY unofficial DCOL chunk to
identify direct color ILBM

Chunks ignored: GRAB, DEST, SPRT, CRNG, CCRT, CLUT, DPPV, DRNG, EPSF

Other chunks (ignored but
displayed in verbose mode): NAME, AUTH, (d), ANNO, DPI

Unknown chunks are skipped.

OPTIONS
-verbose Give some information about the ILBM file.

-ignore <chunkID> Skip a chunk. <chunkID> is the 4-letter IFF chunk identifier of the chunk to be skipped.

-isham | -isehb Treat the input file as a HAM or Extra Halfbrite picture, even if these flags or not set in the CAMG
chunk (or if there is no CAMG chunk).

-adjustcolors If all colors in the CMAP have a value of less then 16, ilbmtoppm assumes a 4-bit colormap and gives a
warning. With this option, the colormap is scaled to 8 bits.

BUGS
The multipalette PCHG BigLineChanges and Huffman decompression code are untested.

REFERENCES
Amiga ROM Kernel Reference Manual—Devices (3rd Ed.). Addison Wesley, ISBN 0-201-56775-X.

SEE ALSO
ppm(5), ppmtoilbm(1)

AUTHORS
Copyright 1989 by Jef Poskanzer.

Modified October 1993 by Ingo Wilken (Ingo.Wilken@informatik.uni-oldenburg.de)

4 October 1993

imake
imake—C preprocessor interface to the make utility

SYNOPSIS
imake [–Ddefine][–Idir][–Ttemplate][–f filename][–C filename][–s filename]
[–e][–v]

DESCRIPTION
imake is used to generate Makefiles from a template, a set of cpp macro functions, and a per-directory input file called an
Imakefile. This allows machine dependencies (such as compiler options, alternate command names, and special make rules) to
be kept separate from the descriptions of the various items to be built.

265

OPTIONS
The following command-line options may be passed to imake:

–Ddefine This option is passed directly to cpp. It is typically used to set directory-specific variables. For example, the
X Window System uses this flag to set TOPDIR to the name of the directory containing the top of the core
distribution and CURDIR to the name of the current directory, relative to the top.

–Idirectory This option is passed directly to cpp. It is typically used to indicate the directory in which the imake
template and configuration files may be found.

–Ttemplate This option specifies the name of the master template file (which is usually located in the directory
specified with –I) used by cpp. The default is Imake.tmpl.

–f filename This option specifies the name of the per-directory input file. The default is Imakefile.

–C filename This option specifies the name of the .c file that is constructed in the current directory. The default is
Imakefile.c.

–s filename This option specifies the name of the make description file to be generated but make should not be invoked.
If the filename is a hyphen (–), the output is written to stdout. The default is to generate, but not execute,
a Makefile.

–e This option indicates the imake should execute the generated Makefile. The default is to leave this to the
user.

–v This option indicates that imake should print the cpp command line that it is using to generate the
Makefile.

HOW IT WORKS
Imake invokes cpp with any –I or –D flags passed on the command line and passes the name of a file containing the following
three lines:

#define IMAKE_TEMPLATE “Imake.tmpl”
#define INCLUDE_IMAKEFILE <Imakefile>
#include IMAKE_TEMPLATE

where Imake.tmpl and Imakefile may be overridden by the –T and –f command options, respectively.

The IMAKE_TEMPLATE typically reads in a file containing machine-dependent parameters (specified as cpp symbols), a site-
specific parameters file, a file defining variables, a file containing cpp macro functions for generating make rules, and finally
the Imakefile (specified by INCLUDE_IMAKEFILE) in the current directory. The Imakefile uses the macro functions to indicate
what targets should be built; imake takes care of generating the appropriate rules.

Imake configuration files contain two types of variables, imake variables and make variables. The imake variables are interpreted
by cpp when imake is run. By convention they are mixed case. The make variables are written into the Makefile for later
interpretation by make. By convention make variables are uppercase.

The rules file (usually named Imake.rules in the configuration directory) contains a variety of cpp macro functions that are
configured according to the current platform. Imake replaces any occurrences of the string @@ with a newline to allow macros
that generate more than one line of make rules. For example, when called with program_target(foo, foo1.o foo2.o), the
macro:

#define program_target(program, objlist) @@\
program: objlist @@\
$(CC) –o $@ objlist $(LDFLAGS)

will expand to

foo: foo1.o foo2.o
$(CC) –o $@ foo1.o foo2.o $(LDFLAGS)

imake also replaces any occurrences of the word XCOMM with the character # to permit placing comments in the Makefile
without causing invalid directive errors from the preprocessor.

imake

Part I: User Commands266

Some complex imake macros require generated make variables local to each invocation of the macro, often because their value
depends on parameters passed to the macro. Such variables can be created by using an imake variable of the form XVARdefn,
where n is a single digit. A unique make variable will be substituted. Later occurrences of the variable XVARusen will be replaced
by the variable created by the corresponding XVARdefn.

On systems whose cpp reduces multiple tabs and spaces to a single space, imake attempts to put back any necessary tabs (make
is very picky about the difference between tabs and spaces). For this reason, colons (:) in command lines must be preceded
by a backslash (\).

USE WITH THE X WINDOW SYSTEM
The X Window System uses imake extensively, for both full builds within the source tree and external software. As men-
tioned earlier, two special variables, TOPDIR and CURDIR, are set to make referencing files using relative pathnames easier. For
example, the following command is generated automatically to build the Makefile in the directory lib/X/ (relative to the top
of the sources):

% ../.././config/imake –I../.././config \
–DTOPDIR=../../. –DCURDIR=./lib/X

When building X programs outside the source tree, a special symbol UseInstalled is defined and TOPDIR and CURDIR are
omitted. If the configuration files have been properly installed, the script xmkmf(1) may be used.

INPUT FILES
Here is a summary of the files read by imake as used by X. The indentation shows which files include which other files.

Imake.tmpl generic variables
site.def site-specific, BeforeVendorCF defined
.cf machine-specific
Lib.rules shared library rules
site.def site-specific, AfterVendorCF defined
Imake.rules rules
Project.tmpl X-specific variables
Lib.tmpl shared library variables
Imakefile
Library.tmpl library rules
Server.tmpl server rules
Threads.tmpl multi-threaded rules

Note that site.def is included twice, once before the *.cf file and once after. Although most site customizations should be
specified after the *.cf file, some, such as the choice of compiler, need to be specified before, because other variable settings
may depend on them.

The first time site.def is included, the variable BeforeVendorCF is defined, and the second time, the variable AfterVendorCF is
defined. All code in site.def should be inside a #ifdef for one of these symbols.

FILES
Imakefile.c Temporary input file for cpp

/tmp/Imf.XXXXXX Temporary Makefile for -s

/tmp/IIf.XXXXXX Temporary Imakefile if specified Imakefile uses # comments

/lib/cpp Default C preprocessor

SEE ALSO
make(1), xmkmf(1)

S. I. Feldman, Make—A Program for Maintaining Computer Programs.

267

ENVIRONMENT VARIABLES
The following environment variables may be set; however, their use is not recommended as they introduce dependencies that
are not readily apparent when imake is run.

IMAKEINCLUDE If defined, this should be a valid include argument for the C preprocessor. Example:

–I/usr/include/local

Actually, any valid cpp argument will work here.

IMAKECPP If defined, this should be a valid path to a preprocessor program. Example:

/usr/local/cpp

By default, imake will use /lib/cpp.

IMAKEMAKE If defined, this should be a valid path to a make program, such as

/usr/local/make

By default, imake will use whatever make program is found using execvp(3). This variable is only used if the
–e option is specified.

AUTHORS
Todd Brunhoff, Tektronix and MIT Project Athena

Jim Fulton, MIT X Consortium

X Version 11 Release 6

imgtoppm
imgtoppm—Convert an Img-whatnot file into a portable pixmap

SYNOPSIS
imgtoppm [imgfile]

DESCRIPTION
imgtoppm reads an Img-whatnot file as input and produces a portable pixmap as output. The Img-whatnot toolkit is available for
FTP on venera.isi.edu, along with numerous images in this format.

SEE ALSO
ppm(5)

AUTHOR
Based on a simple conversion program posted to comp.graphics by Ed Falk.

Copyright 1989 by Jef Poskanzer.

5 September 1989

inews
inews—Send a Usenet article to the local news server for distribution

SYNOPSIS
inews [–h][–D][–O][–R][–S][header_flags][input]

inews

Part I: User Commands268

DESCRIPTION
Inews reads a Usenet news article (perhaps with headers) from the named file or standard input if no file is given. It adds
some headers and performs some consistency checks. If the article does not meet these checks (for example, too much
quoting of old articles, or posting to nonexistent newsgroups), then the article is rejected. If it passes the checks, inews sends
the article to the local news server as specified in the inn.conf(5) file for distribution.

In the standard mode of operation, the input consists of the article headers, a blank line, and the message body. For com-
patibility with older software, the –h flag must be used. If there are no headers in the message, then this flag may be omitted.

Several headers may be specified on the command line, shown in the synopsis above as header flags. Each of these flags takes
a single parameter; if the value is more than one word (for example, almost all Subject lines) then quotes must be used to
prevent the shell from splitting it into multiple words. The options, and their equivalent headers, are as follows:

a Approved

c Control

d Distribution

e Expires

f From

w Followup-To

n Newsgroups

r Reply-To

t Subject

F References

o Organization

x Path prefix

The Path header is built according to the following rules. If the –x flag is used, then its value will be the start of the header.
Any other host will see the site in the header, and therefore not offer the article to that site. If the pathhost configuration
parameter is specified in the inn.conf(5) file, then it will be added to the Path. Otherwise, if the server configuration
parameter is specified, then the full domain name of the local host will be added to the Path. The Path will always end
not-for-mail.

The default Organization header will be provided if none is present in the article or if the –o flag is not used. To prevent
adding the default, use the –O flag.

As a debugging aide, if the –D flag is used, the consistency checks will be performed, and the article will be sent to the
standard output, rather then sent to the server.

For compatibility with C News, inews accepts, but ignores, the –A, –V, and –W flags. The C News –N flag is treated as the –D flag.

If a file named .signature exists in the user’s home directory, inews will try to append it to the end of the article. If the file
cannot be read, or if it is too long (for example, more than four lines or one standard I/O buffer), or if some other problem
occurs, then the article will not be posted. To suppress this action, use the –S flag.

If the –R flag is used then inews will reject any attempts to post control messages.

If an unapproved posting is made to a moderated newsgroup, inews will try to mail the article to the moderator for posting.
It uses the moderators(5) file to determine the mailing address. If no address is found, it will use the inn.conf file to
determine a “last-chance” host to try.

If the NNTP server needs to authenticate the client, inews will use the NNTPsendpass-word(3) routine to authenticate itself. In
order to do this, the program will need read access to the passwd.nntp(5) file. This is typically done by having the file group-
readable and making inews run setgid to that group.

Inews exits with a zero status if the article was successfully posted or mailed, or with a nonzero status if the article could not
be delivered.

269

Since inews will spool its input if the server is unavailable, it is usually necessary to run rnews(1) with the –U flag on a regular
basis, usually out of cron(8).

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
moderators(5), inn.conf(5). rnews(1)

info
info—GNU’s hypertext system

SYNOPSIS
info [--option-name option-value] enu-item...

DESCRIPTION
The GNU project has a hypertext system called info that allows the same source file to be either printed as a paper manual,
or viewed using info. It is possible to use the info program from inside Emacs, or to use the standalone version described
here. This manual page gives a brief summary of its capabilities.

OPTIONS
--directory directory-path Add directory-path to the list of directory paths searched when info needs to find a file.

You may issue --directory multiple times. Alternatively, you may specify a value for the
environment variable INFOPATH; if --directory is not given, the value of INFOPATH is used.
The value of INFOPATH is a colon-separated list of directory names. If you do not supply
either INFOPATH or --directory-path, info uses a default path.

–f filename Specify a particular info file to visit. By default, info visits the file dir; if you use this
option, info will start with (FILENAME)Top as the first file and node.

–n nodename Specify a particular node to visit in the initial file that info loads. This is especially useful in
conjunction with --file. You may specify --node multiple times.

-o file Direct output to file instead of starting an interactive info session.

–h Produce a relatively brief description of the available info options.

--version Print the version information of info and exit.

menu-item info treats its remaining arguments as the names of menu items. The first argument is a
menu item in the initial node visited, while the second argument is a menu item in the first
argument’s node. You can easily move to the node of your choice by specifying the menu
names that describe the path to that node. For example, info emacs buffers first selects the
menu item emacs in the node (dir)Top, and then selects the menu item buffers in the node
(emacs)Top.

COMMANDS
In info, the following commands are available:

h Invoke the info tutorial.

? Get a short summary of info commands.

h Select the info node from the main directory; this is much more complete than just using ?.

Ctrl-g Abort whatever you are doing.

Ctrl-l Redraw the screen.

info

Part I: User Commands270

Selecting other nodes:

n Move to the next node of this node.

p Move to the previous node of this node.

u Move to this node’s up node.

m Pick a menu item specified by name. Picking a menu item causes another node to be selected. You do not need to
type a complete nodename; if you type a few letters and then a space or tab, info will try to fill in the rest of the
nodename. If you ask for further completion without typing any more characters, you’ll be given a list of
possibilities; you can also get the list with ?. If you type a few characters and then hit Enter, info will try to do a
completion, and if it is ambiguous, use the first possibility.

f Follow a cross reference. You are asked for the name of the reference, using command completion as for m.

l Move to the last node you were at.

Moving within a node:

Space Scroll forward a page.

DEL Scroll backward a page.

b Go to the beginning of this node.

Advanced commands:

q Quit info.

1 Pick first item in node’s menu.

2 — 5 Pick second to fifth item in node’s menu.

g Move to node specified by name. You may include a filename as well, as (FILENAME)NODENAME.

s Search through this info file for a specified string, and select the node in which the next occurrence is
found.

M-x print-node Pipe the contents of the current node through the command in the environment variable
INFO_PRINT_COMMAND. If the variable does not exist, the node is simply piped to lpr.

ENVIRONMENT
INFOPATH A colon-separated list of directories to search for info files. Used if --directory is not given.

INFO_PRINT_COMMAND The command used for printing.

SEE ALSO
emacs(1)

AUTHOR
Brian Fox, Free Software Foundation (bfox@ai.mit.edu)

MANUAL AUTHOR
Robert Lupton (rhl@astro.princeton.edu); updated by Robert J. Chassell (bob@gnu.ai.mit.edu).

7 December 1990

innconfval
innconfval—Get an InterNetNews configuration parameter

SYNOPSIS
innconfval [–f][parameter...]

271

DESCRIPTION
Innconfval prints the values of the parameters specified on the command line. Values are retrieved from the inn.conf(5) file
and are described there.

Values are retrieved by using the GetConfigValue routine, or GetFileConfigValue if the –f flag is used. Both are described in
libinn(3).

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
libinn(3), inn.conf(5)

insmod
insmod—Install loadable modules (aout and ELF format)

SYNOPSIS
insmod [–fkmsxv] [–o internal_name] object_file [symbol=value ...]

DESCRIPTION
insmod installs a loadable module in the kernel.

insmod tries to load a module into the kernel, and resolves all symbols from the exported kernel symbols, with version
information, if available. The module will get its name by removing the .o extension from the basename of the object file. If
the .o extension is omitted, insmod will attempt to locate the module in some common default directories. If the environ-
ment contains the variable MODPATH, where all directories are separated with :, insmod will look in these directories for the
module, in the specified order.

It is possible to load unversioned modules in a versioned kernel, and all combinations of these.

It is also possible to load ELF modules into an a.out kernel, and all combinations of these.

It is possible to stack modules, that is, let one module use a previously loaded module. All modules that are referenced are
updated with this reference. This ensures that a module can’t be unloaded if there is another module that refers to it.

It is possible to change integer values in the module when loading it. This makes it possible to tune the module.

The options are as follows:

–f The –f option tries to load the module even if the kernel or symbol versions differs from the
version expected by the module. A warning will be issued if the module is locked to a
specific kernel version that differs from the current version.

–k This option should really only be used by modprobe, to indicate that the module insertion
was requested by kerneld. All modules inserted using this option will be subject to
autoremoval by the kerneld utility if they have been unused for more that a minute. (The
usage count is zero and no modules depend on this module.) If the kernel is not kerneld-
aware, the module will be rejected by the kernel. Just load it without the -k option, and all
should be well.

–m The –m option will make insmod output a load map, that will make it easier to debug your
modules after a kernel panic, thanks to Derek Atkins (warlord@MIT.EDU).

–o The –o option allows the module to be named to an explicit name instead of having a name
derived from the name of the object file. Note that this option can also be placed after the
module name, so that the syntax of insmod looks more similar to ld.

insmod

Part I: User Commands272

symbol=value[,value] ... The values of all integer or character pointer symbols in the module can be changed at load-
time by naming a symbol and giving the new value(s). If the symbol is defined as an array of
integers or character pointers, the elements in the array can be initialized by giving the
values separated by commas. Specific array entries can be skipped by omitting the value, as
in symbol=value1,,value2. Each integer value can be given as a decimal, octal, or hexadeci-
mal value: 17, 021, or 0x11. If the first character in the given value is nonnumeric, the value
is interpreted as a string. The symbol is assumed to be a character pointer, which will be
initialized to point to the string. Extra space in the module will be allocated for the string
itself. Note the syntax: no spaces are allowed around the = or , signs!

–s With this option, insmod will produce debugging information and error messages using the
syslog facility. (Also used by kerneld, if you have installed it.)

–v If you want verbose information from the loading, select this option.

–x The no-export flag, which will inhibit the default insmod behavior—inserting all the
module’s external symbols into the kernel symbol table. Note that the kernel will still
update the references that the module makes to previously loaded modules.

SEE ALSO
rmmod(1), modprobe(1), depmod(1), lsmod(1), ksyms(1), modules(2), genksyms(8)

HISTORY
The module support was first conceived by Anonymous (as far as I know). Linux version by Bas Laarhoven (bas@vimec.nl).
0.99.14 version by Jon Tombs (jon@gtex02.us.es). Extended by Bjorn Ekwall (bj0rn@blox.se). ELF help from Eric
Youngdale (eric@aib.com).

BUGS
insmod relies on the “fact” that symbols, for which one wants to change the value, are defined as integers or character
pointers, and that sizeof(int) == sizeof(char *).

Linux, 14 May 1995

install
install—Copy files and set their attributes; GNU file installer

SYNOPSIS
install [options] [–s] [--strip] source dest
install [options] [–s] [--strip] source... directory
install [options] [–d,--directory] directory...

Options:

[–c] [–g group] [–m mode] [–o owner] [--group=group] [--mode=mode]
[--owner=owner] [--help] [--version]

DESCRIPTION
This manual page documents the GNU version of install. install copies files and sets their permission modes and, if
possible, their owner and group. Used similarly to cp; typically used in Makefiles to copy programs into their destination
directories. It can also be used to create the destination directories and any leading directories, and to set the final directory’s
modes. It refuses to copy files onto themselves.

273

OPTIONS
–c Ignored; for compatibility with old UNIX versions of install.

–d, --directory Create each given directory and its leading directories, if they do not already exist. Set the owner,
group, and mode as given on the command line or to the defaults. Also gives any leading directories
that are created those attributes. This is different from the SunOS 4.x install, which gives
directories that it creates the default attributes.

–g, --group group Set the group ownership of the installed file or directory to the group ID of group (default is
process’s current group). group may also be a numeric group ID.

–m, --mode mode Set the permission mode for the installed file or directory to mode, which can be either an octal
number, or a symbolic mode as in chmod, with 0 as the point of departure. The default mode is
0755.

–o, --owner owner If run as root, set the ownership of the installed file to the user ID of owner (default is root). owner
may also be a numeric user ID.

–s, --strip Strip the symbol tables from installed programs.

--help Print a usage message on standard output and exit successfully.

--version Print version information on standard output and exit successfully.

GNU File Utilities

installit
installit—File/directory installation tool

SYNOPSIS
installit [–o owner][–g group][–O owner][–G group][–m mode][–b backup]
[–s][–t] source destination

DESCRIPTION
installit puts a copy of source into the specified destination.

If source is a period, then destination is taken to be the name of a directory that should be created. Otherwise, source is
taken to name an existing file and destination may be either a file or directory; it is interpreted according to the same rules
as cp(1).

If destination names a preexisting file, it will be removed before the copy is done. To make a backup copy, use the –b flag;
the existing file will be renamed to have the specified extension. If source and destination are the same string, or if the two
files are identical, then no copying is done, and only the –o, –g, –m, and –s flags are processed. In this case, the modification
time on the destination will be updated using touch(1) unless the –n (don’t touch) flag is used.

After the destination has been created, it is possible to set the owner, group, and mode that it should have. This is done by
using the –o, –g, and –m flags, respectively. The –O and –G flags set the owner and group only if installit is being run by root,
as determined by whoami(1). To strip(1) an installed executable, use the –s flag.

Note that installit uses no special privileges to copy files from one place to another.

BUGS AND LIMITATIONS
Flags cannot be combined.

The chown(8) command must exist in either the /etc or /usr/etc directory or the user’s PATH.

The whoami command must exist in the /usr/ucb directory or the user’s PATH.

installit

Part I: User Commands274

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

ispell, buildhash, munchlist, findaffix, tryaffix, icombine,
ijoin

ispell, buildhash, munchlist, findaffix, tryaffix, icombine, ijoin--Interactive spelling checking

SYNOPSIS
ispell [common-flags][–M|–N][–Lcontext] [–V] files
ispell [common-flags] –l
ispell [common-flags][–f file] [–s]–a| –A
ispell [–d file][–w chars] –c
ispell [–d file][–w chars] –e[e]
ispell [–d file] –D
ispell –v[v]

common-flags:[–t][–n][–b][–x][–B][–C][–P][–m][–S][–d file][–p file][–w chars]
[–W n][–T type]

buildhash [–s] dict-file affix-file hash-file
buildhash –s count affix-file munchlist [–l aff-file][–c conv-file]
[–T suffix][–s hash-file] [–D][–v][–w chars][files] findaffix [–p|–s][–f][–c]
[–m min][–M max][–e elim][–t tabchar][–l low][files]

tryaffix [–p|–s] [–c] expanded-file affix[+addition]

icombine [–T type][aff-file]

ijoin [–s|–u] join-options file1 file2

DESCRIPTION
ispell is fashioned after the spell program from ITS (called ispell on Twenex systems.) The most common usage is ispell
filename. In this case, ispell will display each word which does not appear in the dictionary at the top of the screen and
allow you to change it. If there are “near misses” in the dictionary (words that differ by only a single letter, a missing or extra
letter, a pair of transposed letters, or a missing space or hyphen), then they are also displayed on following lines. As well as
near misses, ispell may display other guesses at ways to make the word from a known root, with each guess preceded by
question marks. Finally, the line containing the word and the previous line are printed at the bottom of the screen. If your
terminal can display in reverse video, the word itself is highlighted. You have the option of replacing the word completely or
choosing one of the suggested words. Commands are single characters as follows (case is ignored):

R Replace the misspelled word completely.

Space Accept the word this time only.

A Accept the word for the rest of this ispell session.

I Accept the word, capitalized as it is in the file, and update private dictionary.

U Accept the word, and add an uncapitalized (actually, all lowercase) version to the private dictionary.

0-n Replace with one of the suggested words.

L Look up words in system dictionary (controlled by the WORDS compilation option).

X Write the rest of this file, ignoring misspellings, and start next file.

Q Exit immediately and leave the file unchanged.

! Shell escape.

275

ˆL Redraw screen.

ˆZ Suspend ispell.

? Give help screen.

If the –M switch is specified, a one-line mini-menu at the bottom of the screen will summarize these options. Conversely, the
–N switch may be used to suppress the mini-menu. (The mini-menu is displayed by default if ispell was compiled with the
MINIMENU option, but these two switches will always override the default.)

If the –L flag is given, the specified number is used as the number of lines of context to be shown at the bottom of the screen.
(The default is to calculate the amount of context as a certain percentage of the screen size.) The amount of context is subject
to a system-imposed limit.

If the –V flag is given, characters that are not in the 7-bit ANSI printable character set will always be displayed in the style of
cat -v, even if ispell thinks that these characters are legal ISO Latin-1 on your system. This is useful when working with
older terminals. Without this switch, ispell will display 8-bit characters as is if they have been defined as string characters for
the chosen file type.

Besides the –l, –a, and –A options, Normal mode accepts the following common flags on the command line:

–t The input file is in TeX or LaTeX format.

–n The input file is in nroff/troff format.

–b Create a backup file by appending .bak to the name of the input file.

–x Don’t create a backup file.

–B Report run-together words with missing blanks as spelling errors.

–C Consider run-together words as legal compounds.

–P Don’t generate extra root/affix combinations.

–m Make possible root/affix combinations that aren’t in the dictionary.

–S Sort the list of guesses by probable correctness.

–d file Specify an alternate dictionary file. For example, use –d deutsch to choose a German dictionary in a German
installation.

–p file Specify an alternate personal dictionary.

–w chars Specify additional characters that can be part of a word.

–W n Specify length of words that are always legal.

-T type Assume a given formatter type for all files.

The –n and –t options select whether ispell runs in nroff/troff (–n) or TeX/LaTeX (–t) input mode. (The default is
controlled by the DEFTEXFLAG installation option.) TeX/LaTeX mode is also automatically selected if an input file has the
extension .tex, unless overridden by the –n switch. In TeX/LaTeX mode, whenever a backslash (\) is found, ispell skips to
the next whitespace or TeX/LaTeX delimiter. Certain commands contain arguments that should not be checked, such as
labels and reference keys found in the \cite command, because they contain arbitrary, nonword arguments. Spell checking is
also suppressed when in math mode. Thus, for example, given

\chapter {This is a Ckapter} \cite{SCH86}

ispell will find “Ckapter” but not “SCH.” The –t option does not recognize the TeX comment character %, so comments are
also spell checked. It also assumes correct LaTeX syntax. Arguments to infrequently used commands and some optional
arguments are sometimes checked unnecessarily. The bibliography will not be checked if ispell was compiled with IGNOREBIB
defined. Otherwise, the bibliography will be checked but the reference key will not.

References for the tib(1) bibliography system (text between a [. or <. and .] or .>) will always be ignored in TeX/LaTeX mode.

The –b and –x options control whether ispell leaves a backup (.bak) file for each input file.

The .bak file contains the precorrected text. If there are file opening/writing errors, the .bak file may be left for recovery
purposes even with the –x option. The default for this option is controlled by the DEFNOBACKUPFLAG installation option.

ispell, buildhash, munchlist, findaffix, tryaffix, icombine, ijoin

Part I: User Commands276

The –B and –C options control how ispell handles run-together words, such as notthe for not the. If –B is specified, such
words will be considered errors, and ispell will list variations with an inserted blank or hyphen as possible replacements. If
–C is specified, run-together words will be considered to be legal compounds, so long as both components are in the
dictionary, and each component is at least as long as a language-dependent minimum (three characters, by default). This is
useful for languages such as German and Norwegian, where many compound words are formed by concatenation. (Note that
compounds formed from three or more root words will still be considered errors). The default for this option is language-
dependent; in a multilingual installation, the default may vary depending on which dictionary you choose.

The –P and –m options control when ispell automatically generates suggested root/affix combinations for possible addition to
your personal dictionary. (These are the entries in the “guess” list that are preceded by question marks.) If –P is specified,
such guesses are displayed only if ispell cannot generate any possibilities that match the current dictionary. If –m is specified,
such guesses are always displayed. This can be useful if the dictionary has a limited word list, or a word list with few suffixes.
However, you should be careful when using this option, as it can generate guesses that produce illegal words. The default for
this option is controlled by the dictionary file used.

The –S option suppresses ispell’s normal behavior of sorting the list of possible replacement words. Some people may prefer
this, since it somewhat enhances the probability that the correct word will be low-numbered.

The –d option is used to specify an alternate hashed dictionary file, other than the default. If the filename does not contain a
/, the library directory for the default dictionary file is prefixed; thus, to use a dictionary in the local directory -d ./xxx.hash
must be used. This is useful to allow dictionaries for alternate languages. Unlike previous versions of ispell, a dictionary of
/dev/null is illegal because the dictionary contains the affix table. If you need an effectively empty dictionary, create a one-
entry list with an unlikely string (for example, “qqqqq”).

The –p option is used to specify an alternate personal dictionary file. If the filename does not begin with /, $HOME is prefixed.
Also, the shell variable WORDLIST may be set, which renames the personal dictionary in the same manner. The command line
overrides any WORDLIST setting. If neither the –p switch nor the WORDLIST environment variable is given, ispell will search for a
personal dictionary in both the current directory and $HOME, creating one in $HOME if none is found. The preferred name is
constructed by appending .ispell to the base name of the hash file. For example, if you use the English dictionary, your
personal dictionary would be named .ispell_english. However, if the file .ispell_words exists, it will be used as the personal
dictionary regardless of the language hash file chosen. This feature is included primarily for backwards compatibility.

If the –p option is not specified, ispell will look for personal dictionaries in both the current directory and the home
directory. If dictionaries exist in both places, they will be merged. When words are added to the personal dictionary, they will
be written to the current directory if a dictionary already existed in that place; otherwise, they will be written to the
dictionary in the home directory.

The –w option may be used to specify characters other than alphabetics that may also appear in words. For instance, –w “&”
will allow “AT&T” to be picked up. Underscores are useful in many technical documents. There is an admittedly crude
provision in this option for 8-bit international characters. Nonprinting characters may be specified in the usual way by
inserting a backslash followed by the octal character code, for example, \014 for a form feed. Alternatively, if n appears in the
character string, the (up to) three characters following are a decimal code, 0–255, for the character. For example, to include
bells and form feeds in your words (an admittedly silly thing to do, but aren’t most pedagogical examples):

n007n012

Numeric digits other than the three following n are simply numeric characters. Use of n does not conflict with anything
because actual alphabetics have no meaning; alphabetics are already accepted. ispell will typically be used with input from a
file, meaning that preserving parity for possible 8-bit characters from the input text is okay. If you specify the -l option, and
actually type text from the terminal, this may create problems if your stty settings preserve parity.

The –W option may be used to change the length of words that ispell always accepts as legal. Normally, ispell will accept all
one-character words as legal, which is equivalent to specifying –W 1. (The default for this switch is actually controlled by the
MINWORD installation option, so it may vary at your installation.) If you want all words to be checked against the dictionary,
regardless of length, you might want to specify –W 0. On the other hand, if your document specifies to accept all words of
three letters or less, then regardless of the setting of this option, ispell will only generate words that are in the dictionary as
suggested replacements for words; this prevents the list from becoming too long. Obviously, this option can be very

277

dangerous, since short misspellings may be missed. If you use this option a lot, you should probably make a last pass without
it before you publish your document, to protect yourself against errors.

The –T option is used to specify a default formatter type for use in generating string characters. This switch overrides the
default type determined from the filename. The type argument may be either one of the unique names defined in the
language affix file (such as nroff) or a file suffix including the dot (for example, .tex). If no –T option appears and no type
can be determined from the filename, the default string character type declared in the language affix file will be used.

The –l or list option to ispell is used to produce a list of misspelled words from the standard input.

The –a option is intended to be used from other programs through a pipe. In this mode, ispell prints a one-line version
identification message, and then begins reading lines of input. For each input line, a single line is written to the standard
output for each word checked for spelling on the line. If the word was found in the main dictionary, or your personal
dictionary, then the line contains only a *. If the word was found through affix removal, then the line contains a +, a space,
and the root word. If the word was found through compound formation (concatenation of two words, controlled by the –C
option), then the line contains only a –.

If the word is not in the dictionary, but there are near misses, then the line contains an &, a space, the misspelled word, a
space, the number of near misses, the number of characters between the beginning of the line and the beginning of the
misspelled word, a colon, another space, and a list of the near misses separated by commas and spaces. Following the near
misses (and identified only by the count of near misses), if the word could be formed by adding (illegal) affixes to a known
root, is a list of suggested derivations, again separated by commas and spaces. If there are no near misses at all, the line format
is the same, except that the & is replaced by ? (and the near-miss count is always zero). The suggested derivations following
the near misses are in the form:

[prefix+] root [-prefix] [-suffix] [+suffix]

(for example, “re+fry-y+ies” to get “refries”) where each optional pfx and sfx is a string. Also, each near miss or guess is
capitalized the same as the input word unless such capitalization is illegal; in the latter case each near miss is capitalized
correctly according to the dictionary.

Finally, if the word does not appear in the dictionary, and there are no near misses, then the line contains a #, a space, the
misspelled word, a space, and the character offset from the beginning of the line. Each sentence of text input is terminated
with an additional blank line, indicating that ispell has completed processing the input line.

These output lines can be summarized as follows:

OK: *

Root: + <root>

Compound: –

Miss: & <original><count><offset>: <miss>, <miss>, ..., <guess>, ...

Guess: ? <original> 0 <offset>: <guess>, <guess>, ...

None: # <original> <offset>

For example, a dummy dictionary containing the words fray, Frey, fry, and refried might produce the following response to
the command echo ‘frqy refries | ispell -a -m -d ./test.hash:

(#) International Ispell Version 3.0.05 (beta), 08/10/91
& frqy 3 0: fray, Frey, fry
& refries 1 5: refried, re+fry-y+ies

This mode is also suitable for interactive use when you want to figure out the spelling of a single word.

The –A option works just like –a, except that if a line begins with the string “&Include File&”, the rest of the line is taken as
the name of a file to read for further words. Input returns to the original file when the include file is exhausted. Inclusion
may be nested up to five deep. The key string may be changed with the environment variable INCLUDE_STRING (the amper-
sands, if any, must be included).

ispell, buildhash, munchlist, findaffix, tryaffix, icombine, ijoin

Part I: User Commands278

When in the –a mode, ispell will also accept lines of single words prefixed with any of the following: *, &, @, +, -, ˜, #, !, %,
or ˆ. A line starting with * tells ispell to insert the word into the user’s dictionary (similar to the I command). A line
starting with & tells ispell to insert an all-lowercase version of the word into the user’s dictionary (similar to the U com-
mand). A line starting with @ causes ispell to accept this word in the future (similar to the A command). A line starting with
+, followed immediately by tex or nroff, will cause ispell to parse future input according the syntax of that formatter. A line
consisting solely of a + will place ispell in TeX/LaTeX mode (similar to the –t option) and - returns ispell to nroff/troff
mode (but these commands are obsolete). However, string character type is not changed; the ˜ command must be used to do
this. A line starting with ˜ causes ispell to set internal parameters (in particular, the default string character type) based on
the filename given in the rest of the line. (A file suffix is sufficient, but the period must be included. Instead of a filename or
suffix, a unique name, as listed in the language affix file, may be specified.) However, the formatter parsing is not changed;
the + command must be used to change the formatter. A line prefixed with # will cause the personal dictionary to be saved. A
line prefixed with ! will turn on terse mode (explained later in this subsection), and a line prefixed with % will return ispell
to normal (non-terse) mode. Any input following the prefix characters +, -, #, !, or % is ignored, as is any input following the
filename on a ˜ line. To allow spell checking of lines beginning with these characters, a line starting with ˆ has that character
removed before it is passed to the spell checking code. It is recommended that programmatic interfaces prefix every data line
with an up arrow to protect themselves against future changes in ispell.

To summarize these:

* Add to personal dictionary

@ Accept word, but leave out of dictionary

Save current personal dictionary

˜ Set parameters based on filename

+ Enter TeX mode

- Exit TeX mode

! Enter terse mode

% Exit terse mode

ˆ Spell check rest of line

In terse mode, ispell will not print lines beginning with *, +, or –, all of which indicate correct words. This significantly
improves running speed when the driving program is going to ignore correct words anyway.

The –s option is only valid in conjunction with the –a or –A options, and only on BSD-derived systems. If specified, ispell
will stop itself with a SIGTSTP signal after each line of input. It will not read more input until it receives a SIGCONT signal. This
may be useful for handshaking with certain text editors.

The –f option is only valid in conjunction with the –a or –A options. If –f is specified, ispell will write its results to the
given file, rather than to standard output.

The –v option causes ispell to print its current version identification on the standard output and exit. If the switch is
doubled, ispell will also print the options that it was compiled with.

The –c, –e[1-4], and –D options of ispell are primarily intended for use by the munchlist shell script. The –c switch causes a
list of words to be read from the standard input. For each word, a list of possible root words and affixes will be written to the
standard output. Some of the root words will be illegal and must be filtered from the output by other means; the munchlist
script does this. As an example, the command

echo BOTHER | ispell -c

produces

BOTHER BOTHE/R BOTH/R

The –e switch is the reverse of –c; it expands affix flags to produce a list of words. For example, the command

echo BOTH/R | ispell -e

produces

BOTH BOTHER

279

An optional expansion level can also be specified. A level of 1 (–e1) is the same as –e alone. A level of 2 causes the original
root/affix combination to be prepended to the line:

BOTH/R BOTH BOTHER

A level of 3 causes multiple lines to be output, one for each generated word, with the original root/affix combination
followed by the word it creates:

BOTH/R BOTH
BOTH/R BOTHER

A level of 4 causes a floating-point number to be appended to each of the level 3 lines, giving the ratio between the length of
the root and the total length of all generated words including the root:

BOTH/R BOTH 2.500000
BOTH/R BOTHER 2.500000

Finally, the –D flag causes the affix tables from the dictionary file to be dumped to standard output.

Unless your system administrator has suppressed the feature to save space, ispell is aware of the correct capitalizations of
words in the dictionary and in your personal dictionary. As well as recognizing words that must be capitalized (such as
George) and words that must be all capitals (such as NASA), it can also handle words with unusual capitalization (for
example, IT-Corp or TeX). If a word is capitalized incorrectly, the list of possibilities will include all acceptable capitaliza-
tions. (More than one capitalization may be acceptable; for example, my dictionary lists both ITCorp and ITcorp.)

Normally, this feature will not cause you surprises, but there is one circumstance you need to be aware of. If you use I to add
a word to your dictionary that is at the beginning of a sentence (for example, the first word of this paragraph if normally were
not in the dictionary), it will be marked as “capitalization required.” A subsequent usage of this word without capitalization
will be considered a misspelling by ispell, and it will suggest the capitalized version. You must then compare the actual
spellings by eye, and then type I to add the uncapitalized variant to your personal dictionary. You can avoid this problem by
using U to add the original word, rather than I.

The rules for capitalization are as follows:

1. Any word may appear in all capitals, as in headings.
2. Any word that is in the dictionary in all lowercase form may appear either in lowercase or capitalized (as at the

beginning of a sentence).
3. Any word that has unusual capitalization (that is, it contains both cases and there is an uppercase character besides the

first) must appear exactly as in the dictionary, except as permitted by rule 1. If the word is acceptable in all lowercase, it
must appear thus in a dictionary entry.

buildhash
The buildhash program builds hashed dictionary files for later use by ispell. The raw word list (with affix flags) is given in
dict-file, and the affix flags are defined by affix-file. The hashed output is written to hash-file. The formats of the two
input files are described in ispell(4). The –s (silent) option suppresses the usual status messages that are written to the
standard error device.

munchlist
The munchlist shell script is used to reduce the size of dictionary files, primarily personal dictionary files. It is also capable of
combining dictionaries from various sources. The given files are read (standard input if no arguments are given), reduced to
a minimal set of roots and affixes that will match the same list of words, and written to standard output.

Input for munchlist contains of raw words (such as those from your personal dictionary files) or root and affix combinations
(probably generated in earlier munchlist runs). Each word or root/affix combination must be on a separate line.

The –D (debug) option leaves temporary files around under standard names instead of deleting them, so that the script can be
debugged. Warning: This option can eat up an enormous amount of temporary file space.

The –v (verbose) option causes progress messages to be reported to stderr so you won’t get nervous that munchlist has hung.

ispell, buildhash, munchlist, findaffix, tryaffix, icombine, ijoin

Part I: User Commands280

If the –s (strip) option is specified, words that are in the specified hash-file are removed from the word list. This can be
useful with personal dictionaries.

The –l can be used to specify an alternate affix-file for munching dictionaries in languages other than English.

The –c option can be used to convert dictionaries that were built with an older affix file, without risk of accidentally
introducing unintended affix combinations into the dictionary.

The –T option allows dictionaries to be converted to a canonical string-character format. The suffix specified is looked up in
the affix file (–l switch) to determine the string-character format used for the input file; the output always uses the canonical
string-character format. For example, a dictionary collected from TeX source files might be converted to canonical format by
specifying –T tex.

The –w option is passed on to ispell.

findaffix
The findaffix shell script is an aid to writers of new language descriptions in choosing affixes. The given dictionary files
(standard input if none are given) are examined for possible prefixes (–p switch) or suffixes (–s switch, the default). Each
commonly occurring affix is presented along with a count of the number of times it appears and an estimate of the number
of bytes that would be saved in a dictionary hash file if it were added to the language table. Only affixes that generate legal
roots (found in the original input) are listed.

If the -c option is not given, the output lines are in the following format:

strip/add/count/bytes

where strip is the string that should be stripped from a root word before adding the affix, add is the affix to be added, count
is a count of the number of times that this strip/add combination appears, and bytes is an estimate of the number of bytes
that might be saved in the raw dictionary file if this combination is added to the affix file. The field separator in the output
will be the tab character specified by the -t switch; the default is a slash (/).

If the –c (clean output) option is given, the appearance of the output is made visually cleaner (but harder to post process) by
changing it to

-strip+add<tab>count<tab>bytes

where strip, add, count,and bytes are as before, and <tab> represents the ASCII tab character.

The method used to generate possible affixes will also generate longer affixes which have common headers or trailers. For
example, the two words moth and mother will generate not only the obvious substitution +er but also -h+her and -th+ther
(and possibly even longer ones, depending on the value of min). To prevent cluttering the output with such affixes, any affix
pair that shares a common header (or, for prefixes, trailer) string longer than elim characters (default 1) will be suppressed.
You may want to set elim to a value greater than 1 if your language has string characters; usually, the need for this parameter
will become obvious when you examine the output of your findaffix run.

Normally, the affixes are sorted according to the estimate of bytes saved. The –f switch may be used to cause the affixes to be
sorted by frequency of appearance.

To save output file space, affixes which occur fewer than 10 times are eliminated; this limit may be changed with the –l
switch. The –M switch specifies a maximum affix length (default 8). Affixes longer than this will not be reported. (This saves
on temporary disk space and makes the script run faster.)

Affixes which generate stems shorter than three characters are suppressed. (A stem is the word after the strip string has been
removed, and before the add string has been added.) This reduces both the running time and the size of the output file. This
limit may be changed with the –m switch. The minimum stem length should only be set to 1 if you have a lot of free time
and disk space (in the range of many days and hundreds of megabytes).

The findaffix script requires a nonblank field-separator character for internal use. Normally, this character is a slash (/), but
if the slash appears as a character in the input word list, a different character can be specified with the –t switch.

ispell dictionaries should be expanded before being fed to findaffix; in addition, characters that are not in the English
alphabet (if any) should be translated to lowercase.

281

tryaffix
The tryaffix shell script is used to estimate the effectiveness of a proposed prefix (–p switch) or suffix (–s switch, the default)
with a given expanded-file. Only one affix can be tried with each execution of tryaffix, although multiple arguments can be
used to describe varying forms of the same affix flag (for example, the D flag for English can add either D or ED depending on
whether a trailing E is already present). Each word in the expanded dictionary that ends (or begins) with the chosen suffix (or
prefix) has that suffix (prefix) removed; the dictionary is then searched for root words that match the stripped word. Nor-
mally, all matching roots are written to standard output, but if the –c (count) flag is given, only a statistical summary of the
results is written. The statistics given are a count of words the affix potentially applies to and an estimate of the number of
dictionary bytes that a flag using the affix would save. The estimate will be high if the flag generates words that are currently
generated by other affix flags (for example, in English, bathers can be generated by either bath/X or bather/S). The diction-
ary file, expanded-file, must already be expanded (using the –e switch of ispell) and sorted, and things will usually work
best if uppercase has been folded to lower with tr.

The affix arguments are things to be stripped from the dictionary file to produce trial roots: for English, con (prefix) and ing
(suffix) are examples. The addition parts of the argument are letters that would have been stripped off the root before adding
the affix. For example, in English the affix ing normally strips e for words ending in that letter (for example, like becomes
liking), so we might run

tryaffix ing ing+e

to cover both cases.

All of the shell scripts contain documentation as commentary at the beginning; sometimes these comments contain useful
information beyond the scope of this manual page.

It is possible to install ispell in such a way as to only support ASCII range text if desired.

icombine
The icombine program is a helper for munchlist. It reads a list of words in dictionary format (roots plus flags) from the
standard input, and produces a reduced list of standard output that combines common roots found on adjacent entries.
Identical roots that have differing flags will have their flags combined, and roots that have differing capitalizations will be
combined in a way that only preserves important capitalization information. The optional aff-file specifies a language file
that defines the character sets used and the meanings of the various flags. The –T switch can be used to select among
alternative string character types by giving a dummy suffix that can be found in an altstringtype statement.

ijoin
The ijoin program is a reimplementation of join(1), which handles long lines and 8-bit characters correctly. The –s switch
specifies that the sort(1) program used to prepare the input to ijoin uses signed comparisons on 8-bit characters; the –u
switch specifies that sort(1) uses unsigned comparisons. All other options and behaviors of join(1) are duplicated as exactly
as possible based on the manual page, except that ijoin will not handle newline as a field separator. See the join(1) manual
page for more information.

ENVIRONMENT
DICTIONARY Default dictionary to use if no –d flag is given

WORDLIST Personal dictionary filename

INCLUDE_STRING Code for file inclusion under the –A option

TMPDIR Directory used for some of munchlist’s temporary files

FILES
!!LIBDIR!!/!!DEFHASH!! Hashed dictionary (may be found in some other local directory, depending on the

system)

!!LIBDIR!!/!!DEFLANG!! Affix-definition file for munchlist

/usr/dict/web2 or /usr/dict/words For the Lookup function (depending on the WORDS compilation option)

User’s private dictionary

.ispell_hashfile Directory-specific private dictionary

ispell, buildhash, munchlist, findaffix, tryaffix, icombine, ijoin

Part I: User Commands282

SEE ALSO
spell(1), egrep(1), look(1), join(1), sort(1), sq(1L), tib(1L), ispell(4L), english(4L)

BUGS
It takes several to many seconds for ispell to read in the hash table, depending on size.

When all options are enabled, ispell may take several seconds to generate all the guesses at corrections for a misspelled word;
on slower machines this time is long enough to be annoying.

The hash table is stored as a quarter-megabyte (or larger) array, so a PDP-11 or 286 version does not seem likely.

Ispell should understand more troff syntax, and deal more intelligently with contractions.

Although small personal dictionaries are sorted before they are written out, the order of capitalizations of the same word is
somewhat random.

When the –x flag is specified, ispell will unlink any existing BAK file.

There are too many flags, and many of them have non-mnemonic names.

munchlist does not deal very gracefully with dictionaries that contain nonword characters. Such characters ought to be
deleted from the dictionary with a warning message. findaffix and munchlist require tremendous amounts of temporary file
space for large dictionaries. They do respect the TMPDIR environment variable, so this space can be redirected. However, a lot
of the temporary space needed is for sorting, so TMPDIR is only a partial help on systems with an uncooperative sort(1).
(Cooperative is defined as accepting the undocumented -T switch). At its peak usage, munchlist takes 10 to 40 times the
original dictionary’s size in kilobytes. (The larger ratio is for dictionaries that already have heavy affix use, such as the one
distributed with ispell). munchlist is also very slow; munching a normal-sized dictionary (15KB roots, 45KB expanded
words) takes around an hour on a small workstation. (Most of this time is spent in sort(1), and munchlist can run much
faster on machines that have a more modern sort that makes better use of the memory available to it.) findaffix is even
worse; the smallest English dictionary cannot be processed with this script in a mere 50KB of free space, and even after
specifying switches to reduce the temporary space required, the script will run for more than 24 hours on a small worksta-
tion.

AUTHORS
Pace Willisson (pace@mit-vax), 1983, based on the PDP-10 assembly version. That version was written by R. E. Gorin in
1971, and later revised by W. E. Matson (1974) and W. B. Ackerman (1978). Collected, revised, and enhanced for the
Usenet by Walt Buehring, 1987. Table-driven multilingual version by Geoff Kuenning, 1987–88. Large dictionaries
provided by Bob Devine (vianet!devine). A complete list of contributors is too large to list here, but is distributed with the
ispell sources in the file Contributors.

VERSION
The version of ispell described by this manual page is International Ispell version 3.1.00, October 8, 1993.

join
join—Join lines of two files on a common field

SYNOPSIS
join [–a 1|2] [–v 1|2] [–e empty-string] [–o field-list...] [–t char]
[–j[1|2] field] [–1 field] [–2 field] file1 file2
join {--help,--version}

DESCRIPTION
This manual page documents the GNU version of join. join prints to the standard output a line for each pair of input lines,
one each from file1 and file2, that have identical join fields. Either filename (but not both) can be –, meaning the standard

283

input. file1 and file2 should be already sorted in increasing order (not numerically) on the join fields; unless the –t option
is given, they should be sorted ignoring blanks at the start of the line, as sort does when given the –b option.

The defaults are the following: The join field is the first field in each line; fields in the input are separated by one or more
blanks, with leading blanks on the line ignored; fields in the output are separated by a space; each output line consists of the
join field, the remaining fields from file1, then the remaining fields from file2.

OPTIONS
–a file-number Print a line for each unpairable line in file file-number (either 1 or 2), in addition to the normal

output.

–e string Replace empty output fields (those that are missing in the input) with string.

–1, –j1 field Join on field field (a positive integer) of file 1.

–2, –j2 field Join on field field (a positive integer) of file 2.

–j field Equivalent to –1 field –2 field.

–o field-list... Construct each output line according to the format in field-list. Each element in field-list
consists of a file number (either 1 or 2), a period, and a field number (a positive integer). The
elements in the list are separated by commas or blanks. Multiple field-list arguments can be
given after a single –o option; the values of all lists given with –o are concatenated together.

–t char Use character char as the input and output field separator.

–v file-number Print a line for each unpairable line in file file-number (either 1 or 2), instead of the normal output.

In addition, when GNU join is invoked with exactly one argument, the following options are recognized:

--help Print a usage message on standard output and exit successfully.

--version Print version information on standard output, then exit successfully.

GNU Text Utilities

kill
kill—Terminate a process

SYNOPSIS
kill [–s signal | –p] [-a]pid ...
kill -l [signal]

DESCRIPTION
kill sends the specified signal to the specified process. If no signal is specified, the TERM signal is sent. The TERM signal will kill
processes that do not catch this signal. For other processes, if may be necessary to use the KILL(9) signal because this signal
cannot be caught.

Most modern shells have a built-in kill function.

OPTIONS
pid ... Specify the list of processes that kill should signal. Each pid can be a process ID, or a process name.

–s Specify the signal to send. The signal may be given as a signal name or number.

–p Specify that kill should only print the process ID (pid) of the named process, and should not send it a signal.

–l Print a list of signal names. These are found in /usr/include/linux/signal.h.

SEE ALSO
bash(1), tcsh(1), kill(2), sigvec(2)

kill

Part I: User Commands284

AUTHOR
Taken from BSD 4.4. The ability to translate process names to process ids was added by Salvatore Valente
(<svalente@mit.edu>).

Linux Utilities, 14 October 1994

killall
killall—Kill processes by name

SYNOPSIS
killall [–iv][–signal] name ...
killall [–l]

DESCRIPTION
killall sends a signal to all processes running any of the specified commands. If no signal name is specified, SIGTERM is sent.

Signals can be specified either by name (for example, –HUP) or by number (for example, –1). Signal 0 (check if a process exists)
can only be specified by number.

If the command name contains a slash (/), processes executing that particular file will be selected for killing, independent of
their name.

killall returns a nonzero return code if no process has been killed for any of the listed commands. If at least one process has
been killed for each command, killall returns zero.

A killall process never kills itself (but may kill other killall processes).

OPTIONS
–i Interactively ask for confirmation of killing.

–l List all known signal names.

–v Report if the signal was successfully sent.

FILES
/proc Location of the proc filesystem

KNOWN BUGS
Killing by file only works for executables that are kept open during execution; that is, impure executables can’t be killed this
way.

AUTHOR
Werner Almesberger (almesber@di.epfl.ch)

SEE ALSO
kill(1), fuser(1), ps(1), kill(2)

Linux, 11 October 1994

ksyms
ksyms—Shows the exported kernel symbols

SYNOPSIS
ksyms [–a][–h][–m]

285

DESCRIPTION
ksyms shows information about all exported kernel symbols. The format is

address name [defining module]

The describing header can be turned off with the option -h.

Normally, only the symbols defined by the loaded modules are shown, but with the option -a, all exported symbols can be
seen.

The information can also be seen in /proc/ksyms. A shell-script version ksyms.sh can be used to get the information from /
proc/ksyms instead, but this program gets the symbol information directly from the kernel with a system call.

With the option -m (stands for memory map), you can also see the starting address and the size of the allocated memory for
every loaded module.

SEE ALSO
insmod(1), modprobe(1), depmod(1), rmmod(1), lsmod(1), modules(2)

HISTORY
The ksyms command was first conceived by Bjorn Ekwall (bj0rn@blox.se). The -m option was inspired by David Hinds
(dhinds@allegro.stanford.edu)

BUGS
Ksyms might have some, but they are well hidden.…

Linux, 14 May 1995

last
last—Indicate last logins by user or terminal

SYNOPSIS
last [–number][–f filename][–t tty][–h hostname][–i address][–l][–y][name...]

DESCRIPTION
Last looks back in the wtmp file, which records all logins and logouts for information about a user, a teletype, or any group of
users and teletypes. Arguments specify names of users or teletypes of interest. If multiple arguments are given, the informa-
tion that applies to any of the arguments is printed. For example last root console would list all of root’s sessions as well as
all sessions on the console terminal. Last displays the sessions of the specified users and teletypes, most recent first, indicating
the times at which the session began, the duration of the session, and the teletype that the session took place on. If the
session is still continuing or was cut short by a reboot, last so indicates.

The pseudo-user reboot logs in at reboots of the system.

Last with no arguments displays a record of all logins and logouts, in reverse order.

If last is interrupted, it indicates how far the search has progressed in wtmp. If interrupted with a quit signal, last indicates
how far the search has progressed so far, and the search continues.

OPTIONS
–number Limit the number of entries displayed to that specified by number.

–f filename Use filename as the name of the accounting file instead of /var/log/wtmp.

–h hostname List only logins from hostname.

–i IP address List only logins from IP address.

last

Part I: User Commands286

–l List IP addresses of remote hosts instead of truncated hostnames.

–t tty List only logins on tty.

–y Also report year of dates.

FILES
/var/log/wtmp Login database

20 March 1992

lbxproxy
lbxproxy—LBX proxy server for the X Window system

SYNOPSIS
lbxproxy [:displaynumber] [option ...]

NOTE
This manual page is not definitive or “official.” It is derived from information contained in the README file in the lbx source.

DESCRIPTION
lbxproxy is the Low Bandwidth X pseudo-server. It runs on the remote side of low bandwidth, high-latency connections,
such as serial lines and wide area networks. It accepts connections from X clients at the remote end and forwards them to an
X server at the local end. The LBX protocol used for the low bandwidth connection includes compression and optimizations
designed to make effective use of the bandwidth available. The current version of LBX is not a standard of the X Consor-
tium, and will not be compatible with the final version. The current version should be treated as an “alpha” or “prototype”
for people interested in experimenting with it.

OPTIONS
lbxproxy accepts the following options:

:displaynumber lbxproxy runs as the given displaynumber, which by default is 0. A value different from 0 should be
used if the host running lbxproxy has a local X display. If multiple lbxproxy servers or other X
servers are to run simultaneously on a host, each must have a unique display number. (See the
“Display Names” section of the X(1) manual page to learn how to specify which display number
clients should try to use.)

–ac Disables host-based access control mechanisms. Enables access by any host, and permits any host to
modify the access control list. Use with extreme caution. This option exists primarily for running
test suites remotely.

-display display-number Sets the name of the X server display that lbxproxy connects to.

–help Prints a usage message.

–I Causes all remaining command-line arguments to be ignored.

–to seconds Sets default connection time-out in seconds.

NETWORK CONNECTIONS
lbxproxy supports client connections via most of the connection types supported by the X servers. (Refer to the Xserver(1)
manual page and hardware-specific X server manual pages for details.) Note that in the current implementation some of the
connections types have not been implemented correctly. This mostly applies to System V.

287

EXAMPLES
To setup lbxproxy, start the X server as usual, and then start the proxy. The lbxproxy is a pseudo-server, so any clients that
wish to use it need to adjust their DISPLAY. By default, the proxy will listen on <hostname>:1. This can be changed with the
:displaynumber argument.

If the proxy is to be running on a host named sharedhost, connecting to an LBX-capable X server on a desktop machine
named mydesktop, you could use the following command to start the proxy (which would be known as display sharedhost:7):

mydesktop% rlogin sharedhost
sharedhost% lbxproxy -display mydesktop:0 :7 &
sharedhost% xclient -display sharedhost:7

If you are running LBX over a TERM connection between mydesktop and sharedhost, try something like this:

mydesktop% trsh
sharedhost% tredir -r 6008 6000
sharedhost% lbxproxy -display sharedhost:8 :7 &
sharedhost% xclient -display sharedhost:7

SEE ALSO
General information: X(1)

Server-specific man pages: Xserver(1), Xdec(1), XmacII(1), Xsun(1), Xnest(1), Xvfb(1), XF86_Accel(1), XF86_Mono(1),
XF86_SVGA(1), XF86_VGA16(1), XFree86(1)

AUTHORS
The LBX team includes Dave Lemke, Dale Tonogai, Keith Packard, Jim Fulton from NCD, and Chris Kanterjiev from
Xerox.

X Version 11 Release 6

ld
ld—The GNU linker

SYNOPSIS
ld [–o.I output] .I objfilebr .RB [“–A output] objfile ...
[–A architecture][–b\ input-format][–Bstatic][–c\ commandfile]
[–d|–dc|–dp]
[–defsym\ symbol = expression][–e\ entry][–F][–F\ format][–
format\ input-format][–g][–G size][--help][–i][–l ar][–
L searchdir][–M][–Map mapfile][–m emulation][–n|–N][–
noinhibit-exec][–oformat\ output-format][–R\ filename][–relax]
[–r|–Ur][–S][–s][–sort–common][–T\ commandfile][–Ttext\
textorg][–Tdata\ dataorg][–Tbss\ bssorg][–t][–u\ sym][–V][–
v][--verbose][--version][–warn–common][–warn–once][–X]
[–x]

DESCRIPTION
ld combines a number of object and archive files, relocates their data, and ties up symbol references. Often the last step in
building a new compiled program to run is a call to ld.

ld accepts Linker Command Language files to provide explicit and total control over the linking process. This man page does
not describe the command language; see the ld entry in info, or the manual Ld: The GNU Linker, for full details on the
command language and on other aspects of the GNU linker.

ld

Part I: User Commands288

This version of ld uses the general-purpose BFD libraries to operate on object files. This allows ld to read, combine, and
write object files in many different formats, for example, COFF or a.out. Different formats may be linked together to
produce any available kind of object file. You can use objdump –i to get a list of formats supported on various architectures;
see objdump(1).

Aside from its flexibility, the GNU linker is more helpful than other linkers in providing diagnostic information. Many
linkers abandon execution immediately upon encountering an error; whenever possible, ld continues executing, allowing
you to identify other errors (or, in some cases, to get an output file in spite of the error).

The GNU linker ld is meant to cover a broad range of situations, and to be as compatible as possible with other linkers. As a
result, you have many choices to control its behavior through the command line, and through environment variables.

OPTIONS
The plethora of command-line options may seem intimidating, but in actual practice few of them are used in any particular
context. For instance, a frequent use of ld is to link standard UNIX object files on a standard, supported UNIX system. On
such a system, this line links a file hello.o :

$ ld –o output /lib/crt0.o hello.o –lc

This tells ld to produce a file called output as the result of linking the file /lib/crt0.o with hello.o and the library libc.a,
which will come from the standard search directories.

The command-line options to ld may be specified in any order, and may be repeated at will. For the most part, repeating an
option with a different argument will either have no further effect or override prior occurrences (those further to the left on
the command line) of an option.

The exceptions—which may meaningfully be used more than once—are –A, –b (or its synonym –format), –defsym, –L, –l, –R,
and –u.

The list of object files to be linked together, shown as objfile, may follow, precede, or be mixed in with command-line
options, except that an objfile argument may not be placed between an option flag and its argument.

Usually the linker is invoked with at least one object file, but other forms of binary input files can also be specified with –l,
–R, and the script command language. If no binary input files at all are specified, the linker does not produce any output, and
issues the message No input files.

Option arguments must either follow the option letter without intervening whitespace or be given as separate arguments
immediately following the option that requires them.

-Aarchitecture In the current release of ld, this option is useful only for the Intel 960 family of architec-
tures. In that ld configuration, the architecture argument is one of the two-letter names
identifying members of the 960 family; the option specifies the desired output target and
warns of any incompatible instructions in the input files. It also modifies the linker’s search
strategy for archive libraries to support the use of libraries specific to each particular
architecture, by including in the search loop names suffixed with the string identifying the
architecture.

For example, if your ld command line included –ACA as well as –ltry, the linker would look
(in its built-in search paths, and in any paths you specify with –L) for a library with the
names
try

libtry.a

tryca

libtryca.a

The first two possibilities would be considered in any event; the last two are due to the use
of –ACA.

Future releases of ld may support similar functionality for other architecture families.

289

You can meaningfully use –A more than once on a command line, if an architecture family
allows combination of target architectures; each use will add another pair of name variants
to search for when –l specifies a library.

–b input-format Specify the binary format for input object files that follow this option on the command line.
You don’t usually need to specify this, as ld is configured to expect as a default input format
the most usual format on each machine. input-format is a text string, the name of a partic-
ular format supported by the BFD libraries.

–format input-format

has the same effect, as does the script command TARGET.

You may want to use this option if you are linking files with an unusual binary format. You
can also use –b to switch formats explicitly (when linking object files of different formats),
by including

–b input-format

before each group of object files in a particular format.

The default format is taken from the environment variable GNUTARGET. You can also define
the input format from a script, using the command TARGET.

–Bstatic This flag is accepted for command-line compatibility with the SunOS linker, but has no
effect on ld.

–c commandfile Directs ld to read link commands from the file commandfile. These commands will
completely override ld’s default link format (rather than adding to it); commandfile must
specify everything necessary to describe the target format.

You may also include a script of link commands directly in the command line by bracketing
it between { and } characters.

–d, –dc, –dp These three options are equivalent; multiple forms are supported for compatibility with
other linkers. Use any of them to make ld assign space to common symbols even if a
relocatable output file is specified (–r). The script command FORCE_COMMON_ALLOCATION has
the same effect.

-defsym symbol= expression Create a global symbol in the output file, containing the absolute address given by
expression. You may use this option as many times as necessary to define multiple symbols
in the command line. A limited form of arithmetic is supported for the expression in this
context; you may give a hexadecimal constant or the name of an existing symbol, or use +
and – to add or subtract hexadecimal constants or symbols. If you need more elaborate
expressions, consider using the linker command language from a script.

-e entry Use entry as the explicit symbol for beginning execution of your program, rather than the
default entry point.

–F, -Fformat Some older linkers used this option throughout a compilation toolchain for specifying
object-file format for both input and output object files. ld’s mechanisms (the –b or –format
options for input files, the TARGET command in linker scripts for output files, the GNUTARGET
environment variable) are more flexible, but it accepts (and ignores) the –F option flag for
compatibility with scripts written to call the old linker.

–format input–format Synonym for –b input–format.

–g Accepted, but ignored; provided for compatibility with other tools.

–G size Set the maximum size of objects to be optimized using the GP register to size under MIPS
ECOFF. Ignored for other object file formats.

--help Print a summary of the command-line options on the standard output and exit. This option
and --version begin with two hyphens instead of one for compatibility with other GNU
programs. The other options start with only one hyphen for compatibility with other
linkers.

–i Perform an incremental link (same as option –r).

ld

Part I: User Commands290

–lar Add an archive file ar to the list of files to link. This option may be used any number of
times. ld will search its path list for occurrences of lib ar .a for every ar specified.

–Lsearchdir This command adds path searchdir to the list of paths that ld will search for archive
libraries. You may use this option any number of times.

The default set of paths searched (without being specified with –L) depends on what
emulation mode ld is using, and in some cases also on how it was configured. The paths
can also be specified in a link script with the SEARCH_DIR command.

–M Print (to the standard output file) a link map—diagnostic in-formation about where
symbols are mapped by ld, and information on global common storage allocation.

–Map mapfile Print to the file mapfile a link map—diagnostic information about where symbols are
mapped by ld, and information on global common storage allocation.

–m emulation Emulate the emulation linker. You can list the available emulations with the --verbose
option. This option overrides the compiled-in default, which is the system for which you
configured ld.

–N Specifies readable and writable text and data sections. If the output format supports
UNIX-style magic numbers, the output is marked as OMAGIC.

When you use the –N option, the linker does not page-align the data segment.

–n Sets the text segment to be read-only, and NMAGIC is written if possible.

–noinhibit–exec Normally, the linker will not produce an output file if it encounters errors during the link
process. With this flag, you can specify that you wish the output file retained even after
nonfatal errors.

–o output output output is a name for the program produced by ld; if this option is not specified, the name
a.out is used by default. The script command OUTPUT can also specify the output filename.

–oformat output–format Specify the binary format for the output object file. You don’t usually need to specify this,
as ld is configured to produce as a default output format the most usual format on each
machine. output-format is a text string, the name of a particular format supported by the
BFD libraries. The script command OUTPUT_FORMAT can also specify the output format, but
this option overrides it.

–R filename file Read symbol names and their addresses from filename, but do not relocate it or include it in
the output. This allows your output file to refer symbolically to absolute locations of
memory defined in other programs.

–relax An option with machine-dependent effects. Currently this option is only supported on the
H8/300.

On some platforms, use this option to perform global optimizations that become possible
when the linker resolves addressing in your program, such as relaxing address modes and
synthesizing new instructions in the output object file.

On platforms where this is not supported, –relax is accepted, but has no effect.

–r Generates relocatable output, that is, an output file that can in turn serve as input to ld.
This is often called partial linking. As a side effect, in environments that support standard
UNIX magic numbers, this option also sets the output file’s magic number to OMAGIC. If this
option is not specified, an absolute file is produced. When linking C++ programs, this
option will not resolve references to constructors; –Ur is an alternative.

This option does the same as –i.

–S Omits debugger symbol information (but not all symbols) from the output file.

–s Omits all symbol information from the output file.

–sort–common Normally, when ld places the global common symbols in the appropriate output sections, it
sorts them by size. First come all the one-byte symbols, then all the two bytes, then all the
four bytes, and then everything else. This is to prevent gaps between symbols due to
alignment constraints. This option disables that sorting.

291

–Tbss org, –Tdata org, Use org as the starting address for—respectively—the bss, data, or the text segment of the
–Ttext org output file. textorg must be a hexadecimal integer.

–T commandfile, –Tcommandfile Equivalent to –c commandfile; supported for compatibility with other tools.

–t Prints names of input files as ld processes them.

–u sym Forces sym to be entered in the output file as an undefined symbol. This may, for example,
trigger linking of additional modules from standard libraries. –u may be repeated with
different option arguments to enter additional undefined symbols.

–Ur For anything other than C++ programs, this option is equivalent to –r : it generates
relocatable output, that is, an output file that can in turn serve as input to ld. When linking
C++ programs, –Ur will resolve references to constructors, unlike –r.

--verbose Display the version number for ld and list the supported emulations. Display which input
files can and can not be opened.

–v, –V Display the version number for ld.

--version Display the version number for ld and exit.

–warn–common Warn when a common symbol is combined with another common symbol or with a symbol
definition. UNIX linkers allow this somewhat sloppy practice, but linkers on some other
operating systems do not. This option allows you to find potential problems from
combining global symbols.

–warn–once Only warn once for each undefined symbol, rather than once per module that refers to it.

–X If –s or –S is also specified, delete only local symbols beginning with L.

–x If –s or –S is also specified, delete all local symbols, not just those beginning with L.

ENVIRONMENT
You can change the behavior of ld with the environment variable GNUTARGET.

GNUTARGET determines the input-file object format if you don’t use –b (or its synonym –format). Its value should be one of the
BFD names for an input format. If there is no GNUTARGET in the environment, ld uses the natural format of the host. If
GNUTAR-GET is set to default, then BFD attempts to discover the input format by examining binary input files; this method
often succeeds, but there are potential ambiguities, since there is no method of ensuring that the magic number used to flag
object-file formats is unique. However, the configuration procedure for BFD on each system places the conventional format
for that system first in the search-list, so ambiguities are resolved in favor of convention.

SEE ALSO
objdump(1); ld and binutils entries in info

Ld: The GNU Linker, Steve Chamberlain and Roland Pesch; The GNU Binary Utilities, Roland H. Pesch.

COPYING
Copyright  1991, 1992 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this
permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions
for modified versions, except that this permission notice may be included in translations approved by the Free Software
Foundation instead of in the original English.

Cygnus support, 17 August 1992

ld

Part I: User Commands292

lispmtopgm
lispmtopgm—Convert a Lisp Machine bitmap file into PGM format

SYNOPSIS
lispmtopgm [lispmfile]

DESCRIPTION
lispmtopgm reads a Lisp machine bitmap as input and produces a portable graymap as output.

This is the file format written by the tv:write-bit-array-file function on TI Explorer and Symbolics Lisp machines.

Multiplane bitmaps on Lisp machines are color; but the lispm image file format does not include a colormap, so it must be
treated as a graymap instead. This is unfortunate.

SEE ALSO
pgmtolispm(1), pgm(5)

BUGS
The lispm bitmap file format is a bit quirky; Usually the image in the file has its width rounded up to the next higher
multiple of 32, but not always. If the width is not a multiple of 32, we don’t deal with it properly, but because of the lispm
microcode, such arrays are probably not image data anyway.

Also, the lispm code for saving bitmaps has a bug, in that if you are writing a bitmap that is not mod32 across, the file may be
up to seven bits too short. They round down instead of up, and we don’t handle this bug gracefully.

No color.

AUTHOR
Copyright 1991 by Jamie Zawinski and Jef Poskanzer.

6 March 1990

lkbib
lkbib—Search bibliographic databases

SYNOPSIS
lkbib [–v][–ifields][–pfilename][–tn] key ...

DESCRIPTION
lkbib searches bibliographic databases for references that contain the keys key... and prints any references found on the
standard output. lkbib will search any databases given by –p options, and then a default database. The default database is
taken from the REFER environment variable if it is set, otherwise it is

/usr/dict/papers/Ind.

For each database filename to be searched, if an index filename.i created by gindxbib(1) exists, then it will be searched
instead; each index can cover multiple databases.

OPTIONS
–v Print the version number.

–pfilename Search filename. Multiple –p options can be used.

–istring When searching files for which no index exists, ignore the contents of fields whose names are in string.

–tn Only require the first n characters of keys to be given. Initially n is 6.

293

ENVIRONMENT
REFER Default database

FILES
/usr/dict/papers/Ind Default database to be used if the REFER environment variable is not set.

filename.i Index files.

SEE ALSO
grefer(1), glookbib(1), gindxbib(1)

Groff Version 1.09, 6 August 1992

ln
ln—Make links between files

SYNOPSIS
ln [options] source [dest]
ln [options] source... directory

Options:

[–bdfinsvF] [–S backup-suffix] [–V {numbered,existing,simple}]
[--version-control={numbered,existing,simple}] [--backup] [--directory]
[--force] [--interactive] [--no–dereference] [--symbolic] [--verbose]
[--suffix=backup-suffix] [--help] [--version]

DESCRIPTION
This manual page documents the GNU version of ln. If the last argument names an existing directory, ln links each other
given file into a file with the same name in that directory. If only one file is given, it links that file into the current directory.
Otherwise, if only two files are given, it links the first onto the second. It is an error if the last argument is not a directory
and more than two files are given. It makes hard links by default. By default, it does not remove existing files.

OPTIONS
–b, --backup Make backups of files that are about to be removed.

–d, –F, --directory Allow the superuser to make hard links to directories.

–f, --force Remove existing destination files.

–i, --interactive Prompt whether to remove existing destination files.

–n, --no-dereference When the specified destination is a symbolic link to a directory, attempt to replace the
symbolic link rather than dereferencing it to create a link in the directory to which it points.
This option is most useful in conjunction with --force.

–s, --symbolic Make symbolic links instead of hard links. This option produces an error message on
systems that do not support symbolic links.

–v, --verbose Print the name of each file before linking it.

--help Print a usage message on standard output and exit successfully.

--version Print version information on standard output then exit successfully.

–S, --suffix backup-suffix The suffix used for making simple backup files can be set with the SIMPLE_BACKUP_SUFFIX
environment variable, which can be overridden by this option. If neither of those is given,
the default is ˜, as it is in Emacs.

ln

Part I: User Commands294

–V, --version-control The type of backups made can be set with the VERSION_CONTROL environment variable, which
{numbered,existing,simple} can be overridden by this option. If VERSION_CONTROL is not set and this option is not given,

the default backup type is existing. The value of the VERSION_CONTROL environment variable
and the argument to this option are like the GNU Emacs version-control variable; they
also recognize synonyms that are more descriptive. The valid values (unique abbreviations
are accepted) are the following:

t or numbered Always make numbered backups.

nil or existing Make numbered backups of files that already have them, simple
backups of the others.

never or simple Always make simple backups.

GNU File Utilities

lndir
lndir—Create a shadow directory of symbolic links to another directory tree

SYNOPSIS
lndir fromdir [todir]

DESCRIPTION
lndir makes a shadow copy todir of a directory tree fromdir, except that the shadow is not populated with real files but
instead with symbolic links pointing at the real files in the fromdir directory tree. This is usually useful for maintaining
source code for different machine architectures. You create a shadow directory containing links to the real source which you
will have usually NFS mounted from a machine of a different architecture, and then recompile it. The object files will be in
the shadow directory, while the source files in the shadow directory are just symlinks to the real files.

This has the advantage that if you update the source, you need not propagate the change to the other architectures by hand
because all source in shadow directories are symlinks to the real thing: Just cd to the shadow directory and recompile away.

The todir argument is optional and defaults to the current directory. The fromdir argument may be relative (for example,
../src) and is relative to todir (not the current directory).

Note that RCS, SCCS, and CVS.adm directories are not shadowed.

If you add files, simply run lndir again. Deleting files is a more painful problem; the symlinks will just point into never-
neverland.

BUGS
patch gets upset if it cannot change the files. You should never run patch from a shadow directory anyway.

You need to use something like this:

find todir –type l –print | xargs rm

to clear out all files before you can relink (if fromdir moved, for instance). Something like this:

find . \! –type d –print

will find all files that are not directories.

X Version 11 Release 6

295

locate
locate—List files in databases that match a pattern

SYNOPSIS
locate [–d path] [--database=path] [--version] [--help] pattern...

DESCRIPTION
This manual page documents the GNU version of locate. For each given pattern, locate searches one or more databases of
filenames and displays the filenames that contain the pattern. Patterns can contain shell-style meta characters: *, ?, and [].
The meta characters do not treat / or . specially. Therefore, a pattern foo*bar can match a filename that contains foo3/bar,
and a pattern *duck* can match a filename that contains lake/.ducky. Patterns that contain meta characters should be quoted
to protect them from expansion by the shell.

If a pattern is a plain string—it contains no meta characters—locate displays all filenames in the database that contain that
string anywhere. If a pattern does contain meta characters, locate only displays filenames that match the pattern exactly. As a
result, patterns that contain meta characters should usually begin with a * and will most often end with one as well. The
exceptions are patterns that are intended to explicitly match the beginning or end of a filename.

The filename databases contain lists of files that were on the system when the databases were last updated. The system
administrator can choose the filename of the default database, the frequency with which the databases are updated, and the
directories for which they contain entries; see updatedb(1L).

OPTIONS
–d path, --database=path Instead of searching the default filename database, search the filename databases in path,

which is a colon-separated list of database filenames. You can also use the environment
variable LOCATE_PATH to set the list of database files to search. The option overrides the
environment variable if both are used.

The filename database format changed starting with GNU find and locate version 4.0 to
allow machines with different byte orderings to share the databases. This version of locate
can automatically recognize and read databases produced for older versions of GNU locate
or UNIX versions of locate or find.

--help Print a summary of the options to locate and exit.

--version Print the version number of locate and exit.

ENVIRONMENT
LOCATE_PATH Colon-separated list of databases to search

SEE ALSO
find(1L), locatedb(5L), updatedb(1L), xargs(1L), Finding Files (online in info, or printed)

logger
logger—Make entries in the system log

SYNOPSIS
logger [-is] [-f file] [-p pri] [-t tag] [message ...]

DESCRIPTION
logger provides a shell command interface to the syslog(3) system log module.

logger

Part I: User Commands296

OPTIONS
-i Log the process ID of the logger process with each line.

-s Log the message to standard error, as well as the system log.

-f file Log the specified file.

-p pri Enter the message with the specified priority. The priority may be specified numerically or as a facility.level
pair. For example, –p local3.info logs the message(s) as informational level in the local3 facility. The default is
user.notice.

-t tag Mark every line in the log with the specified tag.

message Write the message to log; if not specified, and the -f flag is not provided, standard input is logged.

The logger utility exits 0 on success, and >0 if an error occurs.

EXAMPLE
logger system rebooted:

logger –p local0.notice –t HOSTIDM –f /dev/idmc

SEE ALSO
syslog(3), syslogd(8)

STANDARDS
The logger command is expected to be compatible with IEEE Std 1003.2 (POSIX).

BSD 4.3, 6 June 1993

login
login—Sign on

SYNOPSIS
login [name]
login –p
login –h hostname
login –f name

DESCRIPTION
login is used when signing on to a system. It can also be used to switch from one user to another at any time. (Most modern
shells have support for this feature built into them, however.)

If an argument is not given, login prompts for the username.

If the user is not root, and if /etc/nologin exists, the contents of this file are printed to the screen, and the login is termi-
nated. This is typically used to prevent logins when the system is being taken down.

If the user is root, then the login must be occurring on a tty listed in /etc/securetty. Failures will be logged with the syslog
facility.

After these conditions are checked, the password will be requested and checked (if a password is required for this username).
Ten attempts are allowed before login dies, but after the first three, the response starts to get very slow. Login failures are
reported via the syslog facility. This facility is also used to report any successful root logins.

If the file .hushlogin exists, then a quiet login is performed (this disables the checking of the checking of mail and the
printing of the last login time and message of the day). Otherwise, if /var/log/lastlog exists, the last login time is printed
(and the current login is recorded).

297

Random administrative things, such as setting the UID and GID of the tty, are performed. The TERM environment variable is
preserved, if it exists; other environment variables are preserved if the –p option is used. Then the HOME, PATH, SHELL, TERM,
MAIL, and LOGNAME environment variables are set. PATH defaults to /usr/local/bin:/bin:/usr/bin:. for normal users, and to /
sbin:/bin:/usr/sbin:/usr/bin for root. Last, if this is not a quiet login, the message of the day is printed and the file with the
user’s name in /usr/spool/mail will be checked, and a message printed if it has nonzero length.

The user’s shell is then started. If no shell is specified for the user in /etc/passwd, then /bin/sh is used. If there is no directory
specified in /etc/passwd, then / is used. (The home directory is checked for the .hushlogin file described earlier.)

OPTIONS
–p Used by getty(8) to tell login not to destroy the environment.

–f Used to skip a second login authentication. This specifically does not work for root, and does not appear to work
well under Linux.

–h Used by other servers (such as telnetd(8)) to pass the name of the remote host to login so that it may be placed in
utmp and wtmp. Only the superuser may use this option.

FILES
/var/run/utmp

/var/log/wtmp

/var/log/lastlog

/usr/spool/mail/*

/etc/motd

/etc/passwd

/etc/nologin

/etc/usertty

.hushlogin

SEE ALSO
init(8), getty(8), mail(1), passwd(1), passwd(5), environ(7), shutdown(8)

BUGS
Linux, unlike other Draconian operating systems, does not check quotas.

The undocumented BSD –r option is not supported. This may be required by some rlogind(8) programs.

AUTHOR
Derived from BSD login 5.40 (May 9, 1989) by Michael Glad (glad@daimi.dk) for HP-UX Ported to Linux 0.12: Peter
Orbaek (poe@daimi.aau.dk).

Linux 0.99, 1 February 1993

look
look—Display lines beginning with a given string

SYNOPSIS
look [–dfa] [–t termchar] string [file]

DESCRIPTION
The look utility displays any lines in file that contain string as a prefix. As look performs a binary search, the lines in file
must be sorted.

look

Part I: User Commands298

If file is not specified, the file /usr/dict/words is used, only alphanumeric characters are compared, and the case of alphabetic
characters is ignored.

OPTIONS
–d Dictionary character set and order; that is, only alphanumeric characters are compared.

–f Ignore the case of alphabetic characters.

-a Use the alternate dictionary /usr/dict/web2.

–t Specify a string termination character; that is, only the characters in string up to and including the first
occurrence of termchar are compared.

The look utility exits 0 if one or more lines were found and displayed, 1 if no lines were found, and >1 if an error occurred.

FILES
/usr/dict/words The dictionary

/usr/dict/web2 The alternate dictionary

SEE ALSO
grep(1), sort(1)

COMPATIBILITY
The original manual page stated that tabs and blank characters participated in comparisons when the -d option was specified.
This was incorrect and the current man page matches the historic implementation.

HISTORY
look appeared in version 7 AT&T UNIX.

14 June 1993

lpq
lpq—Spool queue examination program

SYNOPSIS
lpq [-l] [-P printer] [job # ...] [user ...]

DESCRIPTION
lpq examines the spooling area used by lpd(8) for printing files on the line printer, and reports the status of the specified jobs
or all jobs associated with a user. lpq invoked without any arguments reports on any jobs currently in the queue.

OPTIONS
-P Specify a particular printer; otherwise the default line printer is used (or the value of the PRINTER variable in the

environment). All other arguments supplied are interpreted as usernames or job numbers to filter out only those
jobs of interest.

-l Information about each of the files comprising the job entry is printed. Normally, only as much information as
will fit on one line is displayed.

For each job submitted—in other words, each time lpr(1) is invoked—lpq reports the user’s name, current rank in the
queue, the names of files comprising the job, the job identifier (a number that may be supplied to lprm(1) for removing a
specific job), and the total size in bytes. Job ordering is dependent on the algorithm used to scan the spooling directory and is
supposed to be FIFO (First in First Out). Filenames comprising a job may be unavailable (when lpr(1) is used as a sink in a
pipeline) in which case the file is indicated as (standard input).

299

If lpq warns that there is no daemon present (due to some malfunction, for example), the lpc(8) command can be used to
restart the printer daemon.

ENVIRONMENT
If the following environment variable exists, it is used by lpq:

PRINTER Specifies an alternate default printer

FILES
/etc/printcap To determine printer characteristics

/var/spool/* The spooling directory, as determined from printcap

/var/spool/*/cf* Control files specifying jobs

Pa/var/spool/*/lock The lock file to obtain the currently active job

/usr/share/misc/termcap For manipulating the screen for repeated display

SEE ALSO
lpr(1), lprm(1), lpc(8), lpd(8)

HISTORY
lpq appeared in BSD 3.

BUGS
Due to the dynamic nature of the information in the spooling directory, lpq may report unreliably. Output formatting is
sensitive to the line length of the terminal; this can result in widely spaced columns.

DIAGNOSTICS
Unable to open various files. The lock file is malformed. Garbage files when there is no daemon active, but files in the
spooling directory.

BSD 4.2, 9 May 1991

lpr
lpr—Offline print

SYNOPSIS
lpr [-P printer] [-# num] [-C class] [-J job] [-T title] [-U user]
[-i [numcols]] [-1234 font] [-w num] [-cdfghlnmprstv] [name ...]

DESCRIPTION
lpr uses a spooling daemon to print the named files when facilities become available. If no names appear, the standard input
is assumed.

The following single-letter options are used to notify the line printer spooler that the files are not standard text files. The
spooling daemon will use the appropriate filters to print the data accordingly.

–c The files are assumed to contain data produced by cifplot(1).

–d The files are assumed to contain data from TeX (DVI format from Stanford).

–f Use a filter that interprets the first character of each line as a standard FORTRAN carriage control character.

–g The files are assumed to contain standard plot data as produced by the plot routines. (See also plot for the filters
used by the printer spooler.)

lpr

Part I: User Commands300

–l Use a filter that allows control characters to be printed and suppresses page breaks.

–n The files are assumed to contain data from ditroff (device independent troff).

–p Use pr(1) to format the files (equivalent to print).

–t The files are assumed to contain data from troff(1) (cat phototypesetter commands).

–v The files are assumed to contain a raster image for devices like the Benson Varian.

These options apply to the handling of the print job:

–P Force output to a specific printer. Normally, the default printer is used (site-dependent), or the value of the
environment variable PRINTER is used.

–h Suppress the printing of the burst page.

–m Send mail upon completion.

–r Remove the file upon completion of spooling or upon completion of printing (with the -s option).

–s Use symbolic links. Usually, files are copied to the spool directory. The -s option will use symlink(2) to link data
files rather than trying to copy them so large files can be printed. This means the files should not be modified or
removed until they have been printed.

The remaining options apply to copies, the page display, and headers:

-# num The quantity num is the number of copies desired of each file named. For example,

lpr –#3 foo.c bar.c more.c

would result in three copies of the file foo.c, followed by three copies of the file bar.c, and so on. On the
other hand,

cat foo.c bar.c more.c | lpr –#3

will give three copies of the concatenation of the files. Often a site will disable this feature to encourage use
of a photocopier instead.

1234 font Specifies a font to be mounted on font position i. The daemon will construct a .railmag file referencing
the font pathname.

-C Ar class Job classification to use on the burst page. For example

lpr –C EECS foo.c

causes the system name—the name returned by hostname(1)—to be replaced on the burst page by EECS,
and the file foo.c to be printed.

-J Ar job Job name to print on the burst page. Normally, the first file’s name is used.

-T Ar title Title name for pr(1), instead of the filename.

-U user Username to print on the burst page, also for accounting purposes. This option is only honored if the real
user ID is daemon (or that specified in the printcap file instead of daemon), and is intended for those
instances where print filters wish to requeue jobs.

-i numcols The output is indented. If the next argument is numeric numcols, it is used as the number of blanks to be
printed before each line; otherwise, eight characters are printed.

-w Ns Ar num Uses num as the page width for pr(1).

ENVIRONMENT
If the following environment variable exists, it is used by lpr:

PRINTER Specifies an alternate default printer

FILES
etc/passwd Personal identification.

/etc/printcap Printer capabilities database.

/usr/sbin/lpd* Line printer daemons.

/var/spool/output/* Directories used for spooling.

301

/var/spool/output/*/cf* Daemon control files.

/var/spool/output/*/df* Data files specified in cf files.

/var/spool/output/*/tf* Temporary copies of cf files.

SEE ALSO
lpq(1), lprm(1), pr(1), symlink(2), printcap(5), lpc(8), lpd(8)

HISTORY
The lpr command appeared in BSD 3.

DIAGNOSTICS
If you try to spool too large a file, it will be truncated. lpr will object to printing binary files. If a user other than root prints a
file and spooling is disabled, lpr will print a message saying so and will not put jobs in the queue. If a connection to lpd(1)
on the local machine cannot be made, lpr will say that the daemon cannot be started. Diagnostics may be printed in the
daemon’s log file regarding missing spool files by lpd(1).

BUGS
Fonts for troff(1) and TeX reside on the host with the printer. It is currently not possible to use local font libraries.

BSD 4, 24 July 1991

lprm
lprm—Remove jobs from the line printer spooling queue

SYNOPSIS
lprm [-P printer] [- job # ...] [user ...]

DESCRIPTION
lprm will remove a job, or jobs, from a printer’s spool queue. Since the spooling directory is protected from users, using lprm
is normally the only method by which a user may remove a job. The owner of a job is determined by the user’s login name
and hostname on the machine where the lpr(1) command was invoked.

Options and arguments:

-P printer Specify the queue associated with a specific printer; otherwise, the default printer is used.

- If a single - is given, lprm will remove all jobs that a user owns. If the superuser employs this flag, the spool
queue will be emptied entirely.

user Causes lprm to attempt to remove any jobs queued belonging to that user (or users). This form of invoking
lprm is useful only to the superuser.

job # A user may dequeue an individual job by specifying its job number. This number may be obtained from
the lpq(1) program. For example

lpq – -l
1st:ken [job#013ucbarpa]
 (standard input) 100 bytes
lprm 13

If neither arguments nor options are given, lprm will delete the currently active job if it is owned by the user who invoked
lprm.

lprm announces the names of any files it removes and is silent if there are no jobs in the queue that match the request list.

lprm will kill off an active daemon, if necessary, before removing any spooling files. If a daemon is killed, a new one is
automatically restarted upon completion of file removals.

lprm

Part I: User Commands302

ENVIRONMENT
If the following environment variable exists, it is utilized by lprm:

PRINTER If the environment variable PRINTER exists, and a printer has not been specified with the -P option, the default
printer is assumed from PRINTER.

FILES
/etc/printcap Printer characteristics file

/var/spool/* Spooling directories

/var/spool/*/lock Lock file used to obtain the pid of the current daemon and the job number of the currently active
job

SEE ALSO
lpr(1), lpq(1), lpd(8)

DIAGNOSTICS
“Permission denied” if the user tries to remove files other than his own.

BUGS
Because there are race conditions possible in the update of the lock file, the currently active job may be incorrectly identified.

HISTORY
The lprm command appeared in BSD 3.0.

BSD 4.2, 9 May 1991

lptest
lptest—Generate line printer ripple pattern

SYNOPSIS
lptest [length] [count]

DESCRIPTION
lptest writes the traditional “ripple test” pattern on standard output. In 96 lines, this pattern will print all 96 printable
ASCII characters in each position. Although originally created to test printers, it is quite useful for testing terminals, driving
terminal ports for debugging purposes, or any other task where a quick supply of random data is needed.

The length argument specifies the output line length if the default length of 79 is inappropriate.

The count argument specifies the number of output lines to be generated if the default count of 200 is inappropriate. Note
that if count is to be specified, length must also be specified.

HISTORY
lptest appeared in BSD 4.3.

BSD 4.3, 9 May 1991

303

ls, dir, vdir
ls, dir, vdir—List contents of directories

SYNOPSIS
ls [–abcdfgiklmnpqrstuxABCFGLNQRSUX1] [–w cols] [–T cols] [–I pattern] [--all]
[--escape] [--directory] [--inode] [--kilobytes] [--numeric-uid-gid] [–no-group]
[--hide-control-chars] [--reverse] [--size] [--width=cols] [--tabsize=cols]
[--almost-all] [--ignore-backups] [--classify] [--file-type] [--full-time]
[--ignore=pattern] [--dereference] [--literal] [--quote-name] [--recursive]
[-- -sort={none, time, size, extension}] [--format={long, verbose, commas,
across, vertical, single-column}] [--time={atime, access, use, ctime, status}]
[--help] [--version] [name...]

DESCRIPTION
This manual page documents the GNU version of ls. dir and vdir are versions of ls with different default output formats.
These programs list each given file or directory name. Directory contents are sorted alphabetically. For ls, files are by default
listed in columns, sorted vertically, if the standard output is a terminal; otherwise, they are listed one per line. For dir, files
are by default listed in columns, sorted vertically. For vdir, files are by default listed in long format.

OPTIONS
–a, --all List all files in directories, including all files that start with a period (.).

–b, --escape Quote nongraphic characters in filenames using alphabetic and octal backslash sequences
like those used in C.

–c, --time=ctime, Sort directory contents according to the files’ status change time instead of the modification
--time=status time. If the long listing format is being used, print the status change time instead of the

modification time.

–d, --directory List directories like other files, rather than listing their contents.

–f Do not sort directory contents; list them in whatever order they are stored on the disk. This
is the same as enabling –a and –U and disabling –l, –s, and –t.

--full-time List times in full, rather than using the standard abbreviation heuristics.

–g Ignored; for UNIX compatibility.

–i, --inode Print the index number of each file to the left of the filename.

–k, --kilobytes If file sizes are being listed, print them in kilobytes. This overrides the environment variable
POSIXLY_CORRECT.

–l, --format=long, In addition to the name of each file, print the file type, permissions, number of hard links,
--format=verbose owner name, group name, size in bytes, and timestamp (the modification time unless other

times are selected). For files with a time that is more than six months old or more than one
hour into the future, the timestamp contains the year instead of the time of day.

–m, --format=commas List files horizontally, with as many as will fit on each line, separated by commas.

–n, --numeric-uid-gid List the numeric UID and GID instead of the names.

–p Append a character to each filename indicating the file type.

–q, --hide-control-chars Print question marks instead of nongraphic characters in filenames.

–r, --reverse Sort directory contents in reverse order.

–s, --size Print the size of each file in 1KB blocks to the left of the filename. If the environment
variable POSIXLY_CORRECT is set, 512-byte blocks are used instead.

–t, --sort=time Sort directory contents by timestamp instead of alphabetically, with the newest files listed
first.

–u, --time=atime, Sort directory contents according to the files’ last access time instead of the modification
--time=access,--time=use time. If the long listing format is being used, print the last access time instead of the

modification time.

ls, dir, vdir

Part I: User Commands304

–x, --format=across, List the files in columns, sorted horizontally.
--format=horizontal

–A, --almost-all List all files in directories, except for ‘.’ and ‘..’.

–B, --ignore-backups Do not list files that end with ˜, unless they are given on the command line.

–C, --format=vertical List files in columns, sorted vertically.

–F, --classify Append a character to each filename indicating the file type. For regular files that are
executable, append a *. The file type indicators are / for directories, @ for symbolic links, |
for FIFOs, = for sockets, and nothing for regular files.

–G, --no–group Inhibit display of group information in a long format directory listing.

–L, --dereference List the files linked to by symbolic links instead of listing the contents of the links.

–N, --literal Do not quote filenames.

–Q, --quote-name Enclose filenames in double quotes and quote nongraphic characters as in C.

–R, --recursive List the contents of all directories recursively.

–S, --sort=size Sort directory contents by file size instead of alphabetically, with the largest files listed first.

–U, --sort=none Do not sort directory contents; list them in whatever order they are stored on the disk. This
option is not called –f because the UNIX ls –f option also enables –a and disables –l, –s,
and –t. It seems useless and ugly to group those unrelated things together in one option.
Because this option doesn’t do that, it has a different name.

–X, --sort=extension Sort directory contents alphabetically by file extension (characters after the last period); files
with no extension are sorted first.

–1, --format=single-column List one file per line.

–w, --width cols Assume the screen is cols columns wide. The default is taken from the terminal driver if
possible; otherwise, the environment variable COLUMNS is used if it is set; otherwise, the
default is 80.

–T, --tabsize cols Assume that each tab stop is cols columns wide. The default is 8.

–I, --ignore pattern Do not list files whose names match the shell pattern pattern unless they are given on the
command line. As in the shell, an initial period (.) in a filename does not match a wildcard
at the start of pattern.

--help Print a usage message on standard output and exit successfully.

--version Print version information on standard output then exit successfully.

BUGS
On BSD systems, the –s option reports sizes that are half the correct values for files that are NFS-mounted from HP-UX
systems. On HP-UX systems, it reports sizes that are twice the correct values for files that are NFS-mounted from BSD
systems. This is due to a flaw in HP-UX; it also affects the HP-UX ls program.

GNU File Utilities

lsattr
lsattr—List file attributes on a Linux second extended filesystem

SYNOPSIS
lsattr [–Radv] [files...]

DESCRIPTION
lsattr lists the files attributes on an second extended filesystem.

305

OPTIONS
-R Recursively list attributes of directories and their contents.

-a List all files in directories, including files that start with period (.).

-d List directories like other files, rather than listing their contents.

-v List the files version.

AUTHOR
lsattr has been written by Remy Card (card@masi.ibp.fr), the developer and maintainer of the ext2 fs.

BUGS
There are none :-).

AVAILABILITY
lsattr is available for anonymous FTP from ftp.ibp.fr and tsx-11.mit.edu in /pub/linux/packages/ext2fs.

SEE ALSO
chattr(1)

Version 0.5b, November 1994

lsmod
lsmod—show the loaded modules

SYNOPSIS
lsmod

DESCRIPTION
lsmod shows information about all loaded modules. The format is

name size [list of referring modules]

size is in 4Kb pages.

This information is a copy of the contents of /proc/modules.

SEE ALSO
insmod(1), modprobe(1), depmod(1), rmmod(1), ksyms(1), modules(2)

HISTORY
The module support was first conceived by Anonymous (as far as I know…). Linux version by Bas Laarhoven
(bas@vimec.nl), 0.99.14 version by Jon Tombs (jon@gtex02.us.es), extended by Bjorn Ekwall (bj0rn@blox.se).

BUGS
lsmod might have some, but they are well hidden.…

Linux, 14 May 1995

lsmod

Part I: User Commands306

lynx
lynx—A general-purpose distributed information browser for the World Wide Web

SYNOPSIS
lynx [options] [path or URL]

Use lynx -help to display a complete list of current options.

DESCRIPTION
lynx is a fully-featured World Wide Web (WWW) client for users running cursor-addressable, character-cell display devices
(for example, vt100 terminals, vt100 emulators running on PCs or Macs, or any other “curses-oriented” display). It will
display Hypertext Markup Language (HTML) documents containing links to files residing on the local system, as well as
files residing on remote systems running Gopher, HTTP, FTP, WAIS, and NNTP servers. Current versions of lynx run on
UNIX and VMS.

lynx can be used to access information on the World Wide Web, or to build information systems intended primarily for
local access. For example, lynx has been used to build several Campus Wide Information Systems (CWIS). In addition, lynx
can be used to build systems isolated within a single LAN.

OPTIONS
At startup, lynx will load any local file or remote URL specified at the command line. For help with URLs, press ? or h while
running lynx. Then follow the link titled “Help on URLs.”

- If the only argument is -, then lynx expects to receive the arguments from stdin. This is to allow
for the potentially very long command line that can be associated with the -get_data or -post_data
arguments. (See entries for each later in this list.)

-anonymous Used to specify the anonymous account.

-ascii Disable kanji code translation when Japanese mode is on.

-auth=ID:PASSWD Set authorization ID and password for protected documents at startup.

-book Use the bookmark page as the startfile. The default or command line startfile is still set for the
Main screen command, and will be used if the bookmark page is unavailable or blank.

-buried_news Toggles scanning of news articles for buried references, and converts them to news links. Not
recommended because e-mail addresses enclosed in angle brackets will be converted to false news
links, and uuencoded messages can be trashed.

-cache=NUMBER Set the NUMBER of documents cached in memory. The default is 10.

-case Enable case-sensitive string searching.

-cfg=FILENAME Specifies a lynx configuration file other than the default lynx.cfg.

-child Exit on left-arrow in startfile, and disable save to disk.

-crawl With -traversal, output each page to a file. With -dump, format output as with -traversal, but to
stdout.

-display=DISPLAY Set the display variable for X rexeced programs.

-dump Dumps the formatted output of the default document or one specified on the command line to
standard out. This can be used in the following way: lynx -dump http://www.w3.org/default.html.

-editor=EDITOR Enable Edit mode using the specified EDITOR (vi, ed, emacs, and so on).

-emacskeys Enable Emacs-like key movement.

-enable_scrollback Toggle compatibility with comm programs’ scrollback keys (may be incompatible with some
packages).

-error_file=FILE Define a file where lynx will report HTTP access codes.

-euc Set kanji code to EUC when Japanese mode is on.

-fileversions Include all versions of files in local VMS directory listings.

-force_html Forces the first document to be interpreted as HTML.

307

-ftp Disable FTP access.

-get_data Send form data from stdin using GET method and dump results.

-head Send a HEAD request for the mime headers.

-help Print this lynx command syntax usage message.

-historical Toggles use of > or –> as a terminator for comments.

-homepage=URL Set home page separate from start page.

-image_links Toggles inclusion of links for all images.

-index=URL Set the default index file to the specified URL.

-jpn Toggles Japanese character translations on or off.

-link=UMBER Starting count for lnk#.dat files produced by -crawl.

-localhost Disable URLs that point to remote hosts.

-locexec Enable local program execution from local files only (if lynx was compiled with local execution
enabled).

-mime_header Prints the MIME header of a fetched document along with its source.

-minimal Toggles minimal versus valid comment parsing.

-nobrowse Disable directory browsing.

-noexec Disable local program execution (default).

-nolist Disable the link list feature in dumps.

-nolog Disable mailing of error messages to document owners.

-noprint Disable print functions.

-noredir Prevents automatic redirection and prints a message with a link to the new URL.

-nostatus Disable the retrieval status messages.

-number_links Force numbering of links.

-post_data Send form data from stdin using POST method and dump results.

-print Enable print functions (default).

-pseudo_inlines Toggles pseudo-ALTs for inlines with no ALT string.

-realm Restricts access to URLs in the starting realm.

-reload Flushes the cache on a proxy server (only the first document affected).

-restrictions=[option] Allows a list of services to be disabled selectively. The following list is printed if no options are
[,option][,option]... specified.

all—Restricts all options.

bookmark--Disallow changing the location of the bookmark file.

bookmark_exec--Disallow execution links via the bookmark file.

Change_exec_perms—Disallow changing the execute permission on files (but still allow it for
directories) when local file management is enabled.

default--Same as command-line option -anonymous. Disables default services for anonymous users.
Currently set to all restricted except for the following: inside_telnet, outside_telnet, inside_news,
inside_ftp, outside_ftp, inside_rlogin, outside_rlogin, jump, mail, and goto. Defaults are settable
within userdefs.h.

dired_support—Disallow local file management.

disk_save—Disallow saving binary files to disk in the download menu.

download--Disallow downloaders in the download menu.

editor—Disallow editing.

exec--Disable execution scripts.

exec_frozen--Disallow the user from changing the local execution option.

file_url--Disallow using goto to go to file: URLs.

goto—Disable the g (goto) command.

lynx

Part I: User Commands308

inside_ftp—Disallow FTPs for people coming from inside your domain. (utmp required for
selectivity.)

inside_news—Disallow Usenet news posting for people coming from inside your domain. (utmp
required for selectivity.)

inside_rlogin—Disallow rlogins for people coming from inside your domain. (utmp required for
selectivity.)

inside_telnet--Disallow Telnets for people coming from inside your domain. (utmp required for
selectivity.)

jump—Disable the j (jump) command.

mail--Disable mailing feature.

news_post--Disable Usenet news posting.

options_save--Disallow saving options in .lynxrc.

outside_ftp—Disallow FTPs for people coming from outside your domain. (utmp required for
selectivity.)

outside_news—Disallow Usenet news posting for people coming from outside your domain. (utmp
required for selectivity.)

outside_rlogin—Disallow rlogins for people coming from outside your domain. (utmp required for
selectivity.)

outside_telnet—Disallow Telnets for people coming from outside your domain. (utmp required for
selectivity.)

print—Disallow most print options.

shell—Disallow shell escapes and lynxexec or lynxprog goto’s.

suspend--Disallow UNIX Ctrl+Z suspends with escape to shell.

telnet_port—Disallow specifying a port in Telnet goto’s.

-rlogin Disable recognition of rlogin commands.

-selective Require .www browsable files to browse directories.

-show_cursor If enabled, the cursor will not be hidden in the right-hand corner but will instead be positioned at
the start of the currently selected link. show_cursor is the default for systems without FANCY_CURSES
capabilities, and the default configuration can be changed in userdefs.h.

-sjis Set kanji code to Shift JIS when Japanese mode is on.

-source Works the same as dump but outputs HTML source instead of formatted text.

-telnet Disable recognition of Telnet commands.

-term=TERM Tell lynx what terminal type to assume it’s talking to. (This may be useful for remote execution
when, for example, lynx connects to a remote TCP/IP port that starts a script that, in turn, starts
another lynx process.)

-trace Turns on WWW trace mode.

-traversal Traverse all HTTP links derived from startfile. When used with -crawl, each link that begins
with the same string as startfile is output to a file, intended for indexing. See CRAWL.announce for
more information.

-underscore Toggles use of _underline_format in dumps.

-validate Accept only HTTP URLs (for validation). Complete security restrictions also are implemented.

-version Print version information.

-vikeys Enable vi-like key movement.

COMMANDS
■ Use Up arrow and Down arrow to scroll through hypertext links.
■ Right arrow or Return will follow a highlighted hypertext link.
■ Left Arrow will retreat from a link.

309

■ Type h or ? for online help and descriptions of keystroke commands.
■ Type k for a complete list of the current keystroke command mappings.

NOTES
This is the Lynx 2.5 Release for UN*X/VMS.

If you wish to contribute to the further development of lynx, subscribe to our mailing list. Send e-mail to majordomo@sig.net
with “subscribe lynx-dev” as the only line in the body of your message.

Send bug reports, comments, and suggestions to lynx-dev@sig.net after subscribing.

Unsubscribe by sending e-mail to majordomo@sig.net with unsubscribe lynx-dev as the only line in the body of your message.
Do not send the unsubscribe message to the lynx-dev list itself.

ACKNOWLEDGMENTS
lynx has incorporated code from a variety of sources along the way. The earliest versions of lynx included code from Earl
Fogel of Computing Services at the University of Saskatchewan, who implemented HYPERREZ in the UN*X environment.
HYPERREZ was developed by Niel Larson of Think.com and served as the model for the early versions of lynx. Those versions
also incorporated libraries from the UN*X Gopher clients developed at the University of Minnesota, and the later versions of
lynx rely on the WWW client library code developed by Tim Berners-Lee and the WWW community. Also a special thanks
to Foteos Macrides, who ported much of lynx to VMS and to everyone on the Net who has contributed to lynx’s develop-
ment either directly (through comments or bug reports) or indirectly (through inspiration and development of other
systems).

AUTHORS
Lou Montulli, Garrett Blythe, Craig Lavender, Michael Grobe, Charles Rezac
Academic Computing Services
University of Kansas
Lawrence, Kansas 66047

Foteos Macrides
Worcester Foundation
Shrewsbury, Massachusetts 01545

Local

macptopbm
macptopbm—Convert a MacPaint file into a portable bitmap

SYNOPSIS
macptopbm [-extraskip N][macpfile]

DESCRIPTION
macptopbm reads a MacPaint file as input and produces a portable bitmap as output.

OPTIONS
-extraskip This flag is to get around a problem with some methods of transferring files from the Mac world to the

UNIX world. Most of these methods leave the Mac files alone, but a few of them add the find-erinfo data
onto the front of the UNIX file. This means an extra 128 bytes to skip over when reading the file. The
symptom to watch for is that the resulting PBM file looks shifted to one side. If you get this, try -
extraskip 128, and if that still doesn’t look right, try another value.

All flags can be abbreviated to their shortest unique prefix.

macptopbm

Part I: User Commands310

SEE ALSO
picttoppm(1), pbmtomacp(1), pbm(5)

AUTHOR
Copyright  1988 by Jef Poskanzer. The MacPaint-reading code is copyright  1987 by Patrick J. Naughton
(naughton@wind.sun.com).

29 March 1989

make
make—GNU make utility to maintain groups of programs

SYNOPSIS
make [–f makefile] [option] ... target ...

WARNING
This man page is an extract of the documentation of GNU make. It is updated only occasionally because the GNU project
does not use nroff. For complete, current documentation, refer to the info file make or the DVI file make.dvi, which are
made from the texinfo source file make.texinfo.

DESCRIPTION
The purpose of the make utility is to determine automatically which pieces of a large program need to be recompiled, and
issue the commands to recompile them. This manual page describes the GNU implementation of make, which was written by
Richard Stallman and Roland McGrath. Our examples show C programs because they are most common, but you can use
make with any programming language whose compiler can be run with a shell command. In fact, make is not limited to
programs. You can use it to describe any task where some files must be updated automatically from others whenever the
others change.

To prepare to use make, you must write a file called the makefile that describes the relationships among files in your program
and states the commands for updating each file. In a program, typically, the executable file is updated from object files,
which are in turn made by compiling source files.

Once a suitable makefile exists, each time you change some source files, this simple shell command:

make

suffices to perform all necessary recompilations. The make program uses the makefile database and the last-modification times
of the files to decide which of the files need to be updated. For each of those files, it issues the commands recorded in the
database.

make executes commands in the makefile to update one or more target names, where name is typically a program. If no –f
option is present, make will look for the makefiles GNU-makefile, makefile, and Makefile, in that order.

Normally you should call your makefile either makefile or Makefile. (We recommend Makefile because it appears promi-
nently near the beginning of a directory listing, right near other important files such as README.) The first name checked,
GNUmakefile, is not recommended for most makefiles. You should use this name if you have a makefile that is specific to
GNU make, and will not be understood by other versions of make. If makefile is –, the standard input is read.

make updates a target if it depends on prerequisite files that have been modified since the target was last modified, or if the
target does not exist.

311

OPTIONS
-b, –m These options are ignored for compatibility with other versions of make.

–C dir Change to directory dir before reading the makefiles or doing anything else. If multiple –C options are specified,
each is interpreted relative to the previous one: –C / –C etc is equivalent to –C /etc. This is typically used with
recursive invocations of make.

–d Print debugging information in addition to normal processing. The debugging information says which files are
being considered for remaking, which file times are being compared and with what results, which files actually
need to be remade, which implicit rules are considered and which are applied—everything interesting about how
make decides what to do.

–e Give variables taken from the environment precedence over variables from makefiles.

–f file Use file as a makefile.

–i Ignore all errors in commands executed to remake files.

–I dir Specifies a directory dir to search for included makefiles. If several –I options are used to specify several directo-
ries, the directories are searched in the order specified. Unlike the arguments to other flags of make, directories
given with –I flags may come directly after the flag: –Idir is allowed, as well as –I dir. This syntax is allowed for
compatibility with the C preprocessor’s –I flag.

–j jobs Specifies the number of jobs (commands) to run simultaneously. If there is more than one –j option, the last one
is effective. If the –j option is given without an argument, make will not limit the number of jobs that can run
simultaneously.

–k Continue as much as possible after an error. Although the target that failed, and those that depend on it, cannot
be remade, the other dependencies of these targets can be processed all the same.

-l, Specifies that no new jobs (commands) should be started if there are other jobs running and the load average is at
–l load least load (a floating-point number). With no argument, removes a previous load limit.

–n Print the commands that would be executed, but do not execute them.

–o file Do not remake the file file even if it is older than its dependencies, and do not remake anything because of
changes in file. Essentially, the file is treated as very old and its rules are ignored.

–p Print the database (rules and variable values) that results from reading the makefiles; then execute as usual or as
otherwise specified. This also prints the version information given by the –v switch (see below). To print the
database without trying to remake any files, use make –p –f/dev/null.

–q Question mode. Do not run any commands or print anything; just return an exit status that is zero if the specified
targets are already up-to-date, nonzero otherwise.

–r Eliminate use of the built-in implicit rules. Also clear out the default list of suffixes for suffix rules.

–s Silent operation; do not print the commands as they are executed.

–S Cancel the effect of the –k option. This is never necessary except in a recursive make where –k might be inherited
from the top-level make via MAKEFLAGS or if you set –k in MAKEFLAGS in your environment.

–t Touch files (mark them up-to-date without really changing them) instead of running their commands. This is
used to pretend that the commands were done, in order to fool future invocations of make.

–v Print the version of the make program plus a copyright, a list of authors, and a notice that there is no warranty.
After this information is printed, processing continues normally. To get this information without doing anything
else, use make –v –f/dev/null.

–w Print a message containing the working directory before and after other processing. This may be useful for
tracking down errors from complicated nests of recursive make commands.

–W file Pretend that the target file has just been modified. When used with the –n flag, this shows you what would
happen if you were to modify that file. Without –n, it is almost the same as running a touch command on the
given file before running make, except that the modification time is changed only in the imagination of make.

SEE ALSO
/usr/local/doc/gnumake.dvi

The GNU Make Manual

make

Part I: User Commands312

BUGS
See the chapter “Problems and Bugs” in The GNU Make Manual.

AUTHOR
This manual page contributed by Dennis Morse of Stanford University. It has been reworked by Roland McGrath.

GNU, 22 August 1989

makedepend
makedepend—Create dependencies in makefiles

SYNOPSIS
makedepend [–Dname=def][–Dname][–Iincludedir][–Yincludedir][–a]
[–fmakefile][–oobjsuffix][–pobjprefix][–sstring][–wwidth][–v][–m]
[––otheroptions ––] sourcefile . . .

DESCRIPTION
makedepend reads each sourcefile in sequence and parses it like a C-preprocessor, processing all #include, #define, #undef,
#ifdef, #ifndef, #endif, #if and #else directives so that it can correctly tell which #include, directives would be used in a
compilation. Any #include, directives can reference files having other #include directives, and parsing will occur in these files
as well.

Every file that a source file includes, directly or indirectly, is what makedepend calls a dependency. These dependencies are then
written to a makefile in such a way that make(1) will know which object files must be recompiled when a dependency has
changed.

By default, makedepend places its output in the file named makefile if it exists; otherwise, Makefile. An alternate makefile may
be specified with the –f option. It first searches the makefile for the line:

DO NOT DELETE THIS LINE –– make depend depends on it.

or one provided with the –s option, as a delimiter for the dependency output. If it finds it, it will delete everything following
this to the end of the makefile and put the output after this line. If it doesn’t find it, the program will append the string to
the end of the makefile and place the output following that. For each sourcefile appearing on the command line, makedepend
puts lines in the makefile of the form:

sourcefile.o: dfile . . .

where sourcefile.o is the name from the command line with its suffix replaced with .o, and dfile is a dependency
discovered in a #include directive while parsing sourcefile or one of the files it included.

EXAMPLE
Normally, makedepend will be used in a makefile target so that typing makedepend will bring the dependencies up-to-date for
the makefile. For example,

SRCS = file1.c file2.c . . .
CFLAGS = –O –DHACK –I../foobar –xyz
depend:
makedepend –– $(CFLAGS) –– $(SRCS)

OPTIONS
makedepend will ignore any option that it does not understand so that you may use the same arguments that you would for
cc(1).

–Dname=def or Define. This places a definition for name in makedepend’s symbol table. Without =def, the symbol becomes
–Dname defined as 1.

313

–Iincludedir Include directory. This option tells makedepend to prepend includedir to its list of directories to search
when it encounters a #include directive. By default, makedepend only searches the standard include
directories (usually /usr/include and possibly a compiler-dependent directory).

–Yincludedir Replace all of the standard include directories with the single specified include directory; you can omit the
includedir to simply prevent searching the standard include directories.

–a Append the dependencies to the end of the file instead of replacing them.

–fmakefile Filename. This allows you to specify an alternate makefile in which makedepend can place its output.

–oobjsuffix Object file suffix. Some systems may have object files whose suffix is something other than .o. This option
allows you to specify another suffix, such as .b with -o.b or :obj with -o:obj and so forth.

–pobjprefix Object file prefix. The prefix is prepended to the name of the object file. This is usually used to designate a
different directory for the object file. The default is the empty string.

–sstring Starting string delimiter. This option permits you to specify a different string for makedepend to look for in
the makefile.

–wwidth Line width. Normally, makedepend will ensure that every output line that it writes will be no wider than 78
characters for the sake of readability. This option enables you to change this width.

–v Verbose operation. This option causes makedepend to emit the list of files included by each input file on
standard output.

–m Warn about multiple inclusion. This option causes makedepend to produce a warning if any input file
includes another file more than once. In previous versions of makedepend, this was the default behavior; the
default has been changed to better match the behavior of the C compiler, which does not consider
multiple inclusion to be an error. This option is provided for backwards compatibility, and to aid in
debugging problems related to multiple inclusion.

–– options –– If makedepend encounters a double hyphen (––) in the argument list, then any unrecognized argument
following it will be silently ignored; a second double hyphen terminates this special treatment. In this way,
makedepend can be made to safely ignore esoteric compiler arguments that might normally be found in a
CFLAGS make macro. (See the preceding “Example” section.) All options that makedepend recognizes and that
appear between the pair of double hyphens are processed normally.

ALGORITHM
The approach used in this program enables it to run an order of magnitude faster than any other dependency generator I
have ever seen. Central to this performance are two assumptions: that all files compiled by a single makefile will be compiled
with roughly the same -I and -D options; and that most files in a single directory will include largely the same files.

Given these assumptions, makedepend expects to be called once for each makefile, with all source files that are maintained by
the makefile appearing on the command line. It parses each source and include file exactly once, maintaining an internal
symbol table for each. Thus, the first file on the command line will take an amount of time proportional to the amount of
time that a normal C preprocessor takes. But on subsequent files, if it encounters an include file that it has already parsed, it
does not parse it again.

For example, imagine you are compiling two files, file1.c and file2.c; they both include the header file header.h, and the
file header.h in turn includes the files def1.h and def2.h. When you run the command:

makedepend file1.c file2.c

makedepend will parse file1.c and consequently, header.h and then def1.h and def2.h. It then decides that the dependencies
for this file are

file1.o: header.h def1.h def2.h

But when the program parses file2.c and discovers that it, too, includes header.h, it does not parse the file, but simply adds
header.h, def1.h, and def2.h to the list of dependencies for file2.o.

SEE ALSO
cc(1), make(1)

makedepend

Part I: User Commands314

BUGS
makedepend parses, but does not currently evaluate, the SVR4 #predicate(token-list) preprocessor expression; such
expressions are simply assumed to be true. This may cause the wrong #include directives to be evaluated.

Imagine you are parsing two files, say file1.c and file2.c, and each includes the file def.h. The list of files that def.h
includes might truly be different when def.h is included by file1.c than when it is included by file2.c. But when
makedepend arrives at a list of dependencies for a file, it is cast in concrete.

AUTHOR
Todd Brunhoff, Tektronix, Inc. and MIT Project Athena

X Version 11 Release 6

makestrs
makestrs—Make string table C source and header(s)

SYNOPSIS
makestrs [-f source] [-abioptions ...]

DESCRIPTION
The makestrs command creates string table C source files and headers. If -f source is not specified, makestrs will read from
stdin. The C source file is always written to stdout. makestrs creates one or more C header files as specified in the source file.
The following options may be specified: -sparcabi, -intelabi, -functionabi, -arrayperabi, and -defaultabi.

-sparcabi is used on SPARC platforms conforming to the SPARC Compliance Definition, i.e., SVR4/Solaris.

-intelabi used on Intel platforms conforming to the System V Application Binary Interface (SVR4).

-earlyR6abi may be used in addition to -intelabi for situations where the vendor wishes to maintain binary compatibility
between X11R6 public-patch 11 (and earlier) and X11R6 public-patch 12 (and later).

-functionabi generates a functional application binary interface to the string table. This mechanism imposes a severe
performance penalty and it’s recommended that you not use it.

-arrayperabi results in a separate array for each string. This is the default behavior if makestrs was compiled with -
DARRAYPERSTR (it almost never is).

-defaultabi forces the generation of the “normal” string table even if makestrs was compiled with -DARRAYPERSTR. makestrs is
almost never compiled with -DARRAYPERSTR, so this is the default behavior if no application binary interface (ABI) options are
specified.

SYNTAX
The syntax for string-list file is as follows (items in square brackets are optional):

#prefix <text>
#feature <text>
#externref <text>
#externdef [<text>]
[#ctempl <text>]
#file <filename>
#table <tablename>
[#htempl] <text>
...
<text>
[#table <tablename>
<text>
...

315

<text>
...
#table <tablename>
...]
[#file <filename>
...]

You may have one or more #file directives. Each #file may have one or more #table directives.

The #prefix directive determines the string that makestr will prefix to each definition.

The #feature directive determines the string that makestr will use for the feature-test macro, for example, X™STRINGDEFINES.

The #externref directive determines the string that makestr will use for the extern clause; typically this will be extern, but
Motif wants it to be externalref.

The #externdef directive determines the string that makestr will use for the declaration; typically, this will be the null string,
and Motif will use externaldef(_xmstrings).

The #ctmpl directive determines the name of the file used as a template for the C source file that is generated.

Each #file <filename> directive will result in a corresponding header file by that name containing the appropriate definitions
as specified by command-line options. A single C source file containing the declarations for the definitions in all the headers
will be printed to stdout.

The #htmpl directive determines the name of the file used as a template for the C header file that is generated.

Each #table <tablename> directive will be processed in accordance with the ABI. On most platforms, all tables will be
catenated into a single table with the name of the first table for that file. To conform to the Intel ABI, separate tables will be
generated with the names indicated.

The template files specified by the #ctmpl and #htmpl directives are processed by copying line for line from the template file
to the appropriate output file. The line containing the string <<<STRING_TABLE_GOES_HERE>>> is not copied to the output file.
The appropriate data is then copied to the output file and then the remainder of the template file is copied to the output file.

BUGS
makestrs is not very forgiving of syntax errors. Sometimes you need a trailing space after # directives, other times they will
mess you up. No warning messages are emitted.

SEE ALSO
SPARC Compliance Definition 2.2, SPARC International Inc., 535 Middlefield Road, Suite 210, Menlo Park, CA 94025

System V Application Binary Interface, Third Edition, ISBN 0-13-100439-5, UNIX Press, PTR Prentice Hall, 113 Sylvan
Avenue, Englewood Cliffs, NJ 07632

System V Application Binary Interface, Third Edition, Intel386 Architecture Processor Supplement, ISBN 0-13-104670-5,
UNIX Press, PTR Prentice Hall, 113 Sylvan Avenue, Englewood Cliffs, NJ 07632

System V Application Binary Interface, Third Edition, SPARCArchitecture Processor Supplement, ISBN 0-13-104696-9,
UNIX Press, PTR Prentice Hall, 113 Sylvan Avenue, Englewood Cliffs, NJ 07632

X Version 11 Release 6

mattrib
mattrib—Change MS-DOS file attribute flags

SYNOPSIS
mattrib [-a|+a][-h|+h][-r|+r][-s|+s] msdosfile [msdosfiles...]

mattrib

Part I: User Commands316

DESCRIPTION
mattrib adds attribute flags to an MS-DOS file (with the + operator) or removes attribute flags (with the - operator).

mattrib allows the following command-line options:

a Archive bit. Used by some backup programs to indicate a new file.

r Read-only bit. Used to indicate a read-only file. Files with this bit set cannot be erased by DEL or modified.

s System bit. Used by MS-DOS to indicate an operating system file.

h Hidden bit. Used to make files hidden from DIR.

SEE ALSO
mtools(1)

Local

mbadblocks
mbadblocks—Scan an MS-DOS floppy and mark its unused bad blocks as bad.

SYNOPSIS
mbadblocks drive:

DESCRIPTION
mbadblocks scans an MS-DOS floppy for bad blocks. All unused bad blocks are marked as such in the FAT. This is intended
to be used right after mformat. It is not intended to salvage bad disks.

SEE ALSO
mtools(1)

BUGS
This should (but doesn’t :-() also try to salvage bad blocks that are in use by reading them repeatedly, and then mark them
bad.

mcd
mcd—Change MS-DOS directory

SYNOPSIS
mcd [msdosdirectory]

DESCRIPTION
Without arguments, mcd will report the current device and working directory. Otherwise, mcd changes the current device and
current working directory relative to an MS-DOS filesystem.

The environmental variable MCWD may be used to locate the file where the device and current working directory information is
stored. The default is $HOME/.mcwd. Information in this file is ignored if the file is more than six hours old.

MS-DOS subdirectory names are supported with either the / or \ separator. The use of the \ separator or wildcards will
require the directory name to be enclosed in quotes to protect it from the shell.

mcd returns 0 on success or 1 on failure.

SEE ALSO
mdir(1)

317

BUGS
Unlike MS-DOS versions of CD, mcd can be used to change to another device.

It may be wise to remove old .mcwd files at logout.

Local

mcookie
mcookie—Generate magic cookies for xauth

SYNOPSIS
mcookie

DESCRIPTION
mcookie generates a 128-bit random hexadecimal number for use with the X authority system. Typical usage:

xauth add :0 . ‘mcookie’

SEE ALSO
X(1), xauth(1)

12 February 1995

mcopy
mcopy—Copy MS-DOS files to/from UNIX

SYNOPSIS
mcopy [-tnvmoOsSrRA] sourcefile targetfile
mcopy [-tnvmoOsSrRA] sourcefile [sourcefiles...] targetdirectory
mcopy [-tnvm] MSDOSsourcefile

DESCRIPTION
mcopy copies the specified file to the named file, or copies multiple files to the named directory. The source and target can be
either MS-DOS or UNIX files.

The use of a drive letter designation on the MS-DOS files—a: for example—determines the direction of the transfer. A
missing drive designation implies a UNIX file whose path starts in the current directory. If a source drive letter is specified
with no attached filename (for example, mcopy a: .), all files are copied from that drive.

If only a single, MS-DOS source parameter is provided (for example, mcopy a:foo.exe), an implied destination of the current
directory (.) is assumed.

A filename of - means standard input or standard output, depending on its position on the command line.

mcopy will allow the following command-line options:

t Text file transfer. mcopy will translate incoming carriage return/line feeds to line feeds.

n No warning. mcopy will not warn the user when overwriting an existing file.

v Verbose mode.

m Preserve the file modification time.

If the target file already exists, and the -n option is not in effect, mcopy asks whether to overwrite the file or to rename the new
file. (See the mtools(1) man page for details.)

mcopy

Part I: User Commands318

SEE ALSO
mtools(1), mread(1), mwrite(1)

BUGS
Unlike MS-DOS, the + operator (append) from MS-DOS is not supported.

Local

md5sum
md5sum—Generate/check MD5 message digests

SYNOPSIS
md5sum [–bv][–c [file]]
md5sum file ...

DESCRIPTION
md5sum generates and checks MD5 message digests, as described in RFC-1321. The message digest produced can be thought
of as a 128-bit “signature” of the input file. Typically, md5sum is used to verify the integrity of files made available for
distribution via anonymous FTP (for example, announcements for new versions of irc(1) usually contain MD5 signatures).
Message digests for a tree of files can be generated with a command similar to the following:

find . -type f -print | xargs md5sum

The output of this command is suitable as input for the –c option.

OPTIONS
–c [file] Check message digests. Input is taken from stdin or from the specified file. The input should be in the

same format as the output generated by md5sum.

–v Verbose. Print filenames when checking.

–b Read files in binary mode; otherwise, end-of-file conventions will be ignored.

HISTORY
The md5sum program was written by Branko Lankester and may be freely distributed. The original source code is in the MIT
PGP 2.6.2 distribution. Those concerned about the integrity of this version should obtain the original sources and compile
their own version.

The underlying implementation of Ron Rivest’s MD5 algorithm was written by Colin Plumb and is in the public domain.
(Equivalent code is also available from RSA Data Security, Inc.)

SEE ALSO
sum(1), cksum(1), pgp(1)

Linux 1.0, 11 February 1995

mdel
mdel—Delete an MS-DOS file

SYNOPSIS
mdel [-v] msdosfile [msdosfiles...]

319

DESCRIPTION
mdel deletes a file on an MS-DOS filesystem.

mdel will allow the following command-line option:

v Verbose mode. Echo the filenames as they are processed.

mdel will ask for verification prior to removing a read–only file.

SEE ALSO
mtools(1)

Local

mdeltree
mdeltree—Remove an MS-DOS directory tree

SYNOPSIS
mdeltree [-v] msdosdirectory [msdosdirectories...]

DESCRIPTION
mdeltree removes a directory and all the files and subdirectories it contains from an MS-DOS filesystem. mdeltree will allow
the following command-line option:

v Verbose mode. Displays each file or directory as it is removed.

An error occurs if the directory does not exist.

SEE ALSO
mtools(1), mrd(1)

Local

mdir
mdir—Display an MS-DOS directory

SYNOPSIS
mdir [-w] msdosdirectory
mdir [-w][-a] msdosfile [msdosfiles...]

DESCRIPTION
mdir displays the contents of an MS-DOS directory.

mdir will allow the following command-line options:

w Wide output. This option will print the filenames across the page without displaying the file size or creation date.

a Also list hidden files.

An error occurs if a component of the path is not a directory.

SEE ALSO
mtools(1)

Local

mdir

Part I: User Commands320

merge
merge—Three-way file merge

SYNOPSIS
merge [options] file1 file2 file3

DESCRIPTION
merge incorporates all changes that lead from file2 to file3 into file1. The result ordinarily goes into file1. merge is useful
for combining separate changes to an original. Suppose file2 is the original, and both file1 and file3 are modifications of
file2. Then merge combines both changes.

A conflict occurs if both file1 and file3 have changes in a common segment of lines. If a conflict is found, merge normally
outputs a warning and brackets the conflict with <<<<<<< and >>>>>>> lines. A typical conflict will look like this:

<<<<<<< file A
lines in file A
=======
lines in file B
>>>>>>> file B

If there are conflicts, the user should edit the result and delete one of the alternatives.

OPTIONS
–A Output conflicts using the –A style of diff3(1), if supported by diff3. This merges all changes leading from file2

to file3 into file1, and generates the most verbose output.

–E, –e These options specify conflict styles that generate less information than –A. See diff3(1) for details. The default is
–E. With –e, merge does not warn about conflicts.

–L label This option may be given up to three times, and specifies labels to be used in place of the corresponding filenames
in conflict reports. That is, merge–Lx–L y –Lz a b c generates output that looks like it came from files x, y, and z
instead of from files a, b, and c.

–p Send results to standard output instead of overwriting file1.

–q Quiet; do not warn about conflicts.

–V Print RCS’s version number.

DIAGNOSTICS
Exit status is 0 for no conflicts, 1 for some conflicts, 2 for trouble.

IDENTIFICATION
Author: Walter F. Tichy.
Manual Page Revision: 5.7; Release Date: 1995/06/01.
Copyright  1982, 1988, 1989 Walter F. Tichy.
Copyright  1990, 1991, 1992, 1993, 1994, 1995 Paul Eggert.

SEE ALSO
diff3(1), diff(1), rcsmerge(1), co(1)

BUGS
It normally does not make sense to merge binary files as if they were text, but merge tries to do it anyway.

GNU, 1 June 1995

321

mesg
mesg—Display (do not display) messages from other users

SYNOPSIS
mesg [n][y]

DESCRIPTION
The mesg utility is invoked by a users to control write access others have to the terminal device associated with the standard
error output. If write access is allowed, then programs such as talk(1) and write(1) may display messages on the terminal.

Traditionally, write access is allowed by default. However, as users become more conscious of various security risks, there is a
trend to remove write access by default, at least for the primary login shell. To make sure your ttys are set the way you want
them to be set, mesg should be executed in your login scripts.

Options available:

n Disallows messages

y Permits messages to be displayed

If no arguments are given, mesg displays the present message status to the standard error output.

The mesg utility exits with one of the following values:

\0 Messages are allowed.

\1 Messages are not allowed.

1 An error has occurred.

FILES
/dev/[pt]ty[pq]?

SEE ALSO
biff(1), talk(1), write(1), wall(1), login(1), xterm(1)

HISTORY
A mesg command appeared in version 6 AT&T UNIX.

Linux 1.2, 10 March 1995

mformat
mformat—Add an MS-DOS filesystem to a low-level formatted disk

SYNOPSIS
mformat [-t tracks] [-h heads] [-s sectors] [-l volume label]
[-S sizecode] [-2 sectors on track 0] [-M software sector size]
[-a][-X][-C][-H hidden sectors] drive:

DESCRIPTION
mformat adds a minimal MS-DOS filesystem (boot sector, FAT, and root directory) to a disk that has already been formatted
by a UNIX low-level format.

The follow options are supported: (The S, 2, 1, and M options may not exist if this copy of mtools has been compiled without
the USE_2M option).

mformat

Part I: User Commands322

t The number of tracks (not cylinders).

h The number of heads (sides).

s The number of sectors per track. If the 2m option is given, number of 512-byte sector equivalents on generic tracks
(that is, not head 0 track). If the 2m option is not given, number of physical sectors per track (which may be bigger
than 512 bytes).

l An optional volume label.

S The sizecode. The size of the sector is 2 ˆ (sizecode + 7).

2 2m format. The parameter to this option describes the number of sectors on track 0, head 0. This option is
recommended for sectors bigger than normal.

1 Don’t use a 2m format, even if the current geometry of the disk is a 2m geometry.

M Software sector size. This parameter describes the sector size in bytes used by the MS-DOS filesystem. By default
it is the physical sector size.

a If this option is given, an Atari-style serial number is generated. Ataris store their serial number in the OEM label.

X Formats the disk as an Xdf disk. Xdf disks are used by OS/2. This format can hold 1756Kb, and is faster than the
equivalent 2m formats. The disk has first to be low-level formatted using the xdfcopy utility included in the fdutils
package.

C Creates the disk image file to install the MS-DOS filesystem on it. Obviously, this is useless on physical devices
such as floppies and hard disk partitions.

H Number of hidden sectors. This parameter is useful for formatting hard disk partitions, which are not aligned on
track boundaries (in other words, first head of first track doesn’t belong to the partition, but contains a partition
table). In that case the number of hidden sectors is in general the number of sectors per cylinder. This is untested.

n Serial number.

To format a disk at a density other than the default, you must supply (at least) those command-line parameters that are
different from the default.

Mformat returns 0 on success or 1 on failure.

SEE ALSO
mlabel(1)

BUGS
Requires a low-level format utility from UNIX.

Doesn’t detect (or record) bad block information.

Local

mgrtopbm
mgrtopbm—Convert an MGR bitmap into a portable bitmap

SYNOPSIS
mgrtopbm [mgrfile]

DESCRIPTION
mgrtopbm reads an MGR bitmap as input and produces a portable bitmap as output.

SEE ALSO
pbmtomgr(1), pbm(5)

323

AUTHOR
Copyright  1989 by Jef Poskanzer.

24 January 1989

mkdir
mkdir—Make directories

SYNOPSIS
mkdir [–p] [–m mode] [--parents] [--mode=mode] [--help] [--version] dir...

DESCRIPTION
This manual page documents the GNU version of mkdir. mkdir creates a directory with each given name. By default, the
mode of created directories is 0777 minus the bits set in the umask.

OPTIONS
–m, --mode mode Set the mode of created directories to mode, which is symbolic as in chmod and uses the default mode as the

point of departure.

–p, --parents Ensure that each given directory exists. Create any missing parent directories for each argument. Parent
directories default to the umask modified by u+wx. Do not consider an argument directory that already
exists to be an error.

--help Print a usage message on standard output and exit successfully.

--version Print version information on standard output then exit successfully.

GNU File Utilities

mkdirhier
mkdirhier—Make a directory hierarchy

SYNOPSIS
mkdirhier directory ...

DESCRIPTION
The mkdirhier command creates the specified directories. Unlike mkdir, if any of the parent directories of the specified
directory do not exist, it creates them as well.

SEE ALSO
mkdir(1)

X Version 11 Release 6

mkfifo
mkfifo—Make FIFOs (named pipes)

SYNOPSIS
mkfifo [–m mode] [--mode=mode] [--help] [--version] filename...

mkfifo

Part I: User Commands324

DESCRIPTION
This manual page documents the GNU version of mkfifo. mkfifo creates a FIFO with each given name. By default, the mode
of created FIFOs is 0666 minus the bits set in the umask.

OPTIONS
–m, --mode mode Set the mode of created FIFOs to mode, which is symbolic as in chmod and uses the default mode as the

point of departure.

--help Print a usage message on standard output and exit successfully.

--version Print version information on standard output then exit successfully.

GNU File Utilities

mkmanifest
mkmanifest—Create a shell script to restore UNIX filenames

SYNOPSIS
mkmanifest [files]

DESCRIPTION
mkmanifest creates a shell script that will aid in the restoration of UNIX filenames that got clobbered by the MS-DOS
filename restrictions. MS-DOS filenames are restricted to eight-character names, three-character extensions, uppercase only,
no device names, and no illegal characters.

The mkmanifest program is compatible with the methods used in pcomm, arc, and mtools to change perfectly good UNIX
filenames to fit the MS-DOS restrictions.

EXAMPLE
Say you want to copy the following UNIX files to an MS-DOS disk (using the mcopy command):

very_long_name
2.many.dots
illegal:
good.c
prn.dev
Capital

mcopy will convert the names to

very_lon
2xmany.dot
illegalx
good.c
xprn.dev
capital

The command:

mkmanifest very_long_name 2.many.dots illegal: good.c prn.dev Capital > manifest

would produce the following:

mv very_lon very_long_name
mv 2xmany.dot 2.many.dots
mv illegalx illegal:
mv xprn.dev prn.dev
mv capital Capital

325

Notice that good.c did not require any conversion, so it did not appear in the output.

Suppose I’ve copied these files from the disk to another UNIX system, and I now want the files back to their original names.
If the file manifest (the output captured above) was sent along with those files, it could be used to convert the filenames.

BUGS
The short names generated by mkmanifest follow the old convention (from mtools-2.0.7) and not the one from Windows 95
and mtools-3.0.

SEE ALSO
arc(1), pcomm(1), mtools(1)

Local

mknod
mknod—Make special files

SYNOPSIS
mknod [options] filename {bcu} major minor
mknod [options] filename p

Options:

[–m mode] [--mode=mode] [--help] [--version]

DESCRIPTION
This manual page documents the GNU version of mknod. mknod creates a FIFO, character special file, or block special file with
the given filename. By default, the mode of created files is 0666 minus the bits set in the umask.

The argument after filename specifies the type of file to make:

p for a FIFO

b for a block (buffered) special file

c or u for a character (unbuffered) special file

When making a block or character special file, the major and minor device numbers must be given after the file type.

OPTIONS
–m, --mode mode Set the mode of created files to mode, which is symbolic as in chmod and uses the default mode as the point

of departure.

--help Print a usage message on standard output and exit successfully.

--version Print version information on standard output then exit successfully.

GNU File Utilities

mlabel
mlabel—Make an MS-DOS volume label

SYNOPSIS
mlabel [-v] drive: [new_label]

mlabel

Part I: User Commands326

DESCRIPTION
mlabel displays the current volume label, if present. If new_label is not given, and if neither the c nor the s options are set, it
prompts the user for a new volume label. To delete an existing volume label, press return at the prompt.

mlabel supports the following command-line option:

v Verbose mode. Display the new volume label if the label supplied is invalid.

c Clears an existing label, without prompting the user.

s Shows the existing label, without prompting the user.

Reasonable care is taken to create a valid MS-DOS volume label. If an invalid label is specified, mlabel will change the label
(and display the new label if the verbose mode is set).

Mlabel returns 0 on success or 1 on failure.

SEE ALSO
mformat(1)

Local

mmd
mmd—Make an MS-DOS subdirectory

SYNOPSIS
mmd [-voOsSrRA] msdosdirectory [msdosdirectories...]

DESCRIPTION
mmd makes a new directory on an MS-DOS filesystem.

mmd will allow the following command-line option:

v Verbose mode. Display the new directory name as it is created.

An error occurs if the directory already exists.

SEE ALSO
mtools(1), mrd(1),

Local

mmount
mmount—Mount an MS-DOS disk

SYNOPSIS
mmount msdosdrive [mountargs]

DESCRIPTION
mmount reads the boot sector of an MS-DOS disk, configures the drive geometry, and finally mounts it, passing mountargs to
mount. If no mount arguments are specified, the name of the device is used. If the disk is write-protected, it is automatically
mounted read-only.

327

SEE ALSO
mtools(1), mount(8)

Local

mmove
mmove—Move or rename an existing MS-DOS file or subdirectory

SYNOPSIS
mmove [-voOsSrRA] sourcefile targetfile
mmove [-voOsSrRA] sourcefile [sourcefiles...] targetdirectory

DESCRIPTION
mmove moves or renames an existing MS-DOS file or subdirectory.

mmove will allow the following command-line option:

v Verbose mode. Display the new filename if the name supplied is invalid.

Additionally, it allows the clash-handling options described in the man page for mtools.

MS-DOS subdirectory names are supported with either the / or \ separator. The use of the \ separator or wildcards will
require the names to be enclosed in quotes to protect them from the shell. Unlike the MS-DOS version of MOVE, mmove is able
to move subdirectories.

SEE ALSO
mren(1), mtools(1)

more
more—File perusal filter for crt viewing

SYNOPSIS
more [-dlfpcsu] [-num] [+/ pattern] [+ linenum]

DESCRIPTION
more is a filter for paging through text one screenful at a time. This version is especially primitive. Users should realize that
less(1) provides more(1) emulation and extensive enhancements.

OPTIONS
Command-line options are described in the following list. Options are also taken from the environment variable MORE (make
sure to precede them with a hyphen (-)) but command-line options will override them.

-num This option specifies an integer that is the screen size (in lines).

-d more will prompt the user with the message [Press space to continue, ‘q’ to quit.] and will display [Press ‘h’
for instructions.] instead of ringing the bell when an illegal key is pressed.

-l more usually treats (form feed) as a special character, and will pause after any line that contains a form feed. The -l
option will prevent this behavior.

-f Causes more to count logical, rather than screen lines (that is, long lines are not folded).

-p Do not scroll. Instead, clear the whole screen and then display the text.

-c Do not scroll. Instead, paint each screen from the top, clearing the remainder of each line as it is displayed.

more

Part I: User Commands328

-s Squeeze multiple blank lines into one.

-u Suppress underlining.

+/ The +/ option specifies a string that will be searched for before each file is displayed.

+num Start at line number.

COMMANDS
Interactive commands for more are based on vi(1). Some commands may be preceded by a decimal number, called k in the
following descriptions. In the following descriptions, ˆX means control-X.

h or ? Help: display a summary of these commands. If you forget all the other commands, remember this one.

SPACE Display next k lines of text. Defaults to current screen size.

z Display next k lines of text. Defaults to current screen size. Argument becomes new default.

RETURN Display next k lines of text. Defaults to 1. Argument becomes new default.

d or ˆD Scroll k lines. Default is current scroll size, initially 11. Argument becomes new default.

q or Q INTERRUPT Exit.

s Skip forward k lines of text. Defaults to 1.

f Skip forward k screenfuls of text. Defaults to 1.

b or ˆB Skip backwards k screenfuls of text. Defaults to 1.

‘ Go to place where previous search started.

= Display current line number.

/pattern Search for kth occurrence of regular expression. Defaults to 1.

n Search for kth occurrence of last r.e. Defaults to 1.

!<cmd> or :!<cmd> Execute <cmd> in a subshell.

v Start up /usr/bin/vi at current line.

ˆL Redraw screen.

:n Go to kth next file. Defaults to 1.

:p Go to kth previous file. Defaults to 1.

Ic :f Display current filename and line number.

. Repeat previous command.

ENVIRONMENT
more utilizes the following environment variables, if they exist:

MORE This variable may be set with favored options to more.

SHELL Current shell in use (normally set by the shell at login time).

TERM Specifies terminal type, used by more to get the terminal characteristics necessary to manipulate the screen.

SEE ALSO
vi(1), less(1)

AUTHORS
Eric Shienbrood, UC Berkeley. Modified by Geoff Peck, UCB to add underlining, single spacing. Modified by John
Foderaro, UCB to add -c and MORE environment variable.

HISTORY
The more command appeared in BSD 3.0. This man page documents more version 5.19 (Berkeley 29 June 1988), which is
currently in use in the Linux community. Documentation was produced using several other versions of the man page, and
extensive inspection of the source code.

Linux 0.98, 25 December 1992

329

mrd
mrd—Remove an MS-DOS subdirectory

SYNOPSIS
mrd [-v] msdosdirectory [msdosdirectories...]

DESCRIPTION
mrd removes a directory from an MS-DOS filesystem. mmd will allow the following command-line option:

v Verbose mode. Display the directory name as it is removed.

An error occurs if the directory does not exist or is not empty.

SEE ALSO
mtools(1), mmd(1), mdeltree(1)

Local

mread
mread—Read (copy) an MS-DOS file to UNIX

SYNOPSIS
mread [-tnvmoOsSrRA] msdosfile unixfile

mread [-tnvmoOsSrRA] msdosfile [msdosfiles...] unixdirectory

DESCRIPTION
This command is obsolete, and only supplied for backwards compatibility reasons with old scripts. Use mcopy instead.

SEE ALSO
mcopy(1), mtype(1), mtools(1)

mren
mren—Rename or move an existing MS-DOS file or subdirectory

SYNOPSIS
mren [-voOsSrRA] sourcefile targetfile

mmove [-voOsSrRA] sourcefile [sourcefiles...] targetdirectory

DESCRIPTION
mren renames an existing file on an MS-DOS filesystem.

Mren will allow the following command-line option:

voOsSrRA Verbose mode. Display the new filename if the name supplied is invalid.

If the first syntax is used (only one sourcefile), and if the target name doesn’t contain any slashes or colons, the file (or
subdirectory) will be renamed in the same directory, instead of being moved to the current mcd directory as would be the case
with mmove. Unlike the MS-DOS version of REN, mren can be used to rename directories.

mren

Part I: User Commands330

BUGS
Unlike the MS-DOS version of REN, mren can be used to rename directories.

SEE ALSO
mcd(1)

Local

mtest
mtest—Test the mtools configuration files

SYNOPSIS
mtest

DESCRIPTION
mtest reads the mtools configuration files and prints the cumulative configuration to stdout. The output can be used as a
configuration file itself (although you might want to remove redundant clauses). You may use this program to convert old-
style configuration files into new style configuration files.

SEE ALSO
mtools(5)

Local

mtools
mtools—A collection of tools for manipulating MS-DOS files

SYNOPSIS
The mtools are

mattrib—Change MS-DOS file attribute flags

mbadblocks—Test a floppy disk, and mark the bad blocks in the FAT

mcd—Change MS-DOS directory

mcopy—Copy MS-DOS files to/from UNIX

mdel—Delete an MS-DOS file

mdir—Display an MS-DOS directory

mformat—Add an MS-DOS filesystem to a low-level formatted floppy disk

mlabel—Make an MS-DOS volume label

mmd—Make an MS-DOS subdirectory

mmount—Mount an MS-DOS disk

mrd—Remove an MS-DOS subdirectory

mmove—Move or rename an MS-DOS file or subdirectory

mren—Rename an existing MS-DOS file

mtype—Display contents of an MS-DOS file

mtest—Test and display the configuration

331

DESCRIPTION
mtools is a public domain collection of programs to allow UNIX systems to read, write, and manipulate files on an MS-DOS
filesystem (typically a floppy disk). Where reasonable, each program attempts to emulate the MS-DOS equivalent command.
However, unnecessary restrictions and oddities of DOS are not emulated. For instance, it is possible to move subdirectories
from one subdirectory to another.

MS-DOS filenames are optionally composed of a drive letter followed by a colon, a subdirectory, and a filename. Filenames
without a drive letter refer to UNIX files. Subdirectory names can use either the / or \ separator. The use of the \ separator
or wildcards will require the names to be enclosed in quotes to protect them from the shell. (Note: Wildcards in UNIX
filenames should not be enclosed in quotes, because here users want the shell to expand them.)

DIFFERENCES WITH MS-DOS
The regular expression “pattern matching” routines follow the UNIX-style rules. For example, * matches all MS-DOS files
in lieu of *.*. The archive, hidden, read-only, and system attribute bits are ignored during pattern matching.

All options use the - (minus) flag, not / as you’d expect in MS-DOS.

Most mtools commands allow multiple filename parameters, which doesn’t follow MS-DOS conventions, but which is more
user friendly.

WORKING DIRECTORY
The mcd command is used to establish the device and the current working directory (relative to the MS-DOS filesystem);
otherwise, the default is assumed to be A:/. However, unlike MS-DOS, there is only one working directory, and not one per
drive.

VFAT-STYLE LONG FILENAMES
This version of mtools supports VFAT-style long filenames. If a UNIX filename is too long to fit in a short DOS name, it is
stored as a VFAT long name, and a companion short name is generated. This short name is what you see when you examine
the disk with a pre-7.0 version of DOS. The following table shows some examples of short names:

UNIX Name MS-DOS Name Reason for the Change

thisisatest THISISAT Filename too long
alain.knaff ALAIN.KNA Extension too long
prn.txt XRN.TXT PRN is a device name
.abc X.ABC Null filename
hot+cold HOTXCOLD Illegal character

The initial UNIX-style filename (whether long or short) is also called primary name, and the derived short name is also called
secondary name.

Example:

mcopy /etc/motd a:Reallylongname

mtools creates a VFAT entry for Reallylongname, and uses REALLYLO as a short name. Reallylongname is the primary name, and
REALLYLO is the secondary name.

In this example:

copy /etc/motd a:motd

motd fits into the DOS filename limits. mtools doesn’t need to derivate another name. motd is the primary name, and there is
no secondary name.

In a nutshell: The primary name is the long name, if one exists, or the short name if there is no long name.

mtest

Part I: User Commands332

NAME CLASHES
When writing a file to disk, its long name (primary name) or short name may collide with an already existing file or
directory. This may happen for all commands that create new directory entries: mcopy, mmd, mren, mmove, mwrite, and mread.

When a name clash happens, mtools asks you what it should do. It offers several choices:

overwrite Overwrites the existing file. It is not possible to overwrite a directory with a file.

rename Renames the newly created file. mtools will prompt for the new filename.

autorename Renames the newly created file. mtools will chose a name by itself, without prompting.

skip Gives up on this file, and moves on to the next (if any).

To choose an option, type its first letter at the prompt. If you use a lowercase letter, the option applies for this file only; if
you use an uppercase letter, the option applies to all files.

You may also choose options (for all files) on the command line when invoking mtools:

-o Overwrites primary names by default

-O Overwrites secondary names by default

-r Renames primary name by default

-R Renames secondary name by default

-a Autorenames primary name by default

-A Autorenames secondary name by default

-s Skips primary name by default

-S Skips secondary name by default

-m Asks user what to do with primary name

-M Asks user what to do with secondary name

By default, the user is prompted if the primary name clashes, and the secondary name is autorenamed.

If a name clash occurs in a UNIX directory, mtools only asks whether to overwrite the file or to skip it.

CASE SENSITIVITY OF THE VFAT FILESYSTEM
The VFAT filesystem is able to remember the case of the filenames. However, filenames that differ only in case are not
allowed to coexist in the same directory. For example if you store a file called LongFileName on a VFAT filesystem, mdir will
show this file as LongFileName, and not as Longfilename. However, if you then try to add LongFilename to the same directory,
it will be refused, because case is ignored for clash checks.

The VFAT filesystem allows the storing of the case of a filename in the attribute byte, if all letters of the filename are the
same case, and if all letters of the extension are the same case too. mtools uses this information when displaying the files, and
also to generate the UNIX when mcopying to a UNIX directory. This may have unexpected results when applied to files
written using a pre-7.0 version of DOS; indeed, these filenames map to all uppercase. This is different from the behavior of
the old version of mtools, which used to generate lowercase UNIX filenames.

XDF DISKS (LINUX ONLY)
Xdf is a high-capacity format supported by OS/2. It can hold 1,840KB per disc. That’s not very high compared to the best
2m formats, but its main advantage is that it is fast: 600 milliseconds per track. That’s faster than the good old 21 sector
format, and almost as fast as the standard 18 sector format. In order to access these disks, set the use_xdf variable for the
drive. See mtools(5) for details on how to do this. Fast Xdf access is only available for kernels more recent than 1.1.34.

CAUTION

Attention distributors: If mtools is compiled on Linux, on a kernel more recent than 1.3.34, it won’t run on an older
kernel. However, if it has been compiled on an older kernel, it will still run on a newer kernel, except that Xdf access is

333

slower. It is recommended that distribution authors only include mtools binaries compiled on kernels older than 1.3.34
until 2.0 comes out. When 2.0 is out, mtools binaries compiled on newer kernels may (and should) be distributed. mtools
binaries compiled on kernels older than 1.3.34 won’t run on any kernel 2.1 or later.

EXIT CODES
All the mtools commands return 0 on success, 1 on utter failure, or 2 on partial failure. All the mtools commands perform a
few sanity checks before going ahead, to make sure that the disk is indeed an MS-DOS disk (as opposed to, say, an ext2 or
minix disk). These checks may reject partially corrupted disks, which might otherwise still be readable. To avoid these
checks, set the MTOOLS_SKIP_CHECK environmental variable.

SEE ALSO
mattrib(1), mbadblocks(1), mcd(1), mdel(1), mformat(1), mmove(1), mrd(1), mren(1), mtype(1), mcopy(1), mdir(1), mlabel(1),
mmd(1), mmount(1)

BUGS
An unfortunate side effect of not guessing the proper device (when multiple disk capacities are supported) is an occasional
error message from the device driver. These can be safely ignored.

The fat checking code chokes on 1.72MB disks mformatted with pre-2.0.7 mtools. Set the environmental variable
MTOOLS_FAT_COMPATIBILITY to bypass the fat checking.

The support for non-Linux OS variants has not been tested for a long time. It may contain bugs, or even not work at all.

Local

mtvtoppm
mtvtoppm—Convert output from the MTV or PRT ray tracers into a portable pixmap

SYNOPSIS
mtvtoppm [mtvfile]

DESCRIPTION
mtvtoppm reads an input file from Mark Van De Wettering’s MTV ray tracer and produces a portable pixmap as output.

The PRT ray tracer also produces this format.

SEE ALSO
ppm(5)

AUTHOR
Copyright  1989 by Jef Poskanzer

2 February 1989

mtype
mtype—Display contents of an MS-DOS file

SYNOPSIS
mtype [-ts] msdosfile [msdosfiles...]

mtype

Part I: User Commands334

DESCRIPTION
mtype displays the specified MS-DOS file on the screen.

mtype will allow the following command-line options:

t Text file viewing. mtype will translate incoming carriage return/line feeds to line feeds.

s Strip high bit. mtype will strip the high bit from the data.

MS-DOS subdirectory names are supported with either the / or \ separator. The use of the \ separator or wildcards will
require the names to be enclosed in quotes to protect them from the shell.

The mcd command may be used to establish the device and the current working directory (relative to MS-DOS); otherwise,
the default is A:/.

mtype returns 0 on success, 1 on utter failure, or 2 on partial failure.

SEE ALSO
mcd(1), mread(1)

BUGS
Allows multiple arguments, which does not follow the MS-DOS convention.

Local

mv
mv—Rename files

SYNOPSIS
mv [options] source dest
mv [options] source... directory

Options:

[–bfiuv] [–S backup-suffix] [–V {numbered,existing,simple}] [--backup] [--force]
[--interactive] [--update] [--verbose] [--suffix=backup-suffix]
[--version-control={numbered,existing,simple}] [--help] [--version]

DESCRIPTION
This manual page documents the GNU version of mv. If the last argument names an existing directory, mv moves each other
given file into a file with the same name in that directory. Otherwise, if only two files are given, it moves the first onto the
second. It is an error if the last argument is not a directory and more than two files are given. It can move only regular files
across filesystems. If a destination file is unwritable, the standard input is a tty, and the –f or --force option is not given, mv
prompts the user for whether to overwrite the file. If the response does not begin with y or Y, the file is skipped.

OPTIONS
–b, --backup Make backups of files that are about to be removed.

–f, --force Remove existing destination files and never prompt the user.

–i, --interactive Prompt whether to overwrite each destination file that already exists. If the response does
not begin with y or Y, the file is skipped.

–u, --update Do not move a nondirectory that has an existing destination with the same or newer
modification time.

–v, --verbose Print the name of each file before moving it.

--help Print a usage message on standard output and exit successfully.

--version Print version information on standard output, then exit successfully.

335

–S, --suffix backup-suffix The suffix used for making simple backup files can be set with the SIMPLE_BACKUP_SUFFIX
environment variable, which can be overridden by this option. If neither of those is given,
the default is ˜, as it is in Emacs.

–V, --version-control The type of backups made can be set with the VERSION_CONTROL environment variable, which
{numbered,existing,simple} can be overridden by this option. If VERSION_CONTROL is not set and this option is not given,

the default backup type is existing. The value of the VERSION_CONTROL environment variable
and the argument to this option are like the GNU Emacs version-control variable; they
also recognize synonyms that are more descriptive.

The valid values are the following (unique abbreviations are accepted):

t or numbered--Always make numbered backups.

nil or existing--Make numbered backups of files that already have them, simple backups of
the others.

never or simple—Always make simple backups.

GNU File Utilities

mwrite
mwrite—Low-level write (copy) a UNIX file to MS-DOS

SYNOPSIS
mwrite [-tnvmoOsSrRA] unixfile msdosfile

mwrite [-tnvmoOsSrRA] unixfile [unixfiles...] msdosdirectory

DESCRIPTION
This command is obsolete and only supplied for backward compatibility reasons with old scripts. Use mcopy instead.

SEE ALSO
mcopy(1), mtools(1)

Local

namei
namei—Follow a pathname until a terminal point is found

SYNOPSIS
namei [-mx] pathname [pathname ...]

DESCRIPTION
namei uses its arguments as pathnames to any type of UNIX file (symlinks, files, directories, and so forth). namei then follows
each pathname until a terminal point is found (a file, directory, char device, and so on). If it finds a symbolic link, the user
shows the link, and starts following it, indenting the output to show the context.

This program is useful for finding too many levels of symbolic links problems.

For each line output, namei outputs the following characters to identify the file types found:

f: The pathname the user is currently trying to resolve

d Directory

l Symbolic link (both the link and its contents are output)

s Socket

namei

Part I: User Commands336

b Block device

c Character device

- Regular file

? An error of some kind

Namei prints an informative message when the maximum number of symbolic links this system can have has been exceeded.

OPTIONS
-x Show mount point directories with a D rather than a d.

-m Show the mode bits of each file type in the style of ls(1), for example, rwxr-xr-x.

AUTHOR
Roger Southwick (rogers@amadeus.wr.tek.com)

BUGS
To be discovered

CAVEATS
namei will follow an infinite loop of symbolic links forever. To escape, use SIGINT (usually ˆC).

SEE ALSO
ls(1), stat(1)

Local

newaliases
newaliases—Rebuild the database for the mail aliases file

SYNOPSIS
newaliases

DESCRIPTION
newaliases rebuilds the random access database for the mail aliases file. It must be run each time it is changed in order for the
change to take effect.

SEE ALSO
aliases(5), sendmail(8)

HISTORY
The newaliases command appeared in BSD 4.0.

BSD 4, 30 July 1991

newgrp
newgrp—Log in to a new group

SYNOPSIS
newgrp [group]

337

DESCRIPTION
newgrp changes the group identification of its caller, analogously to login(1). The same person remains logged in, and
the current directory is unchanged, but calculations of access permissions to files are performed with respect to the new
group ID.

If no group is specified, the GID is changed to the login GID.

FILES
/etc/group
/etc/passwd

SEE ALSO
login(1), group(5)

Linux 0.99, 9 October 1993

nl
nl—Number lines of files

SYNOPSIS
nl [–h header-style] [–b body-style] [–f footer-style] [–p] [–d cc]
[–v start-number] [–i increment] [–l lines] [–s line-separator]
[–w line-no-width] [–n {ln,rn,rz}] [--header-numbering=style]
[--body-numbering=style] [--footer-numbering=style]
[--first-page=number] [--page-increment=number] [--no-renumber]
[--join-blank-lines=number] [--number-separator=string]
[--number-width=number] [--number-format={ln,rn,rz}]
[--section-delimiter=cc] [--help] [--version] [file...]

DESCRIPTION
This manual page documents the GNU version of nl. nl copies each given file, or the standard input if none are given or
when a file named – is given, to the standard output, with line numbers added to some or all of the lines.

nl considers its input to be composed of logical pages; by default, the line number is reset to 1 at the top of each logical page.
nl treats all of the input files as a single document; it does not reset line numbers or logical pages between files.

A logical page consists of three sections: header, body, and footer. Any of the sections can be empty. Each can be numbered
in a different style from the others.

The beginnings of the sections of logical pages are indicated in the input file by a line containing nothing except one of the
following delimiter strings:

\:\:\: start of header
\:\: start of body
\: start of footer

The two characters from which these strings are made can be changed with an option (see the next subsection), but the
pattern and length of each string cannot be changed.

The section delimiter strings are replaced by an empty line on output. Any text that comes before the first section delimiter
string in the input file is considered to be part of a body section, so a file that does not contain any section delimiter strings is
considered to consist of a single body section.

OPTIONS
–h, --header-numbering=style See --footer-numbering.

–b, --body-numbering=style See --footer-numbering.

nl

Part I: User Commands338

–f, --footer-numbering=style Select the numbering style for lines in the footer section of each logical page. When a line is
not numbered, the current line number is not incremented, but the line number separator
character is still prepended to the line. The styles are

a Number all lines

t Number only nonempty lines (default for body)

n Number no lines (default for header and footer)

pregexp Number only lines that contain a match for regexp

–p, --no-renumber Do not reset the line number at the start of a logical page.

–v, --first-page=number Set the initial line number on each logical page to number (default 1).

–i, --page-increment=number Increment line numbers by number (default 1).

–l, --join-blank-lines=number Consider number (default 1) consecutive empty lines to be one logical line for numbering,
and only number the last one. Where fewer than number consecutive empty lines occur, do
not number them. An empty line is one that contains no characters, not even spaces or tabs.

–s, --number-separator=string Separate the line number from the text line in the output with string (default is a tab
character).

–w, --number-width=number Use number characters for line numbers (default 6).

–n, --number-format={ln,rn,rz} Select the line numbering format:

ln Left justified, no leading zeros

rn Right justified, no leading zeros (default)

rz Right justified, leading zeros

–d, --section-delimiter=cc Set the two delimiter characters that indicate the beginnings of logical page sections; if only
one is given, the second remains :. To enter \, use \\.

--help Print a usage message and exit with a nonzero status.

--version Print version information on standard output, then exit.

GNU Text Utilities

nlmconv
nlmconv—Convert object code into an NLM

SYNOPSIS
nlmconv[–Ibfdname|--input–target=bfdname] [–Obfdname|
--output–target=bfdname] [–Theaderfile|--header–file=headerfile]
[–V|--version][--help] infile outfile

DESCRIPTION
nlmconv converts the relocatable object file infile into the NetWare Loadable Module (NLM) outfile, optionally reading
headerfile for NLM header information. For instructions on writing the NLM command file language used in header files,
see The NetWare Tool Maker Specification Manual, available from Novell, Inc. nlmconv currently works with i386 object files
in COFF, ELF, ora.out format, and with SPARC object files in ELF or a.out format. nlmconv uses the GNU binary file
descriptor library to read infile.

OPTIONS
–I bfdname, Consider the source file’s object format to be bfdname, rather than attempting to deduce it.
--input–target=bfdname

–O bfdname, Write the output file using the object format bfdname. nlmconv infers the output format
--output–target=bfdname based on the input format, for example, for an i386 input file the output format is

nlm32–i386.

339

–T headerfile, Reads headerfile for NLM header information. For instructions on writing the NLM
--header–file=headerfile command file language used in header files, see The NetWare Tool Maker Specification

Manual, available from Novell, Inc.

–V, --version Show the version number of nlmconv and exit.

–h, --help Show a summary of the options to nlmconv and exit.

SEE ALSO
binutils entry in info; The GNU Binary Utilities, Roland H. Pesch (June 1993).

COPYING
Copyright  1993 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions
for modified versions, except that this permission notice may be included in translations approved by the Free Software
Foundation instead of in the original English.

Cygnus support, June 1993

nm
nm—List symbols from object files

SYNOPSIS
nm [–a|--debug–syms][–g|--extern–only][–B][–C|--demangle]
[–D|--dynamic][–s|--print–armap][–o|--print–file–name]
[–n|--numeric–sort][–p|--no–sort][–r|--reverse–sort][--size–sort]
[–u|--undefined–only][--help][--version][–t radix|--radix=radix]
[–P|–portability] [–f format|--format=format][--target=bfdname][objfile ...]

DESCRIPTION
GNU nm lists the symbols from object files objfile. If no object files are given as arguments, nm assumes a.out.

OPTIONS
The long and short forms of options, shown here as alternatives, are equivalent.

–A, –o

--print–file–name Precede each symbol by the name of the input file where it was found, rather than
identifying the input file once only before all of its symbols.

–a, --debug–syms Display debugger-only symbols; normally these are not listed.

–B The same as --format=bsd (for compatibility with the MIPS nm).

–C, --demangle Decode (demangle) low-level symbol names into user-level names. Besides removing any
initial underscore prepended by the system, this makes C++ function names readable.

–D, --dynamic Display the dynamic symbols rather than the normal symbols. This is only meaningful for
dynamic objects, such as certain types of shared libraries.

–f format Use the output format format, which can be bsd, sysv, or posix. The default is bsd. Only the
first character of format is significant; it can be either uppercase or lowercase.

–g, --extern–only Display only external symbols.

–n, –v, --numeric–sort Sort symbols numerically by their addresses, not alphabetically by their names.

nm

Part I: User Commands340

–p, --no–sort Don’t bother to sort the symbols in any order; just print them in the order encountered.

–P, --portability Use the POSIX.2 standard output format instead of the default format. Equivalent to –f
posix.

–s, --print–armap When listing symbols from archive members, include the index, a mapping (stored in the
archive by ar or ranlib) of which modules contain definitions for what names.

–r, --reverse–sort Reverse the sense of the sort (whether numeric or alphabetic); let the last come first.

--size–sort Sort symbols by size. The size is computed as the difference between the value of the symbol
and the value of the symbol with the next higher value. The size of the symbol is printed,
rather than the value.

–t radix, --radix=radix Use radix as the radix for printing the symbol values. It must be d for decimal, o for octal,
or x for hexadecimal.

--target=bfdname Specify an object code format other than your system’s default format. See objdump(1) for
information on listing available formats.

–u, --undefined–only Display only undefined symbols (those external to each object file).

–V, --version Show the version number of nm and exit.

--help Show a summary of the options to nm and exit.

SEE ALSO
binutils entry in info; The GNU Binary Utilities, Roland H. Pesch (October 1991); ar(1), objdump(1), ranlib(1).

COPYING
Copyright  1991 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions
for modified versions, except that this permission notice may be included in translations approved by the Free Software
Foundation instead of in the original English.

Cygnus support, 5 November 1991

nntpget
nntpget—Get Usenet articles from a remote NNTP server

SYNOPSIS
nntpget [–d dist][–f file][–n newsgroups][–t timestring][–o][–u file][–v] host

DESCRIPTION
nntpget connects to the NNTP server at the specified host and retrieves articles from it. The articles are sent to standard
output.

The –o flag may be used only if the command is executed on the host where the innd(8) server is running. If this flag is used,
nntpget connects to the specified remote host to retrieve articles. Any article not present in the local history database is then
fetched from the remote site and offered to the local server.

If the –v flag is used with the –o flag, then the Message-ID of each article will be sent to standard output as it is processed.

The list of article Message-IDs is normally read from standard input. If the –f flag is used, then a newnews command is used
to retrieve all articles newer than the modification date of the specified file. The –u flag is the same except that if the transfer
succeeded, the file will be updated with a statistics line, modifying its timestamp so that it can be used in later invocations. If
the –t flag is used, then the specified timestring is used as the time and date parameter to the newnews command.

341

If either the –t or –f flags are used, then the –n flag may be used to specify a newsgroup list and the –d flag may be used to
specify a distribution list. The default is * for all newsgroups, and no distribution list.

BUGS
Truncates articles at 512 lines.

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
innd(8)

objcopy
objcopy—Copy and translate object files

SYNOPSIS
objcopy [–Fbfdname|--target=bfdname]
[–Ibfdname| --input–target=bfdname] [–Obfdname|
--output–target=bfdname] [–Rsectionname|
--remove–section=sectionname] [–S| --strip–all][–g|
--strip–debug][–x|--discard–all][–X|
--discard–locals][–bbyte|--byte=byte] [–iinterleave|
--interleave=interleave] [–v|--verbose][–V|
--version][--help] infile [outfile]

DESCRIPTION
The GNU objcopy utility copies the contents of an object file to another. objcopy uses the GNU BFD library to read and
write the object files. It can write the destination object file in a format different from that of the source object file. The exact
behavior of objcopy is controlled by command-line options.

objcopy creates temporary files to do its translations and deletes them afterward. objcopy uses BFD to do all its translation
work; it knows about all the formats BFD knows about, and thus is able to recognize most formats without being told
explicitly.

infile and outfile are the source and output files, respectively. If you do not specify outfile, objcopy creates a temporary file
and destructively renames the result with the name of the input file.

OPTIONS
–I bfdname, Consider the source file’s object format to be bfdname, rather than attempting to deduce it.
--input–target=bfdname

–O bfdname, Write the output file using the object format bfdname.
--output–target=bfdname

–F bfdname, Use bfdname as the object format for both the input and the output file; that is, simply
--target=bfdname transfer data from source to destination with no translation.

–R sectionname, Remove the named section from the file. This option may be given more than once. Note
--remove-section, =sectionname that using this option inappropriately may make the output file unusable.

–S, --strip–all Do not copy relocation and symbol information from the source file.

–g, --strip–debug Do not copy debugging symbols from the source file.

–x, --discard–all Do not copy nonglobal symbols from the source file.

–X, --discard–locals Do not copy compiler-generated local symbols. (These usually start with L or .).

objcopy

Part I: User Commands342

–b byte, --byte=byte Keep only every byte byte of the input file (header data is not affected). byte can be in the
range from 0 to the interleave-1. This option is useful for creating files to program ROMs.
It is typically used with an srec output target.

–i interleave, Only copy one out of every interleave bytes. The one to copy is selected by the –b or
--interleave=interleave --byte option. The default is 4. The interleave is ignored if neither –b nor --byte is given.

–v, --verbose Verbose output: list all object files modified. In the case of archives, objcopy –V lists all
members of the archive.

–V, --version Show the version number of objcopy and exit.

--help Show a summary of the options to objcopy and exit.

SEE ALSO
binutils entry in info; The GNU Binary Utilities, Roland H. Pesch (June 1993).

COPYING
Copyright  1993 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions
for modified versions, except that this permission notice may be included in translations approved by the Free Software
Foundation instead of in the original English.

Cygnus support, June 1993

objdump
objdump—Display information from object files.

SYNOPSIS
objdump [–a|--archive–headers][–b\ bfdname | --target= bfdname]
[–d|--disassemble][–D|--disassemble-all][–f|--file–headers]
[–h|--section–headers | --headers][–i|--info][–j\ section
| --section= section][–l|--line–numbers][–m\ machine | --
-architecture= machine][–r|--reloc][–R|--dynamic–reloc]
[–s|--full–contents][--stabs][–t|--syms][–T|--dynamic–
syms][–x|--all–headers][--version][--help] objfile ...

DESCRIPTION
objdump displays information about one or more object files. The options control what particular information to display. This
information is mostly useful to programmers who are working on the compilation tools, as opposed to programmers who
just want their program to compile and work.

objfile... are the object files to be examined. When you specify archives, objdump shows information on each of the member
object files.

OPTIONS
Where long and short forms of an option are shown together, they are equivalent. At least one option besides –l (--line–
numbers) must be given.

–a, --archive–headers If any files from objfile are archives, display the archive header information (in a format
similar to ls –l). Besides the information you could list with ar tv, objdump –a shows the
object file format of each archive member.

343

–b bfdname, Specify the object-code format for the object files to be bfdname. This may not be necessary;
--target=bfdname objdump can automatically recognize many formats. For example, objdump –b oasys –m vax –

h fu.o displays summary information from the section headers (–h) of fu.o, which is
explicitly identified (–m) as a Vax object file in the format produced by Oasys compilers. You
can list the formats available with the –i option.

–d, --disassemble Display the assembler mnemonics for the machine instructions from objfile. This option
only disassembles those sections that are expected to contain instructions.

–D, --disassemble-all Like –d, but disassemble the contents of all sections, not just those expected to contain
instructions.

–f, --file–headers Display summary information from the overall header of each file in objfile.

–h, --section–headers, Display summary information from the section headers of the object file.
--headers

--help Print a summary of the options to objdump and exit.

–i, --info Display a list showing all architectures and object formats available for specification with –b
or –m.

–j name, --section=name Display information only for section name.

–l, --line–numbers Label the display (using debugging information) with the filename and source line numbers
corresponding to the object code shown. Only useful with –d or –D.

–m machine, Specify the object files objfile are for architecture machine. You can list available architec-
--architecture=machine tures using the –i option.

–r, --reloc Print the relocation entries of the file. If used with –d or –D, the relocations are printed
interspersed with the disassembly.

–R, --dynamic–reloc Print the dynamic relocation entries of the file. This is only meaningful for dynamic objects,
such as certain types of shared libraries.

–s, --full–contents Display the full contents of any sections requested.

--stabs Display the contents of the .stab, .stab.index, and .stab.excl sections from an ELF file.
This is only useful on systems (such as Solaris 2.0) in which .stab debugging symbol-table
entries are carried in an ELF section. In most other file formats, debugging symbol-table
entries are interleaved with linkage symbols, and are visible in the --syms output.

–t, --syms Symbol table. Print the symbol table entries of the file. This is similar to the information
provided by the nm program.

–T, --dynamic–syms Dynamic symbol table. Print the dynamic symbol table entries of the file. This is only
meaningful for dynamic objects, such as certain types of shared libraries. This is similar to
the information provided by the nm program when given the –D (--dynamic) option.

--version Print the version number of objdump and exit.

–x, --all–headers Display all available header information, including the symbol table and relocation entries.
Using –x is equivalent to specifying all of –a –f –h –r –t.

SEE ALSO
binutils entry in info; The GNU Binary Utilities, Roland H. Pesch (October 1991); nm(1).

COPYING
Copyright  1991 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions
for modified versions, except that this permission notice may be included in translations approved by the Free Software
Foundation instead of in the original English.

Cygnus support, 5 November 1991

objcopy

Part I: User Commands344

oclock
oclock—Round X clock

SYNOPSIS
oclock [–option ...]

DESCRIPTION
oclock simply displays the current time on an analog display.

OPTIONS
–fg color Choose a different color for both hands and the jewel on the clock

–bg color Choose a different color for the background.

–jewel color Choose a different color for the jewel on the clock.

–minute color Choose a different color for the minute hand of the clock.

–hour color Choose a different color for the hour hand of the clock.

–backing { WhenMapped Select an appropriate level of backing store.
Always NotUseful}

–geometry geometry Define the initial window geometry; see X(1).

–display display Specify the display to use; see X(1).

–bd color Choose a different color for the window border.

–bw width Choose a different width for the window border. As the Clock widget changes its border around
quite a bit, this is most usefully set to zero.

–shape Cause the clock to use the Shape extension to create an oval window. This is the default unless the
shapeWindow resource is set to false.

–noshape Cause the clock to not reshape itself and ancestors to exactly fit the outline of the clock.

–transparent Cause the clock to consist only of the jewel, the hands, and the border.

COLORS
If you would like your clock to be viewable in color, include the following in the #ifdef COLOR section you read with xrdb:

*customization: -color

This will cause oclock to pick up the colors in the app-defaults color customization file: <XRoot>/lib/X11/app-defaults/
Clock-color. The default colors are

Clock*Background Gray

Clock*BorderColor Light blue

Clock*hour Yellow

Clock*jewel Yellow

Clock*minute Yellow

SEE ALSO
X(1), X Toolkit documentation

AUTHOR
Keith Packard, MIT X Consortium

X Version 11 Release 6

345

od
od—Dump files in octal and other formats

SYNOPSIS
od [–abcdfhiloxv] [–s[bytes]] [–w[bytes]] [–A radix] [–j bytes] [–N bytes]
[–t type] [--skip–bytes=bytes] [--address–radix=radix] [--read–bytes=bytes]
[--format=type] [--output–duplicates] [--strings[=bytes]] [--width[=bytes]]
[--traditional] [--help] [--version] [file...]

DESCRIPTION
This manual page documents the GNU version of od. od writes to the standard output the contents of the given files, or of
the standard input if the name – is given. Each line of the output consists of the offset in the input file in the leftmost
column of each line, followed by one or more columns of data from the file, in a format controlled by the options. By
default, od prints the file offsets in octal and the file data as two-byte octal numbers.

OPTIONS
–A, --address–radix=radix Select the base in which file offsets are printed. radix can be one of the following:

d Decimal

o Octal

x Hexadecimal

n None (do not print offsets)

The default is octal.

–j, --skip–bytes=bytes Skip bytes input bytes before formatting and writing. If bytes begins with 0x or 0X, it is
interpreted in hexadecimal; otherwise, if it begins with 0, in octal; otherwise, in decimal.
Appending b multiplies it by 512, k by 1024, and m by 1048576.

–N, --read–bytes=bytes Only output up to bytes bytes of each input file. Any prefixes and suffixes on bytes are
interpreted as for the –j option.

–t, --format=type Select the format in which to output the file data. type is a string of one or more of the
following type indicator characters. If you include more than one type indicator character in
a single type string or use this option more than once, od writes one copy of each output
line using each of the data types that you specified, in the order that you specified.

a Named character

c ASCII character or backslash escape

d Signed decimal

f Floating point

o Octal

u Unsigned decimal

x Hexadecimal

Except for types a and c, you can specify the number of bytes to use in interpreting each
number in the given data type by following the type indicator character with a decimal
integer. Alternately, you can specify the size of one of the C compiler’s built-in data types by
following the type indicator character with one of the following characters. For integers (d,
o, u, x):

C char

S short

I int

L long

od

Part I: User Commands346

For floating point (f):

F float

D double

L long double

–v, --output–duplicates Output consecutive lines that are identical. By default, when two or more consecutive
output lines would be equal, od outputs only the first line, and puts just an asterisk on the
following line to indicate that identical lines have been elided.

–s, --strings[=bytes] Instead of the normal output, output only string constants in the input, which are a run of
at least bytes ASCII graphic (or formatting) characters, terminated by a NUL. If bytes is
omitted, it defaults to 3.

–w, --width[=bytes] The number of input bytes to format per output line. It must be a multiple of the least
common multiple of the sizes associated with the specified output types. If bytes is omitted,
it defaults to 32. If this option is not given, it defaults to 16.

--help Print a usage message and exit with a nonzero status.

--version Print version information on standard output, then exit.

The next several options map the old, pre-POSIX format specification options to the corresponding POSIX format specs.
GNU od accepts any combination of old- and new-style options. Format specification options accumulate.

–a Output as named characters. Equivalent to –t a.

–b Output as octal bytes. Equivalent to –t oC.

–c Output as ASCII characters or backslash escapes. Equivalent to –t c.

–d Output as unsigned decimal shorts. Equivalent to –t u2.

–f Output as floats. Equivalent to –t fF.

–h Output as hexadecimal shorts. Equivalent to –t x2.

–i Output as decimal shorts. Equivalent to –t d2.

–l Output as decimal longs. Equivalent to –t d4.

–o Output as octal shorts. Equivalent to –t o2.

–x Output as hexadecimal shorts. Equivalent to –t x2.

--traditional Recognize the pre-POSIX nonoption arguments that some older versions of od accepted.
The following syntax:

od --traditional [file] [[+]offset[.][b] [[+]label[.][b]]]

can be used to specify at most one file and optional arguments specifying an offset and a
pseudo-start address, label. By default, offset is interpreted as an octal number specifying
how many input bytes to skip before formatting and writing. The optional trailing decimal
point forces the interpretation of offset as a decimal number. If no decimal is specified and
the offset begins with 0x or 0x, it is interpreted as a hexadecimal number. If there is a trailing
b, the number of bytes skipped will be offset multiplied by 512. The label argument is
interpreted just like offset, but it specifies an initial pseudo-address. The pseudo addresses
are displayed in parentheses following any normal address.

GNU Text Utilities

passwd
passwd—Change password

SYNOPSIS
passwd [name]

347

DESCRIPTION
passwd changes the specified user’s password. Only the superuser is allowed to change other users’ passwords. If the user is
not root, then the old password is prompted for and verified.

A new password is prompted for twice, to avoid typing mistakes. Unless the user is the superuser, the new password must
have more than six characters, and must have either both uppercase and lowercase letters, or nonletters. Some passwords that
are similar to the user’s name are not allowed.

FILES
/etc/passwd
/etc/shells

SEE ALSO
chsh(1), chfn(1)

BUGS
A password consisting of all digits is allowed.

No warnings are printed if the superuser chooses a poor password.

The –f and –s options are not supported.

AUTHOR
Peter Orbaek (poe@daimi.aau.dk)

Linux 1.0, 22 June 1994

paste
paste—Merge lines of files

SYNOPSIS
paste [–s] [–d delim-list] [--serial] [--delimiters=delim-list] [--help]
[--version] [file...]

DESCRIPTION
This manual page documents the GNU version of paste. paste prints lines consisting of sequentially corresponding lines of
each given file, separated by tabs, terminated by a newline. If no files are given, the standard input is used. A filename of -
means standard input.

OPTIONS
–s, --serial Paste the lines of one file at a time rather than one line from each file.

–d, --delimiters delim-list Consecutively use the characters in delim-list instead of TAB to separate merged lines.
When delim-list is exhausted, start again at its beginning.

--help Print a usage message and exit with a nonzero status.

--version Print version information on standard output, then exit.

GNU Text Utilities

paste

Part I: User Commands348

pbmclean
pbmclean—Flip isolated pixels in portable bitmap

SYNOPSIS
pbmclean [-connect] [pbmfile]

DESCRIPTION
pbmclean reads a portable bitmap as input and outputs a portable bitmap with every pixel that has less than connect identical
neighbors inverted. pbmclean can be used to clean up “snow” on bitmap images.

SEE ALSO
pbm(5)

AUTHOR
Copyright  1990 by Angus Duggan. Copyright  1989 by Jef Poskanzer.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation. This software is provided “as is” without express or implied
warranty.

pbmfilters
pbmfilters—List of all programs in the PBMPlus package

DESCRIPTION
anytopnm Attempt to convert an unknown type of image file to a portable anymap

asciitopgm Convert ASCII graphics into a portable graymap

atktopbm Convert Andrew Toolkit raster object to a portable bitmap

bioradtopgm Convert a Biorad confocal file into a portable graymap

bmptoppm Convert a BMP file into a portable pixmap

brushtopbm Convert a doodle brush file into a portable bitmap

cmuwmtopbm Convert a CMU window manager bitmap into a portable bitmap

fitstopnm Convert a FITS file into a portable anymap

fstopgm Convert a Usenix FaceSaver file into a portable graymap

g3topbm Convert a Group 3 fax file into a portable bitmap

gemtopbm Convert a GEM IMG file into a portable bitmap

giftopnm Convert a GIF file into a portable anymap

gouldtoppm Convert Gould scanner file into a portable pixmap

hipstopgm Convert a HIPS file into a portable graymap

hpcdtoppm Convert a Photo-CD file into a portable pixmap

icontopbm Convert a Sun icon into a portable bitmap

ilbmtoppm Convert an ILBM file into a portable pixmap

imgtoppm Convert an IMG-whatnot file into a portable pixmap

lispmtopgm Convert a Lisp machine bitmap file into PGM format

macptopbm Convert a MacPaint file into a portable bitmap

mgrtopbm Convert an MGR bitmap into a portable bitmap

mtvtoppm Convert output from the MTV or PRT ray tracers into a portable pixmap

349

pbmclean Flip isolated pixels in portable bitmap

pbmlife Apply Conway’s Rules of Life to a portable bitmap

pbmmake Create a blank bitmap of a specified size

pbmmask Create a mask bitmap from a regular bitmap

pbmpscale Enlarge a portable bitmap with edge smoothing

pbmreduce Read a portable bitmap and reduce it N times

pbmtext Render text into a bitmap

pbmto10x Convert a portable bitmap into Gemini 10X printer graphics

pbmto4425 Display PBM images on an AT&T 4425 terminal

pbmtoascii Convert a portable bitmap into ASCII graphics

pbmtoatk Convert a portable bitmap to Andrew Toolkit raster object

pbmtobg Convert a portable bitmap into BitGraph graphics

pbmtocmuwm Convert a portable bitmap into a CMU window manager bitmap

pbmtoepsi Convert a portable bitmap into an encapsulated PostScript

pbmtoepson Convert a portable bitmap into Epson printer graphics

pbmtog3 Convert a portable bitmap into a Group 3 fax file

pbmtogem Convert a portable bitmap into a GEM IMG file

pbmtogo Convert a portable bitmap into compressed GraphOn graphics

pbmtoicon Convert a portable bitmap into a Sun icon

pbmtolj Convert a portable bitmap into HP LaserJet format

pbmtoln03 Convert portable bitmap to DEC LN03+ Sixel output

pbmtolps Convert portable bitmap to PostScript

pbmtomacp Convert a portable bitmap into a MacPaint file

pbmtomgr Convert a portable bitmap into an MGR bitmap

pbmtopgm Convert a portable bitmap to portable graymap by averaging areas

pbmtopi3 Convert a portable bitmap into an Atari Degas .pi3 file

pbmtopk Convert a portable bitmap into a packed (PK) format font

pbmtoplot Convert a portable bitmap into a UNIX plot(5) file

pbmtoptx Convert a portable bitmap into Printronix printer graphics

pbmtox10bm Convert a portable bitmap into an X10 bitmap

pbmtoxbm Convert a portable bitmap into an X11 bitmap

pbmtozinc Convert a portable bitmap into a Zinc bitmap

pbmupc Create a Universal Product Code bitmap

pcxtoppm Convert a PCX file into a portable pixmap

pgmbentley Bentleyize a portable graymap

pgmcrater Create cratered terrain by fractal forgery

pgmedge Edge-detect a portable graymap

pgmenhance Edge-enhance a portable graymap

pgmhist Print a histogram of the values in a portable graymap

pgmkernel Generate a convolution kernel

pgmnoise Create a graymap made up of white noise

pgmnorm Normalize the contrast in a portable graymap

pgmoil Turn a portable graymap into an oil painting

pgmramp Generate a grayscale ramp

pgmtexture Calculate textural features on a portable graymap

pgmtofs Convert a portable graymap to Usenix FaceSaver format

pbmfilters

Part I: User Commands350

pgmtolispm Convert a portable graymap into Lisp machine format

pgmtopbm Convert a portable graymap into a portable bitmap

pgmtoppm Colorize a portable graymap into a portable pixmap

pgmtoybm Convert a portable bitmap into a Bennet Yee “face” file

pi1toppm Convert an Atari Degas PI1 into a portable pixmap

pi3topbm Convert an Atari Degas PI3 file into a portable bitmap

picttoppm Convert a Macintosh PICT file into a portable pixmap

pjtoppm Convert an HP PaintJet file into a portable pixmap

pktopbm Convert packed (PK) format font into portable bitmap(s)

pnmalias Antialias a portable anymap

pnmarith Perform arithmetic on two portable anymaps

pnmcat Concatenate portable anymaps

pnmcomp Composite two portable anymap files together

pnmconvol General MxN convolution on a portable anymap

pnmcrop Crop a portable anymap

pnmcut Cut a rectangle out of a portable anymap

pnmdepth Change the maxval in a portable anymap

pnmenlarge Read a portable anymap and enlarge it N times

pnmfile Describe a portable anymap

pnmflip Perform one or more flip operations on a portable anymap

pnmgamma Perform gamma correction on a portable anymap

pnmhistmap Draw a histogram for a PGM or PPM file

pnmindex Build a visual index of a bunch of anymaps

pnminvert Invert a portable anymap

pnmmargin Add a border to a portable anymap

pnmnlfilt Nonlinear filters: smooth, alpha trim mean, optimal

pnmnoraw Force a portable anymap into plain format

pnmpad Add borders to portable anymap

pnmpaste Paste a rectangle into a portable anymap

pnmrotate Rotate a portable anymap by some angle

pnmscale Scale a portable anymap

pnmshear Shear a portable anymap by some angle

pnmsmooth Smooth out an image

pnmtile Replicate a portable anymap into a specified size

pnmtoddif Convert a portable anymap to DDIF format

pnmtofits Convert a portable anymap into FITS format

pnmtops Convert portable anymap to PostScript

pnmtorast Convert a portable pixmap into a Sun raster file

pnmtosgi Convert a portable anymap to an SGI image file

pnmtosir Convert a portable anymap into a Solitaire format

pnmtotiff Convert a portable anymap into a TIFF file

pnmtoxwd Convert a portable anymap into an X11 window dump

ppm3d Convert two portable pixmap into a red/blue 3D glasses pixmap

ppmbrighten Change an images Saturation and Value from an HSV map

ppmchange Change all pixels of one color to another in a portable pixmap

ppmdim Dim a portable pixmap down to total blackness

351

ppmdist Simplistic grayscale assignment for machine generated, color images

ppmdither Ordered dither for color images

ppmflash Brighten a picture up to complete white-out

ppmforge Fractal forgeries of clouds, planets, and starry skies

ppmhist Print a histogram of a portable pixmap

ppmmake Create a pixmap of a specified size and color

ppmmix Blend together two portable pixmaps

ppmnorm Normalize the contrast in a portable pixmap

ppmntsc Make a portable pixmap look like it was taken from an American TV show

ppmpat Make a pretty pixmap

ppmquant Quantize the colors in a portable pixmap down to a specified number

ppmquantall Run ppmquant on a bunch of files all at once, so they share a common colormap

ppmqvga 8-plane quantization

ppmrelief Run a Laplacian relief filter on a portable pixmap

ppmshift Shift lines of a portable pixmap left or right by a random amount

ppmspread Displace a portable pixmap’s pixels by a random amount

ppmtoacad Convert portable pixmap to AutoCAD database or slide

ppmtobmp Convert a portable pixmap into a BMP file

ppmtogif Convert a portable pixmap into a GIF file

ppmtoicr Convert a portable pixmap into NCSA ICR format

ppmtoilbm Convert a portable pixmap into an ILBM file

ppmtomap Extract all colors from a portable pixmap

ppmtomitsu Convert a portable pixmap to a Mitsubishi S340-10 file

ppmtopcx Convert a portable pixmap into a PCX file

ppmtopgm Convert a portable pixmap into a portable graymap

ppmtopi1 Convert a portable pixmap into an Atari Degas PI1 file

ppmtopict Convert a portable pixmap into a Macintosh PICT file

ppmtopj Convert a portable pixmap to an HP PaintJet file

ppmtopjxl Convert a portable pixmap into an HP PaintJet XL PCL file

ppmtopuzz Convert a portable pixmap into an X11 “puzzle” file

ppmtorgb3 Separate a portable pixmap into three portable graymaps

ppmtosixel Convert a portable pixmap into DEC sixel format

ppmtotga Convert portable pixmap into a TrueVision Targa file

ppmtouil Convert a portable pixmap into a Motif UIL icon file

ppmtoxpm Convert a portable pixmap into an X11 pixmap

ppmtoyuv Convert a portable pixmap into an Abekas YUV file

ppmtoyuvsplit Convert a portable pixmap into three subsampled raw YUV files

psidtopgm Convert PostScript “image” data into a portable graymap

pstopnm Convert a PostScript file into a portable anymap

qrttoppm Convert output from the QRT ray tracer into a portable pixmap

rasttopnm Convert a Sun raster file into a portable anymap

rawtopgm Convert raw grayscale bytes into a portable graymap

rawtoppm Convert raw RGB bytes into a portable pixmap

rgb3toppm Combine three portable graymaps into one portable pixmap

sgitopnm Convert an SGI image file into a portable anymap

sirtopnm Convert a Solitaire file into a portable anymap

pbmfilters

Part I: User Commands352

sldtoppm Convert an AutoCAD slide file into a portable pixmap

spctoppm Convert an Atari compressed Spectrum file into a portable pixmap

spottopgm Convert SPOT satellite images to Portable Graymap format

sputoppm Convert an Atari uncompressed Spectrum file into a portable pixmap

tgatoppm Convert TrueVision Targa file into a portable pixmap

tifftopnm Convert a TIFF file into a portable anymap

xbmtopbm Convert an X11 or X10 bitmap into a portable bitmap

ximtoppm Convert an XIM file into a portable pixmap

xpmtoppm Convert an X11 pixmap into a portable pixmap

xvminitoppm Convert an XV thumbnail picture to PPM

xwdtopnm Convert an X11 or X10 window dump file into a portable anymap

ybmtopbm Convert a Bennet Yee “face” file into a portable bitmap

yuvplittoppm Convert a Y-, U- and V-file into a portable pixmap

yuvtoppm Convert Abekas YUV bytes into a portable pixmap

zeisstopnm Convert a Zeiss confocal file into a portable anymap

SEE ALSO
anytopnm(1), asciitopgm(1), atktopbm(1), bioradtopgm(1), bmptoppm(1), brushtopbm(1), cmuwmtopbm(1), fitstopnm(1), fstopgm(1),
g3topbm(1), gemtopbm(1), giftopnm(1), gouldtoppm(1), hipstopgm(1), hpcdtoppm(1), icontopbm(1), ilbmtoppm(1), imgtoppm(1),
lispmtopgm(1), macptopbm(1), mgrtopbm(1), mtvtoppm(1), pbmclean(1), pbmlife(1), pbmmake(1), pbmmask(1), pbmpscale(1),
pbmreduce(1), pbmtext(1), pbmto10x(1), pbmto4425(1), pbmtoascii(1), pbmtoatk(1), pbmtobbnbg(1), pbmtocmuwm(1), pbmtoepsi(1),
pbmtoepson(1), pbmtog3(1), pbmtogem(1), pbmtogo(1), pbmtoicon(1), pbmtolj(1), pbmtoln03(1), pbmtolps(1), pbmtomacp(1),
pbmtomgr(1), pbmtopgm(1), pbmtopi3(1), pbmtopk(1), pbmtoplot(1), pbmtoptx(1), pbmtox10bm(1), pbmtoxbm(1), pbmtoybm(1),
pbmtozinc(1), pbmupc(1), pcxtoppm(1), pgmbentley(1), pgmcrater(1), pgmedge(1), pgmenhance(1), pgmhist(1), pgmkernel(1),
pgmnoise(1), pgmnorm(1), pgmoil(1), pgmramp(1), pgmtexture(1), pgmtofs(1), pgmtolispm(1), pgmtopbm(1), pgmtoppm(1),
pi1toppm(1), pi3topbm(1), picttoppm(1), pjtoppm(1), pktopbm(1), pnmalias(1), pnmarith(1), pnmcat(1), pnmcomp(1), pnmconvol(1),
pnmcrop(1), pnmcut(1), pnmdepth(1), pnmenlarge(1), pnmfile(1), pnmflip(1), pnmgamma(1), pnmhistmap(1), pnmindex(1),
pnminvert(1), pnmmargin(1), pnmnlfilt(1), pnmnoraw(1), pnmpad(1), pnmpaste(1), pnmrotate(1), pnmscale(1), pnmshear(1),
pnmsmooth(1), pnmtile(1), pnmtoddif(1), pnmtofits(1), pnmtops(1), pnmtorast(1), pnmtosgi(1), pnmtosir(1), pnmtotiff(1),
pnmtoxwd(1), ppm3d(1), ppmbrighten(1), ppmchange(1), ppmdim(1), ppmdist(1), ppmdither(1), ppmflash(1), ppmforge(1),
ppmhist(1), ppmmake(1), ppmmix(1), ppmnorm(1), ppmntsc(1), ppmpat(1), ppmquant(1), ppmquantall(1), ppmqvga(1), ppmrelief(1),
ppmshift(1), ppmspread(1), ppmtoacad(1), ppmtobmp(1), ppmtogif(1), ppmtoicr(1), ppmtoilbm(1), ppmtomap(1), ppmtomitsu(1),
ppmtopcx(1), ppmtopgm(1), ppmtopi1(1), ppmtopict(1), ppmtopj(1), ppmtopjxl(1), ppmtopuzz(1), ppmtorgb3(1), ppmtosixel(1),
ppmtotga(1), ppmtouil(1), ppmtoxpm(1), ppmtoyuv(1), ppmtoyuvsplit(1), psidtopgm(1), pstopnm(1), qrttoppm(1), rasttopnm(1),
rawtopgm(1), rawtoppm(1), rgb3toppm(1), sgitopnm(1), sirtopnm(1), sldtoppm(1), spctoppm(1), spottopgm(1), sputoppm(1),
tgatoppm(1), tifftopnm(1), xbmtopbm(1), ximtoppm(1), xpmtoppm(1), xvminitoppm(1), xwdtopnm(1), nybmtopbm(1),
yuvsplittoppm(1), yuvtoppm(1), zeisstopnm(1)

AUTHORS
Many. See the individual manual pages.

pbmlife
pbmlife—Apply Conway’s Rules of Life to a portable bitmap

SYNOPSIS
pbmlife [pbmfile]

353

DESCRIPTION
pbmlife reads a portable bitmap as input, applies the Rules of Life to it for one generation, and produces a portable bitmap as
output.

A white pixel in the image is interpreted as a live beastie, and a black pixel as an empty space.

SEE ALSO
pbm(5)

AUTHOR
Copyright  1988, 1991 by Jef Poskanzer

21 February 1991

pbmmake
pbmmake—Create a blank bitmap of a specified size

SYNOPSIS
pbmmake [-white|-black|-gray] width height

DESCRIPTION
pbmmake produces a portable bitmap of the specified width and height. The color defaults to white.

OPTIONS
In addition to the usual -white and -black, this program implements -gray. This gives a simple 50 percent gray pattern with
1’s and 0’s alternating.

All flags can be abbreviated to their shortest unique prefix.

SEE ALSO
pbm(5), ppmmake(1)

AUTHOR
Copyright  1989 by Jef Poskanzer

22 February 1989

pbmmask
pbmmask—Create a mask bitmap from a regular bitmap

SYNOPSIS
pbmmask [-expand][pbmfile]

DESCRIPTION
pbmmask reads a portable bitmap as input and creates a corresponding mask bitmap and writes it out.

The color to be interpreted as background is determined automatically. Regardless of which color is background, the mask
will be white where the background is white and black where the figure is black.

pbmmask

Part I: User Commands354

This lets you do a masked paste like this, for objects with a black background:

pbmmask obj > objmask
pnmpaste < dest -and objmask <x><y>|pnmpaste -or obj <x><y>

For objects with a white background, you can either invert them or add a step:

pbmmask obj > objmask
pnminvert objmask | pnmpaste -and obj 0 0 > blackback
pnmpaste < dest -and objmask <x><y>|pnmpaste -or blackback <x><y>

Note that this three-step version works for objects with black backgrounds, too, if you don’t care about the wasted time.

You can also use masks with graymaps and pixmaps, using the pnmarith tool. For instance:

ppmtopgm obj.ppm | pgmtopbm -threshold | pbmmask > objmask.pbm
pnmarith -multiply dest.ppm objmask.pbm > t1.ppm
pnminvert objmask.pbm | pnmarith -multiply obj.ppm - > t2.ppm
pnmarith -add t1.ppm t2.ppm

An interesting variation on this is to pipe the mask through the pnmsmooth script before using it. This makes the boundary
between the two images less sharp.

OPTIONS
-expand Expands the mask by one pixel out from the image. This is useful if you want a little white border around your
image. (A better solution might be to turn the pbmlife tool into a general cellular automaton tool…)

SEE ALSO
pnmpaste(1), pnminvert(1), pbm(5), pnmarith(1), pnmsmooth(1)

AUTHOR
Copyright  1988 by Jef Poskanzer

8 August 1989

pbmpscale
pbmpscale—Enlarge a portable bitmap with edge smoothing

SYNOPSIS
pbmpscale N [pbmfile]

DESCRIPTION
pbmpscale reads a portable bitmap as input and outputs a portable bitmap enlarged N times. Enlargement is done by pixel
replication, with some additional smoothing of corners and edges.

SEE ALSO
pnmenlarge(1), ppmscale(1), pbm(5)

AUTHOR
Copyright  1990 by Angus Duggan. Copyright  1989 by Jef Poskanzer.

NOTES
pbmpscale works best for enlargements of 2. Enlargements greater than 2 should be done by as many enlargements of 2 as
possible, followed by an enlargement by the remaining factor.

355

pbmreduce
pbmreduce—Read a portable bitmap and reduce it N times

SYNOPSIS
pbmreduce [-floyd|-fs|-threshold][-value val] N [pbmfile]

DESCRIPTION
pbmreduce reads a portable bitmap as input, reduces it by a factor of N, and produces a portable bitmap as output.

pbmreduce duplicates a lot of the functionality of pgmtopbm; you could do something like pnmscale | pgmtopbm, but pbmreduce
is a lot faster.

pbmreduce can be used to “re-halftone” an image. Say you have a scanner that only produces black and white, not grayscale,
and it does a terrible job of halftoning (most black-and-white scanners fit this description). One way to fix the halftoning is
to scan at the highest possible resolution, say 300dpi, and then reduce by a factor of three or so using pbmreduce.You can even
correct the brightness of an image, by using the -value flag.

OPTIONS
By default, the halftoning after the reduction is done via boustrophedonic Floyd-Steinberg error diffusion; however, the -
threshold flag can be used to specify simple thresholding. This gives better results when reducing line drawings.

The -value flag alters the thresholding value for all quantizations. It should be a real number between 0 and 1. Above 0.5
means darker images; below 0.5 means lighter.

All flags can be abbreviated to their shortest unique prefix.

SEE ALSO
pnmenlarge(1), pnmscale(1), pgmtopbm(1), pbm(5)

AUTHOR
Copyright  1988 by Jef Poskanzer

2 August 1989

pbmtext
pbmtext—Render text into a bitmap

SYNOPSIS
pbmtext [–font fontfile][–builtin fontname][text]

DESCRIPTION
pbmtext takes the specified text, either a single line from the command line or multiple lines from standard input, and renders
it into a bitmap.

OPTIONS
By default, pbmtext uses a built-in font called bdf (about a 10-point Times Roman font). You can use a fixed-width font by
specifying –builtin fixed.

You can also specify your own font with the -font flag. The fontfile is either a BDF file from the X Window System or a
PBM file.

pbmtext

Part I: User Commands356

If the fontfile is a PBM file, it is created in a very specific way. In your window system of choice, display the following text
in the desired (fixed-width) font:

M “,/ˆ [‘jpqy| M
/ !”#$%&’()*+ /
< ,-./01234567 <
> 89:;<=>?@ABC >
@ DEFGHIJKLMNO @
PQRSTUVWXYZ[
{ \]ˆ ‘abcdefg {
} hijklmnopqrs }
˜ tuvwxyz{|}˜˜
M “,/ˆ [‘jpqy| M

Do a screen grab or window dump of that text, using for instance xwd, xgrabsc, or screen-dump. Convert the result into a
PBM file. If necessary, use pnmcut to remove everything except the text. Finally, run it through pnmcrop to make sure the
edges are right up against the text. pbmtext can figure out the sizes and spacings from that.

SEE ALSO
pbm(5), pnmcut(1), pnmcrop(1)

AUTHOR
Copyright 1993 by Jef Poskanzer and George Phillips

26 October 1993

pbmto10x
pbmto10x—Convert a portable bitmap into Gemini 10X printer graphics

SYNOPSIS
pbmto10x [-h][pbmfile]

DESCRIPTION
pbmto10x reads a portable bitmap as input and produces a file of Gemini 10X printer graphics as output. The 10X’s printer
codes are alleged to be similar to the Epson codes.

Note that there is no 10xtopbm tool; this transformation is one-way.

OPTIONS
The resolution is normally 60H by 72V. If the -h flag is specified, resolution is 120H by 144V. You may find it useful to
rotate landscape images before printing.

SEE ALSO
pbm(5)

AUTHOR
Copyright  1990 by Ken Yap1

January 1990

357

pbmto4425
pbmto4425—Display PBM images on an AT&T 4425 terminal

SYNOPSIS
pbmto4425 [pbmfile]

DESCRIPTION
Pbmto4425 displays PBM format images on an AT&T 4425 ASCII terminal using that terminal’s mosaic graphics character
set. The program should also work with other VT100-like terminals with mosaic graphics character sets such as the C. Itoh
CIT-101, but it has not yet been tested on terminals other than the 4425.

Pbmto4425 puts the terminal into 132-column mode to achieve the maximum resolution of the terminal. In this mode the
terminal has a resolution of 264 columns by 69 rows. The pixels have an aspect ratio of 1:2.6; therefore, an image should be
processed before being displayed in a manner such as this:

% pnmscale –xscale 2.6 pnmfile \
| pnmscale –xysize 264 69 \
| ppmtopgm \
| pgmtopbm \
| pbmto4425

AUTHOR
Copyright  1993 by Robert Perlberg

pbmtoascii
pbmtoascii—Convert a portable bitmap into ASCII graphics

SYNOPSIS
pbmtoascii [-1x2|-2x4][pbmfile]

DESCRIPTION
pbmtoascii reads a portable bitmap as input and produces a somewhat crude ASCII graphic as output.

Note that there is no asciitopbm tool; this transformation is one-way.

OPTIONS
The -1x2 and -2x4 flags provide two alternate ways for the bits to get mapped to characters. With 1x2, the default, each
character represents a group of 1 bit across by 2 bits down. With -2x4, each character represents 2 bits across by 4 bits down.
With the 1x2 mode you can see the individual bits, so it’s useful for previewing small bitmaps on a nongraphics terminal.
The 2x4 mode lets you display larger bitmaps on a standard 80-column display, but it obscures bit-level details. 2x4 mode is
also good for displaying graymaps. pnmscale -width 158 | pgmnorm | pgmtopbm -thresh should give good results.

SEE ALSO
pbm(5)

AUTHOR
Copyright  1988, 1992 by Jef Poskanzer

20 March 1992

pbmtoascii

Part I: User Commands358

pbmtoatk
pbmtoatk—Convert portable bitmap to Andrew Toolkit raster object

SYNOPSIS
pbmtoatk [pbmfile]

DESCRIPTION
pbmtoatk reads a portable bitmap as input and produces an Andrew Toolkit raster object as output.

SEE ALSO
atktopbm(1), pbm(5)

AUTHOR
Copyright  1991 by Bill Janssen

26 September 1991

pbmtobg
pbmtobg—Convert a portable bitmap into BitGraph graphics

SYNOPSIS
pbmtobg [rasterop][x y]< pbmfile

DESCRIPTION
pbmtobg reads a portable bitmap as input and produces BBN BitGraph terminal display pixel data (DPD) sequence as output.

The rasterop can be specified on the command line. If this is omitted, 3 (replace) will be used. A position in (x,y) coordi-
nates can also be specified. If both are given, the rasterop comes first. The portable bitmap is always taken from the standard
input.

Note that there is no bgtopbm tool.

SEE ALSO
pbm(5)

AUTHOR
Copyright  1989 by Mike Parker

16 May 1989

pbmtocmuwm
pbmtocmuwm—Convert a portable bitmap into a CMU window manager bitmap

SYNOPSIS
pbmtocmuwm [pbmfile]

DESCRIPTION
pbmtocmuwm reads a portable bitmap as input and produces a CMU window manager bitmap as output.

359

SEE ALSO
cmuwmtopbm(1), pbm(5)

AUTHOR
Copyright  1989 by Jef Poskanzer

15 April 1989

pbmtoepsi
pbmtoepsi—Convert a portable bitmap into an encapsulated PostScript-style preview bitmap

SYNOPSIS
pbmtoepsi [-bbonly][pbmfile]

DESCRIPTION
pbmtoepsi reads a portable bitmap as input and produces an encapsulated PostScript-style bitmap as output. The output is
not a standalone PostScript file; it is only a preview bitmap, which can be included in an encapsulated PostScript file. Note
that there is no epsitopbm tool; this transformation is one-way.

This utility is a part of the pstoepsi tool by Doug Crabill (dgc@cs.purdue.edu).

OPTIONS
-bbonly Only create a boundary box, don’t fill it with the image.

SEE ALSO
pbm(5), pnmtops(1), psidtopgm(1)

AUTHOR
Copyright  1988 by Jef Poskanzer, modified by Doug Crabill 1992

1992

pbmtoepson
pbmtoepson—Convert a portable bitmap into Epson printer graphics

SYNOPSIS
pbmtoepson [pbmfile]

DESCRIPTION
pbmtoepson reads a portable bitmap as input and produces a file of Epson printer graphics as output.

Note that there is no epsontopbm tool; this transformation is one-way.

SEE ALSO
pbm(5)

AUTHOR
Copyright  1991 by John Tiller (tiller@galois.msfc.nasa.gov) and Jef Poskanzer

4 January 1991

pbmtoepson

Part I: User Commands360

pbmtog3
pbmtog3—Convert a portable bitmap into a Group 3 fax file

SYNOPSIS
pbmtog3 [pbmfile]

DESCRIPTION
pbmtog3 reads a portable bitmap as output and produces a Group 3 fax file as input.

REFERENCES
The standard for Group 3 fax is defined in CCITT Recommendation T.4.

BUGS
Probably.

SEE ALSO
g3topbm(1), pbm(5)

AUTHOR
Copyright  1989 by Paul Haeberli (<paul@manray.sgi.com>)

2 October 1989

pbmtogem
pbmtogem—Convert a portable bitmap into a GEM IMG file

SYNOPSIS
pbmtogem [pbmfile]

DESCRIPTION
pbmtogem reads a portable bitmap as input and produces a compressed GEM IMG file as output.

BUGS
pbmtogem does not support compression of repeated lines.

SEE ALSO
gemtopbm(1), pbm(5)

AUTHORS
Copyright  1988 by David Beckemeyer and Jef Poskanzer

11 July 1992

pbmtogo
pbmtogo—Convert a portable bitmap into compressed GraphOn graphics

SYNOPSIS
pbmtogo [pbmfile]

361

DESCRIPTION
pbmtogo reads a portable bitmap as input and produces 2D compressed GraphOn graphics as output. Be sure to set up your
GraphOn with the following modes: 8 bits/no parity; obeys no XON/XOFF; NULs are accepted. These are all on the Comm
menu. Also, remember to turn off tty post processing. Note that there is no gotopbm tool.

SEE ALSO
pbm(5)

AUTHORS
Copyright  1988, 1989 by Jef Poskanzer, Michael Haberler, and Bo Thide

24 November 1989

pbmtoicon
pbmtoicon—Convert a portable bitmap into a Sun icon

SYNOPSIS
pbmtoicon [pbmfile]

DESCRIPTION
pbmtoicon reads a portable bitmap as input and produces a Sun icon as output.

SEE ALSO
icontopbm(1), pbm(5)

AUTHOR
Copyright  1988 by Jef Poskanzer

31 August 1988

pbmtolj
pbmtolj—Convert a portable bitmap into HP LaserJet format

SYNOPSIS
pbmtolj [-resolution N][-float][-noreset][pbmfile]

DESCRIPTION
pbmtolj reads a portable bitmap as input and produces HP LaserJet data as output.

Note that there is no ljtopbm tool.

OPTIONS
-resolution Specifies the resolution of the output device, in dpi. Typical values are 75, 100, 150, 300. The default is 75.

-float Suppresses positioning information. The default is to write the sequence ESC & l 0 E to the output file.

-noreset Prevents pbmtolj from writing the reset sequences to the beginning and end of the output file.

All flags can be abbreviated to their shortest unique prefix.

SEE ALSO
pbm(5)

pbmtolj

Part I: User Commands362

AUTHORS
Copyright  1988 by Jef Poskanzer and Michael Haberler. -float and -noreset options added by Wim Lewis

29 August 1988

pbmtoln03
pbmtoln03—Convert portable bitmap to DEC LN03+ Sixel output

SYNOPSIS
pbmtoln03 [-rltbf] pbmfile

DESCRIPTION
pbmtoln03 reads a portable bitmap as input and produces a DEC LN03+ Sixel output file.

OPTIONS
-l nn Use nn as value for left margin (default 0).

-r nn Use nn as value for right margin (default 2400).

-t nn Use nn as value for top margin (default 0).

-b nn Use nn as value for bottom margin (default 3400).

-f nn Use nn as value for form length (default 3400).

SEE ALSO
pbm(5)

AUTHOR
Tim Cook, 26 February 1992

7 May 1993

pbmtolps
pbmtolps—Convert a portable bitmap to PostScript

SYNOPSIS
pbmtolps [-dpi n] [pbmfile]

DESCRIPTION
pbmtolps reads a portable bitmap as input, and outputs PostScript. The output PostScript uses lines instead of the image
operator to generate a (device-dependent) picture that will be imaged much faster.

The PostScript path length is constrained to be less that 1000 points so that no limits are overrun on the Apple Laserwriter
and (presumably) no other printers.

SEE ALSO
pgmtops(1), ppmtops(1), pbm(5)

AUTHOR
George Phillips (<phillips@cs.ubc.ca>)

363

pbmtomacp
pbmtomacp—Convert a portable bitmap into a MacPaint file

SYNOPSIS
pbmtomacp [-l left][-r right][-b bottom][-t top][pbmfile]

DESCRIPTION
pbmtomacp reads a portable bitmap as input. If no input file is given, standard input is assumed. Produces a MacPaint file as
output.

The generated file is only the data fork of a picture. You will need a program such as mcvert to generate a Macbinary or a
BinHex file that contains the necessary information to identify the file as a PNTG file to MacOS.

OPTIONS
Left, right, bottom, and top let you define a square into the PBM file, which must be converted. Default is the whole file. If
the file is too large for a MacPaint file, the bitmap is cut to fit from (left, top).

BUGS
The source code contains comments in a language other than English.

SEE ALSO
ppmtopict(1), macptopbm(1), pbm(5), mcvert(1)

AUTHOR
Copyright  1988 by Douwe van der Schaaf (...!mcvax!uvapsy!vdschaaf)

31 August 1988

pbmtomgr
pbmtomgr—Convert a portable bitmap into an MGR bitmap

SYNOPSIS
pbmtomgr [pbmfile]

DESCRIPTION
pbmtomgr reads a portable bitmap as input and produces an MGR bitmap as output.

SEE ALSO
mgrtopbm(1), pbm(5)

AUTHOR
Copyright  1989 by Jef Poskanzer

24 January 1989

pbmtomgr

Part I: User Commands364

pbmtopgm
pbmtopgm—Convert portable bitmap to portable graymap by averaging areas

SYNOPSIS
pbmtopgm <width><height> [pbmfile]

DESCRIPTION
pbmtopgm reads a portable bitmap as input and outputs a portable graymap created by averaging the number of pixels within a
sample area of width by height around each point. pbmtopgm is similar to a special case of ppmconvol. A ppmsmooth step may be
needed after pbmtopgm.

pbmtopgm has the effect of antialiasing bitmaps that contain distinct line features.

SEE ALSO
pbm(5)

AUTHOR
Copyright  1990 by Angus Duggan. Copyright  1989 by Jef Poskanzer.

NOTES
pbmtopgm works best with odd sample widths and heights.

pbmtopi3
pbmtopi3—Convert a portable bitmap into an Atari Degas PI3 file

SYNOPSIS
pbmtopi3 [pbmfile]

DESCRIPTION
pbmtopi3 reads a portable bitmap as input and produces an Atari Degas PI3 file as output.

SEE ALSO
pi3topbm(1), pbm(5), ppmtopi1(1), pi1toppm(1)

AUTHOR
Copyright  1988 by David Beckemeyer (bdt!david) and Jef Poskanzer.

11 March 1990

pbmtopk
pbmtopk—Convert a portable bitmap into a packed (PK) format font

SYNOPSIS
pbmtopk pkfile[.pk] tfmfile[.tfm] resolution [-s designsize] [-p num param...]
[-C cod-ingscheme] [-F family] [-f optfile] [-c num] [-W width] [-H height]
[-D depth] [-I ital] [-h horiz] [-v vert] [-x xoff] [-y yoff] [pbmfile]...

365

DESCRIPTION
pbmtopk reads portable bitmaps as input and produces a packed (PK) font file and a TFM (TeX font metric) file as output.
The resolution parameter indicates the resolution of the font, in dots per inch. If the filename - is used for any of the
filenames, the standard input stream (or standard output, where appropriate) will be used.

OPTIONS
-s designsize Sets the design size of the font, in TeX’s points (72.27 points to the inch). The default design size is 1. The

TFM parameters are given as multiples of the design size.

-p num param... Sets the first num font parameters for the font. The first seven parameters are the slant, interword spacing,
interword space stretchability, interword space shrinkability, x-height, quad width, and post-sentence extra
space of the font. Math and symbol fonts may have more parameters; see The TeXbook for a list of these.
Reasonable default values are chosen for parameters that are not specified.

-C codingscheme Sets the coding scheme comment in the TFM file.

-F family Sets the font family comment in the TFM file.

-f optfile Reads the file optfile, which should contain a line of the form:

filename xoff yoff horiz vert width height depth ital

The PBM files specified by the filename parameters are inserted consecutively in the font with the
specified attributes. If any of the attributes are omitted, or replaced with *, a default value will be
calculated from the size of the bitmap. The settings of the -W, -H, -D, -I, -h, -v, -x, and -y options do not
affect characters created in this way. The character number can be changed by including a line starting
with =, followed by the new number. Lines beginning with % or # are ignored.

-c num Sets the character number of the next bitmap encountered to num.

-W width Sets the TFM width of the next character to width (in design size multiples).

-H height Sets the TFM height of the next character to height (in design size multiples).

-D depth Sets the TFM depth of the next character to depth (in design size multiples).

-I ital Sets the italic correction of the next character to ital (in design size multiples).

-h horiz Sets the horizontal escapement of the next character to horiz (in pixels).

-v vert Sets the vertical escapement of the next character to vert (in pixels).

-x xoff Sets the horizontal offset of the next character to xoff (in pixels).

-y yoff Sets the vertical offset of the next character to yoff (in pixels, from the top row).

SEE ALSO
pktopbm(1), pbm(5)

AUTHOR
Adapted from Tom Rokicki’s pxtopk by Angus Duggan (ajcd@dcs.ed.ac.uk).

6 August 1990

pbmtoplot
pbmtoplot—Convert a portable bitmap into a UNIX plot(5) file

SYNOPSIS
pbmtoplot [pbmfile]

DESCRIPTION
pbmtoplot reads a portable bitmap as input and produces a UNIX plot file.

Note that there is no plottopbm tool; this transformation is one way.

pbmtoplot

Part I: User Commands366

SEE ALSO
pbm(5), plot(5)

AUTHOR
Copyright  1990 by Arthur David Olson.

1 September 1990

pbmtoptx
pbmtoptx—Convert a portable bitmap into Printronix printer graphics

SYNOPSIS
pbmtoptx [pbmfile]

DESCRIPTION
pbmtoptx reads a portable bitmap as input and produces a file of Printronix printer graphics as output.

Note that there is no ptxtopbm tool; this transformation is one-way.

SEE ALSO
pbm(5)

AUTHOR
Copyright 1988 by Jef Poskanzer

31 August 1988

pbmtox10bm
pbmtox10bm—Convert a portable bitmap into an X10 bitmap

SYNOPSIS
pbmtox10bm [pbmfile]

DESCRIPTION
pbmtox10bm reads a portable bitmap as input and produces an X10 bitmap as output. This older format is maintained for
compatibility.

Note that there is no x10bmtopbm tool because xbmtopbm can read both X11 and X10 bitmaps.

SEE ALSO
pbmtoxbm(1), xbmtopbm(1), pbm(5)

AUTHOR
Copyright 1988 by Jef Poskanzer.

31 August 1988

367

pbmtoxbm
pbmtoxbm—Convert a portable bitmap into an X11 bitmap

SYNOPSIS
pbmtoxbm [pbmfile]

DESCRIPTION
pbmtoxbm reads a portable bitmap as input and produces an X11 bitmap as output.

SEE ALSO
pbmtox10bm(1), xbmtopbm(1), pbm(5)

AUTHOR
Copyright  1988 by Jef Poskanzer.

31 August 1988

pgmtoybm
pgmtoybm—Convert a portable bitmap into a Bennet Yee “face” file

SYNOPSIS
pbmtoybm [pbmfile]

DESCRIPTION
pgmtoybm reads a portable bitmap as input and produces as output a file acceptable to the face and xbm programs by Bennet
Yee (bsy+@cs.cmu.edu).

SEE ALSO
ybmtopbm(1), pbm(5), face(1), face(5), xbm(1)

AUTHORS
Copyright  1991 by Jamie Zawinski and Jef Poskanzer.

6 March 1990

pbmtozinc
pbmtozinc—Convert a portable bitmap into a Zinc bitmap

SYNOPSIS
pbmtozinc [pbmfile]

DESCRIPTION
pbmtozinc reads a portable bitmap as input and produces a bitmap in the format used by the Zinc Interface Library (ZIL)
version 1.0 as output.

SEE ALSO
pbm(5)

pbmtozinc

Part I: User Commands368

AUTHORS
Copyright  1988 by James Darrell McCauley (jdm5548@diamond.tamu.edu) and Jef Poskanzer.

2 November 1990

pbmupc
pbmupc—Create a Universal Product Code bitmap

SYNOPSIS
pbmupc [-s1|-s2] type manufac product

DESCRIPTION
pbmupc generates a Universal Product Code symbol. The three arguments are: a one-digit product type, a five-digit manufac-
turer code, and a five-digit product code. For example, 0 72890 00011 is the code for Heineken.

As presently configured, pbmupc produces a bitmap 230 bits wide and 175 bits high. The size can be altered by changing the
defines at the beginning of the program, or by running the output through pnmenlarge or pnmscale.

OPTIONS
The -s1 and -s2 flags select the style of UPC to generate. The default, -s1, looks more or less like this:

0||12345||67890||5

The other style, -s2, puts the product type digit higher up, and doesn’t display the checksum digit:

||||||||||||||||
||||||||||||||||
0|||||||||||||||
||||||||||||||||
||12345||67890||

SEE ALSO
pbm(5)

AUTHOR
Copyright  1989 by Jef Poskanzer.

14 March 1989

pcxtoppm
pcxtoppm—Convert a PCX file into a portable pixmap

SYNOPSIS
pcxtoppm[pcxfile]

DESCRIPTION
pcxtoppm reads a PCX file as input and produces a portable pixmap as output.

369

SEE ALSO
ppmtopcx(1), ppm(5)

AUTHOR
Copyright  1990 by Michael Davidson.

9 April 1990

pfbtops
pfbtops—Translate a PostScript font in PFB format to ASCII

SYNOPSIS
pfbtops [pfb_file]

DESCRIPTION
pfbtops translates a PostScript font in PFB format to ASCII. If pfb_file is omitted, the PFB file will be read from the
standard input. The ASCII format PostScript font will be written on the standard output. PostScript fonts for MS-DOS are
normally supplied in PFB format.

The resulting ASCII format PostScript font can be used with groff. It must first be listed in /usr/lib/groff/font/devps/
download.

SEE ALSO
grops(1)

Groff Version 1.09, 6 August 1992

pgmbentley
pgmbentley—Bentleyize a portable graymap

SYNOPSIS
pgmbentley [pgmfile]

DESCRIPTION
pgmbentley reads a portable graymap as input, performs the Bentley Effect, and writes a portable graymap as output.

The Bentley Effect is described in Beyond Photography by Holzmann, Chapter 4, photo 4. It’s a vertical smearing based on
brightness.

SEE ALSO
pgmoil(1), ppmrelief(1), pgm(5)

AUTHOR
Copyright  1990 by Wilson Bent (whb@hoh-2.att.com).

11 January 1991

pgmbentley

Part I: User Commands370

pgmcrater
pgmcrater—Create cratered terrain by fractal forgery

SYNOPSIS
pgmcrater [-number n][-height|-ysize s][-width|-xsize s][-gamma g]

DESCRIPTION
pgmcrater creates a portable graymap that mimics cratered terrain. The graymap is created by simulating the impact of a
given number of craters with random position and size, then rendering the resulting terrain elevations based on a light source
shining from one side of the screen. The size distribution of the craters is based on a power law that results in many more
small craters than large ones. The number of craters of a given size varies as the reciprocal of the area as described on pages 31
and 32 of The Science Of Fractal Images, edited by H.O. Peitgen and D. Saupe (New York: Springer-Verlag, 1988). Cratered
bodies in the solar system are observed to obey this relationship. The formula used to obtain crater radii governed by this law
from a uniformly distributed pseudorandom sequence was developed by Rudy Rucker.

High resolution images with large numbers of craters often benefit from being piped through pnmsmooth. The averaging
performed by this process eliminates some of the jagged pixels and lends a mellow “telescopic image” feel to the overall
picture.

OPTIONS
-number n Causes n craters to be generated. If no -number specification is given, 50,000 craters will be generated. Don’t
expect to see them all! For every large crater, there are many, many more tiny ones that tend simply to erode the landscape.
In general, the more craters you specify, the more realistic the result; ideally, you want the entire terrain to have been
extensively turned over again and again by cratering. High-resolution images containing five to ten million craters are
stunning but take quite a while to create.

-height height Sets the height of the generated image to height pixels. The default height is 256 pixels.

-width width Sets the width of the generated image to width pixels. The default width is 256 pixels.

-xsize width Sets the width of the generated image to width pixels. The default width is 256 pixels.

-ysize height Sets the height of the generated image to height pixels. The default height is 256 pixels.

-gamma factor The specified factor is used to gamma correct the graymap in the same manner as performed by pnmgamma.
The default value is 1.0, which results in a medium contrast image. Values larger than 1 lighten the image
and reduce contrast, while values less than 1 darken the image, increasing contrast.

All flags can be abbreviated to their shortest unique prefix.

BUGS
The -gamma option isn’t really necessary because you can achieve the same effect by piping the output from pgmcrater
through pnmgamma. However, pgmcrater performs an internal gamma map anyway in the process of rendering the elevation
array into a graymap, so there’s no additional overhead in allowing a user-specified gamma.

Real craters have two distinct morphologies. pgmcrater simulates only small craters, which are hemispherical in shape
(regardless of the incidence angle of the impacting body, as long as the velocity is sufficiently high). Large craters, such as
Copernicus and Tycho on the moon, have a “walled plain” shape with a cross-section more like:

/\/\
_____/ _____ /______/ ______

Larger craters should really use this profile, including the central peak, and totally obliterate the preexisting terrain.

SEE ALSO
pgm(5), pnmgamma(1), pnmsmooth(1)

371

AUTHOR
John Walker
Autodesk SA Avenue des Champs-Montants 14b
CH-2074 MARIN
Suisse/Schweiz/Svizzera/Svizra/Switzerland

Usenet: kelvin@Autodesk.com

Fax: 038/33 88 15

Voice: 038/33 76 33

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, without any conditions or restrictions. This software is provided “as is” without express or implied warranty.

PLUGWARE! If you like this kind of stuff, you may also enjoy James Gleick’s “Chaos—The Software” for MS-DOS,
available for $59.95 from your local software store or directly from Autodesk, Inc., Attn: Science Series, 2320 Marinship
Way, Sausalito, CA 94965, USA. Telephone: 800-688-2344 toll-free or, outside the U.S. (415) 332-2344 Ext 4886. Fax:
415-289-4718. “Chaos—The Software” includes a more comprehensive fractal forgery generator that creates three-
dimensional landscapes as well as clouds and planets, plus five more modules that explore other aspects of Chaos. The user
guide of more than 200 pages includes an introduction by James Gleick and detailed explanations by Rudy Rucker of the
mathematics and algorithms used by each program.

15 October 1991

pgmedge
pgmedge—Edge detect a portable graymap

SYNOPSIS
pgmedge [pgmfile]

DESCRIPTION
pgmedge reads a portable graymap as input, outlines the edges, and writes a portable graymap as output. Piping the result
through pgmtopbm -threshold and playing with the threshold value will give a bitmap of the edges.

The edge detection technique used is to take the Pythagorean sum of two Sobel gradient operators at 90 degrees to each
other. For more details see Digital Image Processing by Gonzalez and Wintz, Chapter 7.

SEE ALSO
pgmenhance(1), pgmtopbm(1), pgm(5), pbm(5)

AUTHOR
Copyright  1991 by Jef Poskanzer.

4 February 1990

pgmenhance
pgmenhance—Edge enhance a portable graymap

SYNOPSIS
pgmenhance [-N][pgmfile]

pgmenhance

Part I: User Commands372

DESCRIPTION
pgmenhance reads a portable graymap as input, enhances the edges, and writes a portable graymap as output.

The edge enhancing technique is taken from Philip R. Thompson’s xim program, which took it from section 6 of Digital
Halftones by Dot Diffusion, D. E. Knuth, ACM Transaction on Graphics Vol. 6, No. 4, October 1987, which in turn got it
from two 1976 papers by J. F. Jarvis et. al.

OPTIONS
The optional -N flag should be a digit from 1 to 9. 1 is the lowest level of enhancement, 9 is the highest; the default is 9.

SEE ALSO
pgmedge(1), pgm(5), pbm(5)

AUTHOR
Copyright  1989 by Jef Poskanzer.

13 January 1989

pgmhist
pgmhist—Print a histogram of the values in a portable graymap

SYNOPSIS
pgmhist [pgmfile]

DESCRIPTION
pgmhist reads a portable graymap as input and prints a histogram of the gray values.

SEE ALSO
pgmnorm(1), pgm(5), ppmhist(1)

AUTHOR
Copyright  1989 by Jef Poskanzer

28 February 1989

pgmkernel
pgmkernel—Generate a convolution kernel

SYNOPSIS
pgmkernel [–weight w] width [height]

DESCRIPTION
pgmkernel generates a portable graymap array of size width x height (or width x width if height is not specified) to be used as
a convolution file by pnmconvol. The data in the convolution array K are computed according to the formula:

373

where w is a coefficient specified via the –weight flag, and width and height are the X and Y filter sizes.

The output PGM file is always written out in ASCII format.

OPTIONS
The optional -weight flag should be a real number greater than -1. The default value is 6.0.

BUGS
The computation time is proportional to width * height. This increases rapidly with the increase of the kernel size. A better
approach could be to use a FFT in these cases.

SEE ALSO
pnmconvol(1), pnmsmooth(1)

AUTHOR
Alberto Accomazzi (alberto@cfa.harvard.edu)

10 December 1992

pgmnoise
pgmnoise—Create a graymap made up of white noise

SYNOPSIS
pgmnoise width height

DESCRIPTION
pgmnoise creates a portable graymap that is made up of random pixels with gray values in the range of 0 to PGM_MAXMAXVAL
(depends on the compilation, either 255 or 65535). The graymap has a size of width * height pixels.

SEE ALSO
pgm(5)

AUTHOR
Copyright  1993 by Frank Neumann

16 November 1993

pgmnorm
pgmnorm—Normalize the contrast in a portable graymap

SYNOPSIS
pgmnorm[-bpercent N | -bvalue N][-wpercent N | -wvalue N][pgmfile]

DESCRIPTION
pgmnorm reads a portable graymap as input; normalizes the contrast by forcing the lightest pixels to white, the darkest pixels to
black, and linearly rescaling the ones in between; and produces a portable graymap as output.

OPTIONS
By default, the darkest two percent of all pixels are mapped to black, and the lightest one percent are mapped to white. You
can override these percentages by using the -bpercent and -wpercent flags, or you can specify the exact pixel values to be

pgmnorm

Part I: User Commands374

mapped by using the -bvalue and -wvalue flags. Appropriate numbers for the flags can be gotten from the pgmhist tool. If
you just want to enhance the contrast, then choose values at elbows in the histogram; for example, if value 29 represents 3
percent of the image but value 30 represents 20 percent, choose 30 for bvalue. If you want to lighten the image, then set
bvalue to 0 and just fiddle with wvalue; similarly, to darken the image, set wvalue to maxval and play with bvalue.

All flags can be abbreviated to their shortest unique prefix.

SEE ALSO
pgmhist(1), ppmnorm(1), pgm(5)

AUTHOR
Partially based on the fbnorm filter in Michael Mauldin’s “Fuzzy Pixmap” package.

Copyright 1989 by Jef Poskanzer.

28 February 1989

pgmoil
pgmoil—Turn a portable graymap into an oil painting

SYNOPSIS
pgmoil [-n N][pgmfile]

DESCRIPTION
pgmoil reads a portable graymap as input, does an “oil transfer,” and writes a portable graymap as output.

The oil transfer is described in Beyond Photography by Holzmann, Chapter 4, photo 7. It’s a sort of localized smearing.

OPTIONS
The optional -n flag controls the size of the area smeared. The default value is 3.

BUGS
Takes a long time to run.

SEE ALSO
pgmbentley(1), ppmrelief(1), pgm(5)

AUTHOR
Copyright 1990 by Wilson Bent (whb@hoh-2.att.com).

11 January 1991

pgmramp
pgmramp—Generate a grayscale ramp

SYNOPSIS
pgmramp -lr|-tb | -rectangle|-ellipse width height

DESCRIPTION
pgmramp generates a graymap of the specified size containing a black-to-white ramp. These ramps are useful for multiplying
with other images, using the pnmarith tool.

375

OPTIONS
-lr A left to right ramp

-tb A top to bottom ramp

-rectangle A rectangular ramp

-ellipse An elliptical ramp

All flags can be abbreviated to their shortest unique prefix.

SEE ALSO
pnmarith(1), pgm(5)

AUTHOR
Copyright  1989 by Jef Poskanzer.

24 November 1989

pgmtexture
pgmtexture—Calculate textural features on a portable graymap

SYNOPSIS
pgmtexture [-d d][pgmfile]

DESCRIPTION
pgmtexture reads a portable graymap as input. Calculates textural features based on spatial dependence matrices at 0, 45, 90,
and 135 degrees for a distance d (default = 1). Textural features include

(1) Angular Second Moment
(2) Contrast
(3) Correlation
(4) Variance
(5) Inverse Difference Moment
(6) Sum Average
(7) Sum Variance
(8) Sum Entropy
(9) Entropy
(10) Difference Variance
(11) Difference Entropy
(12, 13) Information Measures of Correlation
(14) Maximal Correlation Coefficient

Algorithm taken from “Textural Features for Image Classification,” IEEE Transactions on Systems, Man, and Cybertinetics,
R.M. Haralick, K. Shanmugam, and I. Dinstein, 1973. SMC-3(6):610–621.

BUGS
The program can run incredibly slowly for large images (larger than 64×64) and command-line options are limited. The
method for finding the maximal correlation coefficient, which requires finding the second largest eigenvalue of a matrix Q,
does not always converge.

REFERENCES
IEEE Transactions on Systems, Man, and Cybertinetics, SMC-3(6):610–621.

pgmtexture

Part I: User Commands376

SEE ALSO
pgm(5), pnmcut(1)

AUTHOR
Copyright  1991 by Texas Agricultural Experiment Station, employer-for-hire of James Darrell McCauley.

22 August 1991

pgmtofs
pgmtofs—Convert portable graymap to Usenix FaceSaver format

SYNOPSIS
pgmtofs [pgmfile]

DESCRIPTION
pgmtofs reads a portable graymap as input. Produces Usenix FaceSaver format as output.

FaceSaver is a registered trademark of Metron Computerware Ltd. of Oakland, CA.

SEE ALSO
fstopgm(1), pgm(5)

AUTHOR
Copyright 1991 by Jef Poskanzer.

18 May 1990

pgmtolispm
pgmtolispm—Convert a portable graymap into Lisp machine format

SYNOPSIS
pgmtolispm [pgmfile]

DESCRIPTION
pgmtolispm reads a portable graymap as input and produces a Lisp machine bitmap as output.

This is the file format read by the tv:read-bit-array-file function on TI Explorer and Symbolics Lisp machines.

Given a PGM (instead of a PBM), a multiplane image will be output. This is probably not useful unless you have a color
Lisp machine.

Multiplane bitmaps on Lisp machines are color; but the lispm image file format does not include a colormap, so it must be
treated as a graymap instead. This is unfortunate.

SEE ALSO
lispmtopgm(1), pgm(5)

BUGS
Output width is always rounded up to the nearest multiple of 32; this might not always be what you want, but it probably is
(arrays that are not modulo 32 cannot be passed to the lispm BITBLT function, and thus cannot easily be displayed on the screen).

No color.

377

AUTHOR
Copyright  1991 by Jamie Zawinski and Jef Poskanzer.

6 March 1990

pgmtopbm
pgmtopbm—Convert a portable graymap into a portable bitmap

SYNOPSIS
pgmtopbm [-floyd|-fs|-threshold |-hilbert |-dither8|-d8|-cluster3
|-c3|-cluster4|-c4 |-cluster8|-c8][-value val][-clump size][pgmfile]

DESCRIPTION
pgmtopbm reads a portable graymap as input and produces a portable bitmap as output.

Note that there is no pbmtopgm converter because any pgm program can read PBM files automagically.

OPTIONS
The default quantization method is boustrophedonic Floyd-Steinberg error diffusion (-floyd or -fs). Also available are
simple thresholding (-threshold); Bayer’s ordered dither (-dither8) with a 16×16 matrix; and three different sizes of 45-
degree clustered-dot dither (-cluster3, -cluster4, -cluster8). A space-filling curve halftoning method using the Hilbert
curve is also available. (-hilbert).

Floyd-Steinberg will almost always give the best looking results; however, looking good is not always what you want. For
instance, thresholding can be used in a pipeline with the pnmconvol tool, for tasks like edge and peak detection. And
clustered-dot dithering gives a newspaper-like look, a useful special effect. The -value flag alters the thresholding value for
Floyd-Steinberg and simple thresholding. It should be a real number between 0 and 1. Above 0.5 means darker images;
below 0.5 means lighter.

The Hilbert curve method is useful for processing images before display on devices that do not render individual pixels
distinctly (like laser printers). This dithering method can give better results than the dithering usually done by the laser
printers themselves. The -clump flag alters the number of pixels in a clump. This is usually an integer between 2 and 100
(default 5). Smaller clump sizes smear the image less and are less grainy, but seem to loose some grayscale linearity. Typically,
a PGM image will have to be scaled to fit on a laser printer page (2400 × 3000 pixels for an A4 300dpi page), and then
dithered to a PBM image before being converted to a PostScript file. A printing pipeline might look something like this:

pnmscale -xysize 2400 3000 image.pgm | pgmtopbm -hil | pnmtops -scale 0.25 image.ps

All flags can be abbreviated to their shortest unique prefix.

REFERENCES
The only reference you need for this stuff is Digital Halftoning by Robert Ulichney, MIT Press, ISBN 0-262-21009-6.

The Hilbert curve space filling method is taken from “Digital Halftoning with Space Filling Curves” by Luiz Velho,
Computer Graphics Volume 25, Number 4, proceedings of SIGRAPH ’91, page 81. ISBN 0-89791-436-8

SEE ALSO
pbmreduce(1), pgm(5), pbm(5), pnmconvol(1), pnmscale(1), pnmtops(1)

AUTHOR
Copyright  1989 by Jef Poskanzer.

26 July 1988

pgmtopbm

Part I: User Commands378

pgmtoppm
pgmtoppm—Colorize a portable graymap into a portable pixmap

SYNOPSIS
pgmtoppm colorspec [pgmfile]
pgmtoppm colorspec1-colorspec2 [pgmfile]
pgmtoppm -map mapfile [pgmfile]

DESCRIPTION
pgmtoppm reads a portable graymap as input, colorizes it by multiplying the gray values by specified color or colors, and
produces a portable pixmap as output.

If only one color is specified, black in the PGM file stays black and white in the PGM file turns into the specified color in
the PPM file. If two colors (separated by a hyphen) are specified, then black gets mapped to the first color and white gets
mapped to the second.

The color can be specified in five ways:

■ A name, assuming that a pointer to an X11-style color names file was compiled in.
■ An X11-style hexadecimal specifier: rgb:r/g/b, where r, g, and b are each 1- to 4-digit hexadecimal numbers.
■ An X11-style decimal specifier: rgbi:r/g/b, where r, g, and b are floating-point numbers between 0 and 1.
■ For backwards compatibility, an old-X11-style hexadecimal number: #rgb, #rrggbb, #rrrgggbbb, or #rrrrggggbbbb.
■ For backwards compatibility, a triplet of numbers separated by commas: r,g,b, where r, g, and b are floating-point

numbers between 0 and 1. (This style was added before MIT came up with the similar rgbi style.)

Also, the -map flag lets you specify an entire colormap to be used. The mapfile is just a PPM file; it can be any shape, all that
matters is the colors in it and their order. In this case, black gets mapped to the first color in the mapfile, and white gets
mapped to the last.

SEE ALSO
rgb3toppm(1), ppmtopgm(1), ppmtorgb3(1), ppm(5), pgm(5)

AUTHOR
Copyright 1991 by Jef Poskanzer.

11 January 1991

pi1toppm
pi1toppm—Convert an Atari Degas PI1 into a portable pixmap

SYNOPSIS
pi1toppm [pi1file]

DESCRIPTION
pi1toppm reads an Atari Degas PI1 file as input and produces a portable pixmap as output.

SEE ALSO
ppmtopi1(1), ppm(5), pi3topbm(1), pbmtopi3(1)

AUTHORS
Copyright 1991 by Steve Belczyk (seb3@gte.com) and Jef Poskanzer.

19 July 1990

379

pi3topbm
pi3topbm—Convert an Atari Degas PI3 file into a portable bitmap

SYNOPSIS
pi3topbm [pi3file]

DESCRIPTION
pi3topbm reads an Atari Degas PI3 file as input. Produces a portable bitmap as output.

SEE ALSO
pbmtopi3(1), pbm(5), pi1toppm(1), ppmtopi1(1)

AUTHORS
Copyright 1988 by David Beckemeyer (bdt!david) and Diomidis D. Spinellis.

11 March 1990

picttoppm
picttoppm—Convert a Macintosh PICT file into a portable pixmap

SYNOPSIS
picttoppm [-verbose][-fullres][-noheader][-quickdraw][-fontdirfile] [pictfile]

DESCRIPTION
picttoppm reads a PICT file (version 1 or 2) and outputs a portable pixmap. Useful as the first step in converting a scanned
image to something that can be displayed on UNIX.

OPTIONS
–fontdir file Make the list of BDF fonts in file available for use by pict-toppm when drawing text. For the format of

the fontdir file, see the “fontdir File Format” subsection.

–fullres Force any images in the PICT file to be output with at least their full resolution. A PICT file may indicate
that a contained image is to be scaled down before output. This option forces images to retain their sizes
and prevent information loss. Use of this option disables all PICT operations except images.

–noheader Do not skip the 512-byte header that is present on all PICT files. This is useful when you have PICT data
that was not stored in the data fork of a PICT file.

–quickdraw Execute only pure quickdraw operations. In particular, turn off the interpretation of special PostScript
printer operations.

–verbose Turns on verbose mode, which prints a whole bunch of information that only picttoppm hackers really
care about.

BUGS
The PICT file format is a general drawing format. picttoppm does not support all the drawing commands, but it does have
full support for any image commands and reasonable support for line, rectangle, polygon, and text drawing. It is useful for
converting scanned images and some drawing conversion.

Memory is used very liberally with at least six bytes needed for every pixel. Large bitmap PICT files will likely run your
computer out of memory.

picttoppm

Part I: User Commands380

fontdir FILE FORMAT
picttoppm has a built-in default font and your local installer probably provided adequate extra fonts. You can point picttoppm
at more fonts that you specify in a font directory file. Each line in the file is either a comment line, which must begin with #,
or font information. The font information consists of four whitespace separated fields. The first is the font number, the
second is the font size in pixels, the third is the font style, and the fourth is the name of a BDF file containing the font. The
BDF format is defined by the X Window System and is not described here.

The font number indicates the type face. Here is a list of known font numbers and their faces.

0 Chicago

1 Application font

2 New York

3 Geneva

4 Monaco

5 Venice

6 London

7 Athens

8 San Francisco

9 Toronto

11 Cairo

12 Los Angeles

20 Times Roman

21 Helvetica

22 Courier

23 Symbol

24 Taliesin

The font style indicates a variation on the font. Multiple variations may apply to a font and the font style is the sum of the
variation numbers, which are

1 Boldface

2 Italic

4 Underlined

8 Outlined

16 Shadow

32 Condensed

64 Extended

Obviously, the font definitions are strongly related to the Macintosh. More font numbers and information about fonts can
be found in Macintosh documentation.

SEE ALSO
Inside Macintosh volumes 1 and 5, ppmtopict(1), ppm(5)

AUTHOR
Copyright 1993 George Phillips.

29 November 1991

381

pjtoppm
pjtoppm—Convert an HP PaintJet file to a portable pixmap

SYNOPSIS
pjtoppm [paintjet]

DESCRIPTION
pjtoppm reads an HP PaintJet file as input and converts it into a portable pixmap. This was a quick hack to save some trees,
and it only handles a small subset of the paintjet commands. In particular, it will only handle enough commands to convert
most raster image files.

REFERENCES
HP PaintJet XL Color Graphics Printer User’s Guide

SEE ALSO
ppmtopj(1)

AUTHOR
Copyright 1991 by Christos Zoulas.

14 July 1991

pktopbm
pktopbm—Convert packed (PK) format font into portable bitmap(s)

SYNOPSIS
pktopbm pkfile[.pk] [-c num] pbmfile ...

DESCRIPTION
pktopbm reads a packed (PK) font file as input and produces portable bitmaps as output. If the filename “-” is used for any of
the filenames, the standard input stream (or standard output where appropriate) will be used.

OPTIONS
-c num Sets the character number of the next bitmap written to num.

SEE ALSO
pbmtopk(1), pbm(5)

AUTHOR
Adapted from Tom Rokicki’s pxtopk by Angus Duggan (ajcd@dcs.ed.ac.uk).

6 August 1990

pnmalias
pnmalias—Antialias a portable anymap.

SYNOPSIS
pnmalias [-bgcolor color][-fgcolor color][-bonly][-fonly][-balias][-falias]
[-weight w][pnmfile]

pnmalias

Part I: User Commands382

DESCRIPTION
pnmalias reads a portable anymap as input and applies antialiasing to background and foreground pixels. If the input file is a
portable bitmap, the output antialiased image is promoted to a graymap, and a message is printed informing the user of the
change in format.

OPTIONS
–bgcolor colorb, Set the background color to colorb, and the foreground to color to colorf. Pixels with these values
–fgcolor colorf will be antialiased. By default, the background color is taken to be black, and foreground color is

assumed to be white. The colors can be specified in five ways:

■ A name, assuming that a pointer to an X11-style color names file was compiled in.
■ An X11-style hexadecimal specifier: rgb:r/g/b, where r, g, and b are each 1- to 4-digit

hexadecimal numbers.
■ An X11-style decimal specifier: rgbi:r/g/b, where r, g, and b are floating-point numbers

between 0 and 1.
■ For backwards compatibility, an old-X11-style hexadecimal number: #rgb, #rrggbb,

#rrrgggbbb, or #rrrrggggbbbb.
■ For backwards compatibility, a triplet of numbers separated by commas: r,g,b, where r, g,

and b are floating-point numbers between 0 and 1. (This style was added before MIT came
up with the similar rgbi style.)

Note that even when dealing with graymaps, background and foreground colors need to be specified in the fashion described
in the preceding list. In this case, background and foreground pixel values are taken to be the value of the red component for
the given color.

–bonly, –fonly Apply antialiasing only to background (–bonly), or foreground (–fonly) pixels.

–balias, –falias Apply antialiasing to all pixels surrounding background (–balias), or foreground (–falias) pixels.
By default, antialiasing takes place only among neighboring background and foreground pixels.

–weight w Use w as the central weight for the aliasing filter. w must be a real number in the range 0 < w < 1.
The lower the value of w is, the “blurrier” the output image is. The default is w = 1/3.

SEE ALSO
pbmtext(1), pnmsmooth(1), pnm(5)

AUTHOR
Copyright 1992 by Alberto Accomazzi, Smithsonian Astrophysical Observatory.

30 April 1992

pnmarith
pnmarith—Perform arithmetic on two portable anymaps

SYNOPSIS
pnmarith -add|-subtract|-multiply|-difference pnmfile1 pnmfile2

DESCRIPTION
pnmarith reads two portable anymaps as input, performs the specified arithmetic operation, and produces a portable anymap
as output. The two input anymaps must be the same width and height.

The arithmetic is performed between corresponding pixels in the two anymaps, as if maxval was 1.0, black was 0.0, with a
linear scale in between. Results that fall outside of [0..1) are truncated.

383

The operator -difference calculates the absolute value of

pnmarith -subtract pnmfile1 pnm-file2

In other words, no truncation is done.

All flags can be abbreviated to their shortest unique prefix.

SEE ALSO
pbmmask(1), pnmpaste(1), pnminvert(1), pnm(5)

AUTHOR
Copyright 1989, 1991 by Jef Poskanzer. Lightly modified by Marcel Wijkstra (wijkstra@fwi.uva.nl).

26 August 1993

pnmcat
pnmcat—Concatenate portable anymaps

SYNOPSIS
pnmcat [-white|-black] -leftright|-lr [-jtop|-jbottom] pnmfile pnmfile ...
pnmcat [-white|-black] -topbottom|-tb [-jleft|-jright] pnmfile pnmfile ...

DESCRIPTION
pnmcat reads portable anymaps as input, concatenates them either left to right or top to bottom, and produces a portable
anymap as output.

OPTIONS
If the anymaps are not all the same height (left-right) or width (top-bottom), the smaller ones have to be justified with the
largest. By default, they get centered, but you can specify one side or the other with one of the -j* flags. So, -topbottom -
jleft would stack the anymaps on top of each other, flush with the left edge.

The -white and -black flags specify which color to use to fill in the extra space when doing this justification. If neither is
specified, the program makes a guess.

All flags can be abbreviated to their shortest unique prefix.

SEE ALSO
pnm(5)

AUTHOR
Copyright 1989 by Jef Poskanzer.

12 March 1989

pnmcomp
pnmcomp—Composite two portable anymap files together

SYNOPSIS
pnmcomp [-invert][-xoffN] [-yoffN] [-alphapgmfile] overlay [pnm-input][pnm-output]

pnmcomp

Part I: User Commands384

DESCRIPTION
pnmcomp reads in a portable anymap image and puts an overlay upon it, with optional alpha mask. The -alphapgmfile allows
you to also add an alpha mask file to the compositing process; the range of max and min can be swapped by using the -invert
option. The -xoff and -yoff arguments can be negative, allowing you to shift the overlay off the top corner of the screen.

SEE ALSO
pnm(5)

AUTHOR
Copyright 1992 by David Koblas (koblas@mips.com).

21 February 1989

pnmconvol
pnmconvol—General MxN convolution on a portable anymap

SYNOPSIS
pnmconvol convolutionfile [pnmfile]

DESCRIPTION
pnmconvol reads two portable anymaps as input, convolves the second using the first, and writes a portable anymap as output.

Convolution means replacing each pixel with a weighted average of the nearby pixels. The weights and the area to average are
determined by the convolution matrix. The unsigned numbers in the convolution file are offset by -maxval/2 to make signed
numbers, and then normalized, so the actual values in the convolution file are only relative.

Here is a sample convolution file; it does a simple average of the nine immediate neighbors, resulting in a smoothed image:

P2
3 3
18
10 10 10
10 10 10
10 10 10

To see how this works, do the offset mentioned in the preceding paragraph: 10 – 18/2 gives 1. The possible range of values is
from 0 to 18, and after the offset that’s -9 to 9. The normalization step makes the range -1 to 1, and the values get scaled
correspondingly so they become 1/9—exactly what you want. The equivalent matrix for 5×5 smoothing would have maxval
50 and be filled with 26.

The convolution file will usually be a graymap, so that the same convolution is applied to each color component. However, if
you want to use a pixmap and do a different convolution to different colors, you can certainly do that.

SEE ALSO
pnmsmooth(1), pnm(5)

AUTHOR
Copyright 1989, 1991 by Jef Poskanzer.

13 January 1991

385

pnmcrop
pnmcrop—Crop a portable anymap

SYNOPSIS
pnmcrop [-white|-black][-left][-right][-top][-bottom][pnmfile]

DESCRIPTION
pnmcrop reads a portable anymap as input, removes edges that are the background color, and produces a portable anymap as
output.

OPTIONS
By default, it makes a guess as to what the background color is. You can override the default with the -white and -black flags.

The options -left, -right, -top and -bottom restrict cropping to the sides specified. The default is to crop all sides of the
image.

All flags can be abbreviated to their shortest unique prefix.

SEE ALSO
pnmcut(1), pnm(5)

AUTHOR
Copyright  1989 by Jef Poskanzer.

25 February 1989

pnmcut
pnmcut—Cut a rectangle out of a portable anymap

SYNOPSIS
pnmcut x y width height [pnmfile]

DESCRIPTION
pnmcut reads a portable anymap as input, extracts the specified rectangle, and produces a portable anymap as output. The x
and y can be negative, in which case they are interpreted relative to the right and bottom of the anymap, respectively.

SEE ALSO
pnm(5)

AUTHOR
Copyright  1989 by Jef Poskanzer.

21 February 1989

pnmdepth
pnmdepth—Change the maxval in a portable anymap

SYNOPSIS
pnmdepth newmaxval [pnmfile]

pnmdepth

Part I: User Commands386

DESCRIPTION
pnmdepth reads a portable anymap as input, scales all the pixel values, and writes out the image with the new maxval. Scaling
the colors down to a smaller maxval will result in some loss of information.

Be careful of off-by-one errors when choosing the new maxval. For instance, if you want the color values to be five bits wide,
use a maxval of 31, not 32.

SEE ALSO
pnm(5), ppmquant(1), ppmdither(1)

AUTHOR
Copyright  1989, 1991 by Jef Poskanzer.

12 January 1991

pnmenlarge
pnmenlarge—Read a portable anymap and enlarge it N times

SYNOPSIS
pnmenlarge N [pnmfile]

DESCRIPTION
pnmenlarge reads a portable anymap as input, replicates its pixels N times, and produces a portable anymap as output.

pnmenlarge can only enlarge by integer factors. The slower but more general pnmscale can enlarge or reduce by arbitrary
factors, and pbmreduce can reduce by integer factors, but only for bitmaps.

If you enlarge by a factor of 3 or more, you should probably add a pnmsmooth step; otherwise, you can see the original pixels
in the resulting image.

SEE ALSO
pbmreduce(1), pnmscale(1), pnmsmooth(1), pnm(5)

AUTHOR
Copyright  1989 by Jef Poskanzer.

26 February 1989

pnmfile
pnmfile—Describe a portable anymap

SYNOPSIS
pnmfile [pnmfile] ...

DESCRIPTION
pnmfile reads one or more portable anymaps as input and writes out short descriptions of the image type, size, and so on.
This is mostly for use in shell scripts, so the format is not particularly pretty.

SEE ALSO
pnm(5), file(1)

387

AUTHOR
Copyright  1991 by Jef Poskanzer.

9 January 1991

pnmflip
pnmflip—Perform one or more flip operations on a portable anymap

SYNOPSIS
pnmflip [-leftright|-lr][-topbottom|-tb][-transpose|-xy][-rotate90|-r90|-ccw]
[-rotate270|-r270|-cw][-rotate180|-r180][pnmfile]

DESCRIPTION
pnmflip reads a portable anymap as input, performs one or more flip operations in the order specified, and writes out a
portable anymap.

OPTIONS
The flip operations available are left for right (-leftright or -lr); top for bottom (-topbottom or -tb); and transposition (-
transpose or -xy). In addition, some canned concatenations are available: -rotate90 or -ccw is equivalent to -transpose -
topbottom; -rotate270 or -cw is equivalent to -transpose -leftright; and -rotate180 is equivalent to -leftright -topbottom.

All flags can be abbreviated to their shortest unique prefix.

SEE ALSO
pnmrotate(1), pnm(5)

AUTHOR
Copyright 1989 by Jef Poskanzer.

25 July 1989

pnmgamma
pnmgamma—Perform gamma correction on a portable anymap

SYNOPSIS
pnmgamma value [pnmfile]
pnmgamma redvalue greenvalue bluevalue [pnmfile]

DESCRIPTION
pnmgamma reads a portable anymap as input, performs gamma correction, and produces a portable anymap as output.

The arguments specify what gamma value(s) to use. A value of 1.0 leaves the image alone, less than 1 darkens it, and greater
than 1 lightens it.

SEE ALSO
pnm(5)

AUTHOR
Copyright 1991 by Bill Davidson and Jef Poskanzer.

12 January 1991

pnmgamma

Part I: User Commands388

pnmhistmap
pnmhistmap—Draw a histogram for a PGM or PPM file

SYNOPSIS
pnmhistmap [-black][-white][-max N][-verbose][pnmfile]

DESCRIPTION
pnmhistmap reads a portable anymap as input, although bitmap (PBM) input produces an error message and no image, and
produces an image showing a histogram of the color (or gray) values in the input. A graymap (PGM) input produces a
bitmap output. A pixmap (PPM) input produces pixmap output with three overlaid histograms: a red one for the red input,
a green one for the green input, and a blue one for the blue input. The output is fixed in size: 256 pixels wide by 200 pixels
high.

OPTIONS
-black Ignores the count of black pixels when scaling the histogram.

-white Ignores the count of white pixels when scaling the histogram.

The -black and -white options, which can be used separately or together, are useful for images with a large percentage of
pixels whose value is zero or 255, which can cause the remaining histogram data to become unreadably small. Note that, for
pixmap inputs, these options apply to all colors; if, for example, the input has a large number of bright-red areas, you will
probably want to use the -white option.

-max N Force the scaling of the histogram to use N as the largest-count value. This is useful for inputs with a large
percentage of single-color pixels that are not black or white.

-verbose Report the progress of making the histogram, including the largest-count value used to scale the output.

All flags can be abbreviated to their shortest unique prefix.

BUGS
Assumes maxval is always 255. Images with a smaller maxval will only use the lower-value side of the histogram. This can be
overcome either by piping the input through pnmdepth 255 or by cutting and scaling the lower-value side of the histogram.
Neither is a particularly elegant solution.

Should allow the output size to be specified.

SEE ALSO
pgmhist(1), ppmhist(1), pgm(5), ppm(5)

AUTHOR
Wilson H. Bent, Jr. (whb@usc.edu).

25 October 1993

pnmindex
pnmindex—Build a visual index of a bunch of anymaps

SYNOPSIS
pnmindex [-size N][-across N][-colors N][-black] pnmfile ...

DESCRIPTION
This script makes small versions of a bunch of anymaps, adds labels, and concatenates them together into a collage.

389

OPTIONS
-size Controls how big each image becomes; the default is 100x100.

-across Controls how many images are in each row; the default is six.

-colors Controls how many colors the final index gets quantized to, if quantization is necessary; the default is 256.

-black Controls the color of the padding between the images; normally it’s white and the labels are black lettering on
white background, but the -black flag reverses this.

SEE ALSO
pnmscale(1), pnmcat(1), pbmtext(1), ppmquant(1), pnm(5)

BUGS
It’s very slow.

It’s a csh script. csh scripts are not portable to System V. Scripts in general are not portable to non-UNIX environments.

AUTHOR
Copyright  1991 by Jef Poskanzer.

9 January 1991

pnminvert
pnminvert—Invert a portable anymap

SYNOPSIS
pnminvert [pnmfile]

DESCRIPTION
pnminvert reads a portable anymap as input, inverts it black for white, and produces a portable anymap as output.

SEE ALSO
pnm(5)

AUTHOR
Copyright  1989 by Jef Poskanzer.

8 August 1989

pnmmargin
pnmmargin—Add a border to a portable anymap

SYNOPSIS
pnmmargin [-white|-black|-color colorspec] size [pnmfile]

DESCRIPTION
pnmmargin reads a portable anymap as input, adds a border of the specified number of pixels, and produces a portable anymap
as output.

pnmmargin

Part I: User Commands390

OPTIONS
You can specify the border color with the -white, -black, and -color flags. If no color is specified, the program makes a
guess.

SEE ALSO
pnm(5)

BUGS
It’s a script. Scripts are not portable to non-UNIX environments.

AUTHOR
Copyright  1991 by Jef Poskanzer.

9 January 1991

pnmnlfilt
pnmnlfilt--Nonlinear filters: smooth, alpha trim mean, optimal estimation smoothing, edge enhancement.

SYNOPSIS
pnmnlfilt alpha radius [pnmfile]

DESCRIPTION
This is something of a Swiss army knife filter. It has three distinct operating modes. In all of the modes, each pixel in the
image is examined and processed according to it and its surrounding pixels values. Rather than using the nine pixels in a 3×3
block, seven hexagonal area samples are taken, the size of the hexagons being controlled by the radius parameter. A radius
value of 0.3333 means that the seven hexagons exactly fit into the center pixel (that is, there will be no filtering effect). A
radius value of 1.0 means that the seven hexagons exactly fit a 3×3 pixel array.

ALPHA-TRIMMED MEAN FILTER (0.0 < = alpha < = 0.5)
The value of the center pixel will be replaced by the mean of the seven hexagon values, but the seven values are sorted by size
and the top and bottom alpha portion of the seven are excluded from the mean. This implies that an alpha value of 0.0 gives
the same sort of output as a normal convolution (that is, averaging or smoothing filter), where radius will determine the
“strength” of the filter. A good value to start from for subtle filtering is alpha = 0.0, radius = 0.55. For a more blatant effect,
try alpha = 0.0 and radius = 1.0.

An alpha value of 0.5 will cause the median value of the seven hexagons to be used to replace the center pixel value. This sort
of filter is good for eliminating “pop” or single pixel noise from an image without spreading the noise out or smudging
features on the image. Judicious use of the radius parameter will fine-tune the filtering. Intermediate values of alpha give
effects somewhere between smoothing and “pop” noise reduction. For subtle filtering, try starting with values of alpha = 0.4,
radius = 0.6. For a more blatant effect, try alpha = 0.5, radius = 1.0.

OPTIMAL ESTIMATION SMOOTHING. (1.0 < = alpha < = 2.0)
This type of filter applies a smoothing filter adaptively over the image. For each pixel, the variance of the surrounding
hexagon values is calculated, and the amount of smoothing is made inversely proportional to it. The idea is that if the
variance is small, then it is due to noise in the image, while if the variance is large, it is because of “wanted” image features.
As usual, the radius parameter controls the effective radius, but it probably advisable to leave the radius between 0.8 and 1.0
for the variance calculation to be meaningful. The alpha parameter sets the noise threshold, over which less smoothing will
be done. This means that small values of alpha will give the most subtle filtering effect, while large values will tend to smooth
all parts of the image. You could start with values like alpha = 1.2, radius = 1.0 and try increasing or decreasing the alpha
parameter to get the desired effect. This type of filter is best for filtering out dithering noise in both bitmap and color images.

391

EDGE ENHANCEMENT. (-0.1 > = alpha > = -0.9)
This is the opposite type of filter to the smoothing filter. It enhances edges. The alpha parameter controls the amount of
edge enhancement, from subtle (-0.1) to blatant (-0.9). The radius parameter controls the effective radius as usual, but
useful values are between 0.5 and 0.9. Try starting with values of alpha = 0.3, radius = 0.8.

COMBINATION USE
The various modes of pnmnlfilt can be used one after the other to get the desired result. For instance to turn a monochrome
dithered image into a grayscale image, you could try one or two passes of the smoothing filter, followed by a pass of the
optimal estimation filter, then some subtle edge enhancement. Note that using edge enhancement is only likely to be useful
after one of the nonlinear filters (alpha-trimmed mean or optimal estimation filter), as edge enhancement is the direct
opposite of smoothing.

For reducing color quantization noise in images (that is, turning GIF files back into 24-bit files), you could try a pass of the
optimal estimation filter (alpha 1.2, radius 1.0), a pass of the median filter (alpha 0.5, radius 0.55), and possibly a pass of
the edge enhancement filter. Several passes of the optimal estimation filter with declining alpha values are more effective than
a single pass with a large alpha value. As usual, there is a tradeoff between filtering effectiveness and loosing detail. Experi-
mentation is encouraged.

REFERENCES
The alpha-trimmed mean filter is based on the description in IEEE CG&A, May 1990, page 23, by Mark E. Lee and Richard
A. Redner, and has been enhanced to allow continuous alpha adjustment.

The optimal estimation filter is taken from an article “Converting Dithered Images Back to Grayscale” by Allen Stenger, Dr.
Dobb’s Journal, November 1992, and this article references “Digital Image Enhancement and Noise Filtering by Use of Local
Statistics” by Jong-Sen Lee, IEEE Transactions on Pattern Analysis and Machine Intelligence, March 1980.

The edge enhancement details are from pgmenhance(1), which is taken from Philip R. Thompson’s xim program, which in
turn took it from Section 6 of “Digital Halftones by Dot Diffusion” by D. E. Knuth, ACM Transaction on Graphics Vol. 6,
No. 4, October 1987, which in turn got it from two 1976 papers by J. F. Jarvis et al.

SEE ALSO
pgmenhance(1), pnmconvol(1), pnm(5)

BUGS
Integers and tables may overflow if PPM_MAXMAXVAL is greater than 255.

AUTHOR
Graeme W. Gill (graeme@labtam.oz.au).

5 February 1993

pnmnoraw
pnmnoraw—Force a portable anymap into plain format

SYNOPSIS
pnmnoraw [pnmfile]

DESCRIPTION
pnmnoraw reads a portable anymap as input and writes it out in plain (nonraw) format. This is fairly useless if you haven’t
defined the PBMPLUS_RAWBITS compile-time option.

pnmnoraw

Part I: User Commands392

SEE ALSO
pnm(5)

AUTHOR
Copyright  1991 by Jef Poskanzer.

8 January 1991

pnmpad
pnmpad—Add borders to portable anymap

SYNOPSIS
pnmpad [-white|-black] [-l#] [-r#] [-t#] [-b#] [pnmfile]

DESCRIPTION
pnmpad reads a portable anymap as input and outputs a portable anymap with extra borders of the sizes specified. The color of
the borders can be set to black or white (default black).

SEE ALSO
pbmmake(1), pnmpaste(1), pbm(5)

AUTHOR
Copyright  1990 by Angus Duggan. Copyright  1989 by Jef Poskanzer.

pnmpaste
pnmpaste—Paste a rectangle into a portable anymap

SYNOPSIS
pnmpaste [-replace|-or|-and |-xor] frompnmfile x y [intopnmfile]

DESCRIPTION
pnmpaste reads two portable anymaps as input, inserts the first anymap into the second at the specified location, and produces
a portable anymap the same size as the second as output. If the second anymap is not specified, it is read from stdin. The x
and y can be negative, in which case they are interpreted relative to the right and bottom of the anymap, respectively.

This tool is most useful in combination with pnmcut. For instance, if you want to edit a small segment of a large image, and
your image editor cannot edit the large image, you can cut out the segment you are interested in, edit it, and then paste it
back in.

Another useful companion tool is pbmmask.

The optional flag specifies the operation to use when doing the paste. The default is -replace. The other logical operations
are only allowed if both input images are bitmaps. These operations act as if white is TRUE and black is FALSE.

All flags can be abbreviated to their shortest unique prefix.

SEE ALSO
pnmcut(1), pnminvert(1), pnmarith(1), pnm(5), pbmmask(1)

393

AUTHOR
Copyright  1989, 1991 by Jef Poskanzer.

21 February 1991

pnmrotate
pnmrotate—Rotate a portable anymap by some angle

SYNOPSIS
pnmrotate [-noantialias] angle [pnmfile]

DESCRIPTION
pnmrotate reads a portable anymap as input, rotates it by the specified angle, and produces a portable anymap as output. If
the input file is in color, the output will be, too; otherwise, it will be grayscale. The angle is in degrees (floating-point),
measured counter-clockwise. It can be negative, but it should be between -90 and 90. Also, for rotations greater than 45
degrees you may get better results if you first use pnmflip to do a 90-degree rotation and then pnmrotate less than 45 degrees
back the other direction.

The rotation algorithm is Alan Paeth’s three-shear method. Each shear is implemented by looping over the source pixels and
distributing fractions to each of the destination pixels. This has an antialiasing effect—it avoids jagged edges and similar
artifacts. However, it also means that the original colors or gray levels in the image are modified. If you need to keep
precisely the same set of colors, you can use the -noantialias flag. This does the shearing by moving pixels without changing
their values. If you want antialiasing and don’t care about the precise colors, but still need a limited *number* of colors, you
can run the result through ppmquant.

All flags can be abbreviated to their shortest unique prefix.

REFERENCES
“A Fast Algorithm for General Raster Rotation” by Alan Paeth, Graphics Interface ’86, pages 77–81.

SEE ALSO
pnmshear(1), pnmflip(1), pnm(5), ppmquant(1)

AUTHOR
Copyright  1989, 1991 by Jef Poskanzer.

12 January 1991

pnmscale
pnmscale—Scale a portable anymap

SYNOPSIS
pnmscale s [pnmfile]
pnmscale -xsize|-width|-ysize| -height s [pnmfile]
pnmscale -xscale|-yscale s [pnmfile]
pnmscale -xscale|-xsize|-width s -yscale|-ysize|-height s [pnmfile]
pnmscale -xysize x y [pnmfile]
pnmscale –pixels n [pnmfile]

pnmscale

Part I: User Commands394

DESCRIPTION
pnmscale reads a portable anymap as input, scales it by the specified factor or factors, and produces a portable anymap as
output. If the input file is in color, the output will be, too; otherwise, it will be grayscale. You can both enlarge (scale factor >
1) and reduce (scale factor < 1).

You can specify one dimension as a pixel size, and the other dimension will be scaled correspondingly.

You can specify one dimension as a scale, and the other dimension will not be scaled.

You can specify different sizes or scales for each axis.

You can use the special -xysize flag, which fits the image into the specified size without changing the aspect ratio.

Or, you can use the –pixels flag, which fits the image into the specified number of pixels without changing the aspect ratio.

All flags can be abbreviated to their shortest unique prefix.

If you enlarge by a factor of three or more, you should probably add a pnmsmooth step; otherwise, you can see the original
pixels in the resulting image.

SEE ALSO
pbmreduce(1), pnmenlarge(1), pnmsmooth(1), pnm(5)

AUTHOR
Copyright  1989, 1991 by Jef Poskanzer.

12 January 1991

pnmshear
pnmshear—Shear a portable anymap by some angle

SYNOPSIS
pnmshear [-noantialias] angle [pnmfile]

DESCRIPTION
pnmshear reads a portable anymap as input, shears it by the specified angle, and produces a portable anymap as output. If the
input file is in color, the output will be too; otherwise, it will be grayscale. The angle is in degrees (floating-point), and
measures this:

+----+ +----+
|||\\
| OLD||\NEW \
|||an\\
+----+ |gle+----+

If the angle is negative, it shears the other way:

+----+ |-an+----+
|||gl//
| OLD ||e/ NEW /
|||//
+----+ +----+

The angle should not get too close to 90 or -90, or the resulting anymap will be unreasonably wide.

The shearing is implemented by looping over the source pixels and distributing fractions to each of the destination pixels.
This has an antialiasing effect—it avoids jagged edges and similar artifacts. However, it also means that the original colors or
gray levels in the image are modified. If you need to keep precisely the same set of colors, you can use the -noantialias flag.

395

This does the shearing by moving pixels without changing their values. If you want antialiasing and don’t care about the
precise colors, but still need a limited *number* of colors, you can run the result through ppmquant.

All flags can be abbreviated to their shortest unique prefix.

SEE ALSO
pnmrotate(1), pnmflip(1), pnm(5), ppmquant(1)

AUTHOR
Copyright  1989, 1991 by Jef Poskanzer.

12 January 1991

pnmsmooth
pnmsmooth—Smooth out an image

SYNOPSIS
pnmsmooth [pnmfile]

DESCRIPTION
pnmsmooth smooths out an image by replacing each pixel with the average of its nine immediate neighbors. It is implemented
as a simple script using pnmconvol.

SEE ALSO
pnmconvol(1), pnm(5)

BUGS
It’s a script. Scripts are not portable to non-UNIX environments.

AUTHOR
Copyright  1989, 1991 by Jef Poskanzer

13 January 1991

pnmtile
pnmtile—Replicate a portable anymap into a specified size

SYNOPSIS
pnmtile width height [pnmfile]

DESCRIPTION
pnmtile reads a portable anymap as input, replicates it until it is the specified size, and produces a portable anymap as output.

SEE ALSO
pnm(5)

AUTHOR
Copyright  1989 by Jef Poskanzer.

13 May 1989

pnmtile

Part I: User Commands396

pnmtoddif
pnmtoddif—Convert a portable anymap to DDIF format

SYNTAX
pnmtoddif pnmtoddif [-resolution x y] [pnmfile [ddiffile]]

OPTIONS
resolution x y The horizontal and vertical resolution of the output image in dots per inch. Defaults to 78dpi.

pnmfile The filename for the image file in PNM format. If this argument is omitted, input is read from stdin.

ddiffile The filename for the image file to be created in DDIF format. If this argument is omitted, the ddiffile is
written to standard output. It can only specified if a pnmfile is also specified.

DESCRIPTION
pnmtoddif takes a portable anymap from standard input and converts it into a DDIF image file on standard output or the
specified DDIF file.

PBM format (bitmap) data is written as 1-bit DDIF, PGM format data (grayscale) as 8-bit grayscale DDIF, and PPM format
data is written as 8,8,8-bit color DDIF. All DDIF image files are written as uncompressed. The data plane organization is
interleaved by pixel.

In addition to the number of pixels in the width and height dimension, DDIF images also carry information about the size
that the image should have, that is, the physical space that a pixel occupies. PBMPLUS images do not carry this information,
hence it has to be externally supplied. The default of 78dpi has the beneficial property of not causing a resize on most Digital
Equipment Corporation color monitors.

AUTHOR
Burkhard Neidecker-Lutz
Digital Equipment Corporation, CEC Karlsruhe
neideck@nestvx.enet.dec.com

pnmtofits
pnmtofits—Convert a portable anymap into FITS format

SYNOPSIS
pnmtofits [–max f][–min f][pnmfile]

DESCRIPTION
pnmtofits reads a portable anymap as input and produces a FITS (Flexible Image Transport System) file as output. The
resolution of the output file is either 8 bits/pixel, or 16 bits/pixel, depending on the value of maxval in the input file. If the
input file is a portable bitmap or a portable graymap, the output file consists of a single plane image (NAXIS = 2). If instead
the input file is a portable pixmap, the output file will consist of a three-plane image (NAXIS = 3, NAXIS3 = 3). A full
description of the FITS format can be found in Astronomy & Astrophysics Supplement Series 44 (1981), page 363.

OPTIONS
Flags –min and –max can be used to set DATAMAX, DATAMIN, BSCALE, and BZERO in the FITS header, but do not cause the data to
be rescaled.

SEE ALSO
fitstopnm(1), pgm(5)

397

AUTHOR
Copyright  1989 by Wilson H. Bent (whb@hoh-2.att.com), with modifications by Alberto Accomazzi
(alberto@cfa.harvard.edu).

5 December 1992

pnmtops
pnmtops—Convert portable anymap to PostScript

SYNOPSIS
pnmtops [-scale s][-turn|-noturn][-rle|-runlength][-dpi n][-width n][-height n]
[-center|-nocenter][pnmfile]

DESCRIPTION
pnmtops reads a portable anymap as input and produces encapsulated PostScript as output.

If the input file is in color (PPM), a color PostScript file gets written. Some PostScript interpreters can’t handle color
PostScript. If you have one of these, you will need to run your image through ppmtopgm first.

Note that there is no pstopnm tool; this transformation is one-way, because a pstopnm tool would be a full-fledged PostScript
interpreter, which is beyond the scope of this package. However, see the psidtopgm tool, which can read grayscale non-run-
length PostScript image data. Also, if you’re willing to install the fairly large GhostScript package, it comes with a pstoppm
script.

OPTIONS
The -scale flag controls the scale of the result. The default scale is 1, which on a 300dpi printer such as the Apple
LaserWriter makes the output look about the same size as the input would if it was displayed on a typical 72dpi screen. To
get one PNM pixel per 300dpi printer pixel, use -scale 0.25.

The -turn and -noturn flags control whether the image gets turned 90 degrees. Normally, if an image is wider than it is tall,
it gets turned automatically to better fit the page. If the -turn flag is specified, it will be turned no matter what its shape; and
if the -noturn flag is specified, it will not be turned no matter what its shape.

The -rle or -runlength flag specifies run-length compression. This may save time if the host-to-printer link is slow; but
normally the printer’s processing time dominates, so -rle makes things slower.

The -dpi flag lets you specify the dots per inch of your output device. The default is 300dpi. In theory PostScript is device-
independent and you don’t have to worry about this, but in practice its raster rendering can have unsightly bands if the
device pixels and the image pixels aren’t in sync.

The -width and -height flags let you specify the size of the page. The default is 8.5 inches by 11 inches.

With the -nocenter flag, the output is not centered on the page; it appears in the upper-left corner. This is useful for
programs that can include PostScript files, but can’t cope with pictures that are not positioned in the upper-left corner. The
default is -center--the image is centered on the page.

All flags can be abbreviated to their shortest unique prefix.

SEE ALSO
pnm(5), psidtopgm(1)

AUTHOR
Copyright  1989, 1991 by Jef Poskanzer. Modified November 1993 by Wolfgang Stuerzlinger (wrzl@gup.uni-linz.ac.at).

26 October 1991

pnmtops

Part I: User Commands398

pnmtorast
pnmtorast—Convert a portable pixmap into a Sun raster file

SYNOPSIS
pnmtorast [-standard|-rle][pnmfile]

DESCRIPTION
pnmtorast reads a portable pixmap as input and produces a Sun raster file as output.

Color values in Sun raster files are eight bits wide, so pnmtorast will automatically scale colors to have a maxval of 255. An
extra pnmdepth step is not necessary.

OPTIONS
The -standard flag forces the result to be in RT_STANDARD form; the -rle flag, RT_BYTE_ENCODED, which is smaller but, well, less
standard. The default is -rle.

All flags can be abbreviated to their shortest unique prefix.

SEE ALSO
rasttopnm(1), pnm(5)

AUTHOR
Copyright  1989, 1991 by Jef Poskanzer.

12 January 1991

pnmtosgi
pnmtosgi—Convert a portable anymap to an SGI image file

SYNOPSIS
pnmtosgi [-verbatim|-rle][-imagename Name][pnmfile]

DESCRIPTION
pnmtosgi reads a portable anymap as input and produces an SGI image file as output. The SGI image will be two-dimen-
sional (one channel) for PBM and PGM input, and three-dimensional (three channels) for PPM.

OPTIONS
-verbatim Write an uncompressed file.

-rle (default) Write a compressed (run-length–encoded) file.

-imagename name Write the string name into the imagename field of the header. The name string is limited to 79 characters. If
no name is given, pnmtosgi writes no name into this field.

BUGS
Probably.

REFERENCES
SGI image file format documentation (draft v0.95) by Paul Haeberli (paul@sgi.com). Available via FTP at sgi.com:graphics/
SGIIMAGESPEC.

399

SEE ALSO
pnm(5), sgitopnm(1)

AUTHOR
Copyright  1994 by Ingo Wilken (Ingo.Wilken@informatik.uni-oldenburg.de).

29 January 1994

pnmtosir
pnmtosir—Convert a portable anymap into a Solitaire format

SYNOPSIS
pnmtosir [pnmfile]

DESCRIPTION
pnmtosir reads a portable anymap as input and produces a Solitaire image recorder format.

pnmtosir produces an MGI TYPE 17 file for PBM and PGM files. For ppm, it writes an MGI TYPE 11 file.

SEE ALSO
sirtopnm(1), pnm(5)

AUTHOR
Copyright  1991 by Marvin Landis.

20 March 1991

pnmtotiff
pnmtotiff—Convert a portable anymap into a TIFF file

SYNOPSIS
pnmtotiff [-none|-packbits| -lzw|-g3|-g4][-2d][-fill][-predictor n]
[-msb2lsb|-lsb2msb] [-rowsperstrip n][pnmfile]

DESCRIPTION
pnmtotiff reads a portable anymap as input. Produces a TIFF file as output.

OPTIONS
By default, pnmtotiff creates a TIFF file with LZW compression. This is your best bet most of the time. However, some
TIFF readers can’t deal with it. If you want to try another compression scheme or tweak some of the other even more
obscure output options, there are a number of flags to play with.

The -none, -packbits, -lzw, -g3,and-g4 options are used to override the default and set the compression scheme used in
creating the output file. The CCITT Group 3 and Group 4 compression algorithms can only be used with bilevel data. The
-2d and -fill options are meaningful only with Group 3 compression: -2d requests two-dimensional encoding, while -fill
requests that each encoded scanline be zero-filled to a byte boundary. The -predictor option is only meaningful with LZW
compression: a predictor value of 2 causes each scanline of the output image to undergo horizontal differencing before it is
encoded; a value of 1 forces each scanline to be encoded without differencing. By default, pnmtotiff creates a TIFF file with
msb-to-lsb fill order. The -msb2lsb and -lsb2msb options are used to override the default and set the fill order used in
creating the file. The -rowsperstrip option can be used to set the number of rows (scanlines) in each strip of data in the

pnmtotiff

Part I: User Commands400

output file. By default, the output file has the number of rows per strip set to a value that will ensure each strip is no more
than eight kilobytes long.

BUGS
This program is not self-contained. To use it you must fetch the TIFF Software package listed in the OTHER.SYSTEMS file and
configure PBMPLUS to use libtiff. See PBM-PLUS’s Makefile for details on this configuration.

SEE ALSO
tifftopnm(1), pnm(5)

AUTHOR
Derived by Jef Poskanzer from ras2tiff.c, which is Copyright 1990 by Sun Microsystems, Inc. Author: Patrick J.
Naughton (naughton@wind.sun.com).

13 January 1991

pnmtoxwd
pnmtoxwd—Convert a portable anymap into an X11 window dump

SYNOPSIS
pnmtoxwd [-pseudodepth n][-directcolor][pnmfile]

DESCRIPTION
pnmtoxwd reads a portable anymap as input and produces an X11 window dump as output. This window dump can be
displayed using the xwud tool.

Normally, pnmtoxwd produces a StaticGray dump file for PBM and PGM files. For ppm, it writes a PseudoColor dump file if
there are up to 256 colors in the input, and a DirectColor dump file otherwise. The -directcolor flag can be used to force a
DirectColor dump. The -pseudodepth flag can be used to change the depth of PseudoColor dumps from the default of 8 bits/
256 colors.

SEE ALSO
xwdtopnm(1), pnm(5), xwud(1)

AUTHOR
Copyright 1989, 1991 by Jef Poskanzer.

24 September 1991

ppm3d
ppm3d—Convert two portable pixmap into a red/blue 3D glasses pixmap

SYNOPSIS
ppm3d leftppmfile rightppmfile [horizontal_offset]

DESCRIPTION
ppm3d reads two portable pixmaps as input and produces a portable pixmap as output, with the images overlapping by
horizontal_offset pixels in blue/red format.

horizontal_offset defaults to 30 pixels. Pixmaps must be the same size.

401

SEE ALSO
ppm(5)

AUTHOR
Copyright  1993 by David K. Drum.

2 November 1993

ppmbrighten
ppmbrighten—Change an image’s saturation and value from an HSV map

SYNOPSIS
ppmbrighten [-n] [-s <+- saturation>] [-v <+- value>] <ppmfile>

DESCRIPTION
ppmbrighten reads a portable pixmap as input, converts the image from RGB space to HSV space, and changes the value by
<+- value> as a percentage; the same with the saturation. Use

ppmbrighten -v 100

to add 100 percent to the value.

The n option normalizes the value to exist between 0 and 1 (normalized).

SEE ALSO
pgmnorm(1), ppm(5)

AUTHOR
Copyright 1990 by Brian Moffet. Copyright 1989 by Jef Poskanzer.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation. This software is provided “as is” without express or implied
warranty.

NOTES
This program does not change the number of colors.

20 November 1990

ppmchange
ppmchange—Change all pixels of one color to another in a portable pixmap

SYNOPSIS
ppmchange oldcolor newcolor [...] [ppmfile]

DESCRIPTION
ppmchange reads a portable pixmap as input and changes all pixels of oldcolor to newcolor, leaving all others unchanged. Up
to 256 colors may be replaced by specifying couples of colors on the command line.

ppmchange

Part I: User Commands402

The colors can be specified in five ways:

■ A name, assuming that a pointer to an X11-style color names file was compiled in.
■ An X11-style hexadecimal specifier: rgb:r/g/b, where r, g, and b are each 1- to 4-digit hexadecimal numbers.
■ An X11-style decimal specifier: rgbi:r/g/b, where r, g, and b are floating-point numbers between 0 and 1.
■ For backwards compatibility, an old-X11-style hexadecimal number: #rgb, #rrggbb, #rrrgggbbb, or #rrrrggggbbbb.
■ For backwards compatibility, a triplet of numbers separated by commas: r,g,b, where r, g, and b are floating-point

numbers between 0 and 1. (This style was added before MIT came up with the similar rgbi style.)

SEE ALSO
pgmtoppm(1), ppm(5)

AUTHOR
Wilson H. Bent, Jr. (whb@usc.edu), with modifications by Alberto Accomazzi (alberto@cfa.harvard.edu).

3 December 1993

ppmdim
ppmdim—Dim a portable pixmap down to total blackness

SYNOPSIS
ppmdim dimfactor [ppmfile]

DESCRIPTION
ppmdim reads a portable pixmap as input and diminishes its brightness by the specified dimfactor down to total blackness. The
dimfactor may be in the range from 0.0 (total blackness, deep night, nada, null, nothing) to 1.0 (original picture’s bright-
ness).

As pnmgamma does not do the brightness correction in the way I wanted it, I wrote this small program.

ppmdim is similar to ppmbrighten, but not exactly the same.

SEE ALSO
ppm(5), ppmflash(1), pnmgamma(1), ppmbrighten(1)

AUTHOR
Copyright 1993 by Frank Neumann.

16 November 1993

ppmdist
ppmdist—Simplistic grayscale assignment for machine-generated color images

SYNOPSIS
ppmdist [-intensity|-frequency][ppmfile]

DESCRIPTION
ppmdist reads a portable pixmap as input and performs a simplistic grayscale assignment intended for use with grayscale or
bitmap printers.

403

Often conversion from ppm to pgm will yield an image with contrast too low for good printer output. The program maximizes
contrast between the gray levels’ output.

A ppm input of n colors is read, and a pgm of n gray levels is written. The gray levels take on the values 0...n-1, while maxval
takes on n-1.

The mapping from color to stepped grayscale can be performed in order of input pixel intensity, or input pixel frequency
(number of repetitions).

OPTIONS
-frequency Sort input colors by the number of times a color appears in the input, before mapping to evenly distrib-

uted gray levels of output.

-intensity Sort input colors by their grayscale intensity, before mapping to evenly distributed gray levels of output.
This is the default.

BUGS
Helpful only for images with a very small number of colors. Perhaps should have been an option to ppmtopgm(1).

SEE ALSO
ppmtopgm(1), ppmhist(1), ppm(5)

AUTHOR
Copyright 1993 by Dan Stromberg.

22 July 1992

ppmdither
ppmdither—Ordered dither for color images

SYNOPSIS
ppmdither [-dim dimension][-red shades][-green shades][-blue shades][ppmfile]

DESCRIPTION
ppmdither reads a portable pixmap as input, and applies dithering to it to reduce the number of colors used down to the
specified number of shades for each primary. The default number of shades is red=5, green=9, blue=5, for a total of 225
colors. To convert the image to a binary RGB format suitable for color printers, use -red 2 -green 2 -blue 2. The maximum
number of colors that can be used is 256 and can be computed as the product of the number of red, green, and blue shades.

OPTIONS
-dim dimension The size of the dithering matrix. Must be a power of 2.

-red shades The number of red shades to be used; minimum of 2.

-green shades The number of green shades to be used; minimum of 2.

-blue shades The number of blue shades to be used; minimum of 2.

SEE ALSO
pnmdepth(1), ppmquant(1), ppm(5)

AUTHOR
Copyright 1991 by Christos Zoulas.

14 July 1991

ppmdither

Part I: User Commands404

ppmflash
ppmflash—Brighten a picture up to complete white-out

SYNOPSIS
ppmflash flashfactor [ppmfile]

DESCRIPTION
ppmflash reads a portable pixmap as input and increases its brightness by the specified flashfactor up to a total white-out
image. The flashfactor may be in the range from 0.0 (original picture’s brightness) to 1.0 (full white-out, The Second
After).

As pnmgamma does not do the brightness correction in the way I wanted it, I wrote this small program.

This program is similar to ppmbrighten, but not exactly the same.

SEE ALSO
ppm(5), ppmdim(1), pnmgamma(1), ppmbrighten(1)

AUTHOR
Copyright 1993 by Frank Neumann.

16 November 1993

ppmforge
ppmforge—Fractal forgeries of clouds, planets, and starry skies

SYNOPSIS
ppmforge [-clouds][-night][-dimension dimen][-hour hour][-inclination|-tilt angle]
[-mesh size][-power factor][-glaciers level][-ice level][-saturation sat]
[-seed seed] [-stars fraction][-xsize|-width width][-ysize|-height height]

DESCRIPTION
ppmforge generates three kinds of “random fractal forgeries,” the term coined by Richard F. Voss of the IBM Thomas
J. Watson Research Center for seemingly realistic pictures of natural objects generated by simple algorithms embodying
randomness and fractal self-similarity. The techniques used by ppmforge are essentially those given by Voss, particularly the
technique of spectral synthesis explained in more detail by Dietmar Saupe. (The “See Also” subsection provides more
detailed information about these men’s work.)

The program generates two varieties of pictures, planets and clouds, which are just different renderings of data generated in
an identical manner, illustrating the unity of the fractal structure of these very different objects. A third type of picture, a
starry sky, is synthesized directly from pseudorandom numbers.

The generation of planets or clouds begins with the preparation of an array of random data in the frequency domain. The
size of this array, the mesh size, can be set with the -mesh option; the larger the mesh, the more realistic the pictures, but the
calculation time and memory requirement increases as the square of the mesh size. The fractal dimension, which you can
specify with the -dimension option, determines the roughness of the terrain on the planet or the scale of detail in the clouds.
As the fractal dimension is increased, more high frequency components are added into the random mesh.

After the mesh is generated, an inverse two-dimensional Fourier transform is performed upon it. This converts the original
random frequency domain data into spatial amplitudes. You scale the real components that result from the Fourier transform
into numbers from 0 to 1 associated with each point on the mesh. You can further modify this number by applying a power
law scale to it with the -power option. Unity scale leaves the numbers unmodified; a power scale of 0.5 takes the square root

405

of the numbers in the mesh, while a power scale of 3 replaces the numbers in the mesh with their cubes. Power law scaling is
best envisioned by thinking of the data as representing the elevation of terrain; powers less than one yield landscapes with
vertical scarps that look like glacial-carved valleys; powers greater than one make fairy-castle spires (which require large mesh
sizes and high resolution for best results).

After these calculations, you have an array of the specified size containing numbers that range from 0 to 1. The pixmaps are
generated as follows:

Clouds A color map is created that ranges from pure blue to white by increasing admixture (desaturation) of blue with
white. Numbers less than 0.5 are colored blue, and numbers between 0.5 and 1.0 are colored with corresponding
levels of white, with 1.0 being pure white.

Planet The mesh is projected onto a sphere. Values less than 0.5 are treated as water and values between 0.5 and 1.0 as
land. The water areas are colored based on the water depth; land, based on its elevation. The random depth data
are used to create clouds over the oceans. An atmosphere approximately like the Earth’s is simulated; its light
absorption is calculated to create a blue cast around the limb of the planet. A function that rises from 0 to 1 based
on latitude is modulated by the local elevation to generate polar ice caps—high altitude terrain carries glaciers
farther from the pole. Based on the position of the star with respect to the observer, the apparent color of each
pixel of the planet is calculated by ray-tracing from the star to the planet to the observer and applying a lighting
model that sums ambient light and diffuse reflection (for most planets ambient light is zero, as their primary star
is the only source of illumination). Additional random data are used to generate stars around the planet.

Night A sequence of pseudorandom numbers is used to generate stars with a user-specified density.

Cloud pictures always contain 256 or fewer colors and may be displayed on most color-mapped devices without further
processing. Planet pictures often contain tens of thousands of colors that must be compressed with ppmquant or ppmdither
before encoding in a color-mapped format. If the display resolution is high enough, ppmdither generally produces better-
looking planets. ppmquant tends to create discrete color bands, particularly in the oceans, which are unrealistic and distract-
ing. The number of colors in starry sky pictures generated with the -night option depends on the value specified for
-saturation. Small values limit the color temperature distribution of the stars and reduce the number of colors in the image.
If the -saturation is set to 0, none of the stars will be colored and the resulting image will never contain more than 256
colors. Night sky pictures with many different star colors often look best when color-compressed by pnmdepth rather than
ppmquant or ppmdither.Try newmaxval settings of 63, 31, or 15 with pnmdepth to reduce the number of colors in the picture to
256 or fewer.

OPTIONS
-clouds Generate clouds. A pixmap of fractal clouds is generated. Selecting clouds sets the default

for fractal dimension to 2.15 and power scale factor to 0.75.

-dimension dimen Sets the fractal dimension to the specified dimen, which may be any floating-point value
between 0 and 3. Higher fractal dimensions create more “chaotic” images, which require
higher resolution output and a larger FFT mesh size to look good. If no dimension is
specified, 2.4 is used when generating planets and 2.15 for clouds.

-glaciers level The floating-point level setting controls the extent to which terrain elevation causes ice to
appear at lower latitudes. The default value of 0.75 makes the polar caps extend toward the
equator across high terrain and forms glaciers in the highest mountains, as on Earth. Higher
values make ice sheets that cover more and more of the land surface, simulating planets in
the midst of an ice age. Lower values tend to be boring, resulting in unrealistic geometrically
precise ice cap boundaries.

-hour hour When generating a planet, hour is used as the hour angle at the central meridian. If you
specify -hour 12, for example, the planet will be fully illuminated, corresponding to high
noon at the longitude at the center of the screen. You can specify any floating-point value
between 0 and 24 for hour, but values which place most of the planet in darkness (0 to 4
and 20 to 24) result in crescents which, while pretty, don’t give you many illuminated pixels
for the amount of computing that’s required. If no -hour option is specified, a random hour
angle is chosen, biased so that only 25 percent of the images generated will be crescents.

ppmforge

Part I: User Commands406

-ice level Sets the extent of the polar ice caps to the given floating-point level. The default level of
0.4 produces ice caps similar to those of the Earth. Smaller values reduce the amount of ice,
while larger -ice settings create more prominent ice caps. Sufficiently large values, such as
100 or more, in conjunction with small settings for -glaciers (try 0.1) create “ice balls” like
Europa.

-inclination|-tilt angle The inclination angle of the planet with regard to its primary star is set to angle, which can
be any floating-point value from -90 to 90. The inclination angle can be thought of as
specifying, in degrees, the “season” the planet is presently experiencing or, more precisely,
the latitude at which the star transits the zenith at local noon. If 0, the planet is at equinox;
the star is directly overhead at the equator. Positive values represent summer in the northern
hemisphere, negative values summer in the southern hemisphere. The Earth’s inclination
angle, for example, is about 23.5 at the June solstice, 0 at the equinoxes in March and
September, and -23.5 at the December solstice. If no inclination angle is specified, a
random value between -21.6 and 21.6 degrees is chosen.

-mesh size A mesh of size by size will be used for the fast Fourier transform (FFT). Note that
memory requirements and computation speed increase as the square of size; if you double
the mesh size, the program will use four times the memory and run four times as long. The
default mesh is 256x256, which produces reasonably good looking pictures while using half a
megabyte for the 256x256 array of single precision complex numbers required by the FFT.
On machines with limited memory capacity, you may have to reduce the mesh size to avoid
running out of RAM. Increasing the mesh size produces better looking pictures; the
difference becomes particularly noticeable when generating high-resolution images with
relatively high fractal dimensions (between 2.2 and 3).

-night A starry sky is generated. The stars are created by the same algorithm used for the stars that
surround planet pictures, but the output consists exclusively of stars.

-power factor Sets the power factor used to scale elevations synthesized from the FFT to factor, which can
be any floating-point number greater than zero. If no factor is specified, a default of 1.2 is
used if a planet is being generated, or 0.75 if clouds are selected by the -clouds option. The
result of the FFT image synthesis is an array of elevation values between 0 and 1. A
nonunity power factor exponentiates each of these elevations to the specified power. For
example, a power factor of 2 squares each value, while a power factor of 0.5 replaces each
with its square root. (Note that exponentiating values between 0 and 1 yields values that
remain within that range.) Power factors less than 1 emphasize large-scale elevation changes
at the expense of small variations. Power factors greater than 1 increase the roughness of the
terrain and, like high fractal dimensions, may require a larger FFT mesh size or higher
screen resolution to look good.

-saturation sat Controls the degree of color saturation of the stars that surround planet pictures and fill
starry skies created with the -night option. The default value of 125 creates stars that
resemble the sky as seen by the human eye from Earth’s surface. Stars are dim; only the
brightest activate the cones in the human retina, causing color to be perceived. Higher
values of sat approximate the appearance of stars from Earth orbit, where better dark
adaptation, absence of sky glow, and the concentration of light from a given star onto a
smaller area of the retina thanks to the lack of atmospheric turbulence enhances the
perception of color. Values greater than 250 create “science fiction” skies that, while pretty,
don’t occur in this universe.

Thanks to the inverse square law combined with nature’s love of mediocrity, there are
many, many dim stars for every bright one. This population relationship is accurately
reflected in the skies created by ppmforge. Dim, low mass stars live much longer than bright,
massive stars; consequently there are many reddish stars for every blue giant. This relation-
ship is preserved by ppmforge. You can reverse the proportion, simulating the sky as seen in a
starburst galaxy, by specifying a negative sat value.

407

-seed num Sets the seed for the random number generator to the integer num. The seed used to create
each picture is displayed on standard output (unless suppressed with the -quiet option).
Pictures generated with the same seed will be identical. If no -seed is specified, a random
seed derived from the date and time will be chosen. Specifying an explicit seed allows you to
re-render a picture you particularly like at a higher resolution or with different viewing
parameters.

-stars fraction Specifies the percentage of pixels, in tenths of a percent, that will appear as stars, either
surrounding a planet or filling the entire frame if -night is specified. The default fraction is
100.

-xsize|-width width Sets the width of the generated image to width pixels. The default width is 256 pixels.
Images must be at least as wide as they are high; if a width less than the height is specified, it
will be increased to equal the height. If you must have a long, skinny pixmap, make a square
one with ppmforge, then use pnmcut to extract a portion of the shape and size you require.

-ysize|-height height Sets the height of the generated image to height pixels. The default height is 256 pixels. If
the height specified exceeds the width, the width will be increased to equal the height.

All flags can be abbreviated to their shortest unique prefix.

BUGS
The algorithms require the output pixmap to be at least as wide as it is high, and the width to be an even number of pixels.
These constraints are enforced by increasing the size of the requested pixmap if necessary.

You may have to reduce the FFT mesh size on machines with 16-bit integers and segmented pointer architectures.

SEE ALSO
pnmcut(1), pnmdepth(1), ppmdither(1), ppmquant(1), ppm(5)

“Random Fractal Forgeries” by Richard F. Voss, in Fundamental Algorithms for Computer Graphics by Earnshaw et al. Berlin:
Springer-Verlag, 1985.

The Science Of Fractal Images, edited by H. O. Peitgen and D. Saupe. New York: Springer-Verlag, 1988.

AUTHOR
John Walker
Autodesk SA
Avenue des Champs-Montants 14b
CH-2074 MARIN
Suisse/Schweiz/Svizzera/Svizra/Switzerland

Usenet: kelvin@Autodesk.com

Fax: 038/33 88 15

Voice: 038/33 76 33

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, without any conditions or restrictions. This software is provided “as is” without express or implied warranty.

PLUGWARE! If you like this kind of stuff, you may also enjoy James Gleick’s “Chaos—The Software” for MS-DOS,
available for $59.95 from your local software store or directly from Autodesk, Inc., Attn: Science Series, 2320 Marinship
Way, Sausalito, CA 94965, USA. Telephone: 800-688-2344 toll-free or, outside the U.S. 415-332-2344 Ext 4886.
Fax: 415-289-4718. “Chaos—The Software” includes a more comprehensive fractal forgery generator that creates three-
dimensional landscapes as well as clouds and planets, plus five more modules that explore other aspects of Chaos. The user
guide of more than 200 pages includes an introduction by James Gleick and detailed explanations by Rudy Rucker of the
mathematics and algorithms used by each program.

25 October 1991

ppmforge

Part I: User Commands408

ppmhist
ppmhist—Print a histogram of a portable pixmap

SYNOPSIS
ppmhist [ppmfile]

DESCRIPTION
ppmhist reads a portable pixmap as input and generates a histogram of the colors in the pixmap.

SEE ALSO
ppm(5), pgmhist(1)

AUTHOR
Copyright 1989 by Jef Poskanzer.

3 April 1989

ppmmake
ppmmake—Create a pixmap of a specified size and color

SYNOPSIS
ppmmake color width height

DESCRIPTION
ppmmake produces a portable pixmap of the specified color, width, and height.

The color can be specified in five ways:

■ A name, assuming that a pointer to an X11-style color names file was compiled in.
■ An X11-style hexadecimal specifier: rgb:r/g/b, where r, g, and b are each 1- to 4-digit hexadecimal numbers.
■ An X11-style decimal specifier: rgbi:r/g/b, where r, g, and b are floating-point numbers between 0 and 1.
■ For backwards compatibility, an old-X11-style hexadecimal number: #rgb, #rrggbb, #rrrgggbbb, or #rrrrggggbbbb.
■ For backwards compatibility, a triplet of numbers separated by commas: r,g,b, where r, g, and b are floating-point

numbers between 0 and 1. (This style was added before MIT came up with the similar rgbi style.)

SEE ALSO
ppm(5), pbmmake(1)

AUTHOR
Copyright 1991 by Jef Poskanzer.

24 September 1991

ppmmix
ppmmix—Blend together two portable pixmaps

SYNOPSIS
ppmmix fadefactor ppmfile1 ppmfile2

409

DESCRIPTION
ppmmix reads two portable pixmaps as input and mixes them together using the specified fade factor. The fade factor may be
in the range from 0.0 (only ppmfile1’s image data) to 1.0 (only ppmfile2’s image data). Anything in between gains a smooth
blend between the two images.

The two pixmaps must have the same size.

SEE ALSO
ppm(5)

AUTHOR
Copyright 1993 by Frank Neumann.

16 November 1993

ppmnorm
ppmnorm—Normalize the contrast in a portable pixmap

SYNOPSIS
ppmnorm[-bpercent N | -bvalue N][-wpercent N | -wvalue N][ppmfile]

DESCRIPTION
ppmnorm reads a portable pixmap as input; normalizes the contrast by forcing the lightest pixels to white, the darkest pixels to
black, and linearly rescaling the ones in between; and produces a portable pixmap as output.

It works by computing the relative gray level of each pixel as with ppmtopgm, and uses those values to scale the RGB levels.
Note that this is different from using pgmnorm on the individual red, green, and blue graymaps (as produced by ppmtorgb3)
and recombining them.

OPTIONS
By default, the darkest two percent of all pixels are mapped to black, and the lightest one percent are mapped to white. You
can override these percentages by using the -bpercent and -wpercent flags, or you can specify the exact pixel values to be
mapped by using the -bvalue and -wvalue flags. Appropriate numbers for the flags can be gotten from the ppmhist tool. If
you just want to enhance the contrast, then choose values at elbows in the histogram; for example, if value 29 represents 3
percent of the image but value 30 represents 20 percent, choose 30 for bvalue. If you want to lighten the image, then set
bvalue to 0 and just fiddle with wvalue; similarly, to darken the image, set wvalue to maxval and play with bvalue.

All flags can be abbreviated to their shortest unique prefix.

SEE ALSO
pgmnorm(1), ppmhist(1), ppm(5)

AUTHOR
Wilson H. Bent, Jr. (whb@usc.edu), heavily based on the pgmnorm filter by Jef Poskanzer.

7 October 1993

ppmntsc
ppmntsc—Make a portable pixmap look like it is taken from an American TV show

SYNOPSIS
ppmntsc dimfactor [ppmfile]

ppmntsc

Part I: User Commands410

DESCRIPTION
ppmntsc reads a portable pixmap as input and dims every other row of image data down by the specified dim factor. This
factor may be in the range of 0.0 (the alternate lines are totally black) to 1.0 (original image).

This creates an effect similar to what I saw once in the video clip “You Could be Mine” by Guns’n’ Roses. In the scene I’m
talking about you can see John Connor on his motorbike, looking up from the water trench (?) he’s standing in. While the
camera pulls back, the image becomes “normal” by brightening up the alternate rows of it. I thought this would be an
interesting effect to try in MPEG. I did not yet check this out, however. Try for yourself.

SEE ALSO
ppm(5), ppmdim(1)

AUTHOR
Copyright 1993 by Frank Neumann.

16 November 1993

ppmpat
ppmpat—Make a pretty pixmap

SYNOPSIS
ppmpat -gingham2|-g2|-gingham3| -g3|-madras|-tartan| -poles|-squig|-camo|
 -anticamo width height

DESCRIPTION
ppmpat produces a portable pixmap of the specified width and height, with a pattern in it.

This program is mainly to demonstrate use of the ppmdraw routines, a simple but powerful drawing library. See the ppmdraw.h
include file for more information on using these routines. Still, some of the patterns can be rather pretty. If you have a color
workstation, something like ppmpat -squig 300 300 | “ppmquant 128” should generate a nice background.

OPTIONS
The different flags specify various different pattern types:

-gingham2 A gingham check pattern. Can be tiled.

-gingham3 A slightly more complicated gingham. Can be tiled.

-madras A madras plaid. Can be tiled.

-tartan A tartan plaid. Can be tiled.

-poles Color gradients centered on randomly placed poles. May need to be run through ppmquant.

-squig Squiggly tubular pattern. Can be tiled. May need to be run through ppmquant.

-camo Camouflage pattern. May need to be run through ppmquant.

-anticamo Anticamouflage pattern; like -camo, but ultra-bright colors. May need to be run through ppmquant.

All flags can be abbreviated to their shortest unique prefix.

REFERENCES
Some of the patterns are from “Designer’s Guide to Color 3” by Jeanne Allen.

SEE ALSO
pnmtile(1), ppmquant(1), ppm(5)

411

AUTHOR
Copyright 1989 by Jef Poskanzer.

4 September 1989

ppmquant
ppmquant—Quantize the colors in a portable pixmap down to a specified number

SYNOPSIS
ppmquant [-floyd|-fs] ncolors [ppmfile]
ppmquant [-floyd|-fs] -map mapfile [ppmfile]

DESCRIPTION
ppmquant reads a portable pixmap as input. It chooses ncolors colors to best represent the image, maps the existing colors to
the new ones, and writes a portable pixmap as output.

The quantization method is Heckbert’s “median cut.”

Alternately, you can skip the color-choosing step by specifying your own set of colors with the -map flag. The mapfile is just
a ppm file; it can be any shape, all that matters is the colors in it. For instance, to quantize down to the 8-color IBM TTL
color set, you might use the following:

P3
8 1
255
0 0 0
255 0 0
0 255 0
0 0 255
255 255 0
255 0 255
0 255 255
255 255 255

If you want to quantize one pixmap to use the colors in another one, just use the second one as the mapfile. You don’t have
to reduce it down to only one pixel of each color, just use it as is.

The -floyd/-fs flag enables a Floyd-Steinberg error diffusion step. Floyd-Steinberg gives vastly better results on images
where the unmodified quantization has banding or other artifacts, especially when going to a small number of colors such as
the preceding IBM set. However, it does take substantially more CPU time, so the default is off.

All flags can be abbreviated to their shortest unique prefix.

REFERENCES
“Color Image Quantization for Frame Buffer Display,” by Paul Heckbert, SIGGRAPH ’82 Proceedings, page 297.

SEE ALSO
ppmquantall(1), pnmdepth(1), ppmdither(1), ppm(5)

AUTHOR
Copyright 1989, 1991 by Jef Poskanzer.

12 January 1991

ppmquant

Part I: User Commands412

ppmquantall
ppmquantall—Run ppmquant on a bunch of files all at once, so they share a common colormap

SYNOPSIS
ppmquantall ncolors ppmfile ...

DESCRIPTION
ppmquantall takes a bunch of portable pixmap as input. It chooses ncolors colors to best represent all of the images, maps the
existing colors to the new ones, and overwrites the input files with the new quantized versions.

Verbose explanation: Say you have a dozen pixmaps that you want to display on the screen all at the same time. Your screen
can only display 256 different colors, but the pixmaps have a total of a thousand or so different colors. For a single pixmap,
you solve this problem with ppmquant; this script solves it for multiple pixmaps. All it does is concatenate them together into
one big pixmap, run ppmquant on that, and then split it up into little pixmaps again.

(Note that another way to solve this problem is to preselect a set of colors and then use ppmquant’s -map option to separately
quantize each pixmap to that set.)

SEE ALSO
ppmquant(1), ppm(5)

BUGS
It’s a csh script. csh scripts are not portable to System V. Scripts in general are not portable to non-UNIX environments.

AUTHOR
Copyright 1991 by Jef Poskanzer.

27 July 1990

ppmqvga
ppmqvga—8-plane quantization

SYNOPSIS
ppmqvga [options] [input file]

DESCRIPTION
ppmqvga quantizes PPM files to eight planes, with optional Floyd-Steinberg dithering. Input is a PPM file from the file
named, or standard input if no file is provided.

OPTIONS
-d dither Apply Floyd-Steinberg dithering to the data

-q quiet Produces no progress reporting, and no terminal output unless an error occurs.

-v verbose Produces additional output describing the number of colors found, and some information on the resulting
mapping. May be repeated to generate loads of internal table output, but generally only useful once.

EXAMPLES
ppmqvga -d my_image.ppm | ppmtogif >my_image.gif

tgatoppm zombie.tga | ppmqvga | ppmtotif > zombie.tif

413

SEE ALSO
ppmquant

DIAGNOSTICS
Error messages if problems; various levels of optional progress reporting.

AUTHORS
Original by Lyle Rains (lrains@netcom.com) as ppmq256 and ppmq256fs combined; documented and enhanced by Bill Davidsen
(davidsen@crd.ge.com).

COPYRIGHT
Copyright 1991, 1992 by Bill Davidsen, all rights reserved. The program and documentation may be freely distributed by
anyone in source or binary format. Please clearly note any changes.

Local

ppmrelief
ppmrelief—Run a Laplacian relief filter on a portable pixmap

SYNOPSIS
ppmrelief [ppmfile]

DESCRIPTION
ppmrelief reads a portable pixmap as input, does a Laplacian relief filter, and writes a portable pixmap as output.

The Laplacian relief filter is described in Beyond Photography by Holzmann, equation 3.19. It’s a sort of edge-detection.

SEE ALSO
pgmbentley(1), pgmoil(1), ppm(5)

AUTHOR
Copyright 1990 by Wilson Bent (whb@hoh-2.att.com).

11 January 1991

ppmshift
ppmshift—Shift lines of a portable pixmap left or right by a random amount

SYNOPSIS
ppmshift shift [ppmfile]

DESCRIPTION
ppmshift reads a portable pixmap as input and shifts every row of image data to the left or right by a certain amount. The
shift parameter determines by how many pixels a row is to be shifted at most.

Another one of those effects I intended to use for MPEG tests. Unfortunately, this program will not help me here—it creates
patterns that are too random to be used for animations. Still, it might give interesting results on still images.

ppmshift

Part I: User Commands414

EXAMPLE
Check this out: Save your favorite model’s picture from something like alt.binaries.pictures.supermodels (okay, or from
any other picture source), convert it to ppm, and process it like this, assuming the picture is 800×600 pixels:

1. Take the upper half and leave it like it is: pnmcut 0 0 800 300 cs.ppm >upper.ppm.
2. Take the lower half, flip it upside down, dim it, and distort it a little: pnmcut 0 300 800 300 cs.ppm | pnmflip -tb |

ppmdim 0.7 | ppmshift 10 >lower.ppm.
3. Concatenate the two pieces: pnmcat -tb upper.ppm lower.ppm >newpic.ppm.

The resulting picture looks like the image being reflected on a water surface with slight ripples.

SEE ALSO
ppm(5), pnmcut(1), pnmflip(1), ppmdim(1), pnmcat(1)

AUTHOR
Copyright 1993 by Frank Neumann.

16 November 1993

ppmspread
ppmspread—Displace a portable pixmap’s pixels by a random amount

SYNOPSIS
ppmspread amount [ppmfile]

DESCRIPTION
ppmspread reads a portable pixmap as input and moves every pixel around a bit relative to its original position. amount
determines by how many pixels a pixel is to be moved around at most.

Pictures processed with this filter will seem to be somewhat dissolved or unfocussed (although they appear more coarse than
images processed by something like pnmconvol).

SEE ALSO
ppm(5), pnmconvol(1)

AUTHOR
Copyright 1993 by Frank Neumann.

16 November 1993

ppmtoacad
ppmtoacad—Convert portable pixmap to AutoCAD database or slide

SYNOPSIS
ppmtoacad [-dxb][-poly][-background colour][-white][-aspect ratio][-8][ppmfile]

DESCRIPTION
ppmtoacad reads a portable pixmap as input. Produces an AutoCAD slide file or binary database import (DXB) file as output.
If no ppmfile is specified, input is read from standard input.

415

OPTIONS
-dxb An AutoCAD binary database import (DXB) file is written. This file is read with the DXBIN

command and, once loaded, becomes part of the AutoCAD geometrical database and can be
viewed and edited like any other object. Each sequence of identical pixels becomes a separate object
in the database; this can result in very large AutoCAD drawing files. However, if you want to trace
over a bitmap, it lets you zoom and pan around the bitmap as you wish.

-poly If the -dxb option is not specified, the output of ppmtoacad is an AutoCAD slide file. Normally,
each row of pixels is represented by an AutoCAD line entity. If -poly is selected, the pixels are
rendered as filled polygons. If the slide is viewed on a display with higher resolution than the source
pixmap, this will cause the pixels to expand instead of appearing as discrete lines against the screen
background color. Regrettably, this representation yields slide files that occupy more disc space and
take longer to display.

-background color Most AutoCAD display drivers can be configured to use any available color as the screen back-
ground. Some users prefer a black screen background, others white, while splinter groups advocate
burnt ocher, tawny puce, and shocking gray. Discarding pixels whose closest AutoCAD color
representation is equal to the background color can substantially reduce the size of the AutoCAD
database or slide file needed to represent a bitmap. If no -background color is specified, the screen
background color is assumed to be black. Any AutoCAD color number may be specified as the
screen background; color numbers are assumed to specify the hues defined in the standard
AutoCAD 256-color palette.

-white Because many AutoCAD users choose a white screen background, this option is provided as a
short-cut. Specifying -white is identical in effect to -background 7.

-aspect ratio If the source pixmap had nonsquare pixels, the ratio of the pixel width to pixel height should be
specified as ratio. The resulting slide or DXB file will be corrected so that pixels on the AutoCAD
screen will be square. For example, to correct an image made for a 320×200 VGA/MCGA screen,
specify -aspect 0.8333.

-8 Restricts the colors in the output file to the eight RGB shades.

All flags can be abbreviated to their shortest unique prefix.

BUGS
AutoCAD has a fixed palette of 256 colors, distributed along the hue, lightness, and saturation axes. Pixmaps that contain
many nearly identical colors, or colors not closely approximated by AutoCAD’s palette, may be poorly rendered.

ppmtoacad works best if the system displaying its output supports the full 256 color AutoCAD palette. Monochrome,
8-color, and 16-color configurations will produce less than optimal results.

When creating a DXB file or a slide file with the -poly option, ppmtoacad finds both vertical and horizontal runs of identical
pixels and consolidates them into rectangular regions to reduce the size of the output file. This is effective for images with
large areas of constant color, but it’s no substitute for true raster to vector conversion. In particular, thin diagonal lines are
not optimized at all by this process.

Output files can be huge.

SEE ALSO
AutoCAD Reference Manual: “Slide File Format” and “Binary Drawing Interchange (DXB) Files”; ppm(5)

AUTHOR
John Walker
Autodesk SA
Avenue des Champs-Montants 14b
CH-2074 MARIN
Suisse/Schweiz/Svizzera/Svizra/Switzerland

ppmtoacad

Part I: User Commands416

Usenet: kelvin@Autodesk.com

Fax: 038/33 88 15

Voice: 038/33 76 33

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, without any conditions or restrictions. This software is provided “as is” without express or implied warranty.

AutoCAD and Autodesk are registered trademarks of Autodesk, Inc.

10 October 1991

ppmtobmp
ppmtobmp—Convert a portable pixmap into a BMP file

SYNOPSIS
ppmtobmp [–windows][–os2][ppmfile]

DESCRIPTION
ppmtobmp reads a portable pixmap as input and produces a Microsoft Windows or OS/2 BMP file as output.

OPTIONS
–windows Tells the program to produce a Microsoft Windows BMP file.

–os2 Tells the program to produce an OS/2 BMP file. (This is the default.)

All flags can be abbreviated to their shortest unique prefix.

SEE ALSO
bmptoppm(1), ppm(5)

AUTHOR
Copyright 1992 by David W. Sanderson.

26 October 1992

ppmtogif
ppmtogif—Convert a portable pixmap into a GIF file

SYNOPSIS
ppmtogif [-interlace][-sort][-map mapfile][-transparent color][ppmfile]

DESCRIPTION
ppmtogif reads a portable pixmap as input and produces a GIF file as output.

OPTIONS
-interlace Tells the program to produce an interlaced GIF file.

-sort Produces a GIF file with a sorted colormap.

-map mapfile Uses the colors found in the mapfile to create the colormap in the GIF file, instead of the colors
from ppmfile. The mapfile can be any ppm file; all that matters is the colors in it. If the colors in

417

ppmfile do not match those in mapfile, they are matched to a “best match.” A (much) better result
can be obtained by using the following filter in advance:

ppmquant -floyd -map mapfile

–transparent color Mark the given color as transparent in the GIF file. The color is specified as in ppmmake(1). Note
that this option outputs a GIF89a format file, which might not be understood by your software.

All flags can be abbreviated to their shortest unique prefix.

SEE ALSO
giftoppm(1), ppmquant(1), ppm(5)

AUTHOR
Based on GIFENCOD by David Rowley (mgardi@watdcsu.waterloo.edu). Lempel-Ziv compression based on compress.

Copyright 1989 by Jef Poskanzer.

30 June 1993

ppmtoicr
ppmtoicr—Convert a portable pixmap into NCSA ICR format

SYNOPSIS
ppmtoicr [-windowname name][-expand expand][-display display][-rle][ppmfile]

DESCRIPTION
ppmtoicr reads a portable pixmap file as input and produces an NCSA Telnet Interactive Color Raster graphic file as output.
If ppmfile is not supplied, ppmtoicr will read from standard input.

Interactive Color Raster (ICR) is a protocol for displaying raster graphics on workstation screens. The protocol is imple-
mented in NCSA Telnet for the Macintosh version 2.3. The ICR protocol shares characteristics of the Tektronix graphics
terminal emulation protocol. For example, escape sequences are used to control the display.

ppmtoicr will output the appropriate sequences to create a window of the dimensions of the input pixmap, create a colormap
of up to 256 colors on the display, then load the picture data into the window.

Note that there is no icrtoppm tool; this transformation is one-way.

OPTIONS
-windownamename Output will be displayed in name. (Default is to use ppm-file or “untitled” if standard input is read.)

-expandexpand Output will be expanded on display by factor expand. (For example, a value of 2 will cause four pixels to be
displayed for every input pixel.)

-displaydisplay Output will be displayed on screen numbered display.

-rle Use run-length encoded format for display. (This will nearly always result in a quicker display, but may
skew the colormap.)

EXAMPLES
This displays a ppm file using the protocol:

ppmtoicr ppmfile

This will create a window named ppmfile on the display with the correct dimensions for ppmfile, create and download a
colormap of up to 256 colors, and download the picture into the window. The same effect may be achieved by the following
sequence:

ppmtoicr

Part I: User Commands418

ppmtoicr ppmfile > filename
cat filename

To display a GIF file using the protocol in a window titled after the input file, zoom the displayed image by a factor of 2,
and run-length encode the data:

giftoppm giffile | ppmtoicr -w giffile -r -e 2

BUGS
The protocol uses frequent fflush calls to speed up display. If the output is saved to a file for later display via cat, drawing
will be much slower. In either case, increasing the Blocksize limit on the display will speed up transmission substantially.

SEE ALSO
ppm(5)

NCSA Telnet for the Macintosh, University of Illinois at Urbana-Champaign (1989)

AUTHOR
Copyright 1990 by Kanthan Pillay (svpillay@Princeton.EDU), Princeton University Computing and Information Technol-
ogy

30 July 1990

ppmtoilbm
ppmtoilbm—Convert a portable pixmap into an ILBM file

SYNOPSIS
ppmtoilbm [-maxplanes|-mp N][-fixplanes|-fp N][-ham6|-ham8][-dcbits-dcplanesrgb]
[-normal|-hamif|-hamforce|-24if|-24force| -dcif|-dcforce|-cmaponly] [-ecs|-aga]
[- compress|-nocompress][-cmethod type][-mapppmfile] [-savemem][ppmfile]

DESCRIPTION
ppmtoilbm reads a portable pixmap as input and produces an ILBM file as output. Supported ILBM types are the following:

Normal ILBMs with 1–16 planes

Amiga HAM with 3–16 planes

24-bit

Colormap (BMHD and CMAP chunk only, nPlanes = 0)

Unofficial direct color 1–16 planes for each color component

Chunks written: BMHD, CMAP, CAMG (only for HAM), BODY (not for colormap files) unofficial DCOL chunk for direct color ILBM

OPTIONS
Options marked with (*) can be prefixed with no, for example, -nohamif. All options can be abbreviated to their shortest
unique prefix.

-maxplanes | -mp n (default 5, minimum 1, maximum 16) Maximum planes to write in a normal ILBM. If the
pixmap does not fit into n planes, ppmtoilbm writes a HAM file (if -hamif is used), a 24-bit
file (if -24if is used), a direct color file (if -dcif is used). or aborts with an error.

-fixplanes | -fp n (min 1, max 16) If a normal ILBM is written, it will have exactly n planes.

-hambits | -hamplanes n (default 6, min 3, max 16) Select number of planes for HAM picture. The current Amiga
hardware supports 6 and 8 planes, so for now you should only use this values.

419

-normal (default) Turns off -hamif/-24if/-dcif, -hamforce/-24force/-dcforce and -cmaponly. Also sets
compression type to byterun1.

-hamif (*), -24if (*), Write a HAM/24-bit/direct color file if the pixmap does not fit into maxplanes planes.
-dcif (*)

-hamforce (*), -24force (*), Write a HAM/24-bit/direct color file.
-dcforce (*)

-dcbits | -dcplanes r g b (default 5, min 1, max 16). Select number of bits for red, green, and blue in a direct color
ILBM.

-ecs (default) Shortcut for: -hamplanes 6 -maxplanes 5

-aga Shortcut for: -hamplanes 8 -maxplanes 8

-ham6 Shortcut for: -hamplanes 6 -hamforce

-ham8 Shortcut for: -hamplanes 8 -hamforce

-compress (*) (default), Compress the BODY chunk. The default compression method is byterun1. Compression
-cmethod none|byterun1 requires building the ILBM image in memory; turning compression off allows stream-

writing of the image, but the resulting file will usually be 30 percent to 50 percent larger.
Another alternative is the -savemem option; this will keep memory requirements for
compression at a minimum, but is very slow.

-map ppmfile Write a normal ILBM using the colors in ppmfile as the colormap. The colormap file also
determines the number of planes; a -maxplanes or -fixplanes option is ignored.

-cmaponly Write a colormap file: only BMHD and CMAP chunks, no BODY chunk, nPlanes = 0.

-savemem See the -compress option.

BUGS
HAM pictures will always get a grayscale colormap; a real color selection algorithm might give better results. On the other
hand, this allows row-by-row operation on HAM images, and all HAM images of the same depth (number of planes) share a
common colormap, which is useful for building HAM animations.

REFERENCES
Amiga ROM Kernel Reference Manual—Devices (Third Edition), Addison Wesley, ISBN 0-201-56775-X

SEE ALSO
ppm(5), ilbmtoppm(1)

AUTHORS
Copyright 1989 by Jef Poskanzer; modified October 1993 by Ingo Wilken (Ingo.Wilken@informatik.uni-oldenburg.de).

31 October 1993

ppmtomap
ppmtomap—Extract all colors from a portable pixmap

SYNOPSIS
ppmtomap [-sort][-square][ppmfile]

DESCRIPTION
ppmtomap reads a portable pixmap as input and produces a portable pixmap as output, representing a colormap of the input
file. All N different colors found are put in an NX1 portable pixmap. This colormap file can be used as a mapfile for ppmquant
or ppmtogif.

ppmtomap

Part I: User Commands420

OPTIONS
-sort Produces a portable pixmap with the colors in some sorted order

-square Produces a (more or less) square output file, instead of putting all colors on the top row

All flags can be abbreviated to their shortest unique prefix.

WARNING
If you want to use the output file as a mapfile for ppmtogif, you first have to do a ppmquant 256 because ppmtomap is not
limited to 256 colors (but to 65536).

SEE ALSO
ppmtogif(1), ppmquant(1), ppm(5)

AUTHOR
Marcel Wijkstra (wijkstra@fwi.uva.nl)

Copyright 1989 by Jef Poskanzer.

11 August 1993

ppmtomitsu
ppmtomitsu—Convert a portable pixmap to a Mitsubishi S340-10 file

SYNOPSIS
ppmtomitsu [-sharpness val][-enlarge val][-media string][-copy val]
[-dpi300][-tiny] [ppmfile]

DESCRIPTION
ppmtomitsu reads a portable pixmap as input and converts it into a format suitable to be printed by a Mitsubishi S340-10
printer, or any other Mitsubishi color sublimation printer.

The Mitsubishi S340-10 Color Sublimation printer supports 24-bit color. Images of the available sizes take so long to
transfer that there is a fast method, employing a lookup table that ppmtomitsu will use if there is a maximum of 256 colors in
the pixmap. ppmtomitsu will try to position your image to the center of the paper, and will rotate your image for you if xsize
is larger than ysize. If your image is larger than the media allows, ppmtomitsu will quit with an error message. (We decided
that the media were too expensive to have careless users produce misprints.) After data transmission has started, the job can’t
be stopped in a sane way without resetting the printer. The printer understands putting together images in the printer’s
memory; ppmtomitsu doesn’t utilize this as pnmcat and so on provide the same functionality and let you view the result
onscreen, too. The S340-10 is the lowest common denominator printer; for higher resolution printers, there’s the dpi300
option. The other printers also support higher values for enlarge eg, but I don’t think that’s essential enough to warrant a
change in the program.

-sharpness 1-4 Sharpness designation. Default is to use the current sharpness.

-enlarge 1-3 Enlarge by a factor; default is 1 (no enlarge)

-media A, A4, AS, A4S Designate the media you’re using. Default is 1184 x 1350, which will fit on any media. A is 1216 x
1350, A4 is 1184 x 1452, AS is 1216 x 1650, and A4S is 1184 x 1754. A warning: If you specify a
different media than the printer currently has, the printer will wait until you put in the correct
media or switch it off.

-copy 1-9 The number of copies to produce. Default is 1.

-dpi300 Double the number of allowed pixels for a S3600-30 Printer in S340-10 compatibility mode. (The
S3600-30 has 300dpi.)

421

-tiny Memory-safing, but always slow. The printer will get the data line-by-line in 24-bit. It’s probably a
good idea to use this if your machine starts paging a lot without this option.

REFERENCES
Mitsubishi Sublimation Full Color Printer S340-10; Specifications of Parallel Interface LSP-F0232F

SEE ALSO
ppmquant(1), pnmscale(1), ppm(5)

BUGS
We didn’t find any—yet. Besides, they’re called features anyway :-) If you should find one, please e-mail me at the following
address.

AUTHOR
Copyright 1992, 1993 by S. Petra Zeidler, MPIFR Bonn, Germany (spz@specklec.mpifr-bonn.mpg.de).

29 January 1992

ppmtopcx
ppmtopcx—Convert a portable pixmap into a PCX file

SYNOPSIS
ppmtopcx [ppmfile]

DESCRIPTION
ppmtopcx reads a portable pixmap as input and produces a PCX file as output.

SEE ALSO
pcxtoppm(1), ppm(5)

AUTHOR
Copyright  1990 by Michael Davidson.

9 April 1990

ppmtopgm
ppmtopgm—Convert a portable pixmap into a portable graymap

SYNOPSIS
ppmtopgm [ppmfile]

DESCRIPTION
ppmtopgm reads a portable pixmap as input and produces a portable graymap as output. The quantization formula used is
.299 r + .587 g + .114 b.

Note that although there is a pgmtoppm program, it is not necessary for simple conversions from pgm to ppm, because any ppm
program can read pgm (and pbm) files automagically. pgmtoppm is for colorizing a pgm file. Also, see ppmtorgb3 for a different
way of converting color to gray.

ppmtopgm

Part I: User Commands422

QUOTE
Cold-hearted orb that rules the night
Removes the colors from our sight
Red is gray, and yellow white
But we decide which is right
And which is a quantization error.

SEE ALSO
pgmtoppm(1), ppmtorgb3(1), rgb3toppm(1), ppm(5), pgm(5)

AUTHOR
Copyright 1989 by Jef Poskanzer.

23 December 1988

ppmtopi1
ppmtopi1—Convert a portable pixmap into an Atari Degas PI1 file

SYNOPSIS
ppmtopi1 [ppmfile]

DESCRIPTION
ppmtopi1 reads a portable pixmap as input and produces an Atari Degas PI1 file as output.

SEE ALSO
pi1toppm(1), ppm(5), pbmtopi3(1), pi3topbm(1)

AUTHOR
Copyright 1991 by Steve Belczyk (seb3@gte.com) and Jef Poskanzer.

19 July 1990

ppmtopict
ppmtopict—Convert a portable pixmap into a Macintosh PICT file

SYNOPSIS
ppmtopict [ppmfile]

DESCRIPTION
ppmtopict reads a portable pixmap as input and produces a Macintosh PICT file as output.

The generated file is only the data fork of a picture. You will need a program such as mcvert to generate a Macbinary or a
BinHex file that contains the necessary information to identify the file as a PICT file to MacOS.

Even though PICT supports 2 and 4 bits per pixel, ppmtopict always generates an 8-bits-per-pixel file.

BUGS
The picture size field is only correct if the output is to a file because writing into this field requires seeking backwards on a
file. However, the PICT documentation seems to suggest that this field is not critical anyway because it is only the lower 16
bits of the picture size.

423

SEE ALSO
picttoppm(1), ppm(5), mcvert(1)

AUTHOR
Copyright 1990 by Ken Yap (ken@cs.rocester.edu).

15 April 1990

ppmtopj
ppmtopj—Convert a portable pixmap to an HP PaintJet file

SYNOPSIS
ppmtopj [-gamma val][-xpos val][-ypos val][-back dark|lite][-rle][-center]
[-render none|snap|bw|dither|diffuse|monodither|monodiffuse|clusterdither|
monoclusterdither][ppmfile]

DESCRIPTION
ppmtopj reads a portable pixmap as input and converts it into a format suitable to be printed by an HP PaintJet printer.

For best results, the input file should be in 8-color RGB form; that is, it should have only the eight binary combinations of
full-on and full-off primaries. You could get this by sending the input file through ppmquant -map with a mapfile such as

P3
8 1
255
0 0 0 2550 0 02550 0 0 255
255 255 0 255 0 255 0 255 255 255 255 255

Or else you could use ppmdither -red 2 -green 2 -blue 2.

OPTIONS
-rle Run-length encode the image. (This can result in larger images.)

-back Enhance the foreground by indicating if the background is light or dark compared to the foreground.

-render alg Use an internal rendering algorithm (default dither).

-gamma int Gamma correct the image using the integer parameter as a gamma (default 0).

-center Center the image to an 8.5 by 11 page.

-xpos pos Move by pos pixels in the x direction.

-ypos pos Move by pos pixels in the y direction.

REFERENCES
HP PaintJet XL Color Graphics Printer User’s Guide

SEE ALSO
pnmdepth(1), ppmquant(1), ppmdither(1), ppm(5)

BUGS
Most of the options have not been tested because of the price of the paper.

AUTHOR
Copyright 1991 by Christos Zoulas.

13 July 1991

ppmtopj

Part I: User Commands424

ppmtopjxl
ppmtopjxl—Convert a portable pixmap into an HP PaintJet XL PCL file

SYNOPSIS
ppmtopjxl [-nopack] [-gamma <n>] [-presentation] [-dark] [-diffuse]
[-cluster] [-dither] [-xshift <s>] [-yshift <s>] [-xshift <s>] [-yshift <s>]
[-xsize|-width|-xscale <s>] [-ysize|-height|-yscale <s>] [ppmfile]

DESCRIPTION
ppmtopjxl reads a portable pixmap as input and produces a PCL file suitable for printing on an HP PaintJet XL printer as
output.

The generated file is not suitable for printing on a normal PrintJet printer. The –nopack option generates a file that does not
use the normal TIFF 4.0 compression method. This file might be printable on a normal PaintJet printer (not an XL).

The –gamma option sets the gamma correction for the image. The useful range for the PaintJet XL is approximately 0.6
to 1.5.

The rendering algorithm used for images can be altered with the -dither, -cluster, and -diffuse options. These options
select ordered dithering, clustered ordered dithering, or error diffusion, respectively. The –dark option can be used to
enhance images with a dark background when they are reduced in size. The –presentation option turns on presentation
mode, in which two passes are made over the paper to increase ink density. This should be used only for images where
quality is critical.

The image can be resized by setting the –xsize and –ysize options. The parameter to either of these options is interpreted as
the number of dots to set the width or height to, but an optional dimension of pt (points), dp (decipoints), in (inches), or cm
(centimeters) may be appended. If only one dimension is specified, the other will be scaled appropriately.

The options –width and –height are synonyms of –xsize and –ysize.

The –xscale and –yscale options can alternatively be used to scale the image by a simple factor.

The image can be shifted on the page by using the –xshift and –yshift options. These move the image the specified
dimensions right and down.

SEE ALSO
ppm(5)

AUTHOR
Angus Duggan

14 March 1991

ppmtopuzz
ppmtopuzz—Convert a portable pixmap into an X11 puzzle file

SYNOPSIS
ppmtopuzz [ppmfile]

DESCRIPTION
ppmtopuzz reads a portable pixmap as input and produces an X11 puzzle file as output. A puzzle file is for use with the puzzle
program included with the X11 distribution; puzzle’s -picture flag lets you specify an image file.

425

SEE ALSO
ppm(5), puzzle(1)

AUTHOR
Copyright 1991 by Jef Poskanzer.

22 August 1990

ppmtorgb3
ppmtorgb3—Separate a portable pixmap into three portable graymaps

SYNOPSIS
ppmtorgb3 [ppmfile]

DESCRIPTION
ppmtorgb3 reads a portable pixmap as input and writes three portable graymaps as output, one each for red, green, and blue.

The output filenames are constructed by taking the input filename, stripping off any extension, and appending .red, .grn,
and .blu. For example, separating lenna.ppm would result in lenna.red, lenna.grn, and lenna.blu. If the input comes from
stdin, the names are noname.red, noname.grn, and noname.blu.

SEE ALSO
rgb3toppm(1), ppmtopgm(1), pgmtoppm(1), ppm(5), pgm(5)

AUTHOR
Copyright 1991 by Jef Poskanzer.

10 January 1991

ppmtosixel
ppmtosixel—Convert a portable pixmap into DEC sixel format

SYNOPSIS
ppmtosixel [-raw][-margin][ppmfile]

DESCRIPTION
ppmtosixel reads a portable pixmap as input and produces sixel commands (SIX) as output. The output is formatted for color
printing, for example, for a DEC LJ250 color inkjet printer.

If RGB values from the PPM file do not have maxval=100, the RGB values are rescaled. A printer control header and a color
assignment table begin the SIX file. Image data is written in a compressed format by default. A printer control footer ends
the image file.

OPTIONS
-raw If specified, each pixel will be explicitly described in the image file. If -raw is not specified, output will default to

compressed format in which identical adjacent pixels are replaced by repeat pixel commands. A raw file is often
an order of magnitude larger than a compressed file and prints much slower.

-margin If -margin is not specified, the image will start at the left margin (of the window, paper, or whatever). If -margin is
specified, a 1.5 inch left margin will offset the image.

ppmtosixel

Part I: User Commands426

PRINTING
Generally, sixel files must reach the printer unfiltered. Use the lpr -x option or cat filename > /dev/tty0?.

BUGS
Upon rescaling, truncation of the least significant bits of RGB values may result in poor color conversion. If the original
PPM maxval was greater than 100, rescaling also reduces the image depth. While the actual RGB values from the ppm file are
more or less retained, the color palette of the LJ250 may not match the colors on your screen. This seems to be a printer
limitation.

SEE ALSO
ppm(5)

AUTHOR
Copyright 1991 by Rick Vinci.

26 April 1991

ppmtotga
ppmtotga—Convert portable pixmap into a TrueVision Targa file

SYNOPSIS
ppmtotga [-mono|-cmap|-rgb][-norle][ppmfile]

DESCRIPTION
ppmtotga reads a portable pixmap as input and produces a TrueVision Targa file as output.

OPTIONS
-mono Forces Targa file to be of type 8-bit monochrome. Input must be a portable bitmap or a portable graymap.

-cmap Forces Targa file to be of type 24-bit colormapped. Input must be a portable bitmap, a portable graymap, or a
portable pixmap containing no more than 256 distinct colors.

-rgb Forces Targa file to be of type 24-bit unmapped color.

-norle Disables run-length encoding, in case you have a Targa reader that can’t read run-length encoded files.

All flags can be abbreviated to their shortest unique prefix. If no file type is specified, the most highly constained compatible
type is used, where monochrome is more constained than colormapped, which is in turn more constained than unmapped.

BUGS
Does not support all possible Targa file types. Should really be in pnm, not ppm.

SEE ALSO
tgatoppm(1), ppm(5)

AUTHOR
Copyright 1989, 1991 by Mark Shand and Jef Poskanzer.

28 October 1991

427

ppmtouil
ppmtouil—Convert a portable pixmap into a Motif UIL icon file

SYNOPSIS
ppmtouil [-name uilname][ppmfile]

DESCRIPTION
ppmtouil reads a portable pixmap as input and produces a Motif UIL icon file as output.

If the program was compiled with an rgb database specified, and an RGB value from the ppm input matches an RGB value
from the database, then the corresponding color name mnemonic is printed in the UIL’s colormap. If no rgb database was
compiled in, or if the RGB values don’t match, then the color will be printed with the #RGB, #RRGGBB, #RRRGGGBBB, or
#RRRRGGGGBBBB hexadecimal format.

OPTIONS
-name Allows you to specify the prefix string that is printed in the resulting UIL output. If not specified, it will default to

the filename (without extension) of the ppmfile argument. If -name is not specified and no ppmfile is specified
(that is, piped input), the prefix string will default to the string “noname”.

All flags can be abbreviated to their shortest unique prefix.

SEE ALSO
ppm(5)

AUTHOR
Converted by Jef Poskanzer from ppmtoxpm.c, which is copyright 1990 by Mark W. Snitily.

31 August 1990

ppmtoxpm
ppmtoxpm—Convert a portable pixmap into an X11 pixmap

SYNOPSIS
ppmtoxpm [-name <xpmname>] [-rgb <rgb-textfile>][<ppmfile>]

DESCRIPTION
ppmtoxpm reads a portable pixmap as input and produces an X11 pixmap (version 3) as output that can be loaded directly by
the XPM library.

The -name option allows you to specify the prefix string which is printed in the resulting XPM output. If not specified, it will
default to the filename (without extension) of the ppmfile argument. If -name is not specified and ppmfile is not specified
(that is, piped input), the prefix string will default to the string “noname”.

The -rgb option allows you to specify an X11 rgb text file for the lookup of color name mnemonics. This RGB text file is
typically the /usr/lib/X11/rgb.txt of the MIT X11 distribution, but any file using the same format may be used. When
specified and an RGB value from the ppm input matches an RGB value from the <rgb-textfile>, then the corresponding
color name mnemonic is printed in the XPM’s colormap. If -rgb is not specified, or if the RGB values don’t match, then the
color will be printed with the #RGB, #RRGGBB, #RRRGGGBBB, or #RRRRGGGGBBBB hexadecimal format.

All flags can be abbreviated to their shortest unique prefix.

ppmtoxpm

Part I: User Commands428

For example, to convert the file dot (found in /usr/include/X11/bitmaps), from xbm to xpm, you could specify

xbmtopbm dot | ppmtoxpm -name dot

or, with an rgb text file (in the local directory)

xbmtopbm dot | ppmtoxpm -name dot -rgb rgb.txt

BUGS
An option to match the closest (rather than exact) color name mnemonic from the rgb text would be a desirable enhance-
ment.

Truncation of the least significant bits of an RGB value may result in nonexact matches when performing color name
mnemonic lookups.

SEE ALSO
ppm(5)

XPM Manual by Arnaud Le Hors (lehors@mirsa.inria.fr).

AUTHOR
Copyright  1990 by Mark W. Snitily. This tool was developed for Schlumberger Technologies, ATE Division, and with
their permission is being made available to the public with the above copyright notice and permission notice.

Upgraded to XPM2 by Paul Breslaw, Mecasoft SA, Zurich, Switzerland (paul@mecazh.uu.ch); Thu, Nov 8, 16:01:17, 1990.

Upgraded to XPM version 3 by Arnaud le Hors (lehors@mirsa.inria.fr).

9 April 1991

ppmtoyuv
ppmtoyuv—Convert a portable pixmap into an Abekas YUV file

SYNOPSIS
ppmtoyuv [ppmfile]

DESCRIPTION
ppmtoyuv reads a portable pixmap as input and produces an Abekas YUV file as output.

SEE ALSO
yuvtoppm(1), ppm(5)

AUTHOR
Marc Boucher (<marc@PostImage.COM>), based on Example Conversion Program, A60/A64 Digital Video Interface Manual,
page 69. Copyright 1991 by DHD Post Image Inc. Copyright 1987 by Abekas Video Systems Inc.

25 March 1991

ppmtoyuvsplit
ppmtoyuvsplit—Convert a portable pixmap into three subsampled raw YUV files

SYNOPSIS
ppmtoyuvsplit basename [ppmfile]

429

DESCRIPTION
ppmtoyuvsplit reads a portable pixmap as input and produces three raw files—basename.Y, basename.U, and basename.V—as
output. These files are the subsampled raw YUV representation of the input pixmap, as required by the Stanford MPEG
code. The subsampling is done by arithmetic mean of 4 pixels colors into one. The YUV values are scaled according to
CCIR.601, as assumed by MPEG.

SEE ALSO
mpeg(1), ppm(5)

AUTHOR
Copyright 1993 by Andre Beck (AndreBeck@IRS.Inf.TU-Dresden.de). Based on ppmtoyuv.c.

9 September 1993

pr
pr—Convert text files for printing

SYNOPSIS
pr [+PAGE] [–COLUMN] [–abcdfFmrtv] [–e[in-tab-char[in-tab-width]]] [–h header]
[–i[out-tab-char[out-tab-width]]] [–l page-length] [–n[number-separator[digits]]]
[–o left-margin] [–s[column-separator]] [–w page-width] [--help] [-- version] [file...]

DESCRIPTION
This manual page documents the GNU version of pr. pr prints on the standard output a paginated and optionally
multicolumn copy of the text files given on the command line, or of the standard input if no files are given or when the
filename – is encountered. Form feeds in the input cause page breaks in the output.

OPTIONS
PAGE Begin printing with page PAGE.

–COLUMN Produce COLUMN-column output and print columns down. The column width is automatically
decreased as COLUMN increases; unless you use the –w option to increase the page width as well, this
option might cause some columns to be truncated.

–a Print columns across rather than down.

–b Balance columns on the last page.

–c Print control characters using hat notation (for example, ˆG); print other unprintable characters in
octal backslash notation.

–d Double-space the output.

–e[in-tab-char Expand tabs to spaces on input. Optional argument in-tab-char is the input tab character, default
[in-tab-width]] tab. Optional argument in-tab-width is the input tab character’s width, default 8.

–F, –f Use a form feed instead of newlines to separate output pages.

–h header Replace the filename in the header with the string header.

--help Print a usage message and exit with a nonzero status.

–i[out-tab-char Replace spaces with tabs on output. Optional argument out-tab-char is the output tab character,
[out-tab-width]] default tab. Optional argument out-tab-width is the output tab character’s width, default 8.

–l page-length Set the page length to page-length lines. The default is 66. If page-length is less than 10, the
headers and footers are omitted, as if the –t option had been given.

–m Print all files in parallel, one in each column.

pr

Part I: User Commands430

–n[number-separator Precede each column with a line number; with parallel files, precede each line with a line number.
[digits]] Optional argument number-separator is the character to print after each number, default tab.

Optional argument digits is the number of digits per line number, default 5.

–o left-margin Offset each line with a margin left-margin spaces wide. The total page width is this offset plus the
width set with the –w option.

–r Do not print a warning message when an argument file cannot be opened. Failure to open a file
still makes the exit status nonzero, however.

–s[column-separator] Separate columns by the single character column-separator, default tab, instead of spaces.

–t Do not print the 5-line header and the 5-line trailer that are normally on each page, and do not fill
out the bottoms of pages (with blank lines or form feeds).

–v Print unprintable characters in octal backslash notation.

--version Print version information on standard output then exit.

–w page-width Set the page width to page-width columns. The default is 72.

GNU Text Utilities

ps
ps—Report process status

SYNOPSIS
ps [–][lujsvmaxScewhrnu][txx][O[+|-]k1[[+|-]k2...]] [pids]

There are also two long options:

--sortX[+|-]key[,[+|-]key[,...]]

--help

More long options are on the way…

DESCRIPTION
ps gives a snapshot of the current processes. If you want a repetitive update of this status, use top. This man page documents
the /proc-based version of ps, or tries to.

COMMAND-LINE OPTIONS
Command-line arguments may optionally be preceded by a –, but there is no need for it. There are also some long options in
GNU style; see the following subsection for those.

l Long format.

u User format: gives username and start time.

j Jobs format: pgid sid.

s Signal format.

v vm format.

m Displays memory information (combine with p flag to get number of pages).

f Forest family tree format for command line.

a Show processes of other users too.

x Show processes without controlling terminal.

S Add child cpu time and page faults.

c Command name from task struct.

e Show environment after command line and +.

431

w Wide output: don’t truncate command lines to fit on one line.

h No header.

r Running procs only.

n Numeric output for USER and WCHAN.

txx Only procs with controlling tty xx; use for xx the same letters as shown in the TT field. The
tty name must be given immediately after the option, with no intervening space, for
example, ps -tv1.

O[+|-]k1[,[+|-]k2[,...]] Order the process listing according to the multilevel sort specified by the sequence of short
keys from SORT KEYS, k1, k2, …. Default order specifications exist for each of the various
formats of ps. These are overridden by a user-specified ordering. The + is quite optional,
merely reiterating the default direction on a key. - reverses direction only on the key it
precedes. As with t and pids, the O option must be the last option in a single command
argument, but specifications in successive arguments are catenated.

pids List only the specified processes; they are comma-delimited. The list must be given
immediately after the last option in a single command-line argument, with no intervening
space, for example, ps -j1,4,5. Lists specified in subsequent arguments are catenated, for
example, ps -l1,23,4 5 6 will list all of the processes 1-6 in long format.

LONG COMMAND-LINE OPTIONS
These options are preceded by a double hyphen.

--sortX[+|-]key[, Choose a multiletter key from the SORTKEYS section. X may be any convenient separator
[+|-]key[,...]] character. To be GNU-ish, use =. The + is really optional because default direction is

increasing numerical or lexicographic order. Example:
ps -jax –sort=uid,-ppid,+pid

--help Get a help message that summarizes the usage and gives a list of supported sort keys. This
list may be more up-to-date than this man page.

SORT KEYS
Note that the values used in sorting are the internal values ps uses and not the “cooked” values used in some of the output
format fields. If someone wants to volunteer to write special comparison functions for the cooked values,…;-)

Short Long Description

c cmd Simple name of executable

C cmdline Full command line

f flags Flags as in long format F field

g pgrp Process group ID

G tpgid Controlling tty process group ID

j cutime Cumulative user time

J cstime Cumulative system time

k utime User time

K stime System time

m min_flt Number of minor page faults

M maj_flt Number of major page faults

n cmin_flt Cumulative minor page faults

N cmaj_flt Cumulative major page faults

o session Session ID

p pid Process ID

continues

pr

Part I: User Commands432

P ppid Parent process ID

r rss Resident set size

R resident Resident pages

s size Memory size in kilobytes

S share Amount of shared pages

t tty The minor device number of tty

T start_time Time process was started

U uid User ID number

u user Username

v vsize Total VM size in bytes

y priority Kernel scheduling priority

FIELD DESCRIPTIONS
PRI This is the counter field in the task struct. It is the time in HZ of the process’s possible time slice.

NI Standard UNIX nice value; a positive value means less cpu time.

SIZE Virtual image size; size of text+data+stack.

RSS Resident set size; kilobytes of program in memory.

WCHAN Name of the kernel function where the process is sleeping, with the sys stripped from the function name. If
/boot/psdatabase does not exist, it is just a hex number instead.

STAT Information about the status of the process. The first field is R for runnable, S for sleeping, D for uninterruptible
sleep, T for stopped or traced, or Z for a zombie process. The second field contains W if the process has no resident
pages. The third field is N if the process has a positive nice value (NI field).

TT Controlling tty.

PAGEIN Number of major page faults (page faults that cause pages to be read from disk, including pages read from the
buffer cache).

TRS Text resident size.

SWAP Kilobytes (or pages if –p is used) on swap device.

SHARE Shared memory.

UPDATING
This proc-based ps works by reading the files in the proc filesystem, mounted on /proc. This ps does not need to be suid
kmem or have any privileges to run. Do not give this ps any special permissions.

You will need to update the /boot/psdatabase file by running /usr/sbin/psupdate to get meaningful information from the
WCHAN field. This should be done every time you compile a new kernel.

NOTES
The member used_math of task_struct is not shown, since crt0.s checks to see if math is present. This causes the math flag
to be set for all processes, and so it is worthless.

Programs swapped out to disk will be shown without command-line arguments, and unless the c option is given, in
parentheses.

%CPU shows the cputime/realtime percentage. It will not add up to 100 percent unless you are lucky. It is time used divided
by the time the process has been running.

The SIZE and RSS fields don’t count the page tables and the task struct of a proc; this is at least 12k of memory that is
always resident. SIZE is the virtual size of the proc (code+data+stack).

Short Long Description

433

BUGS
tty names are hard-coded: virtual consoles are v1, v2,…; serial lines are s0 and s1; pty’s are pp0, pp1 … pq0, pq1, ….

AUTHORS
ps was originally written by Branko Lankester (lankeste@fwi.uva.nl) Michael K. Johnson (johnsonm@sunsite.unc.edu)
rewrote it significantly to use the proc filesystem, changing a few things in the process. Michael Shields
(mjshield@nyx.cs.du.edu) added the multiple-pids feature. Charles Blake(cblake@ucsd.edu) added multilevel sorting and is
the current maintainer of the proc-ps suite.

Cohesive Systems, 27 July 1994

psbb
psbb—Extract bounding box from PostScript document

SYNOPSIS
psbb file

DESCRIPTION
psbb reads file, which should be a PostScript document conforming to the document structuring conventions and looks for
a %%BoundingBox comment. If it finds one, it prints a line

llx lly urx ury

on the standard output and exits with zero status. If it doesn’t find such a line or if the line is invalid, it prints a message and
exits with nonzero status.

SEE ALSO
grops(1)

Groff Version 1.09, 6 August 1992

psidtopgm
psidtopgm—Convert PostScript image data into a portable graymap

SYNOPSIS
psidtopgm width height bits/sample [imagedata]

DESCRIPTION
psidtopgm reads the image data from a PostScript file as input and produces a portable graymap as output.

This is a very simple and limited program, and is here only because so many people have asked for it. To use it you have to
manually extract the readhexstring data portion from your PostScript file, and then give the width, height, and bits/sample
on the command line. Before you attempt this, you should at least read the description of the image operator in the PostScript
Language Reference Manual.

It would probably not be too hard to write a script that uses this filter to read a specific variety of PostScript image, but the
variation is too great to make a general-purpose reader. Unless, of course, you want to write a full-fledged PostScript
interpreter…

SEE ALSO
pnmtops(1), pgm(5)

psidtopgm

Part I: User Commands434

AUTHOR
Copyright 1989 by Jef Poskanzer.

2 August 1989

pstopnm
pstopnm—Convert a PostScript file into a portable anymap

SYNOPSIS
pstopnm [–forceplain][–help][–llx s][–lly s][–landscape][–portrait][–nocrop]
[–pbm |–pgm |–ppm][–urx s][–ury s][–verbose][–xborder n][–xmax n][–xsize f]
[–yborder f][–ymax n][–ysize n] psfile[.ps]

DESCRIPTION
pstopnm reads a PostScript file as input and produces portable anymap files as output. This program is just a useful shell script
that runs GhostScript to render a PostScript into one or more pnm files. pstopnm will create as many files as the number of
pages in the PostScript document. If the input file is named psfile.ps, the name of the files will be psfile001.ppm,
psfile002.ppm, and so on.

The program maps a rectangular portion of the PostScript document into an image file according to the command-line
options. The selected area will always be centered in the output file, and may have borders around it. The image area to be
extracted from the PostScript file and rendered into a portable anymap is defined by four numbers, the lower-left corner and
the upper-right corner x and y coordinates. These coordinates are usually specified by the BoundingBox comment in the
PostScript file header, but they can be overridden by the user by specifying one or more of the following flags: –llx, –lly,
–urx, and –ury. The presence and thickness of a border to be left around the image area is controlled by the use of the flags
–xborder and –yborder. If BoundingBox parameters are not found, and image area coordinates are not specified on the
command line, default values are used. Unless both output file width and height are specified via the –xsize and –ysize
flags, the program will map the document into the output image by preserving its aspect ratio.

OPTIONS
–forceplain Forces the output file to be a plain (in other words, not “raw”) portable anymap.

–help Prints the command syntax.

–llx bx Selects bx as the lower left corner x coordinate (in inches).

–lly by Selects by as the lower left corner y coordinate (in inches).

–landscape Renders the image in landscape mode.

–portrait Renders the image in portrait mode.

–nocrop Does not crop the output image dimensions to match the PostScript image area dimensions.

–pbm –pgm –ppm Selects the format of the output file. By default, all files are rendered as portable pixmaps (ppm format).

–urx tx Selects tx as the upper-right corner x coordinate (in inches).

–ury ty Selects ty as the upper-right corner y coordinate (in inches).

–verbose Prints processing information to stdout.

–xborder frac Specifies that the border width along the Y axis should be frac times the document width as specified by
the bounding box comment in the PostScript file header. The default value is 0.1.

–xmax xs Specifies that the maximum output image width should have a size less or equal to xs pixels (default: 612).

–xsize xs Specifies that the output image width must be exactly xs pixels.

–yborder frac Specifies that the border width along the X axis should be frac times the document width as specified by
the bounding box comment in the PostScript file header. The default value is 0.1.

–ymax ys Specifies that the maximum output image height should have a size less or equal to ys pixels (default: 792).

–ysize ys Specifies that the output image height must be exactly ys pixels.

435

BUGS
The program will produce incorrect results with PostScript files that initialize the current transformation matrix. In these
cases, page translation and rotation will not have any effect. To render these files, probably the best bet is to use the following
flags:

pstopnm -xborder 0 -yborder 0 -portrait -nocrop file.ps

Additional flags may be needed if the document is supposed to be rendered on a medium different from letter-size paper.

SEE ALSO
gs(l), pstofits(l)

COPYRIGHT
Copyright 1992 Smithsonian Astrophysical Observatory. PostScript is a trademark of Adobe Systems Inc.

AUTHOR
Alberto Accomazzi, WIPL, Center for Astrophysics

28 December 1992

pstree
pstree—Display a tree of processes

SYNOPSIS
pstree [–a][–c][–h][–l][–p][–u][pid|user]

DESCRIPTION
pstree shows running processes as a tree. The tree is rooted at either pid or init if pid is omitted. If a username is specified,
all process trees rooted at processes owned by that user are shown.

pstree visually merges identical branches by putting them in square brackets and prefixing them with the repetition count;
for example,

 init-+-getty
 |-getty
 |-getty
 ‘-getty

becomes

 init--4*[getty]

OPTIONS
–a Show command-line arguments. If the command line of a process is swapped out, that process is shown in

parentheses. –a implicitly disables compaction.

–c Disable compaction of identical subtrees. By default, subtrees are compacted whenever possible.

–h Highlight the current process and its ancestors. This is a no-op if the terminal doesn’t support highlighting or if
neither the current process nor any of its ancestors are in the subtree being shown.

–l Display long lines. By default, lines are truncated to the display width or 132 if output is sent to a non-tty or if
the display width is unknown.

–p Show pids. pids are shown as decimal numbers in parentheses after each process name. –p implicitly disables
compaction.

–u Show uid transitions. Whenever the uid of a process differs from the uid of its parent, the new uid is shown in
parentheses after the process name.

pstree

Part I: User Commands436

FILES
/proc Location of the proc filesystem

AUTHOR
Werner Almesberger (almesber@di.epfl.ch)

SEE ALSO
ps(1), top(1)

Linux, 11 October 1994

psupdate
psupdate—Update the ps database of kernel offsets

SYNOPSIS
psupdate [system path]

DESCRIPTION
psupdate updates the /boot/psdatabase file to correspond to the current kernel image system mapfile, /usr/src/linux/vmlinux
by default.

OPTIONS
If your system mapfile is not /usr/src/linux/vmlinux, you may give the name of an alternate mapfile on the command line.

FILES
/boot/psdatabase
/usr/src/linux/vmlin

SEE ALSO
ps(1), top(1), utmp(5)

AUTHORS
Original code written by Branko Lankaster, horribly munged by Michael K. Johnson in a desperate effort to add /etc/
psdatabase support to procps. Someday, it should be rewritten, and the support in ps for alternate namelists added. Anyone
want to volunteer to be added to the “Authors” section?

Cohesive Systems, 15 September 1993

qrttoppm
qrttoppm—Convert output from the QRT ray tracer into a portable pixmap

SYNOPSIS
qrttoppm [qrtfile]

DESCRIPTION
qrttoppm reads a QRT file as input and produces a portable pixmap as output.

437

SEE ALSO
ppm(5)

AUTHOR
Copyright 1989 by Jef Poskanzer.

25 August 1989

quota
quota—Display disk usage and limits

SYNOPSIS
quota [-guv | q]
quota [-uv | q] user
quota [-gv | q] group

DESCRIPTION
quota displays users’ disk usage and limits. By default, only the user quotas are printed.

–g Print group quotas for the group of which the user is a member. The optional –u flag is equivalent to the default.

–v Will display quotas on filesystems where no storage is allocated.

-q Print a more terse message, containing only information on filesystems where usage is over quota.

Specifying both –g and –u displays both the user quotas and the group quotas (for the user).

Only the superuser may use the –u flag and the optional user argument to view the limits of other users. Non-superusers can
use the –g flag and optional group argument to view only the limits of groups of which they are members.

The –q flag takes precedence over the –v flag.

quota reports the quotas of all the filesystems listed in /etc/fstab. For filesystems that are NFS-mounted, a call to the
rpc.rquotad on the server machine is performed to get the information. If quota exits with a nonzero status, one or more
filesystems are over quota.

FILES
quota.user Located at the filesystem root with user quotas

quota.group Located at the filesystem root with group quotas

/etc/fstab To find filesystem names and locations

SEE ALSO
quotactl(2), fstab(5), edquota(8), quotacheck(8), quotaon(8), repquota(8)

8 January 1993

ranlib
ranlib—Generate index to archive

SYNOPSIS
ranlib [–v|–V] archive

ranlib

Part I: User Commands438

DESCRIPTION
ranlib generates an index to the contents of an archive and stores it in the archive. The index lists each symbol defined by a
member of an archive that is a relocatable object file.

You may use nm –s or nm --print-armap to list this index.

An archive with such an index speeds up linking to the library, and allows routines in the library to call each other without
regard to their placement in the archive.

The GNU ranlib program is another form of GNU ar; running ranlib is completely equivalent to executing ar –s.

OPTIONS
–v Print the version number of ranlib and exit

SEE ALSO
binutils entry in info; The GNU Binary Utilities, Roland H. Pesch (October 1991); ar(1); nm(1).

COPYING
Copyright 1991 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions
for modified versions, except that this permission notice may be included in translations approved by the Free Software
Foundation instead of in the original English.

Cygnus support, 5 November 1991

rasttopnm
rasttopnm—Convert a Sun raster file into a portable anymap

SYNOPSIS
rasttopnm [rastfile]

DESCRIPTION
rasttopnm reads a Sun raster file as input and produces a portable anymap as output. The type of the output file depends on
the input file—if it’s black and white, a pbm file is written; else if it’s grayscale, a pgm file; else a ppm file. The program tells you
which type it is writing.

SEE ALSO
pnmtorast(1), pnm(5)

AUTHOR
Copyright  1989, 1991 by Jef Poskanzer.

13 January 1991

439

rawtopgm
rawtopgm—Convert raw grayscale bytes into a portable graymap

SYNOPSIS
rawtopgm [-headerskip N][-rowskip N][-tb|-topbottom][width height][imagedata]

DESCRIPTION
rawtopgm reads raw grayscale bytes as input and produces a portable graymap as output. The input file is just grayscale bytes.
If you don’t specify the width and height on the command line, the program will check the size of the image and try to make
a quadratic image of it. It is an error to supply a non-quadratic image without specifying width and height. The maxval is
assumed to be 255.

OPTIONS
-headerskip If the file has a header, you can use this flag to skip over it.

-rowskip If there is padding at the ends of the rows, you can skip it with this flag. Note that rowskip can be a real
number. Amazingly, I once had an image with 0.376 bytes of padding per row. This turned out to be due
to a file transfer problem, but I was still able to read the image.

-tb -topbottom Flips the image upside down. The first pixel in a pgm file is in the lower-left corner of the image. For
conversion from images with the first pixel in the upper-left corner (for example, the Molecular Dynamics
and Leica confocal formats), this flips the image right. This is equivalent to rawtopgm [file] | pnmflip
-tb.

BUGS
If you don’t specify the image width and height, the program will try to read the entire image to a memory buffer. If you get
a message that states that you are out of memory, try to specify the width and height on the command line. Also, the -tb
option consumes much memory.

SEE ALSO
pgm(5), rawtoppm(1), pnmflip(1)

AUTHORS
Copyright 1989 by Jef Poskanzer; modified June 1993 by Oliver Trepte (oliver@fysik4.kth.se).

15 June 1993

rawtoppm
rawtoppm—Convert raw RGB bytes into a portable pixmap

SYNOPSIS
rawtoppm[-headerskip N][-rowskip N][-rgb|-rbg|-grb |-gbr|-brg|-bgr]
[-interpixel|-interrow] width height [imagedata]

DESCRIPTION
rawtoppm reads raw RGB bytes as input and produces a portable pixmap as output. The input file is just RGB bytes. You have
to specify the width and height on the command line because the program obviously can’t get them from the file. The maxval
is assumed to be 255. If the resulting image is upside down, run it through pnmflip -tb.

rawtoppm

Part I: User Commands440

OPTIONS
-headerskip If the file has a header, you can use this flag to skip over it.

-rowskip If there is padding at the ends of the rows, you can skip it with this flag.

-rgb -rbg -grb -gbr -brg -bgr These flags let you specify alternate color orders. The default is -rgb.

-interpixel -interrow These flags let you specify how the colors are interleaved. The default is -interpixel,
meaning interleaved by pixel. A byte of red, a byte of green, and a byte of blue, or whatever
color order you specified. -interrow means interleaved by row—a row of red, a row of
green, a row of blue, assuming standard RGB color order. An -interplane flag—all the red
pixels, then all the green, then all the blue—would be an obvious extension, but is not
implemented. You could get the same effect by splitting the file into three parts (perhaps
using dd), turning each part into a PGM file with rawtopgm, and then combining them with
rgb3toppm.

SEE ALSO
ppm(5), rawtopgm(1), rgb3toppm(1), pnmflip(1)

AUTHOR
Copyright 1991 by Jef Poskanzer.

6 February 1991

rcp
rcp—Remote file copy

SYNOPSIS
rcp [-px] [-k realm] file1 file2
rcp [-px] [-r] [-k Ar realm] file ... directory

DESCRIPTION
rcp copies files between machines. Each file or directory argument is either a remote filename of the form rname@rhost:path,
or a local filename (containing no : characters, or a / before any : characters).

-r If any of the source files are directories, rcp copies each subtree rooted at that name; in this case the destination
must be a directory.

-p Causes rcp to attempt to preserve (duplicate) in its copies the modification times and modes of the source files,
ignoring the umask . By default, the mode and owner of file2 are preserved if it already existed; otherwise, the
mode of the source file modified by the umask 2 on the destination host is used.

-k Requests rcp to obtain tickets for the remote host in realm realm instead of the remote host’s realm as determined
by krb_realmofhost 3.

-x Turns on DES encryption for all data passed by rcp. This may impact response time and CPU utilization, but
provides increased security.

If path is not a full pathname, it is interpreted relative to the login directory of the specified user ruser on rhost, or your
current username if no other remote username is specified. A path on a remote host may be quoted (using \, “, or ‘) so that
the meta characters are interpreted remotely.

rcp does not prompt for passwords; it performs remote execution via rsh(1), and requires the same authorization.

rcp handles third-party copies, where neither source nor target files are on the current machine.

441

SEE ALSO
cp(1), ftp(1), rsh(1), rlogin(1)

HISTORY
The rcp command appeared in BSD 4.2 . The version of rcp described here has been reimplemented with Kerberos in BSD
4.3 Reno.

BUGS
Doesn’t detect all cases in which the target of a copy might be a file when only a directory should be legal.

Is confused by any output generated by commands in a or file on the remote host.

The destination username and hostname may have to be specified as rhost.rname when the destination machine is running
the BSD 4.2 version of rcp.

BSD 4.3r, 27 July 1991

rcs
rcs—Change RCS file attributes

SYNOPSIS
rcs options file ...

DESCRIPTION
rcs creates new RCS files or changes attributes of existing ones. An RCS file contains multiple revisions of text, an access list,
a change log, descriptive text, and some control attributes. For rcs to work, the caller’s login name must be on the access
list—unless the access list is empty, the caller is the owner of the file or the superuser, or the –i option is present.

Pathnames matching an RCS suffix denote RCS files; all others denote working files. Names are paired as explained in ci(1).
Revision numbers use the syntax described in ci(1).

OPTIONS
–i Create and initialize a new RCS file, but do not deposit any revision. If the RCS file has no path prefix, try

to place it first into the subdirectory ./RCS, and then into the current directory. If the RCS file already
exists, print an error message.

–alogins Append the login names appearing in the comma-separated list logins to the access list of the RCS file.

–Aoldfile Append the access list of oldfile to the access list of the RCS file.

–e[logins] Erase the login names appearing in the comma-separated list logins from the access list of the RCS file. If
logins is omitted, erase the entire access list.

–b[rev] Set the default branch to rev.If rev is omitted, the default branch is reset to the (dynamically) highest
branch on the trunk.

–cstring Set the comment leader to string. An initial ci,or an rcs –i without –c, guesses the comment leader from
the suffix of the working filename.

This option is obsolescent, since RCS normally uses the preceding Log line’s prefix when inserting log lines during
checkout (see co(1)). However, older versions of RCS use the comment leader instead of the Log line’s prefix, so if you plan
to access a file with both old and new versions of RCS, make sure its comment leader matches its Log line prefix.

–ksubst Set the default keyword substitution to subst. The effect of keyword substitution is described in co(1).
Giving an explicit –k option to co, rcsdiff, and rcsmerge overrides this default. Beware rcs –kv, because
–kv is incompatible with co –l. Use rcs –kkv to restore the normal default keyword substitution.

rcs

Part I: User Commands442

–l[rev] Lock the revision with number rev. If a branch is given, lock the latest revision on that branch. If rev is
omitted, lock the latest revision on the default branch. Locking prevents overlapping changes. If someone
else already holds the lock, the lock is broken as with rcs –u.

–u[rev] Unlock the revision with number rev. If a branch is given, unlock the latest revision on that branch. If rev
is omitted, remove the latest lock held by the caller. Normally, only the locker of a revision can unlock it.
Somebody else unlocking a revision breaks the lock. This causes a mail message to be sent to the original
locker. The message contains a commentary solicited from the breaker. The commentary is terminated by
end-of-file or by a line containing a period by itself.

–L Set locking to strict. strict locking means that the owner of an RCS file is not exempt from locking for
checkin. This option should be used for files that are shared.

–U Set locking to non-strict. non-strict locking means that the owner of a file need not lock a revision for
checkin. This option should not be used for files that are shared. Whether default locking is strict is
determined by your system administrator, but it is normally strict.

–mrev:msg Replace revision rev’s log message with msg.

–M Do not send mail when breaking somebody else’s lock. This option is not meant for casual use; it is meant
for programs that warn users by other means, and invoke rcs –u only as a low-level lock-breaking
operation.

–nname[:[rev]] Associate the symbolic name name with the branch or revision rev. Delete the symbolic name if both : and
rev are omitted; otherwise, print an error message if name is already associated with another number. If rev
is symbolic, it is expanded before association. A rev consisting of a branch number followed by a period
stands for the current latest revision in the branch. A : with an empty rev stands for the current latest
revision on the default branch, normally the trunk. For example, rcs –nname: RCS/* associates name with
the current latest revision of all the named RCS files; this contrasts with rcs –nname:$ RCS/*, which
associates name with the revision numbers extracted from keyword strings in the corresponding working
files.

–Nname[:[rev]] Act like –n, except override any previous assignment of name.

–orange Deletes (“outdates”) the revisions given by range. A range consisting of a single revision number means
that revision. A range consisting of a branch number means the latest revision on that branch. A range of
the form rev1:rev2 means revisions rev1 to rev2 on the same branch, :rev means from the beginning of
the branch containing rev up to and including rev, and rev: means from revision rev to the end of the
branch containing rev. None of the outdated revisions can have branches or locks.

–q Run quietly; do not print diagnostics.

–I Run interactively, even if the standard input is not a terminal.

–sstate[:rev] Set the state attribute of the revision rev to state. If rev is a branch number, assume the latest revision on
that branch. If rev is omitted, assume the latest revision on the default branch. Any identifier is acceptable
for state. A useful set of states is Exp (for experimental), Stab (for stable), and Rel (for released). By
default, ci(1) sets the state of a revision to Exp.

–t[file] Write descriptive text from the contents of the named file into the RCS file, deleting the existing text.
The file pathname cannot begin with –. If file is omitted, obtain the text from standard input,
terminated by end-of-file or by a line containing a period by itself. Prompt for the text if interaction is
possible; see –I. With –i, descriptive text is obtained even if –t is not given.

–t–string Write descriptive text from the string into the RCS file, deleting the existing text.

–T Preserve the modification time on the RCS file unless a revision is removed. This option can suppress
extensive recompilation caused by a make(1) dependency of some copy of the working file on the RCS file.
Use this option with care; it can suppress recompilation even when it is needed, that is, when a change to
the RCS file would mean a change to keyword strings in the working file.

–V Print RCS’s version number.

–Vn Emulate RCS version n. See co(1) for details.

–xsuffixes Use suffixes to characterize RCS files. See ci(1) for details.

–zzone Use zone as the default time zone. This option has no effect; it is present for compatibility with other RCS
commands.

443

At least one explicit option must be given, to ensure compatibility with future planned extensions to the rcs command.

COMPATIBILITY
The –brev option generates an RCS file that cannot be parsed by RCS version 3 or earlier.

The –ksubst options (except –kkv) generate an RCS file that cannot be parsed by RCS version 4 or earlier.

Use rcs –Vn to make an RCS file acceptable to RCS version n by discarding information that would confuse version n.

RCS version 5.5 and earlier does not support the –x option, and requires a ,v suffix on an RCS pathname.

FILES
rcs accesses files much as ci(1) does, except that it uses the effective user for all accesses, it does not write the working file or
its directory, and it does not even read the working file unless a revision number of $ is specified.

ENVIRONMENT
RCSINITf1[:rev] Options prepended to the argument list, separated by spaces. See ci(1) for details.

DIAGNOSTICS
The RCS pathname and the revisions outdated are written to the diagnostic output. The exit status is zero if and only if all
operations were successful.

IDENTIFICATION
Author: Walter F. Tichy.
Manual Page Revision: 5.13; Release Date: 1995/06/05.
Copyright 1982, 1988, 1989 Walter F. Tichy.
Copyright 1990, 1991, 1992, 1993, 1994, 1995 Paul Eggert.

SEE ALSO
rcsintro(1), co(1), ci(1), ident(1), rcsclean(1), rcsdiff(1), rcsmerge(1), rlog(1), rcsfile(5)

“RCS—A System for Version Control” by Walter F. Tichy, Software Practice & Experience 15, 7 (July 1985), pages
637-654.

BUGS
A catastrophe (for example, a system crash) can cause RCS to leave behind a semaphore file that causes later invocations of
RCS to claim that the RCS file is in use. To fix this, remove the semaphore file. A semaphore file’s name typically begins
with a comma or ends with an underscore.

The separator for revision ranges in the –o option used to be – instead of :, but this leads to confusion when symbolic names
contain –. For backwards compatibility, rcs –o still supports the old – separator, but it warns about this obsolete use.

Symbolic names need not refer to existing revisions or branches. For example, the –o option does not remove symbolic names
for the outdated revisions; you must use –n to remove the names.

GNU, 5 June 1995

rcsclean
rcsclean—Clean up working files

SYNOPSIS
rcsclean [options][file ...]

rcsclean

Part I: User Commands444

DESCRIPTION
rcsclean removes files that are not being worked on. rcsclean –u also unlocks and removes files that are being worked on
but have not changed.

For each file given, rcsclean compares the working file and a revision in the corresponding RCS file. If it finds a difference,
it does nothing. Otherwise, it first unlocks the revision if the –u option is given, and then removes the working file unless the
working file is writable and the revision is locked. It logs its actions by outputting the corresponding rcs –u and rm –f
commands on the standard output.

Files are paired as explained in ci(1). If no file is given, all working files in the current directory are cleaned. Pathnames
matching an RCS suffix denote RCS files; all others denote working files.

The number of the revision to which the working file is compared may be attached to any of the options –n, –q, –r, or –u. If
no revision number is specified, then if the –u option is given and the caller has one revision locked, rcsclean uses that
revision; otherwise, rcsclean uses the latest revision on the default branch, normally the root.

rcsclean is useful for clean targets in makefiles. See also rcsdiff(1), which prints out the differences, and ci(1), which
normally reverts to the previous revision if a file was not changed.

OPTIONS
–ksubst Use subst-style keyword substitution when retrieving the revision for comparison. See co(1) for details.

–n[rev] Do not actually remove any files or unlock any revisions. Using this option will tell you what rcsclean
would do without actually doing it.

--q[rev] Do not log the actions taken on standard output.

--r[rev] This option has no effect other than specifying the revision for comparison.

–T Preserve the modification time on the RCS file even if the RCS file changes because a lock is removed.
This option can suppress extensive recompilation caused by a make(1) dependency of some other copy of
the working file on the RCS file. Use this option with care; it can suppress recompilation even when it is
needed, that is, when the lock removal would mean a change to keyword strings in the other working file.

–u[rev] Unlock the revision if it is locked and no difference is found.

–V Print RCS’s version number.

–Vn Emulate RCS version n. See co(1) for details.

–xsuffixes Use suffixes to characterize RCS files. See ci(1) for details.

–zzone Use zone as the time zone for keyword substitution; see co(1) for details.

EXAMPLES
rcsclean *.c *.h removes all working files ending in .c or .h that were not changed since their checkout.

rcsclean removes all working files in the current directory that were not changed since their check-out.

FILES
rcsclean accesses files much as ci(1) does.

ENVIRONMENT
RCSINIT Options prepended to the argument list, separated by spaces. A backslash escapes spaces within an option. The

RCSINIT options are prepended to the argument lists of most rcs commands. Useful RCSINIT options include –q,
–V, –x, and –z.

DIAGNOSTICS
The exit status is zero if and only if all operations were successful. Missing working files and RCS files are silently ignored.

445

IDENTIFICATION
Author: Walter F. Tichy.
Manual Page Revision: 1.12; Release Date: 1993/11/03.
Copyright 1982, 1988, 1989 Walter F. Tichy.
Copyright 1990, 1991, 1992, 1993 Paul Eggert.

SEE ALSO
ci(1), co(1), ident(1), rcs(1), rcsdiff(1), rcsintro(1), rcsmerge(1), rlog(1), rcsfile(5)

“RCS—A System for Version Control” by Walter F. Tichy, Software Practice & Experience 15, 7 (July 1985), pages
637-654.

BUGS
At least one file must be given in older UNIX versions that do not provide the needed directory scanning operations.

GNU, 3 November 1993

rcsdiff
rcsdiff—Compare rcs revisions

SYNOPSIS
rcsdiff [–ksubst][–q][–rrev1 [–rrev2]][–T][–V[n]][–xsuffixes][–zzone]
[diff options] file . . .

DESCRIPTION
rcsdiff runs diff(1) to compare two revisions of each RCS file given.

Pathnames matching an RCS suffix denote RCS files; all others denote working files. Names are paired as explained in ci(1).

The option –q suppresses diagnostic output. Zero, one, or two revisions may be specified with –r. The option –ksubst affects
keyword substitution when extracting revisions, as described in co(1); for example, –kk –r1.1 –r1.2 ignores differences in
keyword values when comparing revisions 1.1 and 1.2. To avoid excess output from locker name substitution, –kkvl is
assumed if at most one revision option is given, no –k option is given, –kkv is the default keyword substitution, and the
working file’s mode would be produced by co –l. See co(1) for details about –T, –V, –x, and –z. Otherwise, all options of
diff(1) that apply to regular files are accepted, with the same meaning as for diff.

If both rev1 and rev2 are omitted, rcsdiff compares the latest revision on the default branch (by default the trunk) with the
contents of the corresponding working file. This is useful for determining what you changed since the last checkin.

If rev1 is given, but rev2 is omitted, rcsdiff compares revision rev1 of the RCS file with the contents of the corresponding
working file.

If both rev1 and rev2 are given, rcsdiff compares revisions rev1 and rev2 of the RCS file.

Both rev1 and rev2 may be given numerically or symbolically.

EXAMPLE
The command

rcsdiff f.c

compares the latest revision on the default branch of the RCS file to the contents of the working file f.c.

ENVIRONMENT
RCSINIT Options prepended to the argument list, separated by spaces. See ci(1) for details.

rcsdiff

Part I: User Commands446

DIAGNOSTICS
Exit status is 0 for no differences during any comparison, 1 for some differences, 2 for trouble.

IDENTIFICATION
Author: Walter F. Tichy.
Manual Page Revision: 5.5; Release Date: 1993/11/03.
Copyright 1982, 1988, 1989 Walter F. Tichy.
Copyright 1990, 1991, 1992, 1993 Paul Eggert.

SEE ALSO
ci(1), co(1), diff(1), ident(1), rcs(1), rcsintro(1), rcsmerge(1), rlog(1)

“RCS—A System for Version Control” by Walter F. Tichy, Software Practice & Experience 15, 7 (July 1985), pages
637–654.

GNU, 3 November 1993

rcsfreeze
rcsfreeze—Freeze a configuration of sources checked in under RCS

SYNOPSIS
rcsfreeze [name]

DESCRIPTION
rcsfreeze assigns a symbolic revision number to a set of RCS files that form a valid configuration.

The idea is to run rcsfreeze each time a new version is checked in. A unique symbolic name (C_number, where number is
increased each time rcsfreeze is run) is then assigned to the most recent revision of each RCS file of the main trunk.

An optional name argument to rcsfreeze gives a symbolic name to the configuration. The unique identifier is still generated
and is listed in the log file, but it will not appear as part of the symbolic revision name in the actual RCS files.

A log message is requested from the user for future reference.

The shell script works only on all RCS files at one time. All changed files must be checked in already. Run rcsclean(1) first
and see whether any sources remain in the current directory.

FILES
RCS/.rcsfreeze.ver Version number

RCS/.rcsfreeze.log Log messages, most recent first

AUTHOR
Stephan V. Bechtolsheim

SEE ALSO
co(1), rcs(1), rcsclean(1), rlog(1)

BUGS
rcsfreeze does not check whether any sources are checked out and modified.

Although both source filenames and RCS filenames are accepted, they are not paired as usual with rcs commands.

Error checking is rudimentary.

447

rcsfreeze is just an optional example shell script, and should not be taken too seriously. See cvs for a more complete
solution.

GNU, 3 November 1990

rcsintro
rcsintro—Introduction to rcs commands

DESCRIPTION
The Revision Control System (RCS) manages multiple revisions of files. RCS automates the storing, retrieval, logging,
identification, and merging of revisions. RCS is useful for text that is revised frequently; for example programs, documenta-
tion, graphics, papers, and form letters.

The basic user interface is extremely simple. The novice only needs to learn two commands: ci(1) and co(1). ci, short for
check in, deposits the contents of a file into an archival file called an RCS file. An RCS file contains all revisions of a
particular file. co, short for check out, retrieves revisions from an RCS file.

FUNCTIONS OF RCS
Store and retrieve multiple revisions of text. RCS saves all old revisions in a space-efficient way. Changes no longer destroy
the original because the previous revisions remain accessible. Revisions can be retrieved according to ranges of revision
numbers, symbolic names, dates, authors, and states.

Maintain a complete history of changes. RCS logs all changes automatically. Besides the text of each revision, RCS stores
the author, the date and time of checkin, and a log message summarizing the change. The logging makes it easy to find out
what happened to a module without having to compare source listings or having to track down colleagues.

Resolve access conflicts. When two or more programmers wish to modify the same revision, RCS alerts the programmers
and prevents one modification from corrupting the other.

Maintain a tree of revisions. RCS can maintain separate lines of development for each module. It stores a tree structure that
represents the ancestral relationships among revisions.

Merge revisions and resolve conflicts. Two separate lines of development of a module can be coalesced by merging. If the
revisions to be merged affect the same sections of code, RCS alerts the user about the overlapping changes.

Control releases and configurations. Revisions can be assigned symbolic names and marked as released, stable, experimen-
tal, and so on. With these facilities, configurations of modules can be described simply and directly.

Automatically identify each revision with name, revision number, creation time, author, and so on. The identification
is like a stamp that can be embedded at an appropriate place in the text of a revision. The identification makes it simple to
determine which revisions of which modules make up a given configuration.

Minimize secondary storage. RCS needs little extra space for the revisions (only the differences). If intermediate revisions
are deleted, the corresponding deltas are compressed accordingly.

GETTING STARTED WITH RCS
Suppose you have a file f.c that you wish to put under control of RCS. If you have not already done so, make an RCS
directory with the command:

mkdir RCS

Then invoke the check in command:

ci f.c

This command creates an RCS file in the RCS directory, stores f.c into it as revision 1.1, and deletes f.c. It also asks you for
a description. The description should be a synopsis of the contents of the file. All later check in commands will ask you for a
log entry, which should summarize the changes that you made.

rcsintro

Part I: User Commands448

Files in the RCS directory are called RCS files; the others are called working files. To get back the working file f.c in the
previous example, use the check out command:

co f.c

This command extracts the latest revision from the RCS file and writes it into f.c. If you want to edit f.c, you must lock it
as you check it out with the command:

co –l f.c

You can now edit f.c.

Suppose after some editing you want to know what changes that you have made. The command:

rcsdiff f.c

tells you the difference between the most recently checked-in version and the working file. You can check the file back in by
invoking

ci f.c

This increments the revision number properly.

If ci complains with the message:

ci error: no lock set by your name

then you have tried to check in a file even though you did not lock it when you checked it out. Of course, it is too late now
to do the checkout with locking, because another checkout would overwrite your modifications. Instead, invoke

rcs –l f.c

This command will lock the latest revision for you, unless somebody else got ahead of you already. In that case, you’ll have to
negotiate with that person.

Locking assures that you, and only you, can check in the next update, and avoids nasty problems if several people work on
the same file. Even if a revision is locked, it can still be checked out for reading, compiling, and so on. All that locking
prevents is a check-in by anybody but the locker.

If your RCS file is private—if you are the only person who is going to deposit revisions into it—strict locking is not needed
and you can turn it off. If strict locking is turned off, the owner of the RCS file need not have a lock for checkin; all others
still do. Turning strict locking off and on is done with the commands rcs –U f.c and rcs –L f.c. If you don’t want to
clutter your working directory with RCS files, create a subdirectory called RCS in your working directory, and move all your
RCS files there. rcs commands will look first into that directory to find needed files. All the commands discussed here will
still work, without any modification. (Actually, pairs of RCS and working files can be specified in three ways: both are given,
only the working file is given, or only the RCS file is given. Both RCS and working files may have arbitrary path prefixes; rcs
commands pair them up intelligently.)

To avoid the deletion of the working file during checkin (in case you want to continue editing or compiling), invoke

ci –l f.c or ci –u f.c

These commands check in f.c as usual, but perform an implicit checkout. The first form also locks the checked in revision,
the second one doesn’t. Thus, these options save you one checkout operation. The first form is useful if you want to
continue editing, the second one if you just want to read the file. Both update the identification markers in your working
file. (See the following subsection, “Automatic Identification.”)

You can give ci the number you want assigned to a checked in revision. Assume all your revisions were numbered 1.1, 1.2,
1.3, etc., and you would like to start release 2. The command:

ci –r2 f.c or ci –r2.1 f.c

assigns the number 2.1 to the new revision. From then on, ci will number the subsequent revisions with 2.2, 2.3, and so on.
The corresponding co commands:

449

co –r2 f.c

and

co –r2.1 f.c

retrieve the latest revision numbered 2.x and the revision 2.1, respectively. co without a revision number selects the latest
revision on the trunk, that is, the highest revision with a number consisting of two fields. Numbers with more than two
fields are needed for branches. For example, to start a branch at revision 1.3, invoke

ci –r1.3.1 f.c

This command starts a branch numbered 1 at revision 1.3, and assigns the number 1.3.1.1 to the new revision. For more
information about branches, see rcsfile(5).

AUTOMATIC IDENTIFICATION
RCS can put special strings for identification into your source and object code. To obtain such identification, place the
marker:

Id

into your text, for instance inside a comment. RCS will replace this marker with a string of the form:

$Id: filename revision date time author state $

With such a marker on the first page of each module, you can always see with which revision you are working. RCS keeps
the markers up-to-date automatically. To propagate the markers into your object code, simply put them into literal character
strings. In C, this is done as follows:

static char rcsid[] = “Id”;

The command ident extracts such markers from any file, even object code and dumps. Thus, ident lets you find out which
revisions of which modules were used in a given program.

You may also find it useful to put the marker Log into your text, inside a comment. This marker accumulates the log
messages that are requested during checkin. Thus, you can maintain the complete history of your file directly inside it. There
are several additional identification markers; see co(1) for details.

IDENTIFICATION
Author: Walter F. Tichy.
Manual Page Revision: 5.3; Release Date: 1993/11/03.
Copyright 1982, 1988, 1989 Walter F. Tichy.
Copyright 1990, 1991, 1992, 1993 Paul Eggert.

SEE ALSO
ci(1), co(1), ident(1), rcs(1), rcsdiff(1), rcsintro(1), rcsmerge(1), rlog(1)

“RCS—A System for Version Control” by Walter F. Tichy, Software Practice & Experience 15, 7 (July 1985), pages
637–654.

GNU, 3 November 1993

rcsmerge
rcsmerge—Merge RCS revisions

SYNOPSIS
rcsmerge [options] file

rcsmerge

Part I: User Commands450

DESCRIPTION
rcsmerge incorporates the changes between two revisions of an RCS file into the corresponding working file.

Pathnames matching an RCS suffix denote RCS files; all others denote working files. Names are paired as explained in ci(1).

At least one revision must be specified with one of the options described in the next subsection, usually –r. At most two
revisions may be specified. If only one revision is specified, the latest revision on the default branch (normally the highest
branch on the trunk) is assumed for the second revision. Revisions may be specified numerically or symbolically.

rcsmerge prints a warning if there are overlaps, and delimits the overlapping regions as explained in merge(1). The command
is useful for incorporating changes into a checked-out revision.

OPTIONS
–A Output conflicts using the –A style of diff3(1), if supported by diff3. This merges all changes leading

from file2 to file3 into file1, and generates the most verbose output.

–E, –e These options specify conflict styles that generate less information than –A. See diff3(1) for details. The
default is –E. With–e, rcsmerge does not warn about conflicts.

–ksubst Use subst-style keyword substitution. See co(1) for details. For example, –kk –r1.1 –r1.2 ignores
differences in keyword values when merging the changes from 1.1 to 1.2. It normally does not make sense
to merge binary files as if they were text, so rcsmerge refuses to merge files if –kb expansion is used.

–p[rev] Send the result to standard output instead of overwriting the working file.

–q[rev] Run quietly; do not print diagnostics.

–r[rev] Merge with respect to revision rev. Here an empty rev stands for the latest revision on the default branch,
normally the head.

–T This option has no effect; it is present for compatibility with other rcs commands.

–V Print RCS’s version number.

–Vn Emulate RCS version n. See co(1) for details.

–xsuffixes Use suffixes to characterize RCS files. See ci(1) for details.

–zzone Use zone as the time zone for keyword substitution. See co(1) for details.

EXAMPLES
Suppose you have released revision 2.8 of f.c. Assume, furthermore, that after you complete an unreleased revision 3.4, you
receive updates to release 2.8 from someone else. To combine the updates to 2.8 and your changes between 2.8 and 3.4, put
the updates to 2.8 into file f.c and execute

rcsmerge –p –r2.8 –r3.4 f.c >f.merged.c

Then examine f.merged.c. Alternatively, if you want to save the updates to 2.8 in the RCS file, check them in as revision
2.8.1.1 and execute co –j:

ci –r2.8.1.1 f.c
co –r3.4 –j2.8:2.8.1.1 f.c

As another example, the following command undoes the changes between revision 2.4 and 2.8 in your currently checked out
revision in f.c:

rcsmerge –r2.8 –r2.4 f.c

Note the order of the arguments, and that f.c will be overwritten.

ENVIRONMENT
RCSINIT Options prepended to the argument list, separated by spaces. See ci(1) for details.

DIAGNOSTICS
Exit status is 0 for no overlaps, 1 for some overlaps, 2 for trouble.

451

IDENTIFICATION
Author: Walter F. Tichy.
Manual Page Revision: 5.6; Release Date: 1995/06/01.
Copyright 1982, 1988, 1989 Walter F. Tichy.
Copyright 1990, 1991, 1992, 1993, 1994, 1995 Paul Eggert.

SEE ALSO
ci(1), co(1), ident(1), merge(1), rcs(1), rcsdiff(1), rcsintro(1), rlog(1), rcsfile(5)

“RCS—A System for Version Control” by Walter F. Tichy, Software–Practice & Experience 15, 7 (July 1985), pages
637–654.

GNU, 1 June 1995

rdist
rdist—Remote file distribution program

SYNOPSIS
rdist [-nqbRhivwy] [-f distfile] [-d var=value] [-m host] [name ...]
rdist [-nqbRhivwy] -c name ... [login@host:dest]

DESCRIPTION
rdist is a program to maintain identical copies of files over multiple hosts. It preserves the owner, group, mode, and mtime
of files if possible and can update programs that are executing. rdist reads commands from distfile to direct the updating
of files and/or directories.

Options specific to the first SYNOPSIS form:

- If distfile is -, the standard input is used.

-f distfile Use the specified distfile.

If either the -f or - option is not specified, the program looks first for distfile, then Distfile to use as the input. If no
names are specified on the command line, rdist will update all of the files and directories listed in distfile. Otherwise, the
argument is taken to be the name of a file to be updated or the label of a command to execute. If label and filenames conflict,
it is assumed to be a label. These may be used together to update specific files using specific commands.

Options specific to the second SYNOPSIS form:

-c Forces rdist to interpret the remaining arguments as a small distfile.

The equivalent distfile is as follows:

name ... -¿ login@ host install dest ;

Options common to both forms:

-b Binary comparison. Perform a binary comparison and update files if they differ rather than comparing
dates and sizes.

-d var=value Define var to have value. The -d option is used to define or override variable definitions in the distfile.
value can be the empty string, one name, or a list of names surrounded by parentheses and separated by
tabs and/or spaces.

-h Follow symbolic links. Copy the file that the link points to rather than the link itself.

-i Ignore unresolved links. rdist will normally try to maintain the link structure of files being transferred and
warn the user if all the links cannot be found.

-m host Limit which machines are to be updated. Multiple -m arguments can be given to limit updates to a subset
of the hosts listed in the distfile.

rdist

Part I: User Commands452

-n Print the commands without executing them. This option is useful for debugging distfile.

-q Quiet mode. Files that are being modified are normally printed on standard output. The -q option
suppresses this.

-R Remove extraneous files. If a directory is being updated, any files that exist on the remote host that do not
exist in the master directory are removed. This is useful for maintaining truly identical copies of directo-
ries.

-v Verify that the files are up-to-date on all the hosts. Any files that are out-of-date will be displayed, but no
files will be changed nor any mail sent.

-w Whole mode. The whole filename is appended to the destination directory name. Normally, only the last
component of a name is used when renaming files. This will preserve the directory structure of the files
being copied instead of flattening the directory structure. For example, renaming a list of files such as
dir1/f1 dir2/f2 to dir3 would create files dir3/dir1/f1 and dir3/dir2/f2 instead of dir3/f1 and dir3/f2.

-y Younger mode. Files are normally updated if their mtime and size (see stat(2)for more details) disagree.
The -y option causes rdist not to update files that are younger than the master copy. This can be used to
prevent newer copies on other hosts from being replaced. A warning message is printed for files that are
newer than the master copy.

distfile contains a sequence of entries that specify the files to be copied, the destination hosts, and what operations to
perform to do the updating. Each entry has one of the following formats:

<variable name>’=’ <name list>
[label:]<source list> ‘–>’ <destination list><command list>
[label:]<source list> ‘::’ <time_stamp file><command list>

The first format is used for defining variables. The second format is used for distributing files to other hosts. The third
format is used for making lists of files that have been changed since some given date. The source list specifies a list of files
and/or directories on the local host that are to be used as the master copy for distribution. The destination list is the list of
hosts to which these files are to be copied. Each file in the source list is added to a list of changes if the file is out-of-date on
the host that is being updated (second format), or the file is newer than the timestamp file (third format).

Labels are optional. They are used to identify a command for partial updates.

Newlines, tabs, and blanks are only used as separators and are otherwise ignored. Comments begin with # and end with a
newline.

Variables to be expanded begin with $ followed by one character or a name enclosed in curly braces (see the examples at the
end).

The source and destination lists have the following format: <name> or ‘(‘ <zero or more names separated by white-space>
‘)’.

The shell meta characters [,], {, }, *, and ? are recognized and expanded (on the local host only) in the same way as csh(1).
They can be escaped with a backslash. The ˜ character is also expanded in the same way as csh(1) but is expanded separately
on the local and destination hosts. When the -w option is used with a filename that begins with ˜, everything except the
home directory is appended to the destination name. Filenames that do not begin with / or ˜ use the destination user’s home
directory as the root directory for the rest of the filename.

The command list consists of zero or more commands of the following format:

‘install’ <options> opt_dest_name ‘;’
‘notify’ <name list> ‘;’
‘except’ <name list> ‘;’
‘except_pat’ <pattern list> ‘;’
‘special’ <name list> string ‘;’

The install command is used to copy out-of-date files and/or directories. Each source file is copied to each host in the
destination list. Directories are recursively copied in the same way. opt_dest_name is an optional parameter to rename files. If
no install command appears in the command list or the destination name is not specified, the source filename is used.

453

Directories in the pathname will be created if they do not exist on the remote host. To help prevent disasters, a nonempty
directory on a target host will never be replaced with a regular file or a symbolic link. However, under the –R option, a
nonempty directory will be removed if the corresponding filename is completely absent on the master host. The options are
–R, –h, –i, –v, –w, –y, and –b and have the same semantics as options on the command line except they only apply to the files
in the source list. The login name used on the destination host is the same as the local host unless the destination name is of
the format login@host.

The notify command is used to mail the list of files updated (and any errors that may have occurred) to the listed names. If
no @ appears in the name, the destination host is appended to the name (for example, name1@host, name2@host).

The except command is used to update all of the files in the source list except for the files listed in name list . This is usually
used to copy everything in a directory except certain files.

The except_pat command is like the except command except that pattern list is a list of regular expressions (see ed(1) for
details). If one of the patterns matches some string within a filename, that file will be ignored. Note that because \ is a quote
character, it must be doubled to become part of the regular expression. Variables are expanded in pattern list, but not shell
file pattern-matching characters. To include a $, it must be escaped with \.

The special command is used to specify sh(1) commands that are to be executed on the remote host after the file in name
list is updated or installed. If the name list is omitted, then the shell commands will be executed for every file updated or
installed. The shell variable FILE is set to the current filename before executing the commands in string . string starts and
ends with double quotes (“) and can cross multiple lines in distfile . Multiple commands to the shell should be separated by
a semicolon. Commands are executed in the user’s home directory on the host being updated. The special command can be
used to rebuild private databases, and so on after a program has been updated.

The following is a small example:

HOSTS = (matisse root@arpa)

FILES = (/bin /lib /usr/bin /usr/games
/usr/include/{*.h,{stand,sys,vax*,pascal,machine}/*.h
/usr/lib /usr/man/man? /usr/ucb /usr/local/rdist)

EXLIB = (Mail.rc aliases aliases.dir aliases.pag crontab dshrc sendmail.cf
sendmail.fc sendmail.hf sendmail.st uucp vfont)

${FILES} -> ${HOSTS} install -R ; except /usr/lib/${EXLIB} ; except /usr/games/lib ;
special /usr/lib/sendmail “/usr/lib/sendmail -bz” ;

srcs: /usr/src/bin -> arpa except pat (\\.o\$ /SCCS\$);

IMAGEN = (ips dviimp catdvi)

imagen: /usr/local/${IMAGEN} -> arpa install /usr/local/lib ; notify ralph ;

${FILES} :: stamp.cory notify root@cory ;

FILES
distfile Input command file

/tmp/rdist* Temporary file for update lists

SEE ALSO
sh(1), csh(1), stat(2)

HISTORY
The rdist command appeared in BSD 4.3.

rdist

Part I: User Commands454

DIAGNOSTICS
A complaint about mismatch of rdist version numbers may really stem from some problem with starting your shell; for
example, you are in too many groups.

BUGS
Source files must reside on the local host where rdist is executed.

There is no easy way to have a special command executed after all files in a directory have been updated.

Variable expansion only works for name lists; there should be a general macro facility.

rdist aborts on files that have a negative mtime (before Jan 1, 1970).

There should be a force option to allow replacement of nonempty directories by regular files or symlinks. A means of
updating file modes and owners of otherwise identical files is also needed.

BSD 4.3, 30 December 1993

reconfig
reconfig—Convert old Xconfig to new XF86Config

SYNOPSIS
reconfig < Xconfig > XF86Config

DESCRIPTION
The reconfig program converts the Xconfig file format used in XFree86 versions prior to 3.1 into the XF86Config format
currently used. The XF86Config format contains more information than the Xconfig format, so manual editing is required
after converting.

SEE ALSO
XFree86(1), XF86Config(4/5), xf86config(1)

AUTHOR
Gertjan Akkerman

BUGS
Comment lines are stripped out when converting.

XFree86 Version 3.1.1

455

ref
ref—Display a C function header

SYNOPSIS
ref [-t] [-x] [-c class]... [-f file]... tag

DESCRIPTION
ref quickly locates and displays the header of a function. To do this, ref looks in the tags file for the line that describes the
function, and then scans the source file for the function. When it locates the function, it displays an introductory comment
(if there is one), the function’s declaration, and the declarations of all arguments.

SEARCH METHOD
ref uses a fairly sophisticated tag look-up algorithm. If you supply a filename via -f file, then elvis first scans the tags
file for a static tag from that file. This search is limited to the tags file in the current directory.

If you supply a class name via -c class, then elvis searches for a tag from that class. This search is not limited to the
current directory; You can supply a list of directories in the environment variable TAGPATH, and ref will search through the
tags file in each directory until it finds a tag in the desired class.

If that fails, ref will then try to look up an ordinary global tag. This search checks all of the directories listed in TAGPATH, too.
If the tag being sought doesn’t contain any colons, and you haven’t given a -x flag, then any static tags in a tags file will be
treated as global tags.

If you’ve given the -t flag, then ref will simply output the tag line that it found, and then exit. Without -t, though, ref
will search for the tag line. It will try to open the source file, which should be in the same directory as the tags file where the
tag was discovered. If the source file doesn’t exist, or is unreadable, then ref will try to open a file called refs in that
directory. Either way, ref will try to locate the tag, and display whatever it finds.

INTERACTION WITH elvis
ref is used by the elvis shift-K command. If the cursor is located on a word such as splat, in the file foo.c, then elvis will
invoke ref with the command ref -f foo.c splat.

If elvis has been compiled with the -DEXTERNAL_TAGS flag, then elvis will use ref to scan the tags files. This is slower than
the built-in tag searching, but it allows elvis to access the more sophisticated tag lookup provided by ref. Other than that,
external tags should act exactly like internal tags.

OPTIONS
-t Output tag info, instead of the function header.

-f file The tag might be a static function in file. You can use several -f flags to have ref consider static tags
from more than one file.

-c class The tag might be a member of class class. You can use several -c flags to have ref consider tags from
more than one class.

FILES
tags List of function names and their locations, generated by ctags

refs Function headers extracted from source files (optional)

ENVIRONMENT
TAGPATH List of directories to be searched. The elements in the list are separated by either semicolons (for MS-DOS,

Atari TOS, and AmigaDos), or by colons (every other operating system). For each operating system, ref
has a built-in default which is probably adequate.

ref

Part I: User Commands456

NOTES
You might want to generate a tags file for the directory that contains the source code for standard C library on your system.
If licensing restrictions prevent you from making the library source readable by everybody, then you can have ctags generate
a refs file, and make refs readable by everybody.

If your system doesn’t come with the library source code, then perhaps you can produce something workable from the lint
libraries.

SEE ALSO
elvis(1), ctags(1)

AUTHOR
Steve Kirkendall (kirkenda@cs.pdx.edu)

reset
reset—Reset the terminal

SYNOPSIS
clear

DESCRIPTION
reset calls tput(1) with the clear, rmacs, rmm, rmul, rs1, rs2, and rs3 arguments. This causes tput to send appropriate
reset strings to the terminal based on information in /etc/termcap (for the GNU or BSD tput) or in the terminfo database
(for the ncurses tput). This sequence seems to be sufficient to reset the Linux VC’s when they start printing “funny-
looking” characters. For good measure, stty(1) is called with the sane argument in an attempt to get Cooked mode back.

SEE ALSO
reset(1), stty(1), tput(1)

AUTHOR
Rik Faith (faith@cs.unc.edu)

Linux 0.99, 10 October 1993

resize
resize—Set TERMCAP and terminal settings to current xterm window size

SYNOPSIS
resize [-u | -c][-s [row col]]

DESCRIPTION
resize prints a shell command for setting the TERM and TERMCAP environment variables to indicate the current size of xterm
window from which the command is run. For this output to take effect, resize must either be evaluated as part of the
command line (usually done with a shell alias or function) or else redirected to a file that can then be read in. From the C
shell (usually known as /bin/csh), the following alias could be defined in the user’s .cshrc:

% alias rs ‘set noglob; eval ‘resize’’

After resizing the window, the user would type:

%rs

457

Users of versions of the Bourne shell (usually known as /bin/sh) that don’t have command functions will need to send the
output to a temporary file and the read it back in with the . command:

$ resize > /tmp/out
$. /tmp/out

OPTIONS
The following options may be used with resize:

-u This option indicates that Bourne shell commands should be generated even if the user’s current
shell isn’t /bin/sh.

-c This option indicates that C shell commands should be generated even if the user’s current shell
isn’t /bin/csh.

-s [rows columns] This option indicates that Sun console escape sequences will be used instead of the special xterm
escape code. If rows and columns are given, resize will ask the xterm to resize itself. However, the
window manager may choose to disallow the change.

FILES
/etc/termcap For the base termcap entry to modify

˜/.cshrc User’s alias for the command

SEE ALSO
csh(1), tset(1), xterm(1)

AUTHORS
Mark Vandevoorde (MIT-Athena), Edward Moy(Berkeley)
Copyright 1984, 1985 by XConsortium
See X(1) for a complete copyright notice.

BUGS
The -u or -c must appear to the left of -s if both are specified.

X Version 11 Release 6

rev
rev—Reverse lines of a file

SYNOPSIS
rev [file]

DESCRIPTION
The rev utility copies the specified files to the standard output, reversing the order of characters in every line. If no files are
specified, the standard input is read.

21 March 1992

rgb3toppm
rgb3toppm—Combine three portable graymaps into one portable pixmap

rgb3toppm

Part I: User Commands458

SYNOPSIS
rgb3toppmredpgmfile greenpgmfile bluepgmfile

DESCRIPTION
rgb3toppm reads three portable graymaps as input and combines them and produces one portable pixmap as output.

SEE ALSO
ppmtorgb3(1), pgmtoppm(1), ppmtopgm(1), ppm(5), pgm(5)

AUTHOR
Copyright 1991 by Jef Poskanzer.

15 February 1990

rlog
rlog—Print log messages and other information about RCS files

SYNOPSIS
rlog [options] file ...

DESCRIPTION
rlog prints information about RCS files.

Pathnames matching an RCS suffix denote RCS files; all others denote working files. Names are paired as explained in ci(1).

rlog prints the following information for each RCS file: RCS pathname, working pathname, head (the number of the latest
revision on the trunk), default branch, access list, locks, symbolic names, suffix, total number of revisions, number of
revisions selected for printing, and descriptive text. This is followed by entries for the selected revisions in reverse chronologi-
cal order for each branch. For each revision, rlog prints revision number, author, date/time, state, number of lines added/
deleted (with respect to the previous revision), locker of the revision (if any), and log message. All times are displayed in
Coordinated Universal Time (UTC) by default; this can be overridden with -z. Without options, rlog prints complete
information. The options below restrict this output.

-L Ignore RCS files that have no locks set. This is convenient in combination with -h, -l, and -R.

-R Print only the name of the RCS file. This is convenient for translating a working pathname into an RCS
pathname.

-h Print only the RCS pathname, working pathname, head, default branch, access list, locks, symbolic names,
and suffix.

-t Print the same as -h, plus the descriptive text.

-N Do not print the symbolic names.

-b Print information about the revisions on the default branch, normally the highest branch on the trunk.

-ddates Print information about revisions with a checkin date/time in the ranges given by the semicolon-separated
list of dates. A range of the form d1<d2 or d2>d1 selects the revisions that were deposited between d1 and
d2 exclusive. A range of the form <d or d> selects all revisions earlier than d. A range of the form d< or >d
selects all revisions dated later than d. If < or > is followed by =, then the ranges are inclusive, not exclusive.
A range of the form d selects the single, latest revision dated d or earlier. The date/time strings d, d1, and
d2 are in the free format explained in co(1). Quoting is normally necessary, especially for < and >. Note
that the separator is a semicolon.

-l[lockers] Print information about locked revisions only. In addition, if the comma-separated list lockers of login
names is given, ignore all locks other than those held by the lockers. For example, rlog -L -R -lwft
RCS/* prints the name of RCS files locked by the user wft.

459

-r[revisions] Print information about revisions given in the comma-separated list revisions of revisions and ranges. A
range rev1:rev2 means revisions rev1 to rev2 on the same branch, :rev means revisions from the
beginning of the branch up to and including rev, and rev: means revisions starting with rev to the end of
the branch containing rev. An argument that is a branch means all revisions on that branch. A range of
branches means all revisions on the branches in that range. A branch followed by a . means the latest
revision in that branch. A bare -r with no revisions means the latest revision on the default branch,
normally the trunk.

-sstates Print information about revisions whose state attributes match one of the states given in the comma-
separated list states.

-w[logins] Print information about revisions checked in by users with login names appearing in the comma-separated
list logins. If logins is omitted, the user’s login is assumed.

-T This option has no effect; it is present for compatibility with other rcs commands.

-V Print the RCS version number.

-Vn Emulate RCS version n when generating logs. (See co(1) for more details.)

-xsuffixes Use suffixes to characterize RCS files. (See ci(1) for details.)

rlog prints the intersection of the revisions selected with the options -d, -l, -s, and -w, intersected with the union of the
revisions selected by -b and -r.

-zzone Specifies the date output format, and specifies the default time zone for date in the -ddates option. The
zone should be empty, a numeric UTC offset, or the special string LT for local time. The default is an
empty zone, which uses the traditional RCS format of UTC without any time zone indication and with
slashes separating the parts of the date; otherwise, times are output in ISO 8601 format with time zone
indication. For example, if local time is January 11, 1990, 8 p.m. Pacific Standard Time, eight hours west
of UTC, then the time is output as follows:

option time output

------ ---- -----

-z 1990/01/12 04:00:00 (default)

-zLT 1990-01-11 20:00:00-08

-z+05:30 1990-01-12 09:30:00+05:30

EXAMPLES
Here are four rlog commands:

rlog -L -R RCS/*

rlog -L -h RCS/*

rlog -L -l RCS/*

rlog RCS/*

The first command prints the names of all RCS files in the subdirectory RCS that have locks. The second command prints
the headers of those files, and the third prints the headers plus the log messages of the locked revisions. The last command
prints complete information.

ENVIRONMENT
RCSINIT Options prepended to the argument list, separated by spaces. (See ci(1) for details.)

DIAGNOSTICS
The exit status is zero if and only if all operations were successful.

rlog

Part I: User Commands460

IDENTIFICATION
Author: Walter F. Tichy
Manual Page Revision: 5.9; Release Date: 1995/06/16
Copyright 1982, 1988, 1989 Walter F. Tichy
Copyright 1990, 1991, 1992, 1993, 1994, 1995 Paul Eggert

SEE ALSO
ci(1), co(1), ident(1), rcs(1), rcsdiff(1), rcsintro(1), rcsmerge(1), rcsfile(5)

“RCS-A System for Version Control” by Walter F. Tichy, Software-Practice & Experience 15, 7 (July 1985), pages 637–654.

BUGS
The separator for revision ranges in the -r option used to be - instead of :, but this leads to confusion when symbolic names
contain -. For backwards compatibility, rlog -r still supports the old - separator, but it warns about this obsolete use.

GNU, 16 June 1995

rlogin
rlogin—Remote login

SYNOPSIS
rlogin [-8EKLdx] [-e char] [-k realm] [-l username] host

DESCRIPTION
rlogin starts a terminal session on a remote host host.

rlogin first attempts to use the Kerberos authorization mechanism, described in the following subsection. If the remote host
does not support Kerberos, the standard Berkeley authorization mechanism is used. The options are as follows:

-8 The -8 option allows an eight-bit input data path at all times; otherwise, parity bits are stripped except when the
remote side’s stop and start characters are other than ˆS/ˆQ.

-E The -E option stops any character from being recognized as an escape character. When used with the -8 option,
this provides a completely transparent connection.

-K The -K option turns off all Kerberos authentication.

-L The -L option allows the rlogin session to be run in litout mode.(See tty(4) for details).

-d The -d option turns on socket debugging (see the setsockopt(2) man page) on the TCP sockets used for
communication with the remote host.

-e The -e option allows user specification of the escape character, which is the tilde (˜) by default. This specification
may be as a literal character, or as an octal value in the form nnnn.

-k The -k option requests rlogin to obtain tickets for the remote host in realm realm instead of the remote host’s
realm as determined by krb_realmofhost(3).

-x The -x option turns on DES encryption for all data passed via the rlogin session. This may impact response time
and CPU utilization, but provides increased security.

A line of the form <escape char> disconnects from the remote host. Similarly, the line <escape char>ˆZ will suspend the
rlogin session, and <escape char><delayed-suspend char> suspends the send portion of the rlogin, but allows output
from the remote system. By default, the tilde (˜) character is the escape character, and normally control -Y (ˆY) is the
delayed-suspend character.

All echoing takes place at the remote site, so that (except for delays) the rlogin is transparent. Flow control via ˆS/ˆQ and
flushing of input and output on interrupts is handled properly.

461

KERBEROS AUTHENTICATION
Each user may have a private authorization list in the file in his or her home directory. Each line in this file should contain a
Kerberos principal name of the form principal.instance (@realm). If the originating user is authenticated to one of the
principals named, access is granted to the account. The principal accountname.(@localrealm) is granted access if there is
no file. Otherwise, a login and password will be prompted for on the remote machine as in login(1). To avoid certain
security problems, the file must be owned by the remote user.

If Kerberos authentication fails, a warning message is printed and the standard Berkeley rlogin is used instead.

ENVIRONMENT
The following environment variable is utilized by rlogin:

TERM Determines the user’s terminal type

SEE ALSO
rsh(1), kerberos(3), krb_sendauth(3), krb_realmofhost(3)

HISTORY
The rlogin command appeared in BSD 4.2.

BUGS
rlogin will be replaced by telnet(1) in the near future.

More of the environment should be propagated.

BSD 4.2, 27 July 1991

rm
rm—Remove files

SYNOPSIS
rm [-dfirvR] [--directory] [--force] [--interactive] [--recursive]
[--help] [--version] [--verbose] name...

DESCRIPTION
This manual page documents the GNU version of rm. rm removes each specified file. By default, it does not remove directories.
If a file is unwritable, the standard input is a tty, and the -f or --force option is not given, rm prompts the user for whether
to remove the file. If the response does not begin with y or Y, the file is skipped.

GNU rm, like every program that uses the getopt function to parse its arguments, lets you use the -- option to indicate that
all following arguments are nonoptions. To remove a file called -f in the current directory, you could type either

rm -- -f

or

rm ./-f

The UNIX rm program’s use of a single - for this purpose predates the development of the getopt standard syntax.

OPTIONS
-d, --directory Remove directories with unlink instead of rmdir, and don’t require a directory to be empty before

trying to unlink it. Only works for the superuser. Because unlinking a directory causes any files in
the deleted directory to become unreferenced, it is wise to fsck the filesystem after doing this.

rm

Part I: User Commands462

-f, --force Ignore nonexistent files and never prompt the user.

-i, --interactive Prompt whether to remove each file. If the response does not begin with y or Y, the file is skipped.

-r, -R, --recursive Remove the contents of directories recursively.

-v, --verbose Print the name of each file before removing it.

--help Print a usage message on standard output and exit successfully.

--version Print version information on standard output, then exit successfully.

GNU File Utilities

rmdir
rmdir—Remove empty directories

SYNOPSIS
rmdir [-p] [--parents] [--help] [--version] dir...

DESCRIPTION
This manual page documents the GNU version of rmdir. rmdir removes each given empty directory. If any nonoption
argument does not refer to an existing empty directory, it is an error.

OPTIONS
-p, --parents Remove any parent directories that are explicitly mentioned in an argument, if they become empty

after the argument file is removed.

--help Print a usage message on standard output and exit successfully.

--version Print version information on standard output, then exit successfully.

GNU File Utilities

rmmod
rmmod—Unload loadable modules

SYNOPSIS
rmmod [-r] module ...

DESCRIPTION
rmmod unloads loadable modules from the kernel.

rmmod tries to unload a set of modules from the kernel, with the restriction that they are not in use and that they are not
referred to by other modules.

If more than one module is named on the command line, the modules will be removed in the given order. This supports
unloading of stacked modules.

With the option -r, a recursive removal of modules will be attempted. This means that if a top module in a stack is named
on the command line, all modules that are used by this module will be removed as well, if possible.

SEE ALSO
insmod(1), lsmod(1), ksyms(1), modules(2)

463

HISTORY
The module support was first conceived by Anonymous (as far as I know…). Linux version by Bas Laarhoven
(bas@vimec.nl), 0.99.14 version by Jon Tombs (jon@gtex02.us.es), extended by Bjorn Ekwall (bj0rn@blox.se).

BUGS
rmmod might have some, but they are well hidden.

Linux, 14 May 1995

rnews
rnews—Receive news from a UUCP connection

SYNOPSIS
rnews [-h host][-v][-U][-S master][input]

DESCRIPTION
rnews reads messages sent by a downstream uucp newsfeed and sends them to the local InterNetNews server. The message is
read from the specified input file, or standard input if no input is named.

If the -S flag is used, then rnews will connect to the specified host. If the flag is not used, it will try to connect to the server
by opening a UNIX-domain stream connection. If that fails, it will try to open a TCP connection to the default remote
server.

If the server is not available, the message is spooled into a new file created in the /var/spool/rnews directory. The -U flag
may be used to send all spooled messages to the server when it becomes available again, and can be invoked regularly by
cron(8).

When sent over uucp, Usenet articles are typically joined in a single batch to reduce the uucp overhead. Batches can also be
compressed, to reduce the communication time. If a message does not start with a number sign (#) and an exclamation
point, then the entire input is taken as a single news article. If it does start with those two characters, then the first line is read
and interpreted as a batch command.

If the command is #! rnews nnn, where nnn is a number, then the next nnn bytes (starting with the next line) are read as a
news article.

If the command is #! cunbatch, then the rest of input is fed to the compress(1) program with the -d flag to uncompress it,
and the output of this pipe is read as input from rnews. This is for historical compatibility—there is no program named
cunbatch. A compressed batch will start with a #! cunbatch line, then contain a series of articles separated by #! rnews nnn
lines.

If the command is any other word, then rnews will try to execute a program with that name in the directory /news/bin/
rnews. The batch will be fed into the program’s standard input, and the standard output will be read back as input into
rnews.

If rnews detects any problems with an article, such as a missing header or an unintelligible reply from the server, it will save a
copy of the article in the /var/spool/rnews/bad directory. If the -v flag is used, it will print a notice of all such errors on the
standard error, naming the input file (if known) and printing the first few characters of the input. Errors are always logged
through syslog(3).

If the -h flag is given, or failing that, the environment variable UU_MACHINE is set, then rnews will log the Message-ID and
host for each article offered to the server via syslog(3). Logging will only be done if the value is not an empty string.

BUGS
rnews cannot process articles that have embedded \0s in them.

rnews

Part I: User Commands464

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
innd(8).

rpcgen
rpcgen—An RPC protocol compiler

SYNOPSIS
rpcgen infile
rpcgen [-D name[= value]] [-T] [-K secs] infile
rpcgen -c|-h|-l|-m|-t [-o outfile] infile
rpcgen [-I] -s nettype [-o outfile] infile
rpcgen -n netid [-o outfile] infile

DESCRIPTION
rpcgen is a tool that generates C code to implement an RPC protocol. The input to rpcgen is a language similar to C known
as RPC language (Remote Procedure Call Language). rpcgen is normally used as in the first synopsis where it takes an input
file and generates up to four output files. If the infile is named proto.x, then rpcgen will generate a header file in proto.h,
xdr routines in proto_xdr.c, server-side stubs in proto_svc.c, and client-side stubs in proto_clnt.c.

With the -T option, it will also generate the RPC dispatch table in proto_tbl.i. With the -Sc option, it will also generate
sample code that would illustrate how to use the remote procedures on the client side. This code would be created in
proto_client.c. With the -Ss option, it will also generate a sample server code that would illustrate how to write the
remote procedures. This code would be created in proto_server.c. The server created can be started both by the port
monitors (for example, inetd or listen) or by itself. When it is started by a port monitor, it creates servers only for the
transport for which the file descriptor 0 was passed. The name of the transport must be specified by setting up the environ-
mental variable PM_TRANSPORT.

When the server generated by rpcgen is executed, it creates server handles for all the transports specified in NETPATH
environment variable, or if it is unset, it creates server handles for all the visible transports from /etc/netconfig file. Note:
the transports are chosen at runtime and not at compile time. When the server is self-started, it backgrounds itself by default.
A special define symbol RPC_SVC_FG can be used to run the server process in the foreground. The second synopsis provides
special features that allow for the creation of more sophisticated RPC servers. These features include support for user-
provided #defines and RPC dispatch tables. The entries in the RPC dispatch table contain

■ Pointers to the service routine corresponding to that procedure
■ A pointer to the input and output arguments
■ The size of these routines

A server can use the dispatch table to check authorization and then to execute the service routine; a client library may use it
to deal with the details of storage management and xdr data conversion. The other three synopses shown in the preceding
paragraph are used when one does not want to generate all the output files, but only a particular one. (Some examples of
their usage is described in the “Example” subsection.) When rpcgen is executed with the -s option, it creates servers for that
particular class of transports. When executed with the -n option, it creates a server for the transport specified by netid. If
infile is not specified, rpcgen accepts the standard input. The C preprocessor, cc -E (see cc(1) for details), is run on the
input file before it is actually interpreted by rpcgen. For each type of output file, rpcgen defines a special preprocessor
symbol for use by the rpcgen programmer, as follows:

465

RPC_HDR Defined when compiling into header files

RPC_XDR Defined when compiling into XDR routines

RPC_SVC Defined when compiling into server-side stubs

RPC_CLNT Defined when compiling into client-side stubs

RPC_TBL Defined when compiling into RPC dispatch tables Any line beginning with % is passed directly into the
output file, uninterpreted by rpcgen. For every data type referred to in infile, rpcgen assumes that there
exists a routine with the string xdr prepended to the name of the data type. If this routine does not exist in
the RPC/XDR library, it must be provided. Providing an undefined data type allows customization of
XDR routines. The following options are available:

-a Generate all the files including sample code for client and server side.

-b This generates code for the SunOS4.1 style of rpc. It is for backwards compatibility.
This is the default.

-5 This generates code for the SysVr4 style of rpc. It is used by the Transport
Independent RPC that is in Svr4 systems. By default, rpcgen generates code for
SunOS4.1 type of rpc.

-c Compile into XDR routines.

-C Generate code in ANSI C. This option also generates code that could be compiled
with the C++ compiler. This is the default.

-k Generate code in K&R C. The default is ANSI C.

-Dname[=value] Define a symbol name. Equivalent to the #define directive in the source. If no value
is given, value is defined as 1. This option may be specified more than once.

-h Compile into C data-definitions (a header file). -T option can be used in conjunc-
tion to produce a header file that supports RPC dispatch tables.

-I Generate a service that can be started from inetd. The default is to generate a static
service that handles transports selected with -s. Using -I allows starting a service by
either method.

-K secs By default, services created using rpcgen wait 120 seconds after servicing a request
before exiting. That interval can be changed using the -K flag. To create a server that
exits immediately upon servicing a request, -K 0 can be used. To create a server that
never exits, the appropriate argument is -K -1.

When monitoring for a server, some port monitors, such as listen(1M), always
spawn a new process in response to a service request. If it is known that a server will
be used with such a monitor, the server should exit immediately on completion. For
such servers, rpcgen should be used with -K -1.

-l Compile into client-side stubs.

-m Compile into server-side stubs, but do not generate a main routine. This option is
useful for doing callback-routines and for users who need to write their own main
routine to do initialization.

-n netid Compile into server-side stubs for the transport specified by netid. There should be
an entry for netid in the netconfig database. This option may be specified more
than once, so as to compile a server that serves multiple transports.

-N Use the newstyle of rpcgen. This allows procedures to have multiple arguments. It
also uses the style of parameter passing that closely resembles C. So, when passing an
argument to a remote procedure, you do not have to pass a pointer to the argument
but the argument itself. This behavior is different from the old style of rpcgen-
generated code. The new style is not the default case because of backwards
compatibility.

-o outfile Specify the name of the output file. If none is specified, standard output is used (-c,
-h, -l, -m, -n, -s, -sc, -ss, and -t modes only).

rpcgen

Part I: User Commands466

-s nettype Compile into server-side stubs for all the transports belonging to the class nettype.
The supported classes are netpath, visible, circuit_n, circuit_v, datagram_n,
datagram_v, tcp, and udp. See rpc(3N) for the meanings associated with these
classes. This option may be specified more than once. Note: The transports are
chosen at runtime and not at compile time.

-Sc Generate sample code to show the use of remote procedure and how to bind to the
server before calling the client-side stubs generated by rpcgen.

-Ss Generate skeleton code for the remote procedures on the server side. You would
need to fill in the actual code for the remote procedures.

-t Compile into RPC dispatch table.

-T Generate the code to support RPC dispatch tables. The options -c, -h, -l, -m, u,
and -t are used exclusively to generate a particular type of file, while the options -D
and -T are global and can be used with the other options.

NOTES
The RPC language does not support nesting of structures. As a workaround, structures can be declared at the top level, and
their name used inside other structures in order to achieve the same effect. Name clashes can occur when using program
definitions because the apparent scoping does not really apply. Most of these can be avoided by giving unique names for
programs, versions, procedures, and types. The server code generated with the -n option refers to the transport indicated by
netid and hence is very site-specific.

EXAMPLE
The following example:

$ rpcgen -T prot.x

generates five files: prot.h, prot_clnt.c, prot_svc.c, prot_xdr.c, and prot_tbl.i.

This example:

$ rpcgen -h prot.x

sends the C data-definitions (header file) to the standard output.

To send the test version of the -DTEST, server-side stubs for all the transport belonging to the class datagram_n to standard
output, use

$ rpcgen -s datagram_n -DTEST prot.x

To create the server-side stubs for the transport indicated by netid tcp, use

$ rpcgen -n tcp -o prot_svc.c prot.x

SEE ALSO
cc(1).

rsh
rsh—Remote shell

SYNOPSIS
rsh [-Kdnx] [-k realm] [-l username] host command

DESCRIPTION
rsh executes command on host.

467

rsh copies its standard input to the remote command, the standard output of the remote command to its standard output,
and the standard error of the remote command to its standard error. Interrupt, quit, and terminate signals are propagated to
the remote command; rsh normally terminates when the remote command does. The options are as follows:

-K Turns off all Kerberos authentication.

-d Using setsockopt(2), turns on socket debugging on the TCP sockets used for communication with the remote
host.

-k Causes rsh to obtain tickets for the remote host in realm instead of the remote host’s realm as determined by
krb_realmofhost(3).

-l By default, the remote username is the same as the local username. The -l option allows the remote name to be
specified. Kerberos authentication is used, and authorization is determined as in rlogin(1).

-n The -n option redirects input from the special device. (See the “Bugs” section of this manual page.)

-x The -x option turns on DES encryption for all data exchange. This may introduce a significant delay in response
time.

If no command is specified, you will be logged in on the remote host using rlogin(1).

Shell metacharacters that are not quoted are interpreted on local machine, while quoted metacharacters are interpreted on
the remote machine. For example, the command:

rsh otherhost cat remotefile >> localfile

appends the remote file remotefile to the local file localfile, while

rsh otherhost cat remotefile >> other remotefile

appends remotefile to other remotefile.

FILES
/etc/hosts

SEE ALSO
rlogin(1), kerberos(3), krb sendauth(3), krb_realmofhost(3)

HISTORY
The rsh command appeared in BSD 4.2.

BUGS
If you are using csh(1) and put a rsh in the background without redirecting its input away from the terminal, it will block
even if no reads are posted by the remote command. If no input is desired you should redirect the input of rsh to using the
-n option.

You cannot run an interactive command (rogue(6) or vi(1), for example) using rsh; use rlogin(1) instead.

Stop signals stop the local rsh process only; this is arguably wrong, but currently hard to fix for reasons too complicated to
explain here.

BSD 4.2, 24 July 1991

rstart
rstart—A sample implementation of a Remote Start client

SYNOPSIS
rstart [-c context] [-g] [-l username] [-v] hostname command args ...

rstart

Part I: User Commands468

DESCRIPTION
rstart is a simple implementation of a Remote Start client as defined in “A Flexible Remote Execution Protocol Based on
rsh.” It uses rsh as its underlying remote execution mechanism.

OPTIONS
-c context This option specifies the context in which the command is to be run. A context specifies a general

environment the program is to be run in. The details of this environment are host-specific; the intent is
that the client need not know how the environment must be configured. If omitted, the context defaults to
X. This should be suitable for running X programs from the host’s “usual” X installation.

-g Interprets command as a generic command, as discussed in the protocol document. This is intended to allow
common applications to be invoked without knowing what they are called on the remote system.
Currently, the only generic commands defined are Terminal, LoadMonitor, ListContexts,and
ListGenericCommands.

-l username This option is passed to the underlying rsh; it requests that the command be run as the specified user.

-v This option requests that rstart be verbose in its operation. Without this option, rstart discards output
from the remote’s rstart helper, and directs the rstart helper to detach the program from the rsh
connection used to start it. With this option, responses from the helper are displayed and the resulting
program is not detached from the connection.

NOTES
This is a trivial implementation. Far more sophisticated implementations are possible and should be developed.

Error-handling is nonexistent. Without -v, error reports from the remote are discarded silently. With -v, error reports are
displayed.

The $DISPLAY environment variable is passed. If it starts with a colon, the local hostname is prepended. The local domain
name should be appended to unqualified hostnames, but isn’t.

The $SESSION_MANAGER environment variable should be passed, but isn’t.

X11 authority information is passed for the current display.

ICE authority information should be passed, but isn’t. It isn’t completely clear how rstart should select what ICE authority
information to pass.

Even without -v, the sample rstart helper will leave a shell waiting for the program to complete. This causes no real harm
and consumes relatively few resources, but if it is undesirable it can be avoided by explicitly specifying the exec command to
the shell, for example, 0 rstart somehost exec xterm.

This is obviously dependent on the command interpreter being used on the remote system; the example given will work for
the Bourne and C shells.

SEE ALSO
rstartd(1), rsh(1), “A Flexible Remote Execution Protocol Based on rsh”

AUTHOR
Jordan Brown, Quarterdeck Office Systems

X Version 11 Release 6

rstartd
rstartd—A sample implementation of a Remote Start rsh helper

469

SYNOPSIS
rstartd

rstartd.real [-c configfilename]

DESCRIPTION
rstartd is an implementation of a Remote Start “helper” as defined in “A Flexible Remote Execution Protocol Based
on rsh.”

This document describes the peculiarities of rstartd and how it is configured.

OPTIONS
-c configfilename This option specifies the global configuration file that rstartd is to read. Normally, rstartd is a

shell script that invokes rstartd.real with the -c switch, allowing local configuration of the
location of the configuration file. If rstartd.real is started without the -c option, it reads
<XRoot>/lib/X11/rstart/config, where <XRoot> refers to the root of the X11 install tree.

INSTALLATION
It is critical to successful interoperation of the Remote Start protocol that rstartd be installed in a directory that is in the
default search path, so that default rsh requests and the ilk will be able to find it.

CONFIGURATION AND OPERATION
rstartd is by design highly configurable. One would like things like configuration file locations to be fixed, so that users and
administrators can find them without searching, but reality is that no two vendors will agree on where things should go, and
nobody thinks the original location is “right.” Thus, rstartd allows the relocation of all of its files and directories.

rstartd has a hierarchy of configuration files that are executed in order when a request is made. They are global config, per-
user (“local”) config, global per-context config, per-user (“local”) per-context config, config from request.

As you might guess from the presence of config from request, all of the config files are in the format of an rstart request.
rstartd defines a few additional keywords with the INTERNAL- prefix for specifying its configuration.

rstartd starts by reading and executing the global config file. This file will normally specify the locations of the other
configuration files and any system-wide defaults.

rstartd will then read the user’s local config file, default name $HOME/.rstart.

rstartd will then start interpreting the request.

Presumably, one of the first lines in the request will be a CONTEXT line. The context name is converted to lowercase.

rstartd will read the global config file for that context, default name <XRoot>/lib/X11/rstart/contexts/<name>, if any.

It will then read the user’s config file for that context, default name $HOME/.rstart.contexts/<name>, if any.

(If neither of these exists, rstartd aborts with a Failure message.)

rstartd will finish interpreting the request, and execute the program specified. This allows the system administrator and the
user a large degree of control over the operation of rstartd. The administrator has final say, because the global config file
doesn’t need to specify a per-user config file. If it does, however, the user can override anything from the global file, and can
even completely replace the global context config files.

The config files have a somewhat more flexible format than requests do; they are allowed to contain blank lines and lines
beginning with # are comments and ignored. (#s in the middle of lines are data, not comment markers.)

rstartd

Part I: User Commands470

Any commands run are provided a few useful pieces of information in environment variables. The exact names are
configurable, but the supplied defaults are

$RSTART_CONTEXT The name of the context

$RSTART_GLOBAL_CONTEXTS The global contexts directory

$RSTART_LOCAL_CONTEXTS The local contexts directory

$RSTART_GLOBAL_COMMANDS The global generic commands directory

$RSTART_LOCAL_COMMANDS The local generic commands directory

$RSTART_{GLOBAL,LOCAL}_CONTEXTS should contain one special file, @List, which contains a list of the contexts in that
directory in the format specified for ListContexts. The supplied version of ListContexts will cat both the global and local
copies of @List.

Generic commands are searched for in several places: (defaults)

Per-user per-context directory $HOME/.rstart.commands/<context>

Global per-context directory <XRoot>/lib/X11/rstart/commands/<context>

Per-user all-contexts directory $HOME/.rstart.commands

Global all-contexts directory (<XRoot>/lib/X11/rstart/commands)

(Yes, this means you can’t have an all-contexts generic command with the same name as a context. It didn’t seem like a big
deal.)

Each of these directories should have a file called @List that gives the names and descriptions of the commands in that
directory in the format specified for ListGenericCommands.

CONFIGURATION KEYWORDS
There are several special rstart keywords defined for rstartd configuration. Unless otherwise specified, there are no
defaults; related features are disabled in this case.

Internal-Registries name...—Gives a space-separated list of MISC registries that this system understands. (Registries
other than these are accepted but generate a warning.)

Internal-Local-Default relative_filename—Gives the name ($HOME relative) of the per-user config file.

INTERNAL-GLOBAL-CONTEXTS absolute_directory_name—Gives the name of the system-wide contexts directory.

INTERNAL-LOCAL-CONTEXTS relative_directory_name—Gives the name ($HOME relative) of the per-user contexts directory.

INTERNAL-GLOBAL-COMMANDS absolute_directory_name—Gives the name of the system-wide generic commands directory.

INTERNAL-LOCAL-COMMANDS relative_directory_name—Gives the name ($HOME relative) of the per-user generic com-
mands directory.

INTERNAL-VARIABLE-PREFIX prefix—Gives the prefix for the configuration environment variables rstartd passes to its
kids.

INTERNAL-AUTH-PROGRAM authscheme program argv[0] argv[1]...—Specifies the program to run to set up authentica-
tion for the specified authentication scheme. program argv[0] ... gives the program to run and its arguments, in the same
form as the EXEC keyword.

INTERNAL-AUTH-INPUT authscheme—Specifies the data to be given to the authorization program as its standard input. Each
argument is passed as a single line. $n, where n is a number, is replaced by the nth argument to the AUTH authscheme arg1
arg2 ... line.

INTERNAL-PRINT arbitrary text—Prints its arguments as a Debug message. Mostly for rstartd debugging, but could be
used to debug config files.

471

NOTES
When using the C shell, or any other shell that runs a script every time the shell is started, the script may be run several
times. In the worst case, the script may be run three times: By rsh, to run rstartd; by rstartd, to run the specified
command; by the command, such as xterm.

rstartd currently limits lines, both from config files and requests, to BUFSIZ bytes.

DETACH is implemented by redirecting file descriptors 0, 1, and 2 to /dev/null and forking before executing the program.

CMD is implemented by invoking $SHELL (default /bin/sh) with -c and the specified command as arguments.

POSIX-UMASK is implemented in the obvious way.

The authorization programs are run in the same context as the target program—same environment variables, path, and so
on. Long term, this might be a problem.

In the X context, GENERIC-CMD Terminal runs xterm. In the OpenWindows context, GENERIC-CMD Terminal runs cmdtool.

In the X context, GENERIC-CMD LoadMonitor runs xload. In the OpenWindows context, GENERIC-CMD LoadMonitor runs
perfmeter.

GENERIC-CMD ListContexts lists the contents of @List in both the system-wide and per-user contexts directories. It is
available in all contexts.

GENERIC-CMD ListGenericCommands lists the contents of @List in the system-wide and per-user commands directories,
including the per-context subdirectories for the current context. It is available in all contexts.

CONTEXT None is not implemented.

CONTEXT Default is really dull.

For installation ease, the contexts directory in the distribution contains a file @Aliases, which lists a context name and
aliases for that context. This file is used to make symlinks in the contexts and commands directories.

All MISC values are passed unmodified as environment variables.

You can mistreat rstartd in any number of ways, resulting in anything from stupid behavior to core dumps. Other than by
explicitly running programs, I don’t think it can write or delete any files, but there’s no guarantee of that. The important
thing is that (a) it probably won’t do anything REALLY stupid and (b) it runs with the user’s permissions, so it can’t do
anything catastrophic.

@List files need not be complete; contexts or commands that are dull or which need not or should not be advertised need
not be listed. In particular, per-user @List files should not list things that are in the system-wide @List files. In the future,
perhaps ListContexts and ListGenericCommands will automatically suppress lines from the system-wide files when there are
per-user replacements for those lines.

Error-handling is OK to weak. In particular, no attempt is made to properly report errors on the exec itself. (Perversely, exec
errors could be reliably reported when detaching, but not when passing the stdin/out socket to the app.)

If compiled with -DODT1_DISPLAY_HACK, rstartd will work around a bug in SCO ODT version 1. (1.1?) (The bug is that the X
clients are all compiled with a bad library that doesn’t know how to look hostnames up using DNS. The fix is to look up a
hostname in $DISPLAY and substitute an IP address.) This is a trivial example of an incompatibility that rstart can hide.

SEE ALSO
rstart(1), rsh(1), “A Flexible Remote Execution Protocol Based on rsh”

AUTHOR
Jordan Brown, Quarterdeck Office Systems

X Version 11 Release 6

rstartd

Part I: User Commands472

rup
rup—Remote status display

SYNOPSIS
rup [-dhlt] [host ...]

DESCRIPTION
rup displays a summary of the current system status of a particular host or all hosts on the local network. The output shows
the current time of day, how long the system has been up, and the load averages. The load average numbers give the number
of jobs in the run queue averaged over 1, 5 and 15 minutes.

The following options are available:

-d For each host, report what its local time is. This is useful for checking time synchronization on a network.

-h Sort the display alphabetically by hostname.

-l Sort the display by load average.

-t Sort the display by up time.

The rpc.rstatd(8) daemon must be running on the remote host for this command to work. rup uses an RPC protocol
defined in /usr/include/rpcsvc/rstat.x.

EXAMPLE
example% rup otherhost
otherhost up 6 days, 16:45, load average: 0.20, 0.23, 0.18
example%

DIAGNOSTICS
rup: RPC: Program not registered—The rpc.rstatd(8) daemon has not been started on the remote host.

rup: RPC: Timed out—A communication error occurred. Either the network is excessively congested, or the
rpc.rstatd(8) daemon has terminated on the remote host.

rup: RPC: Port mapper failure - RPC: Timed out—The remote host is not running the portmapper (see portmap(8)
man page), and cannot accommodate any RPC-based services. The host may be down.

SEE ALSO
ruptime(1), portmap(8), rpc.rstatd(8)

HISTORY
The rup command appeared in SunOS.

BSD 4.3, 7 June 1993

rusers
rusers—Output who is logged in to machines on local network

SYNOPSIS
rusers [-al] [host ...]

DESCRIPTION
The rusers command produces output similar to who, but for the list of hosts or all machines on the local network. For each
host responding to the rusers query, the hostname with the names of the users currently logged on is printed on each line.

473

The rusers command will wait for one minute to catch late responders.

The following options are available:

-a Print all machines responding even if no one is currently logged in.

-l Print a long format listing. This includes the username, hostname, tty that the user is logged in to, the date and
time the user logged in, the amount of time since the user typed on the keyboard, and the remote host the user
logged in from (if applicable).

DIAGNOSTICS
rusers: RPC: Program not registered—The rpc.rusersd(8) daemon has not been started on the remote host.

rusers: RPC: Timed out—A communication error occurred. Either the network is excessively congested, or the
rpc.rusersd(8) daemon has terminated on the remote host.

rusers: RPC: Port mapper failure - RPC: Timed out—The remote host is not running the portmapper (see
portmap(8) for more information), and cannot accommodate any RPC-based services. The host may be down.

SEE ALSO
rwho(1), users(1), who(1), portmap(8), rpc.rusersd(8)

HISTORY
The rusers command appeared in SunOS.

BUGS
The sorting options are not implemented.

BSD 4.2, 23 April 1991

rwall
rwall—Send a message to users logged on a host

SYNOPSIS
rwall host

DESCRIPTION
The rwall command sends a message to the users logged in to the specified host. The message to be sent can be typed in and
terminated with EOF or it can be in a file.

DIAGNOSTICS
rwall: RPC: Program not registered—The rpc.rwalld(8) daemon has not been started on the remote host.

rwall: RPC: Timed out—A communication error occurred. Either the network is excessively congested, or the
rpc.rwalld(8) daemon has terminated on the remote host.

rwall: RPC: Port mapper failure - RPC: Timed out—The remote host is not running the portmapper, and cannot
accommodate any RPC-based services. The host may be down.

SEE ALSO
wall(1), portmap(8), rpc.rwalld(8)

HISTORY
The rwall command appeared in SunOS.

BSD 4.2, 23 April 1991

rwall

Part I: User Commands474

rwho
rwho—Output who is logged in on local machines

SYNOPSIS
rwho -a

DESCRIPTION
The rwho command produces output similar to who, but for all machines on the local network. If no report has been received
from a machine for 11 minutes, then rwho assumes the machine is down, and does not report users last known to be logged
in to that machine.

If a user hasn’t typed to the system for a minute or more, then rwho reports this idle time. If a user hasn’t typed to the system
for an hour or more, then the user will be omitted from the output of rwho unless the -a flag is given.

FILES
/var/rwho/whod.* Information about other machines

SEE ALSO
finger(1), rup(1), ruptime(1), rusers(1), who(1), rwhod(8)

HISTORY
The rwho command appeared in BSD 4.3.

BUGS
This is unwieldy when the number of machines on the local net is large.

BSD 4.2, 23 April 1991

script
script—Make typescript of terminal session

SYNOPSIS
script [-a] [file]

DESCRIPTION
script makes a typescript of everything printed on your terminal. It is useful for students who need a hardcopy record of an
interactive session as proof of an assignment, as the typescript file can be printed out later with lpr(1).

If the argument file is given, script saves all dialogue in file. If no filename is given, the typescript is saved in the file
typescript.

Option:

-a Append the output to file or typescript, retaining the prior contents

The script ends when the forked shell exits (a control-D to exit the Bourne shell, sh(1), and exit, logout, or control-d (if
ignoreeof is not set) for the C-shell, csh(1)).

Certain interactive commands, such as vi(1), create garbage in the typescript file. Script works best with commands that do
not manipulate the screen; the results are meant to emulate a hardcopy terminal.

475

ENVIRONMENT
The following environment variable is utilized by script:

SHELL If the variable SHELL exists, the shell forked by script will be that shell. If SHELL is not set, the Bourne shell is
assumed. (Most shells set this variable automatically.)

SEE ALSO
csh(1) (for the history mechanism)

HISTORY
The script command appeared in BSD 3.0.

BUGS
script places everything in the log file, including linefeeds and backspaces. This is not what the naive user expects.

BSD 4, 27 July 1991

sed
sed—Stream-oriented editor

SYNOPSIS
sed [-hnV][-e script][-f script-file][--help][--quiet][--silent]
[--version][--expression=script][--file=script-file][file ...]

DESCRIPTION
sed reads the specified files or the standard input if no files are specified, makes editing changes according to a list of
commands, and writes the results to the standard output.

OPTIONS
-h, --help Print a usage message on standard output and exit successfully.

-n, --quiet, --silent Suppress the default output. sed only displays lines explicitly specified for
output with the p command or the p flag of the s command. The default
behavior is to echo each line of input, after edits, to the standard output.

-V, --version Print the version number on the standard output and exit successfully.

-e script, --expression=script Append one or more commands specified in the string script to the list of
commands. If there is just one -e option and no -f options, the -e flag may
be omitted.

-f script-file, --file=script-file Append the editing commands from script-file to the list of commands.

Multiple -e and -f commands may be specified. Scripts are added to the list of commands to execute in the order specified,
regardless of their origin.

USAGE
OPERATION

sed operates as follows:

Each line of input, not including its terminating newline character, is successively copied into a pattern space (a
temporary buffer).

All editing commands whose addresses match that pattern space are sequentially applied to the pattern space.

sed

Part I: User Commands476

When reaching the end of the command list, the pattern space is written to the standard output (except under -n) with
an appended newline.

The pattern space is cleared and the process is repeated for each line in the input.

With sed, original input files remain unchanged because editing commands only modify a copy of the input.

Some sed commands use a hold space to save all or part of the pattern space for later retrieval.

COMMAND SYNTAX
A sed script consists of commands with the general form:

[address[,address]][!]command[arguments]

Typically, there is only one command per line, but commands may also be concatenated on a single line by semicolons.

Whitespace characters may be inserted before the first address and the command portions of the script command.

ADDRESSES
A sed command, as indicated, can specify zero, one, or two addresses. An address can be

A line number, represented in decimal. The internal line number count maintained by sed is cumulative across input
files and is not reset for each input file.

A pattern that is a regular expression, represented by ncpatternc, where c is any character except backslash (\) or
newline. In the address nxabcnxdefx, the second x stands for itself, so the regular expression is abcxdef. However, the
preferred (and equivalent) method to construct a regular expression is to enclose the pattern in slashes—/pattern/.
Additionally, \n can be used to match any newline in the pattern space, except for the final newline character.

A $ character that addresses the last line of input.

GNU sed also implements a new type of address. The address has form n˜m, which matches any line where the line
number modulo m is equal to n modulo m. If m is 0 or missing, then 1 is used in its place. This feature is not specified by
POSIX.

The following rules apply to addressed commands:

A command line with no address selects each input line.

A command line with one address selects any line matching the address. Several commands accept only one address: =, a,
i, r,and q.

A command line with two comma-separated addresses selects the first matching line and all following lines up to and
including the line matching the second address. If the second address starts before or is the same line as the first address,
then only the first line is selected.

An address followed by ! selects all lines that do not match the address.

REGULAR EXPRESSIONS
Regular expressions are patterns used in selecting text. For example, the sed command

/string/p

prints all lines containing string.

In addition to specifying string literals, regular expressions can represent classes of strings. Strings thus represented are said to
be matched by the corresponding regular expression. If it is possible for a regular expression to match several strings in a line,
then the leftmost longest match is the one selected.

The following symbols are used in constructing search patterns:

The null regular expression is equivalent to the last regular expression used.

c Any character c not listed here—including {, }, ,, <, >, |, and +—matches itself.

\c Any backslash-escaped character c, except for {, }, ,, <, >, |, and +, matches itself.

‘-1n’. Matches any single character except newline.

477

[char-class] Matches any single character, other than newline, in char-class.To include a] in char-
class, it must be the first character. A range of characters may be specified by separating the
end characters of the range with a -, for example, a-z specifies the lowercase characters. The
following literal expressions can also be used in char-class to specify sets of characters:

[:alnum:] [:cntrl:] [:lower:] [:space:]

[:alpha:] [:digit:] [:print:] [:upper:]

[:blank:] [:graph:] [:punct:] [:xdigit:]

If - appears as the first or last character of char-class, then it matches itself. All other
characters in char-class match themselves.

[ˆchar-class] Matches any single character, other than newline, not in char-class. char-class is defined
as in the preceding entry.

ˆ If ˆ is the first character of a regular expression, then it anchors the regular expression to the
beginning of a line. Otherwise, it matches itself.

$ If $ is the last character of a regular expression, it anchors the regular expression to the end
of a line. Otherwise, it matches itself.

\<, \> Anchors the single-character regular expression or subexpression immediately following it to
the beginning (\<) or ending (\>)of a word, that is, in ASCII, a maximal string of
alphanumeric characters, including the underscore (_).

\(re\) Defines a (possibly null) subexpression re. Subexpressions may be nested. A subsequent
back reference of the form ‘\n’, where n is a number in the range 1–9, expands to the text
matched by the nth subexpression. For example, the regular expression \(a.c\)\1 matches
the string ‘abcabc’, but not ‘abcadc’. Subexpressions are ordered relative to their left
delimiter.

* Matches the single-character regular expression or subexpression immediately preceding it
zero or more times. If * is the first character of a regular expression or subexpression, then it
matches itself. The * operator sometimes yields unexpected results. For example, the regular
expression b* matches the beginning of the string ‘abbb’ (as opposed to the substring
‘bbb’) because a null match is the only leftmost match.

\+ Matches the single character regular expression or subexpression immediately preceding it
one or more times.

\| Matches the regular expression or subexpression specified before or after it.

\{n,m\} or \{n,\} or \{n\} Matches the single-character regular expression or subexpression immediately preceding it at
least n and at most m times. If m is omitted, then it matches at least n times. If the comma is
also omitted, then it matches exactly n times.

(\group\) Matches the enclosed group of regular expressions.

The following characters only have special meaning when used in replacement patterns:

\ Escape the following character.

\n Matches the nth pattern previously saved by n(‘ and ‘n), where n is a number from 0 to 9.
Previously saved patterns are counted from the leftmost position on the line.

& Prints the entire search pattern when used in a replacement string.

COMMENTS
If the first nonwhite character in a line is a #), sed treats that line as a comment, and ignores it. If, however, the first such
line is of the form:

#n

sed runs as if the -n flag were specified.

sed

Part I: User Commands478

GROUPING COMMANDS
Braces ({, }) can be used to nest one address within another or to apply multiple commands to the same address:

[address][,address]{
command 1 command 2 ...
}

The opening { must end a line and the closing } must be on a line by itself.

COMMANDS
The maximum number of permissible addresses for each command is indicated in parentheses in the following list.

An argument denoted text consists of one or more lines of text. If text is longer than one line in length, then any newline
characters must be hidden by preceding them with a backslash (\).

An argument denoted read-filename or write-filename must terminate the command line and must be preceded by
exactly one space. Each write-filename is created before processing begins.

(0) An empty command is ignored.

(0) #comment The line is a comment and is ignored by sed. If, however, the first such line in a script is of
the form #n, then sed behaves as if the -n flag had been specified.

(0) : label Affix label to a line in the script for a transfer of control by b or t commands.

(1) = Write the current line number on the standard output as a line.

(1)a\text Append text following each line matched by the address on the standard output before
reading the next input line.

(2) b label Unconditionally transfer control to the : command bearing the label. If no label is
specified, then branch to the end of the script; no more commands are executed on the
current pattern space.

(2) c\text Change the pattern space by replacing the selected pattern with text. When multiple lines
are specified, all lines in the pattern space are replaced with a single copy of text. The end
result is that the pattern space is deleted and no further editing commands can be applied
to it.

(2) d Delete the pattern space, preventing the line from being passed to the standard output, and
start the next cycle.

(2) D Delete the initial segment of the pattern space through the first newline and start the next
cycle.

(2) g Replace the contents of the pattern space by the contents of the hold space.

(2) G Append a newline character followed by the contents of the hold space to the pattern space.

(2) h Replace the contents of the hold space by the contents of the pattern space.

(2) H Append a newline character followed by the contents of the pattern space to the hold space.

(1) i\text Insert text by writing it to the standard output.

(2) l Write the pattern space to standard output in a visually unambiguous form. Nonprinting
characters are displayed as either three-digit octal values, preceded by a \, or as one of the
following character constant escape sequences:

\\ Backslash

\a Alert

\b Backspace

\f Form-feed

\n Newline

\r Carriage-return

\t Tab

\v Vertical tab

479

Long lines are folded, with the point of folding indicated by a backslash (\) and a newline
character. The end of every line is marked with a $.

(2) n Copy the pattern space to the standard output. Replace the pattern space with the next line
of input.

(2) N Append the next line of input to the pattern space with an embedded newline. (The current
line number changes.)

(2) p Print the pattern space to the standard output.

(2) P Copy the initial segment of the pattern space through the first newline to the standard
output.

(1) q Quit by transferring control to the end of the script and do not start a new cycle. The
pattern space is still written to the standard output.

(2) r read-filename Read the contents of read-filename. Place them on the output before reading the next
input line.

(2) s/regularexpression/ Substitute the replacement string for instances of the regular expression in the pattern
replacement/flags space. Any character may be used instead of /. (For a fuller description, see the explanation

of replacement patterns in the “Regular Expressions” section of this manual page.) flags is
zero or more of:

n Substitute for just the nth occurrence of the regular expression.

g Globally substitute for all nonoverlapping instances of the regular expression
rather than just the first one.

p Print the pattern space if a replacement was made.

w write-filename Append the pattern space to write-filename if a replacement was made.

(2) t label Branch to the : command bearing the label if any substitutions have been made since the
most recent reading of an input line or execution of a t. If label is empty, branch to the
end of the script.

(2) w write-filename Append the pattern space to write-filename.

(2) x Exchange the contents of the pattern and hold spaces.

(2) y/string1/string2/ Replace all occurrences of characters in string1 with the corresponding character in
string2. The lengths of string1 and string2 must be equal. Any character other than ‘’
or newline can be used instead of slash to delimit the strings. Within string1 and string2,
the delimiter itself can be used as a literal character if it is preceded by a backslash.

DIAGNOSTICS
Command only uses one address—A command that takes one address had two addresses specified.

Command doesn’t take any addresses—A command that takes no addresses had an address specified.

Extra characters after command—A command had extra text after the end.

Unexpected End-of-file—The end of a script was reached before it should have been. This usually occurs when a
command is started, but not finished.

No previous regular expression—A metacharacter calling for a previous regular expression before any regular
expressions were used.

Missing command—An address was not followed by a command.

Unknown command—A command was not one of the ones recognized by sed.

Unexpected ‘,’—A command had a spurious comma after an address.

Multiple ‘!’s—More than one ! (exclamation point) was used in a command.

Unexpected g—A g character was given in a command without a preceding f.

Unexpected f—An f character was given in a command without a following g.

} doesn’t want any addresses—} should be alone on a line.

sed

Part I: User Commands480

: doesn’t want any addresses—The : command should not be preceded by an address.

Unterminated s command—The replacement field of the s command should be completed with a / character.

Multiple p options to s command —The p option was given more than once in an s command.

Multiple g options to s command—The g option was given more than once in an s command.

Multiple number options to s command—More than one number option was given to an s command.

Unknown option to s—An unknown option was used for the s command. Maybe you shouldn’t do that.

Strings for y command are different lengths—There should be a one-to-one mapping between strings for the y
command.

Missing ‘ ‘ before filename—There was no space between an r, w, or s///w command, and the filename specified for
that command.

Hopelessly evil compiled in limit on number of open file. re-compile sed.—An attempt was made to open
too many files, no matter how you look at it.

SEE ALSO
awk(1), ed(1), grep(1), perl(1), regex(3)

HISTORY
A sed command appeared in version 7 AT&T UNIX.

STANDARDS
GNU sed is expected to be a superset of the IEEE Std1003.2 (POSIX) specification.

CAVEATS
GNU sed uses the POSIX basic regular expression syntax. According to the standard, the meaning of some escape sequences
is undefined in this syntax; notably \| and \+.

As in all GNU programs that use POSIX basic regular expressions, sed interprets these escape sequences as metacharacters.
So, x\+ matches one or more occurrences of x. abc\|def matches either abc or def.

This syntax may cause problems when running scripts written for other versions of sed. Some sed programs have been
written with the assumption that \| and \+ match the literal characters | and +. Such scripts must be modified by removing
the spurious backslashes if they are to be used with GNU sed.

BUGS
It has long been noted that GNU sed is much slower than other implementations. The current bottleneck is the way sed
reads and writes data files. It should read large blocks at a time (or even map files, where that is supported). When possible, it
should avoid copying its input from one place in memory to another. Patches to make it do those things are welcome!

Version 2.05, December 1994

sessreg
sessreg—Manage utmp/wtmp entries for non-init clients

SYNOPSIS
sessreg [-w wtmp-file] [-u utmp-file] [-l line-name] [-h host-name]
[-s slot-number] [-x Xservers-file] [-t ttys-file] [-a] [-d] user-name

DESCRIPTION
sessreg is a simple program for managing utmp/wtmp entries for xdm sessions.

481

System V has a better interface to /etc/utmp than BSD; it dynamically allocates entries in the file instead of writing them at
fixed positions indexed by position in /etc/ttys.

To manage BSD-style utmp files, sessreg has two strategies. In conjunction with xdm, the -x option counts the number of
lines in /etc/ttys and then adds to that the number of the line in the Xservers file that specifies the display. The display
name must be specified as the line-name using the -l option. This sum is used as the slot-number in /etc/utmp that this
entry will be written at. In the more general case, the -s option specifies the slot-number directly. If for some strange reason
your system uses a file other that /etc/ttys to manage init, the -t option can direct sessreg to look elsewhere for a count
of terminal sessions.

Conversely, System V managers will never need to use these options (-x, -s, and -t). To make the program easier to
document and explain, sessreg accepts the BSD-specific flags in the System V environment and ignores them.

BSD also has a host-name field in the utmp file that doesn’t exist in System V. This option is also ignored by the System V
version of sessreg.

USAGE
In Xstartup, place a call like:

sessreg -a -l $DISPLAY -x /usr/X11R6/lib/xdm/Xservers $USER

and in Xreset:

sessreg -d -l $DISPLAY -x /usr/X11R6/lib/xdm/Xservers $USER

OPTIONS
-w wtmp-file This specifies an alternate wtmp file, instead of /usr/adm/wtmp for BSD or /etc/wtmp for sysV. The

special name none disables writing records to /usr/adm/wtmp.

-u utmp-file This specifies an alternate utmp file, instead of /etc/utmp. The special name none disables writing
records to /etc/utmp.

-l line-name This describes the line name of the entry. For terminal sessions, this is the final pathname segment
of the terminal device filename (for example, ttyd0). For X sessions, it should probably be the local
display name given to the users session (for example, :0). If none is specified, the terminal name
will be determined with ttyname(3) and stripped of leading components.

-h host-name This is set for BSD hosts to indicate that the session was initiated from a remote host. In typical
xdm usage, this options is not used.

-s slot-number Each potential session has a unique slot number in BSD systems; most are identified by the
position of the line-name in the /etc/ttys file. This option overrides the default position
determined with ttys-lot(3). This option is inappropriate for use with xdm, the -x option is more
useful.

-x Xservers-file As X sessions are one-per-display, and each display is entered in this file, this options sets the slot-
number to be the number of lines in the ttys-file plus the index into this file that the line-name
is found.

-t ttys-file This specifies an alternate file that the -x option will use to count the number of terminal sessions
on a host.

-a This session should be added to utmp/wtmp.

-d This session should be deleted from utmp/wtmp. -a or -d must be specified.

SEE ALSO
xdm(1)

AUTHOR
Keith Packard, MIT X Consortium

X Version 11 Release 6

sessreg

Part I: User Commands482

setterm
setterm—Set terminal attributes

SYNOPSIS
setterm [-term terminal name]

setterm [-reset]

setterm [-initialize]

setterm [-cursor [on|off]]

setterm [-keyboard pc|olivetti|dutch|extended]

setterm [-repeat [on|off]]

setterm [-appcursorkeys [on|off]]

setterm [-linewrap [on|off]]

setterm [-snow [on|off]]

setterm [-softscroll [on|off]]

setterm [-defaults]

setterm [-foreground black|red|green|yellow|blue|magenta|cyan|white|default]

setterm [-background black|red|green|yellow|blue|magenta|cyan|white|default]

setterm [-ulcolor black|grey|red|green|yellow|blue|magenta|cyan|white]

setterm [-ulcolor bright red|green|yellow|blue|magenta|cyan|white]

setterm [-hbcolor black|grey|red|green|yellow|blue|magenta|cyan|white]

setterm [-hbcolor bright red|green|yellow|blue|magenta|cyan|white]

setterm [-inversescreen [on|off]]

setterm [-bold [on|off]]

setterm [-half-bright [on|off]]

setterm [-blink [on|off]]

setterm [-reverse [on|off]]

setterm [-underline [on|off]]

setterm [-store]

setterm [-clear [all|rest]]

setterm [-tabs [tab1 tab2 tab3 ...]] where (tabn = 1-160)

setterm [-clrtabs [tab1 tab2 tab3 ...] where (tabn = 1-160)

483

setterm [-regtabs [1-160]]

setterm [-blank [0-60]]

setterm [-dump [1-NR CONS]]

setterm [-append [1-NR CONS]]

setterm [-file dumpfilename]

setterm [-standout [attr]]

DESCRIPTION
setterm writes to standard output a character string that will invoke the specified terminal capabilities. Where possible, /
etc/termcap is consulted to find the string to use. Some options, however, do not correspond to a termcap(5) capability. In
this case, if the terminal type is minix-vc or minix-vcam, the string that invokes the specified capabilities on the PC Minix
virtual console driver is output. Options that are not implemented by the terminal are ignored.

OPTIONS
Most options are self-explanatory. The less obvious options are as follows:

-term Can be used to override the TERM environment variable

-reset Displays the terminal reset string, which typically resets the terminal to its power on state

-initialize Displays the terminal initialization string, which typically sets the terminal’s rendering options, and other
attributes to the default values

-default Sets the terminal’s rendering options to the default values

-store Stores the terminal’s current rendering options as the default values

Linux 0.98, 25 December 1992

SEE ALSO
tput(1), stty(1), termcap(5), tty(4)

BUGS
Differences between the Minix and Linux versions are not documented.

AUTHORS
Gordon Irlam (gordoni@cs.ua.oz.au); adaptation to Linux by Peter MacDonald; enhancements by Mika Liljeberg
(liljeber@cs.Helsinki.FI)

Linux 0.98, 25 December 1992

sgitopnm
sgitopnm—Convert an SGI image file to a portable anymap

SYNOPSIS
sgitopnm [-verbose][SGIfile]

DESCRIPTION
Reads an SGI image file as input. Produces a PGM image for a two-dimensional (one-channel) input file, and a PPM image
for a three-dimensional (three or more channels) input file.

sgitopnm

Part I: User Commands484

OPTIONS
-verbose Give some information about the SGI image file

BUGS
Probably

REFERENCES
SGI Image File Format documentation (draft v0.95) by Paul Haeberli (paul@sgi.com). Available via ftp at
sgi.com:graphics/SGIIMAGESPEC.

SEE ALSO
pnm(5), pnmtosgi(1)

AUTHOR
Copyright 1994 by Ingo Wilken (Ingo.Wilken@informatik.uni-oldenburg.de).

29 January 1994

shar
shar—Create shell archives

SYNOPSIS
shar [options] file ...
shar -S [options]

DESCRIPTION
shar creates shell archives (or shar files) that are in text format and can be mailed. These files may be unpacked later by
executing them with /bin/sh. The resulting archive is sent to standard out unless the -o option is given. A wide range of
features provide extensive flexibility in manufacturing shars and in specifying shar “smartness.” Archives may be “vanilla” or
comprehensive. This manual page reflects shar version 4.0.

OPTIONS
Options have a one-letter version starting with - or a long version starting with --. The exceptions are --help and --
version, which do not have short versions. Options can be given in any order. Some options depend on each other: The -o
option is required if the -l or -L option is used.

The -n option is required if the -a option is used.

See -V in the following list.

These are the available options:

--version Print the version number of the program on standard output, then immedi-
ately exit.

--help Print a help summary on standard output, then immediately exit.

-V, --vanilla-operation Produce vanilla shars that rely only upon the existence of sed and echo in
the unsharing environment. In addition, if test must also be supported if
the -X option is used. The -V silently disables options offensive to the
network cop (or brown shirt), but does warn you if it is specified with -B, -
z, -Z, -p, or -M (any of which does or might require uudecode, gzip or
compress in the unsharing environment).

485

-v, --no-verbose Verbose OFF. disables the inclusion of comments to be output when the
archive is unpacked.

-w, --no-character-count Do NOT check with wc -c after unpack. The default is to check.

-n name, --archive-name=name Name of archive to be included in the header of the shar files. (See the -a
switch.)

-a, --net-headers Allows automatic generation of headers:

Submitted by: who@where

Archive-name: <name>/part##

The <name> must be given with the -n switch. If name includes a /, then /
part isn’t used. Thus -n xyzzy produces the following:

xyzzy/part01

xyzzy/part02

-n xyzzy/patch produces the following:

xyzzy/patch01

xyzzy/patch02

-n xyzzy/patch01. produces the following:

xyzzy/patch01.01

xyzzy/patch01.02

The who@where can be explicitly stated with the -s switch if the default isn’t
appropriate. who@where is essentially built as ‘whoami’@’uname’.

-s who@where, --submitter=who@where Override automatically determined submitter name.

-x, --no-check-existing Overwrite existing files without checking. If neither -x nor -X is specified, the
unpack will check for and not overwrite existing files when unpacking the
archive (unless -c is passed as a parameter to the script when unpacking).

-X, --query-user Interactively overwrite existing files (Do not use for shars submitted to the
Net.)

-B, --uuencode Treat all files as binary; use uuencode prior to packing. This increases the size
of the archive. The recipient must have uudecode in order to unpack. (Use of
uuencode is not appreciated by many on the Net.)

-T, --text-files Treat all files as text (default).

-z, --gzip Use gzip and uuencode on all files prior to packing. The recipient must have
uudecode and gzip (used with -d) in order to unpack. (Use of uuencode and
gzip is not appreciated by many on the Net.)

-Z, --compress Use compress and uuencode on all files prior to packing. The recipient must
have uudecode and compress (used with -d) in order to unpack. (Use of
uuencode and compress is not appreciated by many on the Net.) Option -C
is synonymous to -Z, but is being depreciated.

-m, --no-timestamp Avoid generating touch commands to restore the file modification dates
when unpacking files from the archive.

-p, --intermix-type Allow positional parameter options. The options -B, -T, -z, and -Z may be
embedded, and files to the right of the option will be processed in the
specified mode.

-g X, --level-for-gzip=X When doing compression, use -X as a parameter to gzip. The -g option
turns on the -z option by default.

-b X, --bits-per-code=X When doing compression, use -bX as a parameter to compress. The -B option
turns on the -Z option by default.

shar

Part I: User Commands486

-M, --mixed-uuencode Mixed mode. Determine if the files are text or binary and archive correctly.
Files found to be binary are uudecoded prior to packing. (Use of uuencode is
not appreciated by many on the Net.)

-P, --no-piping Use temporary files instead of pipes in the shar file.

-c, --cut-mark Start the shar with a cut line. A line saying Cut here is placed at the start of
each output file.

-f, --basename Restore by filename only, rather than path. This option causes only filenames
to be used, which is useful when building a shar from several directories, or
another directory. Note that if a directory name is passed to shar, the
substructure of that directory will be restored whether -f is specified or not.

-d XXX, --here-delimiter=XXX Use XXX to delimit the files in the shar instead of SHAR_EOF. This is for those
who want to personalize their shar files.

-F, --force-prefix Forces the prefix character (normally X unless the parameter to the -d
option starts with X) to be prepended to every line even if not required. This
option may slightly increase the size of the archive, especially if -B or -Z is
used.

-o XXX --output-prefix=XXX Save the archive to files XXX.01 through XXX.nn instead of standard out.
Must be used when the -l or the -L switches are used.

-l XX --whole-size-limit=XX Limit the output file size to XXk bytes, but don’t split input files.

-L XX --split-size-limit=XX Limit output file size to XXk bytes and split files if necessary. The archives
created with this option must be unpacked in correct order.

-S --stdin-file-list Read list of files to be packed from the standard input rather than from the
command line. Input must be in a form similar to that generated by the
find command, one filename per line. This switch is especially useful when
the command line will not hold the list of files to be packed. For example:

find . -type f -print | sort | shar -S -Z -L50 -o /tmp/big

If -p is specified on the command line, then the options -B, -T, -z, and -Z
may be included in the standard input (on a line separate from filenames).
The maximum number of lines of standard input, filenames, and options
may not exceed 1024.

EXAMPLES
shar *.c > cprog.shar # all C prog sources
shar -v *.[ch] > cprog.shar # non-verbose, .c and .h files
shar -B -l28 -oarc.sh *.arc # all binary .arc files, into
files arc.sh.01 thru arc.sh.NN
shar -f /lcl/src/u*.c > u.sh # use only the filenames

WARNINGS
No chmod or touch is ever generated for directories created when unpacking. Thus, if a directory is given to shar, the
protection and modification dates of corresponding unpacked directory may not match those of the original.

If a directory is passed to shar, it may be scanned more than once. Therefore, one should be careful not to change the
directory while shar is running.

Be careful that the output file(s) are not included in the inputs or shar may loop until the disk fills up. Be particularly careful
when a directory is passed to shar that the output files are not in that directory (or a subdirectory of that directory).

Use of the -B, -z, or -Z, and especially -M, may slow the archive process considerably, depending on the number of files.

Use of -X produces shars that will cause problems with many unshar procedures. Use this feature only for archives to be
passed among agreeable parties. Certainly, -X is not for shell archives that are to be submitted to Usenet. Usage of -B, -z, or
-Z in Net shars will cause you to be flamed off the earth. Not using -m or not using -F may also get you occasional
complaints.

487

SEE ALSO
unshar(1)

DIAGNOSTICS
There are error messages for illegal or incompatible options; for nonregular, missing, or inaccessible files; or for (unlikely)
memory allocation failure.

AUTHORS
shar(3) is a derived work based on the efforts of the following: James Gosling at CMU (decvax!microsof!uw-beave!jim),
Michael A. Thompson, Dalhousie University, Halifax, N.S., Canada, Bill Davidsen (davidsen@sixhub), Richard H.
Gumpertz (rhg@CPS.COM), Colas Nahaboo (colas@avahi.inria.fr), Bill Aten (bill@netagw.com), Dennis Boylan
(dennis%nanovx@gatech.edu), Warren Tucker (wht%n4hgf@gatech.edu), and other anonymous persons. Jan Djfrv
(jhd@irfu.se) created the man pages.

27 September 1990

shlock
shlock—Create lock files for use in shell scripts

SYNOPSIS
shlock -p pid -f name [-b][-u][-c]

DESCRIPTION
shlock tries to create a lock file named name and write the process ID pid into it. If the file already exists, shlock will read
the process ID from the file and test to see if the process is currently running. If the process exists, then the file will not be
created.

shlock exits with a zero status if it was able to create the lock file, or non-zero if the file refers to the currently active process.

Process IDs are normally read and written in ASCII. If the -b flag is used, then they will be written as a binary int. For
compatibility with other systems, the -u flag is accepted as a synonym for -b because binary locks are used by many uucp
packages.

The following example shows how shlock would be used within a shell script:

LOCK=/news/lib/LOCK.send
trap ‘rm -f ${LOCK} ;exit1’ 1 2 3 15
if shlock -p $$ -f ${LOCK} ; then
Do appropriate work
else
echo Locked by ‘cat ${LOCK}’
fi

If the -c flag is used, then shlock will not create a lock file, but will instead use the file to see if the lock is held by another
program. If the lock is valid, the program will exit with a non-zero status; if the lock is not valid (that is, invoking shlock
without the flag would have succeeded), then the program will exit with a zero status.

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) after a description of HDB UUCP locking given by Peter Honeyman.

shlock

Part I: User Commands488

showrgb
showrgb—Uncompile an RGB colorname database

SYNOPSIS
showrgb [database]

DESCRIPTION
The showrgb program reads an RGB colorname database compiled for use with the dbm database routines and converts it
back to source form, printing the result to standard output. The default database is the one that X was built with, and may be
overridden on the command line. Specify the database name without the .pag or .dir suffix.

FILES
<XRoot>/lib/X11/rgb Default database

X Version 11 Release 6

shrinkfile
shrinkfile—Shrink a file on a line boundary

SYNOPSIS
shrinkfile [-s size][-v] file...

DESCRIPTION
The shrinkfile program shrinks files to a given size, preserving the data at the end of the file. Truncation is performed on
line boundaries, where a line is a series of bytes ending with a newline, \n. There is no line length restriction and files may
contain any binary data.

Temporary files are created in the /tmp directory. The TMPDIR environment variable may be used to specify a different
directory.

A newline will be added to any nonempty file that does not end with a newline. The maximum file size will not be exceeded
by this addition.

By default, files are truncated to zero bytes. The -s flag may be used to change the maximum size. Because the program
truncates only on line boundaries, the final size may be may be smaller then the specified maximum. The size parameter
may end with a k, m, or g, indicating kilobyte (1024), megabyte (1048576) or gigabyte (1073741824) lengths. Uppercase
letters are also allowed. The maximum file size is 2147483647 bytes.

If the -v flag is used, then shrinkfile will print a status line if a file was shrunk.

HISTORY
Written by Landon Curt Noll (chongo@toad.com) and Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

sirtopnm
sirtopnm—Convert a Solitaire file into a portable anymap

SYNOPSIS
sirtopnm [sirfile]

489

DESCRIPTION
Reads a Solitaire Image Recorder file as input. Produces a portable anymap as output. The type of the output file depends on
the input file; if it’s an MGI TYPE 17 file, a pgm file is written. If it’s an MGI TYPE 11 file, a ppm file is written. The
program tells you which type it is writing.

SEE ALSO
pnmtosir(1), pnm(5)

AUTHOR
Copyright 1991 by Marvin Landis.

20 March 1991

size
size—List section sizes and total size

SYNOPSIS
size [-A | -B | --format=compatibility][--help]
[-d | -o | -x | --radix=number]
[--target=bfdname][-V | --version] objfile ...

DESCRIPTION
The GNU size utility lists the section sizes and the total size for each of the object files objfile in its argument list. By
default, one line of output is generated for each object file or each module in an archive.

OPTIONS
-A, -B, --format compatibility Using one of these options, you can choose whether the output from GNU size

resembles output from System V size (using -A, or --format=sysv), or Berkeley
size (using -B or --format=berkeley). The default is the one-line format similar to
Berkeley’s.

--help Show a summary of acceptable arguments and options.

-d, -o, -x, --radix number Using one of these options, you can control whether the size of each section is given
in decimal (-d, or --radix 10); octal (-o, or --radix 8); or hexadecimal (-x, or
--radix 16). In --radix number, only the three values (8, 10, 16) are supported.
The total size is always given in two radices: decimal and hexadecimal for -d or -x
output, or octal and hexadecimal if you’re using -o.

--target bfdname You can specify a particular object-code format for objfile as bfdname . This may
not be necessary; size can automatically recognize many formats. (See objdump(1)
for information on listing available formats.)

-V, --version Display version number information on size itself.

SEE ALSO
binutils entry in info; The GNU Binary Utilities, Roland H. Pesch (October 1991); ar(1), objdump(1)

COPYING
Copyright 1991 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of this
manual, provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

size

Part I: User Commands490

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions
for modified versions, except that this permission notice may be included in translations approved by the Free Software
Foundation instead of in the original English.

Cygnus Support, 5 November 1991

sldtoppm
sldtoppm—Convert an AutoCAD slide file into a portable pixmap

SYNOPSIS
sldtoppm [-adjust][-dir][-height|-ysize s][-info][-lib|-Lib name][-scale s]
[-verbose][-width|-xsize s][slidefile]

DESCRIPTION
sldtoppm reads an AutoCAD slide file and outputs a portable pixmap. If no slidefile is specified, input is read from
standard input. The ppmdraw library is used to convert the vector and polygon information in the slide file to a pixmap; see
the file ppmdraw.h for details on this package.

OPTIONS
-adjust If the display on which the slide file was created had nonsquare pixels, when the slide is processed with

sldtoppm and the -adjust option is not present, the following warning will appear: Warning - pixels on
source screen were non-square.

Specifying -adjust will correct image width to compensate. Specifying the -adjust option causes
sldtoppm to scale the width of the image so that pixels in the resulting portable pixmap are square (and
hence circles appear as true circles, not ellipses). The scaling is performed in the vector domain, before
scan-converting the objects. The results are, therefore, superior in appearance to what you’d obtain were
you to perform the equivalent scaling with pnmscale after the bitmap had been created.

-dir The input is assumed to be an AutoCAD slide library file. A directory listing each slide in the library is
printed on standard error.

-height size Scales the image in the vector domain so it is size pixels in height. If no -width or -xsize option is
specified, the width will be adjusted to preserve the pixel aspect ratio.

-info Dump the slide file header on standard error, displaying the original screen size and aspect ratio among
other information.

-lib name Extracts the slide with the given name from the slide library given as input. The specified name is converted
to uppercase.

-Lib name Extracts the slide with the given name from the slide library given as input. The name is used exactly as
specified; it is not converted to uppercase.

-scale s Scales the image by factor s, which may be any floating-point value greater than zero. Scaling is done after
aspect ratio adjustment, if any. Because scaling is performed in the vector domain, before rasterization, the
results look much better than running the output of sldtoppm through pnmscale.

-verbose Dumps the slide file header and lists every vector and polygon in the file on standard error.

-width size Scales the image in the vector domain, so it is size pixels wide. If no -height or -ysize option is
specified, the height will be adjusted to preserve the pixel aspect ratio.

-xsize size Scales the image in the vector domain so it is size pixels wide. If no -height or -ysize option is specified,
the height will be adjusted to preserve the pixel aspect ratio.

-ysize size Scales the image in the vector domain so it is size pixels in height. If no -width or -xsize option is
specified, the width will be adjusted to preserve the pixel aspect ratio.

All flags can be abbreviated to their shortest unique prefix.

491

BUGS
Only Level 2 slides are converted. Level 1 format has been obsolete since the advent of AutoCAD Release 9 in 1987 and was
not portable across machine architectures.

Slide library items with names containing 8-bit (such as ISO) or 16-bit (Kanji, for example) characters may not be found
when chosen with the -lib option unless sldtoppm has been built with character set conversion functions appropriate to the
locale. You can always retrieve slides from libraries regardless of the character set by using the -Lib option and specifying the
precise name of library member. Use the -dir option to list the slides in a library if you’re unsure of the exact name.

SEE ALSO
AutoCAD Reference Manual: “Slide File Format”; pnmscale(1), ppm(5)

AUTHOR
John Walker
Autodesk SA
Avenue des Champs-Montants 14b
CH-2074 MARIN
Suisse/Schweiz/Svizzera/Svizra/Switzerland

Usenet: kelvin@Autodesk.com

Fax: 038/33 88 15

Voice: 038/33 76 33

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, without any conditions or restrictions. This software is provided “as is” without express or implied warranty.

AutoCAD and Autodesk are registered trademarks of Autodesk, Inc.

10 October 1991

smproxy
smproxy—Session Manager Proxy

SYNOPSIS
smproxy [-clientId id] [-restore saveFile]

OPTIONS
-clientId id Specifies the session ID used by smproxy in the previous session.

-restore saveFile Specifies the file used by smproxy to save state in the previous session.

DESCRIPTION
smproxy allows X applications that do not support X11R6 session management to participate in an X11R6 session.

In order for smproxy to act as a proxy for an X application, one of the following must be true:

■ The application maps a top-level window containing the WM_CLIENT_LEADER property. This property provides a pointer
to the client leader window that contains the WM_CLASS, WM_NAME, WM_COMMAND, and WM_CLIENT_MACHINE properties.

or

■ The application maps a top-level window that does not contain the WM_CLIENT_LEADER property. However, this top-level
window contains the WM_CLASS, WM_NAME, WM_COMMAND, and WM_CLIENT_MACHINE properties.

smproxy

Part I: User Commands492

An application that supports the WM_SAVE_YOURSELF protocol will receive a WM_SAVE_YOURSELF client message each time the
session manager issues a checkpoint or shutdown. This allows the application to save state. If an application does not
support the WM_SAVE_YOURSELF protocol, then the proxy will provide enough information to the session manager to restart
the application (using WM_COMMAND), but no state will be restored.

SEE ALSO
xsm(1)

AUTHOR
Ralph Mor, X Consortium

X Version 11 Release 6

sort
sort—Sort lines of text files

SYNOPSIS
sort [-cmus] [-t separator] [-o output-file] [-T tempdir] [-bdfiMnr]
[+POS1 [-POS2]] [-k POS1[,POS2]] [file...]
sort {--help,--version}

DESCRIPTION
This manual page documents the GNU version of sort. sort sorts, merges, or compares all the lines from the given files, or
the standard input if no files are given. A filename of - means standard input. By default, sort writes the results to the
standard output.

sort has three modes of operation: sort (the default), merge, and check for sortedness. The following options change the
operation mode:

-c Check whether the given files are already sorted; if they are not all sorted, print an error message and exit with a
status of 1.

-m Merge the given files by sorting them as a group. Each input file should already be individually sorted. It always
works to sort instead of merge; merging is provided because it is faster, in the case where it works.

A pair of lines is compared as follows: if any key fields have been specified, sort compares each pair of fields, in the order
specified on the command line, according to the associated ordering options, until a difference is found or no fields are left.

If any of the global options Mbdfinr are given but no key fields are specified, sort compares the entire lines according to the
global options.

Finally, as a last resort when all keys compare equal (or if no ordering options were specified at all), sort compares the lines
byte by byte in machine collating sequence. The last resort comparison honors the -r global option. The -s (stable) option
disables this last-resort comparison so that lines in which all fields compare equal are left in their original relative order. If no
fields or global options are specified, -s has no effect.

GNU sort has no limits on input line length or restrictions on bytes allowed within lines. In addition, if the final byte of an
input file is not a newline, GNU sort silently supplies one.

If the environment variable TMPDIR is set, sort uses it as the directory in which to put temporary files instead of the default,
/tmp. The -T tempdir option is another way to select the directory for temporary files; it overrides the environment
variable.

The following options affect the ordering of output lines. They may be specified globally or as part of a specific key field. If
no key fields are specified, global options apply to comparison of entire lines; otherwise, the global options are inherited by
key fields that do not specify any special options of their own.

493

-b Ignore leading blanks when finding sort keys in each line.

-d Sort in phone directory order; ignore all characters except letters, digits, and blanks when sorting.

-f Fold lowercase characters into the equivalent uppercase characters when sorting so that, for example, b is sorted
the same way B is.

-i Ignore characters outside the ASCII range 040–0176 octal (inclusive) when sorting.

-M An initial string, consisting of any amount of whitespace, followed by three letters abbreviating a month name, is
folded to uppercase and compared in the order ‘JAN’ < ‘FEB’ < ... < ‘DEC’. Invalid names compare low to
valid names.

-n Compare according to arithmetic value an initial numeric string consisting of optional whitespace, an optional -
sign, and zero or more digits, optionally followed by a decimal point and zero or more digits.

-r Reverse the result of comparison, so that lines with greater key values appear earlier in the output instead of later.

Other options are

-o output-file Write output to output-file instead of to the standard output. If output-file is one of the input
files, sort copies it to a temporary file before sorting and writing the output to output-file.

-t separator Use character separator as the field separator when finding the sort keys in each line. By default,
fields are separated by the empty string between a nonwhitespace character and a whitespace
character. That is to say, given the input line foo bar, sort breaks it into fields foo and bar. The
field separator is not considered to be part of either the field preceding or the field following it.

-u For the default case or the -m option, only output the first of a sequence of lines that compare
equal. For the -c option, check that no pair of consecutive lines compares equal.

+POS1 [-POS2] Specify a field within each line to use as a sorting key. The field consists of the portion of the line
starting at POS1 and up to (but not including) POS2 (or to the end of the line if POS2 is not given).
The fields and character positions are numbered starting with 0.

-k POS1[,POS2] An alternate syntax for specifying sorting keys. The fields and character positions are numbered
starting with 1.

A position has the form f.c, where f is the number of the field to use and c is the number of the first character from the
beginning of the field (for +pos) or from the end of the previous field (for -pos). The .c part of a position may be omitted,
in which case it is taken to be the first character in the field. If the -b option has been given, the .c part of a field specifica-
tion is counted from the first nonblank character of the field (for +pos) or from the first nonblank character following the
previous field (for -pos).

A +pos or -pos argument may also have any of the option letters Mbdfinr appended to it, in which case the global ordering
options are not used for that particular field. The -b option may be independently attached to either or both of the +pos and
-pos parts of a field specification, and if it is inherited from the global options, it will be attached to both. If a -n or -M
option is used, thus implying a -b option, the -b option is taken to apply to both the +pos and the -pos parts of a key
specification. Keys may span multiple fields.

In addition, when GNU join is invoked with exactly one argument, the following options are recognized:

--help Print a usage message on standard output and exit successfully

--version Print version information on standard output, then exit successfully

COMPATIBILITY
Historical (BSD and System V) implementations of sort have differed in their interpretation of some options, particularly
-b, -f, and -n. GNU sort follows the POSIX behavior, which is usually (but not always) like the System V behavior.
According to POSIX, -n no longer implies -b. For consistency, -M has been changed in the same way. This may affect the
meaning of character positions in field specifications in obscure cases. If this bites you, the fix is to add an explicit -b.

BUGS
The different meaning of field numbers depending on whether -k is used is confusing. It’s all POSIX’s fault!

GNU Text Utilities

sort

Part I: User Commands494

spctoppm
spctoppm—Convert an Atari compressed Spectrum file into a portable pixmap

SYNOPSIS
spctoppm [spcfile]

DESCRIPTION
spctoppm reads an Atari compressed Spectrum file as input and produces a portable pixmap as output.

SEE ALSO
sputoppm(1), ppm(5)

AUTHOR
Copyright 1991 by Steve Belczyk (seb3@gte.com) and Jef Poskanzer.

19 July 1990

split
split—Split a file into pieces

SYNOPSIS
split [-lines] [-l lines] [-b bytes[bkm]] [-C bytes[bkm]] [--lines=lines]
[--bytes=bytes[bkm]] [--line-bytes=bytes[bkm]] [--help] [--version]
[infile [outfile-prefix]]

DESCRIPTION
This manual page documents the GNU version of split. split creates one or more output files (as many as necessary)
containing consecutive sections of the infile, or the standard input if none is given or the name - is given. By default,
split puts 1000 lines of the input file, or whatever is left if it is less than that, into each output file.

The output filenames consist of a prefix followed by a group of letters, chosen so that concatenating the output files in sorted
order by filename produces the original input file, in order. The default output filename prefix is x. If the outfile-prefix
argument is given, it is used as the output filename prefix instead.

OPTIONS
-lines, -l lines, --lines=lines Put lines lines of the input file into each output file.

-b bytes[bkm], --bytes=bytes[bkm] Put bytes bytes of the input file into each output file. bytes is a non-zero
integer, optionally followed by one of the following characters to specify a
different unit:

b 512-byte blocks

k 1-kilobyte blocks

m 1-megabyte blocks

-C bytes[bkm], --line-bytes=bytes[bkm] Put into each output file as many complete lines of the input file as is
possible without exceeding bytes bytes. If a line that is longer than bytes
bytes occurs, put bytes bytes of it into each output file until less than bytes
bytes of the line are left, then continue normally. bytes has the same format
as for the --bytes option.

495

--help Print a usage message and exit with a non-zero status.

--version Print version information on standard output then exit.

GNU Text Utilities

spottopgm
spottopgm—Convert SPOT satellite images to portable graymap format

SYNTAX
spottopgm [-1|2|3] [Firstcol Firstline Lastcol Lastline] inputfile

OPTIONS
-1|2|3 Extract the given color from the SPOT image. The colors are infrared, visible

light, and ultra-violet, although I don’t know which corresponds to which
number. If the image is in color, this will be announced on standard error.
The default color is 1.

Firstcol Firstline Lastcol Lastline Extract the specified rectangle from the SPOT image. Most SPOT images are
3,000 lines long and 3,000 or more columns wide. Unfortunately, the SPOT
format only gives the width and not the length. The width is printed on
standard error. The default rectangle is the width of the input image by 3,000
lines.

DESCRIPTION
spottopgm converts the named inputfile into portable graymap format, defaulting to the first color and the whole SPOT
image unless specified by the options.

INSTALLATION
You must edit the source program and either define BIGENDIAN or LITTLEENDIAN, and fix the typedefs for uint32t,
uint16t, and uint8t appropriately.

BUGS
Currently, spottopgm doesn’t determine the length of the input file; this would involve two passes over the input file. It
defaults to 3,000 lines instead.

spottopgm could extract a three-color image (ppm), but I didn’t feel like making the program more complicated than it is
now. Besides, there is no one-to-one correspondence between red, green, blue, and infra-red, visible, and ultra-violet.

I’ve had only a limited number of SPOT images to play with, and therefore wouldn’t guarantee that this will work on any
other images.

AUTHOR
Warren Toomey (wkt@csadfa.cs.adfa.oz.au)

SEE ALSO
The rest of the pbmplus suite.

sputoppm
sputoppm—Convert an Atari uncompressed Spectrum file into a portable pixmap

sputoppm

Part I: User Commands496

SYNOPSIS
sputoppm [spufile]

DESCRIPTION
sputoppm reads an Atari uncompressed Spectrum file as input and produces a portable pixmap as output.

SEE ALSO
spctoppm(1), ppm(5)

AUTHOR
Copyright 1991 by Steve Belczyk (seb3@gte.com) and Jef Poskanzer.

19 July 1990

sq
sq—Squeeze a sorted word list

unsq—Unsqueeze a sorted word list

SYNOPSIS
sq < infile > outfile
unsq < infile > outfile

DESCRIPTION
sq compresses a sorted list of words (a dictionary). For example,

sort /usr/dict/words | sq | compress > words.sq.Z

will compress dict by about a factor of 4.

unsq uncompresses the output of sq. For example,

compress -d < words.sq.Z | unsq | sort -f -o words

will uncompress a dictionary compressed with sq. The squeezing is achieved by eliminating common prefixes and replacing
them with a single character that encodes the number of characters shared with the preceding word. The prefix size is
encoded as a single printable character: 0–9 represent 0–9, A–Z represent 10–35, and a–z represent 36–61.

AUTHOR
Mike Wexler

SEE ALSO
compress(1), sort(1).

Local

startx
startx—Initialize an X session

SYNOPSIS
startx [[client] options ..] [-- [server] options ...]

497

DESCRIPTION

NOTE

The startx script supplied with the X11 distribution is a sample designed more as a base for customization than as a fin-
ished product. Site administrators are urged to customize it for their site—and to update this manual page when they do.

The startx script is a front end to xinit that provides a somewhat nicer user interface for running a single session of the X
Window System. It is typically run with no arguments.

To determine the client to run, startx first looks for a file called .xinitrc in the user’s home directory. If that is not found,
it uses the file xinitrc in the xinit library directory. If command-line client options are given, they override this behavior.
To determine the server to run, startx first looks for a file called .xserverrc in the user’s home directory. If that is not
found, it uses the file xserverrc in the xinit library directory. If command-line server options are given, they override this
behavior. Users rarely need to provide a .xserverrc file. (See the xinit(1) manual page for more details on the arguments.)

The .xinitrc is typically a shell script that starts many clients according to the user’s preference. When this shell script exits,
startx kills the server and performs any other session shutdown needed. Most of the clients started by .xinitrc should be
run in the background. The last client should run in the foreground; when it exits, the session will exit. People often choose a
session manager, window manager, or xterm as the “magic” client.

EXAMPLE
Following is a sample xinitrc that starts several applications and leaves the window manager running as the “last” applica-
tion. Assuming that the window manager has been configured properly, the user then chooses the Exit menu item to shut
down X.

xrdb -load $HOME/.Xresources
xsetroot -solid gray &
xbiff -geometry -430+5 &
oclock -geometry 75x75-0-0 &
xload -geometry -80-0 &
xterm -geometry +0+60 -ls &
xterm -geometry +0-100 &
xconsole -geometry -0+0 -fn 5x7 &
exec twm

ENVIRONMENT VARIABLES
DISPLAY This variable gets set to the name of the display to which clients should connect. Note that this gets set, not read.

FILES
$(HOME)/.xinitrc Client to run. Typically a shell script that runs many programs in the background.

$(HOME)/.xserverrc Server to run. The default is X.
<XRoot>/lib/X11/xinit/xinitrc Client to run if the user has no .xinitrc file. <XRoot> refers to the root of the X11

install tree.

<XRoot>/lib/X11/xinit/xserverrc Client to run if the user has no .xserverrc file. This is only needed if the server
needs special arguments or is not named. <XRoot> refers to the root of the X11
install tree.

SEE ALSO
xinit(1)

X Version 11 Release 6

startx

Part I: User Commands498

strings
strings—Print the strings of printable characters in files

SYNOPSIS
strings [-a|-|--all][-f|--print-file-name][-o][--help][-v|--version]
[-n min-len |-min-len |--bytes= min-len][-t o,x,d]
[--target=bfdname] |--radix= o,x,d] file

DESCRIPTION
For each file given, GNU strings prints the printable character sequences that are at least four characters long (or the
number given with the options below) and are followed by a NUL or newline character. By default, it only prints the strings
from the initialized data sections of object files; for other types of files, it prints the strings from the whole file.

strings is mainly useful for determining the contents of nontext files.

OPTIONS
The long and short forms of options, shown here as alternatives, are equivalent.

-a, --all, - Do not scan only the initialized data section of object files; scan the whole
files.

-f, --print-file-name Print the name of the file before each string.

--help Print a summary of the options to strings on the standard output and exit.

-v, --version Print the version number of strings on the standard output and exit.

-n min-len, -min-len, -bytes=min-len Print sequences of characters that are at least min-len characters long, instead
of the default 4.

-t o,x,d, --radix=o,x,d Print the offset within the file before each string. The single character
argument specifies the radix of the offset—octal, hexadecimal, or decimal.

--target=bfdname Specify an object code format other than your system’s default format. (See
objdump(1), for information on listing available formats.)

-o Like -t o.

SEE ALSO
binutils entry in info; The GNU Binary Utilities, Roland H. Pesch (October 1991); ar(1), nm(1), objdump(1), ranlib(1).

COPYING
Copyright 1993 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions
for modified versions, except that this permission notice may be included in translations approved by the Free Software
Foundation instead of in the original English.

Cygnus Support, 25 June 1993

499

strip
strip—Discard symbols from object files.

SYNOPSIS
strip [-Fbfdname|--target=bfdname] [-Ibfdname|
--input-target=bfdname] [-Obfdname|--output-target=bfdname]
[-Rsectionname|--remove-section=sectionname] [-s|--strip-all]
[-S|-g|--strip-debug][-x|--discard-all][-X|--discard-locals]
[-v|--verbose][-V|--version][-V|--help] objfile ...

DESCRIPTION
GNU strip discards all symbols from the object files objfile. The list of object files may include archives. At least one
object file must be given.

strip modifies the files named in its argument, rather than writing modified copies under different names.

OPTIONS
-F bfdname, --target=bfdname Treat the original objfile as a file with the object code format

bfdname, and rewrite it in the same format.

--help Show a summary of the options to strip and exit.

-I bfdnamefdname”, --input-target=bfdname Treat the original objfile as a file with the object code format
bfdname.

-O bfdname, --output-target=bfdname Replace objfile with a file in the output format bfdname.

-R sectionname, --remove-section=sectionname Remove the named section from the file. This option may be given
more than once. Note that using this option inappropriately may
make the object file unusable.

-s, --strip-all Remove all symbols.

-S, -g, --strip-debug Remove debugging symbols only.

-x, --discard-all Remove nonglobal symbols.

-X, --discard-locals Remove compiler-generated local symbols. (These usually start with L
or a period.

-v, --verbose Verbose output: list all object files modified. In the case of archives,
strip -V lists all members of the archive.

-V, --version Show the version number for strip and exit.

SEE ALSO
binutils entry in info; The GNU Binary Utilities, Roland H. Pesch (October 1991)

COPYING
Copyright 1991 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions
for modified versions, except that this permission notice may be included in translations approved by the Free Software
Foundation instead of in the original English.

Cygnus Support, 5 November 1991

strip

Part I: User Commands500

subst
subst—Substitute definitions into file(s)

SYNOPSIS
subst [-e editor] -f substitutions victim ...

DESCRIPTION
subst makes substitutions into files, in a way that is suitable for customizing software to local conditions. Each victim file is
altered according to the contents of the substitutions file.

The substitutions file contains one line per substitution. A line consists of two fields separated by one or more tabs. The
first field is the name of the substitution, the second is the value. Neither should contain the character #, and use of text-
editor metacharacters like & and \ is also unwise; the name in particular is best restricted to alphanumeric. A line starting with
is a comment and is ignored.

In the victim files, each line on which a substitution is to be made (a target line) must be preceded by a prototype line. The
prototype line should be delimited in such a way that it will be taken as a comment by whatever program processes the file
later. The prototype line must contain a prototype of the target line bracketed by =()< and >()=; everything else on the
prototype line is ignored. subst extracts the prototype, changes all instances of substitution names bracketed by @< and >@ to
their values, and then replaces the target line with the result.

Substitutions are done using the sed(1) editor, which must be found in either the /bin or /usr/bin directories. To specify a
different executable, use the -e flag.

EXAMPLE
If the substitutions file is

FIRST 111
SECOND 222

and the victim file is

x =2;
/* =()<y =@<FIRST>@+@<SECOND>@;>()= */
y =88 +99;
z =5;

then subst -f substitutions victim changes victim to

x =2;
/* =()<y =@<FIRST>@+@<SECOND>@;>()= */
y = 111 + 222;
z =5;

FILES
victimdir/substtmp.new New version being built

victimdir/substtmp.old Old version during renaming

SEE ALSO
sed(1)

DIAGNOSTICS
Complains and halts if it is unable to create its temporary files or if they already exist.

501

HISTORY
Written at University of Toronto by Henry Spencer.

Rich $alz added the -e flag July, 1991.

BUGS
When creating a file to be substed, it’s easy to forget to insert a dummy target line after a prototype line; if you forget, subst
ends up deleting whichever line did in fact follow the prototype line.

Local

sum
sum—Checksum and count the blocks in a file

SYNOPSIS
sum [-rs] [--sysv] [--help] [--version] [file...]

DESCRIPTION
This manual page documents the GNU version of sum. sum computes a 16-bit checksum for each named file, or the standard
input if none are given or when a file named - is given. It prints the checksum for each file along with the number of blocks
in the file (rounded up). By default, each corresponding filename is also printed if at least two arguments are specified. With
the --sysv option, corresponding filenames are printed when there is at least one file argument. By default, the GNU sum
computes checksums using an algorithm that is compatible with the BSD sum and prints file sizes in units of 1K blocks.

OPTIONS
-r Use the default (BSD-compatible) algorithm. This option is included for compatibility with the System V

sum. Unless the -s option was also given, it has no effect.

-s, --sysv Compute checksums using an algorithm that is compatible with the one the System V sum uses by default
and print file sizes in units of 512-byte blocks instead of 1K.

--help Print a usage message and exit with a non-zero status.

--version Print version information on standard output, then exit.

GNU Text Utilities

SuperProbe
SuperProbe—Probe for and identify installed video hardware

SYNOPSIS
SuperProbe [-verbose] [-no16] [-excl list] [-mask10] [-order list] [-noprobe list] [-bios base]
[-no bios] [-no dac] [-no mem] [-info]

DESCRIPTION
SuperProbe is a program that will attempt to determine the type of video hardware installed in an EISA/ISA/VLB-bus
system by checking for known registers in various combinations at various locations (MicroChannel and PCI machines may
not be fully supported; many work with the use of the -no_bios option.) This is an error-prone process, especially on UNIX
(which usually has a lot more esoteric hardware installed than MS-DOS systems do), so SuperProbe may likely need help
from the user.

SuperProbe

Part I: User Commands502

SuperProbe runs on SVR3, SVR4, Linux, 386BSD/FreeBSD/NetBSD, Minix-386, and Mach. It should be trivial to extend
it to work on any other UNIX-like operating system, and even non-UNIX operating systems. All of the operating system
(OS) dependencies are isolated to a single file for each OS.

At this time, SuperProbe can identify MDA, Hercules, CGA, MCGA, EGA, VGA, and an entire horde of SVGA chipsets.
(See the -info option under “Options.”) It can also identify several HiColor/True-color RAMDACs in use on SVGA
boards, and the amount of video memory installed (for many chipsets). It can identify 8514/A and some derivatives, but not
XGA, or PGC (although the author intends to add those capabilities). Nor can it identify other esoteric video hardware (like
Targa, TIGA, or Microfield boards).

OPTIONS
-verbose SuperProbe will be verbose and provide lots of information as it does its work.

-no16 SuperProbe will not attempt to use any ports that require 16-bit I/O address decoding. The original ISA
bus only specified that I/O ports be decoded to 10 bits. Therefore, some old cards (including many 8-bit
cards) will misdecode references to ports that use the upper 6 bits, and may get into funny states because
they think that they are being addressed when they are not. It is recommended that this option be used
initially if any 8-bit cards are present in the system.

-excl\list SuperProbe will not attempt to access any I/O ports on the specified exclusion list. Some video cards use
rather nonstandard I/O ports that may conflict with other cards installed in your system. By specifying to
SuperProbe, a list of ports already in use, it will know that there cannot be any video cards that use those
ports, and hence will not probe them (which could otherwise confuse your hardware). The exclusion list is
specified as a comma-separated list of I/O ports or port ranges. A range is specified as low-high, and is
inclusive. The ports can be specified in decimal, in octal (numbers begin with 0), or hexadecimal (numbers
begin with 0x).

-mask10 This option is used in combination with -excl. It tells SuperProbe that when comparing an I/O port
under test against the exclusion list, the port address should be masked to 10 bits. This is important with
older 8-bit cards that only do 10-bit decoding, and for some cheap 16-bit cards as well. This option is
simply a less drastic form of the -no16 option.

-order\list This option specifies which chipsets SuperProbe should test, and in which order. The list parameter is a
comma-separated list of chipset names. This list overrides the built-in default testing order. To find the list
of acceptable names, use the -info option described later in this list. Note that items displayed as
“Standard video hardware” are not usable with the -order option.

-noprobe\list This option specifies which chipsets SuperProbe should not test. The order of testing will either be the
default order, or that specified with the -order option. The list parameter is a comma-separated list of
chipset names. To find the list of acceptable names, use the -info option. Note that items displayed as
“Standard video hardware” are not usable with the -noprobe option.

-bios\base This option specifies the base address for the graphics-hardware BIOS. By default, SuperProbe will
attempt to locate the BIOS base on its own (the normal address is 0xC0000). If it fails to correctly locate
the BIOS (an error message will be printed if this occurs), the -bios option can be used to specify the
base.

-no_bios Disallow reading of the video BIOS and assume that an EGA or later (VGA, SVGA) board is present as
the primary video hardware.

-no_dac Skip probing for the RAMDAC type when an (S)VGA is identified.

-no_mem Skip probing for the amount of installed video memory.

-info SuperProbe will print out a listing of all the video hardware that it knows how to identify.

EXAMPLES
To run SuperProbe in its most basic and automated form, simply enter the following:

SuperProbe

503

NOTE

You may want to redirect stdout to a file when you run SuperProbe (especially if your OS does not support Virtual
Terminals on the console).

However, if you have any 8-bit cards installed, you should initially run SuperProbe as

SuperProbe -verbose -no16

(the -verbose option is included so you can see what SuperProbe is skipping).

Finer granularity can be obtained with an exclusion list, for example,

SuperProbe -verbose -excl 0x200,0x220-0x230,0x250

will not test for any device that uses port 0x200, ports 0x220 through 0x230, inclusive, or port 0x250. If you have any 8-bit
cards installed, you should add -mask10 to the list of options.

To restrict the search to Western Digital, Tseng, and Cirrus chipset, run SuperProbe as follows:

SuperProbe -order WD,Tseng,Cirrus

BUGS
Probably a lot at this point. Please report any bugs or incorrect identifications to the author.

It is possible that SuperProbe can lock up your machine. Be sure to narrow the search by using the -no16, -excl, and -
mask10 options provided to keep SuperProbe from conflicting with other installed hardware.

SEE ALSO
The vgadoc3.zip documentation package by Finn Thoegersen, available in the MS-DOS archives of many FTP repositories.

Programmer’s Guide to the EGA and VGA Cards, Second Edition, by Richard Ferraro.

AUTHOR
David E. Wexelblat (dwex@xfree86.org) with help from David Dawes (dawes@xfree86.org) and the XFree86 development
team.

Version 2.2

tac
tac—Concatenate and print files in reverse

SYNOPSIS
tac [-br] [-s separator] [--before] [--regex] [--separator=separator]
[--help] [--version] [file...]

DESCRIPTION
This manual page documents the GNU version of tac. tac copies each given file, or the standard input if none are given or
when a filename of - is encountered, to the standard output with the order of the records reversed. The records are separated
by instances of a string, or a newline if none is given. By default, the separator string is attached to the end of the record that
it follows in the file.

tac

Part I: User Commands504

OPTIONS
-b, --before The separator is attached to the beginning of the record that it precedes in the file.

-r, --regex The separator is a regular expression.

-s string, --separator=string Use string as the record separator.

--help Print a usage message and exit with a non-zero status.

--version Print version information on standard output, then exit.

GNU Text Utilities

tail
tail—Output the last part of files

SYNOPSIS
tail [-c [+]N[bkm]] [-n [+]N] [-fqv] [--bytes=[+]N[bkm]] [--lines=[+]N]
[--follow] [--quiet] [--silent] [--verbose] [--help] [--version] [file...]

tail [{-,+}Nbcfklmqv] [file...]

DESCRIPTION
This manual page documents the GNU version of tail. tail prints the last part (10 lines by default) of each given file; it
reads from standard input if no files are given or when a filename of - is encountered. If more than one file is given, it prints
a header consisting of the file’s name enclosed in ==> and <== before the output for each file.

The GNU tail can output any amount of data, unlike the UNIX version, which uses a fixed size buffer. It has no -r option
(print in reverse). Reversing a file is really a different job from printing the end of a file; the BSD tail can only reverse files
that are at most as large as its buffer, which is typically 32KB. A reliable and more versatile way to reverse files is the GNU
tac command.

OPTIONS
tail accepts two option formats: the new one, in which numbers are arguments to the option letters, and the old one, in
which a + or - and optional number precede any option letters.

If a number (N) starts with a +, tail begins printing with the Nth item from the start of each file, instead of from the end.

-c N, --bytes N Tail by N bytes. N is a non-zero integer, optionally followed by one of the following characters to
specify a different unit.

b 512-byte blocks

k 1-kilobyte blocks

m 1-megabyte blocks

-f, --follow Loop forever, trying to read more characters at the end of the file, on the assumption that the file
is growing. Ignored if reading from a pipe. If more than one file is given, tail prints a header
whenever it gets output from a different file, to indicate which file that output is from.

-l, -n N, --lines N Tail by N lines. -l is only recognized using the old option format.

-q, --quiet, --silent Never print filename headers.

-v, --verbose Always print filename headers.

--help Print a usage message and exit with a non-zero status.

--version Print version information on standard output then exit.

GNU Text Utilities

505

talk
talk—Talk to another user

SYNOPSIS
talk person [ttyname]

DESCRIPTION
talk is a visual communication program that copies lines from your terminal to that of another user.

The following options are available:

person If you wish to talk to someone on your own machine, then person is just the person’s login name. If you
wish to talk to a user on another host, then person is of the form user@host.

ttyname If you wish to talk to a user who is logged in more than once, the ttyname argument may be used to
indicate the appropriate terminal name, where ttyname is of the form

ttyxx

When first called, talk sends the message Message from TalkDaemon@his_machine...:

talk: connection requested by your_name@your_machine
talk: respond with: talk your_name@your_machine

to the user you wish to talk to. At this point, the recipient of the message should reply by typing

talk your_name@your_machine

It doesn’t matter from which machine the recipient replies, as long as his login name is the same. Once communication is
established, the two parties may type simultaneously, with their output appearing in separate windows. Typing control-L
ˆ L will cause the screen to be reprinted, while your erase, kill, and word kill characters will behave normally. To exit,
just type your interrupt character; talk then moves the cursor to the bottom of the screen and restores the terminal to its
previous state.

Permission to talk may be denied or granted by use of the mesg 1 command. At the outset, talking is allowed. Certain
commands, in particular nroff 1 and pr 1, disallow messages in order to prevent messy output.

FILES
/etc/hosts To find the recipient’s machine

/var/run/utmp To find the recipient’s tty

SEE ALSO
mail(1), mesg(1), who(1), write(1)

BUGS
The version of talk 1 released with BSD 4.3 uses a protocol that is incompatible with the protocol used in the version
released with BSD 4.2.

HISTORY
The talk command appeared in BSD 4.2.

BSD 4.2, 22 April 1991

talk

Part I: User Commands506

tcal
tcal—Runs the gcal program with the date of tomorrow’s day

SYNOPSIS
tcal [--help | --version] | [--shift=[+|-]number][Argument...]

DESCRIPTION
tcal is a program that runs gcal with a date set one day ahead (equivalent to the --shift=1 option). All given arguments
are passed unmodified to the gcal program. If the gcal program shall be called with a date other than tomorrow’s date, this
desired date can be selected by using the --shift=[+|-]number option, in which [+|-]number is the number of days the
desired date is distant from the actual date. The --shift option must be given before all other arguments, which are passed
to the gcal program. An exit status of 0 means all processing is successfully done; any other value means an error has
occurred.

OPTIONS
--help Print a usage message listing all available options, then exit successfully.

--version Print the version number, then exit successfully.

--shift=[+|-]number Define the displacement in [+|-]number days the desired date is distant from the actual date.

ENVIRONMENT
GCALPROG The GCALPROG environment variable contains the filename of the executable gcal program, which

is used by tcal to call gcal. Takes precedence over the filename gcal, which is burned-in during
the compilation step of tcal.

COPYRIGHT
Copyright 1995, 1996 by Thomas Esken. This software doesn’t claim completeness, correctness, or usability. On principle,
I will not be liable for any damages or losses (implicit or explicit), which result from using or handling my software. If you
use this software, you agree without any exception to this agreement, which binds you LEGALLY.

tcal is free software and distributed under the terms of the GNU General Public License; published by the Free Software
Foundation; version 2 or (at your option) any later version.

Any suggestions, improvements, extensions, bug reports, donations, proposals for contract work, and so forth are welcome! If
you like this tool, I’d appreciate a postcard from you!

Enjoy it =8ˆ)

AUTHOR
Thomas Esken (esken@uni-muenster.de)
m Hagenfeld 84
D-48147 Muenster; Germany
Phone : +49 251 232585

SEE ALSO
gcal(1)

16 July 1996

507

telnet
telnet—User interface to the Telnet protocol

SYNOPSIS
telnet [-d] [-a] [-n tracefile] [-e escapechar] [[-l user] host [port]]

DESCRIPTION
The telnet command is used to communicate with another host using the Telnet protocol. If telnet is invoked without the
host argument, it enters command mode, indicated by its prompt telnet>. In this mode, it accepts and executes the
commands listed below. If it is invoked with arguments, it performs an open command with those arguments.

OPTIONS
-d Sets the initial value of the debug toggle to True.

-a Attempt automatic login. Currently, this sends the username via the USER variable of the ENVIRON
option if supported by the remote system. The name used is that of the current user as returned
by getlogin 2 if it agrees with the current user ID; otherwise, it is the name associated with the
user ID.

-n tracefile Opens tracefile for recording trace information. See the set tracefile command in the
“Commands” section.

-l user When connecting to the remote system, if the remote system understands the ENVIRON option, then
user will be sent to the remote system as the value for the variable USER. This option implies the -a
option. This option may also be used with the open command.

-e escape char Sets the initial telnet escape character to escape char. If escape char is omitted, then there will
be no escape character.

host Indicates the official name, an alias, or the Internet address of a remote host.

port Indicates a port number (address of an application). If a number is not specified, the default telnet
port is used.

Once a connection has been opened, telnet will attempt to enable the TELNETLINEMODE option. If this fails, then telnet will
revert to one of two input modes—either character-at-a-time or old line-by-line, depending on what the remote system
supports.

When LINEMODE is enabled, character processing is done on the local system, under the control of the remote system. When
input editing or character echoing is to be disabled, the remote system will relay that information. The remote system will
also relay changes to any special characters that happen on the remote system, so that they can take effect on the local system.

In character-at-a-time mode, most text typed is immediately sent to the remote host for processing.

In old line-by-line mode, all text is echoed locally, and (normally) only completed lines are sent to the remote host. The local
echo character (initially ˆE) may be used to turn off and on the local echo. (This would mostly be used to enter passwords
without the password being echoed.)

If the LINEMODE option is enabled, or if the localchars toggle is True (the default for old line-by-line), the user’s quit, intr,
and flush characters are trapped locally, and sent as Telnet protocol sequences to the remote side. If LINEMODE has ever been
enabled, then the user’s susp and eof are also sent as Telnet protocol sequences, and quit is sent as a TELNET ABORT instead
of BREAK There are options (see toggle autoflush and toggle autosynch in the following list) that cause this action to
flush subsequent output terminal (until the remote host acknowledges the telnet sequence) and flush previous terminal
input (in the case of quit and intr).

telnet

Part I: User Commands508

COMMANDS
While connected to a remote host, telnet command mode may be entered by typing the telnet escape character (initially
ˆ]). When in command mode, the normal terminal editing conventions are available.

The following telnet commands are available. Only enough of each command to uniquely identify it need be typed. (This
is also true for arguments to the mode, set, toggle, unset, slc, environ, and display commands.)

close Close a telnet session and return to command mode.

display argument... Displays all, or some, of the set and toggle values.

mode type type is one of several options, depending on the state of the telnet session. The remote host is
asked for permission to go into the requested mode. If the remote host is capable of entering that
mode, the requested mode will be entered. The type options are

character Disable the TELNET LINEMODE option, or, if the remote side does not
understand the LINEMODE option, then enter character at a time mode.

line Enable the TELNET LINEMODE option, or, if the remote side does not
understand the LINEMODE option, then attempt to enter old-line-by-line
mode.

isig -isig Attempt to enable (disable) the TRAPSIG mode of the LINEMODE option. This
requires that the LINEMODE option be enabled.

edit -edit Attempt to enable (disable) the EDIT mode of the LINEMODE option. This
requires that the LINEMODE option be enabled.

softtabs Attempt to enable (disable) the SOFT_TAB mode of the LINEMODE option. This
requires that -softtabs the LINEMODE option be enabled.

litecho -litecho Attempt to enable (disable) the LIT_ECHO mode of the LINEMODE option. This
requires that the LINEMODE option be enabled.

? Prints out help information for the mode command.

open host Open a connection to the named host. If no port number is specified, telnet will attempt to [-l
user] [-port] contact a Telnet server at the default port. The host specification may be either a hostname (see

hosts(5)for more information) or an Internet address specified in the dot notation (see inet(3) for
more information). The -l option may be used to specify the username to be passed to the remote
system via the ENVIRON option. When connecting to a nonstandard port, telnet omits any
automatic initiation of telnet options. When the port number is preceded by a minus sign, the
initial option negotiation is done. After establishing a connection, the file in the user’s home
directory is opened. Lines beginning with a # are comment lines. Blank lines are ignored. Lines that
begin without whitespace are the start of a machine entry. The first thing on the line is the name of
the machine that is being connected to. The rest of the line, and successive lines that begin with
whitespace, are assumed to be telnet commands and are processed as if they had been typed in
manually to the telnet command prompt.

quit Close any open telnet session and exit telnet. An end-of-file (in command mode) will also close a
session and exit.

send arguments Sends one or more special character sequences to the remote host. The following are the arguments
that may be specified (more than one argument may be specified at a time):

abort Sends the TELNET ABORT (Abort Processes) sequence.

ao Sends the TELNET AO (Abort Output) sequence, which should cause the
remote system to flush all output from the remote system to the user’s
terminal.

ayt Sends the TELNET AYT (Are You There) sequence, to which the remote
system may or may not choose to respond.

brk Sends the TELNET BRK (Break) sequence, which may have significance to the
remote system.

509

ec Sends the TELNET EC (Erase Character) sequence, which should cause the
remote system to erase the last character entered.

el Sends the TELNET EL (Erase Line) sequence, which should cause the remote
system to erase the line currently being entered.

eof Sends the TELNET EOF (End-of-File) sequence.

eor Sends the TELNET EOR (End of Record) sequence.

escape Sends the current telnet escape character (initially ˆ).

ga Sends the TELNET GA (Go Ahead) sequence, which likely has no significance
to the remote system.

getstatus If the remote side supports the TELNET STATUS command, getstatus will
send the subnegotiation to request that the server send its current option
status.

ip Sends the TELNET IP (Interrupt Process) sequence, which should cause the
remote system to abort the currently running process.

nop Sends the TELNET NOP (no operation) sequence.

susp Sends the TELNET SUSP (suspend process) sequence.

synch Sends the TELNET SYNCH sequence. This sequence causes the remote system
to discard all previously typed (but not yet read) input. This sequence is sent
as TCP urgent data (and may not work if the remote system is a BSD 4.2
system—if it doesn’t work, a lowercase r may be echoed on the terminal).

? Prints out help information for the send command.

set argument value, The set command will set any one of a number of telnet variables to a specific value or to True.
unset argument value The special value off turns off the function associated with the variable; this is equivalent to using

the unset command. The unset command will disable or set to False any of the specified
functions. The values of variables may be interrogated with the display command. The variables
that may be set or unset, but not toggled, are listed here. In addition, any of the variables for the
toggle command may be explicitly set or unset using the set and unset commands.

echo This is the value (initially ˆE) which, when in line-by-line mode, toggles
between doing local echoing of entered characters (for normal processing),
and suppressing echoing of entered characters (for entering, say, a password).

eof If telnet is operating in LINEMODE or old line-by-line mode, entering this
character as the first character on a line will cause this character to be sent to
the remote system. The initial value of the eof character is taken to be the
terminal’s eof character.

erase If telnet is in localchars mode (see toggle localchars, following), and if
telnet is operating in character at a time mode, then when this character is
typed, a TELNET EC sequence (see send ec, earlier in this man page) is sent to
the remote system. The initial value for the erase character is taken to be the
terminal’s erase character.

escape This is the telnet escape character (initially ˆ[) which causes entry into
telnet command mode (when connected to a remote system).

flushoutput If telnet is in localchars mode (see toggle localchars) and the
flushoutput character is typed, a TELNET AO sequence is sent to the remote
host. The initial value for the flush character is taken to be the terminal’s
flush character.

interrupt If telnet is in localchars mode (see toggle localchars) and the interrupt
character is typed, a TELNET IuP sequence is sent to the remote host. The
initial value for the interrupt character is taken to be the terminal’s intr
character.

telnet

Part I: User Commands510

kill If telnet is in localchars mode (see toggle localchars), and if telnet is
operating in character at a time mode, then when this character is typed, a
TELNET EL sequence is sent to the remote system. The initial value for the
kill character is taken to be the terminal’s kill character.

lnext If telnet is operating in LINEMODE or old line-by-line mode, then this
character is taken to be the terminal’s lnext character. The initial value for
the lnext character is taken to be the terminal’s lnext character.

quit If telnet is in localchars mode (see toggle localchars) and the quit
character is typed, a TELNET BRK sequence is sent to the remote host. The
initial value for the quit character is taken to be the terminal’s quit
character.

reprint If telnet is operating in LINEMODE or old line-by-line mode, then this
character is taken to be the terminal’s reprint character. The initial value for
the reprint character is taken to be the terminal’s reprint character.

start If the TELNETTOGGLE-FLOW-CONTROL option has been enabled, then this
character is taken to be the terminal’s start character. The initial value for
the start character is taken to be the terminal’s start character.

stop If the TELNETTOGGLE-FLOW-CONTROL option has been enabled, then this
character is taken to be the terminal’s stop character. The initial value for the
kill character is taken to be the terminal’s stop character.

susp If telnet is in localchars mode, or LINEMODE is enabled, and the suspend
character is typed, a TELNET SUSP sequence is sent to the remote host. The
initial value for the suspend character is taken to be the terminal’s suspend
character.

tracefile This is the file to which the output, caused by netdata or option tracing
being True, will be written. If it is set to -, then tracing information will be
written to standard output (the default).

worderase If telnet is operating in LINEMODE or old line-by-line mode, then this
character is taken to be the terminal’s worderase character. The initial value
for the worderase character is taken to be the terminal’s worderase
character.

? Displays the set unset commands.

slc state The slc command (Set Local Characters) is used to set or change the state of the special characters
when the TELNETLINEMODE option has been enabled. Special characters are characters that get
mapped to telnet command sequences (like ip or quit) or line-editing characters (like erase and
kill). By default, the local special characters are exported. The variables are

export Switch to the local defaults for the special characters. The local default
characters are those of the local terminal at the time telnet was started.

import Switch to the remote defaults for the special characters. The remote default
characters are those of the remote system at the time when the telnet
connection was established.

check Verify the current settings for the current special characters. The remote side
is requested to send all the current special character settings, and if there are
any discrepancies with the local side, the local side will switch to the remote
value.

? Prints out help information for the slc command.

511

environ arguments... The environ command is used to manipulate the variables that may be sent through the TELNET
ENVIRON option. The initial set of variables is taken from the users environment, with only the
DISPLAY and PRINTER variables being exported by default. The USER variable is also exported if the
-a or -l options are used.

Valid arguments for the environ command are

define variable value Define the variable variable to have a value of value. Any variables
defined by this command are automatically exported. The value may
be enclosed in single or double quotes so that tabs and spaces may be
included.

undefine variable Remove variable from the list of environment variables.

export variable Mark the variable variable to be exported to the remote side.

unexport variable Mark the variable variable to not be exported unless explicitly asked
for by the remote side.

list List the current set of environment variables. Those marked with a *
will be sent automatically; other variables will only be sent if explicitly
requested.

? Prints out help information for the environ command.

toggle arguments... Toggle (between True and False) various flags that control how telnet responds to events. These
flags may be set explicitly to True or False using the set and unset commands listed earlier. More
than one argument may be specified. The state of these flags may be interrogated with the display
command. Valid arguments are

autoflush If autoflush and localchars are both True, then when the ao or
quit characters are recognized (and transformed into telnet
sequences; see set for details), telnet refuses to display any data on
the user’s terminal until the remote system acknowledges (via a
TELNET TIMING MARK option) that it has processed those telnet
sequences. The initial value for this toggle is True if the terminal user
had not done an “stty noflsh”; otherwise, False. (See stty(1) for
more details.)

autosynch If autosynch and localchars are both True, then when either the
intr or quit character is typed (see set for descriptions of the intr
and quit characters), the resulting telnet sequence sent is followed by
the TELNET SYNCH sequence. This procedure should cause the remote
system to begin throwing away all previously typed input until both
of the telnet sequences have been read and acted upon. The initial
value of this toggle is False.

binary Enable or disable the TELNET BINARY option on both input and
output.

inbinary Enable or disable the TELNET BINARY option on input.

outbinary Enable or disable the TELNET BINARY option on output.

crlf If this is True, then carriage returns will be sent as <CR><LF>. If this is
False, then carriage returns will be sent as <CR><NUL>. The initial
value for this toggle is False.

crmod Toggle carriage return mode. When this mode is enabled, most
carriage return characters received from the remote host will be
mapped into a carriage return followed by a line feed. This mode does
not affect those characters typed by the user, only those received from
the remote host. This mode is not very useful unless the remote host
only sends carriage return, but never line feed. The initial value for
this toggle is False.

telnet

Part I: User Commands512

debug Toggles socket level debugging (useful only to the super user). The
initial value for this toggle is False.

localchars If this is True, then the flush, interrupt, quit, erase, and kill
characters (see set) are recognized locally, and transformed into
(hopefully) appropriate telnet control sequences (respectively ao, ip,
brk, ec, and el ; see send). The initial value for this toggle is True in
old line-by-line mode, and False in character at a time mode. When
the LINEMODE option is enabled, the value of localchars is ignored,
and assumed to always be True. If LINEMODE has ever been enabled,
then quit is sent as abort, and eof and suspend are sent as eof and
susp; see send.

netdata Toggles the display of all network data (in hexadecimal format). The
initial value for this toggle is False.

options Toggles the display of some internal telnet protocol processing
(having to do with telnet options). The initial value for this toggle is
False.

prettydump When the netdata toggle is enabled, if prettydump is enabled, the
output from the netdata command will be formatted in a more user-
readable format. Spaces are put between each character in the output,
and the beginning of any telnet escape sequence is preceded by an *
to aid in locating them.

? Displays the legal toggle commands.

z Suspend telnet. This command only works when the user is using the csh(1).

! command Execute a single command in a subshell on the local system. If command is omitted, then an
interactive subshell is invoked.

status Show the current status of telnet. This includes the peer one is connected to, as well as the current
mode.

? command Get help. With no arguments, telnet prints a help summary. If a command is specified, telnet
will print the help information for just that command.

ENVIRONMENT
telnet uses at least the HOME, SHELL, DISPLAY, and TERM environment variables. Other environment variables may be
propagated to the other side via the TELNET ENVIRON option.

FILES
~/.telnetrc User customized telnet startup values

HISTORY
The telnet command appeared in BSD 4.2.

NOTES
On some remote systems, echo has to be turned off manually when in old line-by-line mode.

In old line-by-line mode or LINEMODE, the terminal’s eof character is only recognized (and sent to the remote system) when it
is the first character on a line.

BSD 4.2, 27 July 1991

513

tfmtodit
tfmtodit—Create font files for use with groff -Tdvi

SYNOPSIS
tfmtodit [-sv][-ggf file][-kskewchar] tfm file map file font

DESCRIPTION
tfmtodit creates a font file for use with groff -Tdvi. tfm_file is the name of the font metric file for the font. map_file is a
file giving the groff names for characters in the font; this file should consist of a sequence of lines of the form:

n c1c2 ...

where n is a decimal integer giving the position of the character in the font, and c1, c2,... are the groff names of the
character. If a character has no groff names but exists in the tfm file, then it will be put in the groff font file as an unnamed
character. font is the name of the groff font file. The groff font file is written to font.

The -s option should be given if the font is special (a font is special if troff should search it whenever a character is not
found in the current font.) If the font is special, it should be listed in the fonts command in the DESC file; if it is not special,
there is no need to list it because troff can automatically mount it when it’s first used.

To do a good job of math typesetting, groff requires font metric information not present in the tfm file. The reason for this
is that has separate math italic fonts whereas groff uses normal italic fonts for math. The additional information required by
groff is given by the two arguments to the math_fit macro in the Metafont programs for the Computer Modern fonts. In a
text font (a font for which math_fitting is False), Metafont normally ignores these two arguments. Metafont can be made
to put this information in the gf file by loading the following definition after cmbase when creating cm.base:

def ignore_math_fit(expr left_adjustment,right_adjustment) =
special “adjustment”;
numspecial left_adjustment*16/designsize;
numspecial right_adjustment*16/designsize;
enddef;

The gf file created using this modified cm.base should be specified with the -g option. The -g option should not be given
for a font for which math_fitting is true.

OPTIONS
-v Print the version number.

-s The font is special. The effect of this option is to add the special command to the font file.

-kn The skewchar of this font is at position n. n should be an integer; it may be given in decimal, or with a
leading 0 in octal, or with a leading 0x in hexadecimal. The effect of this option is to ignore any kerns
whose second component is the specified character.

-ggf_file gf_file is a gf file produced by Metafont containing special and num special commands giving additional
font metric information.

FILES
/usr/lib/groff/font/devdvi/DESC Device description file.

/usr/lib/groff/font/devdvi/F Font description file for font F.

SEE ALSO
groff(1), grodvi(1), groff_font(5)

Groff Version 1.09, 14 February 1994

tfmtodit

Part I: User Commands514

tftp
tftp—Trivial file transfer program

SYNOPSIS
tftp [host]

DESCRIPTION
tftp is the user interface to the Internet TFTP (Trivial File Transfer Protocol), which allows users to transfer files to and from
a remote machine. The remote host may be specified on the command line, in which case tftp uses host as the default host
for future transfers. (See the connect command in the following section.)

COMMANDS
Once tftp is running, it issues the prompt:

tftp>

and recognizes the following commands:

? command-name ... Print help information.

ascii Shorthand for “mode ascii”

binary Shorthand for “mode binary”

connect host-name port Set the host (and optionally port) for transfers. Note that the TFTP protocol, unlike the
FTP protocol, does not maintain connections between transfers; thus, the connect
command does not actually create a connection, but merely remembers what host is to be
used for transfers. You do not have to use the connect command; the remote host can be
specified as part of the get or put commands.

get filename, Get a file or set of files from the specified sources. Source can be in one of two forms: a
get remotename localname, filename on the remote host, if the host has already been specified; or a string of the form
get file1 file2 ... fileN hosts:filename to specify both a host and filename at the same time. If the latter form is

used, the last hostname specified becomes the default for future transfers.

mode transfer-mode Set the mode for transfers; transfer-mode may be ascii or binary. The default is ascii.

put file Put a file or set of files to the specified remote file or directory. The destination can be
put localfile remotefile in one of two forms: a filename on the remote host, if the host has already been specified;
put file1 file2 ... or a string of the form hosts:filename to specify both a host and filename at the same
fileN remote-directory time. If the latterform is used, the hostname specified becomes the default for future

transfers. If the remote-directory form is used, the remote host is assumed to be a
UNIX machine.

quit Exit tftp . An end-of-file also exits.

rexmt Set the per-packet retransmission time-out, in seconds.
retransmission-timeout

status Show current status.

timeout Set the total transmission time-out, in seconds.
total-transmission-timeout

trace Toggle packet tracing.

verbose Toggle verbose mode.

BUGS
Because there is no user-login or validation within the TFTP protocol, the remote site will probably have some sort of file-
access restrictions in place. The exact methods are specific to each site and therefore difficult to document here.

515

HISTORY
The tftp command appeared in BSD 4.3.

BSD 4.3, 22 April 1991

tgatoppm
tgatoppm—Convert TrueVision Targa file into a portable pixmap

SYNOPSIS
tgatoppm [-debug][tgafile]

DESCRIPTION
Reads a TrueVision Targa file as input. Produces a portable pixmap as output.

OPTIONS
-debug Causes the header information to be dumped to stderr

All flags can be abbreviated to their shortest unique prefix.

BUGS
Should really be in pnm, not ppm.

SEE ALSO
ppmtotga(1), ppm(5)

AUTHOR
Partially based on tga2rast, version 1.0, by Ian J. MacPhedran

Copyright 1989 by Jef Poskanzer.

26 August 1989

tifftopnm
tifftopnm—Convert a TIFF file into a portable anymap

SYNOPSIS
tifftopnm [-headerdump] tifffile

DESCRIPTION
tifftopnm reads a TIFF file as input and produces a portable anymap as output. The type of the output file depends on the
input file; if it’s black and white, a pbm file is written;, if it’s grayscale, a pgm file; otherwise, a ppm file. The program tells you
which type it is writing.

OPTIONS
-headerdump Dump TIFF file information to stderr. This information may be useful in debugging TIFF file

conversion problems.

All flags can be abbreviated to their shortest unique prefix.

tifftopnm

Part I: User Commands516

SEE ALSO
pnmtotiff(1), pnm(5)

BUGS
This program is not self-contained. To use it you must fetch the TIFF Software package listed in the OTHER.SYSTEMS file and
configure pbmplus to use libtiff. See the pbmplus Makefile for details on this configuration.

AUTHOR
Derived by Jef Poskanzer from tif2ras.c, which is copyright 1990 by Sun Microsystems, Inc. Author Patrick J. Naughton
(naughton@wind.sun.com).

13 January 1991

tin, rtin, cdtin, tind
tin, rtin, cdtin, tind—A Netnews reader

SYNOPSIS
tin/rtin/cdtin/tind [options][newsgroups]

DESCRIPTION
tin is a full-screen easy-to-use Netnews reader. It can read news locally (/usr/spool/news) or remotely (rtin or tin -r
option) via an NNTP (Network News Transport Protocol) server. cdtin can read news locally and news archived on CD-
ROM. It will automatically utilize nov (news overview)-style index files if available locally or via the nntp xover command.

tin has five separate levels of operation: group selection level, spooldir selection level, group level, thread level and article
level. Use the h (help) command to view a list of the commands available at a particular level.

On startup, tin will show a list of the newsgroups found in $HOME/.newsrc. An arrow -> or highlighted bar will point to the
first newsgroup. Move to a group by using the terminal arrow keys (terminal-dependent) or j and k. Use PgUp/PgDn
(terminal-dependent) or Ctrl-U and Ctrl-D to page up/down. Enter a newsgroup by pressing Return.

The Tab key advances to the next newsgroup with unread articles and enters it.

OPTIONS
-c Create/update index files for every group in $HOME/.newsrc or file specified by -f option and mark all

articles as read.

-f file Use the specified file of subscribed to newsgroups in place of $HOME/.newsrc.

-h Help listing all command-line options.

-H Brief introduction to tin that is also shown the first time it is started.

-I dir Directory in which to store newsgroup index files. Default is $HOME/.tin/.index.

-m dir Mailbox directory to use. Default is $HOME/Mail.

-M user Mail unread articles to specified user for later reading. For more information read the “Automatic Mailing
and Saving New News” section later in this manual page.

-n Only load groups from the active file that are also subscribed to in the users .newsrc. This allows a
noticeable speedup when connecting via a slow line.

-p program Print program with options.

-q Quick start without checking for new newsgroups.

-P Purge group index files of articles that no longer exist. Care should be taken when using this command as
it starts each and every article in each group that is accessed. On a low-speed connection, this can have an
undesirable effect and it also knocks the hell out of your file system.

517

-r Read news remotely from the default NNTP server specified in the environment variable NNTPSERVER or
contained in the file /etc/nntpserver.

-R Read news saved by -S option (not yet implemented).

-s dir Save articles to directory. Default is $HOME/News.

-S Save unread articles for later reading by -R option. For more information, see “Automatic Mailing and
Saving New News.”

-u Create/update index files for every group in $HOME/.newsrc or file specified by -f option. This option is
disabled if tin retrieves its index files via an NNTP server.

-U Start tin in the background to update index files while reading news in the foreground. This option is
disabled if tin retrieves its index files via an NNTP server.

-v Verbose mode for -c, -M, -S, -u, and -Z options.

-w Quick mode to post an article and then exit.

-z Only start tin if there is any new/unread news. If there is news, tin will position cursor at first group with
unread news. Useful for putting in login file.

-Z Check if there is any new/unread news and exit with appropriate status. If -v option is specified, the
number of unread articles in each group is printed. An exit code 0 indicates no news, 1 that an error
occurred, and 2 that new/unread news exists. Useful for writing scripts.

tin can also dynamically change its options by the M menu command. Any changes are written to $HOME/.tin/tinrc.

The index daemon version, tind, only supports the -f, -h, -I, and -v options.

INDEX FILES
In order to keep track of threads, tin maintains an index for each newsgroup. There are a number of methods in which
index files can be created and updated.

The simplest method is that each user creates/updates his or her own index files that are stored in $HOME/.tin/.index. This
has the advantage that any user can compile and install tin, but the disadvantage is that each user is going to be creating
duplicate files and using precious disk space. A good way to keep index files updated is by doing a tin -U that will update
index files in the background while you are reading news in the foreground. You can also update index files via the system
batcher cron with the -u option: 30 6 ***/usr/local/bin/tin -u.

A slightly better method is to set tin setuid news and have all index files created and updated in the news spool directory
(that is, /usr/spool/news/.index). This has the advantage that there will only be one copy of the index files on each
machine on your network, but the disadvantage is that you will have tin running setuid news.

A better method is to install the tind index file updating daemon and have it create and update index files for all groups in
your active file at regular intervals in the news spool directory (/usr/spool/news/.index). This has the advantage that there
will only be one copy of the index files on each machine on your network, and tin must not be setuid news, but the
disadvantage is that you will have to have news permissions to install tind and root permissions to install an entry in the
cron batcher system to have tind regularly update index files.

The best method is to install the tind index file updating daemon on your NNTP server and have it create and update index
files for all groups in your active file at regular intervals in the news spool directory (/usr/spool/news/.index). This has the
advantage that there will only be one copy of the index files on the NNTP server for the whole of your network, but the
disadvantage is that you will have to install my NNTP server patches to allow tin to retrieve index file from your NNTP
server and you must install an entry in the cron batcher system to have tind regularly update index files. (This is the method
we use on our network of 40 to 50 machines and we have not had any problems.)

Entering a group the first time tends to be slow because the index file must be built from scratch unless the tind update
daemon is being used. To alleviate the slowness, start tin to create all index files for the groups you subscribe to with
tin -u -v and go for a coffee. Subsequent readings of a group will cause incremental updating of the index file.

tin, rtin, cdtin, tind

Part I: User Commands518

If reading news remotely and locally updating index files operation will be somewhat slower because the articles must be
retrieved from the NNTP server.

NEWS ADMINISTRATION
Maintaining Netnews on large networks of machines can be a pretty time-consuming job, as I discovered when I was given
the job of maintaining our news system and news users.

tin is a News User Agent and so most of the users were always asking questions or doing things that could be frowned upon
by their departments. To relieve news administrators (and especially me) of this, features have been added to make life easier
for them.

When a user starts tin, it is possible to inform them of any important changes or information concerning the news system by
displaying a message of the day (motd) file. The motd file should be created in your news lib directory (/usr/lib/news/motd)
and should have file permissions set to 0644. The motd file will only be displayed if its contents is newer than the last time
the user started tin. If reading news via NNTP, my XMOTD patch will have to have been applied to your NNTP server.

A user starting tin for the first time can be automatically subscribed to a list of newsgroups that are deemed appropriate by
the news administrator. At our site the subscriptions file has 125 groups (our active file contains more than 400 groups with
many only being marginally interesting to most people). The subscriptions file should be created in your news lib directory
(/usr/lib/news/subscriptions) and should have file permissions set to 0644. If reading news via NNTP, my LIST
SUBSCRIPTIONS patch will have to have been applied to your NNTP server.

If my NNTP XUSER patch has been applied to your NNTP server, you will be able to log the username and machine to your
NNTP logfile for usage statistics.

SCREEN FORMAT
tin has five separate levels of operation: group selection level, spooldir selection level, group level, thread level, and article
level.

At the group selection level, the title displays the number of subscribed groups. The newsgroups are displayed on the left of
the screen with the number of unread articles displayed on the same line in the middle of the screen, like this:

<Selection Num><Newsgroup><Num of unread articles>
i.e.,
 1 alt.sources 10
 2 comp.sources.misc 3
 3 news.software.readers 12

At the group level, the title contains the name of the group, the number of conversation threads, and total number of articles,
for example, alt.sources (7 23). If the group has been set up not to thread articles (for example, alt.sources is in
$(HOME)/.tin/unthread), the title will be alt.sources (U 23). There are two possible display formats:

<Selection Num><Unread><Responses><Subject><Author>
e.g.,
 1 + 3 Bnews sources? iain@anl433.uucp
 2 1 This question has ether@net

or

<Selection Num><Unread><Responses><Subject (longer)>
e.g.,
 1 + 3 Bnews sources?
 2 1 This question has a longer subject line

At the article level, the page header has the following format:

<Date posted><Newsgroup>
<Thread 1 of n>
<Article Num><Subject><Num of responses in thread>

519

<Author><Organization>
<Article body>
i.e.,
 24 Jul 15:20:03 GMT alt.sources Thread 1 of 2
 Article 452 Bnews sources? 3 responses
 iain@anl433.uucp Organization name

COMMON MOVING KEYS
The following table shows the common keys/commands for moving at all five levels within tin:

Beginning of list/article Home 1 (ˆR or g at article level)

End of list/article End $ (also G at article level)

Page up PgUp ˆU or ˆB or b

Page down PgDn ˆD or ˆF or <SPACE>

Line up Up arrow k (not at article level)

Line down Down arrow j (not at article level)

COMMON EDITING COMMANDS
An emacs-style editing package allows the easy editing of input strings. A history list allows the easy reuse of previously
entered strings. The following commands are available when editing a string:

^A, ^E Move to beginning or end of line, respectively.

^F, ^B Nondestructive move forward or back one location, respectively.

^D Delete the character currently under the cursor, or send EOF if no characters are in the buffer.

^H, Delete character left of the cursor.

^K Delete from cursor to end of line.

^P, ^N Move through history, previous and next, respectively.

^L, ^R Redraw the current line.

<CR> Places line on history list if nonblank, appends newline, and returns to the caller.

<ESC> Aborts the present editing operation.

NEWSGROUP SELECTION COMMANDS
4 Select group 4.

^K Delete current group from $HOME/.newsrc file.

^L Redraw page.

^R Reset $HOME/.newsrc file.

<CR> Read current group.

<TAB> View next group with unread news. Will wrap around to the beginning of the group selection list looking
for unread groups.

B Mail a bug report or comment to the author. This is the best way to get bugs fixed and features added/
changed.

c Mark current group as all read with confirmation and go to next group in group selection list.

C Mark current group as all read and go to next unread group in group selection list.

d Toggle display to show just the group name or the group name and the group’s description.

g Choose a new group by name. The position of the group within the group list will also be asked for. When
1 is entered, the new group will be the first group in the displayed list; when 8 is entered, the group will be
the eighth group in the list; and so on. When $ is entered, the group will be the last group displayed.

tin, rtin, cdtin, tind

Part I: User Commands520

h Help screen of newsgroup selection commands.

H Toggle the display of help mini-menu at the bottom of the screen.

I Toggle inverse video.

l List and allow selection of the available spool directories. This feature requires a special library to be linked
with tin to create cdtin, which can then read news from an active news feed and also from multiple CD-
ROMs.

m Move the current group within the group selection list. When 1 is entered, the group will become the first
displayed group in the list; when 8 is entered, the eighth group in the list; and so on. When $ is entered,
the group will be the last group displayed.

M User-configurable Options menu (for more information, see the “Global Options Menu” section later in
this manual page).

q Quit tin.

Q Quit tin.

r Toggle display of all subscribed-to groups and just the subscribed-to groups containing unread articles.
Command has no effect if groups were read from the command line when tin was started.

s Subscribe to current group.

S Subscribe to groups matching user-specified pattern.

u Unsubscribe to current group.

U Unsubscribe to groups matching user-specified pattern.

v Print tin version information.

w Post an article to current group.

W List articles posted by user. The date posted, the newsgroup, and the subject are listed.

y The first time this command is called, it will yank in all groups from $LIB-DIR/active that are not in
$HOME/.newsrc.

After any groups have been subscribed/unsubscribed to, this command, if pressed again, will reread $HOME/
.newsrc and display only the subscribed groups.

Y Reread the active file to see if any new news has arrived since starting tin.

z Mark all articles in the current group as unread.

Z Undelete previously deleted group by ˆK command from $HOME/.newsrc.

/ Group forward search.

? Group backward search.

SPOOL DIRECTORY SELECTION COMMANDS
4 Select spool directory 4.

^L Redraw page.

<CR> Read news from selected spool directory.

B Mail a bug report or comment to the author. This is the best way to get bugs fixed and features
added/changed.

h Help screen of spool directory selection commands.

H Toggle the display of help mini-menu at the bottom of the screen.

I Toggle inverse video.

q Return to previous level.

Q Quit tin.

v Print tin version information.

521

GROUP INDEX COMMANDS
4 Select article 4.

^K Kill current article (for more information, see the “Automatic Kill and Selection” section later in this
manual page).

^L Redraw page.

<CR> Read current article.

<TAB> View next unread article or group.

a Author forward search.

A Author backward search.

c Mark all articles as read with confirmation.

C Mark all articles as read and go to next group with unread news.

d Toggle display to show just the subject or the subject and author.

g Choose a new group by name.

h Help screen of group index commands.

H Toggle the display of help mini-menu at the bottom of the screen.

I Toggle inverse video.

K Mark article/thread as read and advance to next unread article/thread.

l List the author of each response in current thread and enter thread selection level.

m Mail current article/thread/auto-selected (hot) articles/articles matching pattern/tagged articles to someone.

M User-configurable Options menu (for more information see “Global Options Menu” section).

n Go to next group.

N Go to next unread article.

o Output current article/thread/autoselected (hot) articles/articles matching pattern/tagged articles to
printer.

p Go to previous group.

P Go to previous unread article.

q Return to previous level.

Q Quit tin.

s Save current article/thread/autoselected (hot) articles/articles matching pattern/tagged articles to file/files/
mailbox. To save to a mailbox, enter = or =mailbox when asked for filename to save to. To save in
<newsgroup name>/<filename> format, enter +filename. Environment variables are allowed within a
filename (for example, $SOURCES/dir/filename).

t Tag current article/thread for mailing (m)/piping (|)/printing (o)/saving (s)/crossposting (x).

u Toggle display to show all articles as unthreaded or threaded.

U Untag all articles that were tagged.

v Print tin version information.

w Post an article to current group.

W List articles posted by user. The date posted, the newsgroup, and the subject are listed.

x Crosspost already posted current article/thread/autoselected (hot) articles/articles matching pattern/tagged
articles to another newsgroup(s). Useful for reposting from global to local newsgroups.

X Mark all unread articles that have not been selected as read, redo screen to reflect changes, and put index at
the first thread to begin reading. Pressing X again will toggle back to the way it was before. See ˜ command
for clearing the toggle effect.

z Mark current article as unread.

Z Mark current thread as unread.

tin, rtin, cdtin, tind

Part I: User Commands522

/ Search forward for specified subject.

? Search backward for specified subject.

- Show last message.

| Pipe current article/thread/autoselected (hot) articles/articles matching pattern/tagged articles into
command.

* Select current thread for later processing.

* Toggle selection of current thread. If at least one unread art in thread (but not all unread arts) is selected,
then all unread arts become selected.

@ Reverse all selections on all articles.

˜ Undo all selections on all articles. It clears the toggle effect of X command. Thus, after first doing an X, you
can then do ˜ to reset articles. Thus, you can iteratively whittle down uninteresting threads.

+ Perform autoselection on current group.

; For each thread in current group, if it at least one unread art is selected, all unread arts become selected.
This is useful for autoselection on author when the reader wants to see the entire thread.

= Prompts for a pattern with which to match on. All threads whose subjects match the pattern will be
selected. A pattern of * will match all subjects. Entering just <CR> will cause the previous pattern to be
used.

THREAD LISTING COMMANDS
4 Select article 4 within thread.

^L Redraw page.

<CR> Read current article within thread.

<TAB> View next unread article within thread.

B Mail a bug report or comment to the author. This is the best way of getting bugs fixed and features added/
changed.

c Mark thread as read after confirmation and return to previous level.

d Toggle display to show just the subject or the subject and author.

h Help screen of thread listing commands.

H Toggle the display of help mini-menu at the bottom of the screen.

I Toggle inverse video.

K Mark thread as read and return to previous level.

q Return to previous level.

Q Quit tin.

r Toggle display to show all articles or only unread articles.

B Mail a bug report or comment to the author. This is the best way of getting bugs fixed and features added/
changed.

t Tag current article for mailing (m)/piping (|)/printing (o)/saving (s)/crossposting (x).

T Return to group index level.

v Print tin version information.

z Mark current article in thread as unread.

Z Mark all articles in thread as unread.

ARTICLE VIEWER COMMANDS
0 Read the base article in this thread.

4 Read response 4 in this thread.

^H Show all of the article’s mail header.

523

^K Kill current article (for more information, see the “Automatic Kill and Selection” section)

^L Redraw page.

<CR> Go to next base article.

<TAB> Go to next unread article.

a Author forward search.

A Author backward search.

c Mark all articles as read with confirmation and return to group selection level.

C Mark current group as all read and go to next unread group in group selection list.

d Toggle rot-13 decoding for this article.

D Delete current article. It must have been posted by the same user. The cancel message can be seen in the
newsgroup control.

f Post a follow-up to the current article with a copy of the article included.

F Post a follow-up to the current article.

h Help screen of article page commands.

H Toggle the display of help mini-menu at the bottom of the screen.

I Toggle inverse video.

k Mark article as read and advance to next unread article.

K Mark thread as read and advance to next unread thread.

m Mail current article/thread/autoselected (hot) articles/articles matching pattern/tagged articles to someone.

M User-configurable Options menu (for more information, see the “Global Options Menu” section later in
this manual page).

n Go to the next article.

N Go to the next unread article.

o Output current article/thread/autoselected (hot) articles/articles matching pattern/tagged articles to
printer.

o Output article/thread/tagged articles to printer.

p Go to the previous article.

P Go to the previous unread article.

q Return to previous level.

Q Quit tin.

r Reply through mail to the author of the current article with a copy of the article included.

R Reply through mail to the author of the current article.

s Save current article/thread/autoselected (hot) articles/articles matching pattern/tagged articles to file/files/
mailbox. To save to a mailbox enter = or =mailbox when asked for filename to save to. To save in
<newsgroup name>/<filename> format, enter +filename. Environment variables are allowed within a
filename (such as $SOURCES/dir/filename).

t Return to group selection level.

T Tag current article for mailing (m)/piping (|)/printing (o)/saving (s)/crossposting (x).

v Print tin version information.

w Post an article to current group.

W List articles posted by user. The date posted, the newsgroup and the subject are listed.

x Crosspost already posted current article/thread/autoselected (hot) articles/articles matching pattern/tagged
articles to another newsgroup(s). Useful for reposting from global to local newsgroups.

z Mark article as unread.

/ Article forward search.

? Article backward search

tin, rtin, cdtin, tind

Part I: User Commands524

| Pipe current article/thread/autoselected (hot) articles/articles matching pattern/tagged articles into
command.

< Go to the first article in the current thread.

> Go to the last article in the current thread.

* Select current thread for later processing.

* Toggle selection of current article.

@ Reverse article selections.

˜ Undo all selections on current thread.

GLOBAL OPTIONS MENU
This menu is accessed by pressing M at all levels. It allows the user to customize the behavior of tin. The options are saved to
the file $HOME/.tin/tinrc. Use <SPACE> to toggle the required option and <CR> to set.

Auto save Automatically save articles/threads by “Archive-name:” line in article header and post process them
if process type is not set to None.

Editor offset Set ON if the editor used for posting, follow-ups and bug reports has the capability of starting and
positioning the cursor at a specified line within a file.

Mark saved read Allows saved articles/threads to be automatically marked as read.

Confirm Command Allows certain commands (such as c catchup) that require user confirmation to be executed
immediately if set OFF.

Draw arrow Allows groups/articles to be selected by an arrow -> if set ON or by a highlighted bar if set OFF.

Print header This allows the complete mail header or only the “Subject:” and “From:” fields to be output when
printing articles.

Go to 1st unread This allows the cursor to be placed at the first/last unread article upon entering a newsgroup with
unread news.

Scroll full page If set ON, scrolling of groups/articles will be a full page at a time; otherwise, half a page at a time.

Catch up on quit If set ON, the user is asked when quitting if all groups read during the current session should be
marked read.

Thread articles If set ON, articles will be threaded in all groups (default); otherwise, articles will be shown
unthreaded. Threading or unthreading is possible on a per-group basis by setting the group
attribute variable thread_arts to ON/OFF in the file $HOME/.tin/attributes.

Show only unread If set ON, show only new/unread articles; otherwise, show all articles.

Show description If set ON, show a short descriptive text for each displayed newsgroup. The text used is taken from
the $LIBDIR/newsgroups file.

Show Author If set None, only the “Subject:” line will be displayed. If set Addr, “Subject:” line and the address
part of the “From:” line are displayed. If set Name, “Subject:” line and the author’s full name part of
the “From:” line are displayed. If set Both, “Subject:” line and all of the “From:” line are displayed.

Process type This specifies the default type of post processing to perform on saved articles. The following types
of processing are allowed:

■ None
■ Unpacking of multipart shell archives
■ Unpacking of multipart uuencoded files
■ Unpacking of multipart uuencoded files, which produce a *.zoo archive whose contents are

listed
■ Unpacking of multipart uuencoded files, which produce a *.zoo archive whose contents are

extracted
■ Unpacking of multipart uuencoded files, which produce a *.zip archive whose contents are

listed

525

■ Unpacking of multipart uuencoded files, which produce a *.zip archive whose contents are
extracted

■ Unpacking of multipart uuencoded files, which produce an *.lha archive whose contents are
listed (AmigaDOS version only)

■ Unpacking of multipart uuencoded files, which produce an *.lha archive whose contents is
extracted (AmigaDOS version only)

Sort articles by This specifies how articles should be sorted. The following sort types are allowed:

■ Don’t sort articles (default).
■ Sort articles by “Subject:” field (ascending and descending).
■ Sort articles by “From:” field (ascending and descending).
■ Sort articles by “Date:” field (ascending and descending).

Save directory The directory where articles/threads are to be saved. Default is $HOME/News.

Mail directory The directory where articles/threads are to be saved in mailbox format. This feature is mainly for
use with the elm mail program. It allows the user to save articles, threads, or groups simply by
giving = as the filename to save to.

Printer The printer program with options that is to be used to print articles. Default is lpr for BSD
machines and lp for SysV machines.

tinrc CONFIGURABLE VARIABLES
The following variables are user-configurable by editing $HOME/.tin/tinrc directly. It is hoped to eventually provide a menu
to allow the setting of the most common variables.

batch_save If set ON, articles/threads will be saved in batch mode when save -S or mail -M is specified on
the command line. Default is OFF.

beginner_level If set ON, a mini-menu of the most useful commands will be displayed at the bottom of the
screen for each level. Default is ON.

display_reading_prompt The prompt Reading... will be displayed when reading an article from an NNTP server to
provide feedback to the user. Default is ON.

force_screen_redraw Specifies whether a screen redraw should always be done after certain external commands.
Default is OFF.

groupname_max_length Maximum length of the names of newsgroups to be displayed so that more of the
newsgroup description can be displayed. Default is 132.

default_sigfile The path that specifies the signature file to use when posting, following up to, or replying to
an article. If the path is a directory, then the signature will be randomly generated from files
that are in the specified directory. Default is $HOME/.Sig.

editor_format The format string used to create the editor start command with parameters. Default is %E
+%N %F (for example, /bin/vi +7 .article).

hot_art_mark The character used to show that an article/thread is autoselected (hot). Default is *.

quote_chars The character used in quoting included text to article follow-ups and mail replies. The ‘ ‘
character represents a blank character and is replaced with ‘ ‘ when read. Default is ‘: ‘.

reread_active_file_secs The news active file is reread at regular intervals to show if any new news has arrived.
Default is 300 seconds.

return_art_mark The character used to show that an article will return. Default is -.

save_to_mmdf_mailbox Allows articles to be saved to an mmdf-style mailbox instead of mbox format. Default is OFF
unless reading news on SCO UNIX, which uses MMDF by default.

show_last_line_prev_page The last line of the previous page will be displayed as the first line of next page. Default is
OFF.

tin, rtin, cdtin, tind

Part I: User Commands526

slow_speed_terminal Strips the blanks from the end of each line, thereby speeding up the display when reading
on a slow terminal or via modem. Default is OFF.

tab_after_X_selection If enabled, will automatically go to the first unread article after having selected all hot
articles and threads with the X command at group index level. Default is OFF.

tab_goto_next_unread If enabled, pressing Tab at the article viewer level will go to the next unread article
immediately instead of first paging through the current one. Default is ON.

unread_art_mark The character used to show that an article has not been read. Default is +.

use_builtin_inews Allows the built-in NNTP inews to be enabled/disabled. Default is ON (enabled).

use_keypad Allows the scroll keys on the keypad to be enabled/disabled on supported terminals. Default
is OFF.

GROUP ATTRIBUTES
tin allows certain attributes to be set on a per-group basis. These group attributes are read from the file $HOME/.tin/
attributes. A later version will provide a menu interface to set all the attributes. At present, you will have to edit the file
with your editor :-(. The following group attributes are available:

newsgroup=alt.sources
maildir=/usr/iain/Mail/sources
savedir=/usr/iain/News/alt.sources
sigfile=/usr/iain/.funny sig
organization=Wacky Bits Inc.
followup to=alt.sources.d
printer=/usr/local/bin/a2ps -nn | /bin/lpr
auto save=ON
batch save=OFF
delete tmp files=ON
show only unread=OFF
thread arts=ON
show author=1
sort art type=5
post proc type=1

Note that the newsgroup=<groupname> line has to be specified before the attributes are specified for that group.

All attributes are set to a reasonable default so you only have to specify the attribute that you want to change (for example,
savedir).

All toggle attributes are set by specifying ON/OFF.

The show_author attribute is specified by a number from the following range: 0=none, 1=username, 2=network address,
3=both.

The sort_art_type attribute is specified by a number from the following range: 0=none, 1=subject descending, 2=subject
ascending, 3=from descending, 4=from ascending, 5=date descending, 6=date ascending.

The post_proc_type attribute is specified by a number from the following range: 0=none, 1=unshar, 2=uudecode,
3=uudecode & list zoo archive, 4=uudecode & extract zoo archive, 5=uudecode & list zip archive, 6=uudecode & extract zip
archive. (If running on AmigaDOS, the zoo options are replaced by their corresponding lha archiver options.)

AUTOMATIC KILL AND SELECTION
When there is a subject or an author that you are either very interested in, or find completely uninteresting, you can easily
instruct tin to autoselect or autokill articles with specific subjects or from specific authors. These instructions are stored in a
kill file.

This menu is accessed by pressing ˆK at the group and page levels. It allows the user to kill or select an article that matches
the current “Subject:” line, “From:” line, or a string entered by the user. The user-entered string can be applied to the
“Subject:” or “From:” lines of an article. The kill description can be limited to the current newsgroup or it can apply to all

527

newsgroups. Once entered, the user can abort the command and not save the kill description, edit the kill file, or save the
kill description.

On starting tin, the user’s kill file $HOME/.tin/kill is read and on entering a newsgroup any kill or select descriptions
are applied.

Articles that match a kill description are marked killed and are not displayed. Articles that match an autoselect description
are marked with an * when displayed.

POSTING ARTICLES
tin allows posting of articles, follow-up to already posted articles, and replying direct through mail to the author of an
article.

Use the w command to post an article to a newsgroup. After entering the post subject, the default editor (such as vi) or the
editor specified by the $VISUAL environment variable will be started and the article can be entered. To crosspost articles,
simply add a comma and the name of the newsgroup(s) to the end of the “Newsgroups:” line at the beginning of the article.
After saving and exiting the editor, you are asked if you wish to abort posting the article, edit the article again or post the
article to the specified newsgroup(s).

Use the W command to display a history of the articles you have posted. The date the article was posted, which newsgroups
the article was posted to, and the article’s subject line are displayed.

Use the f/F command to post a follow-up article to an already posted article. The f command will copy the text of the
original article into the editor. The editing procedure is the same as when posting an article with the w command.

Use the r/R command to reply direct through mail to the author of an already posted article. The r command will copy the
text of the original article into the editor. The editing procedure is the same as when posting an article with the w command.
After saving and exiting the editor, you are asked if you wish to abort sending the article, edit the article again, or send the
article to the author.

CUSTOMIZING THE ARTICLE QUOTE STRING
When posting a follow-up to an article or replying direct to the author of an article via e-mail, the text of the article can be
quoted. The beginning of the quoted text can contain information about the quoted article (for example, the Name and the
Message ID of the article). To allow for different situations, certain information from the article can be used in the quoted
string. The following variables are expanded if found in the tinrc variables mail_quote_format= or news_quote_format=:

%A Address (e-mail)

%D Date

%F Full address (%N (%A))

%G Groupname

%M Message ID

%N Name of user

For example,

mail_quote_format=On %D in %G you wrote:
news_quote_format=In %M, %F wrote:

would expand when used to:

On 21 Jul 1992 09:45:51 -0400 in alt.sources you wrote:
In <abcINN123@anl433.uucp>, Iain Lea (iain@erlm.siemens.de) wrote:

MAILING, PIPING, PRINTING, REPOSTING, AND SAVING ARTICLES
The command interface to mail (m), pipe (|), print (o), crosspost (x) and save (s) articles is the same for ease of use.

The initial command will ask you to select which article, thread, hot (autoselected) regex pattern, tagged articles you wish to
mail, pipe, and so on.

tin, rtin, cdtin, tind

Part I: User Commands528

Tagged articles must have already been tagged with the T command. All tagged articles can be untagged by the U untag
command.

If regex pattern matching is selected, you are asked to enter a regular expression (for example, to match all article subject
lines containing net News, you must enter *net News*). Any articles that match the entered expression will be mailed,
piped, and so on.

To save articles to a mailbox with the name of the current newsgroup (for example, Alt.sources) enter = or =<mailbox
name> when asked for the save filename.

To save articles in <newsgroup name>/<filename> format, enter +<filename>.

When saving articles, you can specify whether the saved files should be post processed (such as unshar shell archive,
uudecode multiple parts, and so on). A default process type can be set by the Process type: in the M Options menu.

AUTOMATIC MAILING AND SAVING NEW NEWS
tin allows new/unread news articles to be mailed (-M option)/saved (-S option) in batch mode for later reading—useful
when going on holiday and you don’t want to return and find that expire has removed a whole load of unread articles. It’s
best to run from crontab every day while away, after which you will be mailed a report of which articles were mailed/saved
from which newsgroups and the total number of articles mailed/saved. Articles are saved in a private news structure under
your <savedir> directory (default is $HOME/News).

Be careful of using this option if you read a lot of groups because you could overflow your filesystem. If you only want to
save a few groups, it would be best to back up your full $HOME/.newsrc and create a new one that only contains the
newsgroups you want to mail/save. Saved news can be read later by tin -R.

tin -M iain -c -f newsrc.mail Mail any unread articles in newsgroups specified in file newsrc.mail

tin -S -c -f newsrc.save Save any unread articles in newsgroups specified in file newsrc.save

tin -R Read any articles saved by tin -S

SIGNATURES
tin will recognize a signature in either $HOME/.signature or $HOME/.Sig. If $HOME/.signature exists, then the signature
will be pulled into the editor for mail commands. A signature in $HOME/.signature will not be pulled into the editor for
posting commands because inews will append the signature itself.

A signature in $HOME/.Sig will be pulled into the editor for both posting and mailing commands.

The following is an example of a $HOME/.Sig file:

NAMES Iain Lea iain.lea@erlm.siemens.de
SNAIL Bruecken Strasse 12, 8500 Nuernberg 90, Germany
PHONE +49-911-331963 (home) +49-911-3089-407 (work)

tin also has the capability to generate random signatures on a per-newsgroup basis if so desired. The way to accomplish this
is to specify the default signature or the group attribute sigfile as a directory. If, for example, the sigfile path is /usr/iain/
.sigs and .sigs is a directory, then tin will select a random signature from any file that is in the directory .sigs (note: one
signature per numbered file). A random signature can also consist of a fixed part signature that can contain your name,
address, and so on, followed by the random sig. The fixed part of the random sig is read from the file $HOME/.sigfixed.

ENVIRONMENT VARIABLES
TINRC Define this variable if you want to specify command-line options that tin should be started with to

save typing them each time it is started. The contents of the environment variable are added to the
front of the command-line options before it is parsed, therefore allowing an option specified on the
command line to override the same option specified in the environment.

TIN_HOMEDIR Define this variable if you do not want the .tin directory in $HOME/.tin. For example, if you want
all tin’s private files in /tmp/.tin, you would set TINDIR to /tmp.

529

TIN_INDEXDIR Define this variable if you do not want the .index directory in $HOME/.tin/.index. For example,
if you want all tin’s index files in /tmp/.index, you would set TIN_INDEXDIR to /tmp.

TIN_LIBDIR Define this variable if you want to override the LIBDIR path that was compiled into the tin binary
via the Makefile.

TIN_SPOOLDIR Define this variable if you want to override the SPOOLDIR path that was compiled into the tin
binary via the Makefile.

TIN_NOVROOTDIR Define this variable if you want to override the NOVROOTDIR path that was compiled into the tin
binary via the Makefile.

TIN_ACTIVEFILE Define this variable if you want to override the LIBDIR/active path that was compiled into the tin
binary via the Makefile.

NNTPSERVER The default NNTP server to remotely read news from. This variable only needs to be set if the -r
command-line option is specified and the file /etc/nntpserver does not exist.

DISTRIBUTION Set the article header field “Distribution:” to the contents of the variable instead of the system
default.

ORGANIZATION Set the article header field “Organization:” to the contents of the variable instead of the system
default. This variable has precedence over the file $HOME/.tin/organization that may also contain
an organization string. If you are reading news on an Apollo DomainOS machine, the environment
variable NEWSORG has to be used instead of ORGANIZATION.

REPLYTO Set the article header field “Reply-To:” to the return address specified by the variable. This is useful
if the machine is not registered in the UUCP mail maps or if you wish to receive replies at a
different machine. This variable has precedence over the file $HOME/.tin/replyto that may also
contain a return address.

ADD_ADDRESS This can contain an address to append to the return address when replying directly through mail to
somebody whose mail address is not directly recognized by the local host. For example say the
return address is user@bigvax, but bigvax is not recognized by your host, so therefore the mail
will not reach user. But the host littevax is known to recognize your host and bigvax, so if
ADDADDRESS is set (for example, setenv ADD_ADDRESS @littevax for csh or
set ADD_ADDRESS @littevax

and export ADD_ADDRESS for sh), the address
user@bigvax@littlevax will be used and the mail will reach user@bigvax.
This variable has precedence over the file
$HOME/.tin/add_address

that may also contain an address.

BUG_ADDRESS If the B command bug report mail address is not correct, this variable should be set to the correct
mail address. This variable has precedence over the file
$HOME/.tin/bug_address

that may also contain a mail address.

MAILER This variable has precedence over the default mailer that is used in all mailing operations within
tin (for example, replying rR, and bug reports B).

VISUAL This variable has precedence over the default editor (for example, vi) that is used in all editing
operations within tin (for example, posting w, replying rR, follow-ups fF, and bug reports B).

AUTOSUBSCRIBE tin interprets this variable similarly to rn. It contains a list of patterns, separated by commas and
possibly prefixed with exclamation points. A new group is checked against the list of patterns; if it
matches, tin subscribes the user to the group without further query. An exclamation point negates
the meaning of a match on this pattern and can be used to cancel certain matches. For example,
setting AUTOSUBSCRIBE=comp.os.unix.*,talk.*,!talk.politics.* will automatically subscribe
the user to all newsgroups in the comp.os.unix hierarchy, and all talk groups other than
talk.politics groups (which will be queried for as usual).

tin, rtin, cdtin, tind

Part I: User Commands530

AUTOUNSUBSCRIBE tin interprets this variable similarly to rn. It is handled like the AUTOSUBSCRIBE variable, but
groups matching the list are unsubscribed from without further query. For example, setting
AUTOUNSUBSCRIBE=alt.flame.*,u*,!uk.* will automatically unsubscribe the user from all new
alt.flame groups and all groups starting with u (university groups) other than UK groups (which
will be queried for as usual).

TIPS AND TRICKS
tin can pretty much be navigated by using the four cursor keys. The left-arrow key goes up a level, the right-arrow key goes
down a level, the up-arrow key goes up a line (or page, at article viewer level) and the down-arrow key goes down a line (or
page, at article viewer level).

The following newsgroups provide useful information concerning news software:

--news.software.readers Information about news user agents tin, rn, nn, vn, and so on

--news.software.nntp Information about NNTP

--news.software.b Information about news transport agents Bnews, Cnews, and INN)

--news.answers Frequently asked questions (FAQs) about many different themes

Many prompts (for example, Mark everything as read? (y/n):) within tin offer a default choice that the cursor is
positioned on. When you press <CR>, the default value is taken.

Many prompts (for example, Post subject []>) within tin can be aborted by pressing <ESC>.

When tin is run in an xterm window, it will resize itself each time the xterm is resized.

 tin will reread the active file at set intervals to show any newly arrived news.

xterm BUTTONS
If the environment variable TERM is set to xterm, then button pressing can be used to select groups and articles.

In the Group Selection menu, if the mouse is pointing before the group’s listing region, the previous page is selected (just
like b). If the mouse is pointing after the group’s listing region, the next page is selected (just like space). If the mouse is
pointing at a group, then

Left button Moves to the group pointed at

Other buttons Move to and select the group pointed at, just like <CR>

In the Article menu, if the mouse is pointing before the article listing region, the previous page is selected (just like b). If the
mouse is pointing after the article listing region, the next page is selected (just like space). If the mouse is pointing at an
article, then

Left button Moves to the article pointed at

Center button Reads next unread article from that pointed at, just like <TAB>

Right button Reads article pointed at, just like <CR>

In the Thread menu, if the mouse is pointing before the article listing region, the previous page is selected (just like b). If the
mouse is pointing after the article listing region, the next page is selected (just like space). If the mouse is pointing at an
article, then

Left button Moves to the article pointed at

Center button Reads next unread article from that pointed at, just like <TAB>

Right button Reads article pointed at, just like <CR>

In the Spool Selection menu, if the mouse is pointing before the spool listing region, the previous page is selected (just like
b). If the mouse is pointing after the spool listing region, the next page is selected (just like space). If the mouse is pointing
at a spool selection, then

531

Left button Moves to the spool pointed at

Other buttons Move to and select the spool pointed at, just like <CR>

In other menus and areas, button pressing reverts back to usual cut and paste of xterm, but after one click of any button.

FILES
$HOME/.newsrc Subscribed to newsgroups

$HOME/.newsauth nntpserver password pairs for NNTP servers that require authorization

$HOME/.tin/tinrc Options

$HOME/.tin/attributes Contains user-specified group attributes

$HOME/.tin/.index Newsgroups index files directory

$HOME/.tin/.mailidx Mailgroups index files directory

$HOME/.tin/.saveidx Saved newsgroups index files directory

$HOME/.tin/active.mail Active file of users mailgroups

$HOME/.tin/active.save Active file of users saved newsgroups

$HOME/.tin/add_address Address to add to when replying through mail

$HOME/.tin/bug address Address to send bug reports to

$HOME/.tin/kill Article kill and autoselection file

$HOME/.tin/organization String to replace default organization

$HOME/.tin/posted History of articles posted by user

$HOME/.tin/replyto Host address to use in “Reply-To:” mail header

$HOME/.signature Signature

$HOME/.Sig Signature

$HOME/.sigfixed Fixed part of a randomly generated signature

/usr/lib/news/motd News message-of-the-day file

/usr/lib/news/newsgroups Short description of all newsgroups

/usr/lib/news/subscriptions List of newsgroups to subscribe first-time user to

BUGS
There are bugs somewhere among the creeping featurism. Any bugs found should be reported by the B (bug report)
command.

Coredumps when setting certain toggle options from the Options menu at article viewer level.

Coredumps when killing last article in a thread at article viewer level.

HISTORY
Based on the tass newsreader that was developed by Rich Skrenta and posted to alt.sources in March 1991. tass was
itself heavily influenced by NOTES, which was developed at the University of Illinois by Ray Essick and Rob Kolstad in 1982.

v1.0 PL0 (full) was posted in eight parts to alt.sources on 23 Aug 1991. v1.0 PL1 (full) was posted in eight parts to
alt.sources on 03 Sep 1991. v1.0 PL2 (full) was posted in nine parts to alt.sources on 24 Sep 1991. v1.0 PL3 (patch)
was posted in four parts to alt.sources on 30 Sep 1991. v1.0 PL4 (patch) was posted in two parts to alt.sources on 02
Oct 1991. v1.0 PL5 (patch) was posted in four parts to alt.sources on 17 Oct 1991. v1.0 PL6 (patch) was posted in five
parts to alt.sources on 27 Nov 1991. v1.0 PL7 (patch) was posted in two parts to alt.sources on 27 Nov 1991. v1.1
PL0 (full) was posted in eleven parts to alt.sources on 13 Feb 1992. v1.1 PL1 (full) was posted in twelve parts to
alt.sources on 24 Mar 1992. v1.1 PL2 (patch) was posted in four parts to alt.sources on 30 Mar 1992. v1.1 PL3 (full)
was posted in fifteen parts to alt.sources on 13 May 1992. v1.1 PL4 (full) was posted in fifteen parts to alt.sources on
22 Jun 1992. v1.1 PL5 (patch) was posted in seven parts to alt.sources on 11 Aug 1992. v1.1 PL6 (full) was posted in

tin, rtin, cdtin, tind

Part I: User Commands532

fifteen parts to alt.sources on 14 Sep 1992. v1.1 PL7 (patch) was posted in ten parts to alt.sources on 15 Nov 1992.
v1.1 PL8 (patch) was posted in six parts to alt.sources on 06 Dec 1992. v1.1 PL9 (patch) was posted in three parts to
alt.sources on 20 Mar 1993. v1.2 PL0 (full) was posted in fourteen parts to alt.sources on 25 May 1993. v1.2 PL1
(patch) was posted in eight parts to alt.sources on 14 Jul 1993. v1.2 PL2 (patch) was posted in parts to alt.sources in
September 1993.

CREDITS
Rich Skrenta Author of tass v3.2, which this newsreader used as its base

Bill Davidsen Author of envarg.c environment variable reading routine

Mike Gleason Author of sigfile.c random signature generation routines

Arnold Robbins Author of strftime.c date formatting routine

Jim Robinson Coauthor of kill.c article kill and autoselection routines

Rich Salz Author of wildmat.c pattern matching and parsedate.y date parsing routines

Dave Taylor Author of curses.c from the elm mailreader

Chris Thewalt Author of getline.c emacs-style editing routine

Mark Tomlinson For porting tin to the AmigaDOS operating system

Andreas Wrede For porting tin to the OS/2 operating system

Dieter Becker For generously posting certain releases for me when my net connection was removed by a group of
very short-sighted people

I wish to thank the following people for supplying patches:

David Abbott, Earle Ake, Joachim Astel, Anton Aylward, George Baltz, Paul Bauwens, Dieter Becker, Dan Berry, David
Binderman, Fokke de Boer, Mark Boucher, Herman ten Brugge, Leila Burrell-Davis, Peter Castro, Robert Claeson, Steven
Cogswell, Don Costello, Bryan Curnutt, Ned Danieley, Chris Davies, John Davis, Tom Dickey, Bryan Dongray, Craig
Durland, Kirk Edson, Stefan Elf, Rob Engle, Brent Ermlick, Olle Eriksson, Michael Faurot, Werner Fleck, Callum Gibson,
Mike Glendinning, Philippe Goujard, Carl Hage, Paul Halsema, Ed Hanway, Scott Hauck, Per Headland, Daniel Hermans,
Jose Herrero, Tom Hite, Torsten Homeyer, Tommy Hsieh, Steve Hunt, Pieter Immelman, Robbin John-son, Nelson
Kading, Fritz Kleeman, Dwarven Knight, Karl-Koenig Koenigsson, Martin Kraemer, Kris Kugel, Geoff Lane, Alex Lange,
Alain Lasserre, Marty Leisner, Hakan Lennestal, Otto Lind, Richard Lloyd, Clifford Luke, David MacKenzie, Hugh Mahon,
Kazushi Marukawa, Owen Medd, Soren Moller, Sergio Morales, Michael Morrell, Klaus Mueller, Udo Munk, James Nugen,
Jeb Palmer, Neil Parker, Tom Parry, Jim Patterson, Walter Pelissero, Colin Perkins, Eric Peterson, Tim Pierce, Bill Poitras,
Wolfgang Prediger, Ted Richards, Ollivier Robert, Jim Robinson, Stephen Roseman, Clifton Royston, Nicko-lay Saukh,
Rich Salz, Gary Sanders, John Sauter, Christopher Sawtell, John Schmitz, Bart Sears, Karl Olav Serrander, Doug Sewell,
Philip Shearer, Mark Smith, Steve Spearman, Cliff Stanford, Steve Starck, Jason Steiner, Ed Sznyter, Derek Terveer, Julian
Thompson, Andry Timonin, Mark Tomlin, Michael Traub, Adri Verhoef, Paul Vickers, Cary Whitney, Greg Woods, Lloyd
Wright

I wish to thank the following people for bug reports/comments:

Jack Applin, Klaus Arzig, Scott Babb, Reiner Balling, Preston Bannister, Bill de Beabien, Volker Beyer, Etienne Bido, Roger
Binns, Georg Biehler, Jean-Marc Bonnaudet, Eric Bowles, Sean Brady, Ian Brown, Andreas Brosig, Craig Bruce, Brett
Carver,Tom Czarnik, Dave Datta, Mat Davis, Karl Denninger, Klaus Dimmler, David Donovan, Peter Dressler, Gerhard
Ermer, Hugh Fader, Miguel Farah, Joachim Feld, Paul Fox, Jay Geertsen, Herschel Gelman, Bernhard Gmelch, Jason Haar,
Viet Hoang, Andy Jackson, Joe Johnson, Ralph Jud, Cyrill Jung, Kuo-Chein Kai, Tonis Kelder, Hans-Juergen Knopp,
Sridhar Komandur, Tom Kovar, Bernhard Kroenung, Murray Laing, Per Lindqvist, Eric Litman, Bob Lukas, Michael
Marshall, Kazushi Marukawa, Olaf Mittelstaedt, Phillip Molloy, Phil Molyneux, Toni Metz, Greg Miller, Deeptendu
Majumder, Klaus Neuberger, Otto Niesser, Reiner Oelhaf, Alex Pakter, John Palkovic, Dave Pascoe, Wolf Paul, Andrew
Phillips, Stefan Rathmann, Jon Robinson, David Ross, Jonas Rwgmyr, Malkani Sanjay, Daemon Schae-fer, Dean Schrimpf,
Klamer Schutte, Fredy Schwatz, Dave Schweisguth, Bernd Schwerin, Don Sheythe, Chris Smith, Daniel Smith, Richard
Stanton, Ralf Stephan, Hironobu Taka-hashi, Ken Taylor, Tony Travis, Paul Verket, Sven Werner, Dick Wexelblat, Paul
Wood, Gregory Woodbury, Norm Yamane, Blair Zajac, Orest Zboroski, Thomas Ziegler

533

AUTHOR
Iain Lea (iain.lea@erlm.siemens.de)

Version 1.2 PL2

tload
tload—Graphic representation of system load average

SYNOPSIS
tload [-s scale] [-d delay] [tty]

DESCRIPTION
tload prints a graph of the current system load average to the specified tty (or the tty of the tload process if none is
specified).

OPTIONS
The -s scale option allows a vertical scale to be specified for the display (in characters between graph ticks); thus, a smaller
value represents a larger scale, and vice versa.

The -d delay sets the delay between graph updates in seconds.

FILES
/proc/loadavg Load average information

SEE ALSO
ps(1), top(1), uptime(1), w(1)

BUGS
The -d delay option sets the time argument for an alarm(2); if -d 0 is specified, the alarm is set to 0, which will never send
the SIGALRM and update the display.

AUTHORS
Branko Lankester, David Engel (david@ods.com), and Michael K. Johnson (johnsonm@sunsite.unc.edu)

Cohesive Systems, 20 March 1993

top
top—Display top CPU processes

SYNOPSIS
top [-][ddelay][q][S][s][i]

DESCRIPTION
top provides an ongoing look at processor activity in real time. It displays a listing of the most CPU-intensive tasks on the
system, and can provide an interactive interface for manipulating processes.

top

Part I: User Commands534

COMMAND-LINE OPTIONS
d Specifies the delay between screen updates. You can change this with the s interactive command.

q This causes top to refresh without any delay. If the caller has superuser privileges, top runs with the highest
possible priority.

S Specifies cumulative mode, where each process is listed with the CPU time that it as well as its dead children has
spent. This is like the -S flag to ps(1). See the discussion of the S interactive command later in this manual page.

s Tells top to run in secure mode. This disables the potentially dangers of the interactive commands. (See
“Interactive Commands,” later in this manual page.) A secure top is a nifty thing to leave running on a spare
terminal.

i Start top, ignoring any idle or zombie processes. (See the interactive command i.)

FIELD DESCRIPTIONS
top displays a variety of information about the processor state. The display is updated every five seconds by default, but you
can change that with the d command-line option or the s interactive command.

uptime This line displays the time the system has been up, and the three load averages for the system. The load
averages are the average number of process ready to run during the last 1, 5, and 15 minutes. This line is
just like the output of uptime(1).

processes The total number of processes running at the time of the last update. This is also broken down into the
number of tasks that are running, sleeping, stopped, or undead.

CPU states Shows the percentage of CPU time in user mode, system mode, niced tasks, and idle. (Niced tasks are only
those whose nice value is negative.) Time spent in niced tasks will also be counted in system and user
time, so the total will be more than 100 percent.

Mem Statistics on memory usage, including total available memory, free memory, used memory, shared
memory, and memory used for buffers.

Swap Statistics on swap space, including total swap space, available swap space, and used swap space. This and
Mem are just like the output of free(1).

PID The process ID of each task.

USER The username of the task’s owner.

PRI The priority of the task.

NI The nice value of the task. Negative nice values are lower priority.

SIZE The size of the task’s code plus data plus stack space, in kilobytes, is shown here.

RSS The total amount of physical memory used by the task, in kilobytes, is shown here.

SHRD The amount of shared memory used by the task is shown in this column.

ST The state of the task is shown here. The state is either S for sleeping, D for uninterruptible sleep, R for
running, Z for zombies, or T for stopped or traced.

TIME Total CPU time the task has used since it started. If cumulative mode is on, this also includes the CPU
time used by the process’s children that have died. You can set cumulative mode with the S command-line
option or toggle it with the interactive command S.

%CPU The task’s share of the CPU time since the last screen update, expressed as a percentage of total CPU time.

%MEM The task’s share of the physical memory.

COMMAND The task’s command name, which will be truncated if it is too long to be displayed on one line. Tasks in
memory will have a full command line, but swapped-out tasks will only have the name of the program in
parentheses, for example, (getty).

INTERACTIVE COMMANDS
Several single-key commands are recognized while top is running. Some are disabled if the s option has been given on the
command line.

535

ˆL Erases and redraws the screen.

h or ? Displays a help screen giving a brief summary of commands, and the status of secure and cumulative modes.

k Kill a process. You will be prompted for the PID of the task, and the signal to send to it. For a normal kill, send
signal 15. For a sure, but rather abrupt, kill, send signal 9. The default signal, as with kill(1), is 15, SIGTERM.
This command is not available in secure mode.

i Ignore idle and zombie processes. This is a toggle switch.

n or # Change the number of processes to show. You will be prompted to enter the number. This overrides automatic
determination of the number of processes to show, which is based on window size measurement. If 0 is specified,
then top will show as many processes as will fit on the screen; this is the default.

q Quit.

r Renice a process. You will be prompted for the PID of the task, and the value to nice it to. Entering a positive
value will cause a process to be niced to negative values, and lose priority. If root is running top, a negative value
can be entered, causing a process to get a higher than normal priority. The default renice value is 10. This
command is not available in secure mode.

S This toggles cumulative mode, the equivalent of ps -S, in other words, that CPU times will include a process’s
defunct children. For some programs, such as compilers, which work by forking into many separate tasks, normal
mode will make them appear less demanding than they actually are. For others, however, such as shells and init,
this behavior is correct. In any case, try cumulative mode for an alternative view of CPU use.

s Change the delay between updates. You will be prompted to enter the delay time, in seconds, between updates.
Fractional values are recognized down to microseconds. Entering 0 causes continuous updates. The default value
is 5 seconds. Note that low values cause nearly unreadably fast displays, and greatly raise the load. This command
is not available in secure mode.

NOTES
This proc-based top works by reading the files in the proc filesystem, mounted on /proc. If /proc is not mounted, top will
not work.

%CPU shows the cputime/realtime percentage in the period of time between updates. For the first update, a short delay is
used, and top itself dominates the CPU usage. After that, top will drop back, and a more reliable estimate of CPU usage is
available.

The SIZE and RSS fields don’t count the page tables and the task struct of a process; this is at least 12K of memory that is
always resident. SIZE is the virtual size of the process (code+data+stack).

Keep in mind that a process must die for its time to be recorded on its parent by cumulative mode. Perhaps more useful
behavior would be to follow each process upwards, adding time, but that would be more expensive, possibly prohibitively so.
In any case, that would make top’s behavior incompatible with ps.

SEE ALSO
ps(1), free(1), uptime(1), kill(1), renice(1).

BUGS
If the window is less than about 70×7, top will not format information correctly.

AUTHOR
top was originally written by Roger Binns, based on Branko Lankester’s (lankeste@fwi.uva.nl) ps program. Robert Nation
(nation@rocket.sanders.lockheed.com) rewrote it significantly to use the proc filesystem, based on Michael K. Johnson’s
(johnsonm@sunsite.unc.edu) proc-based ps program. Many changes were made, including secure and cumulative modes
and a general cleanup, by Michael Shields (mjshield@nyx.cs.du.edu).

Linux, 1 February 1993

top

Part I: User Commands536

touch
touch—Change file timestamps

SYNOPSIS
touch [-acfm] [-r reference-file] [-t MMDDhhmm[[CC]YY][.ss]] [-d time]
[--time={atime, access, use, mtime, modify}] [--date=time] [--file=reference-file]
[--no-create] [--help] [--version] file...

DESCRIPTION
This manual page documents the GNU version of touch. touch changes the access and modification times of each given file
to the current time. Files that do not exist are created empty. If the first filename given would be a valid argument to the -t
option and no timestamp is given with any of the -d, -r, or -t options and the -- argument is not given, that argument is
interpreted as the time for the other files instead of as a filename.

If changing both the access and modification times to the current time, touch can change the timestamps for files that the
user running it does not own but has write permission for. Otherwise, the user must own the files.

OPTIONS
-a, --time=atime, Change the access time only.
--time=access,
--time=use

-c, --no-create Do not create files that do not exist.

-d, --date time Use time (which can be in various common formats) instead of the current time. It can
contain month names, time zones, am and pm, and so on.

-f Ignored; for compatibility with BSD versions of touch.

-m, --time=mtime, Change the modification time only.
--time=modify

-r, --file reference-file Use the times of reference-file instead of the current time.

-t MMDDhhmm[[CC]YY][.ss] Use the argument (months, days, hours, minutes, optional century and years, optional
seconds) instead of the current time.

--help Print a usage message on standard output and exit successfully.

--version Print version information on standard output, then exit successfully.

GNU File Utilities

tr
tr—Translate or delete characters

SYNOPSIS
tr [-cst] [--complement] [--squeeze-repeats] [--truncate-set1] string1 string2

tr f-s,--squeeze-repeatsg [-c] [--complement] string1

tr f-d,--deleteg [-c] string1

tr f-d,--deleteg f-s,--squeeze-repeatsg [-c] [--complement] string1 string2

GNU tr also accepts the --help and --version options.

537

DESCRIPTION
This manual page documents the GNU version of tr. tr copies the standard input to the standard output, performing one
of the following operations:

■ Translate and optionally squeeze repeated characters in the result
■ Squeeze repeated characters
■ Delete characters
■ Delete characters, then squeeze repeated characters from the result.

The string1 and (if given) string2 arguments define ordered sets of characters, referred to below as set1 and set2. These
sets are the characters of the input that tr operates on. The --complement (-c) option replaces set1 with its complement (all
of the characters that are not in set1).

SPECIFYING SETS OF CHARACTERS
The format of the string1 and string2 arguments resembles the format of regular expressions; however, they are not regular
expressions, only lists of characters. Most characters simply represent themselves in these strings, but the strings can contain
the shorthands in the following list, for convenience. Some of them can be used only in string1 or string2, as noted.

Backslash escapes. A backslash followed by a character not listed causes an error message.

\a Control-G

\b Control-H

\f Control-L

\n Control-J

\r Control-M

\t Control-I

\v Control-K

\ooo The character with the value given by ooo, which is 1 to 3 octal digits

\n A backslash

Ranges. The notation m-n expands to all of the characters from m through n, in ascending order. m should collate before n; if
it doesn’t, an error results. As an example, 0–9 is the same as 0123456789. Although GNU tr does not support the System
V syntax that uses square brackets to enclose ranges, translations specified in that format will still work as long as the brackets
in string1 correspond to identical brackets in string2.

Repeated characters. The notation [c*n] in string2 expands to n copies of character c. Thus, [y*6] is the same as yyyyyy.
The notation [c*] in string2 expands to as many copies of c as are needed to make set2 as long as set1. If n begins with a
0, it is interpreted in octal, otherwise in decimal.

Character classes. The notation [:class-name:] expands to all of the characters in the (predefined) class named class-
name. The characters expand in no particular order, except for the upper and lower classes, which expand in ascending
order. When the --delete (-d) and --squeeze-repeats (-s) options are both given, any character class can be used in
string2. Otherwise, only the character classes lower and upper are accepted in string2, and then only if the corresponding
character class (upper and lower, respectively) is specified in the same relative position in string1. Doing this specifies case
conversion. The class names are given in the following list; an error results when an invalid class name is given.

alnum Letters and digits

alpha Letters

blank Horizontal whitespace

cntrl Control characters

digit Digits

graph Printable characters, not including space

lower Lowercase letters

tr

Part I: User Commands538

print Printable characters, including space

punct Punctuation characters

space Horizontal or vertical whitespace

upper Uppercase letters

xdigit Hexadecimal digits

Equivalence classes. The syntax [=c=] expands to all of the characters that are equivalent to c, in no particular order.
Equivalence classes are a recent invention intended to support non-English alphabets. But there seems to be no standard way
to define them or determine their contents. Therefore, they are not fully implemented in GNU tr; each character’s
equivalence class consists only of that character, which makes this a useless construction currently.

TRANSLATING
tr performs translation when string1 and string2 are both given and the --delete (-d) option is not given. tr translates
each character of its input that is in set1 to the corresponding character in set2. Characters not in set1 are passed through
unchanged. When a character appears more than once in set1 and the corresponding characters in set2 are not all the same,
only the final one is used. For example, these two commands are equivalent:

tr aaa xyz

tr a z

A common use of tr is to convert lowercase characters to uppercase. This can be done in many ways. Here are three of them:

tr abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ

tr a-z A-Z

tr ‘[:lower:]’ ‘[:upper:]’

When tr is performing translation, set1 and set2 should normally have the same length. If set1 is shorter than set2, the
extra characters at the end of set2 are ignored.

On the other hand, making set1 longer than set2 is not portable; POSIX.2 says that the result is undefined. In this
situation, the BSD tr pads set2 to the length of set1 by repeating the last character of set2 as many times as necessary. The
System V tr truncates set1 to the length of set2.

By default, GNU tr handles this case like the BSD tr does. When the --truncate-set1 (-t) option is given, GNU tr
handles this case like the System V tr instead. This option is ignored for operations other than translation.

Acting like the System V tr in this case breaks the relatively common BSD idiom:

tr -cs A-Za-z0-9 ‘n012’

because it converts only zero bytes (the first element in the complement of set1), rather than all nonalphanumerics, to
newlines.

SQUEEZING REPEATS AND DELETING
When given just the --delete (-d) option, tr removes any input characters that are in set1.

When given just the --squeeze-repeats (-s) option, tr replaces each input sequence of a repeated character that is in set1
with a single occurrence of that character.

When given both the --delete and the --squeeze-repeats options, tr first performs any deletions using set1, then
squeezes repeats from any remaining characters using set2.

The --squeeze-repeats option may also be used when translating, in which case tr first performs translation, then squeezes
repeats from any remaining characters using set2.

Here are some examples to illustrate various combinations of options.

539

Remove all zero bytes:

tr -d ‘n000’

Put all words on lines by themselves. This converts all nonalphanumeric characters to newlines, then squeezes each string of
repeated newlines into a single newline:

tr -cs ‘[a-zA-Z0-9]’ ‘[nn*]’

Convert each sequence of repeated newlines to a single newline:

tr -s ‘nn’

GNU tr also accepts the following options in any combination with the others.

--help Print a usage message and exit with a non-zero status.

--version Print version information on standard output, then exit.

WARNING MESSAGES
Setting the environment variable POSIXLY_CORRECT turns off several warning and error messages, for strict compliance with
POSIX.2. The messages normally occur in the following circumstances:

1. When the --delete option is given but --squeeze-repeats is not, and string2 is given, GNU tr by default prints a
usage message and exits, because string2 would not be used. The POSIX specification says that string2 must be ignored
in this case. Silently ignoring arguments is a bad idea.

2. When an ambiguous octal escape is given. For example, n400 is actually n40 followed by the digit 0, because the value
400 octal does not fit into a single byte.

Note that GNU tr does not provide complete BSD or System V compatibility. For example, there is no option to disable
interpretation of the POSIX constructs [:alpha:], [=c=], and [c*10]. Also, GNU tr does not delete zero bytes automati-
cally, unlike traditional UNIX versions, which provide no way to preserve zero bytes.

GNU Text Utilities

tset, reset
tset, reset—Terminal initialization

SYNOPSIS
tset [-IQrs] [-t] [-e ch] [-i ch] [-k ch] [-m mapping] [terminal]

tset -h

tset -V

reset [-IQrs] [-t] [-e ch] [-i ch] [-k ch] [-m mapping] [terminal]

reset -h

reset -V

DESCRIPTION
tset initializes terminals. tset first determines the type of terminal that you are using. This determination is done as
follows, using the first terminal type found:

■ The terminal argument specified on the command line
■ The value of the TERM environmental variable
■ The terminal type associated with the standard error output device in the /etc/ttytype file
■ The default terminal type, unknown

tset, reset

Part I: User Commands540

If the terminal type was not specified on the command line, the -m option mappings are then applied (see the following
section, “Options,” for more information). Then, if the terminal type begins with a question mark (?), the user is prompted
for confirmation of the terminal type. An empty response confirms the type, or, another type can be entered to specify a new
type. After the terminal type has been determined, the termcap entry for the terminal is retrieved. If no termcap entry is
found for the type, the user is prompted for another terminal type.

After the termcap entry is retrieved, the window size, backspace, interrupt, and line kill characters (among many other
things) are set and the terminal and tab initialization strings are sent to the standard error output. Finally, if the erase,
interrupt, and line kill characters have changed, or are not set to their default values, their values are displayed to the standard
error output.

When invoked as reset, tset sets cooked and echo modes, turns off cbreak and raw modes, turns on newline translation and
resets any unset special characters to their default values before doing the terminal initialization described above. This is
useful after a program dies leaving a terminal in an abnormal state. Note, you may have to type <LF>reset<LF> (the line-feed
character is normally control-J) to get the terminal to work, as carriage-return may no longer work in the abnormal state.
Also, the terminal will often not echo the command.

OPTIONS
The options are as follows:

-t The terminal type is displayed to the standard output, and the terminal is not initialized in any way.

-e Set the erase character to ch.

-I Do not send the terminal or tab initialization strings to the terminal.

-i Set the interrupt character to ch.

-k Set the line kill character to ch.

-m Specify a mapping from a port type to a terminal. See the following section, “Setting the Environment,” for more
information.

-r Print the terminal type to the standard error output.

-s Print the sequence of shell commands to initialize the environment variables COLUMNS, LINES, TERM, and TERMCAP
to the standard output.

Q Don’t display any values for the erase, interrupt, and line kill characters.

-w Force setting of display size as defined in /etc/termcap file.

-h Print short usage message.

-V Print version number.

The arguments for the -e, -i, and -k options may either be entered as actual characters or by using the hat notation, for
example, control-h may be specified as ˆ H or ˆ h.

SETTING THE ENVIRONMENT
It is often desirable to set the terminal type and information about the terminal’s capabilities and display size in the shell’s
environment. This is done with the -s option; when this option is specified, the commands to enter the information into the
shell’s environment are output to the standard output. If the SHELL environmental variable ends in csh, the output
commands are for the csh(1); otherwise, they are for sh(1). Note, the output commands for the csh set and unset the shell
variable noglob. The following line in the .login or .profile files will initialize the environment correctly:

eval ‘tset -s options ... ‘

TERMINAL TYPE MAPPING
When the terminal is not hardwired into the system (or the current system information is incorrect), the terminal type
derived from the /etc/ttytype file or the TERM environmental variable is often something generic like network, dialup, or
unknown. When tset is used in a startup script .profile for sh(1) users or .login for csh(1) users), it is often desirable to

541

provide information about the type of terminal used on such ports. The purpose of the -m option is to map from some set of
conditions to a terminal type; that is, to tell tset, “If I’m on this port at a particular speed, guess that I’m on that kind of
terminal.”

The argument to the -m option consists of an optional port type, an optional operator, an optional baud rate specification, an
optional colon (:) character, and a terminal type. The port type is a string (delimited by either the operator or the colon
character). The operator may be any combination of: &>, &<, &@, and &!; &> means greater than, &< means less than, &@
means equal to, and &! inverts the sense of the test. The baud rate is specified as a number and is compared with the speed of
the standard error output (which should be the control terminal). The terminal type is a string.

If the terminal type is not specified on the command line, the -m mappings are applied to the terminal type. If the port type
and baud rate match the mapping, the terminal type specified in the mapping replaces the current type. If more than one
mapping is specified, the first applicable mapping is used.

For example, consider the following:

dialup>9600:vt100

The port type is dialup, the operator is >, the baud rate specification is 9600, and the terminal type is vt100 . The result of
this mapping is to specify that if the terminal type is dialup, and the baud rate is greater than 9600 baud, a terminal type of
vt100 will be used.

If no port type is specified, the terminal type will match any port type; for example,

-m dialup:vt100 -m :?xterm

will cause any dialup port, regardless of baud rate, to match the terminal type:

vt100,

and any nondialup port type to match the terminal type:

?xterm.

Note, because of the leading question mark, the user will be queried on a default port as to whether they are actually using an
xterm terminal.

No whitespace characters are permitted in the -m option argument. Also, to avoid problems with metacharacters, it is
suggested that the entire -m option argument be placed within single quote characters, and that csh users insert a backslash
character (\) before any exclamation marks (!).

ENVIRONMENT
The tset command utilizes the SHELL and TERM environment variables.

tset can set COLUMNS, LINES, TERM, and TERMCAP environmental variables.

FILES
/etc/ttytype system Port name to terminal type mapping database

/etc/termcap Terminal capability database

SEE ALSO
csh(1), tcsh(1), sh(1),bash(1),stty(1), tty(4), termcap(5), ttytype(5), environ(7)

HISTORY
The tset command appeared in BSD 3.0.

tset, reset

Part I: User Commands542

COMPATIBILITY
The -A, -E, -h, -S, -u, and -v options have been deleted from the tset utility. None of them were documented in 4.3BSD
and all are of limited utility at best. The -a, -d, and -p options are similarly not documented or useful, but were retained as
they appear to be in widespread use. It is strongly recommended that any usage of these three options be changed to use the
-m option instead. The -n option remains, but has no effect. It is still permissible to specify the -e, -i, and -k options
without arguments, although it is strongly recommended that such usage be fixed to explicitly specify the character.

Executing tset as reset no longer implies the -Q option. Also, the interaction between the - option and the terminal
argument in some historic implementations of tset has been removed and has been replaced with -t option.

Finally, the tset implementation has been completely redone as part of the addition to the system of a IEEE Std1003.1-
1988 (POSIX) -compliant terminal interface and will no longer compile on systems with older terminal interfaces.

Linux, 12 January 1995

tsort
tsort—Topological sort of a directed graph

SYNOPSIS
tsort [file]

DESCRIPTION
tsort takes a list of pairs of node names representing directed arcs in a graph and prints the nodes in topological order on
standard output. Input is taken from the named file, or from standard input if no file is given.

Node names in the input are separated by whitespace, and there must be an even number of nodes.

Presence of a node in a graph can be represented by an arc from the node to itself. This is useful when a node is not
connected to any other nodes.

If the graph contains a cycle (and therefore cannot be properly sorted), one of the arcs in the cycle is ignored and the sort
continues. Cycles are reported on standard error.

SEE ALSO
ar(1)

HISTORY
A tsort command appeared in AT&T v7. This tsort command and manual page are derived from sources contributed to
Berkeley by Michael Rendell of Memorial University of Newfoundland.

23 April 1991

twm
twm—Tab Window Manager for the X Window System

SYNTAX
twm [-display dpy][-s][-f initfile][-v]

DESCRIPTION
twm is a window manager for the X Window System. It provides titlebars, shaped windows, several forms of icon manage-
ment, user-defined macro functions, click-to-type and pointer-driven keyboard focus, and user-specified key and pointer
button bindings.

543

This program is usually started by the user’s session manager or startup script. When used from xdm(1) or xinit(1) without a
session manager, twm is frequently executed in the foreground as the last client. When run this way, exiting twm causes the
session to be terminated (logged out).

By default, application windows are surrounded by a “frame” with a titlebar at the top and a special border around the
window. The titlebar contains the window’s name, a rectangle that is lit when the window is receiving keyboard input, and
function boxes known as titlebuttons at the left and right edges of the titlebar.

Pressing pointer Button1 (usually the leftmost button unless it has been changed with xmodmap) on a titlebutton will invoke
the function associated with the button. In the default interface, windows are iconified by clicking (pressing and then
immediately releasing) the left titlebutton (which looks like a dot). Conversely, windows are deiconified by clicking in the
associated icon or entry in the icon manager. (See description of the variable Show-IconManager and of the function
f.showiconmgr.)

Windows are resized by pressing the right titlebutton (which resembles a group of nested squares), dragging the pointer over
the edge that is to be moved, and releasing the pointer when the outline of the window is the desired size. Similarly, windows
are moved by pressing in the title or highlight region, dragging a window outline to the new location, and then releasing
when the outline is in the desired position. Just clicking in the title or highlight region raises the window without moving it.

When new windows are created, twm will honor any size and location information requested by the user (usually through -
geometry command-line argument or resources for the individual applications). Otherwise, an outline of the window’s
default size, its titlebar, and lines dividing the window into a 3×3 grid that track the pointer are displayed. Clicking pointer
Button1 will position the window at the current position and give it the default size. Pressing pointer Button2 (usually the
middle pointer button) and dragging the outline will give the window its current position but allow the sides to be resized as
described above. Clicking pointer Button3 (usually the right pointer button) will give the window its current position but
attempt to make it long enough to touch the bottom of the screen.

OPTIONS
twm accepts the following command-line options:

-display dpy This option specifies the X server to use.

-s This option indicates that only the default screen (as specified by -display or by the DISPLAY environ-
ment variable) should be managed. By default, twm will attempt to manage all screens on the display.

-f filename This option specifies the name of the startup file to use. By default, twm will look in the user’s home
directory for files named .twmrc.num (where num is a screen number) or .twmrc.

-v This option indicates that twm should print error messages whenever an unexpected X Error event is
received. This can be useful when debugging applications but can be distracting in regular use.

CUSTOMIZATION
Much of twm’s appearance and behavior can be controlled by providing a startup file in one of the following locations
(searched in order for each screen being managed when twm begins):

$HOME/.twmrc.screennumber The screennumber is a small positive number (for example, 0, 1, and so on)
representing the screen number (for example, the last number in the DISPLAY
environment variable host:displaynum.screennum) that would be used to contact
that screen of the display. This is intended for displays with multiple screens of
differing visual types.

$HOME/.twmrc This is the usual name for an individual user’s startup file.

<XRoot>/lib/X11/twm/system.twmrc If neither of the preceding files are found, twm will look in this file for a default
configuration. This is often tailored by the site administrator to provide convenient
menus or familiar bindings for novice users. <XRoot> refers to the root of the X11
install tree.

twm

Part I: User Commands544

If no startup files are found, twm will use the built-in defaults described. The only resource used by twm is bitmapFilePath
for a colon-separated list of directories to search when looking for bitmap files. For more information, see the Athena
Widgets manual and xrdb(1).

twm startup files are logically broken up into three types of specifications: Variables, Bindings, and Menus. The Variables
section must come first and is used to describe the fonts, colors, cursors, border widths, icon and window placement,
highlighting, autoraising, layout of titles, warping, and use of the icon manager. The Bindings section usually comes second
and is used to specify the functions that should be invoked when keyboard and pointer buttons are pressed in windows,
icons, titles, and frames. The Menus section gives any user-defined menus (containing functions to be invoked or commands
to be executed).

Variable names and keywords are case-insensitive. Strings must be surrounded by double quote characters (for example,
“blue”) and are case-sensitive. A pound sign (#) outside of a string causes the remainder of the line in which the character
appears to be treated as a comment.

VARIABLES
Many of the aspects of twm’s user interface are controlled by variables that may be set in the user’s startup file. Some of the
options are enabled or disabled simply by the presence of a particular keyword. Other options require keywords, numbers,
strings, or lists of all of these.

Lists are surrounded by braces and are usually separated by whitespace or a newline. For example,

AutoRaise { “emacs” “XTerm” “Xmh” }

or

AutoRaise
{
 “emacs”
 “XTerm”
 “Xmh”
}

When a variable containing a list of strings representing windows is searched (for example, to determine whether or not to
enable autoraise, as shown in the preceding example), a string must be an exact, case-sensitive match to the window’s name
(given by the WM_NAME window property), resource name, or class name (both given by the WM_CLASS window property). The
preceding example would enable autoraise on windows named emacs as well as any xterm (because they are of class XTerm) or
xmh windows (which are of class Xmh).

String arguments that are interpreted as filenames (see Pixmaps, Cursors, and IconDirectory in the following list of
variables) will prepend the user’s directory (specified by the HOME environment variable) if the first character is a tilde (˜). If,
instead, the first character is a colon (:), the name is assumed to refer to one of the internal bitmaps that are used to create
the default titlebars symbols: :xlogo or :delete (both refer to the X logo), :dot or :iconify (both refer to the dot), :resize
(the nested squares used by the resize button), :menu (a page with lines), and :question (the question mark used for
nonexistent bitmap files).

The following variables may be specified at the top of a twm startup file. Lists of Window name prefix strings are indicated by
win-list. Optional arguments are shown in square brackets:

AutoRaise { win-list] This variable specifies a list of windows that should automatically be raised whenever the
pointer enters the window. This action can be interactively enabled or disabled on
individual windows using the function f.autoraise.

AutoRelativeResize This variable indicates that dragging out a window size (either when initially sizing the
window with pointer Button2 or when resizing it) should not wait until the pointer has
crossed the window edges. Instead, moving the pointer automatically causes the nearest edge
or edges to move by the same amount. This allows the resizing of windows that extend off
the edge of the screen. If the pointer is in the center of the window, or if the resize is begun

545

by pressing a titlebutton, twm will still wait for the pointer to cross a window edge (to
prevent accidents). This option is particularly useful for people who like the press-
drag-release method of sweeping out window sizes.

BorderColor string This variable specifies the default color of the border to be placed around all noniconified
windows, [{ wincolorlist }] and may only be given within a Color, Grayscale, or Monochrome list. The optional

wincolorlist specifies a list of window and color name pairs for specifying particular
border colors for different types of windows. For example:

BorderColor

“gray50”

{

“XTerm” “red”

“xmh” “green”

}

The default is black.

BorderTileBackground This variable specifies the default background color in the gray pattern used in string [{
wincolorlist }] unhighlighted borders (only if NoHighlight hasn’t been set), and may only be given within

a Color, Grayscale, or Monochrome list. The optional wincolorlist allows per-window
colors to be specified. The default is white.

BorderTileForeground This variable specifies the default foreground color in the gray pattern used in unhighlighted
string [{ wincolorlist }] borders (only if NoHighlight hasn’t been set), and may only be given within a Color,

Grayscale, or Monochrome list. The optional wincolorlist allows per-window colors to be
specified. The default is black.

BorderWidth pixels This variable specifies the width in pixels of the border surrounding all client window
frames if ClientBorderWidth has not been specified. This value is also used to set the
border size of windows created by twm (such as the icon manager). The default is 2.

ButtonIndent pixels This variable specifies the amount by which titlebuttons should be indented on all sides.
Positive values cause the buttons to be smaller than the window text and highlight area so
that they stand out. Setting this and the TitleButtonBorderWidth variables to 0 makes
titlebuttons as tall and wide as possible. The default is 1.

ClientBorderWidth This variable indicates that border width of a window’s frame should be set to the initial
border width of the window, rather than to the value of BorderWidth.

Color { colors-list } This variable specifies a list of color assignments to be made if the default display is capable
of displaying more than simple black and white. The colors-list is made up of the
following color variables and their values:

DefaultBackground

DefaultForeground

MenuBackground

MenuForeground

MenuTitleBackground

MenuTitleForeground

MenuShadowColor

PointerForeground

PointerBackground

The following color variables may also be given a list of window and color name pairs to
allow per-window colors to be specified (see BorderColor for details):

BorderColor

IconManagerHighlight

BorderTitleBackground

BorderTitleForeground

TitleBackground

twm

Part I: User Commands546

TitleForeground

IconBackground

IconForeground

IconBorderColor

IconManagerBackground

IconManagerForeground

For example:

Color

{

MenuBackground “gray50”

MenuForeground “blue”

BorderColor “red” { “XTerm” “yellow” }

TitleForeground “yellow”

TitleBackground “blue”

}

All of these color variables may also be specified for the Monochrome variable, allowing the
same initialization file to be used on both color and monochrome displays.

ConstrainedMoveTime This variable specifies the length of time between button clicks needed to begin a
milliseconds constrained move peration. Double-clicking within this amount of time when invoking

f.move will cause the window to be moved only in a horizontal or vertical direction. Setting
this value to 0 will disable constrained moves. The default is 400 milliseconds.

Cursors { cursor-list } This variable specifies the glyphs that twm should use for various pointer cursors. Each
cursor may be defined either from the cursor font or from two bitmap files. Shapes from
the cursor font may be specified directly as

0 cursorname “string”

where cursorname is one of the cursor names listed below, and string is the name of a
glyph as found in the file:

<XRoot>/include/X11/cursorfont.h

(without the XC prefix). If the cursor is to be defined from bitmap files, the following syntax
is used instead:

0 cursorname “image” “mask”

The image and mask strings specify the names of files containing the glyph image and mask
in bitmap(1) form. The bitmap files are located in the same manner as icon bitmap files.
The following example shows the default cursor definitions:
Cursors
{
Frame “top_left_arrow”
Title “top_left_arrow”
Icon “top_left_arrow”
IconMgr “top_left_arrow”
Move “fleur”
Resize “fleur”
Menu “sb_left_arrow”
Button “hand2”
Wait “watch”
Select “dot”
Destroy “pirate”
}

DecorateTransients This variable indicates that transient windows (those containing a WM_TRANSIENT_FOR
property) should have titlebars. By default, transients are not reparented.

DefaultBackground string This variable specifies the background color to be used for sizing and information windows.
The default is white.

547

DefaultForeground string This variable specifies the foreground color to be used for sizing and information windows.
The default is black.

DontIconifyByUnmapping This variable specifies a list of windows that should not be iconified window (as would be
{ win-list } the case if IconifyByUnmapping had been set). This is frequently used to force some

windows to be treated as icons while other windows are handled by the icon manager.

DontMoveOff This variable indicates that windows should not be allowed to be moved off the screen. It
can be overridden by the f.forcemove function.

DontSqueezeTitle This variable indicates that titlebars should not be squeezed to their minimum size as
[{ win-list }] described under SqueezeTitle below. If the optional window list is supplied, only those

windows will be prevented from being squeezed.

ForceIcons This variable indicates that icon pixmaps specified in the Icons variable should override any
client-supplied pixmaps.

FramePadding pixels This variable specifies the distance between the titlebar decorations (the button and text)
and the window frame. The default is 2 pixels.

Grayscale { colors } This variable specifies a list of color assignments that should be made if the screen has a
GrayScale default visual. See the description of Colors.

IconBackground string This variable specifies the background color of icons, and may only be specified inside of a
[{ win-list }] Color, Grayscale, or Monochrome list. The optional win-list is a list of window names and

colors so that per-window colors may be specified. See the Border-Color variable for a
complete description of the win-list. The default is white.

IconBorderColor string This variable specifies the color of the border used for icon windows, and may only be
[{ win-list }] specified inside of a Color, Grayscale, or Monochrome list. The optional win-list is a list

of window names and colors so that per-window colors may be specified. See the
BorderColor variable for a complete description of the win-list. The default is black.

IconBorderWidth pixels This variable specifies the width in pixels of the border surrounding icon windows. The
default is 2.

IconDirectory string This variable specifies the directory that should be searched if a bitmap file cannot be found
in any of the directories in the bitmapFilePath resource.

IconFont string This variable specifies the font to be used to display icon names within icons. The default is
variable.

IconForeground string This variable specifies the foreground color to be used when displaying icons, and may only
[{ win-list }] be specified inside of a Color, Grayscale, or Monochrome list. The optional win-list is a

list of window names and colors so that per-window colors may be specified. See the
BorderColor variable for a complete description of the win-list. The default is black.

IconifyByUnmapping This variable indicates that windows should be iconified by being unmapped without
[{ win-list }] trying to map any icons. This assumes that the user will remap the window through the

icon manager, the f.warpto function, or the TwmWindows menu. If the optional win-list is
provided, only those windows will be iconified by simply unmapping. Windows that have
both this and the IconManager DontShow options set may not be accessible if no binding to
the TwmWindows menu is set in the user’s startup file.

IconManagerBackground This variable specifies the background color to use for icon manager entries, and may only
string [{ win-list }] be specified inside of a Color, Grayscale, or Monochrome list. The optional win-list is a

list of window names and colors so that per-window colors may be specified. See the
BorderColor variable for a complete description of the win-list. The default is white.

IconManagerDontShow This variable indicates that the icon manager should not display any windows. If the
[{ win-list }] optional win-list is given, only those windows will not be displayed. This variable is used

to prevent windows that are rarely iconified (such as xclock or xload) from taking up
space in the icon manager.

twm

Part I: User Commands548

IconManagerFont string This variable specifies the font to be used when displaying icon manager entries. The default
is variable.

IconManagerForeground This variable specifies the foreground color to be used when displaying icon manager
string [{ win-list }] entries, and may be specified only inside of a Color, Grayscale, or Monochrome list. The

optional win-list is a list of window names and colors so that per-window colors may be
specified. See the BorderColor variable for a complete description of the win-list. The
default is black.

IconManagerGeometry This variable specifies the geometry of the icon manager window. The string argument is
string [columns] standard geometry specification that indicates the initial full size of the icon manager. The

icon manager window is then broken into columns pieces and scaled according to the
number of entries in the icon manager. Extra entries are wrapped to form additional rows.
The default number of columns is 1.

IconManagerHighlight This variable specifies the border color to be used when highlighting the icon manager entry
string [{ win-list }] that currently has the focus, and can only be specified inside of a Color, Grayscale, or

Monochrome list. The optional win-list is a list of window names and colors so that per-
window colors may be specified. See the Border-Color variable for a complete description
of the win-list. The default is black.

IconManagers This variable specifies a list of icon managers to
{ iconmgr-list } create. Each item in the iconmgr-list has the following format:

 0 “win-name”[“iconname”]
“geometry” columns

where winname is the name of the windows that should be put into this icon manager,
iconname is the name of that icon manager window’s icon, geometry is a standard geometry
specification, and columns is the number of columns in this icon manager as described in
Icon-ManagerGeometry. For example:

IconManagers

{

”XTerm” “=300x5+800+5” 5

”myhost” “=400x5+100+5” 2

}

Clients whose name or class is XTerm will have an entry created in the XTerm icon manager.
Clients whose name was myhost would be put into the myhost icon manager.

IconManagerShow{ win-list } This variable specifies a list of windows that should appear in the icon manager. When used
in conjunction with the IconManagerDontShow variable, only the windows in this list will be
shown in the icon manager.

IconRegion geomstring This variable specifies an area on the root window in which icons are placed if no specific
vgrav hgrav gridwidth icon location is provided by the client. The geomstring is a quoted string containing a
gridheight standard geometry specification. If more than one IconRegion line is given, icons will be

put into the succeeding icon regions when the first is full. The vgrav argument should be
either North or South and is used to control whether icons are first filled in from the
top or bottom of the icon region. Similarly, the hgrav argument should be either East or
West and is used to control whether icons should be filled in from the left or from
the right. Icons are laid out within the region in a grid with cells gridwidth pixels wide and
gridheight pixels high.

Icons { win-list } This variable specifies a list of window names and the bitmap filenames that should be used
as their icons. For example,

Icons

{

”XTerm” “xterm.icon”

”xfd” “xfd_icon”

}

549

Windows that match “XTerm” and would not be iconified by unmapping would try to use
the icon bitmap in the file xterm.icon. If ForceIcons is specified, this bitmap will be used
even if the client has requested its own icon pixmap.

InterpolateMenuColors This variable indicates that menu entry colors should be interpolated between entry
specified colors. In this example,

Menu “mymenu”

{

”Title” (“black”:”red”) f.title

”entry1" f.nop

”entry2" f.nop

”entry3" (“white”:”green”) f.nop

”entry4" f.nop

”entry5" (“red”:”white”) f.nop

}

the foreground colors for “entry1” and “entry2” will be interpolated between black and
white, and the background colors between red and green. Similarly, the foreground for
“entry4” will be halfway between white and red, and the background will be halfway
between green and white.

MakeTitle { win-list } This variable specifies a list of windows on which a title-bar should be placed and is used
to request titles on specific windows when NoTitle has been set.

MaxWindowSize string This variable specifies a geometry in which the width and height give the maximum size for
a given window. This is typically used to restrict windows to the size of the screen. The
default width is 32767—screen width. The default height is 32767—screen height.

MenuBackground string This variable specifies the background color used for menus, and can only be specified
inside of a Color or Monochrome list. The default is white.

MenuFont string This variable specifies the font to use when displaying menus. The default is variable.

MenuForeground string This variable specifies the foreground color used for menus and can only be specified inside
of a Color, Grayscale, or Monochrome list. The default is black.

MenuShadowColor string This variable specifies the color of the shadow behind pull-down menus and can only be
specified inside of a Color, Grayscale, or Monochrome list. The default is black.

MenuTitleBackground string This variable specifies the background color for f.title entries in menus, and can only be
specified inside of a Color, Grayscale, or Monochrome list. The default is white.

MenuTitleForeground string This variable specifies the foreground color for f.title entries in menus and can only be
specified inside of a Color or Monochrome list. The default is black.

Monochrome { colors } This variable specifies a list of color assignments that should be made if the screen has a
depth of 1. See the description of Colors.

MoveDelta pixels This variable specifies the number of pixels the pointer must move before the f.move
function starts working. Also see the f.deltastop function. The default is zero pixels.

NoBackingStore This variable indicates that twm’s menus should not request backing store to minimize
repainting of menus. This is typically used with servers that can repaint faster than they can
handle backing store.

NoCaseSensitive This variable indicates that case should be ignored when sorting icon names in an icon
manager. This option is typically used with applications that capitalize the first letter of
their icon name.

NoDefaults This variable indicates that twm should not supply the default titlebuttons and bindings.
This option should only be used if the startup file contains a completely new set of bindings
and definitions.

NoGrabServer This variable indicates that twm should not grab the server when popping up menus and
moving opaque windows.

twm

Part I: User Commands550

NoHighlight [{ win-list }] This variable indicates that borders should not be highlighted to track the location of the
pointer. If the optional win-list is given, highlighting will only be disabled for those
windows. When the border is highlighted, it will be drawn in the current BorderColor.
When the border is not highlighted, it will be stippled with a gray pattern using the current
BorderTileForeground and BorderTileBack-ground colors.

NoIconManagers This variable indicates that no icon manager should be created.

NoMenuShadows This variable indicates that menus should not have drop shadows drawn behind them. This
is typically used with slower servers because it speeds up menu drawing at the expense of
making the menu slightly harder to read.

NoRaiseOnDeiconify This variable indicates that windows that are deiconified should not be raised.

NoRaiseOnMove This variable indicates that windows should not be raised when moved. This is typically
used to allow windows to slide underneath each other.

NoRaiseOnResize This variable indicates that windows should not be raised when resized. This is typically
used to allow windows to be resized underneath each other.

NoRaiseOnWarp This variable indicates that windows should not be raised when the pointer is warped into
them with the f.warpto function. If this option is set, warping to an occluded window may
result in the pointer ending up in the occluding window instead the desired window, which
causes unexpected behavior with f.warpring.

NoSaveUnders This variable indicates that menus should not request save-unders to minimize window
repainting following menu selection. It is typically used with displays that can repaint faster
than they can handle save-unders.

NoStackMode [{ win-list }] This variable indicates that client window requests to change stacking order should be
ignored. If the optional win-list is given, only requests on those windows will be ignored.
This is typically used to prevent applications from relentlessly popping themselves to the
front of the window stack.

NoTitle [{ win-list }] This variable indicates that windows should not have title-bars. If the optional win-list is
given, only those windows will not have titlebars. MakeTitle may be used with this option
to force titlebars to be put on specific windows.

NoTitleFocus This variable indicates that twm should not set keyboard input focus to each window as it is
entered. Normally, twm sets the focus so that focus and key events from the titlebar and icon
managers are delivered to the application. If the pointer is moved quickly and twm is slow to
respond, input can be directed to the old window instead of the new. This option is
typically used to prevent this input lag and to work around bugs in older applications that
have problems with focus events.

NoTitleHighlight This variable indicates that the highlight area of the titlebar, which is used to indicate the
[{ win-list }] window that currently has the input focus, should not be displayed. If the optional win-

list is given, only those windows will not have highlight areas. This and the SqueezeTitle
options can be set to substantially reduce the amount of screen space required by titlebars.

OpaqueMove This variable indicates that the f.move function should actually move the window instead of
just an outline so that the user can immediately see what the window will look like in the
new position. This option is typically used on fast displays (particularly if NoGrabServer is
set).

Pixmaps { pixmaps } This variable specifies a list of pixmaps that define the appearance of various images. Each
entry is a keyword indicating the pixmap to set, followed by a string giving the name of the
bitmap file. The following pixmaps may be specified: 0 Pixmaps { TitleHighlight
“gray1” }

The default for TitleHighlight is to use an even stipple pattern.

Priority priority This variable sets twm’s priority. priority should be an unquoted, signed number (for
example, 999). This variable has an effect only if the server supports the SYNC extension.

RandomPlacement This variable indicates that windows with no specified geometry should be placed in a
pseudorandom location instead of having the user drag out an outline.

551

ResizeFont string This variable specifies the font to be used for in the dimensions window when resizing
windows. The default is fixed.

RestartPreviousState This variable indicates that twm should attempt to use the WM_STATE property on client
windows to tell which windows should be iconified and which should be left visible. This is
typically used to try to regenerate the state that the screen was in before the previous
window manager was shutdown.

SaveColor { colors-list } This variable indicates a list of color assignments to be stored as pixel values in the root
window property _MIT_PRIORITY_COLORS. Clients may elect to preserve these values when
installing their own colormaps. Note that use of this mechanism is a way for an application
to avoid the “technicolor” problem, whereby useful screen objects such as window borders
and titlebars disappear when a program’s custom colors are installed by the window
manager. For example:

SaveColor

{

BorderColor

TitleBackground

TitleForeground

”red”

”green”

”blue”

}

This would place on the root window three pixel values for borders and titlebars, as well as
the three color strings, all taken from the default colormap.

ShowIconManager This variable indicates that the icon manager window should be displayed when twm is
started. It can always be brought up using the f.showiconmgr function.

SortIconManager This variable indicates that entries in the icon manager should be sorted alphabetically
rather than by simply appending new windows to the end.

SqueezeTitle This variable indicates that twm should attempt to use the SHAPE extension to make titlebars
[{ squeeze-list }] occupy only as much screen space as they need, rather than extending all the way across the

top of the window. The optional squeeze-list may be used to control the location of the
squeezed titlebar along the top of the window. It contains entries of the form: 0 “name”
justification num denom where name is a window name, justification is either left,
center, or right, and num and denom are numbers specifying a ratio giving the relative
position about which the titlebar is justified. The ratio is measured from left to right if the
numerator is positive, and right to left if negative. A denominator of 0 indicates that the
numerator should be measured in pixels. For convenience, the ratio 0/0 is the same as 1/2
for center and -1/1 for right. For example,

SqueezeTitle { “XTerm” left 0 0 “xterm1” left 1 3 “xterm2” left 2 3

”oclock” center 0 0 “emacs” right 0 0 }

The DontSqueezeTitle list can be used to turn off squeezing on certain titles.

StartIconified This variable indicates that client windows should initially be left as icons until explicitly
[{ win-list }] deiconified by the user. If the optional win-list is given, only those windows will be

started iconic. This is useful for programs that do not support an -iconic command-line
option or resource.

TitleBackground string This variable specifies the background color used in titlebars, and may only be specified
[{ win-list }] inside of a Color, Grayscale, or Monochrome list. The optional win-list is a list of window

names and colors so that per-window colors may be specified. The default is white.

TitleButtonBorderWidth This variable specifies the width in pixels of the border surrounding titlebuttons. This is
pixels typically set to 0 to allow titlebuttons to take up as much space as possible and to not have a

border. The default is 1.

twm

Part I: User Commands552

TitleFont string This variable specifies the font to be used for displaying window names in titlebars. The
default is variable.

TitleForeground string This variable specifies the foreground color used in titlebars, and may only be specified
[{ win-list }] inside of a Color, Grayscale, or Monochrome list. The optional win-list is a list of window

names and colors so that per-window colors may be specified. The default is black.

TitlePadding pixels This variable specifies the distance between the various buttons, text, and highlight areas in
the titlebar. The default is 8 pixels.

UnknownIcon string This variable specifies the filename of a bitmap file to be used as the default icon. This
bitmap will be used as the icon of all clients that do not provide an icon bitmap and are not
listed in the Icons list.

UsePPosition string This variable specifies whether or not twm should honor program-requested locations (given
by the PPosition flag in the WM_NORMAL_HINTS property) in the absence of a user-specified
position. The argument string may have one of three values: off (the default), indicating
that twm should ignore the program-supplied position; on, indicating that the position
should be used; and non-zero, indicating that the position should used if it is other than
(0,0). The latter option is for working around a bug in older toolkits.

WarpCursor [{ win-list }] This variable indicates that the pointer should be warped into windows when they are
deiconified. If the optional win-list is given, the pointer will only be warped when those
windows are deiconified.

WindowRing { win-list } This variable specifies a list of windows along which the f.warpring function cycles.

WarpUnmapped This variable indicates that the f.warpto function should deiconify any iconified windows
it encounters. This is typically used to make a key binding that will pop up a particular
window (such as xmh) no matter where it is. The default is for f.warpto to ignore iconified
windows.

XorValue number This variable specifies the value to use when drawing window outlines for moving and
resizing. This should be set to a value that will result in a variety of distinguishable colors
when exclusive OR is used with the contents of the user’s typical screen. Setting this variable
to 1 often gives nice results if adjacent colors in the default colormap are distinct. By
default, twm will attempt to cause temporary lines to appear at the opposite end of the
colormap from the graphics.

Zoom [count] This variable indicates that outlines suggesting movement of a window to and from its
iconified state should be displayed whenever a window is iconified or deiconified. The
optional count argument specifies the number of outlines to be drawn. The default count
is 8.

The following variables must be set after the fonts have been assigned, so it is usually best to put them at the end of the
variables or at the beginning of the bindings sections:

DefaultFunction function This variable specifies the function to be executed when a key or button event is received for
which no binding is provided. This is typically bound to f.nop, f.beep, or a menu
containing window operations.

WindowFunction function This variable specifies the function to execute when a window is selected from the
TwmWindows menu. If this variable is not set, the window will be deiconified and raised.

BINDINGS
After the desired variables have been set, functions may be attached titlebuttons and key and pointer buttons. Titlebuttons
may be added from the left or right side and appear in the titlebar from left to right according to the order in which they are
specified. Key and pointer button bindings may be given in any order.

Titlebuttons’ specifications must include the name of the pixmap to use in the button box and the function to be invoked
when a pointer button is pressed within them:

553

0 LeftTitleButton “bitmapname”=function

or

0 RightTitleButton “bitmapname”=function

The bitmapname may refer to one of the built-in bitmaps (which are scaled to match Title-Font) by using the appropriate
colon-prefixed name described earlier.

Key and pointer button specifications must give the modifiers that must be pressed, over which parts of the screen the
pointer must be, and what function is to be invoked. Keys are given as strings containing the appropriate keysym name;
buttons are given as the keywords Button1-Button5: 0 “FP1” = modlist : context : function Button1 = modlist :
context : function

The modlist is any combination of the modifier names shift, control, lock, meta, mod1, mod2, mod3, mod4, or mod5 (which
may be abbreviated as s, c, l, m, m1, m2, m3, m4, m5, respectively) separated by a vertical bar (|). Similarly, the context is any
combination of window, title, icon, root, frame, iconmgr, their first letters (iconmgr abbreviation is m), or all, separated
by a vertical bar. The function is any of the f keywords described in the following list. For example, the default startup file
contains the following bindings:

Button1 = : root : f.menu “TwmWindows”

Button1 = m : window | icon : f.function “move-or-lower”

Button2 = m : window | icon : f.iconify

Button3 = m : window | icon : f.function “move-or-raise”

Button1 = : title : f.function “move-or-raise”

Button2 = : title : f.raiselower

Button1 = : icon : f.function “move-or-iconify”

Button2 = : icon : f.iconify

Button1 = : iconmgr : f.iconify

Button2 = : iconmgr : f.iconify

A user who wanted to be able to manipulate windows from the keyboard could use the following bindings:

“F1” = : all : f.iconify

“F2” = : all : f.raiselower

“F3” = : all : f.warpring “next”

“F4” = : all : f.warpto “xmh”

“F5” = : all : f.warpto “emacs”

“F6” = : all : f.colormap “next”

“F7” = : all : f.colormap “default”

“F20” = : all : f.warptoscreen “next”

“Left” = m : all : f.backiconmgr

“Right” = m | s : all : f.forwiconmgr

“Up” = m : all : f.upiconmgr

“Down” = m | s : all : f.downiconmgr

twm provides many more window manipulation primitives than can be conveniently stored in a titlebar, menu, or set of key
bindings. Although a small set of defaults is supplied (unless the NoDefaults is specified), most users will want to have their
most common operations bound to key and button strokes. To do this, twm associates names with each of the primitives and
provides user-defined functions for building higher level primitives and menus for interactively selecting among groups of
functions.

twm

Part I: User Commands554

User-defined functions contain the name by which they are referenced in calls to f.function and a list of other functions to
execute. For example,

Function “move-or-lower” { f.move f.deltastop f.lower }

Function “move-or-raise” { f.move f.deltastop f.raise }

Function “move-or-iconify” { f.move f.deltastop f.iconify }

Function “restore-colormap” { f.colormap “default” f.lower }

The function name must be used in f.function exactly as it appears in the function specification.

In the following descriptions, if the function is said to operate on the selected window, but is invoked from a root menu, the
cursor will be changed to the Select cursor and the next window to receive a button press will be chosen:

! string This is an abbreviation for f.exec string.

f.autoraise This function toggles whether or not the selected window is raised whenever entered by the
pointer. See the description of the variable AutoRaise.

f.backiconmgr This function warps the pointer to the previous column in the current icon manager,
wrapping back to the previous row if necessary.

f.beep This function sounds the keyboard bell.

f.bottomzoom This function is similar to the f.fullzoom function, but resizes the window to fill only the
bottom half of the screen.

f.circledown This function lowers the topmost window that occludes another window.

f.circleup This function raises the bottommost window that is occluded by another window.

f.colormap string This function rotates the colormaps (obtained from the WM_COLORMAP_WINDOWS property on
the window) that twm will display when the pointer is in this window. The argument
string may have one of the following values: next, prev, and default. It should be noted
here that in general, the installed colormap is determined by keyboard focus. A pointer-
driven keyboard focus will install a private colormap upon entry of the window owning the
colormap. Using the click-to-type model, private colormaps will not be installed until the
user clicks on the target window.

f.deiconify This function deiconifies the selected window. If the window is not an icon, this function
does nothing.

f.delete This function sends the WM_DELETE_WINDOW message to the selected window if the client
application has requested it through the WM_PROTOCOLS window property. The application is
supposed to respond to the message by removing the indicated window. If the window has
not requested WM_DELETE_WINDOW messages, the keyboard bell will be rung, indicating that
the user should choose an alternative method. Note this is very different from f.destroy.
The intent here is to delete a single window, not necessarily the entire application.

f.deltastop This function allows a user-defined function to be aborted if the pointer has been moved
more than MoveDelta pixels. See the example definition given for Function “move-or-
raise” at the beginning of the section.

f.destroy This function instructs the X server to close the display connection of the client that created
the selected window. This should only be used as a last resort for shutting down runaway
clients. See also f.delete.

f.downiconmgr This function warps the pointer to the next row in the current icon manger, wrapping to
the beginning of the next column if necessary.

f.exec string This function passes the argument string to /bin/sh for execution. In multiscreen mode,
if string starts a new X client without giving a display argument, the client will appear on
the screen from which this function was invoked.

f.focus This function toggles the keyboard focus of the server to the selected window, changing the
focus rule from pointer-driven if necessary. If the selected window already was focused, this
function executes an f.unfocus.

555

f.forcemove This function is like f.move except that it ignores the DontMoveOff variable.

f.forwiconmgr This function warps the pointer to the next column in the current icon manager, wrapping
to the beginning of the next row if necessary.

f.fullzoom This function resizes the selected window to the full size of the display or else restores the
original size if the window was already zoomed.

f.function string This function executes the user-defined function whose name is specified by the argument
string.

f.hbzoom This function is a synonym for f.bottomzoom.

f.hideiconmgr This function unmaps the current icon manager.

f.horizoom This variable is similar to the f.zoom function except that the selected window is resized to
the full width of the display.

f.htzoom This function is a synonym for f.topzoom.
f.hzoom This function is a synonym for f.horizoom.

f.iconify This function iconifies or deiconifies the selected window or icon, respectively.

f.identify This function displays a summary of the name and geometry of the selected window. If the
server supports the SYNC extension, the priority of the client owning the window is also
displayed. Clicking the pointer or pressing a key in the window will dismiss it.

f.lefticonmgr This function is similar to f.backiconmgr except that wrapping does not change rows.

f.leftzoom This variable is similar to the f.bottomzoom function but causes the selected window to be
resized only on the left half of the display.

f.lower This function lowers the selected window.

f.menu string This function invokes the menu specified by the argument string. Cascaded menus may be
built by nesting calls to f.menu.

f.move This function drags an outline of the selected window (or the window itself if the
OpaqueMove variable is set) until the invoking pointer button is released. Double-clicking
within the number of milliseconds given by ConstrainedMoveTime warps the pointer to the
center of the window and constrains the move to be either horizontal or vertical, depending
on which grid line is crossed. To abort a move, press another button before releasing the
first button.

f.nexticonmgr This function warps the pointer to the next icon manager containing any windows on the
current or any succeeding screen.

f.nop This function does nothing and is typically used with the Default-Function or
WindowFunction variables or to introduce blank lines in menus.

f.previconmgr This function warps the pointer to the previous icon manager containing any windows on
the current or preceding screens.

f.priority string This function sets the priority of the client owning the selected window to the numeric
value of the argument string, which should be a signed integer in double quotes (for
example, “999”). This function has an effect only if the server supports the SYNC extension.

f.quit This function causes twm to restore the window’s borders and exit. If twm is the first client
invoked from xdm, this will result in a server reset.

f.raise This function raises the selected window.

f.raiselower This function raises the selected window to the top of the stacking order if it is occluded by
any windows; otherwise, the window is lowered.

f.refresh This function causes all windows to be refreshed.

f.resize This function displays an outline of the selected window. Crossing a border (or setting
AutoRelativeResize) will cause the outline to begin to rubber band until the invoking
button is released. To abort a resize, press another button before releasing the first button.

f.restart This function kills and restarts twm.

f.righticonmgr This function is similar to f.nexticonmgr except that wrapping does not change rows.

twm

Part I: User Commands556

f.rightzoom This variable is similar to the f.bottomzoom function except that the selected window is
only resized to the right half of the display.

f.saveyourself This function sends a WM_SAVEYOURSELF message to the selected window if it has requested
the message in its WM_PROTOCOLS window property. Clients that accept this message are
supposed to checkpoint all states associated with the window and update the WM_COMMAND
property as specified in the ICCCM. If the selected window has not been selected for this
message, the keyboard bell will be rung.

f.showiconmgr This function maps the current icon manager.

f.sorticonmgr This function sorts the entries in the current icon manager alphabetically. See the variable
SortIconManager.

f.title This function provides a centered, unselectable item in a menu definition. It should not be
used in any other context.

f.topzoom This variable is similar to the f.bottomzoom function except that the selected window is
only resized to the top half of the display.

f.unfocus This function resets the focus back to pointer-driven. This should be used when a focused
window is no longer desired.

f.upiconmgr This function warps the pointer to the previous row in the current icon manager, wrapping
to the last row in the same column if necessary.

f.vlzoom This function is a synonym for f.leftzoom.

f.vrzoom This function is a synonym for f.rightzoom.

f.warpring string This function warps the pointer to the next or previous window (as indicated by the
argument string, which may be “next” or “prev”) specified in the WindowRing variable.

f.warpto string This function warps the pointer to the window that has a name or class that matches
string. If the window is iconified, it will be deiconified if the variable WarpUnmapped is set
or else ignored.

f.warptoiconmgr string This function warps the pointer to the icon manager entry associated with the window
containing the pointer in the icon manager specified by the argument string. If string is
empty (that is, “”), the current icon manager is chosen.

f.warptoscreen string This function warps the pointer to the screen specified by the argument string. string
may be a number (such as “0” or “1”), the word “next” (indicating the current screen plus
1, skipping over any unmanaged screens), the word “back” (indicating the current screen
minus 1, skipping over any unmanaged screens), or the word “prev” (indicating the last
screen visited.

f.winrefresh This function is similar to the f.refresh function except that only the selected window is
refreshed.

f.zoom This function is similar to the f.fullzoom function, except that only the height of the
selected window is changed.

MENUS
Functions may be grouped and interactively selected using pop-up (when bound to a pointer button) or pull-down (when
associated with a titlebutton) menus. Each menu specification contains the name of the menu as it will be referred to by
f.menu, optional default foreground and background colors, the list of item names and the functions they should invoke,
and optional foreground and background colors for individual items:

Menu “menuname”[(“deffore”:”defback”)] { string1 [(“fore1”:”backn”)] function1 string2

[(“fore2”:”backn”)] function2 ...stringN [(“foreN”:”backN”)] functionN }

The menuname is case-sensitive. The optional deffore and defback arguments specify the foreground and background colors
used on a color display to highlight menu entries. The string portion of each menu entry will be the text that will appear in
the menu. The optional fore and back arguments specify the foreground and background colors of the menu entry when the

557

pointer is not in the entry. These colors will only be used on a color display. The default is to use the colors specified by the
MenuForeground and MenuBackground variables. The function portion of the menu entry is one of the functions, including
any user-defined functions, or additional menus.

There is a special menu named TwmWindows that contains the names of all of the client and twm-supplied windows. Selecting
an entry will cause the WindowFunction to be executed on that window. If WindowFunction hasn’t been set, the window will
be deiconified and raised.

ICONS
twm supports several different ways of manipulating iconified windows. The common pixmap-and-text style may be laid out
by hand or automatically arranged as described by the IconRegion variable. In addition, a terse grid of icon names, called an
icon manager, provides a more efficient use of screen space as well as the ability to navigate among windows from the
keyboard.

An icon manager is a window that contains names of selected windows or all windows currently on the display. In addition
to the window name, a small button using the default iconify symbol will be displayed to the left of the name when the
window is iconified. By default, clicking on an entry in the icon manager performs f.iconify. To change the actions taken
in the icon manager, use the iconmgr context when specifying button and keyboard bindings.

If you move the pointer into the icon manager, the keyboard focus is also directed to the indicated window (setting the focus
explicitly or else sending synthetic events NoTitleFocus is set). Using the f.upiconmgr, f.downiconmgr, f.lefticonmgr,
and f.righticonmgr functions, the input focus can be changed between windows directly from the keyboard.

BUGS
The resource manager should have been used instead of all of the window lists.

The IconRegion variable should take a list.

Double-clicking very fast to get the constrained move function will sometimes cause the window to move, even though the
pointer is not moved.

If IconifyByUnmapping is on and windows are listed in IconManagerDontShow but not in DontIconifyByUnmapping, they
may be lost if they are iconified and no bindings to f.menu “TwmWindows” or f.warpto are setup.

FILES
$HOME/.twmrc.<screen number>
$HOME/.twmrc
<XRoot>/lib/X11/twm/system.twmrc

ENVIRONMENT VARIABLES
DISPLAY This variable is used to determine which X server to use. It is also set during f.exec so that programs come up on

the proper screen.

HOME This variable is used as the prefix for files that begin with a tilde and for locating the twm startup file.

SEE ALSO
X(1), Xserver(1), xdm(1), xrdb(1)

AUTHORS
Tom LaStrange, Solbourne Computer; Jim Fulton, MIT X Consortium; Steve Pitschke, Stardent Computer; Keith Packard,
MIT X Consortium; Dave Payne, Apple Computer.

SEE ALSO
X(1), Xserver(1), x

X Version 11 Release 6

twm

Part I: User Commands558

txt2gcal
txt2gcal—Creates a verbatim gcal resource file from a text file

SYNOPSIS
txt2gcal [--help | --version] | [Text-file | -][Date-part]

DESCRIPTION
txt2gcal is a program that creates a verbatim gcal resource file from a text file. If no text-file or - argument is given, the
program reads and processes all input received from the standard input channel. If no date-part argument is given,
txt2gcal creates a 0 for the date part. All results are always shown on the standard output channel. An exit status of 0 means
all processing is successfully done; any other value means an error has occurred.

OPTIONS
--help Print a usage message listing all available options, then exit successfully.

--version Print the version number, then exit successfully.

COPYRIGHT
Copyright 1996 Thomas Esken. This software doesn’t claim completeness, correctness, or usability. On principle, I will not
be liable for any damages or losses (implicit or explicit), which result from using or handling my software. If you use this
software, you agree without any exception to this agreement, which binds you legally.

txt2cal is free software and distributed under the terms of the GNU General Public License; published by the Free Software
Foundation; version 2 or (at your option) any later version.

Any suggestions, improvements, extensions, bug reports, donations, proposals for contract work, and so forth are welcome. If
you like this tool, I’d appreciate a postcard from you!

Enjoy it =8ˆ)

AUTHOR
Thomas Esken (esken@uni-muenster.de)
m Hagenfeld 84
D-48147 Muenster; Germany
Phone : +49 251 232585

SEE ALSO
gcal(1), tcal(1)

16 July 1996

ul
ul—Do underlining

SYNOPSIS
ul [-i] [-t terminal] [name ...]

DESCRIPTION
Ul reads the named files (or standard input if none are given) and translates occurrences of underscores to the sequence that
indicates underlining for the terminal in use, as specified by the environment variable TERM . The file /etc/termcap is read to
determine the appropriate sequences for underlining. If the terminal is incapable of underlining but is capable of a standout

559

mode, then that is used instead. If the terminal can overstrike, or handles underlining automatically, ul degenerates to
cat(1). If the terminal cannot underline, underlining is ignored.

The following options are available:

-i Underlining is indicated by a separate line containing appropriate dashes -; this is useful when you want to
look at the underlining which is present in an nroff output stream on a CRT terminal.

-t terminal Overrides the terminal type specified in the environment with terminal.

ENVIRONMENT
The following environment variable is used

TERM Relates a tty device with its device capability description; see termcap(5). TERM is set at login time, either
by the default terminal type specified in /etc/ttys or as set during the login process by the user in the
login file; see setenv(1).

SEE ALSO
man(1), nroff(1), colcrt(1)

BUGS
nroff usually outputs a series of backspaces and underlines intermixed with the text to indicate underlining. No attempt is
made to optimize the backward motion.

HISTORY
The ul command appeared in BSD 3.0.

BSD 4, 6 June 1993

unexpand
unexpand—Convert spaces to tabs

SYNOPSIS
unexpand [-tab1[,tab2[,...]]] [-t tab1[,tab2[,...]]] [-a][--tabs=tab1[,tab2[,...]]]
[--all] [--help] [--version] [file...]

DESCRIPTION
This manual page documents the GNU version of unexpand. unexpand writes the contents of each given file, or the standard
input if none are given or when a file named - is given, to the standard output, with strings of two or more space or tab
characters converted to as many tabs as possible followed by as many spaces as are needed. By default, unexpand converts
only initial spaces and tabs (those that precede all characters that aren’t spaces or tabs) on each line. It preserves backspace
characters in the output; they decrement the column count for tab calculations. By default, tabs are set at every 8th column.

OPTIONS
-, -t, --tabs tab1[,tab2[,...]] If only one tab stop is given, set the tabs tab1 spaces apart instead of the default 8.

Otherwise, set the tabs at columns tab1, tab2, and so on (numbered from 0) and
leave spaces and tabs beyond the tab stops given unchanged. If the tab stops are
specified with the -t or --tabs option, they can be separated by blanks as well as by
commas. This option implies the -a option.

-a, --all Convert all strings of two or more spaces or tabs, not just initial ones, to tabs.

--help Print a usage message and exit with a non-zero status.

--version Print version information on standard output, then exit.

GNU Text Utilities

unexpand

Part I: User Commands560

uniq
uniq—Remove duplicate lines from a sorted file

SYNOPSIS
uniq [-cdu] [-f skip-fields] [-s skip-chars] [-w check-chars] [-#skip-fields]
[+#skip-chars] [--count] [--repeated] [--unique] [--skip-fields=skip-fields]
[--skip-chars=skip-chars] [--check-chars=check-chars] [--help] [--version]
[infile] [outfile]

DESCRIPTION
This manual page documents the GNU version of uniq. uniq prints the unique lines in a sorted file, discarding all but one of
a run of matching lines. It can optionally show only lines that appear exactly once, or lines that appear more than once. uniq
requires sorted input because it compares only consecutive lines.

If the output file is not specified, uniq writes to the standard output. If the input file is not specified, it reads from the
standard input.

OPTIONS
-u, --unique Only print unique lines

-d, --repeated Only print duplicate lines

-c, --count Print the number of times each line occurred along with the line

-number, -f, In this option, number is an integer representing the number of fields to skip over
--skip-fields=number before checking for uniqueness. The first number fields, along with any blanks

found before number fields is reached, are skipped over and not counted. Fields are
defined as a strings of nonspace, nontab characters that are separated from each
other by spaces and tabs.

+number, -s, In this option, number is an integer representing the number of characters to skip
--skip-chars=number over before checking for uniqueness. The first number characters, along with any

blanks found before number characters is reached, are skipped over and not counted.
If you use both the field and character skipping options, fields are skipped over first.

-w, Specify the number of characters to compare in the lines, after skipping any specified fields
--check-chars=number and characters. Normally, the entire remainder of the lines are compared.

--help Print a usage message and exit with a non-zero status.

--version Print version information on standard output, then exit.

GNU Text Utilities

unshar
unshar—Unpack a shar file

SYNOPSIS
unshar [-d directory] [-c][-e | -E exit_line] [file ...]

DESCRIPTION
unshar scans mail messages looking for the start of a shell archive. It then passes the archive through a copy of the shell
to unpack it. It will accept multiple files. If no files are given, standard input is used. This manual page reflects unshar
version 4.0.

561

OPTIONS
Options have a one-letter version starting with - or a long version starting with --. The exceptions are --help and --
version, which don’t have a short version.

--version Print the version number of the program on standard output, then immediately exit.

--help Print a help summary on standard output, then immediately exit.

-d DIRECTORY Change directory to DIRECTORY
--directory=DIRECTORY before unpacking any files.

-c --overwrite Passed as an option to the shar file. Many shell archive scripts (including those produced by
shar 3.40 and newer) accept a -c argument to indicate that existing files should be
overwritten.

-e --exit-0 This option exists mainly for people who collect many shell archives into a single mail
folder. With this option, unshar isolates each different shell archive from the others that
have been put in the same file, unpacking each in turn, from the beginning of the file
towards its end. Its proper operation relies on the fact that many shar files are terminated
by an exit 0 at the beginning of a line.

Option -e is internally equivalent to -E “exit 0”.

-E STRING This option works like -e, but it allows you to specify the string that separates archives
--split-at=STRING if exit 0 isn’t appropriate. For example, noticing that most .signatures have a --

on a line right before them, one can sometimes use -- split-at=-- for splitting shell
archives that lack the exit 0 line at end. The signature will then be skipped altogether with
the headers of the following message.

SEE ALSO
shar(1)

DIAGNOSTICS
Any message from the shell may be displayed.

AUTHORS
Michael Mauldin at Carnegie-Mellon University, Guido van Rossum at CWI, Amsterdam (guido@mcvax), Bill Davidsen
(davidsen@sixhub.uuxp), Warren Tucker (wht%n4hgf@gatech.edu)
Richard H. Gumpertz (rhg@CPS.COM), and Colas Nahaboo (colas@avahi.inria.fr). Man pages by Jan Djfrv
(jhd@irfu.se).

12 August 1990

updatedb
updatedb—Update a filename database

SYNOPSIS
updatedb [options]

DESCRIPTION
This manual page documents the GNU version of updatedb, which updates filename databases used by GNU locate. The
filename databases contain lists of files that were in particular directory trees when the databases were last updated. The
filename of the default database is determined when locate and updatedb are configured and installed. The frequency with
which the databases and the directories for which they contain entries are updated depends on how often updatedb is run,

updatedb

Part I: User Commands562

and with which arguments. In networked environments, it often makes sense to build a database at the root of each
filesystem, containing the entries for that filesystem. To prevent thrashing the network, updatedb is then run for each
filesystem on the fileserver where that filesystem is on a local disk. Users can select which databases locate searches using an
environment variable or command-line option; see locate(1L). Databases can not be concatenated together. The filename
database format changed starting with GNU find and locate version 4.0 to allow machines with different byte orderings to
share the databases. The new GNU locate can read both the old and new database formats. However, old versions of
locate and find produce incorrect results if given a new-format database.

OPTIONS
--localpaths=’path1 path2...’ Nonnetwork directories to put in the database. Default is /.

--netpaths=’path1 path2...’ Network (NFS, AFS, RFS, and so on) directories to put in the database. Default is
none.

--prunepaths=’path1 path2...’ Directories to not put in the database, which would otherwise be put there. Default
is /tmp /usr/tmp /var/tmp /afs.

--output=dbfile The database file to build. Default is system-dependent, but typically /usr/local/
var/locatedb.

--netuser=user The user to search network directories as, using su(1). Default is daemon.

--old-format Create the database in the old format instead of the new one.

--version Print the version number of updatedb and exit.

--help Print a summary of the options to updatedb and exit.

SEE ALSO
find(1L), locate(1L), locatedb(5L), xargs(1L) Finding Files (online in info, or printed)

uptime
uptime—Tell how long the system has been running

SYNOPSIS
uptime

DESCRIPTION
uptime gives a one-line display of the information that follows it: the current time, how long the system has been running,
how many users are currently logged on, and the system load averages for the past 1, 5, and 15 minutes.

This is the same information contained in the header line displayed by w(1).

FILES
/var/run/utmp Information about who is currently logged on

/proc Process information

AUTHORS
uptime was written by Larry Greenfield (greenfie@gauss.rutgers.edu) and Michael K. Johnson
(johnsonm@sunsite.unc.edu).

SEE ALSO
ps(1), top(1), utmp(5), w(1)

Cohesive Systems, 26 January 1993

563

userlist
userlist—User listing of who’s on your system

SYNOPSIS
userlist

DESCRIPTION
This program simply gives you a listing of who is connected to your system. It is used primarily in the sorted listing that
utilitizes the same method of display for a more uniform output between systems. It also made more sense to do it this way
instead of having jumbled up display listings in sorted finger displays. Besides, it made more sense to do this than use
finger. :)

This program functions with the same types of things in mind that cfingerd does. If the user has a .nofinger file, his or her
username will not be displayed in the user listing.

Example output is shown as

Username Real Name Idletime TTY Remote console username I’m real ... 9d 23:59 0
(remote.site.com)

where it would display the user’s login name, the user’s real name, the user’s idle time given in the format “dd hh:mm”, the
TTY, and the remote location (or where the user is telnetting from).

If the username is more than a certain number of characters, the program will not search for their information in the passwd
file because it may be too long. Besides, it checks getpwnam, anyway.

CONTACTING
If you like this program, have any suggestions on how it could be modified, or have bug reports, please write to
khollis@bitgate.com.

Your continued public domain support is appreciated! Thanks.

SEE ALSO
cfingerd.conf(5), cfingerd(8), finger(1)

Userlist 0.0.1, 26 August 1995

uucp
uucp—UNIX-to-UNIX copy

SYNOPSIS
uucp [options] source-file destination-file

uucp [options] source-file... destination-directory

DESCRIPTION
The uucp command copies files between systems. Each file argument is either a pathname on the local machine or is of the
form

system!path

which is interpreted as being on a remote system. In the first form, the contents of the first file are copied to the second. In
the second form, each source file is copied into the destination directory.

uucp

Part I: User Commands564

A file be transferred to or from system2 via system1 by using

system1!system2!path

Any pathname that does not begin with / or ˜ will be appended to the current directory (unless the -W or --noexpand option
is used); this resulting path will not necessarily exist on a remote system. A pathname beginning with a simple ˜ starts at the
uucp public directory; a pathname beginning with ˜name starts at the home directory of the named user. The ˜ is interpreted
on the appropriate system. Note that some shells will interpret a simple ˜ to the local home directory before uucp sees it; to
avoid this, the ˜ must be quoted.

Shell metacharacters ? * [] are interpreted on the appropriate system, assuming they are quoted to prevent the shell from
interpreting them first.

The copy does not take place immediately, but is queued up for the uucico(8) daemon; the daemon is started immediately
unless the -r or --nouucico switch is given. In any case, the next time the remote system is called, the file(s) will be copied.

OPTIONS
The following options may be given to uucp.

-c, --nocopy Do not copy local source files to the spool directory. If they are removed before being
processed by the uucico(8) daemon, the copy will fail. The files must be readable by the
uucico(8) daemon, and by the invoking user.

-C, --copy Copy local source files to the spool directory. This is the default.

-d, --directories Create all necessary directories when doing the copy. This is the default.

-f, --nodirectories If any necessary directories do not exist for the destination path, abort the copy.

-g grade, --grade grade Set the grade of the file transfer command. Jobs of a higher grade are executed first. Grades
run 0 ... 9 A ... Z a ... z from high to low.

-m, --mail Report completion or failure of the file transfer by mail(1).

-n user, --notify user Report completion or failure of the file transfer by mail(1) to the named user on the remote
system.

-r, --nouucico Do not start uucico(8) daemon immediately; merely queue up the file transfer for later
execution.

-j, --jobid Print jobid on standard output. The job may be later canceled by passing the jobid to the
-k switch of uustat(1). It is possible for some complex operations to produce more than
one jobid, in which case, each will be printed on a separate line. For example,

uucp sys1!˜user1/file1 sys2!˜user2/file2 ˜user3

will generate two separate jobs, one for the system sys1 and one for the system sys2.

-W, --noexpand Do not prepend remote relative pathnames with the current directory.

-x type, --debug type Turn on particular debugging types. The following types are recognized: abnormal, chat,
handshake, uucp-proto, proto, port, config, spooldir, execute, incoming, outgoing.
Only abnormal, config, spooldir, and execute are meaningful for uucp. Multiple types
may be given, separated by commas, and the --debug option may appear multiple times. A
number may also be given, which will turn on that many types from the foregoing list; for
example, --debug 2 is equivalent to --debug abnormal,chat.

-I file, --config file Set configuration file to use. This option may not be available, depending upon how uucp
was compiled.

-v, --version Report version information and exit.

--help Print a help message and exit.

FILES
The filenames may be changed at compilation time or by the configuration file, so these are only approximations.

565

/usr/lib/uucp/config Configuration file

/usr/spool/uucpuucp Spool directory

/usr/spool/uucp/Log uucp log file

/usr/spool/uucppublic Default uucp public directory

SEE ALSO
mail(1), uux(1), uustat(1), uucico(8)

BUGS
Some of the options are dependent on the capabilities of the uucico(8) daemon on the remote system.

The -n and -m switches do not work when transferring a file from one remote system to another.

File modes are not preserved, except for the execute bit. The resulting file is owned by the uucp user.

AUTHOR
Ian Lance Taylor (ian@airs.com)

Taylor UUCP 1.05

uuencode
uuencode—Encode a binary file

uudecode—Decode a file created by uuencode

SYNOPSIS
uuencode [-m] [file] name

uudecode [-o outfile] [file]...

DESCRIPTION
uuencode and uudecode are used to transmit binary files over transmission mediums that do not support other than simple
ASCII data.

uuencode reads file (or by default the standard input) and writes an encoded version to the standard output. The encoding
uses only printing ASCII characters and includes the mode of the file and the operand name for use by uudecode. If name is /
dev/stdout, the result will be written to standard output. By default, the standard UU encoding format will be used. If the
option -m is given on the command line, base64 encoding is used instead.

uudecode transforms uuencoded files (or by default, the standard input) into the original form. The resulting file is named
name (or outfile if the -o option is given) and will have the mode of the original file except that setuid and execute bits
are not retained. If outfile or name is /dev/stdout, the result will be written to standard output. uudecode ignores any
leading and trailing lines. The program can automatically decide which of the supported encoding schemes are used.

EXAMPLES
The following example packages up a source tree, compresses it, uuencodes it, and mails it to a user on another system.
When uudecode is run on the target system, the file src_tree.tar.Z will be created, which may then be uncompressed and
extracted into the original tree.

tar cf - src_tree | compress | uuencode src_tree.tar.Z | mail sys1!sys2!user

uuencode

Part I: User Commands566

SEE ALSO
compress(1), mail(1), uucp(1), uuencode(5)

STANDARDS
This implementation is compliant with P1003.2b/D11.

BUGS
If more than one file is given to uudecode and the -o option is given or more than one name in the encoded files is the same,
the result is probably not what is expected.

The encoded form of the file is expanded by 37 percent for UU encoding and by 35 percent for base64 encoding (3 bytes
become 4 plus control information).

HISTORY
The uuencode command appeared in BSD 4.0.

uustat
uustat—uucp status inquiry and control

SYNOPSIS
uustat -a

uustat --all

uustat [-eKRiMNQ][-sS system] [-uU user] [-cC command] [-oy hours]
[-B lines] [--executions][--kill-all][--rejuvenate-all][--prompt][--mail]
[--notify][--no-list][--system system] [--not-system system] [--user user]
[--not-user user] [--command command] [--not-command command]
[--older-than hours] [--younger-than hours] [--mail-lines lines]
uustat [-kr jobid] [--kill jobid] [--rejuvenate jobid]

uustat -q [-sS system] [-oy hours] [--system system] [--not-system system]
[--older-than hours] [--younger-than hours]

uustat --list [-sS system] [-oy hours] [--system system]
[--not-system system] [--older-than hours] [--younger-than hours]

uustat -m

uustat --status

uustat -p

uustat --ps

DESCRIPTION
The uustat command can display various types of status information about the UUCP system. It can also be used to cancel
or rejuvenate requests made by uucp(1) or uux(1).

By default uustat displays all jobs queued up for the invoking user, as if given the --user option with the appropriate
argument.

567

If any of the -a, --all, -e, --executions, -s, --system, -S, --not-system, -u, --user, -U, --not-user, -c, --command, -C,
--not-command, -o, --older-than, -y, --younger-than options are given, then all jobs that match the combined specifica-
tions are displayed.

The -K or --kill-all option may be used to kill off a selected group of jobs, such as all jobs more than seven days old.

OPTIONS
The following options may be given to uustat.

-a, --all List all queued file transfer requests.

-e, --executions List queued execution requests rather than queued file transfer requests. Queued execution
requests are processed by uuxqt(8) rather than uucico(8). Queued execution requests may
be waiting for some file to be transferred from a remote system. They are created by an
invocation of uux(1).

-s system, --system system List all jobs queued up for the named system. These options may be specified multiple
times, in which case all jobs for all the systems will be listed. If used with --list, only the
systems named will be listed.

-S system, List all jobs queued for systems other than the one named. These options
--not-system system may be specified multiple times, in which case no jobs from any of the specified systems will

be listed. If used with -- list, only the systems not named will be listed. These options
may not be used with -s or --system.

-u user, --user user List all jobs queued up for the named user. These options may be specified multiple times,
in which case all jobs for all the users will be listed.

-U user, --not-user user List all jobs queued up for users other than the one named. These options may be specified
multiple times, in which case no jobs from any of the specified users will be listed. These
options may not be used with -u or --user.

-c command, List all jobs requesting the execution of the named command. If command is ALL this will
--command command list all jobs requesting the execution of some command (as opposed to simply requesting a

file transfer). These options may be specified multiple times, in which case all jobs
requesting any of the commands will be listed.

-C command, List all jobs requesting execution of some command other than the named
--not-command command command, or, if command is ALL, list all jobs that simply request a file transfer (as opposed

to requesting the execution of some command). These options may be specified multiple
times, in which case, no job requesting one of the specified commands will be listed. These
options may not be used with -c or --command.

-o hours, List all queued jobs older than the given number of hours. If used with --list, only
--older-than hours systems whose oldest job is older than the given number of hours will be listed.

-y hours, List all queued jobs younger than the given number of hours. If used with --list,
--younger-than hours only systems whose oldest job is younger than the given number of hours will be

listed.

-k jobid, --kill jobid Kill the named job. The job ID is shown by the default output format, as well as by the -j
or --jobid option to uucp(1) or uux(1). A job may only be killed by the user who created
the job, or by the UUCP administrator or the superuser. The -k or --kill options may be
used multiple times on the command line to kill several jobs.

-r jobid, Rejuvenate the named job. This will mark it as having been invoked at the current
--rejuvenate jobid time, affecting the output of the -o, -- older-than, -y, or -- younger-than options and

preserving it from any automated cleanup daemon. The job ID is shown by the default
output format, as well as by the -j or --jobid options to uucp(1) or uu(1). A job may only
be rejuvenated by the user who created the job, or by the UUCP administrator or the
superuser. The -r or --rejuvenate options may be used multiple times on the command
line to rejuvenate several jobs.

uustat

Part I: User Commands568

-q, --list Display the status of commands, executions, and conversations for all remote systems for
which commands or executions are queued. The -s, --system, -S, --not-system, -o, --
older-than, -y, and --younger-than options may be used to restrict the systems that are
listed. Systems for which no commands or executions are queued will never be listed.

-m, --status Display the status of conversations for all remote systems.

-p, --ps Display the status of all processes holding uucp locks on systems or ports.

-i, --prompt For each listed job, prompt whether to kill the job or not. If the first character of the input
line is y or Y, the job will be killed.

-K, --kill-all Automatically kill each listed job. This can be useful for automatic cleanup scripts, in
conjunction with the --mail and --notify options.

-R, --rejuvenate-all Automatically rejuvenate each listed job. This may not be used with --kill-all.
-M, --mail For each listed job, send mail to the UUCP administrator. If the job is killed (due to --

kill-all or --prompt with an affirmative response), the mail will indicate that. A comment
specified by the --comment option may be included. If the job is an execution, the initial
portion of its standard input will be included in the mail message; the number of lines to
include may be set with the --mail-lines option (the default is 100). If the standard input
contains null characters, it is assumed to be a binary file and is not included.

-N, --notify For each listed job, send mail to the user who requested the job. The mail is identical to that
sent by the -M or --mail options.

-W, --comment Specify a comment to be included in mail sent with the -M, --mail, -N, or --notify
options.

-Q, --no-list Do not actually list the job, but only take any actions indicated by the -i, --prompt, -K, --
kill-all, -M, --mail, -N, or --notify options.

-x type, --debug type Turn on particular debugging types. The following types are recognized: abnormal, chat,
handshake, uucp-proto, proto, port, config, spooldir, execute, incoming, outgoing.
Only abnormal, config, spooldir, and execute are meaningful for uustat.
Multiple types may be given, separated by commas, and the --debug option may appear
multiple times. A number may also be given, which will turn on that many types from the
foregoing list; for example, --debug 2 is equivalent to --debug abnormal,chat.

-I file, --config file Set configuration file to use. This option may not be available, depending upon how uustat
was compiled.

-v, --version Report version information and exit.

--help Print a help message and exit.

EXAMPLES
uustat -all Display status of all jobs. A sample output line is as follows:

bugsA027h bugs ian 04-01 13:50 Executing rmail ian@airs.com (sending 1283

bytes)

The format is

jobid system user queue-date command (size)

The jobid may be passed to the --kill or --rejuvenate options. The size indicates how
much data is to be transferred to the remote system, and is absent for a file receive request.
The --system, --not-system, --user, --not-user, --command, --not-command, --older-
than, and --younger-than options may be used to control which jobs are listed.

uustat -executions Display status of queued up execution requests. A sample output line is as follows:

bugs bugs!ian 05-20 12:51 rmail ian

The format is

system requestor queue-date command

The --system, --not-system, --user, --not-user, --command, --not-command, --older-
than, and --younger-than options may be used to control which requests are listed.

569

uustat -list Display status for all systems with queued-up commands. A sample output line is as follows:

bugs 4C (1 hour) 0X (0 secs) 04-01 14:45 Dial failed

This indicates the system, the number of queued commands, the age of the oldest queued
command, the number of queued local executions, the age of the oldest queued execution,
the date of the last conversation, and the status of that conversation.

uustat -status Display conversation status for all remote systems. A sample output line is as follows:

bugs 04-01 15:51 Conversation complete

This indicates the system, the date of the last conversation, and the status of that conversa-
tion. If the last conversation failed, uustat will indicate how many attempts have been
made to call the system. If the retry period is currently preventing calls to that system,
uustat also displays the time when the next call will be permitted.

uustat -ps Display the status of all processes holding uucp locks. The output format is system-
dependent, as uustat simply invokes ps(1) on each process holding a lock. A sample output
line is as follows:

uustat -command rmail -older-than 168 -kill-all -no-list -mail -notify -

comment “Queued for over 1 week”

This will kill all rmail commands that have been queued up waiting for delivery for over
one week (168 hours). For each such command, mail will be sent both to the UUCP
administrator and to the user who requested the rmail execution. The mail message sent
will include the string given by the --comment option. The --no-list option prevents any
of the jobs from being listed on the terminal, so any output from the program will be error
messages.

FILES
The filenames may be changed at compilation time or by the configuration file, so these are only approximations.

/usr/lib/uucp/config Configuration file

/usr/spool/uucpuucp spool directory

SEE ALSO
ps(1), rmail(1), uucp(1), uux(1), uucico(8), uuxqt(8)

AUTHOR
Ian Lance Taylor (ian@airs.com)

Taylor UUCP 1.05

uux
uux—Remote command execution over uucp

SYNOPSIS
uux [options] command

DESCRIPTION
The uux command is used to execute a command on a remote system, or to execute a command on the local system using
files from remote systems. The command is not executed immediately; the request is queued until the uucico(8) daemon
calls the system and executes it. The daemon is started automatically unless one of the -r or --nouucico options is given.

uux

Part I: User Commands570

The actual command execution is done by the uuxqt(8) daemon.

File arguments can be gathered from remote systems to the execution system, as can standard input. Standard output may be
directed to a file on a remote system.

The command name may be preceded by a system name followed by an exclamation point if it is to be executed on a remote
system. An empty system name is taken as the local system.

Each argument that contains an exclamation point is treated as naming a file. The system that the file is on is before the
exclamation point, and the pathname on that system follows it. An empty system name is taken as the local system; this must
be used to transfer a file to a command being executed on a remote system. If the path is not absolute, it will be appended to
the current working directory on the local system; the result may not be meaningful on the remote system. A pathname may
begin with ˜/, in which case it is relative to the uucp public directory (usually /usr/spool/uucppublic) on the appropriate
system. A pathname may begin with ˜name/, in which case it is relative to the home directory of the named user on the
appropriate system.

Standard input and output may be redirected as usual; the pathnames used may contain exclamation points to indicate that
they are on remote systems. Note that the redirection characters must be quoted so that they are passed to uux rather than
interpreted by the shell. Append redirection (>>) does not work.

All specified files are gathered together into a single directory before execution of the command begins. This means that each
file must have a distinct base name. For example,

uux ‘sys1!diff sys2!˜user1/foo sys3!˜user2/foo >!foo.diff’

will fail because both files will be copied to sys1 and stored under the name foo.

Arguments may be quoted by parentheses to avoid interpretation of exclamation points. This is useful when executing the
uucp command on a remote system.

OPTIONS
The following options may be given to uux.

-, -p, --stdin Read standard input and use it as the standard input for the command to be executed.

-c, --nocopy Do not copy local files to the spool directory. This is the default. If they are removed before
being processed by the uucico(8) daemon, the copy will fail. The files must be readable by
the uucico(8) daemon, as well as by the invoker of uux.

-C, --copy Copy local files to the spool directory.

-l, --link Link local files into the spool directory. If a file can not be linked because it is on a different
device, it will be copied unless one of the -c or --nocopy options also appears (in other
words, use of --link switches the default from --nocopy to --copy). If the files are changed
before being processed by the uucico(8) daemon, the changed versions will be used. The
files must be readable by the uucico(8) daemon, as well as by the invoker of uux.

-g grade, --grade grade Set the grade of the file transfer command. Jobs of a higher grade are executed first. Grades
run 0 ... 9 A ... Z a ... z from high to low.

-n, --notification=no Do not send mail about the status of the job, even if it fails.

-z, --notification=error Send mail about the status of the job if an error occurs. For many uuxqt daemons,
including the Taylor uucp uuxqt, this is the default action; for those, --
notification=error will have no effect. However, some uuxqt daemons will send mail if
the job succeeds unless the --notification=error option is used, and some other uuxqt
daemons will not send mail if the job fails unless the --notification=error option is used.

-r, --nouucico Do not start the uucico(8) daemon immediately; merely queue up the execution request for
later processing.

571

-j, --jobid Print jobids on standard output. A jobid will be generated for each file copy operation
required to perform the operation. These file copies may be canceled by passing the jobid
to the --kill switch of uustat(1), which will make the execution impossible to complete.

-a address, Report job status to the specified e-mail address.
--requestor address

-x type, --debug type Turn on particular debugging types. The following types are recognized: abnormal, chat,
handshake, uucp-proto, proto, port, config, spooldir, execute, incoming, outgoing.
Only abnormal, config, spooldir, and execute are meaningful for uux. Multiple types
may be given, separated by commas, and the --debug option may appear multiple times. A
number may also be given, which will turn on that many types from the foregoing list; for
example, --debug 2 is equivalent to --debug abnormal,chat.

-I file, --config file Set configuration file to use. This option may not be available, depending upon how uux
was compiled.

-v, --version Report version information and exit.

--help Print a help message and exit.

EXAMPLES
uux -z - sys1!rmail user1—Execute the command rmail user1 on the system sys1, giving it as standard input
whatever is given to uux as standard input. If a failure occurs, send a message using mail(1).

uux ‘diff -c sys1!˜user1/file1 sys2!˜user2/file2 >!file.diff’—Fetch the two named files from system sys1 and
system sys2 and execute diff, putting the result in file.diff in the current directory. The current directory must be
writable by the uuxqt(8) daemon for this to work.

uux ‘sys1!uucp ˜user1/file1 (sys2!˜user2/file2)’—Execute uucp on the system sys1 copying file1 (on system
sys1) to sys2. This illustrates the use of parentheses for quoting.

RESTRICTIONS
The remote system may not permit you to execute certain commands. Many remote systems only permit the execution of
rmail and rnews.

Some of the options are dependent on the capabilities of the uuxqt(8) daemon on the remote system.

FILES
The filenames may be changed at compilation time or by the configuration file, so these are only approximations.

/usr/lib/uucp/config Configuration file

/usr/spool/uucpuucp spool directory

/usr/spool/uucp/Log uucp log file

/usr/spool/uucppublic Default uucp public directory

SEE ALSO
mail(1), uustat(1), uucp(1), uucico(8), uuxqt(8)

BUGS
Files can not be referenced across multiple systems.

Too many jobids are output by --jobid, and there is no good way to cancel a local execution requiring remote files.

AUTHOR
Ian Lance Taylor (ian@airs.com)

uux

Part I: User Commands572

uuxqt
uuxqt—uucp execution daemon

SYNOPSIS
uuxqt [options]

DESCRIPTION
The uuxqt daemon executes commands requested by uux(1) from either the local system or from remote systems. It is started
automatically by the uucico(8) daemon (unless uucico(8) is given the -q or --nouuxqt option).

There is normally no need to run this command because it will be invoked by uucico(8). However, it can be used to provide
greater control over the processing of the work queue.

Multiple invocations of uuxqt may be run at once, as controlled by the max-uuxqts configuration command.

OPTIONS
The following options may be given to uuxqt:

-c command, --command command Only execute requests for the specified command. For example,

uuxqt -command rmail

-s system, --system system Only execute requests originating from the specified system.

-x type, --debug type Turn on particular debugging types. The following types are recognized: abnormal,
chat, handshake, uucp-proto, proto, port, config, spooldir, execute, incoming,
outgoing. Only abnormal, config, spooldir and execute are meaningful for
uuxqt. Multiple types may be given, separated by commas, and the --debug option
may appear multiple times. A number may also be given, which will turn on that
many types from the foregoing list; for example, --debug 2 is equivalent to --debug
abnormal,chat.

The debugging output is sent to the debugging file, usually /usr/spool/uucp/
Debug, /usr/spool/uucp/DEBUG, or /usr/spool/uucp/.Admin/audit.local.

-I file, --config Set configuration file to use. This option may not be available, depending upon how
uuxqt was compiled.

-v, --version Report version information and exit.

--help Print a help message and exit.

FILES
The filenames may be changed at compilation time or by the configuration file, so these are only approximations.

/usr/lib/uucp/config Configuration file

/usr/spool/uucpuucp spool directory

/usr/spool/uucp/Log uucp log file

/usr/spool/uucppublic Default uucp public directory

/usr/spool/uucp/Debug Debugging file

SEE ALSO
uucp(1), uux(1), uucico(8)

AUTHOR
Ian Lance Taylor (ian@airs.com)

Taylor UUCP 1.05

573

w
w—Present who users are and what they are doing

SYNOPSIS
w [-hin] [-user]

DESCRIPTION
The w utility prints a summary of the current activity on the system, including what each user is doing. The first line displays
the current time of day, how long the system has been running, the number of users logged into the system, and the load
averages. The load average numbers give the number of jobs in the run queue averaged over 1, 5, and 15 minutes.

The fields output are the user’s login name, the name of the terminal the user is on, the host from which the user is logged
in, the time the user logged on, the time since the user last typed anything, and the name and arguments of the current
process.

The options are as follows:

-h Suppress the heading

-i Output is sorted by idle time

-n Show network addresses as numbers

-w Interpret addresses and attempt to display them symbolically

If a username is specified, the output is restricted to that user.

FILES
/var/run/utmp List of users on the system

SEE ALSO
who(1), finger(1), ps(1), uptime(1),

BUGS
The notion of the current process is muddy. The current algorithm is “the highest numbered process on the terminal that is
not ignoring interrupts, or, if there is none, the highest numbered process on the terminal.” This fails, for example, in critical
sections of programs like the shell and editor, or when faulty programs running in the background fork and fail to ignore
interrupts. (In cases where no process can be found, w prints a period.)

The CPU time is only an estimate; in particular, if someone leaves a background process running after logging out, the
person currently on that terminal is charged with the time.

Background processes are not shown, even though they account for much of the load on the system.

Sometimes processes, typically those in the background, are printed with null or garbaged arguments. In these cases, the
name of the command is printed in parentheses.

The w utility does not know about the new conventions for detection of background jobs. It will sometimes find a back-
ground job instead of the right one.

COMPATIBILITY
The -f, -l, -s, and -w flags are no longer supported.

HISTORY
The w command appeared in BSD 3.0.

BSD 4, 6 June 1993

w

Part I: User Commands574

wall
wall—Write a message to users

SYNOPSIS
wall [file]

DESCRIPTION
wall displays the contents of file or, by default, its standard input, on the terminals of all currently logged in users.

Only the superuser can write on the terminals of users who have chosen to deny messages or are using a program that
automatically denies messages.

SEE ALSO
mesg(1), talk(1), write(1), shutdown(8)

HISTORY
A wall command appeared in AT&T v7.

Linux 0.99, 8 March 1993

wc
wc—Print the number of bytes, words, and lines in files

SYNOPSIS
wc [-clw] [--bytes] [--chars] [--lines] [--words] [--help] [--version] [file...]

DESCRIPTION
This manual page documents the GNU version of wc. wc counts the number of bytes, whitespace-separated words, and
newlines in each given file, or the standard input if none are given or when a file named - is given. It prints one line of
counts for each file, and if the file was given as an argument, it prints the filename following the counts. If more than one
filename is given, wc prints a final line containing the cumulative counts, with the filename total. The counts are printed in
the order lines, words, bytes.

By default, wc prints all three counts. Options can specify that only certain counts be printed. Options do not undo others
previously given, so wc --bytes --words prints both the byte counts and the word counts.

OPTIONS
-c, --bytes, --chars Print only the byte counts.

-w, --words Print only the word counts.

-l, --lines Print only the newline counts.

--help Print a usage message and exit with a non-zero status.

--version Print version information on standard output, then exit.

GNU Text Utilities

575

whereis
whereis—Locate the binary, source, and manual page files for a command

SYNOPSIS
whereis [-bmsu][-BMS directory... -f] filename ...

DESCRIPTION
whereis locates source/binary and manuals sections for specified files. The supplied names are first stripped of leading
pathname components and any (single) trailing extension of the form .ext, for example, .c. Prefixes of s. resulting from use
of source code control are also dealt with. whereis then attempts to locate the desired program in a list of standard Linux
places:

/bin
/usr/bin
/etc
/usr/etc
/sbin
/usr/sbin
/usr/games
/usr/games/bin
/usr/emacs/etc
/usr/lib/emacs/19.22/etc
/usr/lib/emacs/19.23/etc
/usr/lib/emacs/19.24/etc
/usr/lib/emacs/19.25/etc
/usr/lib/emacs/19.26/etc
/usr/lib/emacs/19.27/etc
/usr/lib/emacs/19.28/etc
/usr/lib/emacs/19.29/etc
/usr/lib/emacs/19.30/etc
/usr/TeX/bin
/usr/tex/bin
/usr/interviews/bin/LINUX
/usr/bin/X11
/usr/X11/bin
/usr/X11R5/bin
/usr/X11R6/bin
/usr/X386/bin
/usr/local/bin
/usr/local/etc
/usr/local/sbin
/usr/local/games
/usr/local/games/bin
/usr/local/emacs/etc
/usr/local/TeX/bin
/usr/local/tex/bin
/usr/local/bin/X11
/usr/contrib
/usr/hosts
/usr/include
/usr/g++-include

whereis

Part I: User Commands576

OPTIONS
-b Search only for binaries.

-m Search only for manual sections.

-s Search only for sources.

-u Search for unusual entries. A file is said to be unusual if it does not have one entry of each requested type. Thus
whereisnn-mnn-unn* asks for those files in the current directory which have no documentation.

-B Change or otherwise limit the places where whereis searches for binaries.

-M Change or otherwise limit the places where whereis searches for manual sections.

-S Change or otherwise limit the places where whereis searches for sources.

-f Terminate the last directory list and signals the start of filenames; must be used when any of the -B, -M, or -S
options are used.

EXAMPLE
Find all files in /usr/bin that are not documented in /usr/man/man1 with source in /usr/src:

example% cd /usr/bin
example% whereis -u -M /usr/man/man1 -S /usr/src -f *

FILES
/{bin,sbin,etc}
/usr/{lib,bin,old,new,local,games,include,etc,src,man,sbin,
X386, TeX, g++-include}
/usr/local/{X386,TeX,X11,include,lib,man,etc,bin,games,emacs}

SEE ALSO
chdir(2V)

BUGS
Since whereis uses chdir(2V) to run faster, pathnames given with the -M, -S, or -B must be full; that is, they must begin
with a /.

8 May 1994

write
write—Send a message to another user

SYNOPSIS
write user [ttyname]

DESCRIPTION
write allows you to communicate with other users by copying lines from your terminal to theirs.

When you run the write command, the user you are writing to gets a message of the form:

Message from yourname@yourhost on yourtty at hh:mm ...

Any further lines you enter will be copied to the specified user’s terminal. If the other user wants to reply, he or she must run
write as well.

When you are done, type an end-of-file or interrupt character. The other user will see the message EOF, indicating that the
conversation is over.

577

You can prevent people (other than the superuser) from writing to you with the mesg(1) command. Some commands, for
example, nroff(1) and pr(1), may disallow writing automatically, so that your output isn’t overwritten.

If the user you want to write to is logged in on more than one terminal, you can specify which terminal to write to by
specifying the terminal name as the second oper and to the write command. Alternatively, you can let write select one of
the terminals—it will pick the one with the shortest idle time. Thus, if the user is logged in at work and also dialed up from
home, the message will go to the right place.

The traditional protocol for writing to someone is that the string -o, either at the end of a line or on a line by itself, means
that it’s the other person’s turn to talk. The string oo means that the person believes the conversation to be over.

SEE ALSO
mesg(1), talk(1), who(1)

HISTORY
A write command appeared in Version 6 AT&T UNIX.

12 March 1995

x11perf
x11perf—X11 server performance test program

SYNTAX
x11perf [-option ...]

DESCRIPTION
The x11perf program runs one or more performance tests and reports how fast an X server can execute the tests.

Many graphics benchmarks assume that the graphics device is used to display the output of a single fancy graphics applica-
tion, and that the user gets his work done on some other device, like a terminal. Such benchmarks usually measure drawing
speed for lines, polygons, text, and so on.

Because workstations are not used as standalone graphics engines, but as super-terminals, x11perf measures window
management performance as well as traditional graphics performance. x11perf includes benchmarks for the time it takes to
create and map windows (as when you start up an application); to map a preexisting set of windows onto the screen (as when
you deiconify an application or pop up a menu); and to rearrange windows (as when you slosh windows to and fro trying to
find the one you want).

x11perf also measures graphics performance for operations not normally used in standalone graphics displays, but are
nonetheless used frequently by X applications. Such operations include CopyPlane (used to map bitmaps into pixels),
scrolling (used in text windows), and various stipples and tiles (used for CAD and color halftoning, respectively).

x11perf should be used to analyze particular strengths and weaknesses of servers, and is most useful to a server writer who
wants to analyze and improve a server. x11perf is meant to comprehensively exercise just about every X11 operation you can
perform; it does not purport to be a representative sample of the operations that X11 applications actually use. Although it
can be used as a benchmark, it was written and is intended as a performance testing tool.

As such, x11perf does not whittle down measurements to a single HeXStones or MeXops number. We consider such numbers
to be uninformative at best and misleading at worst. Some servers that are very fast for certain applications can be very slow
for others. No single number or small set of numbers is sufficient to characterize how an X implementation will perform on
all applications. However, by knowledge of your favorite application, you may be able to use the numbers x11perf reports to
predict its performance on a given X implementation.

x11perf

Part I: User Commands578

That said, you might also want to look at x11perfcomp(1), a program to compare the outputs of different x11perf runs. You
provide a list of files containing results from x11perf, and it lays them out in a nice tabular format.

For repeatable results, x11perf should be run using a local connection on a freshly started server. The default configuration
runs each test five times in order to see if each trial takes approximately the same amount of time. Strange glitches should be
examined; if nonrepeatable, you might chalk them up to daemons and network traffic. Each trial is run for five seconds, in
order to reduce random time differences. The number of objects processed per second is displayed to three significant digits,
but you’ll be lucky on most UNIX systems if the numbers are actually consistent to two digits. x11perf moves the cursor out
of the test window; you should be careful not to bump the mouse and move it back into the window. (A prize to people who
correctly explain why!)

Before running a test, x11perf determines what the round trip time to the server is, and factors this out of the final timing
reported. It ensures that the server has actually performed the work requested by fetching a pixel back from the test window,
which means that servers talking to graphics accelerators can’t claim that they are done, while in the meantime the accelera-
tor is painting madly.

By default, x11perf automatically calibrates the number of repetitions of each test, so that each should take approximately
the same length of time to run across servers of widely differing speeds. However, because each test must be run to comple-
tion at least once, some slow servers may take a very long time, particularly on the window moving and resizing tests, and on
the arc drawing tests.

All timing reports are for the smallest object involved. For example, the line tests use a PolyLine request to paint several lines
at once, but report how many lines per second the server can paint, not how many PolyLine requests per second. Text tests
paint a line of characters, but report on the number of characters per second. Some window tests map, unmap, or move a
single parent window, but report on how many children windows per second the server can map, unmap, or move.

The current program is mostly the responsibility of Joel McCormack. It is based upon the x11perf developed by Phil
Karlton, Susan Angebranndt, Chris Kent, Mary Walker, and Todd Newman, who wanted to assess performance differences
between various servers. Several tests were added in order to write and tune the PMAX (DECStation 3100) servers. For a
general release to the world, x11perf was rewritten to ease making comparisons between widely varying machines, to cover
most important (and unimportant) X functionality, and to exercise graphics operations in as many different orientations and
alignments as possible.

OPTIONS
x11perf is solely Xlib based, and accepts the following options:

-display host:dpy Specifies which display to use.

-sync Runs the tests in synchronous mode. Normally only useful for debugging x11perf.

-pack Runs rectangle tests so that they pack rectangles right next to each other. This makes it easy
to debug server code for stipples and tiles; if the pattern looks ugly, you’ve got alignment
problems.

-repeat <n> Repeats each test n times (by default each test is run fivetimes).

-time <s> Specifies how long in seconds each test should be run (default 5 seconds).

-all Runs all tests. This may take a while.

-range Runs all the tests starting from the specified name test1 until the name test2, tests. The
<test1>[,<test2>] testnames should be one of the options starting from -dot. For example, -range line100

will perform the tests from the 100 pixel line test, and go on till the last test; -range
line100,dline10 will do the tests from line100 to dline10.

-labels Generates just the descriptive labels for each test specified. See x11perfcomp for more
details.

-fg color-or-pixel Specifies the foreground color or pixel value to use.

-bg color-or-pixel Specifies the background color or pixel value to use.

-clips default Default number of clip windows.

579

-ddbg color-or-pixel Specifies the color or pixel value to use for drawing the odd segments of a DoubleDashed
line or arc. This will default to the bg color.

-rop <rop0 rop1 ...> Use specified raster ops (default is GXcopy). This option only affects graphics benchmarks in
which the graphics function is actually used.

-pm <pm0 pm1 ...> Use specified planemasks (default is ˜0). This option only affects graphics benchmarks in
which the planemask is actually used.

-depth <depth> Use a visual with <depth> planes per pixel. (Default is the default visual.)

-vclass <vclass> Use a visual with of class <vclass>. <vclass> can be StaticGray, GrayScale,
StaticColor, PseudoColor, TrueColor, or DirectColor. (Default is the default visual).

-reps <n> Specify the repetition count. (Default is number that takes approximately five seconds.)

-subs <s0 s1 ...> Specify the number of sub windows to use in the Window tests. Default is 4, 16, 25, 50, 75,
100, and 200.

-v1.2 Perform only x11perf version 1.2 tests using version 1.2 semantics.

-v1.3 Perform only x11perf version 1.3 tests using version 1.3 semantics.

-su Set the save_under window attribute to True on all windows created by x11perf. Default is
False.

-bs Set the backing_store window attribute to the given value on all windows created by
<backing_store_hint> x11perf. <backing_store_hint> can be WhenMapped or Always. Default is NotUseful.

-dot Dot.

-rect1 1×1 solid-filled rectangle.

-rect10 10×10 solid-filled rectangle.

-rect100 100×100 solid-filled rectangle.

-rect500 500×500 solid-filled rectangle.

-srect1 1×1 transparent stippled rectangle, 8×8 stipple pattern.

-srect10 10×10 transparent stippled rectangle, 8×8 stipple pattern.

-srect100 100×100 transparent stippled rectangle, 8×8 stipple pattern.

-srect500 500×500 transparent stippled rectangle, 8×8 stipple pattern.

-osrect1 1×1 opaque stippled rectangle, 8×8 stipple pattern.

-osrect10 10×10 opaque stippled rectangle, 8×8 stipple pattern.

-osrect100 100×100 opaque stippled rectangle, 8×8 stipple pattern.

-osrect500 500×500 opaque stippled rectangle, 8×8 stipple pattern.

-tilerect1 1×1 tiled rectangle, 4×4 tile pattern.

-tilerect10 10×10 tiled rectangle, 4×4 tile pattern.

-tilerect100 100×100 tiled rectangle, 4×4 tile pattern.

-tilerect500 500×500 tiled rectangle, 4×4 tile pattern.

-oddsrect1 1×1 transparent stippled rectangle, 17×15 stipple pattern.

-oddsrect10 10×10 transparent stippled rectangle, 17×15 stipple pattern.

-oddsrect100 100×100 transparent stippled rectangle, 17×15 stipple pattern.

-oddsrect500 500×500 transparent stippled rectangle, 17×15 stipple pattern.

-oddosrect1 1×1 opaque stippled rectangle, 17×15 stipple pattern.

-oddosrect10 10×10 opaque stippled rectangle, 17×15 stipple pattern.

-oddosrect100 100×100 opaque stippled rectangle, 17×15 stipple pattern.

-oddosrect500 500×500 opaque stippled rectangle, 17×15 stipple pattern.

-oddtilerect1 1×1 tiled rectangle, 17×15 tile pattern.

-oddtilerect10 10×10 tiled rectangle, 17×15 tile pattern.

x11perf

Part I: User Commands580

-oddtilerect100 100×100 tiled rectangle, 17×15 tile pattern.

-oddtilerect500 500×500 tiled rectangle, 17×15 tile pattern.

-bigsrect1 1×1 stippled rectangle, 161×145 stipple pattern.

-bigsrect10 10×10 stippled rectangle, 161×145 stipple pattern.

-bigsrect100 100×100 stippled rectangle, 161×145 stipple pattern.

-bigsrect500 500×500 stippled rectangle, 161×145 stipple pattern.

-bigosrect1 1×1 opaque stippled rectangle, 161×145 stipple pattern.

-bigosrect10 10×10 opaque stippled rectangle, 161×145 stipple pattern.

-bigosrect100 100×100 opaque stippled rectangle, 161×145 stipple pattern.

-bigosrect500 500×500 opaque stippled rectangle, 161×145 stipple pattern.

-bigtilerect1 1×1 tiled rectangle, 161×145 tile pattern.

-bigtilerect10 10×10 tiled rectangle, 161×145 tile pattern.

-bigtilerect100 100×100 tiled rectangle, 161×145 tile pattern.

-bigtilerect500 500×500 tiled rectangle, 161×145 tile pattern.

-eschertilerect1 1×1 tiled rectangle, 215×208 tile pattern.

-eschertilerect10 10×10 tiled rectangle, 215×208 tile pattern.

-eschertilerect100 100×100 tiled rectangle, 215×208 tile pattern.

-eschertilerect500 500×500 tiled rectangle, 215×208 tile pattern.

-seg1 1-pixel thin line segment.

-seg10 10-pixel thin line segment.

-seg100 100-pixel thin line segment.

-seg500 500-pixel thin line segment.

-seg100c1 100-pixel thin line segment (1 obscuring rectangle).

-seg100c2 100-pixel thin line segment (2 obscuring rectangles).

-seg100c3 100-pixel thin line segment (3 obscuring rectangles).

-dseg10 10-pixel thin dashed segment (3 on, 2 off).

-dseg100 100-pixel thin dashed segment (3 on, 2 off).

-ddseg100 100-pixel thin double-dashed segment (3 fg, 2 bg).

-hseg10 10-pixel thin horizontal line segment.

-hseg100 100-pixel thin horizontal line segment.

-hseg500 500-pixel thin horizontal line segment.

-vseg10 10-pixel thin vertical line segment.

-vseg100 100-pixel thin vertical line segment.

-vseg500 500-pixel thin vertical line segment.

-whseg10 10-pixel wide horizontal line segment.

-whseg100 100-pixel wide horizontal line segment.

-whseg500 500-pixel wide horizontal line segment.

-wvseg10 10-pixel wide vertical line segment.

-wvseg100 100-pixel wide vertical line segment.

-wvseg500 500-pixel wide vertical line segment.

-line1 1-pixel thin (width 0) line.

-line10 10-pixel thin line.

-line100 100-pixel thin line.

-line500 500-pixel thin line.

581

-dline10 10-pixel thin dashed line (3 on, 2 off).

-dline100 100-pixel thin dashed line (3 on, 2 off).

-ddline100 100-pixel thin double-dashed line (3 fg, 2 bg).

-wline10 10-pixel line, line width 1.

-wline100 100-pixel line, line width 10.

-wline500 500-pixel line, line width 50.

-wdline100 100-pixel dashed line, line width 10 (30 on, 20 off).

-wddline100 100-pixel double-dashed line, line width 10 (30 fg, 20 bg).

-orect10 10x10 thin rectangle outline.

-orect100 100-pixel thin vertical line segment.

-orect500 500-pixel thin vertical line segment.

-worect10 10×10 wide rectangle outline.

-worect100 100-pixel wide vertical line segment.

-worect500 500-pixel wide vertical line segment.

-circle1 1-pixel diameter thin (line-width 0) circle.

-circle10 10-pixel diameter thin circle.

-circle100 100-pixel diameter thin circle.

-circle500 500-pixel diameter thin circle.

-dcircle100 100-pixel diameter thin dashed circle (3 on, 2 off).

-ddcircle100 100-pixel diameter thin double-dashed circle (3 fg, 2 bg).

-wcircle10 10-pixel diameter circle, line width 1.

-wcircle100 100-pixel diameter circle, line width 10.

-wcircle500 500-pixel diameter circle, line width 50.

-wdcircle100 100-pixel diameter dashed circle, line width 10 (30 on, 20 off).

-wddcircle100 100-pixel diameter double-dashed circle, line width 10 (30 fg, 20 bg).

-pcircle10 10-pixel diameter thin partial circle, orientation and arc angle evenly distributed.

-pcircle100 100-pixel diameter thin partial circle.

-wpcircle10 10-pixel diameter wide partial circle.

-wpcircle100 100-pixel diameter wide partial circle.

-fcircle1 1-pixel diameter filled circle.

-fcircle10 10-pixel diameter filled circle.

-fcircle100 100-pixel diameter filled circle.

-fcircle500 500-pixel diameter filled circle.

-fcpcircle10 10-pixel diameter partial-filled circle, chord fill, orientation and arc angle evenly distributed.

-fcpcircle100 100-pixel diameter partial-filled circle, chord fill.

-fspcircle10 10-pixel diameter partial-filled circle, pie slice fill, orientation and arc angle evenly
distributed.

-fspcircle100 100-pixel diameter partial-filled circle, pie slice fill.

-ellipse10 10-pixel diameter thin (line width 0) ellipse, major and minor axis sizes evenly distributed.

-ellipse100 100-pixel diameter thin ellipse.

-ellipse500 500-pixel diameter thin ellipse.

-dellipse100 100-pixel diameter thin dashed ellipse (3 on, 2 off).

-ddellipse100 100-pixel diameter thin double-dashed ellipse (3 fg, 2 bg).

-wellipse10 10-pixel diameter ellipse, line width 1.

x11perf

Part I: User Commands582

-wellipse100 100-pixel diameter ellipse, line width 10.

-wellipse500 500-pixel diameter ellipse, line width 50.

-wdellipse100 100-pixel diameter dashed ellipse, line width 10 (30 on, 20 off).

-wddellipse100 100-pixel diameter double-dashed ellipse, line width 10 (30 fg, 20 bg).

-pellipse10 10-pixel diameter thin partial ellipse.

-pellipse100 100-pixel diameter thin partial ellipse.

-wpellipse10 10-pixel diameter wide partial ellipse.

-wpellipse100 100-pixel diameter wide partial ellipse.

-fellipse10 10-pixel diameter filled ellipse.

-fellipse100 100-pixel diameter filled ellipse.

-fellipse500 500-pixel diameter filled ellipse.

-fcpellipse10 10-pixel diameter partial-filled ellipse, chord fill.

-fcpellipse100 100-pixel diameter partial-filled ellipse, chord fill.

-fspellipse10 10-pixel diameter partial-filled ellipse, pie slice fill.

-fspellipse100 100-pixel diameter partial-filled ellipse, pie slice fill.

-triangle1 Fill 1-pixel/side triangle.

-triangle10 Fill 10-pixel/side triangle.

-triangle100 Fill 100-pixel/side triangle.

-trap1 Fill 1×1 trapezoid.

-trap10 Fill 10×10 trapezoid.

-trap100 Fill 100×100 trapezoid.

-trap300 Fill 300×300 trapezoid.

-strap1 Fill 1×1 transparent stippled trapezoid, 8×8 stipple pattern.

-strap10 Fill 10×10 transparent stippled trapezoid, 8×8 stipple pattern.

-strap100 Fill 100×100 transparent stippled trapezoid, 8×8 stipple pattern.

-strap300 Fill 300×300 transparent stippled trapezoid, 8×8 stipple pattern.

-ostrap1 Fill 10×10 opaque stippled trapezoid, 8×8 stipple pattern.

-ostrap10 Fill 10×10 opaque stippled trapezoid, 8×8 stipple pattern.

-ostrap100 Fill 100×100 opaque stippled trapezoid, 8×8 stipple pattern.

-ostrap300 Fill 300×300 opaque stippled trapezoid, 8×8 stipple pattern.

-tiletrap1 Fill 10×10 tiled trapezoid, 4×4 tile pattern.

-tiletrap10 Fill 10×10 tiled trapezoid, 4×4 tile pattern.

-tiletrap100 Fill 100×100 tiled trapezoid, 4×4 tile pattern.

-tiletrap300 Fill 300×300 tiled trapezoid, 4×4 tile pattern.

-oddstrap1 Fill 1×1 transparent stippled trapezoid, 17×15 stipple pattern.

-oddstrap10 Fill 10×10 transparent stippled trapezoid, 17×15 stipple pattern.

-oddstrap100 Fill 100×100 transparent stippled trapezoid, 17×15 stipple pattern.

-oddstrap300 Fill 300×300 transparent stippled trapezoid, 17×15 stipple pattern.

-oddostrap1 Fill 10×10 opaque stippled trapezoid, 17×15 stipple pattern.

-oddostrap10 Fill 10×10 opaque stippled trapezoid, 17×15 stipple pattern.

-oddostrap100 Fill 100×100 opaque stippled trapezoid, 17×15 stipple pattern.

-oddostrap300 Fill 300×300 opaque stippled trapezoid, 17×15 stipple pat-tern.

-oddtiletrap1 Fill 10×10 tiled trapezoid, 17×15 tile pattern.

-oddtiletrap10 Fill 10×10 tiled trapezoid, 17×15 tile pattern.

583

-oddtiletrap100 Fill 100×100 tiled trapezoid, 17×15 tile pattern.

-oddtiletrap300 Fill 300×300 tiled trapezoid, 17×15 tile pattern.

-bigstrap1 Fill 1×1 transparent stippled trapezoid, 161×145 stipple pattern.

-bigstrap10 Fill 10×10 transparent stippled trapezoid, 161×145 stipple pattern.

-bigstrap100 Fill 100×100 transparent stippled trapezoid, 161×145 stipple pattern.

-bigstrap300 Fill 300×300 transparent stippled trapezoid, 161×145 stipple pattern.

-bigostrap1 Fill 10×10 opaque stippled trapezoid, 161×145 stipple pattern.

-bigostrap10 Fill 10×10 opaque stippled trapezoid, 161×145 stipple pattern.

-bigostrap100 Fill 100×100 opaque stippled trapezoid, 161×145 stipple pattern.

-bigostrap300 Fill 300×300 opaque stippled trapezoid, 161×145 stipple pattern.

-bigtiletrap1 Fill 10×10 tiled trapezoid, 161×145 tile pattern.

-bigtiletrap10 Fill 10×10 tiled trapezoid, 161×145 tile pattern.

-bigtiletrap100 Fill 100×100 tiled trapezoid, 161×145 tile pattern.

-bigtiletrap300 Fill 300×300 tiled trapezoid, 161×145 tile pattern.

-eschertiletrap1 Fill 1×1 tiled trapezoid, 216×208 tile pattern.

-eschertiletrap10 Fill 10×10 tiled trapezoid, 216×208 tile pattern.

-eschertiletrap100 Fill 100×100 tiled trapezoid, 216×208 tile pattern.

-eschertiletrap300 Fill 300×300 tiled trapezoid, 216×208 tile pattern.

-complex10 Fill 10-pixel/side complex polygon.

-complex100 Fill 100-pixel/side complex polygon.

-64poly10convex Fill 10×10 convex 64-gon.

-64poly100convex Fill 100×100 convex 64-gon.

-64poly10complex Fill 10×10 complex 64-gon.

-64poly100complex Fill 100×100 complex 64-gon.

-ftext Character in 80-char line (6×13).

-f8text Character in 70-char line (8×13).

-f9text Character in 60-char line (9×15).

-f14text16 2-byte character in 40-char line (k14).

-tr10text Character in 80-char line (Times-Roman 10).

-tr24text Character in 30-char line (Times-Roman 24).

-polytext Character in 20/40/20 line (6×13, Times-Roman 10, 6×13).

-polytext16 2-byte character in 7/14/7 line (k14, k24).

-fitext Character in 80-char image line (6×13).

-f8itext Character in 70-char image line (8×13).

-f9itext Character in 60-char image line (9×15).

-f14itext16 2-byte character in 40-char image line (k14).

-f24itext16 2-byte character in 23-char image line (k24).

-tr10itext Character in 80-char image line (Times-Roman 10).

-tr24itext Character in 30-char image line (Times-Roman 24).

-scroll10 Scroll 10×10 pixels vertically.

-scroll100 Scroll 100×100 pixels vertically.

-scroll500 Scroll 500×500 pixels vertically.

x11perf

Part I: User Commands584

-copywinwin10 Copy 10×10 square from window to window.

-copywinwin100 Copy 100×100 square from window to window.

-copywinwin500 Copy 500×500 square from window to window.

-copypixwin10 Copy 10×10 square from pixmap to window.

-copypixwin100 Copy 100×100 square from pixmap to window.

-copypixwin500 Copy 500×500 square from pixmap to window.

-copywinpix10 Copy 10×10 square from window to pixmap.

-copywinpix100 Copy 100×100 square from window to pixmap.

-copywinpix500 Copy 500×500 square from window to pixmap.

-copypixpix10 Copy 10×10 square from pixmap to pixmap.

-copypixpix100 Copy 100×100 square from pixmap to pixmap.

-copypixpix500 Copy 500×500 square from pixmap to pixmap.

-copyplane10 Copy 10×10 1-bit deep plane.

-copyplane100 Copy 100×100 1-bit deep plane.

-copyplane500 Copy 500×500 1-bit deep plane.

-putimage10 PutImage 10×10 square.

-putimage100 PutImage 100×100 square.

-putimage500 PutImage 500×500 square.

-putimagexy10 PutImage XY format 10×10 square.

-putimagexy100 PutImage XY format 100×100 square.

-putimagexy500 PutImage XY format 500×500 square.

-shmput10 PutImage 10×10 square, MIT-shared memory extension.

-shmput100 PutImage 100×100 square, MIT-shared memory extension.

-shmput500 PutImage 500×500 square, MIT-shared memory extension.

-shmputxy10 PutImage XY format 10×10 square, MIT-shared memory extension.

-shmputxy100 PutImage XY format 100×100 square, MIT-shared memory extension.

-shmputxy500 PutImage XY format 500×500 square, MIT-shared memory extension.

-getimage10 GetImage 10×10 square.

-getimage100 GetImage 100×100 square.

-getimage500 GetImage 500×500 square.

-getimagexy10 GetImage XY format 10×10 square.

-getimagexy100 GetImage XY format 100×100 square.

-getimagexy500 GetImage XY format 500×500 square.

-noop X protocol NoOperation.

-atom GetAtomName.

-pointer QueryPointer.

-prop GetProperty.

-gc Change graphics context.

-create Create child window and map using MapSubwindows.

-ucreate Create unmapped window.

-map Map child window via MapWindow on parent.

-unmap Unmap child window via UnmapWindow on parent.

-destroy Destroy child window via DestroyWindow parent.

-popup Hide/expose window via Map/Unmap pop-up window.

585

-move Move window.

-umove Moved unmapped window.

-movetree Move window via MoveWindow on parent.

-resize Resize window.

-uresize Resize unmapped window.

-circulate Circulate lowest window to top.

-ucirculate Circulate unmapped window to top.

X DEFAULTS
There are no X defaults used by this program.

SEE ALSO
X(1), xbench(1), x11perfcomp(1)

AUTHORS
Joel McCormack
Phil Karlton
Susan Angebranndt
Chris Kent
Keith Packard
Graeme Gill

X Version 11 Release 6

x11perfcomp
x11perfcomp—X11 server performance comparison program

SYNTAX
x11perfcomp [-rj -ro] [-l label_file] files

DESCRIPTION
The x11perfcomp program merges the output of several x11perf(1) runs into a nice tabular format. It takes the results in
each file, fills in any missing test results if necessary, and for each test shows the objects/second rate of each server. If invoked
with the -r or -ro options, it shows the relative performance of each server to the first server.

Normally, x11perfcomp uses the first file specified to determine which specific tests it should report on. Some (non-DEC:)
servers may fail to perform all tests. In this case, x11perfcomp automatically substitutes in a rate of 0.0 objects/second. Since
the first file determines which tests to report on, this file must contain a superset of the tests reported in the other files, else
x11perfcomp will fail.

You can provide an explicit list of tests to report on by using the -l switch to specify a file of labels. You can create a label file
by using the -label option in x11perf.

OPTIONS
x11perfcomp accepts the following options:

-r Specifies that the output should also include relative server performance.

-ro Specifies that the output should include only relative server performance.

-l_label_file Specifies a label file to use.

x11perfcomp

Part I: User Commands586

X DEFAULTS
There are no X defaults used by this program.

SEE ALSO
X(1), x11perf(1)

AUTHORS
Mark Moraes wrote the original scripts to compare servers. Joel McCormack just munged them together a bit.

X Version 11 Release 6

xargs
xargs—Build and execute command lines from standard input

SYNOPSIS
xargs [-0prtx] [-e[eof-str]] [-i[replace-str]] [-l[max-lines]] [-n max-args]
[-s max-chars] [-P max-procs] [--null] [--eof[=eof-str]] [--replace[=replace-str]]
[--max-lines[=max-lines]] [--interactive] [--max-chars=max-chars] [--verbose]
[--exit] [--max-procs=max-procs] [--max-args=max-args] [--no-run-if-empty]
[--version] [--help] [command [initial-arguments]]

DESCRIPTION
This manual page documents the GNU version of xargs. xargs reads arguments from the standard input, delimited by
blanks (which can be protected with double or single quotes or a backslash) or newlines, and executes the command (default is
/bin/echo) one or more times with any initial-arguments followed by arguments read from standard input. Blank lines
on the standard input are ignored.

xargs exits with the following status:

0 if it succeeds

123 if any invocation of the command exited with status 1-125

124 if the command exited with status 255

125 if the command is killed by a signal

126 if the command cannot be run

127 if the command is not found

1 if some other error occurred.

OPTIONS
--null, -0 Input filenames are terminated by a null character instead of by whitespace, and the quotes

and backslash are not special (every character is taken literally). Disables the end-of-file
string, which is treated like any other argument. Useful when arguments might contain
whitespace, quote marks, or backslashes. The GNU find -print0 option produces input
suitable for this mode.

--eof[=eof-str], Set the end-of-file string to eof-str. If the end-of-file string occurs as a line of input, the
-e[eof-str] rest of the input is ignored. If eof-str is omitted, there is no end of file string. If this

option is not given, the end-of-file string defaults to an underscore.

--help Print a summary of the options to xargs and exit.

--replace[=replace-str], Replace occurrences of replace-str in the initial arguments with names read from
-i[replace-str] standard input. Also, unquoted blanks do not terminate arguments. If replace-str

is omitted, it defaults to {} (like for find -exec). Implies -x and -l 1.

587

--max-lines[=max-lines], Use at most max-lines nonblank input lines per command line; max-lines defaults to 1
-l[max-lines] if omitted. Trailing blanks cause an input line to be logically continued on the next input

line. Implies -x.

--max-args=max-args, Use at most max-args arguments per command line. Fewer than max-args arguments will
-n max-args be used if the size (see the -s option) is exceeded, unless the -x option is given, in which

case xargs will exit.

--interactive, -p Prompt the user about whether to run each command line and read a line from the
terminal. Only run the command line if the response starts with y or Y. Implies -t.

--no-run-if-empty, -r If the standard input does not contain any nonblanks, do not run the command. Normally,
the command is run once even if there is no input.

--max-chars=max-chars, Use at most max-chars characters per command line, including the command and initial
-s max-chars arguments and the terminating nulls at the ends of the argument strings. The default is

as large as possible, up to 20k characters.

--verbose, -t Print the command line on the standard error output before executing it.

--version Print the version number of xargs and exit.

--exit, -x Exit if the size (see the -s option) is exceeded.

--max-procs=max-procs, Run up to max-procs processes at a time; the default is 1. If max-procs is 0, xargs will
-P max-procs run as many processes as possible at a time. Use the -n option with - P; otherwise, chances

are that only one exec will be done.

SEE ALSO
find(1L), locate(1L), locatedb(5L), updatedb(1) Finding Files (online in info, or printed)

xauth
xauth—X authority file utility

SYNOPSIS
xauth [-f authfile][-vqib][command arg ...]

DESCRIPTION
The xauth program is used to edit and display the authorization information used in connecting to the X server. This
program is usually used to extract authorization records from one machine and merge them in on another (as is the case
when using remote logins or granting access to other users). Commands (described below) may be entered interactively, on
the xauth command line, or in scripts. Note that this program does not contact the X server. Normally xauth is not used to
create the authority file entry in the first place; xdm does that.

OPTIONS
The following options may be used with xauth. They may be given individually (for example, -q -i) or may combined (for
example, -qi).

-f authfile This option specifies the name of the authority file to use. By default, xauth will use the file
specified by the XAUTHORITY environment variable or Xauthority in the user’s home
directory.

-q This option indicates that xauth should operate quietly and not print unsolicited status
messages. This is the default if an xauth command is given on the command line or if the
standard output is not directed to a terminal.

-v This option indicates that xauth should operate verbosely and print status messages
indicating the results of various operations (such as how many records have been read in or
written out). This is the default if xauth is reading commands from its standard input and
its standard output is directed to a terminal.

xauth

Part I: User Commands588

-i This option indicates that xauth should ignore any authority file locks. Normally, xauth
will refuse to read or edit any authority files that have been locked by other programs
(usually xdm or another xauth).

-b This option indicates that xauth should attempt to break any authority file locks before
proceeding. Use this option only to clean up stale locks.

COMMANDS
The following commands may be used to manipulate authority files:

add displayname An authorization entry for the indicated display using the given protocol and key data is
protocolname hexkey added to the authorization file. The data is specified as an even-lengthed string of

hexadecimal digits, each pair representing one octet. The first digit of each pair gives
the most significant 4 bits of the octet, and the second digit of the pair gives the least
significant 4 bits. For example, a 32-character hexkey would represent a 128-bit value. A
protocol name consisting of just a single period is treated as an abbreviation for
MIT-MAGIC-COOKIE-1.

[n]extract filename Authorization entries for each of the specified displays are written to the indicated file. If
displayname... the nextract command is used, the entries are written in a numeric format suitable for

nonbinary transmission (such as secure electronic mail). The extracted entries can be read
back in using the merge and nmerge commands.

If the filename consists of just a single dash, the entries will be written to the standard
output.

[n]list [displayname...] Authorization entries for each of the specified displays (or all if no displays are named) are
printed on the standard output. If the nlist command is used, entries will be shown in the
numeric format used by the nextract command; otherwise, they are shown in a textual
format. Key data is always displayed in the hexadecimal format given in the description of
the add command.

[n]merge [filename...] Authorization entries are read from the specified files and are merged into the authorization
database, superceding any matching existing entries. If the nmerge command is used, the
numeric format given in the description of the extract command is used. If a filename
consists of just a single dash, the standard input will be read if it hasn’t been read before.

remove displayname... Authorization entries matching the specified displays are removed from the authority file.

source filename The specified file is treated as a script containing xauth commands to execute. Blank lines
and lines beginning with a pound sign (#) are ignored. A single hyphen may be used to
indicate the standard input, if it hasn’t already been read.

info Information describing the authorization file, whether or not any changes have been made,
and from where xauth commands are being read is printed on the standard output.

exit If any modifications have been made, the authority file is written out (if allowed), and the
program exits. An end-of-file is treated as an implicit exit command.

quit The program exits, ignoring any modifications. This may also be accomplished by pressing
the interrupt character.

help [string] A description of all commands that begin with the given string (or all commands if no
string is given) is printed on the standard output.

? A short list of the valid commands is printed on the standard output.

DISPLAY NAMES
Display names for the add, [n]extract, [n]list, [n]merge,and remove commands use the same format as the DISPLAY
environment variable and the common -display command-line argument. Display-specific information (such as the screen
number) is unnecessary and will be ignored. Same-machine connections (such as local-host sockets, shared memory, and the
Internet Protocol hostname localhost) are referred to as hostname/unix:displaynumber so that local entries for different

589

machines may be stored in one authority file.

EXAMPLE
The most common use for xauth is to extract the entry for the current display, copy it to another machine, and merge it into
the user’s authority file on the remote machine:

% xauth extract
 - $DISPLAY | rsh otherhost xauth merge -

ENVIRONMENT
This xauth program uses the following environment variables:

XAUTHORITY To get the name of the authority file to use if the -f option isn’t used.

HOME To get the user’s home directory if XAUTHORITY isn’t defined.

FILES
$HOME/.Xauthority is the default authority file if XAUTHORITY isn’t defined.

X Version 11 Release 6

xauth

Part I: User Commands590

591

[n]list [displayname...] Authorization entries for each of the specified displays (or all if
no displays are named) are printed on the standard output. If
the nlist command is used, entries will be shown in the
numeric format used by the nextract command; otherwise,
they are shown in a textual format. Key data is always
displayed in the hexadecimal format given in the description of
the add command.

[n]merge [filename...] Authorization entries are read from the specified files and are
merged into the authorization database, superseding any
matching existing entries. If the nmerge command is used, the
numeric format given in the description of the extract
command is used. If a filename consists of just a single dash,
the standard input will be read if it hasn’t been read before.

remove displayname... Authorization entries matching the specified displays are
removed from the authority file.

source filename The specified file is treated as a script containing xauth
commands to execute. Blank lines and lines beginning with a #
are ignored. A single dash may be used to indicate the standard
input, if it hasn’t already been read.

info Information describing the authorization file, whether or not
any changes have been made, and from where xauth com-
mands are being read is printed on the standard output.

exit If any modifications have been made, the authority file is
written out (if allowed), and the program exits. An end of file
is treated as an implicit exit command.

quit The program exits, ignoring any modifications. This may also
be accomplished by pressing the interrupt character.

help [string] A description of all commands that begin with the given string
(or all commands if no string is given) is printed on the
standard output.

? A short list of the valid commands is printed on the standard
output.

DISPLAY NAMES
Display names for the add, [n]extract, [n]list, [n]merge, and remove commands use the same format as the DISPLAY
environment variable and the common –display command-line argument. Display-specific information (such as the screen
number) is unnecessary and will be ignored. Same-machine connections (such as local-host sockets, shared memory, and the
Internet Protocol hostnamelocalhost) are referred to as hostname/unix:displaynumber so that local entries for different
machines may be stored in one authority file.

EXAMPLE
The most common use for xauth is to extract the entry for the current display, copy it to another machine, and merge it into
the user’s authority file on the remote machine:

% xauth extract
 – $DISPLAY j rsh otherhost xauth merge –

Part I: User Commands592

ENVIRONMENT
This xauth program uses the following environment variables:

XAUTHORITY To get the name of the authority file to use if the –f option
isn’t used

HOME To get the user’s home directory if XAUTHORITY isn’t defined

FILES
$HOME/.Xauthority Default authority file if XAUTHORITY isn’t defined

BUGS
Users that have unsecured networks should take care to use encrypted file transfer mechanisms to copy authorization entries
between machines. Similarly, the MIT-MAGIC-COOKIE-1 protocol is not very useful in unsecured environments. Sites that are
interested in additional security may need to use encrypted authorization mechanisms such as Kerberos.

Spaces are currently not allowed in the protocol name. Quoting could be added for the truly perverse.

AUTHOR
Jim Fulton, MIT X Consortium

X Version 11 Release 6

xbmtopbm
xbmtopbm—Convert an X11 or X10 bitmap into a portable bitmap

SYNOPSIS
xbmtopbm [bitmapfile]

DESCRIPTION
Reads an X11 or X10 bitmap as input. Produces a portable bitmap as output.

SEE ALSO
pbmtoxbm(1), pbmtox10bm(1), pbm(5)

AUTHOR
Copyright (c) 1988 by Jef Poskanzer.

31 August 1988

xcmsdb
xcmsdb—Device Color Characterization utility for X Color Management System

SYNOPSIS
xcmsdb [–query][–remove][–format 32j16j8][filename]

593

DESCRIPTION
xcmsdb is used to load, query, or remove device color characterization data stored in properties on the root window of the
screen as specified in section 7, Device Color Characterization, of the ICCCM. Device color characterization data (also
called the Device Profile) is an integral part of Xlib’s X Color Management System (xcms), necessary for proper conversion
of color specification between device-independent and device-dependent forms. xcms uses 3×3 matrices stored in the
XDCCC_LINEAR_RGB_MATRICES property to convert color specifications between CIEXYZ and RGB Intensity (XcmsRGBi, also
referred to as linear RGB). xcms then uses display gamma information stored in the XDCCC_LINEAR_RGB_CORRECTION property to
convert color specifications between RGBi and RGB device (XcmsRGB, also referred to as device RGB).

Note that xcms allows clients to register function sets in addition to its built-in function set for CRT color monitors.
Additional function sets may store their device profile information in other properties in function set specific format. This
utility is unaware of these nonstandard properties.

The ASCII readable contents of filename (or the standard input if no input file is given) are appropriately transformed for
storage in properties, provided the –query or –remove options are not specified.

OPTIONS
xcmsdb program accepts the following options:

–query This option attempts to read the XDCCC properties off the
screen’s root window. If successful, it transforms the data into
a more readable format, then sends the data to standard out.

–remove This option attempts to remove the XDCCC properties on the
screen’s root window.

–format 32j16j8 Specifies the property format (32, 16, or 8 bits per entry) for
the XDCCC_LINEAR_RGB_CORRECTION property. Precision of
encoded floating-point values increases with the increase in
bits per entry. The default is 32 bits per entry.

SEE ALSO
xprop(1), Xlib documentation

ENVIRONMENT
DISPLAY To figure out which display and screen to use

AUTHOR
Chuck Adams, Tektronix, Inc., and Al Tabayoyon, SynChromatics, Inc. (added multivisual support)

X Version 11 Release 6

xclock
xclock—Analog/digital clock for X

SYNOPSIS
xclock [–help][–analog][–digital][–chime][–hd color][–hl color]
 [–update seconds][–padding number]

DESCRIPTION
The xclock program displays the time in analog or digital form. The time is continuously updated at a frequency which may
be specified by the user.

xclock

Part I: User Commands594

OPTIONS
xclock accepts all of the standard X Toolkit command-line options along with the additional options listed here:

–help This option indicates that a brief summary of the allowed
options should be printed on the standard error.

–analog This option indicates that a conventional 12-hour clock face
with tick marks and hands should be used. This is the default.

–digital or –d This option indicates that a 24-hour digital clock should be
used.

–chime This option indicates that the clock should chime once on the
half hour and twice on the hour.

–hands color (or –hd color) This option specifies the color of the hands on an analog
clock. The default is black.

–highlight color (or –hl color) This option specifies the color of the edges of the hands on an
analog clock, and is only useful on color displays. The default
is black.

–update seconds This option specifies the frequency in seconds at which xclock
should update its display. If the clock is obscured and then
exposed, it will be updated immediately. A value of 30 seconds
or less will enable a second hand on an analog clock. The
default is 60 seconds.

–padding number This option specifies the width in pixels of the padding
between the window border and clock text or picture. The
default is 10 on a digital clock and 8 on an analog clock.

X DEFAULTS
This program uses the Clock widget. It understands all of the core resource names and classes as well as:

width (class Width) Specifies the width of the clock. The default for analog clocks
is 164 pixels; the default for digital clocks is whatever is needed
to hold the clock when displayed in the chosen font.

height (class Height) Specifies the height of the clock. The default for analog clocks
is 164 pixels; the default for digital clocks is whatever is needed
to hold the clock when displayed in the chosen font.

update (class Interval) Specifies the frequency in seconds at which the time should be
redisplayed.

foreground (class Foreground) Specifies the color for the tick marks. The default is depends
on whether reverseVideo is specified. If reverseVideo is
specified, the default is lwhite; otherwise, the default is black.

hands (class Foreground) Specifies the color of the insides of the clock’s hands. The
default depends on whether reverseVideo is specified. If
reverseVideo is specified, the default is lwhite; otherwise, the
default is black.

highlight (class Foreground) Specifies the color used to highlight the clock’s hands. The
default depends on whether reverseVideo is specified. If
reverseVideo is specified, the default is lwhite; otherwise, the
default is black.

analog (class Boolean) Specifies whether or not an analog clock should be used
instead of a digital one. The default is True.

chime (class Boolean) Specifies whether or not a bell should be rung on the hour and
half hour.

595

padding (class Margin) Specifies the amount of internal padding in pixels to be used.
The default is 8.

font (class Font) Specifies the font to be used for the digital clock. Note that
variable width fonts currently will not always display correctly.

WIDGETS
In order to specify resources, it is useful to know the hierarchy of the widgets which compose xclock. In the following
notation, indentation indicates hierarchical structure. The widget class name is given first, followed by the widget instance
name:

XClock xclock
 Clock clock

ENVIRONMENT
DISPLAY To get the default host and display number

XENVIRONMENT To get the name of a resource file that overrides the global
resources stored in the RESOURCE_MANAGER property

FILES
<XRoott/lib/X11/app-defaults/XClock Specifies required resources

SEE ALSO
X(1), xrdb(1), time(3C)

BUGS
xclock believes the system clock.

When in digital mode, the string should be centered automatically.

AUTHORS
Tony Della Fera (MIT-Athena, DEC), Dave Mankins (MIT-Athena, BBN), and Ed Moy (UC Berkeley)

X Version 11 Release 6

xclipboard
xclipboard—X clipboard client

SYNOPSIS
xclipboard [–toolkitoption ...] [–w][–nw]

DESCRIPTION
The xclipboard program is used to collect and display text selections that are sent to the Clipboard by other clients. It is
typically used to save Clipboard selections for later use. It stores each Clipboard selection as a separate string, each of which
can be selected. Each time Clipboard is asserted by another application, xclipboard transfers the contents of that selection to
a new buffer and displays it in the text window. Buffers are never automatically deleted, so you’ll want to use the delete
button to get rid of useless items.

Since xclipboard uses a Text Widget to display the contents of the clipboard, text sent to the Clipboard may be reselected for
use in other applications. xclipboard also responds to requests for the Clipboard selection from other clients by sending the
entire contents of the currently displayed buffer.

xclipboard

Part I: User Commands596

An xclipboard window has the following buttons across the top:

quit When this button is pressed, xclipboard exits.

delete When this button is pressed, the current buffer is deleted and
the next one displayed.

new Creates a new buffer with no contents. Useful in constructing
a new Clipboard selection by hand.

save Displays a File Save dialog box. Pressing the Accept button
saves the currently displayed buffer to the file specified in the
text field.

next Displays the next buffer in the list.

previous Displays the previous buffer.

OPTIONS
The xclipboard program accepts all of the standard X Toolkit command-line options as well as the following:

–w This option indicates that lines of text that are too long to be
displayed on one line in the clipboard should wrap around to
the following lines.

–nw This option indicates that long lines of text should not wrap
around. This is the default behavior.

WIDGETS
In order to specify resources, it is useful to know the hierarchy of the widgets which compose xclipboard. In the following
notation, indentation indicates hierarchical structure. The widget class name is given first, followed by the widget instance
name.

XClipboard xclipboard
 Form form
 Command Quit
 Command delete
 Command new
 Command Save
 Command next
 Command prev
 Label index
 Text text
 TransientShell fileDialogShell
 Dialog fileDialog
 Label label
 Command accept
 Command cancel
 Text value
 TransientShell failDialogShell
 Dialog failDialog
 Label label
 Command continue

SENDING/RETRIEVING CLIPBOARD CONTENTS
Text is copied to the Clipboard whenever a client asserts ownership of the Clipboard selection. Text is copied from the
Clipboard whenever a client requests the contents of the Clipboard selection. Examples of event bindings that a user may
wish to include in a resource configuration file to use the Clipboard are

*VT100.Translations: #override \
<Btn3Up>: select-end(CLIPBOARD) \n\

597

<Btn2Up>: insert-selection(PRIMARY,CLIPBOARD) \n\
<Btn2Down>: ignore ()

SEE ALSO
X(1), xcutsel(1), xterm(1), individual client documentation for how to make a selection and send it to the Clipboard.

ENVIRONMENT
DISPLAY To get the default host and display number

XENVIRONMENT To get the name of a resource file that overrides the global
resources stored in the RESOURCE_MANAGER property

FILES
<XRoot>/lib/X11/app-defaults/XClipboard Specifies required resources

AUTHOR
Ralph R. Swick (DEC/MIT Project Athena), Chris D. Peterson (MIT X Consortium), Keith Packard (MIT X Consortium)

X Version 11 Release 6

xconsole
xconsole—Monitor system console messages with X

SYNOPSIS
xconsole [-toolkitoption ...] [-file file-name] [-notify] [-stripNonprint] [-daemon] [-verbose]
 [-exitOnFail]

DESCRIPTION
The xconsole program displays messages that are usually sent to /dev/console.

OPTIONS
xconsole accepts all of the standard X Toolkit command-line options along with the additional options listed here:

–file file-name To monitor some other device, use this option to specify the
device name. This does not work on regular files as they are
always ready to be read from.

–notify, –nonotify When new data are received from the console and the notify
option is set, the icon name of the application has * appended,
so that it is evident even when the application is iconified. –
notify is the default.

–daemon This option causes Xconsole to place itself in the background,
using fork/exit.

–verbose When set, this option directs xconsole to display an informa-
tive message in the first line of the text buffer.

–exitOnFail When set, this option directs xconsole to exit when it is unable
to redirect the console output.

X DEFAULTS
This program uses the Athena Text widget, look in the Athena Widget Set documentation for controlling it.

xconsole

Part I: User Commands598

WIDGETS
In order to specify resources, it is useful to know the hierarchy of the widgets that compose xconsole. In the following
notation, indentation indicates hierarchical structure. The widget class name is given first, followed by the widget instance
name.

XConsole xconsole
 XConsole text

ENVIRONMENT
DISPLAY To get the default host and display number.

XENVIRONMENT To get the name of a resource file that overrides the global
resources stored in the RESOURCE_MANAGER property.

FILES
<XRoot>/lib/X11/app-defaults/XConsole Specifies required resources

SEE ALSO
X(1), xrdb(1), Athena Text widget

AUTHOR
Keith Packard (MIT X Consortium)

X Version 11 Release 6

xcutsel
xcutsel—Interchange between cut buffer and selection

SYNOPSIS
xcutsel [-toolkitoption ...] [-selection selection] [-cutbuffer number]

DESCRIPTION
The xcutsel program is used to copy the current selection into a cut buffer and to make a selection that contains the current
contents of the cut buffer. It acts as a bridge between applications that don’t support selections and those that do.

By default, xcutsel will use the selection named PRIMARY and the cut buffer CUT_BUFFER0. Either or both of these can be
overridden by command-line arguments or by resources.

An xcutsel window has the following buttons:

quit When this button is pressed, xcutsel exits. Any selections held
by xcutsel are automatically released.

copy PRIMARY to 0 When this button is pressed, xcutsel copies the current
selection into the cut buffer.

copy 0 to PRIMARY When this button is pressed, xcutsel converts the current
contents of the cut buffer into the selection.

The button labels reflect the selection and cut buffer selected by command-line options or through the resource database.

When the copy 0 to PRIMARY button is activated, the button will remain inverted as long as xcutsel remains the owner of
the selection. This serves to remind you which client owns the current selection. Note that the value of the selection remains
constant; if the cut buffer is changed, you must again activate the copy button to retrieve the new value when desired.

599

OPTIONS
Xcutsel accepts all of the standard X Toolkit command-line options as well as the following:

–selection name This option specifies the name of the selection to use. The
default is PRIMARY. The only supported abbreviations for this
option are -select, -sel, and -s, as the standard toolkit option
-selectionTimeout has a similar name.

–cutbuffer number This option specifies the cut buffer to use. The default is
cutbuffer 0.

X DEFAULTS
This program accepts all of the standard X Toolkit resource names and classes as well as the following:

selection (class Selection) This resource specifies the name of the selection to use. The
default is PRIMARY.

cutBuffer (class CutBuffer) This resource specifies the number of the cutbuffer to use.
The default is 0.

WIDGET NAMES
The following instance names may be used when user configuration of the labels in them is desired:

sel-cut (class Command) This is the “copy SELECTION to BUFFER” button.

cut-sel (class Command) This is the “copy BUFFER to SELECTION” button.

quit (class Command) This is the “quit” button.

SEE ALSO
X(1), xclipboard(1), xterm(1), text widget documentation, individual client documentation for how to make a selection.

BUGS
There is no way to change the name of the selection or the number of the cut buffer while the program is running.

AUTHOR
Ralph R. Swick (DEC/MIT Project Athena)

X Version 11 Release 6

xdm
xdm—X Display Manager with support for XDMCP, host chooser

SYNOPSIS
xdm [–config configuration_file][–nodaemon][–debug debug_level]
[–error error_log_file][–resources resource_file][–server server_entry]
[–sessionsession_program]

DESCRIPTION
xdm manages a collection of X displays, which may be on the local host or remote servers. The design of xdm was guided by
the needs of X terminals as well as the X Consortium standard XDMCP, the X Display Manager Control Protocol. Xdm provides
services similar to those provided by init, getty, and login on character terminals: prompting for login name and password,
authenticating the user, and running a session.

xdm

Part I: User Commands600

A session is defined by the lifetime of a particular process; in the traditional character-based terminal world, it is the user’s
login shell. In the xdm context, it is an arbitrary session manager. This is because in a windowing environment, a user’s login
shell process does not necessarily have any terminal-like interface with which to connect. When a real session manager is not
available, a window manager or terminal emulator is typically used as the session manager, meaning that termination of this
process terminates the user’s session.

When the session is terminated, xdm resets the X server and (optionally) restarts the whole process.

When xdm receives an Indirect query via XDMCP, it can run a chooser process to perform an XDMCP BroadcastQuery (or
an XDMCP Query to specified hosts) on behalf of the display and offer a menu of possible hosts that offer XDMCP display
management. This feature is useful with X terminals that do not offer a host menu themselves.

Because xdm provides the first interface that users will see, it is designed to be simple to use and easy to customize to the needs
of a particular site. xdm has many options, most of which have reasonable defaults. Browse through the various sections of this
manual, picking and choosing the things you want to change. Pay particular attention to the “Session Program” subsection,
which will describe how to set up the style of session desired.

OVERVIEW
xdm is highly configurable, and most of its behavior can be controlled by resource files and shell scripts. The names of these
files themselves are resources read from the file xdm-config or the file named by the –config option.

xdm offers display management two different ways. It can manage X servers running on the local machine and specified in
Xservers, and it can manage remote X servers (typically X terminals) using XDMCP (the XDM Control Protocol) as specified in
the Xaccess file.

The resources of the X clients run by xdm outside the user’s session, including xdm’s own login window, can be affected by
setting resources in the Xresources file.

For X terminals that do not offer a menu of hosts to get display management from, xdm can collect willing hosts and run the
chooser program to offer the user a menu. For X displays attached to a host, this step is typically not used, as the local host
does the display management.

After resetting the X server, xdm runs the Xsetup script to assist in setting up the screen the user sees along with the xlogin
widget.

When the user logs in, xdm runs the Xstartup script as root.

Then xdm runs the Xsession script as the user. This system session file may do some additional startup and typically runs a
script in the user’s home directory. When the Xsession script exits, the session is over.

At the end of the session, the Xreset script is run to clean up, the X server is reset, and the cycle starts over.

The file /usr/X11R6/lib/X11/xdm/xdm-errors will contain error messages from xdm and anything output to stderr by Xsetup,
Xstartup, Xsession, or Xreset. When you have trouble getting xdm working, check this file to see if xdm has any clues to the
trouble.

OPTIONS
All of these options, except –config itself, specify values that can also be specified in the configuration file as resources.

–config configuration_file Names the configuration file, which specifies resources to
control the behavior of xdm. <XRoot>/lib/X11/xdm/xdm-config is
the default. See the subsection called “Configuration File.”

–nodaemon Specifies false as the value for the DisplayManager.daemonMode
resource. This suppresses the normal daemon behavior, which
is for xdm to close all file descriptors, disassociate itself from the
controlling terminal, and put itself in the background when it
first starts up.

601

–debug debug_level Specifies the numeric value for the DisplayManager.debugLevel
resource. A non-zero value causes xdm to print lots of
debugging statements to the terminal; it also disables the
DisplayManager.daemonModeresource, forcing xdm to run
synchronously. To interpret these debugging messages, a copy
of the source code for xdm is almost a necessity. No attempt has
been made to rationalize or standardize the output.

–error error_log_file Specifies the value for the DisplayManager.errorLogFile
resource. This file contains errors from xdm as well as anything
written to stderr by the various scripts and programs run
during the progress of the session.

–resources resource_file Specifies the value for the DisplayManager*resources resource.
This file is loaded using xrdb to specify configuration
parameters for the authentication widget.

–server server_entry Specifies the value for the DisplayManager.servers resource.
See the subsection “Local Server Specification” for a descrip-
tion of this resource.

–udpPort port_number Specifies the value for the DisplayManager.requestPort
resource. This sets the port number, which xdm will monitor
for XDMCP requests. As XDMCP uses the registered well-
known UDP port 177, this resource should not be changed
except for debugging.

–session session_program Specifies the value for the DisplayManager*session resource.
This indicates the program to run as the session after the user
has logged in.

–xrm resource_specification Allows an arbitrary resource to be specified, as in most X
Toolkit applications.

RESOURCES
At many stages the actions of xdm can be controlled through the use of its configuration file, which is in the X resource
format. Some resources modify the behavior of xdm on all displays, while others modify its behavior on a single display.
Where actions relate to a specific display, the display name is inserted into the resource name between Display-Manager and
the final resource name segment.

For local displays, the resource name and class are as read from the Xservers file.

For remote displays, the resource name is what the network address of the display resolves to. See the removeDomain resource.
The name must match exactly; xdm is not aware of all the network aliases that might reach a given display. If the name resolve
fails, the address is used. The resource class is as sent by the display in the XDMCP Manage request.

Because the resource manager uses colons to separate the name of the resource from its value and dots to separate resource
name parts, xdm substitutes underscores for both dots and colons when generating the resource name. For example,
DisplayManager.expo x org 0.startup is the name of the resource that defines the startup shell file for the expo.x.org:0
display.

DisplayManager.servers This resource either specifies a filename full of server entries,
one per line (if the value starts with a slash), or a single server
entry. See the subsection “Local Server Specification” for the
details.

DisplayManager.requestPort This indicates the UDP port number that xdm uses to listen for
incoming XDMCP requests. Unless you need to debug the
system, leave this with its default value of 177.

xdm

Part I: User Commands602

DisplayManager.errorLogFile Error output is normally directed at the system console. To
redirect it, set this resource to a filename. A method to send
these messages to syslog should be developed for systems that
support it; however, the wide variety of interfaces precludes
any system-independent implementation. This file also
contains any output directed to stderr by the Xsetup, Xstartup,
Xsession, and Xreset files, so it will contain descriptions of
problems in those scripts as well.

DisplayManager.debugLevel If the integer value of this resource is greater than zero, reams
of debugging information will be printed. It also disables
daemon mode, which would redirect the information into the
bit-bucket, and allows nonroot users to run xdm, which would
normally not be useful.

DisplayManager.daemonMode Normally, xdm attempts to make itself into a daemon process
unassociated with any terminal. This is accomplished by
forking and leaving the parent process to exit, then closing file
descriptors and releasing the controlling terminal. In some
environments this is not desired (in particular, when
debugging). Setting this resource to false will disable this
feature.

DisplayManager.pidFile The filename specified will be created to contain an ASCII
representation of the process-id of the main xdm process. xdm
also uses file locking on this file to attempt to eliminate
multiple daemons running on the same machine, which would
cause quite a bit of havoc.

DisplayManager.lockPidFile This is the resource which controls whether xdm uses file
locking to keep multiple display managers from running
amok. On System V, this uses the lockf library call, while on
BSD it uses flock.

DisplayManager.authDir This names a directory in which xdm stores authorization files
while initializing the session. The default value is y.

DisplayManager.autoRescan This Boolean controls whether xdm rescans the configuration,
servers, access control and authentication keys files after a
session terminates and the files have changed. By default it is
true. You can force xdm to reread these files by sending a
SIGHUP to the main process.

DisplayManager.removeDomainname When computing the display name for XDMCP clients, the name
resolver will typically create a fully qualified hostname for the
terminal. As this is sometimes confusing, xdm will remove the
domain name portion of the hostname if it is the same as the
domain name of the local host when this variable is set. By
default the value is true.

DisplayManager.keyFile XDM-AUTHENTICATION-1 style XDMCP authentication requires
that a private key be shared between xdm and the terminal. This
resource specifies the file containing those values. Each entry
in the file consists of a display name and the shared key. By
default, xdm does not include support for XDM-AUTHENTICATION-1,
as it requires DES, which is not generally distributable because
of United States export restrictions.

603

DisplayManager.accessFile To prevent unauthorized XDMCP service and to allow
forwarding of XDMCP IndirectQuery requests, this file
contains a database of hostnames that are either allowed direct
access to this machine, or have a list of hosts to which queries
should be forwarded to. The format of this file is described in
the subsection “XDMCP Access Control.”

DisplayManager.exportList A list of additional environment variables, separated by
whitespace, to pass on to the Xsetup, Xstartup, Xsession,and
Xreset programs.

DisplayManager.randomFile A file to checksum to generate the seed of authorization keys.
This should be a file that changes frequently. The default is
/dev/mem.

DisplayManager.greeterLib On systems that support a dynamically loadable greeter library,
the name of the library. Default is <XRoot>/lib/X11/xdm/
libXdmGreet.so.

DisplayManager.choiceTimeout Number of seconds to wait for display to respond after user
has selected a host from the chooser. If the display sends an
XDMCP IndirectQuery within this time, the request is
forwarded to the chosen host. Otherwise, it is assumed to be
from a new session and the chooser is offered again. Default
is 15.

DisplayManager.DISPLAY.resources This resource specifies the name of the file to be loaded by
xrdb as the resource database onto the root window of screen 0
of the display. The Xsetup program, the Login widget, and
chooser will use the resources set in this file. This resource
database is loaded just before the authentication procedure is
started, so it can control the appearance of the login window.
See the subsection “Authentication Widget,” which describes
the various resources that are appropriate to place in this file.
There is no default value for this resource, but <XRoot>/lib/
X11/xdm/Xresources is the conventional name.

DisplayManager.DISPLAY.chooser Specifies the program run to offer a host menu for Indirect
queries redirected to the special hostname CHOOSER. <XRoot>
/lib/X11/xdm/chooser is the default. See the subsections
“XDMCP Access Control” and “chooser.”

DisplayManager.DISPLAY.xrdb Specifies the program used to load the resources. By default,
xdm uses <XRoot>/bin/xrdb.

DisplayManager.DISPLAY.cpp This specifies the name of the C preprocessor that is used by
xrdb.

DisplayManager.DISPLAY.setup This specifies a program that is run (as root) before offering
the Login window. This may be used to change the appearance
of the screen around the Login window or to put up other
windows (for example, you may want to run xconsole here).
By default, no program is run. The conventional name for a
file used here is Xsetup. See the subsection “Setup Program.”

DisplayManager.DISPLAY.startup This specifies a program that is run (as root) after the
authentication process succeeds. By default, no program is run.
The conventional name for a file used here is Xstartup. See the
subsection “Startup Program.”

DisplayManager.DISPLAY.session This specifies the session to be executed (not running as root).
By default, <XRoot>/bin/xterm is run. The conventional name
is Xsession. See the subsection “Session Program.”

xdm

Part I: User Commands604

DisplayManager.DISPLAY.reset This specifies a program which is run (as root) after the session
terminates. Again, by default, no program is run. The
conventional name is Xreset. See the subsection “Reset
Program.”

DisplayManager.DISPLAY.openDelay, These numeric resources control the behavior of xdm when
DisplayManager.DISPLAY.openRepeat, attempting to open intransigent servers. openDelay is the length
DisplayManager.DISPLAY.openTimeout, of the pause (in seconds) between successive attempts,
DisplayManager.DISPLAY.startAttempts openRepeat is the number of attempts to make, openTimeout is

the amount of time to wait while actually attempting the open
(that is, the maximum time spent in the connect(2) system
call) and startAttempts is the number of times this entire
process is done before giving up on the server. After openRepeat
attempts have been made, or if openTimeout seconds elapse in
any particular attempt, xdm terminates and restarts the server,
attempting to connect again. This process is repeated
startAttempts times, at which point the display is declared
dead and disabled. Although this behavior may seem arbitrary,
it has been empirically developed and works quite well on
most systems. The default values are 5 for openDelay, 5 for
openRepeat, 30 for openTimeout and 4 for startAttempts.

DisplayManager.DISPLAY.pingInterval, To discover when remote displays disappear, xdm
DisplayManager.DISPLAY. pingTimeout occasionally pings them, using an X connection and XSync

calls. pingInterval specifies the time (in minutes) between
each ping attempt, pingTimeout specifies the maximum
amount of time (in minutes) to wait for the terminal to
respond to the request. If the terminal does not respond, the
session is declared dead and terminated. By default, both are
set to 5 minutes. If you frequently use X terminals that can
become isolated from the managing host, you might want to
increase this value. The only worry is that sessions will
continue to exist after the terminal has been accidentally
disabled. xdm will not ping local displays. Although it would
seem harmless, it is unpleasant when the workstation session is
terminated as a result of the server hanging for NFS service
and not responding to the ping.

DisplayManager.DISPLAY. This Boolean resource specifies whether the X server should be
terminateServer terminated when a session terminates (instead of resetting it).

This option can be used when the server tends to grow
without bound over time, in order to limit the amount of time
the server is run. The default value is false.

DisplayManager.DISPLAY.userPath xdm sets the PATH environment variable for the session to this
value. It should be a colon separated list of directories; see
sh(1) for a full description. :/bin:/usr/bin:/usr/X11R6/bin
:/usr/ucb is a common setting. The default value can be
specified at build time in the X system configuration file with
DefaultUserPath.

DisplayManager.DISPLAY. Xdm sets the PATH environment variable for the startup and reset
systemPath scripts to the value of this resource. The default for this

resource is specified at build time by the DefaultSystem-Path
entry in the system configuration file; /etc:/bin:/usr/bin

605

: /usr/X11R6/bin:/usr/ ucb is a common choice. Note the
absence of (.) from this entry. This is a good practice to follow
for root; it avoids many common Trojan Horse system
penetration schemes.

DisplayManager.DISPLAY. Xdm sets the SHELL environment variable for the startup and
systemShell reset scripts to the value of this resource. It is /bin/sh by

default.

DisplayManager.DISPLAY If the default session fails to execute, xdm will fall back to this
failsafeClient program. This program is executed with no arguments, but

executes using the same environment variables as the session
would have had. (See the subsection “Session Program.”) By
default, <XRoot>/bin/xterm is used.

DisplayManager.DISPLAY.grabServer, To improve security, this grabs the server and keyboard while
DisplayManager.DISPLAY. grabTimeout xdm reading the login name and password. The grabServer resource

specifies if the server should be held for the duration of the
name/password reading. When false, the server is ungrabbed
after the keyboard grab succeeds; otherwise, the server is
grabbed until just before the session begins. The default is
false. The grabTimeout resource specifies the maximum time
xdm will wait for the grab to succeed. The grab may fail if some
other client has the server grabbed, or possibly if the network
latencies are very high. This resource has a default value of 3
seconds; you should be cautious when raising it, as a user can
be spoofed by a look-alike window on the display. If the grab
fails, xdm kills and restarts the server (if possible) and the
session.

DisplayManager.DISPLAY.authorize, authorize is a Boolean resource that controls whether xdm
DisplayManager.DISPLAY.authName generates and uses authorization for the local server connec-

tions. If authorization is used, authName is a list of authorization
mechanisms to use, separated by whitespace. XDMCP
connections dynamically specify which authorization
mechanisms are supported, so authName is ignored in this case.
When authorize is set for a display and authorization is not
available, the user is informed by having a different message
displayed in the Login widget. By default, authorize is true.
authName is MIT-MAGIC-COOKIE-1, or, if XDM-AUTHORIZATION-1 is
available, XDM-AUTHORIZATION-1 MIT-MAGIC-COOKIE-1.

DisplayManager.DISPLAY.authFile This file is used to communicate the authorization data from
xdm to the server, using the –auth server command-line option.
It should be kept in a directory that is not world-writable as it
could easily be removed, disabling the authorization mecha-
nism in the server.

DisplayManager.DISPLAY. If set to false, disables the use of the unsecureGreeting in the
authComplain login window. See the subsection “Authentication Widget.”

The default is true.

DisplayManager.DISPLAY. The number of the signal xdm sends to reset the server.
resetSignal See the subsection “Controlling the Server.” The default is 1

(SIGHUP).

DisplayManager.DISPLAY. The number of the signal xdm sends to terminate the server. See
termSignal the subsection “Controlling the Server.” The default is 15

(SIGTERM).

xdm

Part I: User Commands606

DisplayManager.DISPLAY. The original implementation of authorization in the sample
resetForAuth server reread the authorization file at server reset time, instead

of when checking the initial connection. As xdm generates the
authorization information just before connecting to the
display, an old server would not get up-to-date authorization
information. This resource causes xdm to send SIGHUP to the
server after setting up the file, causing an additional server reset
to occur, during which time the new authorization information
will be read. The default is false, which will work for all MIT
servers.

DisplayManager.DISPLAY. When xdm is unable to write to the usual user authorization file
userAuthDir ($HOME/.Xauthority), it creates a unique filename in this

directory and points the environment variable XAUTHORITY at
the created file. It uses /tmp by default.

CONFIGURATION FILE
First, the xdm configuration file should be set up. Make a directory (usually <XRoot>/lib/X11/xdm, where <XRoot> refers to the
root of the X11 install tree) to contain all of the relevant files. In the examples that follow, /usr/X11R6 is used as the value of
<XRoot>.

Here is a reasonable configuration file, which could be named xdm-config:

DisplayManager.servers: /usr/X11R6/lib/X11/xdm/Xservers
DisplayManager.errorLogFile: /usr/X11R6/lib/X11/xdm/xdm-errors
DisplayManager*resources: /usr/X11R6/lib/X11/xdm/Xresources
DisplayManager*startup: /usr/X11R6/lib/X11/xdm/Xstartup
DisplayManager*session: /usr/X11R6/lib/X11/xdm/Xsession
DisplayManager.pidFile: /usr/X11R6/lib/X11/xdm/xdm-pid
DisplayManager. 0.authorize: true
DisplayManager*authorize: false

Note that this file mostly contains references to other files. Note also that some of the resources are specified with *
separating the components. These resources can be made unique for each different display, by replacing the * with the
display name, but normally this is not very useful. See the “Resources” section for a complete discussion.

XDMCP ACCESS CONTROL
The database file specified by the DisplayManager.accessFile provides information which xdm uses to control access from
displays requesting XDMCP service. This file contains three types of entries: entries that control the response to Direct and
Broadcast queries, entries that control the response to Indirect queries, and macro definitions.

The format of the Direct entries is simple, either a hostname or a pattern, which is distinguished from a hostname by the
inclusion of one or more metacharacters (* matches any sequence of 0 or more characters, and ? matches any single
character) which are compared against the hostname of the display device. If the entry is a hostname, all comparisons are
done using network addresses, so any name which converts to the correct network address may be used. For patterns, only
canonical hostnames are used in the comparison, so ensure that you do not attempt to match aliases. Preceding either a
hostname or a pattern with a ! character causes hosts that match that entry to be excluded.

An Indirect entry also contains a hostname or pattern, but follows it with a list of hostnames or macros to which indirect
queries should be sent.

A macro definition contains a macro name and a list of hostnames and other macros that the macro expands to. To
distinguish macros from hostnames, macro names start with a % character. Macros may be nested.

Indirect entries may also specify to have xdm run chooser to offer a menu of hosts to connect to. See the subsection
“chooser.”

607

When checking access for a particular display host, each entry is scanned in turn and the first matching entry determines the
response. Direct and Broadcast entries are ignored when scanning for an Indirect entry and vice versa.

Blank lines are ignored, # is treated as a comment delimiter causing the rest of that line to be ignored, and \newline causes the
newline to be ignored, allowing indirect host lists to span multiple lines. Here is a sample Xaccess file:

#
Xaccess – XDMCP access control file
#
#
Direct/Broadcast query entries
#
!xtra.lcs.mit.edu # disallow direct/broadcast service for xtra
bambi.ogi.edu # allow access from this particular display
.lcs.mit.edu # allow access from any display in LCS
#
Indirect query entries
#
%HOSTS expo.lcs.mit.edu xenon.lcs.mit.edu \
excess.lcs.mit.edu kanga.lcs.mit.edu extract.lcs.mit.edu xenon.lcs.mit.edu #force extract to contact xenon
!xtra.lcs.mit.edu dummy #disallow indirect access
.lcs.mit.edu %HOSTS #all others get to choose

chooser
For X terminals that do not offer a host menu for use with Broadcast or Indirect queries, the chooser program can do this
for them. In the Xaccess file, specify CHOOSER as the first entry in the Indirect host list. chooser will send a Query request to
each of the remaining hostnames in the list and offer a menu of all the hosts that respond.

The list may consist of the word BROADCAST, in which case chooser will send a Broadcast instead, again offering a menu of all
hosts that respond. Note that on some operating systems, UDP packets cannot be broadcast, so this feature will not work.

Example Xaccess file using chooser:

extract.lcs.mit.edu CHOOSER %HOSTS #offer a menu of these hosts
xtra.lcs.mit.edu CHOOSER BROADCAST #offer a menu of all hosts

The program to use for chooser is specified by the DisplayManager.DISPLAY.chooser resource. For more flexibility at this step,
the chooser could be a shell script. chooser is the session manager here; it is run instead of a child xdm to manage the display.

Resources for this program can be put into the file named by DisplayManager.DISPLAY.resources.

When the user selects a host, chooser prints the host chosen, which is read by the parent xdm, and exits. xdm closes its
connection to the X server, and the server resets and sends another Indirect XDMCP request. xdm remembers the user’s
choice (for DisplayManager. choiceTimeout seconds) and forwards the request to the chosen host, which starts a session on that
display.

LOCAL SERVER SPECIFICATION
The resource DisplayManager.servers gives a server specification or, if the values starts with a slash (/), the name of a file
containing server specifications, one per line.

Each specification indicates a display which should constantly be managed and which is not using XDMCP. This method is
used typically for local servers only. If the resource or the file named by the resource is empty, xdm will offer XDMCP service
only.

Each specification consists of at least three parts: a display name, a display class, a display type, and (for local servers) a
command line to start the server. A typical entry for local display number 0 would be

:0 Digital-QV local /usr/X11R6/bin/X :0

xdm

Part I: User Commands608

The display types are

Local local display: xdm must run the server

Foreign remote display: xdm opens an X connection to a running server

The display name must be something that can be passed in the –display option to an X program. This string is used to
generate the display-specific resource names, so be careful to match the names (for example, use :0 Sun-CG3 local /usr
/X11R6/bin/X :0 instead of localhost:0 Sun-CG3 local /usr/X11R6/bin/X :0 if your other resources are specified as
DisplayManager._0.session). The display class portion is also used in the display-specific resources, as the class of the
resource. This is useful if you have a large collection of similar displays (such as a corral of X terminals) and would like to set
resources for groups of them. When using XDMCP, the display is required to specify the display class, so the manual for
your particular X terminal should document the display class string for your device. If it doesn’t, you can run xdm in debug
mode and look at the resource strings that it generates for that device, which will include the class string.

When xdm starts a session, it sets up authorization data for the server. For local servers, xdm passes –auth filename on the
server’s command line to point it at its authorization data. For XDMCP servers, xdm passes the authorization data to the
server via the Accept XDMCP request.

RESOURCES FILE
The Xresources file is loaded onto the display as a resource database using xrdb. As the authentication widget reads this
database before starting up, it usually contains parameters for that widget:

xlogin*login.translations: #override\
Ctrl<Key>R: abort-display()\n\
<Key>F1: set-session-argument(failsafe) finish-field()\n\
<Key>Return: set-session-argument() finish-field()
xlogin*borderWidth: 3
xlogin*greeting: CLIENTHOST
#ifdef COLOR
xlogin*greetColor: CadetBlue
xlogin*failColor: red
#endif

Please note the translations entry; it specifies a few new translations for the widget that allow users to escape from the default
session (and avoid troubles that may occur in it). Note that if #override is not specified, the default translations are removed
and replaced by the new value, not a very useful result as some of the default translations are quite useful (such as <Key>:
insert-char (), which responds to normal typing).

This file may also contain resources for the setup program and chooser.

SETUP PROGRAM
The Xsetup file is run after the server is reset, but before the Login window is offered. The file is typically a shell script. It is
run as root, so you should be careful about security. This is the place to change the root background or bring up other
windows that should appear on the screen along with the Login widget.

In addition to any specified by DisplayManager.exportList, the following environment variables are passed:

DISPLAY The associated display name

PATH The value of DisplayManager.DISPLAY.systemPath

SHELL The value of DisplayManager.DISPLAY.systemShell

XAUTHORITY May be set to an authority file

Note that since xdm grabs the keyboard, any other windows will not be able to receive keyboard input. They will be able to
interact with the mouse, however; beware of potential security holes here. If DisplayManager.DISPLAY.grabServer is set, Xsetup
will not be able to connect to the display at all. Resources for this program can be put into the file named by
DisplayManager.DISPLAY.resources.

609

Here is a sample Xsetup script:

#!/bin/sh
Xsetup 0 – setup script for one workstation
xcmsdb </usr/X11R6/lib/monitors/alex.0
xconsole –geometry 480x130–0–0 –notify –verbose –exitOnFail &

AUTHENTICATION WIDGET
The authentication widget reads a name/password pair from the keyboard. Nearly every imaginable parameter can be
controlled with a resource. Resources for this widget should be put into the file named by DisplayManager.DISPLAY.resources.
All of these have reasonable default values, so it is not necessary to specify any of them.

xlogin.Login.width, The geometry of the Login widget is normally computed
xlogin.Login.height, automatically. If you wish to position it elsewhere, specify each
xlogin.Login.x, of these resources.
xlogin.Login.y

xlogin.Login.foreground The color used to display the typed-in username.

xlogin.Login.font The font used to display the typed-in username.

xlogin.Login.greeting A string which identifies this window. The default is X Window
System.

xlogin.Login.unsecureGreeting When X authorization is requested in the configuration file
for this display and none is in use, this greeting replaces the
standard greeting. The default is This is an unsecure session.

xlogin.Login.greetFont The font used to display the greeting.

xlogin.Login.greetColor The color used to display the greeting.

xlogin.Login.namePrompt The string displayed to prompt for a username. Xrdb strips
trailing whitespace from resource values, so to add spaces at
the end of the prompt (usually a nice thing), add spaces
escaped with backslashes. The default is Login:.

xlogin.Login.passwdPrompt The string displayed to prompt for a password. The default is
Password:.

xlogin.Login.promptFont The font used to display both prompts.

xlogin.Login.promptColor The color used to display both prompts.

xlogin.Login.fail A message that is displayed when the authentication fails. The
default is Login incorrect.

xlogin.Login.failFont The font used to display the failure message.

xlogin.Login.failColor The color used to display the failure message.

xlogin.Login.failTimeout The number of seconds that the failure message is displayed.
The default is 30.

xlogin.Login.translations This specifies the translations used for the login widget. Refer
to the X Toolkit documentation for a complete discussion on
translations. The default translation table is

Ctrl<Key>H delete-previous-character() \n\

Ctrl<Key>D delete-character() \n\

Ctrl<Key>B move-backward-character() \n\

Ctrl<Key>F move-forward-character() \n\

Ctrl<Key>A move-to-begining() \n\

Ctrl<Key>E move-to-end() \n\

xdm

Part I: User Commands610

Ctrl<Key>K erase-to-end-of-line() \n\

Ctrl<Key>U erase-line() \n\

Ctrl<Key>X erase-line() \n\

Ctrl<Key>C restart-session() \n\

Ctrl<Key>nn abort-session() \n\

<Key>BackSpace delete-previous-character() \n\

<Key>Delete delete-previous-character() \n\

<Key>Return finish-field() \n\

<Key> insert-char() \

The actions that are supported by the widget are

delete-previous-character Erases the character before the cursor.

delete-character Erases the character after the cursor.

move-backward-character Moves the cursor backward.

move-forward-character Moves the cursor forward.

move-to-begining (Apologies about the spelling error.) Moves the cursor to the
beginning of the editable text.

move-to-end Moves the cursor to the end of the editable text.

erase-to-end-of-line Erases all text after the cursor.

erase-line Erases the entire text.

finish-field If the cursor is in the name field, proceeds to the password field;
if the cursor is in the password field, checks the current name/
password pair. If the name/password pair is valid, xdm starts the
session. Otherwise, the failure message is displayed and the
user is prompted again.

abort-session Terminates and restarts the server.

abort-display Terminates the server, disabling it. This action is not accessible
in the default configuration. There are various reasons to stop
xdm on a system console, such as when shutting the system
down, when using xdmshell, to start another type of server, or
to generally access the console. Sending xdm a SIGHUP will
restart the display. See the subsection “Controlling XDM.”

restart-session Resets the X server and starts a new session. This can be used
when the resources have been changed and you want to test
them or when the screen has been overwritten with system
messages.

insert-char Inserts the character typed.

set-session-argument Specifies a single word argument that is passed to the session at
startup. See the subsection “Session Program.”

allow-all-access Disables access control in the server. This can be used when
the .Xauthority file cannot be created by xdm. Be very careful
using this; it might be better to disconnect the machine from
the network before doing this.

STARTUP PROGRAM
The Xstartup file is typically a shell script. It is run as root and should be very careful about security. This is the place to put
commands that add entries to /etc/utmp (the sessreg program may be useful here), mount users’ home directories from file
servers, display the message of the day, or abort the session if logins are not allowed.

611

In addition to any specified by DisplayManager.exportList, the following environment variables are passed:

DISPLAY The associated display name

HOME The initial working directory of the user

USER The username

PATH The value of DisplayManager.DISPLAY.systemPath

SHELL The value of DisplayManager.DISPLAY.systemShell

XAUTHORITY May be set to an authority file

No arguments are passed to the script. xdm waits until this script exits before starting the user session. If the exit value of this
script is non-zero, xdm discontinues the session and starts another authentication cycle.

The sample Xstartup file shown here prevents login while the file /etc/nologin exists. Thus, this is not a complete example,
but simply a demonstration of the available functionality.

Here is a sample Xstartup script:

#!/bin/sh
#
Xstartup
#
This program is run as root after the user is verified
#
if [–f /etc/nologin]; then
 xmessage –file /etc/nologin
 exit 1
fi
sessreg –a –l $DISPLAY –x /usr/X11R6/lib/xdm/Xservers $USER
/usr/X11R6/lib/xdm/GiveConsole
exit 0

SESSION PROGRAM
The Xsession program is the command that is run as the user’s session. It is run with the permissions of the authorized user.

In addition to any specified by DisplayManager.exportList, the following environment variables are passed:

DISPLAY The associated display name

HOME The initial working directory of the user

USER The username

PATH The value of DisplayManager.DISPLAY.userPath

SHELL The user’s default shell (from getpwnam)

AUTHORITY May be set to a nonstandard authority file

KRB5CCNAME May be set to a Kerberos credentials cache file

At most installations, Xsession should look in $HOME for a file xsession, which contains commands that each user would like
to use as a session. Xsession should also implement a system default session if no user-specified session exists. See the
subsection “Typical Usage.”

An argument may be passed to this program from the authentication widget using the set-session-argument action. This can
be used to select different styles of session. One good use of this feature is to allow the user to escape from the ordinary
session when it fails. This allows users to repair their own .xsession if it fails, without requiring administrative intervention.
The example following demonstrates this feature.

This example recognizes the special failsafe mode, specified in the translations in the Xresources file, to provide an escape
from the ordinary session. It also requires that the .xsession file be executable so you don’t have to guess what shell it wants
to use.

xdm

Part I: User Commands612

#!/bin/sh
#
Xsession
#
This is the program that is run as the client
for the display manager.
case $# in
 1)
 case $1 in
 failsafe)
 exec xterm –geometry 80x24–0–0
 ;;
 esac
esac
startup=$HOME/.xsession
resources=$HOME/.Xresources
if [–f “$startup”]; then
 exec “$startup”
else
if [–f “$resources”]; then
 xrdb –load “$resources”
fi
twm &
xman –geometry +10–10 &
exec xterm –geometry 80x24+10+10 –ls
fi

The user’s .xsession file might look something like the following example. Don’t forget that the file must have execute
permission.

#!/bin/csh
no –f in the previous line so .cshrc gets run to set $PATH
twm &
xrdb –merge “$HOME/.Xresources”
emacs –geometry +0+50 &
xbiff –geometry –430+5 &
xterm –geometry –0+50 -ls

RESET PROGRAM
Symmetrical with Xstartup, the Xreset script is run after the user session has terminated. Run as root, it should contain
commands that undo the effects of commands in Xstartup, removing entries from /etc/utmp or unmounting directories from
file servers. The environment variables that were passed to Xstartup are also passed to Xreset.

A sample Xreset script:

#!/bin/sh
#
Xreset
#
This program is run as root after the session ends
#
sessreg –d –l $DISPLAY –x /usr/X11R6/lib/xdm/Xservers $USER
/usr/X11R6/lib/xdm/TakeConsole
exit 0

CONTROLLING THE SERVER
xdm controls local servers using POSIX signals. SIGHUP is expected to reset the server, closing all client connections and
performing other cleanup duties. SIGTERM is expected to terminate the server. If these signals do not perform the expected
actions, the resources DisplayManager.DISPLAY.resetSignal and DisplayManager.DISPLAY.termSignal can specify alternate
signals.

613

To control remote terminals not using XDMCP, xdm searches the window hierarchy on the display and uses the protocol
request KillClient in an attempt to clean up the terminal for the next session. This may not actually kill all of the clients, as
only those which have created windows will be noticed. XDMCP provides a more sure mechanism; when xdm closes its initial
connection, the session is over and the terminal is required to close all other connections.

CONTROLLING xdm
xdm responds to two signals: SIGHUP and SIGTERM. When sent a SIGHUP, xdm rereads the configuration file, the access control file,
and the servers file. For the servers file, it notices if entries have been added or removed. If a new entry has been added, xdm
starts a session on the associated display. Entries that have been removed are disabled immediately, meaning that any session
in progress will be terminated without notice and no new session will be started.

When sent a SIGTERM, xdm terminates all sessions in progress and exits. This can be used when shutting down the system.

xdm attempts to mark its various subprocesses for ps(1) by editing the command-line argument list in place. Because xdm can’t
allocate additional space for this task, it is useful to start xdm with a reasonably long command line (using the full pathname
should be enough). Each process which is servicing a display is marked –display.

OTHER POSSIBILITIES
You can use xdm to run a single session at a time, using the 4.3 init options or other suitable daemon by specifying the server
on the command line:

xdm –server “:0 SUN-3/60CG4 local /usr/X11R6/bin/X :0”

Or you might have a file server and a collection of X terminals. The configuration for this is identical to that of the preceding
sample, except the Xservers file would look like this:

extol:0 VISUAL-19 foreign
exalt:0 NCD-19 foreign
explode:0 NCR-TOWERVIEW3000 foreign

This directs xdm to manage sessions on all three of these terminals. See the subsection “Controlling xdm” for a description of
using signals to enable and disable these terminals in a manner reminiscent of init(8).

LIMITATIONS
One thing that xdm isn’t very good at doing is coexisting with other window systems. To use multiple window systems on the
same hardware, you’ll probably be more interested in xinit.

FILES
<XRoot>/lib/X11/xdm/xdm-config The default configuration file

$HOME/.Xauthority User authorization file where xdm stores keys for clients to read

<XRoot>/lib/X11/xdm/chooser The default chooser

<XRoot>/bin/X11/xrdb The default resource database loader

<XRoot>/bin/X11/X The default server

<XRoot>/bin/X11/xterm The default session program and failsafe client

<XRoot>/lib/X11/xdm/A<display>–<suffix> The default place for authorization files

/tmp/K5C<display> Kerberos Credentials cache

Note: <XRoot> refers to the root of the X11 install tree.

See Also
X(1), xinit(1), xauth(1), Xsecurity(1), sessreg(1), Xserver(1)

X Display Manager Control Protocol

xdm

Part I: User Commands614

AUTHOR
Keith Packard (MIT X Consortium)

X Version 11 Release 6

xdpyinfo
xdpyinfo—Display information utility for X

SYNOPSIS
xdpyinfo [–display displayname] [–queryExtensions] [–ext extension-name]

DESCRIPTION
xdpyinfo is a utility for displaying information about an X server. It is used to examine the capabilities of a server, the
predefined values for various parameters used in communicating between clients and the server, and the different types of
screens and visuals that are available.

By default, numeric information (opcode, base event, base error) about protocol extensions is not displayed. This informa-
tion can be obtained with the –queryExtensions option. Use of this option on servers that dynamically load extensions will
likely cause all possible extensions to be loaded, which can be slow and can consume significant server resources.

Detailed information about a particular extension is displayed with the –ext extensionName option. If extensionName is all,
information about all extensions supported by both xdpy-info and the server is displayed.

ENVIRONMENT
DISPLAY To get the default host, display number, and screen

SEE ALSO
X(1), xwininfo(1), xprop(1), xrdb(1)

AUTHOR
Jim Fulton (MIT X Consortium)

X Version 11 Release 6

Xf86_Accel
XF86_Accel—Accelerated X Window System servers for UNIX on x86 platforms with an S3, Mach8, Mach32, Mach64,
P9000, AGX, ET4000/W32, or 8514/A accelerator board

SYNOPSIS
XF86_S3 [:displaynumber] [option] ...
XF86_Mach8 [:displaynumber] [option] ...
XF86_Mach32 [:displaynumber] [option] ...
XF86_Mach64 [:displaynumber] [option] ...
XF86_P9000 [:displaynumber] [option] ...
XF86_AGX [:displaynumber] [option] ...
XF86_W32 [:displaynumber] [option] ...
XF86_8514 [:displaynumber] [option] ...

615

DESCRIPTION
XF86_S3 is an 8-bit PseudoColor, 16-bit TrueColor and 24-bit TrueColor server for S3 graphic accelerator boards. Note, 16-
bit and 24-bit operation is not supported on all S3 accelerator boards. Refer to README.S3 for details of which boards are
supported at which depths.

XF86_Mach8 is an 8-bit PseudoColor server for ATI Mach8 graphic accelerator boards.

XF86_Mach32 is an 8-bit PseudoColor and 16-bit TrueColor server for ATI Mach32 graphic accelerator boards. Note, 16-bit
operation is not supported on all Mach32 accelerator boards.

XF86_Mach64 is an 8-bit PseudoColor, 16-bit TrueColor, and 24-bit TrueColor server for ATI Mach64 graphic accelerator
boards. Note, 16-bit and 24-bit operation is not supported for all RAMDACs. Refer to README.Mach64 for details of which
RAMDACs are supported at which depths.

XF86_P9000 is an 8-bit PseudoColor, 16-bit TrueColor, and 24-bit TrueColor server for Weitek Power 9000 (P9000) graphic
accelerator boards.

XF86_AGX is an 8-bit PseudoColor and 16-bit TrueColor server for AGX/XGA graphic accelerator boards.

XF86_W32 is an 8-bit PseudoColor server for ET4000/W32, ET4000/W32i, and ET4000/W32p graphic accelerator boards.

XF86_8514 is an 8-bit PseudoColor server for 8514/A graphic accelerator boards.

These are derived from the X386 server provided with X11R5, and from the X8514 server developed by Kevin Martin
(<martin@cs.unc.edu>).

CONFIGURATIONS
The servers support the following chipsets:

XF86_S3 86C911, 86C924, 86C801, 86C805, 86C805i, 86C928, 86C928- P,
86C732 (Trio32), 86C764 (Trio64), 86C864, 86C868, 86C964, 86C968

XF86_Mach8 ATI Mach8, ATI Mach32

XF86_Mach32 ATI Mach32

XF86_Mach64 ATI Mach64

XF86_P9000 Diamond Viper VLB, Diamond Viper PCI, Orchid P9000, and
some clones (Weitek P9000)

XF86_AGX AGX-010, AGX-014, AGX-015, AGX-016, XGA-1, XGA-2

XF86_W32 ET4000/W32, ET4000/W32i, ET3000/W32p

XF86_8514 IBM 8514/A and true clones

For S3, virtual resolutions up to (approximately) 1,152×800 are supported, using (up to) 1MB of display memory (the S3
uses an internal width of 1,280 except for new revisions of some of the chips, hence 1MB can’t support 1,152×900). Physical
resolutions up to 1,280×1,024 (1,600×1,280 on some cards) are possible using 2MB or more of display memory. (Virtual
resolution is dependent solely on the amount of memory installed, with the maximum virtual width being 2,048, and
maximum virtual height is 4,096.)

Similar resolutions are supported on the Mach64. Refer to README.Mach64 for configuration details.

Similar resolutions are supported on the Mach32. For the Mach32, the maximum virtual width is 1,536, and the maximum
virtual height is 1,280.

For Mach8, the maximum virtual width is 1,024.

For 8514, the maximum resolution is 1,024×768.

For the AGX chips, maximum resolution depends upon the chip revision and amount of available display memory. Refer to
README.agx for configuration details.

xf86_Accel

Part I: User Commands616

For the P9000, the virtual and physical resolutions must be the same. With sufficient memory, resolutions up to
1,280×1,024 are supported.

All the servers that support 24-bit visuals do so using a 32-bit per pixel configuration where 8 bits in every 32 bits is unused.
This needs to be taken into account when calculating the maximum virtual display size that can be supported at this depth.

OPTIONS
In addition to the normal server options described in the Xserver(1) manual page, these servers accept some more command-
line switches, as described in the XFree86(1) man page.

The Mach64, Mach32, S3, P9000, and AGX servers now support more than 8-bit color. The Mach32 and AGX servers
support 16-bit TrueColor and the Mach64, S3, and P9000 servers support 16-and 32-bit TrueColor. The 32-bit TrueColor
mode only uses 24 bits per pixel for color information (giving you 16 million colors). These modes may be used by
specifying the –bpp option as specified in the XFree86(1) man page.

SETUP
XFree86 uses a configuration file called XF86Config for its initial setup.

See the XF86Config(4/5) man page for general details. Here only the parts specific to the XF86_S3, XF86_Mach8, XF86_Mach32,
XF86_Mach64, XF86_P9000, XF86_AGX, XF86_W32, and XF86_8514 servers are explained.

Entries for the Device section in the XF86Config file include the following:

Chipset “name” Specifies a chipset so the correct driver can be used. Possible
chipsets are

XF86_S3

S3_generic: (for a standard IO-driven server)

Mmio_928: (for a memory-mapped IO-driven server on
86C928, 86C732, 86C764, 86C864, 86C868, 86C964, and
86C968 boards)

XF86_Mach8, Mach8 (to force the Mach8 server to run on
Mach32 boards)

XF86_Mach32, Mach32

XF86_Mach64, Mach64

XF86_P9000

Vipervlb (for the Diamond Viper VLB)

Viperpci (for the Diamond Viper PCI)

Orchidp9000 (for the Orchid P9000 and many
generic P9000-based boards)

XF86_AGX

Agx-016

Agx-015

Agx-014

Agx-010

Xga-2

Xga-1

NOTE

Only the agx-016, agx-015, agx-014, and XGA-2 have been tested. Refer to the XGA and AGX-010 section of README.agx before
attempting to use the other chipsets.

617

XF86 W32

Et4000w32

Et4000w32i

Et4000w32i_rev_b

Et4000w32i_rev_c

Et4000w32p_rev_a

Et4000w32p_rev_b

Et4000w32p_rev_c

Et4000w32p_rev_d

XF86_8514

Ibm8514

Clocks clock ... For boards with nonprogrammable clock chips, the clocks can
be specified here (see XF86Config(4/5)). The P9000 server now
no longer requires a Clocks line. It will now work the same
way as other servers with a programmable clock chip (that is,
use the clocks as specified in the Modes). Note, clocks over
110 MHz are not recommended or supported by the P9000
server. The Mach64 server also does not require a Clocks line
because the clocks are normally read directly from the video
card’s BIOS. For the Mach64 server, the clocks given in the
XF86Config file are ignored unless the no_bios_clocks option is
given (see below).

ClockChip “clockchip-type” For boards with programmable clock chips (except with the
P9000 and AGX servers), the name of the clock chip is given.
Possible values for the S3 server include “icd2061a”,
“ics9161a”, “dcs2834”, “sc11412”, “s3gendac”, “s3 sdac”,
“ti3025”, “ti3026”, “ics2595”, “ics5300”, “ics5342”, “ch8391”,
“stg1703”, and “ibm_rgb5xx”.

Ramdac “ramdac-type” This specifies the type of RAMDAC used on the board. Only
the S3, AGX, and W32 servers use this.

Normal—(S3, AGX) Card does not have one of the other
RAMDACs mentioned here. This option is only required for
the S3 server if the server incorrectly detects one of those other
RAMDACs. The AGX server does not yet auto-detect
RAMDACs, this is the default if no RAMDAC is specified.

Generic—(W32) This forces the W32 server to treat the
RAMDAC as a generic VGA RAMDAC.

Att20c490—(S3, AGX) Card has an AT&T 20C490 or AT&T
20C491 RAMDAC. When the dac_8_bit option is specified,
these RAMDACs may be operated in 8-bit per RGB mode. It
also allows 16bpp operation with 801/805/928 boards. True
AT&T 20C490 RAMDACs should be autodetected by the S3
server. This RAMDAC must be specified explicitly in other
cases. Note that 8-bit per RGB mode does not appear to work
with the Winbond 82C490 RAMDACs (which SuperProbe
identifies as AT&T 20C492). 16bpp works fine with the
Winbond 82C490. The Diamond SS2410 RAMDAC is
reported to be compatible when operating in 15bpp mode
(not 16bpp). The Chrontel 8391 appears to be compatible in
all modes.

xf86_Accel

Part I: User Commands618

Sc15025—(S3, AGX) Card has a Sierra SC15025 or SC15026
RAMDAC. The S3 server has code to autodetect this
RAMDAC.

Sc11482—(S3) Card has a Sierra SC11482, SC11483, or
SC11484 RAMDAC. The S3 server has code to autodetect
this RAMDAC.

Sc11485—(S3) Card has a Sierra SC11485, SC11487 or
SC11489 RAMDAC. The S3 server will detect these
RAMDACs as an sc11482, so this option must be specified to
take advantage of extra features (they support 16bpp, 15bpp,
and 8bpp, while the others only support 15bpp and 8bpp).

Bt485—(S3) Card has a BrookTree Bt485 or Bt9485
RAMDAC. This must be specified if the server fails to detect it.

Att20c505—(S3) Card has an AT&T 20C505 RAMDAC.
This must be specified either if the server fails to detect the
20C505, or if the card has a Bt485 RAMDAC and there are
problems using clocks higher than 67.5MHz.

Att20c498—(S3) Card has an AT&T 20C498 or 21C498
RAMDAC. This must be specified if the server fails to detect it.

Att22c498—(S3) Card has an AT&T 22C498 RAMDAC.
This must be specified if the server fails to detect it.

Ibm_rgb514—(S3) Card has an IBM RGB514 RAMDAC. This
must be specified if the server fails to detect it.

Ibm_rgb524—(S3) Card has an IBM RGB524 RAMDAC. This
must be specified if the server fails to detect it.

Ibm_rgb525—(S3) Card has an IBM RGB525 RAMDAC. This
must be specified if the server fails to detect it.

Ibm_rgb528—(S3) Card has an IBM RGB528 RAMDAC. This
must be specified if the server fails to detect it.

Stg1700—(S3) Card has an STG1700 RAMDAC. This must be
specified if the server fails to detect it.

Stg1703—(S3) Card has an STG1703 RAMDAC. This must be
specified if the server fails to detect it.

S3gendac—(S3) Card has an S3 86C708 GENDAC. This
RAMDAC does not support 8-bit per RGB mode (don’t
specify the dac_8_bit option). It allows 16bpp operation with
801/805 boards. There is currently no autodetection for this
RAMDAC.

S3_sdac—(S3) Card has an S3 86C716 SDAC RAMDAC.
This must be specified if the server fails to detect it.

Ics5300—(S3) Card has an ICS5300 RAMDAC. This must be
specified if the server fails to detect it (the server will recognize
this as an S3 GENDAC which is OK).

Ics5342—(S3) Card has an ICS5342 RAMDAC. This must be
specified if the server fails to detect it (the server will recognize
this as an S3 SDAC which is OK).

Ti3020—(S3) Card has a TI ViewPoint Ti3020 RAMDAC.
This must be specified if the server fails to detect the Ti3020.
Note that pixel multiplexing will be used for this RAMDAC if
any mode requires a dot clock higher than 70MHz.

619

Ti3025—(S3) Card has a TI ViewPoint Ti3025 RAMDAC.
This must be specified if the server fails to detect the Ti3025.

Ti3026—(S3) Card has a TI ViewPoint Ti3026 RAMDAC.
This must be specified if the server fails to detect the Ti3026.

Bt481—(AGX) Card has a BrookTree Bt481 RAMDAC.

Bt482—(AGX) Card has a BrookTree Bt482 RAMDAC.

Herc_dual_dac—(AGX) Card (Hercules Graphite Pro) has
both the 84-pin (Bt485 or AT&T20C505) and 44-pin (Bt481
or Bt482) RAMDACs installed.

Herc_small_dac—(AGX) Card (Hercules Graphite Pro) has
only the 44-pin (Bt481 or Bt482) RAMDAC installed.

IOBase ioaddress Specifies the base address for extended IO registers. This is
only used by the AGX server, and by the P9000 server for the
Viper PCI. For details of how to use it, refer to README.agx and
README.P9000.

MemBase memaddress Specifies the hard-wired part of the linear framebuffer base
address. This option is only used by the P9000, S3, Mach64,
and Mach32 servers (and only when using a linear
framebuffer). For the S3 server, the hard-wired part is the high
10 bits of the 32-bit address (that is, memaddress is masked with
0xFFC00000). Note: This should not be required for the 864
and 964 chips where the entire framebuffer address is software-
selectable. Also, note that in versions prior to 3.1.1, the S3
server used only the top 6 bits of memaddress, and ORed it with
0x3C00000. To get the same behavior, OR 0x3C00000 with the
value given previously. For the Mach32 server, the mask is
0xF8000000 (except for PCI cards, where the membase setting is
ignored).

This option must be specified with the P9000 server. With
local bus Diamond Vipers the value of memaddress can be
either 0x80000000, 0x20000000, or 0xA0000000. The default is
0x80000000. Any value should work as long as it does not
conflict with another device already at that address. For the
Viper PCI, refer to README.P9000. For the Orchid P9000, the
base address may be 0xC0000000, 0xD0000000, or 0xE0000000,
and must correspond the board’s jumper setting. Note: The S3
server will normally probe for this address automatically.
Setting this option overrides that probe. This is not normally
recommended because the failure of the server’s probe usually
indicates problems in using the linear framebuffer.

NOTE

The Mach64 server requires the memory aperture. For ISA bus video cards, this means that the aperture must be enabled
and the aperture address must be set to a value less than 16MB (which means that, on ISA systems only, to use the Mach64
server you must have 12MB of main memory or less). Normally the Mach64 server will use predefined values for this
address, but setting this option will override the predefined address.

The Mach32 server should not require the use of this option under normal circumstances.

xf86_Accel

Part I: User Commands620

COPBase baseaddress This sets the coprocessor base address for the AGX server.
Refer to README.agx for details.

Instance instance This sets the XGA instance number for the AGX server. Refer
to README.agx for details.

S3MClk memclk This allows the video card’s memory clock value to be
specified. This is only used for 805i, 864 and Trio32/64 cards,
and the value should not normally be given here for cards with
an S3 Gendac or Trio64. This entry doesn’t change the card’s
memory clock, but it is used to calculate the DRAM timing
parameters. For further details refer to README.S3.

S3MNAdjust M N This allows some memory timing parameters to be adjusted
for DRAM cards. For further details refer to README.S3.

S3RefClk refclk This allows the PLL reference clock to be specified. This may
be required for some cards that use the IBM RGB5xx
RAMDACs. The value is in MHz. For further details refer to
README.S3.

Option flags may be specified in either the Device section or the Display subsection of the XF86Config file.

Option “optionstring” Allows the user to select certain options provided by the
drivers. Currently the following strings are recognized:

Nomemaccess—(S3) Disable direct access to video memory.
This option is ignored for the 864 and 964 chips.

Noaccel—(AGX, P9000) Disable hardware acceleration for the
P9000, and disables the font cache with the AGX.

Vram_128—(AGX, P9000) When memory probe fails, use if
you have 128Kx8 VRAMs.

Vram_256—(AGX, P9000) When memory probe fails, use if
you don’t have 128Kx8 VRAMs.

Nolinear—(S3 and Mach32) Disable use of a linear-mapped
framebuffer.

Ti3020_curs—(S3) Enables the Ti3020’s internal HW cursor.
(Default)

No_ti3020_curs—(S3) Disables the Ti3020’s internal HW
cursor.

Sw_cursor—(S3, Mach32, Mach64, P9000, AGX) Disable the
hardware cursor.

Dac_8_bit—(S3, Mach32, Mach64, AGX) Enables 8-bit per
RGB. Currently only supported with the Ti3020/5/6, Bt485,
AT&T20C505, AT&T20C490/1, Sierra SC15025/6, AT&T20C498 and
STG1700/3, IBM RGB5xx (S3 server), Bt481 and Bt482 (AGX
server), ATI68875/TLC34075/Bt885 (Mach32 server), ATI68875,
TLC34075, ATI68860, ATI68880, STG1702, and STG1703 (Mach64
server) RAMDACs. This is now set by default in the S3 server
when one of the preceding RAMDACs other than the
AT&T20C490/1 is used.

Dac_6_bit—(S3) Force 6-bit per RGB in cases where 8-bit
mode would automatically be enabled.

Sync_on_green—(S3, P9000) Enables generation of sync on the
green signal on cards with Bt485, AT&T20C505, Ti3020/5/6 or
IBMRGB5xx RAMDACs. Note: Although these RAMDACs
support sync_on_green, it won’t work on many cards because
of the way they are designed.

621

Power_saver—(S3 and Mach64) This option enables the server
to use the power-saving features of VESA DPMS-compatible
monitors. The suspend level is currently only supported for the
Mach64 and for the 732, 764, 864, 868, 964, 968 S3 chips. Refer
to the XF86Config(4/5) manual page for details of how to set
the time-outs for the different levels of operation. This option
is experimental.

intel_gx—(Mach32) Sets the hard-wired offset for the linear
framebuffer correctly for the Intel GX Pro cards. This option
is equivalent to setting the membase to 0x78000000.

spea_mercury—(S3) Enables pixel multiplex support for SPEA
Mercury cards (928 + Bt485 RAMDAC). For these cards, pixel
multiplexing is required in order to use dot clocks higher than
67.5 MHz and to access more than 1MB of video memory.
Pixel multiplexing is currently supported only for
noninterlaced modes, and modes with a physical width no
smaller than 1,024.

stb_pegasus—(S3) Enables pixel multiplex support for STB
Pegasus cards (928 + Bt485 RAMDAC). For these cards, pixel
multiplexing is required in order to use dot clocks higher than
67.5 MHz. Pixel multiplexing is currently supported only for
noninterlaced modes, and modes with a physical width no
smaller than 1,024.

number_nine—(S3) Enables pixel multiplex support for
Number Nine GXe level 10, 11, 12 cards (928 + Bt485
RAMDAC). For these cards, pixel multiplexing is required in
order to use dot clocks higher than 85MHz. Pixel multiplexing
is currently supported only for noninterlaced modes, and
modes with a physical width no smaller than 800. This option
is also required for some other Number Nine cards (for
example, GXE64 and GXE64pro).

diamond—(S3) This option may be required for some
Diamond cards (in particular, the 964/968 VRAM cards).

elsa_w1000pro—(S3) Enables support for the ELSA Winner
1000 PRO. This option is not usually required because the
board can be autodetected.

elsa_w1000isa—(S3) Enables support for the ELSA Winner
1000 ISA. This option is not usually required because the
board can be autodetected.

elsa_w2000pro—(S3) Enables support for the ELSA Winner
2000 PRO. This option is not usually required because the
board can be autodetected.

pci_hack—(S3) Enables a workaround for problems seen with
some PCI 928 cards on machines with a buggy SMC UART.

s3_964_bt485_vclk—(S3) Enables a workaround for possible
problems on cards using the 964 and Bt485.

genoa, stb, hercules, or number_nine,—(S3) These options may
be used to select different defaults for the blank delay settings
for untested cards with IBM RGB5xx RAMDACs to avoid
pixel-wrapping problems.

xf86_Accel

Part I: User Commands622

slow_vram—(S3) Adjusts the VRAM timings for cards using
slow VRAM. This is required for some Diamond Stealth 64
VRAM and Hercules Terminator 64 cards.

Fast_vram—(S3) Adjusts the VRAM timings for faster VRAM
access. There will be display errors and pixel garbage if your
card can’t support it.

Slow_dram_refresh—(S3) Adjusts the DRAM refresh for cards
with slow DRAM to avoid lines of corrupted pixels when
switching modes.

No_block_write—(Mach64) Disables the block write mode on
certain types of VRAM Mach64 cards. If noise or shadows
appear on the screen, this option should remove them.

Block_write—(Mach64) Enables the block write mode on
certain types of VRAM Mach64 cards. Normally the Mach64
server will automatically determine if the card can handle
block write mode, but this option will override the probe
result.

No_bios_clocks—(Mach64) The Mach64 server normally
reads the clocks from the bios. This option overrides the bios
clocks and forces the server to use the clocks given in the
XF86Config file.

There are also numerous tuning options for the AGX server.
Refer to README.agx for details.

Note that XFree86 has some internal capabilities to determine what hardware it is running on. Thus, normally the keywords
chipset, clocks, and videoram don’t have to be specified. But there may be occasions when this autodetection mechanism
fails, (for example, too high a load on the machine when you start the server). For cases like this, one should first run the
server on an unloaded machine, look at the results of the autodetection (that are printed out during server startup), and then
explicitly specify these parameters in the configuration file. It is recommended that all parameters, especially Clock values, be
specified in the XF86Config file.

FILES
<XRoot>/bin/XF86 S3 The 8-, 16-, and 24-bit color X server for S3

<XRoot>/bin/XF86 Mach8 The 8-bit color X server for Mach8

<XRoot>/bin/XF86 Mach32 The 8- and 16-bit color X server for Mach32

<XRoot>/bin/XF86 Mach64 The 8-, 16-, and 24-bit color X server for Mach64

<XRoot>/bin/XF86 P9000 The 8-, 16-, and 24-bit color X server for the P9000

<XRoot>/bin/XF86 AGX The 8- and 16-bit color X server for AGX and XGA

<XRoot>/bin/XF86 W32 The 8-bit color X server for ET4000/W32

<XRoot>/bin/XF86 8514 The 8-bit color X server for IBM 8514 and true compatibles

/etc/XF86Config Server configuration file

<XRoot>/lib/X11/XF86Config Server configuration file (secondary location)

<XRoot>/lib/X11/doc/README.agx Extra documentation for the AGX server

<XRoot>/lib/X11/doc/README.P9000 Extra documentation for the P9000 server

<XRoot>/lib/X11/doc/README.S3 Extra documentation for the S3 server

<XRoot>/lib/X11/doc/README.W32 Extra documentation for the W32 server

Note: <XRoot> refers to the root of the X11 install tree.

623

SEE ALSO
X(1), Xserver(1), XFree86(1), XF86Config(4/5), xvidtune(1), xdm(1), xf86config(1), xinit(1)

AUTHORS
In addition to the authors of XFree86 the following people contributed major work to this server: Kevin Martin
(martin@cs.unc.edu), Jon Tombs (tombs@XFree86.org), Rik Faith (faith@cs.unc.edu). (Did the overall work on the base
accelerated servers.)

David Dawes (dawes@XFree86.org), Dirk Hohndel (hohndel@XFree86.org), David Wexelblat (dwex@XFree86.org). (Merged
their work into XFree86.)

Jon Tombs (tombs@XFree86.org), David Wexelblat (dwex@XFree86.org), David Dawes (dawes@XFree86.org), Amancio Hasty
(hasty@netcom.com), Robin Cutshaw (robin@XFree86.org), Norbert Distler (Norbert.Distler@physik.tu-muenchen.de), Leonard
N. Zubkoff (lnz@dandelion.com), Harald Koenig (koenig@tat.physik.uni-tuebingen.de), Bernhard Bender
(br@elsa.mhs.compuserve.com), Hans Nasten (nasten@everyware.se). (Development and improvement of the S3-specific code.)

Kevin Martin (martin@cs.unc.edu), Rik Faith (faith@cs.unc.edu), Tiago Gons (tiago@comosjn.hobby.nl), Hans Nasten
(nasten@everyware.se), Scott Laird (lair@midway.uchicago.edu). (Development and improvement of the Mach8- and 8514/A-
specific code.)

Kevin Martin (martin@cs.unc.edu), Rik Faith (faith@cs.unc.edu), Mike Bernson (mike@mbsun.mlb.org), Mark Weaver
(MarkWeaver@brown.edu), Craig Groeschel (craig@metrolink.com). (Development and improvement of the Mach32-specific code.

Kevin Martin, (martin@cs.unc.edu). (Development of the Mach64-specific code.)

Erik Nygren (nygren@mit.edu), Harry Langenbacher (harry@brain.jpl.nasa.gov), Chris Mason
(clmtch@osfmail.isc.rit.edu), Henrik Harmsen (harmsen@eritel.se). (Development and improvement of the P9000-specific
code.)

Henry Worth (henry.worth@amail.amdahl.com). (Development of the AGX specific code.)

Glenn Lai (glenn@cs.utexas.edu). (Development of the ET4000/W32-specific code.)

See also the XFree86(1) manual page.

BUGS
Some S3 cards with Bt485 RAMDACs are currently restricted to dot-clocks less than 85MHz.

The P9000 server may still have problems with cards other than the Diamond Viper VLB. There may still be problems with
VGA mode restoration, but these should almost never occur. Using physical resolutions different from the virtual resolution
is not supported and is not possible with the P9000. Use at dot-clocks greater than 110MHz is not recommended and not
supported. Diamond claims that 135MHz is the maximum clock speed, but some of its bt485s are not rated that high. If you
do not have a 135MHz bt485 on your Viper, contact Diamond tech support and they will send you an RMA number to
replace the board. Acceleration is being added in slowly. At the present, only CopyArea, MoveWindow, and DrawLine are
implemented. Other accelerated features are being tested and may be available in the next release. There seems to be a
problem with olvwm when used with xdm and VT switching. The cursor will be messed up when you return to a VT if the cursor
changed while you were in the VT.

CONTACT INFO
XFree86 source is available from the FTP server ftp.XFree86.Org and mirrors. Send e-mail to XFree86@XFree86.Org for details.

XFree86 Version 3.1.2

xf86_Accel

Part I: User Commands624

XF86_Mono
XF86_Mono—1-bit nonaccelerated X Window System servers for UNIX on x86 platforms

SYNOPSIS
XF86 Mono [:displaynumber] [option] ...

DESCRIPTION
XF86_Mono is a 1-bit StaticGrey server for VGA and Super VGA cards and for some other monochrome cards.

CONFIGURATIONS
The XF86_Mono server supports the following popular Super VGA chipsets in monochrome mode:

ATI 18800, 18800-1, 28800-2, 28800-4, 28800-5, 28800-6, 68800-3,
68800-6, 68800AX, 68800LX, 88800CX, 88800GX

Tseng ET3000, ET4000, ET4000/W32

Western Digital PVGA1, WD90C00, WD90C10, WD90C11, WD90C30, WD90C31, WD90C33

Genoa GVGA

Trident TVGA8800CS, TVGA8900B, TVGA8900C, TVGA8900CL, TVGA9000

NCR 77C22, 77C22E

Compaq AVGA

Oak OTI067, OTI077, OTI087

Cirrus CLGD5420, CLGD5422, CLGD5424, CLGD5426, CLGD5428, CLGD5429,
CLGD5430, CLGD5434, CLGD5436, CLGD6205, CLGD6215, CLGD6225,
CLGD6235, CL6410, CL6412, CL6420, CL6440

The XF86_Mono server supports the following monochrome cards and resolutions:

Sigma L-View, LaserView PLUS (in 1bpp mode): 1,664×1,280

Hyundai HGC-1280: 1,280[1,472]×1,024

Apollo Monochrome card (with ID 9) from Apollo workstations:
1,280×1,024

Hercules and compatibles cards 720×348

Additionally, it supports generic VGA cards with a maximum virtual resolution of (approximately) 800×650.

On supported SVGA chipsets, XF86_Mono will use up to 1/4 of display memory, which yields a maximum virtual resolution of
(approximately) 1,664×1,260 with 1MB of display memory. XF86_Mono does not support the accelerated functions of the
supported chipsets.

OPTIONS
In addition to the normal server options described in the Xserver(1) manual page, XF86_Mono accepts some more command-
line switches, as described in the XFree86(1) man page.

SETUP
XFree86 uses a configuration file called XF86Config for its initial setup.

See the XF86Config(4/5) man page for general details. Here only the XF86_Mono specific parts are explained.

The Driver entry in Screen section of the XF86Config file should be set to vga2 for VGA and SVGA boards, and mono for non-
VGA mono boards. If Screen sections are present for both of these, the server will start in a dual-headed configuration.

625

Entries for the Device section in the XF86Config file include the following:

chipset “name” Specifies a chipset so the correct driver can be used. Possible
chipsets for VGA2:

ATI Vgawonder

Tseng Et3000, et4000, et4000w32, et4000w32i,
et4000w32p

Western Digital Pvga1, wd90c00, wd90c10, wd90c30,
wd90c31, wd90c33

Genoa Gvga

Trident Tvga8800cs, tvga8900b, tvga8900c,
tvga8900cl, tvga9000

NCR Ncr77c22, ncr77c22e Compaq: cpq avga
OAK: oti067, oti077, oti087

Cirrus Clgd5420, clgd5422, clgd5424, clgd5426,
clgd5428, clgd5429, clgd5430, clgd5434,
clgd5436, clgd6205, clgd6215, clgd6225,
clgd6235, cl6410, cl6412, cl6420, cl6440

Generic VGA generic

Possible chipsets for mono:

Hyundai hgc1280

Sigma sigmalview

Apollo apollo9

Hercules hercules

MemBase memaddress Specifies the base address of the video memory. This option is
only used for the Sigma LaserViewcards. Valid addresses for
these cards are 0xA0000, 0xB0000, 0xC0000, 0xD0000, 0xE0000. The
default is 0xE0000.

Black red green blue Sets the black color to the RGB values specified. These values
must be given as integers in the range 0–63. The default is 0 0
0. This option is only valid for the vga2 screen type.

White red green blue Sets the white color to the RGB values specified. These values
must be given as integers in the range 0–63. The default is 63
63 63. This option is only valid for the vga2 screen type.

Option “optionstring” Allows the user to select certain options provided by the
drivers. Currently the following strings are recognized:

legend—For Sigma Legend ET4000-based boards. This
option enables a special clock-selection algorithm used on
Legend boards, and MUST be specified for these boards to
function correctly.

swap_hibit—For Western Digital/PVGA1 chipsets. Some
Western Digital-based boards require the high-order clock-
select lead to be inverted. It is not possible for the server to
determine this information at run-time. If the 9th clock in the
list of clocks detected by the server is less than 30Mhz, this
option likely needs to be set.

xF86_Mono

Part I: User Commands626

Hibit_low, hibit_high—For Tseng ET4000 chipsets. With
some ET4000 cards, the server has difficulty getting the state
of the high-order clocks select bit right when started from a
high-resolution text mode. These options allow the correct
initial state of that bit to be specified. To find out what the
correct initial state is, start the server from an 80×25 text
mode. This option is only needed if the clocks reported by the
server when started from a high-resolution text mode differ
from those reported when it is started from an 80×25 text
mode.

8clocks—For the PVGA1 chipset, the default is 4 clocks.
Some cards with this chipset may support 8 clocks. Specifying
this option will allow the driver to detect and use the extra
clocks.

16clocks—For Trident TVGA8900B and 8900C chipsets. Some
newer boards using 8900B and 8900C chipsets actually support
16 clocks rather than the standard 8 clocks. Such boards will
have a TCK9002 or TCK9004 chip on them. Specifying this option
will allow the driver to detect and use the extra 8 clocks.

Power_saver—This option enables the server to use the power
saving features of VESA DPMS-compatible monitors. The
suspend level is currently not supported. Refer to the
XF86Config(4/5) manual page for details of how to set the time-
outs for the different levels of operation. This option is
experimental.

secondary—For the hgc1280 and apollo9 chipsets. This option
allows the use of these cards jumpered to the secondary I/O/
memory address. These addresses are

hgc1280: I/O 0x3B0-0x3BF, mem 0xB0000-0xBFFFF (prim.)

I/O 0x390-0x39F, mem 0xC8000-0xCFFFF (sec.)

apollo9: I/O 0x3B0-0x3BF, mem 0xFA0000-0xFDFFFF (prim.)

I/O 0x3D0-0x3DF, mem 0xA0000-0xDFFFF (sec.)

XFree86 can detect the HGC-1280 on both primary and
secondary address; for the apollo card the primary address is
used by default.

Note that XFree86 has some internal capabilities to determine what hardware it is running on. Thus, normally the keywords
chipset, clocks, and videoram don’t have to be specified. But there may be occasions when this autodetection mechanism
fails, (for example, too high a load on the machine when you start the server). For cases like this, one should first run
XF86_Mono on an unloaded machine, look at the results of the autodetection (that are printed out during server startup) and
then explicitly specify these parameters in the configuration file. It is recommended that all parameters, especially Clock
values, be specified in the XF86Config file.

FILES
<XRoot>/bin/XF86 Mono The monochrome X server for VGA, SVGA and other

monochrome cards

/etc/XF86Config Server configuration file

<XRoot>/lib/X11/XF86Config Server configuration file

Note: <XRoot refers to the root of the X11 install tree.

627

SEE ALSO
X(1), Xserver(1), XFree86(1), XF86Config(4/5), xf86config(1), xvidtune(1), xdm(1), xinit(1)

BUGS
There are no known bugs at this time, although we welcome reports e-mailed to the address listed below.

CONTACT INFO
XFree86 source is available from the FTP server ftp.XFree86.org.

Send e-mail to XFree86@XFree86.org for details.

AUTHORS
Refer to the XFree86(1) manual page.

XFree86 Version 3.1.2

XF86_SVGA
XF86_SVGA—Nonaccelerated SVGA X Window System servers for UNIX on x86 platforms

SYNOPSIS
XF86 SVGA [:displaynumber] [option] ...

DESCRIPTION
XF86_SVGA is an 8-bit PseudoColor, 16-bit TrueColor and 24-bit TrueColor server for Super VGA cards. It is derived from
the X386 server provided with X11R5. Note: 16-bit TrueColor is currently only supported for some Cirrus and ARK chips, and
24-bit TrueColor is only supported for some Cirrus chips.

CONFIGURATIONS
The XF86_SVGA server supports the following popular Super VGA chipsets in 256-color mode. Virtual resolutions up to
(approximately) 1152×900 are supported, using (up to) 1MB of display memory. The Western Digital WD90C33 and some of
the Cirrus chipsets support up to 2MB of display memory and virtual resolutions of 1,280×1,024 and higher. Some of the
Cirrus chipsets also support 16bpp and 32bpp (truecolor) modes on certain configurations. Some of the ARK chipsets
support 16bpp modes on certain configurations. Generic VGA cards are also supported at 8bpp 320×200 only.

ATI 18800, 18800-1, 28800-2, 28800-4, 28800-5, 28800-6, 68800-3,
68800-6, 68800AX, 68800LX, 88800CX, 88800GX

Tseng ET3000, ET4000, ET4000/W32

Western Digital PVGA1, WD90C00, WD90C10, WD90C11, WD90C24A, WD90C30, WD90C31,
WD90C33

Genoa GVGA

Trident TVGA8800CS, TVGA8900B, TVGA8900C, TVGA8900CL, TVGA9000

NCR 77C22, 77C22E

Cirrus Logic CLGD5420, CLGD5422, CLGD5424, CLGD5426, CLGD5428,
CLGD5429,CLGD5430, CLGD5434, CLGD5436, CLGD6205, CLGD6215,
CLGD6225, CLGD6235, CL6410, CL6412, CL6420, CL6440

ARK ARK1000PV, ARK1000VL, ARK2000PV

RealTek RTG3106

Compaq AVGA

Oak OTI067, OTI077, OTI087

XF86_SVGA

Part I: User Commands628

Avance Logic AL2101, ALI2301, ALI2302, ALI2308, ALI2401

Chips & Technology 65520, 65530, 65540, 65545

MX MX68000, MX68010

Video7 HT216-32

Accelerated support is included for most of the Cirrus chipsets, and for the Western Digital WD90C31 and WD90C33 chipsets.
Accelerated support for the ET4000/W32 is implemented in a separate server (see XF86_W32(1)). Users of boards based on ATI’s
Mach8, Mach32, and Mach64 chipsets should refer to the XF86_Mach8(1), XF86_Mach32(1) and XF86_Mach64(1) manual pages,
respectively.

OPTIONS
In addition to the normal server options described in the Xserver(1) manual page, XF86_SVGA accepts some more command-
line switches, as described in the XFree86(1) man page.

SETUP
XFree86 uses a configuration file called XF86Config for its initial setup.

See the XF86Config(4/5) man page for general details. Here only the XF86_SVGA specific parts are explained.

This server requires a Screen section in the XF86Config file with the Driver entry set to svga.

Entries for the Device section in the XF86Config file include

chipset “name” Specifies a chipset so the correct driver can be used. Possible
chipsets are

ATI vgawonder

Tseng et3000, et4000, et4000w32,
et4000w32i, et4000w32p

Western Digital pvga1, wd90c00, wd90c10, wd90c24,
wd90c30, wd90c31, wd90c33

Genoa gvga

Trident tvga8800cs, tvga8900b, tvga8900c,
tvga8900cl, tvga9000

NCR ncr77c22, ncr77c22e

Cirrus Logic clgd5420, clgd5422, clgd5424,
clgd5426, clgd5428, clgd5429,
clgd5430, clgd5434, clgd5436,
clgd6205, clgd6215, clgd6225,
clgd6235, cl6410, cl6412, cl6420,
cl6440

RealTek realtek

ARK ark1000pv, ark1000vl, ark2000pv

Compaq cpq_avga

Oak oti067, oti077, oti087

Avance Logic al2101, ali2301, ali2302, ali2308,
ali2401

Chips & Technology ct65520, ct65530, ct65540, ct65545

MX mx

Video7 video7

Generic generic

629

Option “optionstring” Allows the user to select certain options provided by the
drivers. Currently the following strings are recognized:

legend—For Sigma Legend ET4000-based boards. This option
enables a special clock-selection algorithm used on Legend
boards, and MUST be specified for these boards to function
correctly.

swap_hibit—For Western Digital/PVGA1 chipsets. Some
Western Digital-based boards require the high-order clock-
select lead to be inverted. It is not possible for the server to
determine this information at run-time. If the 9th clock in the
list of clocks detected by the server is less than 30Mhz, this
option likely needs to be set.

Hibit_low, hibit_high—For Tseng ET4000 chipsets. With some
ET4000 cards, the server has difficulty getting the state of the
high-order clocks select bit right when started from a high-
resolution text mode. These options allow the correct initial
state of that bit to be specified. To find out what the correct
initial state is, start the server from an 80×25 text mode. This
option is only needed if the clocks reported by the server when
started from a high-resolution text mode differ from those
reported when it is started from an 80×25 text mode.

8clocks—For the PVGA1 chipset, the default is 4 clocks.
Some cards with this chipset may support 8 clocks. Specifying
this option will allow the driver to detect and use the extra
clocks.

16clocks—For Trident TVGA8900B and 8900C chipsets. Some
newer boards using 8900B and 8900C chipsets actually support
16 clocks rather than the standard 8 clocks. Such boards will
have a TCK9002 or TCK9004 chip on them. Specifying this option
will allow the driver to detect and use the extra 8 clocks.

probe_clocks—For Cirrus chipsets. The Cirrus driver has a
fixed set of clocks that are normally used. Specifying this
option will force the driver to probe for clocks instead of
reporting the built-in defaults. This option is for debugging
purposes only.

power_saver—This option enables the server to use the power-
saving features of VESA DPMS-compatible monitors. The
suspend level is currently not supported. Refer to the
XF86Config(4/5) manual page for details of how to set the time-
outs for the different levels of operation. This option is
experimental.

noaccel—For Cirrus and WD chipsets. This option disables
the accelerated features for the clgd5426, clgd5428, wd90c24,
wd90c31, and wd90c33 chipsets.

fifo_conservative—For Cirrus chipsets. This option sets the
CRT_FIFO threshold to a conservative value for dot clocks above
65MHz. This reduces performance, but may help in
eliminating problems with “streaks” on the screen during
BitBLT operations.

fifo_aggressive—For Cirrus chipsets. This option sets the
CRT_FIFO threshold to an aggressive value for dot clocks above
65MHz. This may increase performance.

XF86_SVGA

Part I: User Commands630

slow_dram—For Cirrus chipsets. This option sets the DRAM
timings for slow DRAM chips.

fast_dram—For ET4000 and Cirrus chipsets. This option sets
the DRAM timings for fast DRAM chips.

no_2mb_banksel—For Cirrus chipsets. This option is required
for Cirrus cards with 2MB of videoram, which is in the form of
512kx8 DRAMs (4 chips) rather than 256kx4 DRAMs (16
chips).

no_bitblt—For Cirrus chipsets. This option disables use of
hardware BitBLT.

linear—Attempt a linear mapping of the framebuffer into
high memory. Currently only supported for some Cirrus
configurations.

med_dram, favour_bitblt, sw_cursor, clgd6225_lcd, mmio—More
Cirrus-specific options. Refer to /usr/X11R6/lib/X11/doc/
README.cirrus for a detailed description of Cirrus options.

speedup “selection” Sets the selection of SpeedUps to use. The optional selection
string can take the following values:

none

all

If the selection string is omitted, or if the speedup option is
omitted, the selection defaults to all. Some of the SpeedUps
can only be used with the ET4000, WD90C31, and WD90C33
chipsets and others require a virtual resolution with a xdim of
1024. SpeedUps that won’t work with a given configuration
are automatically disabled.

nospeedup Disables the SpeedUp code. This is equivalent to speedup
none.

Ramdac ramdac-type This specifies the type of RAMDAC used on the board. Only
the ARK driver currently uses this. RAMDAC types recognized
include

Att20c490—AT&T 20C490 or compatible 8-bit RAMDAC.

Att20c498—AT&T 20C498 or compatible 16-bit RAMDAC.

Zoomdac—RAMDAC used by the Hercules Stingray Pro/V and
64/V.

Stg1700—STG1700 or compatible RAMDAC.

Note that XFree86 has some internal capabilities to determine what hardware it is running on. Thus, normally the keywords
chipset, clocks, and videoram don’t have to be specified. But there may be occasions when this autodetection mechanism
fails, (for example, too high a load on the machine when you start the server). For cases like this, you should first run
XF86_SVGA on an unloaded machine, look at the results of the autodetection (that are printed out during server startup), and
then explicitly specify these parameters in the configuration file. It is recommended that all parameters, especially Clock
values, be specified in the XF86Config file.

FILES
<XRoot>/bin/XF86 SVGA The SVGA color X server

/etc/XF86Config Server configuration file

<XRoot>/lib/X11/XF86Config Server configuration file

<XRoot>/lib/X11/doc/README.ark Extra documentation for the ARK driver

<XRoot>/lib/X11/doc/README.ati Extra documentation for the ATI vgawon-der driver

631

<XRoot>/lib/X11/doc/README.cirrus Extra documentation for the Cirrus driver

<XRoot>/lib/X11/doc/README.trident Extra documentation for the Trident driver

<XRoot>/lib/X11/doc/README.tseng Extra documentation for the ET4000 and ET3000 drivers

<XRoot>/lib/X11/doc/README.Oak Extra documentation for the Oak driver

<XRoot>/lib/X11/doc/README.Video7 Extra documentation for the Video7 driver

<XRoot>/lib/X11/doc/README.WstDig Extra documentation for the WD/PVGA driver

Note: <XRoot> refers to the root of the X11 install tree.

SEE ALSO
X(1), Xserver(1), XFree86(1), XF86Config(4/5), xf86config(1), xvidtune(1), xdm(1), xinit(1)

BUGS
Bug reports are welcome, and should be e-mailed to the address listed below.

CONTACT INFO
XFree86 source is available from the FTP server ftp.XFree86.org.

Send e-mail to XFree86@XFree86.org for details.

AUTHORS
Refer to the XFree86(1) manual page.

XFree86 Version 3.1.2

XF86_VGA16
XF86 VGA16—4-bit nonaccelerated X Window System server for UNIX on x86 platforms

SYNOPSIS
XF86 VGA16 [:displaynumber] [option] ...

DESCRIPTION
XF86_VGA16 is a 4-bit color server for VGA cards. The default root visual for this server is StaticColor. It also includes support
for the non-VGA monochrome cards described in the XF86_Mono(1) manual page. It may be run in a dual-headed configura-
tion.

CONFIGURATIONS
The XF86_VGA16 server supports the following popular SVGA chipsets in 16-color mode.

ATI 18800, 18800-1, 28800-2, 28800-4, 28800-5, 28800-6, 68800-3,
68800-6, 68800AX, 68800LX, 88800CX, 88800GX

Tseng ET4000

Trident TVGA8800CS, TVGA8900B, TVGA8900C, TVGA8900CL, TVGA9000

Cirrus CL6410, CL6412, CL6420, CL6440

Oak OTI067, OTI077, OTI087

Additionally, it supports generic VGA cards.

XF86_VGA16 does not support the accelerated functions of the supported chipsets.

XF86_VGA16

Part I: User Commands632

OPTIONS
In addition to the normal server options described in the Xserver(1) manual page, XF86_VGA16 accepts some more command-
line switches, as described in the XFree86(1) man page.

SETUP
XFree86 uses a configuration file called XF86Config for its initial setup.

See the XF86Config(4/5) man page for general details. Here, only the XF86_VGA16 specific parts are explained.

The Driver entry in the Screen section of the XF86Config file should be set to vga16.To run in dual-headed configuration,
there should also be a Screen section with the Driver entry set to mono.

Entries for the Device section in the XF86Config file include the following:

chipset “name” Specifies a chipset so the correct driver can be used. Possible
chipsets are

ATI vgawonder

Tseng et4000, et4000w32, et4000w32i, et4000w32p

Trident tvga8800cs, tvga8900b, tvga8900c,
tvga8900cl, tvga9000

Cirrus cl6410, cl6412, cl6420, cl6440

Oak oti067, oti077, oti087

Generic VGA generic

Option “optionstring” Allows the user to select certain options provided by the
drivers. Currently, the following strings are recognized:

legend—For Sigma Legend ET4000-based boards. This option
enables a special clock-selection algorithm used on Legend
boards, and MUST be specified for these boards to function
correctly.

hibit_low, hibit_high—For Tseng ET4000 chipsets. With some
ET4000 cards, the server has difficulty getting the state of the
high-order clocks select bit right when started from a high-
resolution text mode. These options allow the correct initial
state of that bit to be specified. To find out what the correct
initial state is, start the server from an 80×25 text mode. This
option is only needed if the clocks reported by the server when
started from a high-resolution text mode differ from those
reported when it is started from an 80×25 text mode.

power_saver—This option enables the server to use the power
saving features of VESA DPMS-compatible monitors. The
suspend level is currently not supported.

Refer to the XF86Config(4/5) manual page for details of how to
set the time-outs for the different levels of operation. This
option is experimental.

Note that XFree86 has some internal capabilities to determine what hardware it is running on. Thus normally the keywords
chipset, clocks, and videoram don’t have to be specified. But there may be occasions when this autodetection mechanism
fails, (for example, too high a load on the machine when you start the server). For cases like this, you should first run XF86
VGA16 on an unloaded machine, look at the results of the autodetection (that are printed out during server startup), and then
explicitly specify these parameters in the configuration file. It is recommended that all parameters, especially Clock values, be
specified in the XF86Config file.

633

FILES
<XRoot>/bin/XF86 VGA16 The 16-color X server

/etc/XF86Config Server configuration file

<XRoot>/lib/X11/XF86Config Server configuration file

Note: <XRoot> refers to the root of the X11 install tree.

SEE ALSO
X(1), Xserver(1), XFree86(1), XF86Config(4/5), XF86 Mono(1), xf86config(1), xvidtune(1), xdm(1), xinit(1)

CONTACT INFO
XFree86 source is available from the FTP server ftp.XFree86.org.

Send e-mail to XFree86@XFree86.org for details.

AUTHORS
The primary developer of this server is Gertjan Akkerman (akkerman@dutiba.twi.tudelft.nl).

See also the XFree86(1) manual page.

XFree86 Version 3.1.2

xf86config
xf86config—Generate an XF86Config file

SYNOPSIS
xf86config

DESCRIPTION
xf86config is an interactive program for generating an XF86Configfile for use with XFree86 X servers.

FILES
<xroot>/lib/X11/Cards Video cards database

SEE ALSO
XFree86(1), XF86Config(4/5), reconfig(1)

AUTHOR
Harm Hanemaayer

XFree86 Version 3.1.1

xfd
xfd—Display all the characters in an X font

SYNOPSIS
xfd [–options ...] –fn fontname

xfd

Part I: User Commands634

DESCRIPTION
The xfd utility creates a window containing the name of the font being displayed, a row of command buttons, several lines of
text for displaying character metrics, and a grid containing one glyph per cell. The characters are shown in increasing order
from left to right, top to bottom. The first character displayed at the top left will be character number 0 unless the –start
option has been supplied, in which case the character with the number given in the –start option will be used.

The characters are displayed in a grid of boxes, each large enough to hold any single character in the font. Each character
glyph is drawn using the PolyText16 request (used by the Xlib routine XDrawString16). If the –box option is given, a rectangle
will be drawn around each character, showing where an ImageText16 request (used by the Xlib routine XDrawImageString16)
would cause background color to be displayed.

The origin of each glyph is normally set so that the character is drawn in the upper left corner of the grid cell. However, if a
glyph has a negative left bearing or an unusually large ascent, descent, or right bearing (as is the case with cursor font), some
characters may not appear in their own grid cells. The –center option may be used to force all glyphs to be centered in their
respective cells.

All the characters in the font may not fit in the window at once. To see the next page of glyphs, press the Next button at the
top of the window. To see the previous page, press Prev. To exit xfd, press Quit.

Individual character metrics (index, width, bearings, ascent, and descent) can be displayed at the top of the window by
clicking on the desired character.

The font name displayed at the top of the window is the full name of the font, as determined by the server. See xlsfonts for
ways to generate lists of fonts, as well as more detailed summaries of their metrics and properties.

OPTIONS
xfd accepts all of the standard toolkit command-line options along with the following additional options:

–fn font This option specifies the font to be displayed. This can also be
set with the FontGrid font resource. A font must be specified.

–box This option indicates that a box should be displayed outlining
the area that would be filled with background color by an
ImageText request. This can also be set with the FontGrid
boxChars resource. The default is False.

–center This option indicates that each glyph should be centered in its
grid. This can also be set with the FontGrid centerChars
resource. The default is False.

–start number This option specifies the glyph index of the upper left corner
of the grid. This is used to view characters at arbitrary
locations in the font. This can also be set with the FontGrid
startChar resource. The default is 0.

–bc color This option specifies the color to be used if ImageText boxes
are drawn. This can also be set with the FontGrid boxColor
resource.

–rows numrows This option specifies the number of rows in the grid. This can
also be set with the FontGrid cellRows resource.

–columns numcols This option specifies the number of columns in the grid. This
can also be set with the FontGrid cellColumns resource.

WIDGETS
In order to specify resources, it is useful to know the widgets that compose xfd. In the notation below, indentation indicates
hierarchical structure. The widget class name is given first, followed by the widget instance name. The application class name
is Xfd.

635

Xfd xfd
 Paned pane
 Label fontname
 Box box
 Command quit
 Command prev
 Command next
 Label select
 Label metrics
 Label range
 Label start
Form form
FontGrid grid

FONTGRID RESOURCES
The FontGrid widget is an application-specific widget, and a subclass of the Simple widget in the Athena widget set. The
effects and instance names of this widget’s resources are given in the “Options” subsection. Capitalize the first letter of the
resource instance name to get the corresponding class name.

APPLICATION SPECIFIC RESOURCES
The instance names of the application-specific resources are given in the following list. Capitalize the first letter of the
resource instance name to get the corresponding class name. These resources are unlikely to be interesting unless you are
localizing xfd for a different language.

selectFormat Specifies a printf-style format string used to display informa-
tion about the selected character. The default is character
0x%02x%02x (%u,%u) (%#o,%#o). The arguments that will come
after the format string are

char.byte1, char.byte2, char.byte1, char.byte2, char.byte1,
char.byte2. char.byte1 is byte 1 of the selected character.
char.byte2 is byte 2 of the selected character.

metricsFormat Specifies a printf-style format string used to display character
metrics. The default is width %d; left %d, right %d; ascent
%d, descent %d (font %d, %d). The arguments that will come
after the format string are the character metrics width,
lbearing, rbearing, character ascent, character descent, font
ascent, and font descent.

rangeFormat Specifies a printf-style format string used to display the range
of characters currently being displayed. The default is range:
0x%02x%02x (%u,%u) thru 0x%02x%02x (%u,%u). The arguments
that will come after the format string are the following fields
from the XFontStruct that is returned from opening the font:

min_byte1, min_char_or_byte2, min_byte1, min_char_or_byte2,
max_byte1, max_char_or_byte2, max_byte1, max_char_or_byte2.

startFormat Specifies a printf-style format string used to display informa-
tion about the character at the upper left corner of the font
grid. The default is upper left: 0x%04x (%d,%d). The
arguments that will come after the format string are the new
character, the high byte of the new character, and the low byte
of the new character.

nocharFormat Specifies a printf-style format string to display when the
selected character does not exist. The default is no such
character 0x%02x%02x (%u,%u) (%#o,%#o. The arguments that
will come after the format string are the same as for the
select-Format resource.

xfd

Part I: User Commands636

SEE ALSO
X(1), xlsfonts(1), xrdb(1), xfontsel(1), X Logical Font Description Conventions

BUGS
The program should skip over pages full of nonexistent characters.

AUTHOR
Jim Fulton (MIT X Consortium); previous program of the same name by Mark Lillibridge (MIT Project Athena)

X Version 11 Release 6

XFree86
XFree86—X11R6 for UNIX on x86 platforms

DESCRIPTION
XFree86 is a collection of X servers for UNIX-like OSs on Intel x86 platforms. This work is derived from X386n1.2, which was
contributed to X11R5 by Snitily Graphics Consulting Service.

CONFIGURATIONS
XFree86 operates under the following operating systems:

■ SVR3.2: SCO 3.2.2, 3.2.4, ISC 3.x, 4.x
■ SVR4.0: ESIX, Microport, Dell, UHC, Consensys, MST, ISC, AT&T, NCR
■ SVR4.2: Consensys, Univel (UNIXWare)
■ Solaris (x86) 2.1, 2.4
■ FreeBSD 1.1.5, 2.0, 2.0.5, NetBSD 1.0 (i386 port only)
■ BSD/386 version 1.1 and BSD/OS 2.0
■ Mach (from CMU)
■ Linux
■ Amoeba version 5.1
■ Minix-386vm version 1.6.25.1
■ LynxOS AT versions 2.2.1 and 2.3

NETWORK CONNECTIONS
XFree86 supports connections made using the following reliable byte-streams:

Local XFree86 supports local connections via Streams pipe via various
mechanisms, using the following paths (n represents the
display number):

/dev/X/server.n (SVR3 and SVR4)

/dev/X/Nserver.n (SVR4)

/dev/XnS and /dev/XnR (SCO SVR3)

In SVR4.0.4, if the Advanced Compatibility Package is
installed, and in SVR4.2, XFree86 supports local connections
from clients for SCO XSight/ODT, and (with modifications
to the binary) clients for ISC SVR3.

UNIX Domain XFree86 uses /tmp/.X11-unix/Xn as the filename for the socket,
where n is the display number.

637

TCPIP XFree86 listens on port htons (6000+n), where n is the display
number.

Amoeba RPC This is the default communication medium used under native
Amoeba. Note that under Amoeba, the server should be
started with a hostname:displaynumber argument.

ENVIRONMENT VARIABLES
For operating systems that support local connections other than UNIX Domain sockets (SVR3 and SVR4), there is a
compiled-in list specifying the order in which local connections should be attempted. This list can be overridden by the
XLOCAL environment variable described next. If the display name indicates a best-choice connection should be made (for
example, :0.0), each connection mechanism is tried until a connection succeeds or no more mechanisms are available. Note:
For these OSs, the UNIX Domain socket connection is treated differently from the other local connection types. To use it
the connection must be made to unix:0.0.

The XLOCAL environment variable should contain a list of one more of the following:

NAMED

PTS

SCO

ISC

which represent SVR4 Named Streams pipe, Old-style USL Streams pipe, SCO XSight Streams pipe, and ISC Streams pipe,
respectively. You can select a single mechanism (for example, XLOCAL=NAMED), or an ordered list, for example,

XLOCAL=”NAMED:PTS:SCO”

This variable overrides the compiled-in defaults. For SVR4 it is recommended that NAMED be the first preference connection.
The default setting is

PTS:NAMED:ISC:SCO.

To globally override the compiled-in defaults, you should define (and export if using sh or ksh) XLOCAL globally. If you use
startx/xinit, the definition should be at the top of your .xinitrc file. If you use xdm, the definitions should be early on in
the <XRoot>/lib/X11/xdm/Xsession script.

OPTIONS
In addition to the normal server options described in the Xserver(1) manual page, XFree86 accepts the following command-
line switches:

vtXX XX specifies the Virtual Terminal device number that XFree86
will use. Without this option, XFree86 will pick the first
available Virtual Terminal that it can locate. This option
applies only to SVR3, SVR4, Linux, and BSD OSs with the
syscons or pcvt driver.

–probeonly Causes the server to exit after the device probing stage. The
XF86Config file is still used when this option is given, so
information that can be auto detected should be commented
out.

–quiet Suppresses most informational messages at startup.

–bpp n Set number of bits per pixel. The default is 8. Legal values are
8, 15, 16, 24, 32. Not all servers support all values.

–weight nnn Sets RGB weighting at 16 bpp. The default is 565. This applies
only to those servers that support 16 bpp.

–gamma value Sets the gamma correction. value must be between 0.1 and 10.
The default is 1.0. This value is applied equally to the R, G,
and B values. Not all servers support this.

xFree86

Part I: User Commands638

–rgamma value Sets the red gamma correction. value must be between 0.1 and
10. The default is 1.0. Not all servers support this.

–ggamma value Sets the green gamma correction. value must be between 0.1
and 10. The default is 1.0. Not all servers support this.

–bgamma value Sets the blue gamma correction. value must be between 0.1
and 10. The default is 1.0. Not all servers support this.

–showconfig Prints out a list of screen drivers configured in the server.

–verbose Maximizes information printed at startup (more than the
default).

–xf86config file Reads the server configuration from file. This option is only
available when the server is run as root (that is, with real-
UID 0).

–keeptty Prevents the server from detaching its initial controlling
terminal. This option is only useful when debugging the
server.

KEYBOARD
Multiple key presses recognized directly by XFree86 are

Ctrl+Alt+Backspace Immediately kills the server—no questions asked. (Can be
disabled by specifying “DontZap” in the Server-Flags section of
the XF86Config file.)

Ctrl+Alt+Keypad-Plus Changes video mode to next one specified in the configuration
file, (increasing video resolution order).

Ctrl+Alt+Keypad-Minus Changes video mode to previous one specified in the
configuration file, (decreasing video resolution order).

Ctrl+Alt+F1…F12 For BSD systems using the syscons driver and Linux, these
keystroke combinations are used to switch to Virtual Console
1 through 12.

SETUP
XFree86 uses a configuration file called XF86Config for its initial setup. Refer to the XF86Config(4/5) manual page for more
information.

FILES
<XRoot>/bin/XF86 SVGA The color SVGA X server

<XRoot>/bin/XF86 Mono The monochrome X server for VGA and other mono cards

<XRoot>/bin/XF86 S3 The accelerated S3 X server

<XRoot>/bin/XF86 Mach8 The accelerated Mach8 X server

<XRoot>/bin/XF86 Mach32 The accelerated Mach32 X server

<XRoot>/bin/XF86 Mach64 The accelerated Mach64 X server

<XRoot>/bin/XF86 P9000 The accelerated P9000 X server

<XRoot>/bin/XF86 AGX The accelerated AGX X server

<XRoot>/bin/XF86 W32 The accelerated ET4000/W32 X server

<XRoot>/bin/XF86 8514 The accelerated 8514/A X server

/etc/XF86Config Server configuration file

<XRoot>/lib/X11/XF86Config.hostname Server configuration file

<XRoot>/lib/X11/XF86Config Server configuration file

<XRoot>/bin/ Client binaries

639

<XRoot>/include/ Header files

<XRoot>/lib/ Libraries

<XRoot>/lib/X11/fonts/ Fonts

<XRoot>/lib/X11/rgb.txt Color names to RGB mapping

<XRoot>/lib/X11/XErrorDB Client error message database

<XRoot>/lib/X11/app-defaults/ Client resource specifications

<XRoot>/man/man?/ Manual pages

/etc/Xn.hosts Initial access control list for display n

Note: <XRoot> refers to the root of the X11 install tree.

SEE ALSO
X(1), Xserver(1), xdm(1), xinit(1), XF86Config(4/5), xf86config(1), XF86 SVGA(1), XF86 VGA16(1), XF86 Mono(1), XF86 Accel(1),
xvidtune(1)

AUTHORS
For X11R5, XF86 1.2 was provided by the following:

Thomas Roell (roell@informatik.tu-muenchen.de; server and SVR4 stuff), Mark W. Snitily (mark@sgcs.com SGCS; SVR3
support, X Consortium Sponsor), and many more people out there on the Net who helped with ideas and bug fixes.

XFree86 was integrated into X11R6 by the following team:

Stuart Anderson (anderson@metrolink.com), Doug Anson (danson@lgc.com), Gertjan Akkerman
(akkerman@dutiba.twi.tudelft.nl), Mike Bernson (mike@mbsun.mlb.org), Robin Cutshaw (robin@XFree86.org), David Dawes
(dawes@XFree86.org), Marc Evans (marc@XFree86.org), Pascal Haible (haible@izfm.uni-stuttgart.de), Matthieu Herrb
(Matthieu.Herrb@laas.fr), Dirk Hohndel (hohndel@XFree86.org), David Holland (davidh@use.com), Alan Hourihane
(alanh@fairlite.demon.co.uk), Jeffrey Hsu (hsu@soda.berkeley.edu), Glenn Lai (glenn@cs.utexas.edu), Ted Lemon
(mellon@ncd.com), Rich Murphey (rich@XFree86.org), Hans Nasten (nasten@everyware.se), Mark Snitily (mark@sgcs.com),
Randy Terbush (randyt@cse.unl.edu), Jon Tombs (tombs@XFree86.org), Kees Verstoep (versto@cs.vu.nl), Paul Vixie
(paul@vix.com), Mark Weaver (Mark Weaver@brown.edu), David Wexelblat (dwex@XFree86.org), Philip Wheatley
(Philip.Wheatley@ColumbiaSC.NCR.COM), Thomas Wolfram (wolf@prz.tu-berlin.de), and Orest Zborowski
(orestz@eskimo.com).

The XFree86 enhancement package was provided by

David Dawes, dawes@XFree86.org Release coordination, administration of FTP repository and
mailing lists. Source tree management and integration,
accelerated server integration, fixing, and coding.

Glenn Lai, glenn@cs.utexas.edu The SpeedUp code for ET4000-based SVGA cards, and ET4000/
W32 accelerated server.

Jim Tsillas, jtsilla@ccs.neu.edu Many server speedups from the fX386 series of enhancements.

David Wexelblat, dwex@XFree86.org Integration of the fX386 code into the default server, many
driver fixes, and driver documentation, assembly of the VGA
card/monitor database, development of the generic video
mode listing. Accelerated server integration, fixing, and
coding.

Dirk Hohndel, hohndel@XFree86.org Linux-shared libraries and release coordination. Accelerated
server integration and fixing. Generic administrivia and
documentation.

Amancio Hasty Jr., hasty@netcom.com Porting to 386BSD version 0.1 and XS3 development.

Rich Murphey, rich@XFree86.org Ported to 386BSD version 0.1 based on the original port by
Pace Willison. Support for 386BSD, FreeBSD, and NetBSD.

xFree86

Part I: User Commands640

Robert Baron, Robert.Baron@ernst.mach.cs.cmu.edu Ported to Mach.

Orest Zborowski, orestz@eskimo.com Ported to Linux.

Doug Anson, danson@lgc.com Ported to Solaris x86.

David Holland, davidh@use.com Ported to Solaris x86.

David McCullough, davidm@stallion.oz.au Ported to SCO SVR3.

Michael Rohleder, michael.rohleder@stadt-frankfurt.de Ported to ISC SVR3.

Kees Verstoep, versto@cs.vu.nl Ported to Amoeba based on Leendert van Doorn’s original
Amoeba port of X11R5.

Marc Evans, Marc@XFree86.org Ported to OSF/1.

Philip Homburg, philip@cs.vu.nl Ported to Minix-386vm.

Thomas Mueller, tm@systrix.de Ported to LynxOS.

Jon Tombs, tombs@XFree86.org S3 server and accelerated server coordination.

Harald Koenig, koenig@tat.physik.uni-tuebingen.de S3 server development.

Bernhard Bender, br@elsa.mhs.compuserve.com S3 server development.

Kevin Martin, martin@cs.unc.edu Overall work on the base accelerated servers (ATI and 8514/
A), and Mach64 server.

Rik Faith, faith@cs.unc.edu Overall work on the base accelerated servers (ATI and 8514/A).

Tiago Gons, tiago@comosjn.hobby.nl Mach8 and 8514/A server development.

Hans Nasten, nasten@everyware.se Mach8, 8514/A, and S3 server development and BSD/386
support.

Mike Bernson, mike@mbsun.mlb.org Mach32 server development.

Mark Weaver, Mark Weaver@brown.edu Mach32 server development.

Craig Groeschel, craig@metrolink.com Mach32 server development.

Henry Worth, Henry.Worth@amail.amdahl.com AGX server.

Erik Nygren, nygren@mit.edu P9000 server.

Harry Langenbacher, harry@brain.jpl.nasa.gov P9000 server.

Chris Mason, mason@mail.csh.rit.edu P9000 server.

Henrik Harmsen, harmsen@eritel.se P9000 server.

Simon Cooper, scooper@vizlab.rutgers.edu Cirrus accelerated code (based on work by Bill Reynolds).

Harm Hanemaayer, hhanemaa@cs.ruu.nl Cirrus accelerated code and ARK driver.

Mike Tierney, floyd@eng.umd.edu WD accelerated code.

Bill Conn, conn@bnr.ca WD accelerated code.

Brad Bosch, brad@lachman.com WD 90C24A support.

Alan Hourihane, alanh@fairlite.demon.co.uk Trident SVGA driver

Marc La France, Marc.La-France@ualberta.ca ATI vgawonder SVGA driver

Steve Goldman, sgoldman@encore.com Oak 067/077 SVGA driver.

Jorge Delgado, ernar@dit.upm.es Oak SVGA driver, and 087 accelerated code.

Bill Conn, conn@bnr.ca WD accelerated code.

Paolo Severini, lendl@dist.dist.unige.it AL2101 SVGA driver.

Ching-Tai Chiu, cchiu@netcom.com Avance Logic ALI SVGA driver.

Manfred Brands, mb@oceonics.nl Cirrus 64xx SVGA driver.

Randy Hendry, randy@sgi.com Cirrus 6440 support in the cl64xx SVGA driver.

Frank Dikker, dikker@cs.utwente.nl MX SVGA driver.

Regis Cridlig, cridlig@dmi.ens.fr Chips & Technology driver.

Jon Block, block@frc.com Chips & Technology driver.

641

Mike Hollick, hollick@graphics.cis.upenn.edu Chips & Technology driver

Peter Trattler, peter@sbox.tu-graz.ac.at RealTek SVGA driver.

Craig Struble, cstruble@acm.vt.edu Video7 SVGA driver.

Gertjan Akkerman, akkerman@dutiba.twi.tudelft.nl 16-color VGA server, and XF86Config parser.

Davor Matic, dmatic@Athena.MIT.EDU Hercules driver.

Pascal Haible, haible@izfm.uni-stuttgart.de Banked monochrome VGA support, Hercules support, and
mono frame buffer support for dumb monochrome devices.

and many more people out there on the Net who helped with beta-testing this enhancement.

XFree86 source is available from the FTP server ftp.XFree86.org, among others. Send e-mail to XFree86@XFree86.org for
details.

XFree86 Version 3.1.2

xfs
xfs—X font server

SYNOPSIS
xfs [–config configuration_file] [–port tcp_port]

DESCRIPTION
xfs is the X Window System font server. It supplies fonts to X Window System display servers.

STARTING THE SERVER
The server is usually run by a system administrator, and started via boot files like /etc/rc.local. Users may also wish to start
private font servers for specific sets of fonts.

OPTIONS
–config configuration_file Specifies the configuration file the font server will use.

–ls listen-socket Specifies a file descriptor that is already set up to be used as the
listen socket. This option is only intended to be used by the
font server itself when automatically spawning another copy of
itself to handle additional connections.

–port tcp_port Specifies the TCP port number on which the server will listen
for connections.

SIGNALS
SIGTERM This causes the font server to exit cleanly.

SIGUSR1 This signal is used to cause the server to reread its configura-
tion file.

SIGUSR2 This signal is used to cause the server to flush any cached data
it may have.

SIGHUP This signal is used to cause the server to reset, closing all active
connections and rereading the configuration file.

xfs

Part I: User Commands642

CONFIGURATION
The configuration language is a list of keyword and value pairs. Each keyword is followed by an = and then the desired value.

Recognized keywords include the following:

catalogue (list of string) Ordered list of font path element names. Use of the key-word
“catalogue” is very misleading at present; the current
implementation only supports a single catalogue (all),
containing all of the specified fonts.

alternate-servers (list of string) List of alternate servers for this font server.

client-limit (cardinal) Number of clients this font server will support before refusing
service. This is useful for tuning the load on each individual
font server.

clone-self (Boolean) Whether this font server should attempt to clone itself when it
reaches the client-limit.

default-point-size The default pointsize (in decipoints) for
(cardinal) fonts that don’t specify. The default is 120.

default-resolutions Resolutions the server supports by default.
(list of resolutions) This information may be used as a hint for

prerendering, and substituted for scaled fonts that do not
specify a resolution. A resolution is a comma-
separated pair of x and y resolutions in pixels
per inch. Multiple resolutions are separated by commas.

error-file (string) Filename of the error file. All warnings and errors will be
logged here.

port (cardinal) TCP port on which the server will listen for connections.

use-syslog (Boolean) Whether syslog(3) (on supported systems) is to be used for
errors.

deferglyphs (string) Set the mode for delayed fetching and caching of glyphs. Value
is none, meaning deferred glyphs is disabled, all, meaning it is
enabled for all fonts, and 16, meaning it is enabled only for 16-
bits fonts.

EXAMPLE
#
sample font server configuration file
#
allow a max of 10 clients to connect to this font server client-limit = 10
when a font server reaches its limit, start up a new one clone-self = on
alternate font servers for clients to use alternate-servers = hansen:7101,hansen:7102
where to look for fonts
the first is a set of Speedo outlines, the second is a set of
misc bitmaps and the last is a set of 100dpi bitmaps
#
catalogue = /usr/X11R6/lib/X11/fonts/speedo,
/usr/X11R6/lib/X11/fonts/misc,
/usr/X11R6/lib/X11/fonts/100dpi/
in 12 points, decipoints
default-point-size = 120
100 x 100 and 75 x 75
default-resolutions = 100,100,75,75
use-syslog = off

643

FONT SERVER NAMES
One of the following forms can be used to name a font server that accepts TCP connections:

tcp/hostname:port tcp/hostname:port/cataloguelist

The hostname specifies the name (or decimal numeric address) of the machine on which the font server is running. The port
is the decimal TCP port on which the font server is listening for connections. The cataloguelist specifies a list of catalogue
names, with + as a separator.

Examples: tcp/fs.x.org:7100, tcp/18.30.0.212:7101/all.

One of the following forms can be used to name a font server that accepts DECnet connections:

decnet/nodename::font$objname decnet/nodename::font$objname/cataloguelist

The nodename specifies the name (or decimal numeric address) of the machine on which the font server is running. The
objname is a normal, case-insensitive DECnet object name. The cataloguelist specifies a list of catalogue names, with + as a
separator.

Examples: DECnet/SRVNOD::FONT$DEFAULT, decnet/44.70::font$special/symbols.

SEE ALSO
X(1), font server implementation overview

BUGS
Multiple catalogues should be supported.

AUTHORS
Dave Lemke (Network Computing Devices, Inc.), Keith Packard (Massachusetts Institute of Technology)

X Version 11 Release 6

xhost
xhost—Server access control program for X

SYNOPSIS
xhost [[+–]name ...]

DESCRIPTION
The xhost program is used to add and delete hostnames or usernames to the list allowed to make connections to the X server.
In the case of hosts, this provides a rudimentary form of privacy control and security. It is only sufficient for a workstation
(single user) environment, although it does limit the worst abuses. Environments that require more sophisticated measures
should implement the user-based mechanism or use the hooks in the protocol for passing other authentication data to the
server.

OPTIONS
Xhost accepts the following command-line options. For security, the options that effect access control may only be run from
the “controlling host.” For workstations, this is the same machine as the server. For X terminals, it is the login host.

–help Prints a usage message.

[+]name The given name (the plus sign is optional) is added to the list
allowed to connect to the X server. The name can be a
hostname or a username.

xhost

Part I: User Commands644

–name The given name is removed from the list allowed to connect to
the server. The name can be a hostname or a username.
Existing connections are not broken, but new connection
attempts will be denied. Note that the current machine is
allowed to be removed; however, further connections
(including attempts to add it back) will not be permitted.
Resetting the server (thereby breaking all connections) is the
only way to allow local connections again.

+ Access is granted to everyone, even if they aren’t on the list (in
other words, access control is turned off).

– Access is restricted to only those on the list (that is, access
control is turned on).

nothing If no command-line arguments are given, a message indicating
whether or not access control is currently enabled is printed,
followed by the list of those allowed to connect. This is the
only option that may be used from machines other than the
controlling host.

NAMES
A complete name has the syntax family:name where the families are as follows:

inet Internet host

dne DECnet host

nis Secure RPC network name

krb Kerberos V5 principal

local Contains only one name, the empty string

The family is case insensitive. The format of the name varies with the family.

When Secure RPC is being used, the network-independent netname (for example, nis:unix.uid@domainname) can be
specified, or a local user can be specified with just the username and a trailing at sign (@) (for example, nis:pat@).

For backward compatibility with pre-R6 xhost, names that contain an at sign are assumed to be in the nis family. Otherwise,
the inet family is assumed.

DIAGNOSTICS
For each name added to the access control list, a line of the form name being added to access control list is printed. For
each name removed from the access control list, a line of the form name being removed from access control list is printed.

FILES
/etc/X*.hosts

SEE ALSO
X(1), Xsecurity(1), Xserver(1), xdm(1)

ENVIRONMENT
DISPLAY To get the default host and display to use

BUGS
You can’t specify a display on the command line because –display is a valid command-line argument (indicating that you
want to remove the machine named display from the access list).

645

The X server stores network addresses, not hostnames. This is not really a bug. If somehow you change a host’s network
address while the server is still running, xhost must be used to add the new address and/or remove the old address.

AUTHORS
Bob Scheifler (MIT Laboratory for Computer Science) and Jim Gettys (MIT Project Athena/DEC)

X Version 11 Release 6

xieperf
xieperf—XIE server extension test and demo program

SYNTAX
xieperf [-option ...]

DESCRIPTION
The xieperf program is based upon R5 x11perf(1) , and while not entirely comprehensive in its coverage of the XIE protocol
(see the “Bugs” subsection), it is intended to be useful in the evaluation of XIE implementations in the areas of protocol
adherence and performance. The xieperf program includes tests that execute each of the protocol requests and photoflo
elements specified by revision 5.0 of the XIE protocol. In addition, xieperf provides a set of tests that can be used to validate
the detection and transmission of XIE protocol request errors, such as FloMatch, FloValue, and so forth. Finally, xieperf
provides a customizable demonstration program for XIE.

A test is made up of three components executed in sequence: an initialization function, a test function, and an end function.
The initialization function is responsible for allocating and populating test resources, such as photomaps and LUTs, and for
creating a stored photoflo that will be executed by the test function. The test function, in most cases, simply executes the
stored photoflo for a specified number of repetitions. The end function, which is called following the test function, is used
primarily to destroy any noncacheable server resources used by the test, and to free any memory that was dynamically
allocated by the client. Some tests, such as -modify1, -await, -abort, and -redefine, perform additional steps within the test
function inner loop, as required by the element being tested, or in an attempt to make the test more visually appealing.

Evaluating the performance of individual XIE elements is not as simple as measuring Core X drawing times. The XIE protocol
requires elements to be embedded within photoflos in order to be exercised, and the minimum possible photoflo size is two.
This implies that it is impossible to measure performance of a single element in isolation—the time it takes to run the flo
depends on what other elements exist in the flo. Extrapolating performance of a single element (or technique) in a flo must
be done carefully, on a case-by-case basis, because in general, measured element performance depends on input image size,
data type, and other factors, all of which can be influenced by upstream flo elements. Note further that the number and type
of elements in a flo can be influenced by the visuals available on the display, so even flo-flo comparisons on machines with
different visuals must be done with caution.

Many test labels contain an abbreviated pipeline description. For instance, IP/IL/P/ED indicates ImportPhotomap, ImportLUT,
Point, and ExportDrawable. Pipelines ending in ED (ExportDrawable) often include hidden elements such as BandExtract,
ConvertToIndex, Dither, or Point to match the flo output to the screen visual. Pipelines ending in EP (ExportPhotomap) will
result in a blank window.

xieperf is compatible with x11perfcomp(1), which is used to compare the outputs of different xieperf and x11perf runs in a
nice, tabular format. In xieperf you will need to use the -labels option (see the “Options” subsection), and provide the
resulting labels file to x11perfcomp(1) to obtain correct output. See the x11perfcomp(1) man pages for more details on this.

xieperf

Part I: User Commands646

OPTIONS
xieperf accepts the following options:

–display host:dpy Specifies which display to use.

–images <path> Normally, xieperf references image files located in the
directory images, which xieperf assumes is located in your
current directory. If the images directory is not in your current
directory, or the file has been renamed, use this option to
specify its location.

–timeout<s> Some tests require the reception of an event such as FloNotify
to continue, and may cause xieperf to hang should these
events not be received. This option allows the user to specify a
time-out value which, if exceeded, will cause xieperf to give
up waiting for an event, and continue on with the next test in
sequence. Should an event time-out, a warning message will be
printed to stderr. The default time-out value is 60 seconds.

–sync Runs the tests in synchronous mode.

–script <file> Using this option gives the user the ability to run a subset of
the available tests and control the number of times the tests are
executed on an individual basis. This is thought to be
especially useful for those running xieperf for demonstration
purposes. Using this option causes xieperf to read commands
specified in a script file, or from stdin if <file> is -. Tests are
specified by newline-terminated input lines of the form
command [-reps n] [-repeat m]. Characters following and
including # are treated as comments. See the -mkscript option.

–repeat <n> Repeats each test n times (by default each test is run two
times). This option may be used in script files also, in which
case the script file -repeat overrides the command-line option.

–time <s> Specifies how long in seconds each test should be run (default
5 seconds).

–depth <depth> Use a visual with <depth> planes per pixel (default is the
default visual).

–GrayScale Use a GrayScale visual (default is the default visual).

–PseudoColor Use a PseudoColor visual (default is the default visual).

–StaticGray Use a StaticGray visual (default is the default visual).

–StaticColor Use a StaticColor visual (default is the default visual).

–TrueColor Use a TrueColor visual (default is the default visual).

–DirectColor Use a DirectColor visual (default is the default visual).

–WMSafe If xieperf must be run in a window manager environment, use
this flag to make xieperf aware of this. If specified, xieperf
will create a window, identical to the size of the root window,
and all further windows created by xieperf will be transient
pop-up children of this window. If this flag is omitted, xieperf
will set the override_redirect attribute of all windows to True
and will also do evil things such as calling XInstallColormap.
Using this option will cause the window manager to (hope-
fully) obey window geometry hints specified by xieperf.

647

–showtechs Display a comprehensive list of techniques, by category,
indicating which of the techniques are supported by the XIE
server.

–showlabels Print test label to screen prior to calling any of the test code.
This allows the user to know which test is executing in case the
test hangs for some reason.

–showevents Be verbose when running event and error tests. Also, can be
used to catch and display information on any signals received
during execution of xieperf. Note that this flag is best used in
a debugging situation, or to validate that the error events
received by xieperf are valid the first time the tests are
executed on a new platform.

–events Run tests that test for event generation.

–errors Run tests that test for error event generation.

–loCal Skip test calibration. This may be used when running xieperf
in situations where execution timing is not important.
Execution times will not be reported by xieperf when this
option is enabled. The inner loop repeat count, additionally, is
set to a value of 5 (but can be overridden by the -reps option).

–all Runs all tests. This may take a while, depending on the speed
of your machine, and its floating-point capabilities. This
option is ignored if a script file is used.

–tests Generate a list of the available tests for the xieperf program.
In x11perf, this list is normally displayed in the usage
statement. It was yanked from the usage of xieperf because it
was too lengthy.

–mkscript Generate a script file suitable for use with the script option. If
-repeat or -reps are also specified, they will be automatically
placed at the end of each command in the script. The script is
generated to stderr. See the -script command, above.

–cache <n> Most test flos utilize a photomap resource for a source. A
photomap cache of up to n entries is controlled by xieperf to
avoid having to constantly reload these images during test
initialization. The default cache size is 4. If a value less than the
default is specified, the cache size will be set to the default.

–labels Generates just the descriptive labels for each test specified. Use
-all or -range to specify which tests are included. See
x11perfcomp(1) for more details.

–DIS Pretend we are running xieperf while connected to a DIS-only
capable implementation of XIE. This will cause xieperf to
execute those tests that only use protocol requests found in the
DIS subset of XIE, and bypass those which are not DIS-
compatible. If xieperf detects a DIS server, it will do this
automatically, and this option is ignored. Use -all or -range to
specify the initial range of tests.

–range <test1>[,<test2>] Runs all the tests starting from the specified name test1 until
the name test2, including both the specified tests. Some tests,
like the event and error tests, also require the -errors or -
events options to specified. This option is ignored if a script is
used.

xieperf

Part I: User Commands648

–reps <n> Fix the inner loop repetitions to n. This indicates how many
times the photoflo will be executed each time the test is run.
This option is overridden on a per test basis if specified in a
script. Typically, xieperf determines the ideal number of reps
during each test’s calibration period.

–ImportObscuredEvent Test generation of events. Requires -events flag.
through –ExportAvailable

–BadValue through Test generation of errors. Requires -errors flag.
–FloValueError

-ColorList Create anddestroy ColorList resource test.

–LUT Create and destroy LUT resource test.

–Photomap Create and destroy Photomap resource test.

–ROI Create and destroy ROI resource test.

–Photospace Create and destroy Photospace test.

–Photoflo Create and destroy Photoflo test.

–QueryPhotomap Query Photomap resource test.

–QueryColorList Query ColorList resource test.

–QueryTechniquesDefault Query techniques as specified by test name.
through –QueryTechniques
WhiteAdjust

–QueryPhotoflo Query Photoflo test.

–PurgeColorList Purge ColorList test.

–Abort This test creates a photoflo that is started and blocks for data
provided by PutClientData(). Instead of sending the data, the
test uses XieAbort() to stop the photoflo, and then waits for
the PhotofloDone event to be sent by the server. If the test times
out waiting for the event, an error message is sent to stderr.

–Await This test creates a flo of the form ImportClientLUT ->
ExportLUT, and starts the flo executing. xieperf then forks, and
the child process streams the LUT data to the flo using
PutClientData, while the parent blocks in XieAwait. If the flo
successfully finishes, XieAwait will return and the flo state, after
query, will indicate that it has completed. If XieAwait does not
complete naturally, or after return from XieAwait the flo is still
active, an error is reported to stderr. Note, on a really slow
machine, it is possible that XieAwait will return before the flo
has a chance to finish. In this case, use the -timeout option to
increase the time-out for this test.

–importclientlut1 ImportClientLUT -> ExportLUT test.

–importclientphoto1 through Flos of the form ImportClient-Photo -> ExportPhotomap using
–importclientphoto9 various decode techniques, for example, G32D, TIFF2,

UncompressedTriple.

–importclientroi1 ImportClientROI with 10 rectangles.

–importclientroi2 ImportClientROI with 100 rectangles.

–encodephoto1 through Flos of the form ImportPhotomap - ExportPhotomap using
–encodephoto14 various encode techniques, for example G32D, TIFF2,

UncompressedTriple. Original encoding is shown in left
window; image after encoding is shown in right window.

649

–encodeclientphoto1 through Two flos, one of the form ImportPhotomap ->
 –encodeclientphoto11 ExportClientPhoto, and the other of the form

ImportClientPhoto -> ExportPhotomap, where
ExportClientPhoto in the first flo uses various encode
techniques, for example G32D, TIFF2, UncompressedTriple. The
image before encoding is displayed in the left window, while
the right window shows the image that was encoded in the
first flo and read back in the second flo.

–exportclientlut1 ExportClientLUT test. LUT is displayed in a histogram window.

–exportclientroi1 ExportClientROI test, 10 ROIs. The ROIs that are sent to the
server are represented by the filled rectangles. The ROIs that
are received back from the server by the client are drawn as
white-bordered, nonfilled rectangles. The resulting output
illustrates how the server combined the rectangles sent to it.

–exportclientroi2 Same as exportclientroi1, except using 100 rectangles.

–exportclienthistogram1 ExportClientHistogram tests using various images. The
 through histogram is displayed in a window that overlaps the image.
–exportclienthistogram4

–exportclienthistogramroi1 Same as the ExportClientHistogram test, but using a ROI
 through to identify the area of interest.
–exportclienthistogramroi4

–exportclienthistogramcplane1 Same as the ExportClientHistogram test, but using a
 through control plane to identify the area of interest.
–exportclienthistogramcplane4

–importlut1 Test ImportLUT element; LUT size is 256.

–importphoto1 ImportPhotomap -> ExportPhotomap, with source and destina-
tion equal.

–importphoto2 ImportPhotomap -> ExportDrawable, window destination.

–importroi1 ImportROI -> ExportROI, 10 rectangles, source and destination
ROIs equal.

–importroi2 ImportROI -> ExportROI, 100 rectangles, source and destination
ROIs equal.

–importdrawable1 ImportDrawable -> ExportDrawable, source is pixmap,
destination is window.

–importdrawable2 ImportDrawable -> ExportDrawable, source and destination are
both window.

–importdrawable3 ImportDrawable -> ExportDrawable, destination window
obscured by source window.

–importdrawable4 ImportDrawable -> ExportDrawable, source window obscured
by destination window.

–importdrawable5 ImportDrawablePlane -> ExportDrawablePlane, pixmap, source
= destination.

–importdrawable6 ImportDrawablePlane -> ExportDrawablePlane, window, source
= destination.

–importdrawable7 ImportDrawablePlane -> ExportDrawablePlane, window, source
obscures destination.

–importdrawable8 ImportDrawablePlane -> ExportDrawablePlane, window,
destination obscures source.

–constrain1 Constrain HardClip technique test, drawable destination.

xieperf

Part I: User Commands650

–constrain2 Constrain ClipScale technique test, drawable destination.

–constrainphoto1 Constrain HardClip technique test, photomap destination.

–constrainphoto2 Constrain ClipScale technique test, photomap destination.

–convolve1 Boxcar 3×3 convolution test. Smoothing or lowpass filter.

–convolve2 Boxcar 5×5 convolution test. Smoothing or lowpass filter.

–convolve3 LaPlacian 3×3 convolution test. Edge or highpass filter.

–convolve4 LaPlacian 5×5 convolution test. Edge or highpass filter.

–convolveroi1 LaPlacian 3×3 convolution test, with ROI.

–convolveroi2 LaPlacian 5×5 convolution test, with ROI.

–convolvecplane1 LaPlacian 3×3 convolution test, with control plane.

–convolvecplane2 LaPlacian 5×5 convolution test, with control plane.

–math1 through –mathcplane7 Various tests that exercise the math element, some tests using
ROIs and control planes.

–arithmeticdyadic1 through Arithmetic element tests, using photomaps
 –arithmeticdyadic5 as the operands.

–arithmeticmonadic1 through Arithmetic element tests, photomap and constant operands.
 –arithmeticmonadic9

–arithmeticdyadicroi1 Arithmetic element tests, using – photomaps as the
 through operands, with ROIs.
arithmeticdyadicroi5

–arithmeticmonadicroi1 Arithmetic element tests, photomap and
 through constant operands, with ROIs.
–arithmeticmonadicroi9

–arithmeticdyadiccplane1 Arithmetic element tests, using photomaps as the
 through operands, with control planes.
–arithmeticdyadiccplane5

–arithmeticmonadiccplane1 Arithmetic element tests, photomap and constant
 through operands, with control planes.
–arithmeticmonadiccplane9

–arithmeticfloatdyadic1 Arithmetic element tests, using photomaps
 though as the operands, unconstrained.
–arithmeticfloatdyadic5

–arithmeticfloatmonadic1 Arithmetic element tests, photomap and constant
 though operands, unconstrained.
–arithmeticfloatmonadic9

–arithmeticroifloatdyadic1 Arithmetic element tests, photomaps as the
 to operands, ROIs, unconstrained.
–arithmeticroifloatdyadic5

–arithmeticroifloatmonadic1 Arithmetic element tests, photomap and
 to constant operands, ROIs, unconstrained.
-rithmeticroifloatmonadic9

–band1 BandSelect element test. Image input is triple band. If visual of
xieperf window is a color visual, then three Band-Select
elements are used to extract the individual bands; they are
combined once again using BandCombine, and displayed using
ConvertToIndex. If the visual is not color, for example,
GrayScale or StaticGray, then the flo simply uses one
BandSelect element to extract a single band for display.

651

–band2 BandCombine test. Input bands are made of three separate single
band photomaps. These are combined using a BandCombine
element, which is followed by a BandExtract and
ExportDrawable. CCIR 601-1 coefficients.

–band3 BandExtract test. Input is a triple band photomap. CCIR
601-1 coefficients. Destination window colormap is gray ramp.

–band4 BandExtract test. Input is a triple band photomap. CCIR
601-1 coefficients. Destination window colormap is RGB BEST
MAP standard colormap.

–band5 BandExtract test. Input is a triple band photomap. CCIR
601-1 coefficients. Destination window colormap is
RGB_DEFAULT_MAP standard colormap.

–comparedyadic1 through Test various compare operators with dyadic
–comparedyadic6 photomap operands.

–comparemonadic1 through Test various compare operators with photomap,
–comparemonadic6 constant operands.

–compareroidyadic1 through Test various compare operators with dyadic photomap
–compareroidyadic6 operands, using ROIs.

–compareroimonadic1 through Test various operators with photomap,
compare compareroimonadic6 constant operands, using ROIs.

–comparecplanedyadic1 Test various compare operators with dyadic
through photomap operands, control planes.
–comparecplanedyadic6

–comparecplanemonadic1 Test various compare operators with photomap,
 through constant operands, control planes.
–comparecplanemonadic6

–matchhistogram1 MatchHistogram element tests, using various
 through images and histogram matching techniques.
–matchhistogram18

–matchhistogramroi1 A selection of MatchHistogram element
 through tests, with ROIs.
–matchhistogramroi6

–matchhistogramcplane1 A selection of MatchHistogram element
through tests, with control planes.
–matchhistogramcplane6

–unconstrain1 ImportPhotomap, Unconstrain, Constrain(ClipScale),
ExportDrawable test.

–pasteup1 through –pasteup2 PasteUp element tests.

–geometry1 through Geometry element tests, including rotations, scales,
–geometry14 and mirroring. NearestNeighbor technique.

–geometry15 through Geometry element tests, including rotations, scales,
–geometry28 and mirroring. AntiAlias technique.

–geometry29 through Geometry element tests, including rotations, scales,
–geometry42 and mirroring. BilinearInterpolation technique.

–geomg31dscale1 through Tests to exercise the various FAX decoders and
–geometryfaxradio1 the Geometry element.

–dither1 Dither test, ErrorDiffusion dither technique, ExportDrawable.

–dither2 Dither test, ErrorDiffusion dither technique,
ExportDrawablePlane.

xieperf

Part I: User Commands652

–dither3 Dither test, Ordered(4) dither technique, ExportDrawable.

–dither4 Dither test, Ordered(4) dither technique, ExportDrawablePlane.

–dither5 Dither test, Ordered(8) dither technique, ExportDrawable.

–dither6 Dither test, Ordered(8) dither technique, ExportDrawablePlane.

–dither7 Dither test, Default dither technique, ExportDrawable.

–dither8 Dither test, Default dither technique, ExportDrawablePlane.

–logicalmonadic1 through Logical element, photomap and a constant
–logicalmonadic16 of 0 as operands, various operators.

–logicaldyadic1 through Logical element tests, dyadic photomaps as
–logicaldyadic16 operands, various operators.

–logicalmonadicroi1 through Logical element, photomap and constant of
–logicalmonadicroi16 0 operands, various operators, ROIs.

–logicaldyadicroi1 through Logical element, dyadic photomaps as operands, various
–logicaldyadicroi16 operators, ROIs.

–logicalmonadiccplane1 Logical element, photomap and constant of 0
 through operands, various operators, Control Planes.
–logicalmonadiccplane16

–logicaldyadiccplane1 Logical element, dyadic photomaps as operands,
 through various operators, control planes.
–logicaldyadiccplane16

–blend1 Blend element test. Monadic source, 0.1 source constant.
Alpha constant of 0.5.

–blend2 Blend element test. Dyadic sources. Alpha constant of 0.5.

–blendroi1 Blend test. Monadic source, 0.1 source constant. Alpha
constant of 0.5. ROIs.

–blendroi2 Blend element test. Dyadic sources. Alpha constant of 0.5.
Uses ROIs.

–blendcplane1 Blend test. Monadic source, 0.1 source constant. Alpha
constant of 0.5. control plane.

–blendcplane2 Blend element test. Dyadic sources. Alpha constant of 0.5.
control plane.

–blendalpha1 Blend test. Monadic source, 220 source constant. Alpha plane
is a photomap.

–blendalpha2 Blend test. Dyadic sources. Alpha plane is a constant 220.

–blendalpharoi1 Blend test. Monadic source, 220 source constant. Alpha plane
photomap. ROIs.

–blendalpharoi2 Blend test. Dyadic sources. Alpha plane is a constant 220.
ROIs.

–triplepoint1 through Illustrate use of point and standard colormaps
–triplepoint2 for rendering triple band images.

–funnyencode1 through These tests are designed to perform limited exercising of XIE’s
–funnyencode8 capability of dealing with various encodings of flo source data.

The test init function obtains a photomap using ICP -> EP. A
series of independent permanent flo pairs, one of the form IP
-> EP, and the other of the basic form IP -> ED, are con-
structed. The encoding parameters for the ExportPhotomap (EP)
element in the first flo are derived from test configuration. The
number of flo pairs created is also dependent upon test

653

configuration. The tests can be configured so that the test init
function will constrain the input photomap to a specified
number of levels, on a per band basis, so that word-sized and
quad-sized pixels are passed through the flos. Some tests below
take advantage of this. See tests.c for test configuration, and
hints on how to add similar tests.

–point1 through –point3 Simple Point element tests. Drawable destination.

–pointroi1 Simple Point element test that uses ROIs. Drawable destination.

–pointcplane1 Simple Point element test that uses a control plane. Drawable
destination.

–pointphoto1 Simple Point element test. Photomap destination.

–pointroiphoto1 Simple Point element test that uses ROIs. Photomap
destination.

–pointcplanephoto1 Simple Point element test that uses a control plane. Photomap
destination.

–redefine Two flographs are created that are the same in structure,
except for the x and y offsets specified for the ExportDrawable
flo elements. The test init function creates a photoflo based
upon one of the two flographs. The inner loop of the test
function uses XieRedefinePhotoflo() to alternate between each
of the flographs. Make sure that your inner loop reps are 2 or
greater in order to exercise this test fully (see -reps).

–modify1 Test XieModifyPhotoflo() by adjusting ROI offsets and size.

–modify2 Test XieModifyPhotoflo() by changing the LUT input to a
Point element.

–modify3 Test XieModifyPhotoflo() by changing ExportDrawable x and y
offsets.

–modify4 This test creates a rather long flo of arithmetic elements, each
of which does nothing more than add 1 to a small image. The
test init function scales the input photomap. The
ExportDrawable x and y offset is modified randomly during
each iteration of the test function inner loop.

–modify5 This test creates a rather long flo of arithmetic elements, each
of which does nothing more than add 1 to a large image. Each
rep, the Geometry and ExportDrawable elements at the end of
the flo are modified to crop a small piece of the input into its
appropriate place in the larger image.

–rgb1 through –rgb16 These tests all basically take an UncompressedTriple image as
input, send it to ConvertFromRGB, which converts the image to
some configured colorspace, and then send the converted
image on to ConvertToRGB prior to display. The original image
is displayed in the left-hand window, and the image that has
passed through the flo is shown in the right-hand window.
The goal of these test is to show that ConvertFromRGB ->
ConvertToRGB is lossless.

–converttoindexpixel ConvertToIndex test, TripleBand BandByPixel.

–converttoindexplane ConvertToIndex test, TripleBand BandByPlane.

xieperf

Part I: User Commands654

–convertfromindex The test init function uses a flo containing ConvertToIndex to
display an image in the left window. The test function uses
this drawable as input to a flo that does ConvertFromIndex ->
ConvertToIndex and sends the resulting image to the right
window. The result should be lossless.

–complex A somewhat large flo that uses control planes, LUTs, Point,
PasteUp, Logical, Constrain, Dither, Geometry, MatchHistogram,
BandCombine, and BandSelect elements. See the Postscript file
complex.ps for a rendition of the photoflo that is executed.

X DEFAULTS
There are no X defaults used by this program.

SEE ALSO
X(1), x11perf(1), x11perfcomp(1)

BUGS
There should be an IMAGES environment variable to augment the -images option.

Many tests only scratch the surface of possible test cases. Some of the options available for certain flo elements are either
inadequately tested, or ignored altogether. There are insufficient tests for bitonal, large pixel, or triple band tests.

Some of the test names are inconsistently cased, for example, -Abort and -dither1.

Some tests are hopelessly slow when run against machines with slow FPUs.

Bitonal images are, for the most part, displayed using the ExportDrawable flo element; however, ExportDrawablePlane would
be a better choice.

AUTHOR
Syd Logan (AGE Logic, Inc.)

X Version 11 Release 6

ximtoppm
ximtoppm—Convert an XIM file into a portable pixmap

SYNOPSIS
ximtoppm [ximfile]

DESCRIPTION
Reads an Xim file as input. Produces a portable pixmap as output. The Xim toolkit is included in the contrib tree of the
X.V11R4 release.

SEE ALSO
ppm(5)

AUTHOR
Copyright (c) 1991 by Jef Poskanzer.

25 March 1990

655

xinetd
xinetd—The extended Internet services daemon

SYNOPSIS
xinetd [options]

DESCRIPTION
xinetd performs the same function as inetd: it starts programs that provide Internet services. Instead of having such servers
started at system initialization time, and be dormant until a connection request arrives, xinetd is the only daemon process
started and it listens on all service ports for the services listed in its configuration file. When a request comes in, xinetd starts
the appropriate server. Because of the way it operates, xinetd (as well as inetd) is also referred to as a super-server.

The services listed in xinetd’s configuration file can be separated into two groups. Services in the first group are called
multithreaded and they require the forking of a new server process for each new connection request. The new server then
handles that connection. For such services, xinetd keeps listening for new requests so that it can spawn new servers. On the
other hand, the second group includes services for which the service daemon is responsible for handling all new connection
requests. Such services are called single-threaded and xinetd will stop handling new requests for them until the server dies.
Services in this group are usually datagram based.

So far, the only reason for the existence of a super-server was to conserve system resources by avoiding to fork a lot of
processes who might be dormant for most of their lifetime. While fulfilling this function, xinetd takes advantage of the idea
of a super-server to provide features such as access control and logging. Furthermore, xinetd is not limited to services listed in
/etc/services. Therefore, anybody can use xinetd to start special-purpose servers.

OPTIONS
–d Enables debug mode. This produces a lot of debugging

output, and it makes it possible to use a debugger on xinetd.

–syslog syslog_facility This option enables syslog logging of xinetd-produced
messages using the specified syslog facility. The following
facility names are supported: daemon, auth, user, local[0-7]
(check syslog.conf(5) for their meanings). This option is
ineffective in debug mode because all relevant messages are
sent to the terminal.

–filelog logfile xinetd-produced messages will be placed in the specified file.
Messages are always appended to the file. If the file does not
exist, it will be created. This option is ineffective in debug
mode because all relevant messages are sent to the terminal.

–f config_file Determines the file that xinetd uses for configuration. The
default is /etc/xinetd.conf.

–pid The process pid is written to standard error. This option is
ineffective in debug mode.

–loop rate This option sets the loop rate beyond which a service is
considered in error and is deactivated. The loop rate is
specified in terms of the number of servers per second that can
be forked for a process. The speed of your machine determines
the correct value for this option. The default rate is 10.

–reuse If this option is used, xinetd will set the socket option
SO_REUSEADDR before binding the service socket to an Internet
address. This allows binding of the address even if there are
programs that use it, which happens when a previous instance
of xinetd has started some servers that are still running. This
option has no effect on RPC services.

xinetd

Part I: User Commands656

–limit proc_limit This option places a limit on the number of concurrently
running processes that can be started by xinetd. Its purpose is
to prevent process table overflows.

–logprocs limit This option places a limit on the number of concurrently
running servers for remote user ID acquisition.

–shutdownprocs limit This option places a limit on the number of concurrently
running servers for service shutdown (forked when the RECORD
option is used).

The syslog and filelog options are mutually exclusive. If none is specified, the default is syslog using the daemon facility.
You should not confuse xinetd messages with messages related to service logging. The latter are logged only if this is specified
via the configuration file.

CONFIGURATION FILE
The configuration file determines the services provided by xinetd. Any line whose first nonwhitespace character is a # is
considered a comment line. Empty lines are ignored.

The file contains entries of the form:

service <service_name>
{
<attribute> <assign_op><value><value> ...
...
}

The assignment operator, assign_op, can be one of =, +=, -=. The majority of attributes support only the simple assignment
operator, =. Attributes whose value is a set of values support all assignment operators. For such attributes, += means adding a
value to the set and -= means removing a value from the set. A list of these attributes is given after all the attributes are
described.

Each entry defines a service identified by the service_name. The following is a list of available attributes:

id This attribute is used to uniquely identify a service. This is
useful because there exist services that can use different
protocols and need to be described with different entries in the
configuration file. By default, the service id is the same as the
service name.

type Possible values are the following:

RPC If this is an RPC service

INTERNAL If this is a service provided by xinetd.

UNLISTED If this is a service not listed in /etc/services.

flags Possible flag values are

REUSE Set the SO_REUSEADDR flag on the service socket.

INTERCEPT Intercept packets or accepted connections in
order to verify that they are coming from
acceptable locations (internal or multithreaded
services cannot be intercepted).

NORETRY Avoid retry attempts in case of fork failure.

socket type Possible values are

stream Stream-based service

dgram Datagram-based service

raw Service that requires direct access to IP

seqpacket Service that requires reliable sequential
datagram transmission

657

protocol Determines the protocol that is employed by the service. The
protocol must exist in /etc/protocols. If this attribute is not
defined, the default protocol employed by the service will be
used.

wait This attribute determines if the service is single-threaded or
multithreaded. If its value is yes, the service is single-threaded;
this means that xinetd will start the server and then it will stop
handling requests for the service until the server dies. If the
attribute value is no, the service is multithreaded and xinetd
will keep handling new service requests.

user Determines the uid for the server process. The username must
exist in /etc/passwd. This attribute is ineffective if the effective
user ID of xinetd is not super-user.

group Determines the gid for the server process. The group name
must exist in /etc/group. If a group is not specified, the group
of user will be used (from /etc/passwd). This attribute is
ineffective if the effective user ID of xinetd is not super-user.

instances Determines the number of servers that can be simultaneously
active for a service. By default, there is no limit. The value of
this attribute can be either a number or UNLIMITED, which
means that there is no limit.

server Determines the program to execute for this service.

server_args Determines the arguments passed to the server. In contrast to
inetd, the server name should not be included in server_args.

only_from Determines the remote hosts to which the particular service is
available. Its value is a list of IP addresses that can be specified
in any combination of the following ways:

a) A numeric address in the form of %d.%d.%d.%d. If the
rightmost components are 0, they are treated as wildcards
(for example, 128.138.12.0 matches all hosts on the
128.138.12 subnet). 0.0.0.0 matches all Internet addresses.

b) A factorized address in the form of %d.%d.%d.{%d,%d,...}.
There is no need for all four components
(%d.%d.{%d,%d,...%d} is also OK). However, the factorized
part must be at the end of the address.

c) A network name (from /etc/networks).

d) A hostname. All IP addresses of the specified hostname will
be used.

“” Specifying this attribute without a value makes the service
available to nobody.

no_access Determines the remote hosts to which the particular service is
unavailable. Its value can be specified in the same way as the
value of the only from attribute. These two attributes
determine the location access control enforced by xinetd. If
none of the two is specified for a service, the service is available
to anyone. If both are specified for a service, the one that is the
better match for the address of the remote host determines if
the service is available to that host (for example, if the only
from list contains 128.138.209.0 and the no access list contains
128.138.209.10, then the host with the address 128.138.209.10
can not access the service).

xinetd

Part I: User Commands658

access_times Determines the time intervals when the service is available. An
interval has the form hour:min-hour:min (connections will be
accepted at the bounds of an interval). Hours can range from 0
to 23 and minutes from 0 to 59.

log_type Determines where the service log output is sent. There are two
formats:

SYSLOG syslog The log output is sent to syslog at
 facility the specified facility. If a level
[syslog level] is present, the messages will be recorded at

that level instead of LOG_INFO (which is the
default level).

FILE file The log output is appended to file,
[soft_limit which will be created if it does
[hard_limit]] not exist. Two limits on the size of the log

file can be optionally specified. The first
limit is a soft one; xinetd will log a message
the first time this limit is exceeded (if xinetd
logs to syslog, the message will be sent at
the LOG_ALERT priority level). The second
limit is a hard limit; xinetd will stop logging
for the affected service (if the log file is a
common log file, then more than one service
may be affected) and will log a message
about this (if xinetd logs to syslog, the
message will be sent at the LOG_ALERT priority
level). If a hard limit is not specified, it
defaults to the soft limit increased by 1
percent but the extra size must be within the
parameters LOG_EXTRA_MIN and LOG_EXTRA_MAX
(defined in config.h).

log_on_success Determines what information is logged when a server is started
and when that server exits (the service ID is always included in
the log entry). Any combination of the following values may
be specified:

PID Logs the server process ID. (If the service is
implemented by xinetd without forking another
process, the logged process ID will be 0.)

HOST Logs the remote host address

TIME Logs the time when the server was started.

USERID Logs the user ID of the remote user using the
RFC 931 identification protocol. This option is
available only for multithreaded stream services.

EXIT Logs the fact that a server exited along with the
exit status or the termination signal (the process
ID is also logged if the PID option is used).

DURATION Logs the duration of a service session.

log_on_failure Determines what information is logged when a server cannot
be started (either because of a lack of resources or because of
access control restrictions). The service ID is always included
in the log entry along with the reason for failure. Any
combination of the following values may be specified:

HOST Logs the remote host address.

659

TIME Logs the time when the server was started.

USERID Logs the user ID of the remote user using the RFC
931 identification protocol. This option is available
only for multithreaded stream services.

ATTEMPT Logs the fact that a failed attempt was made.

RECORD Records information from the remote end in case
the server could not be started. This allows
monitoring of attempts to use the service. For
example, the login service logs the local user,
remote user, and terminal type. Currently, the
services that support this option are logiun, shell,
exec, finger.

rpc_version Determines the RPC version for an RPC service. The version
can be a single number or a range in the form number-
number.

env The value of this attribute is a list of strings of the form
name=value. These strings will be added to the environment
before starting a server (therefore the server’s environment will
include xinetd’s environment plus the specified strings).

passenv The value of this attribute is a list of environment variables
from xinetd’s environment that will be passed to the server.

port Determines the service port. If this attribute is specified for a
service listed in /etc/services, it must be equal to the port
number listed in that file.

You don’t need to specify all of the preceding attributes for each service. The necessary attributes for a service are the
following:

socket type

user (non-unlisted services only)

server (non-internal services only)

wait

protocol (RPC and unlisted services only)

rpc_version (RPC services only)

port (unlisted services only)

The following attributes support all assignment operators, except as indicated:

only_from

no_access

log_on_success

log_on_failure

passenv

env (does not support the -= operator)

These attributes can also appear more than once in a service entry. The remaining attributes support only the = operator and
can appear at most once in a service entry.

The configuration file may also contain a single defaults entry that has the form:

defaults
{
<attribute> = <value><value> ...
...
}

xinetd

Part I: User Commands660

This entry provides default attribute values for service entries that don’t specify those attributes. Possible default attributes:

log_type

log_on_success (cumulative effect)

log_on_failure (cumulative effect)

only_from (cumulative effect)

no_access (cumulative effect)

passenv (cumulative effect)

instances

disabled (cumulative effect)

Attributes with a cumulative effect can be specified multiple times with the values specified each time accumulating (in other
words, = does the same thing as +=). With the exception of disabled they all have the same meaning as if they were specified
in a service entry. disabled determines services that are disabled even if they have entries in the configuration file. This allows
for quick reconfiguration by specifying disabled services with the disabled attribute instead of commenting them out. The
value of this attribute is a list of space-separated service IDs.

INTERNAL SERVICES
xinetd provides the following services internally (both stream- and datagram-based): echo, time, daytime, chargen, and
discard. These services are under the same access restrictions as all other services except for the ones that don’t require xinetd
to fork another process for them. Those ones (time, daytime, and the datagram-based echo, chargen,and discard) have no
limitation in the number of instances.

CONTROLLING xinetd
xinetd performs certain actions when it receives certain signals. The actions associated with the specific signals can be
redefined by editing config.h and recompiling.

SIGUSR1 Causes a soft reconfiguration, which means that xinetd rereads
the configuration file and adjusts accordingly.

SIGUSR2 Causes a hard reconfiguration, which is the same as a soft
reconfiguration except that servers for services that are no
longer available are terminated. Access control is performed
again on running servers by checking the remote location,
access times and server instances. If the number of server
instances is lowered, some arbitrarily picked servers will be
killed to satisfy the limit; this will happen after any servers are
terminated because of failing the remote location or access
time checks. Also, if the INTERCEPT flag was clear and is set, any
running servers for that service will be terminated; the purpose
of this is to ensure that after a hard reconfiguration there will
be no running servers that can accept packets from addresses
that do not meet the access control criteria.

SIGQUIT Causes program termination.

SIGTERM Terminates all running servers before terminating xinetd.

SIGHUP Causes an internal state dump (the default dump file is /tmp/
xinetd.dump; to change the filename, edit config.h and
recompile).

SIGIOT Causes an internal consistency check to verify that the data
structures used by the program have not been corrupted.
When the check is completed xinetd will generate a message
that says if the check was successful or not.

661

On reconfiguration, the log files are closed and reopened. This allows removal of old log files. Also, the following attributes
cannot be changed on reconfiguration: socket_type, wait, protocol, type.

xinetd LOG FORMAT
Log entries are lines with the following format:

entry: service-id data

The data depends on the entry. Possible entry types:

START Generated when a server is started

EXIT Generated when a server exits

FAIL Generated when it is not possible to start a server

DATA Generated when an attempt to start a server fails and the
service supports the RECORD log option.

USERID Generated if the USERID log option is used.

In the following formats, the information enclosed in brackets appears if the appropriate log option is used.

A START entry has the format

START: service-id [pid=%d] [from=%d.%d.%d.%d] [time=time]

Time is given as year/month/day@hour:minutes:seconds.

An EXIT entry has the format

EXIT: service-id [type=%d] [pid=%d] [duration=%d(sec)]

type can be either status or signal. The number is either the exit status or the signal that caused process termination.

A FAIL entry has the format:

FAIL: service-id reason [from=%d.%d.%d.%d] [time=time]

Possible reasons are

fork A certain number of consecutive fork attempts failed (this
number is a configurable parameter).

time The time check failed.

address The address check failed.

service_limit The allowed number of server instances for this service would
be exceeded.

process_limit A limit on the number of forked processes was specified and it
would be exceeded.

A DATA entry has the format

DATA: service-id data

The data logged depends on the service.

login remote_user=%s local_user=%s tty=%s

exec remote_user=%s verify=status command=%s Possible status
values:

ok The password was correct

failed The password was incorrect

baduser No such user

shell remote_user=%s local_user=%s command=%s

finger received string or EMPTY-LINE

xinetd

Part I: User Commands662

A USERID entry has the format

USERID: text

The text is the response of the RFC 931 daemon at the remote end excluding the port numbers (which are included in the
response). Here’s an example:

#
Sample configuration file for xinetd
#
defaults
{
 log_type = FILE /var/log/servicelog
 log_on_success = PID
 log_on_failure = HOST TIME RECORD
 only_from = 128.138.193.0 128.138.204.0 128.138.209.0
 only_from = 128.138.252.1
 instances = 10
 disabled = rstatd
}
#
Note 1: the protocol attribute is not required
Note 2: the instances attribute overrides the default
#
service login
{
 socket_type = stream
 protocol = tcp
 wait = no
 user = root
 server = /usr/etc/in.rlogind
 instances = UNLIMITED
}
#
Note 1: the instances attribute overrides the default
Note 2: the log on success flags are augmented
#
service shell
{
 socket_type = stream
 wait = no
 user = root
 instances = UNLIMITED
 server = /usr/etc/in.rshd
 log_on_success += HOST TIME RECORD
}
service ftp
{
 socket_type = stream
 wait = no
 user = root
 server = /usr/etc/in.ftpd
 server_args = -l
 instances = 4
 log_on_success += DURATION HOST USERID
 access_times = 2:00-9:00 12:00-24:00
}
#
This entry and the next one specify internal services. Since this
is the same service using a different socket type, the id attribute
is used to uniquely identify each entry
#

663

service echo
{
 id = echo-stream
 type = INTERNAL
 socket_type = stream
 user = root
 wait = no
}
service echo
{
 id = echo-dgram
 type = INTERNAL
 socket_type = dgram
 user = root
 wait = no
}
#
Sample RPC service
#
service rstatd
f

 type = RPC
 socket_type = dgram
 protocol = udp
 server = /usr/etc/rpc.rstatd
 wait = yes
 user = root
 rpc_version = 2-4
 env = LD_LIBRARY_PATH=/etc/securelib
}
#
Sample unlisted service
#
service unlisted
{
 type = UNLISTED
 socket_type = stream
 protocol = tcp
 wait = no
 server = /home/user/some server
 port = 20020
}

FILES
/etc/xinetd.conf Default configuration file

/tmp/xinetd.dump Default dump file

SEE ALSO
inetd(8)

Postel J., Echo Protocol, RFC 862, May 1983.

Postel J., Discard Protocol, RFC 863, May 1983.

Postel J., Character Generator Protocol , RFC 864, May 1983.

Postel J., Daytime Protocol, RFC 867, May 1983.

Postel J., Harrenstien K., Time Protocol, RFC 868, May 1983.

St. Johns M., Authentication Server, RFC 931, January 1985.

xinit

Part I: User Commands664

AUTHOR
Panos Tsirigotis (CS Department, University of Colorado, Boulder)

NOTES
When the attributes only_from and no_access are not specified for a service (either directly or via defaults), the address check
is considered successful (that is, access will not be denied).

If the USERID log option is specified and the remote RFC 931 server sends back an ERROR reply, access will not be denied.

If the USERID log option is specified and the remote host does not run an RFC 931 server, there will be no indication in the
log of that fact (other than the missing USERID log entry).

BUGS
Supplementary group IDs are not supported.

If the INTERCEPT flag is not used, access control on the address of the remote host is not performed when wait is yes and
socket_type is stream.

If the INTERCEPT flag is not used, access control on the address of the remote host for services where wait is yes and
socket_type is dgram is performed only on the first packet. The server may then accept packets from hosts not in the access
control list. This can happen with RPC services.

Unlisted RPC services are not supported; that is, all RPC services must be registered in /etc/rpc. Specifying an RPC service
by its RPC program number is not (yet) possible.

There is no way to put a SPACE in an environment variable.

When wait is yes and socket_type is stream, the socket passed to the server can only accept connections.

The INTERCEPT flag is not supported for internal services or multithreaded services.

Interception works by forking a process that acts as a filter between the remote host(s) and the local server. This obviously
has a performance impact which depends on the volume of information exchanged. It is up to you to make the compromise
between security and performance for each service.

PRONUNCIATION
xinetd is pronounced “zy-net-d.”

10 May 1992

xinit
xinit—X Window System initializer

SYNOPSIS
xinit [[client] options][–– [server][display] options]

DESCRIPTION
The xinit program is used to start the X Window System server and a first client program on systems that cannot start X
directly from /etc/init or in environments that use multiple window systems. When this first client exits, xinit will kill the
X server and then terminate.

If no specific client program is given on the command line, xinit will look for a file in the user’s home directory called
.xinitrc to run as a shell script to start up client programs. If no such file exists, xinit will use the following as a default:

xterm –geometry +1+1 –n login –display :0

665

If no specific server program is given on the command line, xinit will look for a file in the user’s home directory called
.xserverrc to run as a shell script to start up the server. If no such file exists, xinit will use the following as a default:

X :0

Note that this assumes that there is a program named X in the current search path. However, servers are usually named
Xdisplaytype where displaytype is the type of graphics display that is driven by this server. The site administrator should,
therefore, make a link to the appropriate type of server on the machine, or create a shell script that runs xinit with the
appropriate server.

Note, when using a .xserverrc script be sure to mark the real X server as exec. Failing to do this can make the X server slow
to start and exit. For example

exec Xdisplaytype

An important point is that programs which are run by xinitrc should be run in the background if they do not exit right
away, so that they don’t prevent other programs from starting up. However, the last long-lived program started (usually a
window manager or terminal emulator) should be left in the foreground so that the script won’t exit (which indicates that
the user is done and that xinit should exit).

An alternate client and/or server may be specified on the command line. The desired client program and its arguments
should be given as the first command-line arguments to xinit.To specify a particular server command line, append two
dashes (––) to the xinit command line (after any client and arguments) followed by the desired server command.

Both the client program name and the server program name must begin with a slash (/) or a period (.). Otherwise, they are
treated as arguments to be appended to their respective startup lines. This makes it possible to add arguments (for example,
foreground and background colors) without having to retype the whole command line.

If an explicit server name is not given and the first argument following the double dash (––) is a colon followed by a digit,
xinit will use that number as the display number instead of zero. All remaining arguments are appended to the server
command line.

EXAMPLES
Following are several examples of how command-line arguments in xinit are used:

This will start up a server named X and run the user’s xinitrc, if it exists, or else start an xterm:
xinit

This is how one could start a specific type of server on an alternate display:
xinit –– /usr/X11R6/bin/Xqdss :1

This will start up a server named X, and will append the given arguments to the default xterm command (it will ignore
xinitrc):
xinit –geometry =80x65+10+10 –fn 8x13 –j –fg white –bg navy

This will use the command Xsun –l –c to start the server and will append the arguments –e widgets to the default xterm
command:
xinit –e widgets –– ./Xsun –l –c

This will start a server named X on display 1 with the arguments –a 2 –t5:
xinit /usr/ucb/rsh fasthost cpupig –display ws:1 –– :1 –a 2 –t 5

It will then start a remote shell on the machine fasthost in which it will run the command cpupig, telling it to display back on
the local workstation.

Following is a sample xinitrc that starts a clock, starts several terminals, and leaves the window manager running as the
“last” application. Assuming that the window manager has been configured properly, the user then chooses the Exit menu
item to shut down X.

xrdb –load $HOME/.Xresources
xsetroot –solid gray &

xinit

Part I: User Commands666

xclock –g 50x50–0+0 –bw 0 &
xload –g 50x50–50+0 –bw 0 &
xterm –g 80x24+0+0 &
xterm –g 80x24+0–0 &
twm

Sites that want to create a common startup environment could simply create a default xinitrc that references a site-wide
startup file:

#!/bin/sh
. /usr/local/lib/site.xinitrc

Another approach is to write a script that starts xinit with a specific shell script. Such scripts are usually named x11, xstart,
or startx, and are a convenient way to provide a simple interface for novice users:

#!/bin/sh
xinit /usr/local/lib/site.xinitrc –– /usr/X11R6/bin/X bc

ENVIRONMENT VARIABLES
DISPLAY This variable gets set to the name of the display to which

clients should connect.

XINITRC This variable specifies an init file containing shell commands
to start up the initial windows. By default, xinitrc in the
home directory will be used.

FILES
.xinitrc Default client script

xterm Client to run if .xinitrc does not exist

.xserverrc Default server script

X Server to run if .xserverrc does not exist

SEE ALSO
X(1), startx(1), Xserver(1), xterm(1)

AUTHOR
Bob Scheifler (MIT Laboratory for Computer Science)

X Version 11 Release 6

xkill
xkill—Kill a client by its X resource

SYNOPSIS
xkill [–display displayname] [–id resource] [–button number] [–frame] [–all]

DESCRIPTION
xkill is a utility for forcing the X server to close connections to clients. This program is very dangerous, but is useful for
aborting programs that have displayed undesired windows on a user’s screen. If no resource identifier is given with -id, xkill
will display a special cursor as a prompt for the user to select a window to be killed. If a pointer button is pressed over a
nonroot window, the server will close its connection to the client that created the window.

667

OPTIONS
–display displayname This option specifies the name of the X server to contact.

–id resource This option specifies the X identifier for the resource whose
creator is to be aborted. If no resource is specified, xkill will
display a special cursor with which you should select a window
to be kill.

–button number This option specifies the number of pointer button that should
be used in selecting a window to kill. If the word “any” is
specified, any button on the pointer may be used. By default,
the first button in the pointer map (which is usually the
leftmost button) is used.

–all This option indicates that all clients with top-level windows on
the screen should be killed. xkill will ask you to select the root
window with each of the currently defined buttons to give you
several chances to abort. Use of this option is highly discour-
aged.

–frame This option indicates that xkill should ignore the standard
conventions for finding top-level client windows (which are
typically nested inside a window manager window), and
simply believe that you want to kill direct children of the root.

XDEFAULTS
Button Specifies a specific pointer button number or the word “any”

to use when selecting windows.

SEE ALSO
X(1), xwininfo(1), XKillClient and XGetPointerMapping in the Xlib Programmers Manual, KillClient in the X Protocol
Specification

AUTHOR
Jim Fulton (MIT X Consortium) and Dana Chee (Bellcore)

X Version 11 Release 6

xlogo
xlogo—X Window System logo

SYNOPSIS
xlogo [-toolkitoption ...]

DESCRIPTION
The xlogo program displays the X Window System logo.

OPTIONS
Xlogo accepts all of the standard X Toolkit command-line options, as well as the following:

–shape This option indicates that the logo window should be shaped
rather than rectangular.

xlogo

Part I: User Commands668

RESOURCES
The default width and the default height are each 100 pixels. This program uses the Logo widget in the Athena widget set. It
understands all of the Simple widget resource names and classes as well as:

foreground (class Foreground) Specifies the color for the logo. The default depends on
whether reverseVideo is specified. If reverseVideo is specified,
the default is XtDefaultForeground, otherwise the default is
XtDefaultBackground.

shapeWindow (class ShapeWindow) Specifies that the window is shaped to the X logo. The default
is False.

WIDGETS
In order to specify resources, it is useful to know the hierarchy of the widgets that compose xlogo.In the following notation,
indentation indicates hierarchical structure. The widget class name is given first, followed by the widget instance name.

XLogo xlogo
 Logo xlogo

ENVIRONMENT
DISPLAY To get the default host and display number.

XENVIRONMENT To get the name of a resource file that overrides the global
resources stored in the RESOURCE_MANAGER property.

FILES
<XRoot>/lib/X11/app-defaults/XLogo Specifies required resources

SEE ALSO
X(1), xrdb(1)

AUTHORS
Ollie Jones of Apollo Computer and Jim Fulton of the MIT X Consortium wrote the logo graphics routine, based on a
graphic design by Danny Chong and Ross Chapman of Apollo Computer.

X Version 11 Release 6

xlsatoms
xlsatoms—List interned atoms defined on server

SYNOPSIS
xlsatoms [-options ...]

DESCRIPTION
xlsatoms lists the interned atoms. By default, all atoms starting from 1 (the lowest atom value defined by the protocol) are
listed until unknown atom is found. If an explicit range is given, xlsatoms will try all atoms in the range, regardless of
whether or not any are undefined.

669

OPTIONS
–display dpy This option specifies the X server to which to connect.

–format string This option specifies a printf-style string used to list each
atom <value,name> pair, printed in that order (value is an
unsigned long and name is a char *). xlsatoms will supply a
newline at the end of each line. The default is %ld\t%s.

–range [low]-[high] This option specifies the range of atom values to check. If low
is not given, a value of 1 is assumed. If high is not given,
xlsatoms will stop at the first undefined atom at or above low.

–name string This option specifies the name of an atom to list. If the atom
does not exist, a message will be printed on the standard error.

SEE ALSO
X(1), Xserver(1), xprop(1)

ENVIRONMENT
DISPLAY To get the default host and display to use

AUTHOR
Jim Fulton (MIT X Consortium)

X Version 11 Release 6

xlsclients
xlsclients—List client applications running on a display

SYNOPSIS
xlsclients [-display displayname] [-a] [-l] [-m maxcmdlen]

DESCRIPTION
xlsclients is a utility for listing information about the client applications running on a display. It may be used to generate
scripts representing a snapshot of the user’s current session.

OPTIONS
–display displayname This option specifies the X server to contact.

–a This option indicates that clients on all screens should be
listed. By default, only those clients on the default screen are
listed.

–l List in long format, giving the window name, icon name, and
class hints in addition to the machine name and command
string shown in the default format.

–m maxcmdlen This option specifies the maximum number of characters in a
command to print out. The default is 10000.

ENVIRONMENT
DISPLAY To get the default host, display number, and screen.

xlsclients

Part I: User Commands670

SEE ALSO
X(1), xwininfo(1), xprop(1)

AUTHOR
Jim Fulton (MIT X Consortium)

X Version 11 Release 6

xlsfonts
xlsfonts—Server font list displayer for X

SYNOPSIS
xlsfonts [–options ...] [–fn pattern]

DESCRIPTION
xlsfonts lists the fonts that match the given pattern. The wildcard character * may be used to match any sequence of
characters (including none), and ? to match any single character. If no pattern is given, * is assumed.

The * and ? characters must be quoted to prevent them from being expanded by the shell.

OPTIONS
–display host:dpy This option specifies the X server to contact.

–l Lists some attributes of the font on one line in addition to its
name.

–ll Lists font properties in addition to –l output.

–lll Lists character metrics in addition to –ll output.

–m This option indicates that long listings should also print the
minimum and maximum bounds of each font.

–C This option indicates that listings should use multiple
columns. This is the same as –n 0.

–1 This option indicates that listings should use a single column.
This is the same as –n 1.

–w width This option specifies the width in characters that should be
used in figuring out how many columns to print. The default
is 79.

–n columns This option specifies the number of columns to use in
displaying the output. By default, it will attempt to fit as many
columns of font names into the number of character specified
by –w width.

–u This option indicates that the output should be left unsorted.

–o This option indicates that xlsfonts should do an OpenFont
(and QueryFont, if appropriate) rather than a ListFonts. This is
useful if ListFonts or ListFontsWithInfo fail to list a known
font (as is the case with some scaled font systems).

–fn pattern This option specifies the font name pattern to match.

SEE ALSO
X(1), Xserver(1), xset(1), xfd(1), X Logical Font Description Conventions

671

ENVIRONMENT
DISPLAY To get the default host and display to use

BUGS
Doing xlsfonts -l can tie up your server for a very long time. This is really a bug with single-threaded nonpreemptable
servers, not with this program.

AUTHOR
Mark Lillibridge (MIT Project Athena), Jim Fulton (MIT X Consortium), and Phil Karlton (SGI)

X Version 11 Release 6

xmag
xmag—Magnify parts of the screen

SYNOPSIS
xmag [–mag magfactor][–source geom][–toolkitoption ...]

DESCRIPTION
The xmag program allows you to magnify portions of an X screen. If no explicit region is specified, a square with the pointer
in the upper-left corner is displayed indicating the area to be enlarged. The area can be dragged out to the desired size by
pressing Button 2. After a region has been selected, a window is popped up showing a blown-up version of the region in
which each pixel in the source image is represented by a small square of the same color. Pressing Button 1 in the enlargement
window shows the position and RGB value of the pixel under the pointer until the button is released. Typing Q or ˆC in the
enlargement window exits the program. The application has five buttons across its top. Close deletes this particular
magnification instance. Replace brings up the rubber band selector again to select another region for this magnification
instance. New brings up the rubber band selector to create a new magnification instance. Cut puts the magnification image
into the primary selection. Paste copies the primary selection buffer into xmag. Note that you can cut and paste between xmag
and the bitmap program. Resizing xmag resizes the magnification area. xmag preserves the colormap, visual, and window depth
of the source.

WIDGETS
xmag uses the X Toolkit and the Athena Widget Set. The magnified image is displayed in the Scale widget. For more
information, see the Athena Widget Set documentation. Following is the widget structure of the xmag application. Indenta-
tion indicates hierarchical structure. The widget class name is given first, followed by the widget instance name.

Xmag xmag
 RootWindow root
 TopLevelShell xmag
 Paned pane1
 Paned pane2
 Command close
 Command replace
 Command new
 Command select
 Command paste
 Label xmag label
 Paned pane2
 Scale scale
OverrideShell pixShell
 Label pixLabel

xmag

Part I: User Commands672

OPTIONS
–source geom This option specifies the size and/or location of the source

region on the screen. By default, a 64×64 square is provided
for the user to select an area of the screen.

–mag integer This option indicates the magnification to be used. The
default is 5.

AUTHORS
Dave Sternlicht and Davor Matic (MIT X Consortium)

X Version 11 Release 6

xmkmf
xmkmf—Create a Makefile from an Imakefile

SYNOPSIS
xmkmf [-a][topdir [curdir]]

DESCRIPTION
The xmkmf command is the normal way to create a Makefile from an Imakefile shipped with third-party software.

When invoked with no arguments in a directory containing an Imakefile, the imake program is run with arguments
appropriate for your system (configured into xmkmf when X was built) and generates a Makefile.

When invoked with the –a option, xmkmf builds the Makefile in the current directory, and then automatically executes make
Makefiles (in case there are subdirectories), make includes, and make depend for you. This is the normal way to configure
software that is outside the X Consortium build tree.

If working inside the X Consortium build tree (unlikely unless you are an X developer, and even then this option is never
really used), the topdir argument should be specified as the relative pathname from the current directory to the top of the
build tree. Optionally, curdir may be specified as a relative pathname from the top of the build tree to the current directory.
It is necessary to supply curdir if the current directory has subdirectories, or the Makefile will not be able to build the
subdirectories. If a topdir is given, xmkmf assumes nothing is installed on your system and looks for files in the build tree
instead of using the installed versions.

SEE ALSO
imake(1)

X Version 11 Release 6

xmodmap
xmodmap—Utility for modifying keymaps in X

SYNOPSIS
xmodmap [-options ...] [filename]

DESCRIPTION
The xmodmap program is used to edit and display the keyboard modifier map and keymap table that are used by client
applications to convert event keycodes into keysyms. It is usually run from the user’s session startup script to configure the
keyboard according to personal tastes.

673

OPTIONS
The following options may be used with xmodmap:

–display display This option specifies the host and display to use.

–help This option indicates that a brief description of the command-
line arguments should be printed on the standard error
channel. This will be done whenever an unhandled argument
is given to xmodmap.

–grammar This option indicates that a help message describing the
expression grammar used in files and with –e expressions
should be printed on the standard error.

–verbose This option indicates that xmodmap should print logging
information as it parses its input.

–quiet This option turns off the verbose logging. This is the default.

–n This option indicates that xmodmap should not change the
mappings, but should display what it would do, like make(1)
does when given this option.

–e expression This option specifies an expression to be executed. Any
number of expressions may be specified from the command
line.

–pm This option indicates that the current modifier map should be
printed on the standard output.

–pk This option indicates that the current keymap table should be
printed on the standard output.

–pke This option indicates that the current keymap table should be
printed on the standard output in the form of expressions that
can be fed back to xmodmap.

–pp This option indicates that the current pointer map should be
printed on the standard output.

- A lone dash means that the standard input should be used as
the input file.

The filename specifies a file containing xmodmap expressions to be executed. This file is usually kept in the user’s home
directory with a name like .xmodmaprc.

EXPRESSION GRAMMAR
The xmodmap program reads a list of expressions and parses them all before attempting to execute any of them. This makes it
possible to refer to keysyms that are being redefined in a natural way without having to worry as much about name conflicts.

keycode NUMBER = KEYSYMNAME ... The list of keysyms is assigned to the indicated keycode (which
may be specified in decimal, hex, or octal and can be
determined by running the xev program.

keycode any = KEYSYMNAME ... If no existing key has the specified list of keysyms assigned to
it, a spare key on the keyboard is selected and the keysyms are
assigned to it. The list of keysyms may be specified in decimal,
hex, or octal.

keysym KEYSYMNAME = KEYSYMNAME ... The KEYSYMNAME on the left side is translated into matching
keycodes used to perform the corresponding set of keycode
expressions. The list of keysym names may be found in the

xmodmap

Part I: User Commands674

header file <X11/keysymdef.h (without the XK_prefix) or the
keysym database <XRoot>/lib/X11/XKeysymDB, where <XRoot>
refers to the root of the X11 install tree. Note that if the same
keysym is bound to multiple keys, the expression is executed
for each matching keycode.

clear MODIFIERNAME This removes all entries in the modifier map for the given
modifier, where valid names are Shift, Lock, Control, Mod1,
Mod2, Mod3, Mod4, and Mod5 (case does not matter in modifier
names, although it does matter for all other names). For
example, clear Lock will remove any keys that were bound to
the shift lock modifier.

add MODIFIERNAME = KEYSYMNAME ... This adds all keys containing the given keysyms to the
indicated modifier map. The keysym names are evaluated after
all input expressions are read to make it easy to write
expressions to swap keys. (See the “Examples” subsection).

remove MODIFIERNAME = KEYSYMNAME ... This removes all keys containing the given keysyms from the
indicated modifier map. Unlike add, the keysym names are
evaluated as the line is read in. This allows you to remove keys
from a modifier without having to worry about whether or not
they have been reassigned.

pointer =default This sets the pointer map back to its default settings (button 1
generates a code of 1, button 2 generates a 2, and so on).

pointer = NUMBER ... This sets to pointer map to contain the indicated button
codes. The list always starts with the first physical button.

Lines that begin with an exclamation point (!) are taken as comments.

If you want to change the binding of a modifier key, you must also remove it from the appropriate modifier map.

EXAMPLES
Many pointers are designed such that the first button is pressed using the index finger of the right hand. People who are left-
handed frequently find that it is more comfortable to reverse the button codes that are generated so that the primary button
is pressed using the index finger of the left hand. This could be done on a 3 button pointer as follows: % xmodmap -e “pointer
=3 2 1”.

Many applications support the notion of Meta keys (similar to Control keys except that Meta is held down instead of
Control). However, some servers do not have a Meta keysym in the default keymap table, so one needs to be added by hand.
The following command will attach Meta to the Multilanguage key (sometimes labeled Compose Character). It also takes
advantage of the fact that applications that need a Meta key simply need to get the keycode and don’t require the keysym to
be in the first column of the keymap table. This means that applications that are looking for a Multi key (including the
default modifier map) won’t notice any change. Example:

% xmodmap -e “keysym Multi_key = Multi_key Meta_L”

Similarly, some keyboards have an Alt key but no Meta key. In that case the following may be useful:

% xmodmap -e “keysym Alt L = Meta L Alt L”

One of the more simple, yet convenient, uses of xmodmap is to set the keyboard’s “rubout” key to generate an alternate
keysym. This frequently involves exchanging Backspace with Delete to be more comfortable to the user. If the ttyModes
resource in xterm is set as well, all terminal emulator windows will use the same key for erasing characters:

% xmodmap -e “keysym BackSpace = Delete”
% echo “XTerm*ttyModes: erase ˆ?” | xrdb -merge

675

Some keyboards do not automatically generate less than and greater than characters when the comma and period keys are
shifted. This can be remedied with xmodmap by resetting the bindings for the comma and period with the following scripts:

!
! make shift-, be $<$ and shift-. be $>$
!
keysym comma = comma less
keysym period = period greater

One of the more irritating differences between keyboards is the location of the Control and Shift Lock keys. A common use
of xmodmap is to swap these two keys as follows:

!
! Swap Caps_Lock and Control_L
!
remove Lock = Caps_Lock
remove Control = Control_L
keysym Control_L = Caps_Lock
keysym Caps_Lock = Control_L
add Lock = Caps_Lock
add Control = Control_L

The keycode command is useful for assigning the same keysym to multiple keycodes. Although unportable, it also makes it
possible to write scripts that can reset the keyboard to a known state. The following script sets the Backspace key to generate
Delete (as shown earlier), flushes all existing caps lock bindings, makes the Caps Lock key be a control key, make F5 generate
Escape, and makes Break/Reset be a shift lock.

!
! On the HP, the following keycodes have key caps as listed:
!
! 101 Backspace
! 55 Caps
! 14 Ctrl
! 15 Break/Reset
! 86 Stop
! 89F5
!
keycode 101 = Delete
keycode 55 = Control_R
clear Lock
add Control = Control_R
keycode 89 = Escape
keycode 15 = Caps_Lock
add Lock = Caps_Lock

ENVIRONMENT
DISPLAY To get default host and display number

SEE ALSO
X(1), xev(1), Xlib documentation on key and pointer events

BUGS
Every time a keycode expression is evaluated, the server generates a MappingNotify event on every client. This can cause some
thrashing. All of the changes should be batched together and done at once. Clients that receive keyboard input and ignore
MappingNotify events will not notice any changes made to keyboard mappings.

xmodmap should generate add and remove expressions automatically whenever a keycode that is already bound to a modifier is
changed.

xmodmap

Part I: User Commands676

There should be a way to have the remove expression accept keycodes as well as keysyms for those times when you really mess
up your mappings.

AUTHOR
Jim Fulton (MIT X Consortium), rewritten from an earlier version by David Rosenthal (Sun Microsystems)

X Version 11 Release 6

xon
xon—Start an X program on a remote machine

SYNOPSIS
xon remote-host [-access] [-debug] [-name window-name] [-nols] [-screen screen-no] [-user user-name] [command ...]

DESCRIPTION
xon runs the specified command (default xterm -ls) on the remote machine using rsh, remsh, or rcmd. xon passes the DISPLAY,
XAUTHORITY, and XUSERFILESEARCHPATH environment variables to the remote command.

When no command is specified, xon runs xterm -ls. It additionally specifies the application name to be xterm-remote-host
and the window title to be -fIremote-host.

xon can only work when the remote host will allow you to log in without a password, by having an entry in the .rhosts file
permitting access.

OPTIONS
Note that the options follow the remote hostname (as they do with rlogin).

-access Runs xhost locally to add the remote host to the host access list
in the X server. This won’t work unless xhost is given
permission to modify the access list.

-debug Normally, xon disconnects the remote process from stdin,
stdout, and stderr to eliminate the daemon processes that
usually connect them across the network. Specifying the -debug
option leaves them connected so that error messages from the
remote execution are sent back to the originating host.

-name window-name This specifies a different application name and window title
for the default command (xterm).

-nols Normally xon passes the -ls option to the remote xterm; this
option suspends that behavior.

-screen screen-no This changes the screen number of the DISPLAY variable passed
to the remote command.

-user user-name By default, xon simply uses rsh/remsh/rcmd to connect to the
remote machine using the same username as on the local
machine. This option causes xon to specify an alternative
username. This will not work unless you have authorization to
access the remote account, by placing an appropriate entry in
the remote user’s .rhosts file.

BUGS
xon can get easily confused when the remote host, username, or various environment variable values contain whitespace.

xon has no way to send the appropriate X authorization information to the remote host.

X Version 11 Release 6

677

xpmtoppm
xpmtoppm—Convert an X11 pixmap into a portable pixmap

SYNOPSIS
xpmtoppm [xpmfile]

DESCRIPTION
Reads an X11 pixmap (XPM version 1 or 3) as input. Produces a portable pixmap as output.

KNOWN BUGS
The support to XPM version 3 is limited. Comments can only be single lines and there must be for every pixel a default
color name for a color type visual.

SEE ALSO
ppmtoxpm(1), ppm(5)

XPM Manual by Arnaud Le Hors (lehors@mirsa.inria.fr)

AUTHOR
Copyright (c) 1991 by Jef Poskanzer.

Upgraded to support XPM version 3 by Arnaud Le Hors (lehors@mirsa.inria.fr) 9 April 1991

16 August 1990

xprop
xprop—Property displayer for X

SYNOPSIS
xprop [-help] [-grammar] [-id id] [-root] [-name name] [-frame] [-font font]
[-display display] [-len n] [-notype] [-fs file] [-remove property-name]
[-spy] [-f atom format [dformat]]* [format [dformat] atom]*

SUMMARY
The xprop utility is for displaying window and font properties in an X server. One window or font is selected using the
command-line arguments or possibly in the case of a window, by clicking on the desired window. A list of properties is then
given, possibly with formatting information.

OPTIONS
-help Print out a summary of command-line options.

-grammar Print out a detailed grammar for all command-line options.

-id id This argument allows the user to select window id on the
command line rather than using the pointer to select the target
window. This is very useful in debugging X applications where
the target window is not mapped to the screen or where the
use of the pointer might be impossible or interfere with the
application.

-name name This argument allows the user to specify that the window
named name is the target window on the command line rather
than using the pointer to select the target window.

xprop

Part I: User Commands678

-font font This argument allows the user to specify that the properties of
font font should be displayed.

-root This argument specifies that X’s root window is the target
window. This is useful in situations where the root window is
completely obscured.

-display display This argument allows you to specify the server to connect to;
see X(1).

-len n Specifies that at most, n bytes of any property should be read
or displayed.

-notype Specifies that the type of each property should not be
displayed.

-fs file Specifies that file file should be used as a source of more
formats for properties.

-frame Specifies that when selecting a window by hand (that is, if
neither -name, -root, nor -id is given), look at the window
manager frame (if any) instead of looking for the client
window.

-remove property-name Specifies the name of a property to be removed from the
indicated window.

-spy Examine window properties forever, looking for property
change events.

-f name format [dformat] Specifies that the format for name should be format and that
the dformat for name should be dformat. If dformat is missing,
”= $0+\n” is assumed.

DESCRIPTION
For each of these properties, its value on the selected window or font is printed using the supplied formatting information, if
any. If no formatting information is supplied, internal defaults are used. If a property is not defined on the selected window
or font, not defined is printed as the value for that property. If no property list is given, all the properties possessed by the
selected window or font are printed.

A window may be selected in one of four ways. First, if the desired window is the root window, the -root argument may be
used. If the desired window is not the root window, it may be selected in two ways on the command line, either by id
number, such as might be obtained from xwininfo, or by name if the window possesses a name. The -id argument selects a
window by id number in either decimal or hex (must start with 0x) while the -name argument selects a window by name.

The last way to select a window does not involve the command line at all. If none of -font, -id, -name, and -root are
specified, a crosshairs cursor is displayed and the user is allowed to choose any visible window by pressing any pointer button
in the desired window. If it is desired to display properties of a font as opposed to a window, the -font argument must be
used.

Other than the preceding four arguments and the -help argument for obtaining help, and the -grammar argument for listing
the full grammar for the command line, all the other command-line arguments are used in specifying both the format of the
properties to be displayed and how to display them. The -len n argument specifies that at most, n bytes of any given
property will be read and displayed. This is useful, for example, when displaying the cut buffer on the root window, which
could run to several pages if displayed in full.

Normally, each property name is displayed by printing first the property name then its type (if it has one) in parentheses,
followed by its value. The -notype argument specifies that property types should not be displayed. The -fs argument is used
to specify a file containing a list of formats for properties, while the -f argument is used to specify the format for one
property.

679

The formatting information for a property actually consists of two parts, a format and a dformat. The format specifies the
actual formatting of the property (that is, is it made up of words, bytes, or longs?, and so on) while the dformat specifies how
the property should be displayed.

The following paragraphs describe how to construct formats and dformats. However, for the vast majority of users and uses,
this should not be necessary as the built-in defaults contain the formats and dformats necessary to display all the standard
properties. It should only be necessary to specify formats and dformats if a new property is being dealt with or the user
dislikes the standard display format. New users especially are encouraged to skip this part.

A format consists of a 0, 8, 16, or 32 followed by a sequence of one or more format characters. The 0, 8, 16, or 32 specifies
how many bits per field there are in the property.

Zero is a special case that means use the field size information associated with the property itself. (This is only needed for
special cases like type INTEGER, which is actually three different types, depending on the size of the fields of the property.)

A value of 8 means that the property is a sequence of bytes, while a value of 16 means that the property is a sequence of
words. The difference between these two lies in the fact that the sequence of words will be byte swapped while the sequence
of bytes will not be when read by a machine of the opposite byte order of the machine that originally wrote the property. For
more information on how properties are formatted and stored, consult the Xlib manual.

After the size of the fields has been specified, it is necessary to specify the type of each field (is it an integer, a string, an atom,
or what?) This is done using one format character per field. If there are more fields in the property than format characters
supplied, the last character will be repeated as many times as necessary for the extra fields. The format characters and their
meaning are as follows:

a The field holds an atom number. A field of this type should be
of size 32.

b The field is a Boolean. A 0 means false while anything else
means true.

c The field is an unsigned number, a cardinal.

i The field is a signed integer.

m The field is a set of bit flags, 1 meaning on.

s This field and the next ones—until either a 0 or the end of the
property—represent a sequence of bytes. This format character
is only usable with a field size of 8 and is most often used to
represent a string.

x The field is a hex number (like c but displayed in hex—most
useful for displaying window ids and the like).

An example format is 32ica, which is the format for a property of three fields of 32 bits each—the first holding a signed
integer, the second an unsigned integer, and the third an atom.

The format of a dformat, unlike that of a format, is not so rigid. The only limitations on a dformat is that one may not start
with a letter or a dash. This is so that it can be distinguished from a property name or an argument. A dformat is a text string
containing special characters instructing that various fields be printed at various points in a manner similar to the formatting
string used by printf. For example, the dformat is ($0, $1 \)\n would render the POINT 3, -4, which has a format of 32ii as
is (3, -4)\n.

Any character other than a $, ?, \, or a (in a dformat prints as itself. To print out a $, ?, \, or (, precede it with a \. For
example, to print out a $, use \$. Several special backslash sequences are provided as shortcuts. \n will cause a newline to be
displayed, while \t will cause a tab to be displayed. \o, where o is an octal number, will display character number o.

A $ followed by a number n causes field number n to be displayed. The format of the displayed field depends on the
formatting character used to describe it in the corresponding format. In other words, if a cardinal is described by c, it will
print in decimal, while if it is described by an x, it is displayed in hex.

xprop

Part I: User Commands680

If the field is not present in the property (this is possible with some properties), <field not available> is displayed instead.
$n+ will display field number n, then a comma, then field number n+1, then another comma, then ... until the last field
defined. If field n is not defined, nothing is displayed. This is useful for a property that is a list of values.

A ? is used to start a conditional expression, a kind of if-then statement. ?exp(text) will display text if and only if exp
evaluates to non-zero. This is useful for two things. First, it allows fields to be displayed if and only if a flag is set. And
second, it allows a value such as a state number to be displayed as a name rather than as just a number. The syntax of exp is as
follows:

exp ::= term | term=exp | !exp
term ::= n j $n j mn

The ! operator is a logical NOT, changing 0 to 1 and any non-zero value to 0. = is an equality operator. Note that internally, all
expressions are evaluated as 32-bit numbers, so -1 is not equal to 65535. = returns 1 if the two values are equal and 0 if not. n
represents the constant value n while $n represents the value of field number n. mn is 1 if flag number n in the first field
having format character m in the corresponding format is 1; 0 otherwise.

Examples: ?m3(count: $3\n) displays field 3 with a label of count if and only if flag number 3 (count starts at 0!) is on.
?$2=0(True)?!$2=0(False) displays the inverted value of field 2 as a Boolean.

In order to display a property, xprop needs both a format and a dformat. Before xprop uses its default values of a format of 32x
and a dformat of “ = { $0+ }\n”, it searches several places in an attempt to find more specific formats. First, a search is made
using the name of the property. If this fails, a search is made using the type of the property. This allows type STRING to be
defined with one set of formats while allowing property WM_NAME, which is of type STRING to be defined with a different
format. In this way, the display formats for a given type can be overridden for specific properties.

The locations searched are in order: the format, if any, specified with the property name (as in 8x WM_NAME), the formats
defined by -f options in last to first order, the contents of the file specified by the -fs option if any, the contents of the file
specified by the environmental variable XPROPFORMATS if any, and finally xprop’s built-in file of formats.

The format of the files referred to by the -fs argument and the XPROPFORMATS variable is one or more lines of the following
form:

name format [dformat]

Where name is either the name of a property or the name of a type, format is the format to be used with name, and dformat is
the dformat to be used with name. If dformat is not present,”=$0+\n” is assumed.

EXAMPLES
To display the name of the root window: xprop -root WM_NAME

To display the window manager hints for the clock: xprop -name xclock WM_HINTS

To display the start of the cut buffer: xprop -root -len 100 CUT_BUFFER0

To display the point size of the fixed font: xprop -font fixed POINT_SIZE

To display all the properties of window # 0x200007: xprop -id 0x200007

ENVIRONMENT
DISPLAY To get default display.

XPROPFORMATS Specifies the name of a file from which additional formats are
to be obtained.

SEE ALSO
X(1), xwininfo(1)

681

AUTHOR
Mark Lillibridge (MIT Project Athena)

X Version 11 Release 6

xrdb
xrdb—X server resource database utility

SYNOPSIS
xrdb [-option ...] [filename]

DESCRIPTION
xrdb is used to get or set the contents of the RESOURCE_MANAGER property on the root window of screen 0, or the
SCREEN_RESOURCES property on the root window of any or all screens, or everything combined. You would normally run this
program from your X startup file.

Most X clients use the RESOURCE_MANAGER and SCREEN_RESOURCES properties to get user preferences about color, fonts, and so on
for applications. Having this information in the server (where it is available to all clients) instead of on disk solves the
problem in previous versions of X that required you to maintain defaults files on every machine that you might use. It also
allows for dynamic changing of defaults without editing files.

The RESOURCE_MANAGER property is used for resources that apply to all screens of the display. The SCREEN_RESOURCES property
on each screen specifies additional (or overriding) resources to be used for that screen. (When there is only one screen,
SCREEN_RESOURCES is normally not used; all resources are just placed in the RESOURCE_MANAGER property.)

The file specified by filename (or the contents from standard input if - or no filename is given) is optionally passed through
the C preprocessor with the following symbols defined, based on the capabilities of the server being used:

SERVERHOST=hostname The hostname portion of the display to which you are
connected.

SRVR_name The SERVERHOSThostnamestring turned into a legal identifier.
For example, my-dpy.lcs.mit.edu becomes SRVR my dpy lcs
mit edu.

HOST=hostname The same as SERVERHOST.

DISPLAY_NUM=num The number of the display on the server host.

CLIENTHOST=hostname The name of the host on which xrdb is running.

CLNT_name The CLIENTHOST hostname string turned into a legal identifier.
For example, “expo.lcs.mit.edu” becomes CLNT expo lcs mit
edu.

RELEASE=num The vendor release number for the server. The interpretation
of this number will vary depending on VENDOR.

REVISION=num The X protocol minor version supported by this server
(currently 0).

VERSION=num The X protocol major version supported by this server (should
always be 11).

VENDOR=”vendor” A string literal specifying the vendor of the server.

VNDR_name The VENDOR name string turned into a legal identifier. For
example, “MIT X Consortium” becomes VNDR_MIT_X Consortium.

EXT_name A symbol is defined for each protocol extension supported by
the server. Each extension string name is turned into a legal
identifier. For example, “X3D-PEX” becomes EXT_X3D_PEX.

xrdb

Part I: User Commands682

NUM_SCREENS=num The total number of screens.

SCREEN_NUM=num The number of the current screen (from zero).

BITS_PER_RGB=num The number of significant bits in an RGB color specification.
This is the log base 2 of the number of distinct shades of each
primary that the hardware can generate. Note that it usually is
not related to PLANES.

CLASS=visualclass One of StaticGray, GrayScale, StaticColor, PseudoColor,
TrueColor, DirectColor. This is the visual class of the root
window.

CLASS_visualclass=visualid The visual class of the root window in a form you can #ifdef
on. The value is the numeric id of the visual.

COLOR Defined only if CLASS is one of StaticColor, PseudoColor,
TrueColor, or DirectColor.

CLASS_visualclass_depth=num A symbol is defined for each visual supported for the screen.
The symbol includes the class of the visual and its depth; the
value is the numeric id of the visual. (If more than one visual
has the same class and depth, the numeric id of the first one
reported by the server is used.)

HEIGHT=num The height of the root window in pixels.

WIDTH=num The width of the root window in pixels.

PLANES=num The number of bit planes (the depth) of the root window.

X_RESOLUTION=num The x resolution of the screen in pixels per meter.

Y_RESOLUTION=num The y resolution of the screen in pixels per meter.

SRVR_name, CLNT_name, VNDR_name, and EXT_name identifiers are formed by changing all characters other than letters and digits
into underscores.

Lines that begin with an exclamation mark (!) are ignored and may be used as comments.

Note that since xrdb can read from standard input, it can be used to change the contents of properties directly from a
terminal or from a shell script.

OPTIONS
xrdb program accepts the following options:

–help This option (or any unsupported option) will cause a brief
description of the allowable options and parameters to be
printed.

–display display This option specifies the X server to be used; see X(1). It also
specifies the screen to use for the -screen option, and it
specifies the screen from which preprocessor symbols are
derived for the -global option.

–all This option indicates that operation should be performed on
the screen-independent resource property (RESOURCE_MANAGER),
as well as the screen-specific property (SCREEN_RESOURCES) on
every screen of the display. For example, when used in
conjunction with -query, the contents of all properties are
output. For -load, -override, and -merge, the input file is
processed once for each screen. The resources that occur in
common in the output for every screen are collected, and these
are applied as the screen-independent resources. The
remaining resources are applied for each individual per-screen
property. This the default mode of operation.

683

–global This option indicates that the operation should only be
performed on the screen-independent RESOURCE_MANAGER
property.

–screen This option indicates that the operation should only be
performed on the SCREEN_RESOURCES property of the default
screen of the display.

–screens This option indicates that the operation should be performed
on the SCREEN_RESOURCES property of each screen of the display.
For -load, -override, and -merge, the input file is processed for
each screen.

–n This option indicates that changes to the specified properties
(when used with -load, -override, or -merge) or to the resource
file (when used with -edit) should be shown on the standard
output, but should not be performed.

–quiet This option indicates that warning about duplicate entries
should not be displayed.

-cpp filename This option specifies the pathname of the C preprocessor
program to be used. Although xrdb was designed to use CPP,
any program that acts as a filter and accepts the -D, -I, and -U
options may be used.

-nocpp This option indicates that xrdb should not run the input file
through a preprocessor before loading it into properties.

–symbols This option indicates that the symbols that are defined for the
preprocessor should be printed onto the standard output.

–query This option indicates that the current contents of the specified
properties should be printed onto the standard output. Note
that since preprocessor commands in the input resource file are
part of the input file, not part of the property, they won’t
appear in the output from this option. The –edit option can
be used to merge the contents of properties back into the input
resource file without damaging preprocessor commands.

–load This option indicates that the input should be loaded as the
new value of the specified properties, replacing whatever was
there; that is, the old contents are removed. This is the default
action.

–override This option indicates that the input should be added to,
instead of replacing, the current contents of the specified
properties. New entries override previous entries.

–merge This option indicates that the input should be merged and
lexicographically sorted with, instead of replacing, the current
contents of the specified properties.

–remove This option indicates that the specified properties should be
removed from the server.

–retain This option indicates that the server should be instructed not
to reset if xrdb is the first client. This should never be necessary
under normal conditions, since xdm and xinit always act as the
first client.

–edit filename This option indicates that the contents of the specified
properties should be edited into the given file, replacing any
values already listed there. This allows you to put changes that
you have made to your defaults back into your resource file,
preserving any comments or preprocessor lines.

xrdb

Part I: User Commands684

–backup string This option specifies a suffix to be appended to the filename
used with –edit to generate a backup file.

–Dname[=value] This option is passed through to the preprocessor and is used
to define symbols for use with conditionals such as #ifdef.

–Uname This option is passed through to the preprocessor and is used
to remove any definitions of this symbol.

–Idirectory This option is passed through to the preprocessor and is used
to specify a directory to search for files that are referenced with
#include.

FILES
Generalizes ~/.Xdefaults files

SEE ALSO
X(1), Xlib Resource Manager documentation, Xt resource documentation

ENVIRONMENT
DISPLAY To figure out which display to use.

BUGS
The default for no arguments should be to query, not to overwrite, so that it is consistent with other programs.

AUTHORS
Bob Scheifler and Phil Karlton, rewritten from the original by Jim Gettys

X Version 11 Release 6

xrefresh
xrefresh—Refresh all or part of an X screen

SYNOPSIS
xrefresh [-option ...]

DESCRIPTION
xrefresh is a simple X program that causes all or part of your screen to be repainted. This is useful when system messages
have messed up your screen. xrefresh maps a window on top of the desired area of the screen and then immediately unmaps
it, causing refresh events to be sent to all applications. By default, a window with no background is used, causing all
applications to repaint smoothly. However, the various options can be used to indicate that a solid background (of any color)
or the root window background should be used instead.

ARGUMENTS
–white Use a white background. The screen just appears to flash

quickly, and then repaint.

–black Use a black background (in effect, turning off all of the
electron guns to the tube). This can be somewhat disorienting
as everything goes black for a moment.

–solid color Use a solid background of the specified color. Try green.

–root Use the root window background.

685

–none This is the default. All of the windows simply repaint.

–geometry WxH+X+Y Specifies the portion of the screen to be repainted; see X(1).

–display display This argument allows you to specify the server and screen to
refresh; see X(1).

X DEFAULTS
The xrefresh program uses the routine XGetDefault(3X) to read defaults, so its resource names are all capitalized.

Black, White, Solid, None, Root Determines what sort of window background to use

Geometry Determines the area to refresh. Not very useful.

ENVIRONMENT
DISPLAY To get default host and display number.

SEE ALSO
X(1)

BUGS
It should have just one default type for the background.

AUTHORS
Jim Gettys (Digital Equipment Corporation, MIT Project Athena)

X Version 11 Release 6

Xserver
Xserver—X Window System display server

SYNOPSIS
X [option ...]

DESCRIPTION
X is the generic name for the X Window System display server. It is frequently a link or a copy of the appropriate server
binary for driving the most frequently used server on a given machine.

STARTING THE SERVER
The X server is usually started from the X Display Manager program xdm(1). This utility is run from the system boot files and
takes care of keeping the server running, prompting for usernames and passwords, and starting up the user sessions.

Installations that run more than one window system may need to use the xinit(1) utility instead of xdm. However, xinit is to
be considered a tool for building startup scripts and is not intended for use by end users. Site administrators are strongly
urged to use xdm, or build other interfaces for novice users.

The X server may also be started directly by the user, though this method is usually reserved for testing and is not recom-
mended for normal operation. On some platforms, the user must have special permission to start the X server, often because
access to certain devices. (For example, /dev/mouse is restricted.)

When the X server starts up, it typically takes over the display. If you are running on a workstation whose console is the
display, you may not be able to log into the console while the server is running.

xserver

Part I: User Commands686

OPTIONS
All of the X servers accept the following command-line options:

:displaynumber The X server runs as the given displaynumber, which by default
is 0. If multiple X servers are to run simultaneously on a host,
each must have a unique display number. See the “Display
Names” subsection of the X(1) manual page to learn how to
specify which display number clients should try to use.

–a number Sets pointer acceleration (that is, the ratio of how much is
reported to how much the user actually moved the pointer).

–ac Disables host-based access control mechanisms. Enables access
by any host, and permits any host to modify the access control
list. Use with extreme caution. This option exists primarily for
running test suites remotely.

–audit level Sets the audit trail level. The default level is 1, meaning only
connection rejections are reported. Level 2 additionally reports
all successful connections and disconnects. Level 0 turns off
the audit trail. Audit lines are sent as standard error output.

–auth authorization-file Specifies a file which contains a collection of authorization
records used to authenticate access. See also the xdm and
Xsecurity manual pages.

bc Disables certain kinds of error checking, for bug compatibility
with previous releases (for example, to work around bugs in
R2 and R3 xterms and toolkits). Deprecated.

–bs Disables backing store support on all screens.

–c Turns off key-click.

c volume Sets key-click volume (allowable range: 0–100).

–cc class Sets the visual class for the root window of color screens. The
class numbers are as specified in the X protocol. Not obeyed by
all servers.

–co filename Sets name of RGB color database. The default is <XRoot>/lib/
X11/rgb, where <Xroot> refers to the root of the X11 install
tree.

–config filename Reads more options from the given file. Options in the file
may be separated by newlines if desired. If a # character
appears on a line, all characters between it and the next
newline are ignored, providing a simple commenting facility.
The –config option itself may appear in the file.

–core Causes the server to generate a core dump on fatal errors.

–dpi resolution Sets the resolution of the screen, in dots per inch. To be used
when the server cannot determine the screen size from the
hardware.

–deferglyphs whichfonts Specifies the types of fonts for which the server should attempt
to use deferred glyph loading. whichfonts can be all (all fonts),
none (no fonts), or 16 (16-bit fonts only).

–f volume Sets feep (bell) volume (allowable range: 0–100).

–fc cursorFont Sets default cursor font.

–fn font Sets the default font.

687

–fp fontPath Sets the search path for fonts. This path is a comma-separated
list of directories that the X server searches for font databases.
–help prints a usage message.

–I Causes all remaining command-line arguments to be ignored.

–kb Disables the XKEYBOARD extension if present.

–p minutes Sets screen saver pattern cycle time in minutes.

–pn Permits the server to continue running if it fails to establish all
of its well-known sockets (connection points for clients), but
establishes at least one.

–r Turns off auto-repeat.

r Turns on auto-repeat.

–s minutes Sets screen saver time-out time in minutes.

–su Disables save under support on all screens.

–t number Sets pointer acceleration threshold in pixels (that is, sets after
how many pixels pointer acceleration should take effect).

–terminate Causes the server to terminate at server reset, instead of
continuing to run.

–to seconds Sets default connection time-out in seconds.

–tst Disables all testing extensions (for example, XTEST, XTrap,
XTestExtension1).

ttyxx Ignored, for servers started the ancient way (from init).

v Sets video-off screen saver preference.

–v Sets video-on screen saver preference.

–wm Forces the default backing-store of all windows to be When-
Mapped. This is a backdoor way of getting backing-store to
apply to all windows. Although all mapped windows will have
backing-store, the backing-store attribute value reported by the
server for a window will be the last value established by a
client. If it has never been set by a client, the server will report
the default value, NotUseful. This behavior is required by the
X protocol, which allows the server to exceed the client’s
backing-store expectations but does not provide a way to tell
the client that it is doing so.

–x extension Loads the specified extension at init. This is a no-op for most
implementations.

SERVER DEPENDENT OPTIONS
Some X servers accept the following options:

–ld kilobytes Sets the data space limit of the server to the specified number
of kilobytes. A value of zero makes the data size as large as
possible. The default value of –1 leaves the data space limit
unchanged.

–lf files Sets the number-of-open-files limit of the server to the
specified number. A value of zero makes the limit as large as
possible. The default value of –1 leaves the limit unchanged.

–ls kilobytes Sets the stack space limit of the server to the specified number
of kilobytes. A value of zero makes the stack size as large as
possible. The default value of –1 leaves the stack space limit
unchanged.

xserver

Part I: User Commands688

–logo Turns on the X Window System logo display in the screen
saver. There is currently no way to change this from a client.

nologo Turns off the X Window System logo display in the screen
saver. There is currently no way to change this from a client.

XDMCP OPTIONS
X servers that support XDMCP have the following options. (See the X Display Manager Control Protocol specification for
more information.)

–query host-name Enable XDMCP and send Query packets to the specified host.

–broadcast Enable XDMCP and broadcast BroadcastQuery packets to the
network. The first responding display manager will be chosen
for the session.

–indirect host-name Enable XDMCP and send IndirectQuery packets to the
specified host.

–port port-num Use an alternate port number for XDMCP packets. Must be
specified before any –query, –broadcast, or –indirect options.

–class display-class XDMCP has an additional display qualifier used in resource
lookup for display-specific options. This option sets that value;
by default it is MIT-Unspecified (not a very useful value).

–cookie xdm-auth-bits When testing XDM-AUTHENTICATION-1, a private key is shared
between the server and the manager. This option sets the value
of that private data (not that it is very private, being on the
command line!).

–displayID display-id Yet another XDMCP-specific value, this one allows the display
manager to identify each display so that it can locate the
shared key.

 XKEYBOARD OPTIONS
X servers that support the XKEYBOARD extension accept the following options:

–xkbdir directory Base directory for keyboard layout files

–xkbmap filename Keyboard description to load on startup

[+-]accessx Enable(+) or disable(-) AccessX key sequences

–ar1 milliseconds Sets the length of time in milliseconds that a key must be
depressed before auto-repeat starts

–ar2 milliseconds Sets the length of time in milliseconds that should elapse
between auto-repeat–generated keystrokes

Many servers also have device-specific command-line options. See the manual pages for the individual servers for more
details.

NETWORK CONNECTIONS
The X server supports client connections via a platform-dependent subset of the following transport types: TCPIP, UNIX
Domain sockets, DECnet, and several varieties of SVR4 local connections. See the “Display Names” subsection of the X(1)
manual page to learn how to specify which transport type clients should try to use.

SECURITY
The X server implements a platform-dependent subset of the following authorization protocols: -MIT-MAGICCOOKIE-1, XDM-
AUTHORIZATION-1, SUN-DES-1, and MIT-KERBEROS-5. See the Xsecurity(1) manual page for information on the operation of these
protocols.

689

Authorization data required by the preceding protocols is passed to the server in a private file named with the –auth
command-line option. Each time the server is about to accept the first connection after a reset (or when the server is
starting), it reads this file. If this file contains any authorization records, the local host is not automatically allowed access to
the server, and only clients that send one of the authorization records contained in the file in the connection setup informa-
tion will be allowed access. See the xau manual page for a description of the binary format of this file. See xauth(1) for
maintenance of this file, and distribution of its contents to remote hosts.

The X server also uses a host-based access control list for deciding whether or not to accept connections from clients on a
particular machine. If no other authorization mechanism is being used, this list initially consists of the host on which the
server is running as well as any machines listed in the file /etc/Xn.hosts, where n is the display number of the server. Each
line of the file should contain either an Internet hostname (for example expo.lcs.mit.edu) or a DECnet hostname in double
colon format (for example, hydra::). There should be no leading or trailing spaces on any lines. For example,

joesworkstation
corporate.company.com
star::
bigcpu::

Users can add or remove hosts from this list and enable or disable access control using the xhost command from the same
machine as the server.

The X protocol intrinsically does not have any notion of window operation permissions or place any restrictions on what a
client can do; if a program can connect to a display, it has full run of the screen. Sites that have better authentication and
authorization systems might wish to make use of the hooks in the libraries and the server to provide additional security
models.

SIGNALS
The X server attaches special meaning to the following signals:

SIGHUP This signal causes the server to close all existing connections,
free all resources, and restore all defaults. It is sent by the
display manager whenever the main user’s main application
(usually an xterm or window manager) exits to force the server
to clean up and prepare for the next user.

SIGTERM This signal causes the server to exit cleanly.

SIGUSR1 This signal is used quite differently from either of the above.
When the server starts, it checks to see if it has inherited
SIGUSR1 as SIG_IGN instead of the usual SIG_DFL. In this case,
the server sends a SIGUSR1 to its parent process after it has set
up the various connection schemes. xdm uses this feature to
recognize when connecting to the server is possible.

FONTS
The X server can obtain fonts from directories or from font servers. The list of directories and font servers the X server uses
when trying to open a font is controlled by the font path.

The default font path is

<XRoot>/lib/X11/fonts/misc/,
<XRoot>/lib/X11/fonts/Speedo/,
<XRoot>/lib/X11/fonts/Type1/,
<XRoot>/lib/X11/fonts/75dpi/,
<XRoot>/lib/X11/fonts/100dpi/

where <XRoot> refers to the root of the X11 install tree.

The font path can be set with the –fp option or by xset(1) after the server has started.

xserver

Part I: User Commands690

FILES
/etc/Xn.hosts Initial access control list for display number n

<XRoot>/lib/X11/fonts/misc

<XRoot>/lib/X11/fonts/75dpi

<XRoot>/lib/X11/fonts/100dpi Bitmap font directories

<XRoot>/lib/X11/fonts/Speedo

<XRoot>/lib/X11/fonts/Type1 Outline font directories

<XRoot>/lib/X11/fonts/PEX PEX font directories

<XRoot>/lib/X11/rgb.txt Color database

/tmp/.X11-unix/Xn UNIX domain socket for display number n

/tmp/rcXn Kerberos 5 replay cache for display number n

/usr/adm/Xnmsgs Error log file for display number n if run from init(8)

<XRoot>/lib/X11/xdm/xdm-errors Default error log file if the server is run from xdm(1)

Note: <XRoot> refers to the root of the X11 install tree.

SEE ALSO
General information: X(1)

Protocols: X Window System Protocol, The X Font Service Protocol, X Display Manager Control Protocol

Fonts: bdftopcf(1), mkfontdir(1), xfs(1), xlsfonts(1), xfontsel(1), xfd(1), X Logical Font Description Conventions

Security: Xsecurity(1), xauth(1), xau(1), xdm(1), xhost(1)

Starting the server: xdm(1), xinit(1)

Controlling the server once started: xset(1), xsetroot(1), xhost(1)

Server-specific man pages: Xdec(1), XmacII(1), Xsun(1), Xnest(1), Xvfb(1), XF86 Accel(1), XF86 Mono(1), XF86 SVGA(1), XF86
VGA16(1), XFree86(1)

Server internal documentation: “Definition of the Porting Layer for the X v11 Sample Server,” “Strategies for Porting the X
v11 Sample Server,” “Godzilla’s Guide to Porting the X v11 Sample Server”

AUTHORS
The sample server was originally written by Susan Angebranndt, Raymond Drewry, Philip Karlton, and Todd Newman,
from Digital Equipment Corporation, with support from a large cast. It has since been extensively rewritten by Keith
Packard and Bob Scheifler, from MIT.

X Version 11 Release 6

xset
xset—User preference utility for X

SYNOPSIS
xset [-display display] [-b] [b on/off] [b [volume [pitch [duration]]] [[-]bc]
[-c] [c on/off] [c [volume]] [[-+]fp[-+=] path[,path[,...]]] [fp default]
[fp rehash] [[-]led [integer]] [led on/off] [m[ouse] [accel_mult[/accel_div]
[threshold]]] [m[ouse] default] [p pixel color] [[-]r [keycode]] [r on/off]
[s [length [period]]] [s blank/noblank] [s expose/noexpose] [s on/off]
[s default] [s activate] [s reset] [q]

691

DESCRIPTION
This program is used to set various user preference options of the display.

OPTIONS
–display display This option specifies the server to use; see X(1).

b The b option controls bell volume, pitch, and duration. This
option accepts up to three numerical parameters, a preceding
dash (-), or an on/off flag. If no parameters are given, or the on
flag is used, the system defaults will be used. If the dash or off
is given, the bell will be turned off. If only one numerical
parameter is given, the bell volume will be set to that value, as
a percentage of its maximum. Likewise, the second numerical
parameter specifies the bell pitch, in hertz, and the third
numerical parameter specifies the duration in milliseconds.
Note that not all hardware can vary the bell characteristics.
The X server will set the characteristics of the bell as closely as
it can to the user’s specifications.

bc The bc option controls bug compatibility mode in the server,
if possible; a preceding dash (-) disables the mode; otherwise,
the mode is enabled. Various pre-R4 clients pass illegal values
in some protocol requests, and pre-R4 servers did not correctly
generate errors in these cases. Such clients, when run against
an R4 server, will terminate abnormally or otherwise fail to
operate correctly. Bug compatibility mode explicitly reintro-
duces certain bugs into the X server, so that many such clients
can still be run. This mode should be used with care; new
application development should be done with this mode
disabled. The server must support the MIT-SUNDRY-NONSTANDARD
protocol extension in order for this option to work.

c The c option controls key click. This option can take an
optional value, a preceding dash (-), or an on/off flag. If no
parameter or the on flag is given, the system defaults will be
used. If the dash or off flag is used, key click will be disabled.
If a value from 0 to 100 is given, it is used to indicate volume,
as a percentage of the maximum. The X server will set the
volume to the nearest value that the hardware can support.

fp= path,... The fp= sets the font path to the entries given in the path
argument. The entries are interpreted by the server, not by the
client. Typically, they are directory names or font server
names, but the interpretation is server-dependent.

fp default The default argument causes the font path to be reset to the
server’s default.

fp rehash The rehash argument resets the font path to its current value,
causing the server to reread the font databases in the current
font path. This is generally only used when adding new fonts
to a font directory (after running mkfontdir to re-create the
font database).

–fp or fp– The –fp and fp– options remove elements from the current
font path. They must be followed by a comma-separated list of
entries.

xset

Part I: User Commands692

fp or fp This fp and fp options prepend and append elements to the
current font path, respectively. They must be followed by a
comma-separated list of entries.

led The led option controls the keyboard LEDs. This controls the
turning on or off of one or all of the LEDs. It accepts an
optional integer, a preceding dash (-) or an on/off flag. If no
parameter or the on flag is given, all LEDs are turned on. If a
preceding dash or the flag off is given, all LEDs are turned off.
If a value between 1 and 32 is given, that LED will be turned
on or off depending on the existence of a preceding dash. A
common LED that can be controlled is the Caps Lock LED. xset
led 3 would turn led #3 on. xset -led 3 would turn it off.
The particular LED values may refer to different LEDs on
different hardware.

m The m option controls the mouse parameters. The parameters
for the mouse are acceleration and threshold. The accelera-
tion can be specified as an integer, or as a simple fraction. The
mouse, or whatever pointer the machine is connected to, will
go acceleration times as fast when it travels more than
threshold pixels in a short time. This way, the mouse can be
used for precise alignment when it is moved slowly, yet it can
be set to travel across the screen in a flick of the wrist when
desired. One or both parameters for the m option can be
omitted, but if only one is given, it will be interpreted as the
acceleration. If no parameters or the flag default is used, the
system defaults will be set.

p The p option controls pixel color values. The parameters are
the color map entry number in decimal, and a color specifica-
tion. The root background colors may be changed on some
servers by altering the entries for BlackPixel and WhitePixel.
Although these are often 0 and 1, they need not be. Also, a
server may choose to allocate those colors privately, in which
case an error will be generated. The map entry must not be a
read-only color, or an error will result.

r The r option controls the auto-repeat. If a preceding dash
or the off flag is used, auto-repeat will be disabled. If no
parameters or the on flag is used, auto-repeat will be enabled.
If a specific keycode is specified as a parameter, auto-repeat
for that keycode is enabled or disabled.

s The s option lets you set the screen saver parameters. This
option accepts up to two numerical parameters, a blank/
noblank flag, an expose/noexpose flag, an on/off flag, an
activate/reset flag, or the default flag. If no parameters or
the default flag is used, the system will be set to its default
screen saver characteristics. The on/off flags simply turn the
screen saver functions on or off. The activate flag forces
activation of screen saver even if the screen saver had been
turned off. The reset flag forces deactivation of screen saver
if it is active. The blank flag sets the preference to blank the
video (if the hardware can do so) rather than display a
background pattern, while noblank sets the preference to
display a pattern rather than blank the video. The expose flag
sets the preference to allow window exposures (the server can

693

freely discard window contents), while noexpose sets the
preference to disable screen saver unless the server can
regenerate the screens without causing exposure events. The
length and period parameters for the screen saver function
determines how long the server must be inactive for screen
saving to activate, and the period to change the background
pattern to avoid burn in. The arguments are specified in
seconds. If only one numerical parameter is given, it will be
used for the length.

q The q option gives you information on the current settings.

These settings will be reset to default values when you log out.

Note that not all X implementations are guaranteed to honor all of these options.

SEE ALSO
X(1), Xserver(1), xmodmap(1), xrdb(1), xsetroot(1)

AUTHOR
Bob Scheifler (MIT Laboratory for Computer Science), David Krikorian (MIT Project Athena; X11 version)

X Version 11 Release 6

xsetroot
xsetroot—Root window parameter setting utility for X

SYNOPSIS
xsetroot [-help] [-def] [-display display] [-cursor cursorfile maskfile]
[-cursor_name cursorname] [-bitmap filename] [-mod x y] [-gray] [-grey]
[-fg color] [-bg color] [-rv] [-solid color] [-name string]

DESCRIPTION
The setroot program allows you to tailor the appearance of the background (root) window on a workstation display running
X. Normally, you experiment with xsetroot until you find a personalized look that you like, then put the xsetroot command
that produces it into your X startup file. If no options are specified, or if -def is specified, the window is reset to its default
state. The -def option can be specified along with other options and only the nonspecified characteristics will be reset to the
default state.

Only one of the background color/tiling changing options (-solid, -gray, -grey, -bitmap, and -mod) may be specified at a
time.

OPTIONS
The various options are as follows:

-help Print a usage message and exit.

-def Reset unspecified attributes to the default values. (Restores the
background to the familiar gray mesh and the cursor to the
hollow x shape.)

-cursor cursorfile maskfile This lets you change the pointer cursor to whatever you want
when the pointer cursor is outside of any window. Cursor and
mask files are bitmaps (little pictures), and can be made with
the bitmap(1) program. You probably want the mask file to be
all black until you get used to the way masks work.

xsetroot

Part I: User Commands694

-cursor_name cursorname This lets you change the pointer cursor to one of the standard
cursors from the cursor font. Refer to Appendix B of the X
protocol for the names (except that the XC prefix is elided for
this option).

-bitmap filename Use the bitmap specified in the file to set the window pattern.
You can make your own bitmap files (little pictures) using the
bitmap(1) program. The entire background will be made up of
repeated “tiles” of the bitmap.

-mod x y This is used if you want a plaid-like grid pattern on your
screen. x and y are integers ranging from 1 to 16. Try the
different combinations. Zero and negative numbers are taken
as 1.

-gray Make the entire background gray. (Easier on the eyes.)

-grey Make the entire background grey.

-fg color Use color as the foreground color. Foreground and back-
ground colors are meaningful only in combination with
-cursor, -bitmap, or -mod.

-bg color Use color as the background color.

-rv This exchanges the foreground and background colors.
Normally the foreground color is black and the background
color is white.

-solid color This sets the background of the root window to the specified
color. This option is only useful on color servers.

-name string Set the name of the root window to string. There is no default
value. Usually a name is assigned to a window so that the
window manager can use a text representation when the
window is iconified. This option is unused because you can’t
iconify the background.

-display display Specifies the server to connect to; see X(1).

SEE ALSO
X(1), xset(1), xrdb(1)

AUTHOR
Mark Lillibridge (MIT Project Athena)

X Version 11 Release 6

xsm
xsm—X Session Manager

SYNOPSIS
xsm [-display display] [-session sessionName] [-verbose]

DESCRIPTION
xsm is a session manager. A session is a group of applications, each of which has a particular state. xsm allows you to create
arbitrary sessions. For example, you might have a light session, a development session, or an xterminal session. Each session
can have its own set of applications. Within a session, you can perform a checkpoint to save application state, or a shutdown
to save state and exit the session. When you log back in to the system, you can load a specific session, and you can delete
sessions you no longer want to keep.

695

Some session managers simply allow you to manually specify a list of applications to be started in a session. xsm is more
powerful because it lets you run applications and have them automatically become part of the session. On a simple level, xsm
is useful because it gives you this ability to easily define which applications are in a session. The true power of xsm, however,
can be taken advantage of when more and more applications learn to save and restore their state.

OPTIONS
–display display Causes xsm to connect to the specified X display.

–session sessionName Causes xsm to load the specified session, bypassing the session
menu.

–verbose Turns on debugging information.

SETUP
.xsession FILE

Using xsm requires a change to your .xsession file:

The last program executed by your .xsession file should be xsm. With this configuration, when the user chooses to shut
down the session using xsm, the session will truly be over.

Because the goal of the session manager is to restart clients when logging into a session, your .xsession file, in general, should
not directly start up applications. Rather, the applications should be started within a session. When xsm shuts down the
session, xsm will know to restart these applications. Note, however, that there are some types of applications that are not
“session aware”. xsm enables you to manually add these applications to your session. (See the subsection titled “Client List.”)

SM_SAVE_DIR ENVIRONMENT VARIABLE
If the SM_SAVE_DIR environment variable is defined, xsm will save all configuration files in this directory. Otherwise, they will
be stored in the user’s home directory. Session-aware applications are also encouraged to save their checkpoint files in the
SM_SAVE_DIR directory, although the user should not depend on this convention.

DEFAULT STARTUP APPLICATIONS
The first time xsm is started, it will need to locate a list of applications to start up. For example, this list might include a
window manager, a session management proxy, and an xterm. xsm will first look for the file .xsmstartup in the user’s home
directory. If that file does not exist, it will look for the system.xsm file that was set up at installation time. Note that xsm
provides a failsafe option when the user chooses a session to start up. The failsafe option simply loads the default
applications described above.

Each line in the startup file should contain a command to start an application. A sample startup file might look this:

<start of file>
twm
smproxy
xterm
<end of file>

STARTING A SESSION
When xsm starts up, it first checks to see if the user previously saved any sessions. If no saved sessions exist, xsm starts up a set
of default applications (as described above in the subsection titled “Default Startup Applications”). If at least one session
exists, a Session menu is presented. The [-session sessionName] option forces the specified session to be loaded, bypassing
the session menu.

THE SESSION MENU
The Session menu presents the user with a list of sessions to choose from. The user can change the currently selected session
with the mouse, or by using the up and down arrows on the keyboard. Note that sessions that are locked (that is, running on
a different display) cannot be loaded or deleted.

xsm

Part I: User Commands696

The following operations can be performed from the Session menu:

Load Session Pressing this button will load the currently selected session.
Alternatively, hitting the Return key will also load the
currently selected session, or the user can double-click a session
from the list.

Delete Session This operation will delete the currently selected session, along
with all of the application checkpoint files associated with the
session. After pressing this button, the user will be asked to
press the button a second time in order to confirm the
operation.

Default/Fail Safe xsm will start up a set of default applications (as described
earlier in the section titled “Default Startup Applications”).
This is useful when the user wants to start a fresh session, or if
the session configuration files were corrupted and the user
wants a failsafe session.

Cancel Pressing this button will cause xsm to exit. It can also be used
to cancel a Delete Session operation.

CONTROLLING A SESSION
After xsm determines which session to load, it brings up its main window, then starts up all applications that are part of the
session. The title bar for the session manager’s main window will contain the name of the session that was loaded.

The following options are available from xsm’s main window:

Client List Pressing this button brings up a window containing a list of all
clients that are in the current session. For each client, the host
machine that the client is running on is presented. As clients
are added and removed from the session, this list is updated
to reflect the changes. The user is able to control how these
clients are restarted.

By pressing the View Properties button, the user can view the
session management properties associated with the currently
selected client.

By pressing the Clone button, the user can start a copy of the
selected application.

By pressing the Kill Client button, the user can remove a client
from the session. By selecting a restart hint from the Restart
Hint menu, the user can control the restarting of a client. The
following hints are available:

■ The Restart If Running hint indicates that the client
should be restarted in the next session if it is connected to
the session manager at the end of the current session.

■ The Restart Anyway hint indicates that the client should
be restarted in the next session even if it exits before the
current session is terminated.

■ The Restart Immediately hint is similar to the Restart
Anyway hint, but in addition, the client is meant to run
continuously. If the client exits, the session manager will
try to restart it in the current session.

■ The Restart Never hint indicates that the client should not
be restarted in the next session.

697

Note that all X applications may not be session aware.
Applications that are not session aware are ones that do not
support the X Session Management Protocol or they cannot
be detected by the Session Management Proxy. (See the
subsection titled “The Proxy.”). xsm allows the user to
manually add such applications to the session. The bottom of
the Client List window contains a text entry field into which
application commands can be typed. Each command should
go on its own line. This information will be saved with the
session at checkpoint or shutdown time. When the session is
restarted, xsm will restart these applications in addition to the
regular session aware applications. Pressing the Done button
removes the Client List window.

Session Log… The Session Log window presents useful information about
the session. For example, when a session is restarted, all of the
restart commands will be displayed in the log window.

Checkpoint By performing a checkpoint, all applications that are in the
session are asked to save their state. Not every application will
save its complete state, but at a minimum, the session manager
is guaranteed that it will receive the command required to
restart the application (along with all command-line options).
A window manager participating in the session should
guarantee that the applications will come back up with the
same window configurations.

If the session being checkpointed was never assigned a name,
the user will be required to specify a session name. Otherwise,
the user can perform the checkpoint using the current session
name, or a new session name can be specified. If the session
name specified already exists, the user will be given the
opportunity to specify a different name or to overwrite the
already existing session. Note that a session that is locked can
not be overwritten.

When performing a checkpoint, the user must specify a Save
Type that informs the applications in the session how much
state they should save.

The Local type indicates that the application should save
enough information to restore the state as seen by the user. It
should not affect the state as seen by other users. For example,
an editor would create a temporary file containing the contents
of its editing buffer, the location of the cursor, and so on.

The Global type indicates that the application should commit
all of its data to permanent, globally accessible storage. For
example, the editor would simply save the edited file.

The Both type indicates that the application should do both of
these. For example, the editor would save the edited file, then
create a temporary file with information such as the location of
the cursor, and so on.

In addition to the Save Type, the user must specify an Interact
Style.

The None type indicates that the application should not
interact with the user while saving state.

xsm

Part I: User Commands698

The Errors type indicates that the application may interact
with the user only if an error condition arises.

The Any type indicates that the application may interact with
the user for any purpose. Note that xsm will only allow one
application to interact with the user at a time.

After the checkpoint is completed, xsm will, if necessary,
display a window containing the list of applications that did
not report a successful save of state.

Shutdown A shutdown provides all of the options found in a checkpoint,
but, in addition, can cause the session to exit. Note that if the
interaction style is Errors or Any, the user may cancel the
shutdown. The user may also cancel the shutdown if any of
the applications report an unsuccessful save of state. The user
may choose to shut down the session with or without
performing a checkpoint.

THE PROXY
Because not all applications have been ported to support the X Session Management Protocol, a proxy service exists to enable
“old” clients to work with the session manager. In order for the proxy to detect an application joining a session, one of the
following must be true:

■ The application maps a top-level window containing the WM_CLIENT_LEADER property. This property provides a pointer to
the client leader window that contains the WM_CLASS, WM_NAME, WM_COMMAND, and WM_CLIENT_MACHINE properties.
or

■ The application maps a top-level window that does not contain the WM_CLIENT_LEADER property. However, this top-level
window contains the WM_CLASS, WM_NAME, WM_COMMAND, and WM_CLIENT_MACHINE properties.

An application that supports the WM_SAVE_YOURSELF protocol will receive a WM_SAVE_YOURSELF client message each time the
session manager issues a checkpoint or shutdown. This allows the application to save state. If an application does not support
the WM_SAVE_YOURSELF protocol, then the proxy will provide enough information to the session manager to restart the
application (using WM_COMMAND), but no state will be restored.

REMOTE APPLICATIONS
xsm requires a remote execution protocol in order to restart applications on remote machines. Currently, xsm supports the
rstart protocol. In order to restart an application on remote machine X, machine X must have rstart installed. In the
future, additional remote execution protocols may be supported.

SEE ALSO
smproxy(1), rstart(1)

AUTHORS
Ralph Mor (X Consortium), Jordan Brown (Quarterdeck Office Systems)

X Version 11 Release 6

xsmclient
xsmclient—X session manager tester

SYNOPSIS
xsmclient [TBD]

699

DESCRIPTION
The xsmclient program is used to test the session manager

AUTHOR
Ralph Mor (X Consortium)

X Version 11 Release 6

xstdcmap
xstdcmap—X standard colormap utility

SYNOPSIS
xstdcmap [-all] [-best] [-blue] [-default] [-delete map] [-display display]
[-gray] [-green] [-help] [-red] [-verbose]

DESCRIPTION
The xstdcmap utility can be used to selectively define standard colormap properties. It is intended to be run from a user’s X
startup script to create standard colormap definitions in order to facilitate sharing of scarce colormap resources among
clients. Where at all possible, colormaps are created with read-only allocations.

OPTIONS
The following options may be used with xstdcmap:

–all This option indicates that all six standard colormap properties
should be defined on each screen of the display. Not all screens
will support visuals under which all six standard colormap
properties are meaningful. xst-dcmap will determine the best
allocations and visuals for the colormap properties of a screen.
Any previously existing standard colormap properties will be
replaced.

–best This option indicates that the RGB_BEST_MAP should be defined.

–blue This option indicates that the RGB_BLUE_MAP should be defined.

–default This option indicates that the RGB_DEFAULT_MAP should be
defined.

–delete map This option specifies that a specific standard colormap
property, or all such properties, should be removed. map may
be one of: default, best, red, green, blue, gray, or all.

–display display This option specifies the host and display to use; see X(1).

–gray This option indicates that the RGB_GRAY_MAP should be defined.

–green This option indicates that the RGB_GREEN_MAP should be
defined.

–help This option indicates that a brief description of the command-
line arguments should be printed on the standard error. This
will be done whenever an unhandled argument is given to
xstdcmap.

–red This option indicates that the RGB_RED_MAP should be defined.

–verbose This option indicates that xstdcmap should print logging
information as it parses its input and defines the standard
colormap properties.

xstdcmap

Part I: User Commands700

ENVIRONMENT
DISPLAY To get default host and display number

SEE ALSO
X(1)

AUTHOR
Donna Converse (MIT X Consortium)

X Version 11 Release 6

xterm
xterm—Terminal emulator for X

SYNOPSIS
xterm [–toolkitoption ...] [–option ...]

DESCRIPTION
The xterm program is a terminal emulator for the X Window System. It provides DEC VT102- and Tektronix 4014-
compatible terminals for programs that can’t use the window system directly. If the underlying operating system supports
terminal resizing capabilities (for example, the SIGWINCH signal in systems derived from 4.3bsd), xterm will use the facilities to
notify programs running in the window whenever it is resized.

The VT102 and Tektronix 4014 terminals all have their own windows so that you can edit text in one and look at graphics
in the other at the same time. To maintain the correct aspect ratio (height/width), Tektronix graphics will be restricted to the
largest box with a 4014’s aspect ratio that will fit in the window. This box is located in the upper-left area of the window.

Although both windows may be displayed at the same time, one of them is considered the active window for receiving
keyboard input and terminal output. This is the window that contains the text cursor. The active window can be chosen
through escape sequences, the VT Options menu in the VT102 window, and the Tek Options menu in the 4014 window.

EMULATIONS
The VT102 emulation is fairly complete, but does not support smooth scrolling, VT52 mode, the blinking character
attribute nor the double-wide and double-size character sets. termcap(5) entries that work with xterm include xterm, vt102,
vt100, and ansi, and xterm automatically searches the termcap file in this order for these entries and then sets the TERM and the
TERMCAP environment variables.

Many of the special xterm features may be modified under program control through a set of escape sequences different from
the standard VT102 escape sequences. (See the “Xterm Control Sequences” document.)

The Tektronix 4014 emulation is also fairly good. It supports 12-bit graphics addressing, scaled to the window size. Four
different font sizes and five different lines types are supported. There is no write-through or defocused mode support. The
Tektronix text and graphics commands are recorded internally by xterm and may be written to a file by sending the COPY
escape sequence (or through the Tektronix menu, discussed later in this section). The name of the file will be COPYyy–MM–
dd.hh:mm:ss, where yy, MM, dd, hh, mm, and ss are the year, month, day, hour, minute, and second when the COPY was
performed (the file is created in the directory xterm is started in, or the home directory for a login xterm).

OTHER FEATURES
xterm automatically highlights the text cursor when the pointer enters the window (selected) and unhighlights it when the
pointer leaves the window (unselected). If the window is the focus window, then the text cursor is highlighted no matter
where the pointer is. In VT102 mode, there are escape sequences to activate and deactivate an alternate screen buffer, which

701

is the same size as the display area of the window. When activated, the current screen is saved and replaced with the alternate
screen. Saving of lines scrolled off the top of the window is disabled until the normal screen is restored. The termcap(5) entry
for xterm allows the visual editor vi(1) to switch to the alternate screen for editing and to restore the screen on exit.

In either VT102 or Tektronix mode, there are escape sequences to change the name of the windows. See xterm Control
Sequences for details.

OPTIONS
The xterm terminal emulator accepts all of the standard X Toolkit command-line options as well as the following (if the
option begins with a + instead of a –, the option is restored to its default value):

–help This causes xterm to print out a verbose message describing its
options.

–132 Normally, the VT102 DECCOLM escape sequence that switches
between 80 and 132 column mode is ignored. This option
causes the DECCOLM escape sequence to be recognized, and the
xterm window will resize appropriately.

–ah This option indicates that xterm should always highlight the
text cursor. By default, xterm will display a hollow text cursor
whenever the focus is lost or the pointer leaves the window.

ah This option indicates that xterm should do text cursor
highlighting based on focus.

–b number This option specifies the size of the inner border (the distance
between the outer edge of the characters and the window
border) in pixels. The default is 2.

–cb Set the vt100 resource cutToBeginningOfLine to False.

cb Set the vt100 resource cutToBeginningOfLine to True.

–cc characterclassrange: This sets classes indicated by the given ranges to use in
value[,...] selecting by words. See the subsection “Character Classes.”

–cn This option indicates that newlines should not be cut in line-
mode selections.

cn This option indicates that newlines should be cut in line-mode
selections.

–cr color This option specifies the color to use for text cursor. The
default is to use the same foreground color that is used for text.

–cu This option indicates that xterm should work around a bug in
the more(1) program that causes it to incorrectly display lines
that are exactly the width of the window and are followed by a
line beginning with a tab (the leading tabs are not displayed).
This option is so named because it was originally thought to
be a bug in the curses(3x) cursor motion package.

cu This option indicates that xterm should not work around the
more(3x) bug mentioned in the preceding paragraph.

–e program This option specifies the program (and its command-line
[arguments . . .] arguments) to be run in the xterm window. It also sets the

window title and icon name to be the basename of the
program being executed if neither –T nor –n are given on
the command line. This must be the last option on the
command line.

–fb font This option specifies a font to be used when displaying bold
text. This font must be the same height and width as the
normal font. If only one of the normal or bold fonts is

xterm

Part I: User Commands702

specified, it will be used as the normal font and the bold font
will be produced by overstriking this font. The default is to do
overstriking of the normal font.

–im Turn on the useInsertMode resource.

+im Turn off the useInsertMode resource.

–j This option indicates that xterm should do jump scrolling.
Normally, text is scrolled one line at a time; this option allows
xterm to move multiple lines at a time so that it doesn’t fall as
far behind. Its use is strongly recommended because it makes
xterm much faster when scanning through large amounts of
text. The VT100 escape sequences for enabling and disabling
smooth scroll as well as the VT Options menu can be used to
turn this feature on or off.

j This option indicates that xterm should not do jump scrolling.

–ls This option indicates that the shell that is started in the xterm
window will be a login shell (that is, the first character of
argv[0] will be a dash, indicating to the shell that it should
read the user’s .login or .profile).

ls This option indicates that the shell that is started should not
be a login shell (that is, it will be a normal subshell).

–mb This option indicates that xterm should ring a margin bell
when the user types near the right end of a line. This option
can be turned on and off from the VT Options menu.

mb This option indicates that margin bell should not be rung.

–mcmilliseconds This option specifies the maximum time between multiclick
selections.

–ms color This option specifies the color to be used for the pointer
cursor. The default is to use the foreground color.

–nb number This option specifies the number of characters from the right
end of a line at which the margin bell, if enabled, will ring.
The default is 10.

–rw This option indicates that reverse-wraparound should be
allowed. This allows the cursor to back up from the leftmost
column of one line to the rightmost column of the previous
line. This is very useful for editing long shell command lines
and is encouraged. This option can be turned on and off from
the VT Options menu.

rw This option indicates that reverse-wraparound should not be
allowed.

–aw This option indicates that auto-wraparound should be
allowed. This allows the cursor to automatically wrap to the
beginning of the next line when it is at the rightmost position
of a line and text is output.

aw This option indicates that auto-wraparound should not be
allowed.

–s This option indicates that xterm may scroll asynchronously,
meaning that the screen does not have to be kept completely
up to date while scrolling. This allows xterm to run faster when
network latencies are very high and is typically useful when
running across a very large Internet or many gateways.

703

s This option indicates that xterm should scroll synchronously.

–sb This option indicates that some number of lines that are
scrolled off the top of the window should be saved and that a
scrollbar should be displayed so that those lines can be viewed.
This option may be turned on and off from the VT Options
menu.

sb This option indicates that a scrollbar should not be displayed.

–sf This option indicates that Sun Function Key escape codes
should be generated for function keys.

sf This option indicates that the standard escape codes should be
generated for function keys.

–si This option indicates that output to a window should not
automatically reposition the screen to the bottom of the
scrolling region. This option can be turned on and off from
the VT Options menu.

si This option indicates that output to a window should cause it
to scroll to the bottom.

–sk This option indicates that pressing a key while using the
scrollbar to review previous lines of text should cause the
window to be repositioned automatically in the normal
position at the bottom of the scroll region.

sk This option indicates that pressing a key while using the
scrollbar should not cause the window to be repositioned.

–sl number This option specifies the number of lines to save that have
been scrolled off the top of the screen. The default is 64.

–t This option indicates that xterm should start in Tektronix
mode, rather than in VT102 mode. Switching between the
two windows is done using the Options menus.

t This option indicates that xterm should start in VT102 mode.

–tm string This option specifies a series of terminal setting keywords
followed by the characters that should be bound to those
functions, similar to the stty program. Allowable keywords
include: intr, quit, erase, kill, eof, eol, swtch, start, stop,
brk, susp, dsusp, rprnt, flush, weras, and lnext. Control
characters may be specified as ^char (for example, ^c or ^u) and
^? may be used to indicate delete.

–tn name This option specifies the name of the terminal type to be set in
the TERM environment variable. This terminal type must exist
in the termcap(5) database and should have li# and co# entries.

–ut This option indicates that xterm shouldn’t write a record into
the system log file /etc/utmp.

ut This option indicates that xterm should write a record into the
system log file /etc/utmp.

–vb This option indicates that a visual bell is preferred over an
audible one. Instead of ringing the terminal bell whenever a
Ctrl+G is received, the window will be flashed.

vb This option indicates that a visual bell should not be used.

–wf This option indicates that xterm should wait for the window to
be mapped the first time before starting the subprocess so that
the initial terminal size settings and environment variables are

xterm

Part I: User Commands704

correct. It is the application’s responsibility to catch subse-
quent terminal size changes.

wf This option indicates that xterm show not wait before starting
the subprocess.

–C This option indicates that this window should receive console
output. This is not supported on all systems. To obtain
console output, you must be the owner of the console device,
and you must have read and write permission for it. If you are
running X under xdm on the console screen, you may need to
have the session startup and reset programs explicitly change
the ownership of the console device in order to get this option
to work.

–Sccn This option specifies the last two letters of the name of a
pseudo-terminal to use in slave mode, plus the number of the
inherited file descriptor. The option is parsed “%c%c%d”. This
allows xterm to be used as an input and output channel for an
existing program and is sometimes used in specialized
applications.

The following command-line arguments are provided for compatibility with older versions. They may not be supported in
the next release as the X Toolkit provides standard options that accomplish the same task.

%geom This option specifies the preferred size and position of the
Tektronix window. It is shorthand for specifying the
*tekGeometry resource.

geom This option specifies the preferred position of the icon
window. It is shorthand for specifying the *iconGeometry
resource.

–T string This option specifies the title for xterm’s windows. It is
equivalent to –title.

–n string This option specifies the icon name for xterm’s windows. It is
shorthand for specifying the *iconName resource. Note that this
is not the same as the toolkit option –name (see below). The
default icon name is the application name.

–r This option indicates that reverse video should be simulated by
swapping the foreground and background colors. It is
equivalent to –rv.

–w number This option specifies the width in pixels of the border
surrounding the window. It is equivalent to –borderwidth or
–bw.

The following standard X Toolkit command-line arguments are commonly used with xterm:

–bg color This option specifies the color to use for the background of the
window. The default is white.

–bd color This option specifies the color to use for the border of the
window. The default is black.

–bw number This option specifies the width in pixels of the border
surrounding the window.

–fg color This option specifies the color to use for displaying text. The
default is black.

–fn font This option specifies the font to be used for displaying normal
text. The default is fixed.

705

–name name This option specifies the application name under which
resources are to be obtained, rather than the default executable
filename. Name should not contain . or * characters.

–title string This option specifies the window title string, which may be
displayed by window managers if the user so chooses. The
default title is the command line specified after the –e option,
if any; otherwise, the application name.

–rv This option indicates that reverse video should be simulated by
swapping the foreground and background colors.

–geometry geometry This option specifies the preferred size and position of the
VT102 window; see X(1).

–display display This option specifies the X server to contact; see X(1).

–xrm resourcestring This option specifies a resource string to be used. This is
especially useful for setting resources that do not have separate
command-line options.

–iconic This option indicates that xterm should ask the window
manager to start it as an icon rather than as the normal
window.

RESOURCES
The program understands all of the core X Toolkit resource names and classes as well as the following:

iconGeometry (class IconGeometry) Specifies the preferred size and position of the application
when iconified. It is not necessarily obeyed by all window
managers.

iconName (class IconName) Specifies the icon name. The default is the application name.

termName (class TermName) Specifies the terminal type name to be set in the TERM
environment variable.

title (class Title) Specifies a string that may be used by the window manager
when displaying this application.

ttyModes (class TtyModes) Specifies a string containing terminal setting keywords and the
characters to which they may be bound. Allowable keywords
include intr, quit, erase, kill, eof, eol, swtch, start, stop,
brk, susp, dsusp, rprnt, flush, weras, and lnext. Control
characters may be specified as ˆchar (for example, ˆc or ˆu) and
ˆ? may be used to indicate delete. This is very useful for
overriding the default terminal settings without having to do
an stty every time an xterm is started.

useInsertMode Force use of insert mode by adding appropriate entries to the
(class UseInsertMode) TERMCAP environment variable. This is useful if the system

termcap is broken. The default is False.

utmpInhibit (class UtmpInhibit) Specifies whether or not xterm should try to record the user’s
terminal in /etc/utmp.

sunFunctionKeys Specifies whether or not Sun Function Key escape codes
(class SunFunctionKeys) should be generated for function keys instead of standard

escape sequences.

waitForMap (class WaitForMap) Specifies whether or not xterm should wait for the initial
window map before starting the subprocess. The default is
false.

xterm

Part I: User Commands706

The following resources are specified as part of the vt100 widget (class VT100):

allowSendEvents Specifies whether or not synthetic key and button
(class AllowSendEvents) events (generated using the X protocol SendEvent request)

should be interpreted or discarded. The default is False,
meaning they are discarded. Note that allowing such events
creates a very large security hole.

alwaysHighlight Specifies whether or not xterm should always display
(class AlwaysHighlight) a highlighted text cursor. By default, a hollow text cursor is

displayed whenever the pointer moves out of the window or
the window loses the input focus.

appcursorDefault If true, the cursor keys are initially in application mode.
(class AppcursorDefault) The default is false.

appkeypadDefault If true, the keypad keys are initially in application mode.
(class AppkeypadDefault) The default is false.

autoWrap (class AutoWrap) Specifies whether or not auto-wraparound should be enabled.
The default is true.

bellSuppressTime Number of milliseconds after a bell command is sent during
(class BellSuppressTime) which additional bells will be suppressed. Default is 200. If set

non-zero, additional bells will also be suppressed until the
server reports that processing of the first bell has been com-
pleted; this feature is most useful with the visible bell.

boldFont (class BoldFont) Specifies the name of the bold font to use instead of
overstriking.

c132 (class C132) Specifies whether or not the VT102 DECCOLM escape sequence
should be honored. The default is false.

cutNewline If false, triple-clicking to select a line does not
(class CutNewline) include the Newline at the end of the line. If true, the Newline

is selected. The default is true.

cutToBeginningOfLine If false, triple-clicking to select a line selects only from
(class CutToBeginningOfLine) the current word forward. If true, the entire line is selected.

The default is true.

charClass (class CharClass) Specifies comma-separated lists of character class bindings of
the form [low–]high:value. These are used in determining
which sets of characters should be treated the same when
doing cut and paste. See the section on specifying character
classes.

curses (class Curses) Specifies whether or not the last column bug in more(1) should
be worked around. See the –cu option for details. The default
is false.

background Specifies the color to use for the background of the window.
(class Background) The default is white.

foreground Specifies the color to use for displaying text in the window.
(class Foreground) Setting the class name instead of the instance name is an easy

way to have everything that would normally appear in the text
color change color. The default is black.

cursorColor Specifies the color to use for the text cursor. The
(class Foreground) default is black.

eightBitInput If true, metacharacters input from the keyboard are presented
(class EightBitInput) as a single character with the eighth bit turned on. If false,

metacharacters are converted into a two-character sequence
with the character itself preceded by ESC. The default is true.

707

eightBitOutput Specifies whether or not eight-bit characters sent from the
(class EightBitOutput) host should be accepted as is or stripped when printed. The

default is true.

font (class Font) Specifies the name of the normal font. The default is fixed.

font1 (class Font1) Specifies the name of the first alternative font.

font2 (class Font2) Specifies the name of the second alternative font.

font3 (class Font3) Specifies the name of the third alternative font.

font4 (class Font4) Specifies the name of the fourth alternative font.

font5 (class Font5) Specifies the name of the fifth alternative font.

font6 (class Font6) Specifies the name of the sixth alternative font.

geometry (class Geometry) Specifies the preferred size and position of the VT102
window.

hpLowerleftBugCompat Specifies whether to work around a bug in HP’s xdb, which
(class HpLowerleftBugCompat) ignores termcap and always sends ESC F to move to the lower-

left corner. true causes xterm to interpret ESC F as a request
to move to the lower-left corner of the screen. The default is
false.

internalBorder Specifies the number of pixels between the characters and the
(class BorderWidth) window border. The default is 2.

jumpScroll Specifies whether or not jump scroll should be used. The
(class JumpScroll) default is true.

loginShell Specifies whether or not the shell to be run in the window
(class LoginShell) should be started as a login shell. The default is false.

marginBell Specifies whether or not the bell should be run when the user
(class MarginBell) types near the right margin. The default is false.

multiClickTime Specifies the maximum time in milliseconds between
(class MultiClickTime) multiclick select events. The default is 250 milliseconds.

multiScroll Specifies whether or not scrolling should be done asynchro-
(class MultiScroll) nously. The default is false.

nMarginBell (class Column) Specifies the number of characters from the right margin at
which the margin bell should be rung, when enabled.

pointerColor Specifies the foreground color of the pointer. The default is
(class Foreground) XtDefaultForeground.

pointerColorBackground Specifies the background color of the pointer. The default is
(class Background) XtDefaultBackground.

pointerShape Specifies the name of the shape of the pointer. The default is
(class Cursor) xterm.

resizeGravity Affects the behavior when the window is resized to be taller or
(class ResizeGravity) shorter. NorthWest specifies that the top line of text on the

screen stay fixed. If the window is made shorter, lines are
dropped from the bottom; if the window is made taller, blank
lines are added at the bottom. This is compatible with the
behavior in R4. SouthWest (the default) specifies that the
bottom line of text on the screen stay fixed. If the window is
made taller, additional saved lines will be scrolled down onto
the screen; if the window is made shorter, lines will be scrolled
off the top of the screen, and the top saved lines will be
dropped.

reverseVideo Specifies whether reverse video should be simulated. The
(class ReverseVideo) default is false.

xterm

Part I: User Commands708

reverseWrap Specifies whether or not reverse-wraparound should be
(class ReverseWrap) enabled. The default is false.

saveLines Specifies the number of lines to save beyond the top of the
(class SaveLines) screen when a scrollbar is turned on. The default is 64.

scrollBar Specifies whether or not the scrollbar should be displayed.
(class ScrollBar) The default is false.

scrollTtyOutput Specifies whether or not output to the terminal should
(class ScrollCond) automatically cause the scrollbar to go to the bottom of the

scrolling region. The default is true.

scrollKey Specifies whether or not pressing a key should automatically
(class ScrollCond) cause the scrollbar to go to the bottom of the scrolling region.

The default is false.

scrollLines Specifies the number of lines that the scroll-back and scroll-
(class ScrollLines) forw actions should use as a default. The default value is 1.

signalInhibit Specifies whether or not the entries in the Main Options menu
(class SignalInhibit) for sending signals to xterm should be disallowed. The default

is false.

tekGeometry Specifies the preferred size and position of the Tektronix
(class Geometry) window.

tekInhibit Specifies whether or not the escape sequence to enter
(class TekInhibit) Tektronix mode should be ignored. The default is false.

tekSmall (class TekSmall) Specifies whether or not the Tektronix mode window should
start in its smallest size if no explicit geometry is given. This is
useful when running xterm on displays with small screens. The
default is false.

tekStartup Specifies whether or not xterm should start up in Tektronix
(class TekStartup) mode. The default is false.

titeInhibit Specifies whether or not xterm should remove ti and te
(class TiteInhibit) termcap entries (used to switch between alternate screens on

startup of many screen-oriented programs) from the TERMCAP
string. If set, xterm also ignores the escape sequence to switch
to the alternate screen.

translations Specifies the key and button bindings for menus, selections,
(class Translations) “programmed strings,” and so on. See the “ACTIONS”

subsection, later in this section.

visualBell Specifies whether or not a visible bell (that is, flashing) should
(class VisualBell) be used instead of an audible bell when Control-G is received.

The default is false.

The following resources are specified as part of the tek4014 widget (class Tek4014):

width (class Width) Specifies the width of the Tektronix window in pixels.

height (class Height) Specifies the height of the Tektronix window in pixels.

fontLarge (class Font) Specifies the large font to use in the Tektronix window.

font2 (class Font) Specifies font number 2 to use in the Tektronix window.

font3 (class Font) Specifies font number 3 to use in the Tektronix window.

fontSmall (class Font) Specifies the small font to use in the Tektronix window.

initialFont (class InitialFont) Specifies which of the four Tektronix fonts to use initially.
Values are the same as for the set-tek-text action. The default
is large.

709

ginTerminator Specifies what character(s) should follow a GIN
(class GinTerminator) report or status report. The possibilities are none, which sends

no terminating characters, CRonly, which sends CR, and CR&EOT,
which sends both CR and EOT. The default is none.

The resources that may be specified for the various menus are described in the documentation for the Athena SimpleMenu
widget. The name and classes of the entries in each of the menus are listed next.

The mainMenu has the following entries:

securekbd (class SmeBSB) This entry invokes the secure() action.

allowsends (class SmeBSB) This entry invokes the allow-send-events(toggle) action.

redraw (class SmeBSB) This entry invokes the redraw() action.

line1 (class SmeLine) This is a separator.

suspend (class SmeBSB) This entry invokes the send-signal(tstp) action on systems
that support job control.

continue (class SmeBSB) This entry invokes the send-signal(cont) action on systems
that support job control.

interrupt (class SmeBSB) This entry invokes the send-signal(int) action.

hangup (class SmeBSB) This entry invokes the send-signal(hup) action.

terminate (class SmeBSB) This entry invokes the send-signal(term) action.

kill (class SmeBSB) This entry invokes the send-signal(kill) action.

line2 (class SmeLine) This is a separator.

quit (class SmeBSB) This entry invokes the quit() action.

The vtMenu has the following entries:

scrollbar (class SmeBSB) This entry invokes the set-scrollbar(toggle) action.

jumpscroll (class SmeBSB) This entry invokes the set-jumpscroll(toggle) action.

reversevideo (class SmeBSB) This entry invokes the set-reverse-video(toggle) action.

autowrap (class SmeBSB) This entry invokes the set-autowrap(toggle) action.

reversewrap (class SmeBSB) This entry invokes the set-reversewrap(toggle) action.

autolinefeed (class SmeBSB) This entry invokes the set-autolinefeed(toggle) action.

appcursor (class SmeBSB) This entry invokes the set-appcursor(toggle) action.

appkeypad (class SmeBSB) This entry invokes the set-appkeypad(toggle) action.

scrollkey (class SmeBSB) This entry invokes the set-scroll-on-key(toggle) action.

scrollttyoutput This entry invokes the set-scroll-on-tty-output(toggle)
(class SmeBSB) action.

allow132 (class SmeBSB) This entry invokes the set-allow132(toggle) action.

cursesemul (class SmeBSB) This entry invokes the set-cursesemul(toggle) action.

visualbell (class SmeBSB) This entry invokes the set-visualbell(toggle) action.

marginbell (class SmeBSB) This entry invokes the set-marginbell(toggle) action.

altscreen (class SmeBSB) This entry is currently disabled.

line1 (class SmeLine) This is a separator.

softreset (class SmeBSB) This entry invokes the soft-reset() action.

hardreset (class SmeBSB) This entry invokes the hard-reset() action.

clearsavedlines (class SmeBSB)” This entry invokes the clear-saved-lines() action.

line2 (class SmeLine) This is a separator.

tekshow (class SmeBSB) This entry invokes the set-visibility(tek,toggle) action.

tekmode (class SmeBSB) This entry invokes the set-terminal-type(tek) action.

xterm

Part I: User Commands710

vthide (class SmeBSB) This entry invokes the set-visibility(vt,off) action.

The fontMenu has the following entries:

fontdefault (class SmeBSB) This entry invokes the set-vt-font(d) action.

font1 (class SmeBSB) This entry invokes the set-vt-font(1) action.

font2 (class SmeBSB) This entry invokes the set-vt-font(2) action.

font3 (class SmeBSB) This entry invokes the set-vt-font(3) action.

font4 (class SmeBSB) This entry invokes the set-vt-font(4) action.

font5 (class SmeBSB) This entry invokes the set-vt-font(5) action.

font6 (class SmeBSB) This entry invokes the set-vt-font(6) action.

fontescape (class SmeBSB) This entry invokes the set-vt-font(e) action.

fontsel (class SmeBSB) This entry invokes the set-vt-font(s) action.

The tekMenu has the following entries:

tektextlarge (class SmeBSB) This entry invokes the set-tek-text(l) action.

tektext2 (class SmeBSB) This entry invokes the set-tek-text(2) action.

tektext3 (class SmeBSB) This entry invokes the set-tek-text(3) action.

tektextsmall (class SmeBSB) This entry invokes the set-tek-text(s) action.

line1 (class SmeLine) This is a separator.

tekpage (class SmeBSB) This entry invokes the tek-page() action.

tekreset (class SmeBSB) This entry invokes the tek-reset() action.

tekcopy (class SmeBSB) This entry invokes the tek-copy() action.

line2 (class SmeLine) This is a separator.

vtshow (class SmeBSB) This entry invokes the set-visibility(vt,toggle) action.

vtmode (class SmeBSB) This entry invokes the set-terminal-type(vt) action.

tekhide (class SmeBSB) This entry invokes the set-visibility(tek,toggle) action.

The following resources are useful when specified for the Athena Scrollbar widget:

thickness (class Thickness) Specifies the width in pixels of the scrollbar.

background (class Background) Specifies the color to use for the background of the scrollbar.

foreground (class Foreground) Specifies the color to use for the foreground of the scrollbar.
The “thumb” of the scrollbar is a simple checkerboard pattern
alternating pixels for foreground and background color.

POINTER USAGE
Once the VT102 window is created, xterm allows you to select text and copy it within the same or other windows.

The selection functions are invoked when the pointer buttons are used with no modifiers, and when they are used with the
Shift key. The assignment of the functions described in this subsection to keys and buttons may be changed through the
resource database; see the “Actions” subsection later in this section.

Pointer button one (usually left) is used to save text into the cut buffer. Move the cursor to the beginning of the text, and
then hold the button down while moving the cursor to the end of the region and releasing the button. The selected text is
highlighted and is saved in the global cut buffer and made the PRIMARY selection when the button is released. Double-clicking
selects by words. Triple-clicking selects by lines. Quadruple-clicking goes back to characters, and so on. Multiple-click is
determined by the time from button up to button down, so you can change the selection unit in the middle of a selection. If
the key/button bindings specify that an X selection is to be made, xterm will leave the selected text highlighted for as long as
it is the selection owner.

711

Pointer button two (usually middle) “types” (pastes) the text from the PRIMARY selection, if any, otherwise from the cut
buffer, inserting it as keyboard input.

Pointer button three (usually right) extends the current selection. (Without loss of generality, you can swap “right” and “left”
everywhere in the rest of this paragraph.) If pressed while closer to the right edge of the selection than the left, it extends/
contracts the right edge of the selection. If you contract the selection past the left edge of the selection, xterm assumes you
really meant the left edge, restores the original selection, then extends/contracts the left edge of the selection. Extension starts
in the selection unit mode that the last selection or extension was performed in; you can multiple-click to cycle through
them.

By cutting and pasting pieces of text without trailing new lines, you can take text from several places in different windows
and form a command to the shell, for example, or take output from a program and insert it into your favorite editor. Since
the cut buffer is globally shared among different applications, you should regard it as a file whose contents you know. The
terminal emulator and other text programs should be treating it as if it were a text file; that is, the text is delimited by new
lines.

The scroll region displays the position and amount of text currently showing in the window (highlighted) relative to the
amount of text actually saved. As more text is saved (up to the maximum), the size of the highlighted area decreases.

Clicking button one with the pointer in the scroll region moves the adjacent line to the top of the display window.

Clicking button three moves the top line of the display window down to the pointer position.

Clicking button two moves the display to a position in the saved text that corresponds to the pointer’s position in the
scrollbar.

Unlike the VT102 window, the Tektronix window does not allow the copying of text. It does allow Tektronix GIN mode,
and in this mode the cursor will change from an arrow to a cross. Pressing any key will send that key and the current
coordinate of the cross cursor. Pressing button one, two, or three will return the letters l, m, and r, respectively. If the Shift
key is pressed when a pointer button is pressed, the corresponding uppercase letter is sent. To distinguish a pointer button
from a key, the high bit of the character is set (but this is bit is normally stripped unless the terminal mode is RAW; see
tty(4) for details).

MENUS
Xterm has four menus: mainMenu, vtMenu, fontMenu, and tekMenu. Each menu pops up under the correct combinations of key
and button presses. Most menus are divided into two sections, separated by a horizontal line. The top portion contains
various modes that can be altered. A check mark appears next to a mode that is currently active. Selecting one of these modes
toggles its state. The bottom portion of the menu consists of command entries; selecting one of these performs the indicated
function.

The xterm menu pops up when the Control key and pointer button one are pressed in a window. The mainMenu contains
items that apply to both the VT102 and Tektronix windows. The Secure Keyboard mode is used when typing in passwords
or other sensitive data in an unsecured environment. (See the “SECURITY” subsection.) Notable entries in the command
section of the menu are the Continue, Suspend, Interrupt, Hangup, Terminate, and Kill, which send the SIGCONT, SIGTSTP,
SIGINT, SIGHUP, SIGTERM, and SIGKILL signals, respectively, to the process group of the process running under xterm (usually
the shell). The Continue function is especially useful if the user has accidentally typed CTRL-Z, suspending the process.

The vtMenu sets various modes in the VT102 emulation, and is popped up when the Control key and pointer button two are
pressed in the VT102 window. In the command section of this menu, the Soft Reset entry will reset scroll regions. This can
be convenient when some program has left the scroll regions set incorrectly (often a problem when using VMS or TOPS-20).
The Full Reset entry will clear the screen, reset tabs to every eight columns, and reset the terminal modes (such as wrap and
smooth scroll) to their initial states just after xterm has finished processing the command-line options.

The fontMenu sets the font used in the VT102 window. In addition to the default font and a number of alternatives that are
set with resources, the menu offers the font last specified by the Set Font escape sequence (see the document “Xterm Control
Sequences”) and the current selection as a font name (if the PRIMARY selection is owned).

xterm

Part I: User Commands712

The tekMenu sets various modes in the Tektronix emulation, and is popped up when the Control key and pointer button two
are pressed in the Tektronix window. The current font size is checked in the Modes section of the menu. The PAGE entry in
the Command section clears the Tektronix window.

SECURITY
X environments differ in their security consciousness. Most servers, run under xdm, are capable of using a “magic cookie”
authorization scheme that can provide a reasonable level of security for many people. If your server is only using a host-based
mechanism to control access to the server (see xhost(1)), then if you enable access for a host and other users are also
permitted to run clients on that same host, there is every possibility that someone can run an application that will use the
basic services of the X protocol to snoop on your activities, potentially capturing a transcript of everything you type at the
keyboard. This is of particular concern when you want to type in a password or other sensitive data. The best solution to this
problem is to use a better authorization mechanism that host-based control, but a simple mechanism exists for protecting
keyboard input in xterm.

The xterm menu (see “Menus,” earlier in this section) contains a Secure Keyboard entry which, when enabled, ensures that all
keyboard input is directed only to xterm (using the GrabKeyboard protocol request). When an application prompts you for a
password (or other sensitive data), you can enable Secure Keyboard using the menu, type in the data, and then disable Secure
Keyboard using the menu again. Only one X client at a time can secure the keyboard, so when you attempt to enable Secure
Keyboard, it may fail. In this case, the bell will sound. If the Secure Keyboard succeeds, the foreground and background colors
will be exchanged (as if you selected the Reverse Video entry in the Modes menu); they will be exchanged again when you
exit secure mode. If the colors do not switch, then you should be very suspicious that you are being spoofed. If the applica-
tion you are running displays a prompt before asking for the password, it is safest to enter secure mode before the prompt
gets displayed, and to make sure that the prompt gets displayed correctly (in the new colors), to minimize the probability of
spoofing. You can also bring up the menu again and make sure that a check mark appears next to the entry.

Secure Keyboard mode will be disabled automatically if your xterm window becomes iconified (or otherwise unmapped), or
if you start up a reparenting window manager (that places a title bar or other decoration around the window) while in Secure
Keyboard mode. (This is a feature of the X protocol that isn’t easily overcome.) When this happens, the foreground and
background colors will be switched back and the bell will sound in warning.

CHARACTER CLASSES
Clicking the middle mouse button twice in rapid succession will cause all characters of the same class (for example, letters,
whitespace, punctuation) to be selected. Since different people have different preferences for what should be selected (for
example, should filenames be selected as a whole or only the separate subnames?), the default mapping can be overridden
through the use of the charClass (class CharClass) resource.

This resource is a series of comma-separated range:value pairs. The range is either a single number or low-high in the range
of 0 to 127, corresponding to the ASCII code for the character or characters to be set. The value is arbitrary, although the
default table uses the character number of the first character occurring in the set.

The default table is

static int charClass[128] = {
/* NUL SOH STX ETX EOT ENQ ACK BEL */
32, 1, 1, 1, 1, 1, 1, 1,
/* BS HT NL VT NP CR SO SI */
1, 32, 1, 1, 1, 1, 1, 1,
/* DLE DC1 DC2 DC3 DC4 NAK SYN ETB */
1, 1, 1, 1, 1, 1, 1, 1,
/* CAN EM SUB ESC FS GS RS US */
1, 1, 1, 1, 1, 1, 1, 1,
/*SP!”#$%&’*/
32, 33, 34, 35, 36, 37, 38, 39,
/*()*+,–./*/
40, 41, 42, 43, 44, 45, 46, 47,
/*0 1 2 3 4 5 6 7 */

713

48, 48, 48, 48, 48, 48, 48, 48,
/*8 9 :;< => ?*/
48, 48, 58, 59, 60, 61, 62, 63,
/*@ABC D E F G*/
64, 48, 48, 48, 48, 48, 48, 48,
/* H I J K L M N O */
48, 48, 48, 48, 48, 48, 48, 48,
/*P QR S T UVW*/
48, 48, 48, 48, 48, 48, 48, 48,
/*XY Z [\]ˆ */
48, 48, 48, 91, 92, 93, 94, 48,
/*’ab c d e fg */
96, 48, 48, 48, 48, 48, 48, 48,
/*h ijklm n o */
48, 48, 48, 48, 48, 48, 48, 48,
/*p q rs tu v w */
48, 48, 48, 48, 48, 48, 48, 48,
/*x y zf jg˜ DEL */
48, 48, 48, 123, 124, 125, 126, 1};

For example, the string 33:48,37:48,45-47:48,64:48 indicates that the exclamation mark, percent sign, dash, period, slash,
and ampersand characters should be treated the same way as characters and numbers. This is useful for cutting and pasting
electronic mailing addresses and filenames.

ACTIONS
It is possible to rebind keys (or sequences of keys) to arbitrary strings for input by changing the translations for the vt100 or
tek4014 widgets. Changing the translations for events other than key and button events is not expected, and will cause
unpredictable behavior. The following actions are provided for using within the vt100 or tek4014 translations resources:

bell([percent]) This action rings the keyboard bell at the specified percentage
above or below the base volume.

ignore() This action ignores the event but checks for special pointer
position escape sequences.

insert() This action inserts the character or string associated with the
key that was pressed.

insert-seven-bit() This action is a synonym for insert().

insert-eight-bit() This action inserts an eight-bit (Meta) version of the character
or string associated with the key that was pressed. The exact
action depends on the value of the eightBitInput resource.

insert-selection This action inserts the string found in the selection or cut
(sourcename [, ...]) buffer indicated by sourcename. Sources are checked in

the order given (case is significant) until one is found.
Commonly used selections include PRIMARY, SECONDARY, and
CLIPBOARD. Cut buffers are typically named CUT_BUFFER0
through CUT_BUFFER7.

keymap(name) This action dynamically defines a new translation table whose
resource name is name with the suffix Keymap (case is signifi-
cant). The name None restores the original translation table.

popup-menu(menuname) This action displays the specified pop-up menu. Valid names
(case is significant) include mainMenu, vtMenu, fontMenu, and
tekMenu.

secure() This action toggles the Secure Keyboard mode described in the
“Security” subsection, and is invoked from the securekbd entry
in mainMenu.

xterm

Part I: User Commands714

select-start() This action begins text selection at the current pointer
location. See the subsection on “Pointer Usage” for informa-
tion on making selections.

select-extend() This action tracks the pointer and extends the selection. It
should only be bound to Motion events.

select-end This action puts the currently selected text into all of the
(destname [, ...]) selections or cut buffers specified by destname.

select-cursor-start() This action is similar to select-start except that it begins the
selection at the current text cursor position.

select-cursor-end This action is similar to select-end except that it should
(destname [, ...]) be used with select-cursor-start.

set-vt-font This action sets the font or fonts currently being
(d/1/2/3/4/5/6/e/s used in the VT102 window. The first argument is a
[,normalfont [, boldfont]]) single character that specifies the font to be used: d or D

indicate the default font (the font initially used when xterm
was started), 1 through 6 indicate the fonts specified by the
font1 through font6 resources, e or E indicate the normal and
bold fonts that have been set through escape codes (or
specified as the second and third action arguments, respec-
tively), and s or S indicate the font selection (as made by
programs such as xfontsel(1)) indicated by the second action
argument.

start-extend() This action is similar to select-start except that the selection
is extended to the current pointer location.

start-cursor-extend() This action is similar to select-extend except that the selection
is extended to the current text cursor position.

string(string) This action inserts the specified text string as if it had been
typed. Quotation is necessary if the string contains whitespace
or nonalphanumeric characters. If the string argument begins
with the characters 0x, it is interpreted as a hex character
constant.

scroll-back(count [,units]) This action scrolls the text window backward so that text that
had previously scrolled off the top of the screen is now visible.
The count argument indicates the number of units (which
may be page, half page, pixel, or line) by which to scroll.

scroll-forw(count [,units]) This action scroll is similar to scroll-back except that it scrolls
the other direction.

allow-send-events This action set or toggles the allowSendEvents resource and is
(on/off/toggle) also invoked by the allowsends entry in mainMenu.

redraw() This action redraws the window and is also invoked by the
redraw entry in mainMenu.

send-signal(signame) This action sends the signal named by signame to the xterm
subprocess (the shell or program specified with the –e
command-line option) and is also invoked by the suspend,
continue, interrupt, hangup, terminate, and kill entries in
mainMenu. Allowable signal names are (case is not significant)
tstp (if supported by the operating system), suspend (same as
tstp), cont (if supported by the operating system), int, hup,
term, quit, alrm, alarm (same as alrm), and kill.

quit() This action sends a SIGHUP to the subprogram and exits. It is
also invoked by the quit entry in mainMenu.

715

set-scrollbar(on/off/toggle) This action toggles the scrollbar resource and is also invoked
by the scrollbar entry in vtMenu.

set-jumpscroll(on/off/toggle) This action toggles the jumpscroll resource and is also invoked
by the jumpscroll entry in vtMenu.

set-reverse-video(on/off/toggle) This action toggles the reverseVideo resource and is also
invoked by the reversevideo entry in vtMenu.

set-autowrap(on/off/toggle) This action toggles automatic wrapping of long lines and is
also invoked by the autowrap entry in vtMenu.

set-reversewrap(on/off/toggle) This action toggles the reverseWrap resource and is also
invoked by the reversewrap entry in vtMenu.

set-autolinefeed(on/off/toggle) This action toggles automatic insertion of line-feeds and is also
invoked by the autolinefeed entry in vtMenu.

set-appcursor(on/off/toggle) This action toggles the handling Application Cursor Key mode
and is also invoked by the appcursor entry in vtMenu.

set-appkeypad(on/off/toggle) This action toggles the handling of Application Key-pad mode
and is also invoked by the appkeypad entry in vtMenu.

set-scroll-on-key(on/off/toggle) This action toggles the scrollKey resource and is also
 invoked from the scrollkey entry in vtMenu.

set-scroll-on-tty-output(on/off/toggle) This action toggles the scrollTtyOutput resource and is also
invoked from the scrollttyoutput entry in vtMenu.

set-allow132(on/off/toggle) This action toggles the c132 resource and is also invoked from
the allow132 entry in vtMenu.

set-cursesemul(on/off/toggle) This action toggles the curses resource and is also invoked
from the cursesemul entry in vtMenu.

set-visual-bell(on/off/toggle) This action toggles the visualBell resource and is also invoked
by the visualbell entry in vtMenu.

set-marginbell(on/off/toggle) This action toggles the marginBell resource and is also invoked
from the marginbell entry in vtMenu.

set-altscreen(on/off/toggle) This action toggles between the alternate and current screens.

soft-reset() This action resets the scrolling region and is also invoked from
the softreset entry in vtMenu.

hard-reset() This action resets the scrolling region, tabs, window size, and
cursor keys, and clears the screen. It is also invoked from the
hardreset entry in vtMenu.

clear-saved-lines() This action does hard-reset() and also clears the history of
lines saved off the top of the screen. It is also invoked from the
clearsavedlines entry in vtMenu.

set-terminal-type(type) This action directs output to either the vt or tek windows,
according to the type string. It is also invoked by the tekmode
entry in vtMenu and the vtmode entry in tekMenu.

set-visibility(vt/tek,on/off/toggle) This action controls whether or not the vt or tek windows
are visible. It is also invoked from the tekshow and vthide
entries in vtMenu and the vtshow and tekhide entries in tekMenu.

set-tek-text(large/2/3/small) This action sets font used in the Tektronix window to
the value of the resources tektextlarge, tektext2, tektext3,
and tektextsmall according to the argument. It is also
by the entries of the same names as the resources in tekMenu.

tek-page() This action clears the Tektronix window and is also invoked
by the tekpage entry in tekMenu.

xterm

Part I: User Commands716

tek-reset() This action resets the Tektronix window and is also invoked
by the tekreset entry in tekMenu.

tek-copy() This action copies the escape codes used to generate the
current window contents to a file in the current directory
beginning with the name COPY. It is also invoked from the
tekcopy entry in tekMenu.

visual-bell() This action flashes the window quickly.

The Tektronix window also has the following action:

gin-press(l/L/m/M/r/R) This action sends the indicated graphics input code.

The default bindings in the VT102 window are

Shift <KeyPress> Prior: scroll-back(1,halfpage) \n\
Shift <KeyPress> Next: scroll-forw(1,halfpage) \n\
Shift <KeyPress> Select: select-cursor-start() \
select-cursor-end(PRIMARY, CUT_BUFFER0) \n\
Shift <KeyPress> Insert: insert-selection(PRIMARY, CUT_BUFFER0) \n\
˜Meta<KeyPress>: insert-seven-bit() \n\
Meta<KeyPress>: insert-eight-bit() \n\
!Ctrl <Btn1Down>: popup-menu(mainMenu) \n\
!Lock Ctrl <Btn1Down>: popup-menu(mainMenu) \n\
!Mod2 Ctrl <Btn1Down>: popup-menu(mainMenu) \n\
!Mod2 Lock Ctrl <Btn1Down>: popup-menu(mainMenu) \n\
˜Meta <Btn1Down>: select-start() \n\
˜Meta <Btn1Motion>: select-extend() \n\
!Ctrl <Btn2Down>: popup-menu(vtMenu) \n\
!Lock Ctrl <Btn2Down>: popup-m

The default bindings in the Tektronix window are

˜Meta<KeyPress>: insert-seven-bit() \n\
Meta<KeyPress>: insert-eight-bit() \n\
!Ctrl <Btn1Down>: popup-menu(mainMenu) \n\
!Lock Ctrl <Btn1Down>: popup-menu(mainMenu) \n\
!Mod2 Ctrl <Btn1Down>: popup-menu(mainMenu) \n\
!Mod2 Lock Ctrl <Btn1Down>: popup-menu(mainMenu) \n\
!Ctrl <Btn2Down>: popup-menu(tekMenu) \n\
!Lock Ctrl <Btn2Down>: popup-menu(tekMenu) \n\
!Mod2 Ctrl <Btn2Down>: popup-menu(tekMenu) \n\
!Mod2 Lock Ctrl <Btn2Down>: popup-menu(tekMenu) \n\
Shift ˜Meta<Btn1Down>: gin-press(L) \n\
˜Meta<Btn1Down>: gin-press(l) \n\
Shift ˜Meta<Btn2Down>: gin-press(M) \n\
˜Meta<Btn2Down>: gin-press(m) \n\
Shift ˜Meta<Btn3Down>: gin-press(R) \n\
˜Meta<Btn3Down>: gin-press(r)

Below is a sample how of the keymap() action is used to add special keys for entering commonly typed works:

*VT100.Translations: #override <Key>F13: keymap(dbx)
VT100.dbxKeymap.translations: \
<Key>F14: keymap(None) \n\
<Key>F17: string(“next”) string(0x0d) \n\
<Key>F18: string(“step”) string(0x0d) \n\
<Key>F19: string(“continue”) string(0x0d) \n\
<Key>F20: string(“print “) insert-selection(PRIMARY, CUT_BUFFER0)

717

ENVIRONMENT
xterm sets the environment variables TERM and TERMCAP properly for the size window you have created. It also uses and sets the
environment variable DISPLAY to specify which bit map display terminal to use. The environment variable WINDOWID is set to
the X window id number of the xterm window.

SEE ALSO
resize(1), X(1), pty(4), tty(4)

Xterm Control Sequences

BUGS
Large pastes do not work on some systems. This is not a bug in xterm; it is a bug in the pseudo-terminal driver of those
systems. xterm feeds large pastes to the pty only as fast as the pty will accept data, but some pty drivers do not return enough
information to know if the write has succeeded.

Many of the options are not resettable after xterm starts.

Only fixed-width, character-cell fonts are supported.

This program still needs to be rewritten. It should be split into very modular sections, with the various emulators being
completely separate widgets that don’t know about each other. Ideally, you’d like to be able to pick and choose emulator
widgets and stick them into a single control widget.

There needs to be a dialog box to allow entry of the Tek COPY filename.

AUTHORS
Far too many people, including Loretta Guarino Reid (DEC-UEG-WSL), Joel McCormack (DEC-UEG-WSL), Terry
Weissman (DEC-UEG-WSL), Edward Moy (Berkeley), Ralph R. Swick (MIT-Athena), Mark Vandevoorde (MIT-Athena),
Bob McNamara (DEC-MAD), Jim Gettys (MIT-Athena), Bob Scheifler (MIT X Consortium), Doug Mink (SAO), Steve
Pitschke (Stellar), Ron Newman (MIT-Athena), Jim Fulton (MIT X Consortium), Dave Serisky (HP), Jonathan Kamens
(MIT-Athena)

X Version 11 Release 6

Xvfb
Xvfb—Virtual framebuffer X server for X Version 11

SYNOPSIS
Xvfb [option] ...

DESCRIPTION
Xvfb is an X server that can run on machines with no display hardware and no physical input devices. It emulates a dumb
framebuffer using virtual memory.

The primary use of this server is intended to be server testing. The mfb or cfb code for any depth can be exercised with this
server without the need for real hardware that supports the desired depths.

A secondary use is testing clients against unusual depths and screen configurations.

xvfb

Part I: User Commands718

OPTIONS
In addition to the normal server options described in the Xserver(1) manual page, Xvfb accepts the following command-line
switches:

–screen screennum WxHxD This option creates screen screennum and sets its width, height,
and depth to W, H, and D, respectively. By default, only screen 0
exists and has the dimensions 1280×1024×8.

–pixdepths list-of-depths This option specifies a list of pixmap depths that the server
should support in addition to the depths implied by the
supported screens. list-of-depths is a space-separated list of
integers that can have values from 1 to 32.

–fbdir framebuffer-directory This option specifies the directory in which the memory-
mapped files containing the framebuffer memory should be
created. (See “Files.”) This option only exists on machines that
have the mmap and msync system calls.

–shmem This option specifies that the framebuffer should be put in
shared memory. The shared memory ID for each screen will be
printed by the server. The shared memory is in xwd format.
This option only exists on machines that support the System V
shared memory interface.

If neither –shmem nor –fbdir is specified, the framebuffer memory will be allocated with malloc().

FILES
The following file is created if the –fbdir option is given:

framebuffer-directory Memory-mapped file containing screen n’s framebuffer
/Xvfb_screen<n> memory, one file per screen. The file is in xwd format.

EXAMPLES
Xvfb :1 -screen 0 1600x1200x32 The server will listen for connections as server number 1, and

screen 0 will be depth 32 1600×1200.

Xvfb :1 -screen 1 1600x1200x16 The server will listen for connections as server number 1, will
have the default screen configuration (one screen,
1280×1024×8), and screen 1 will be depth 16 1600×1200.

Xvfb -pixdepths 3 27 The server will listen for connections as server number 0,
-fbdir /usr/tmp will have the default screen configuration (one screen,

1280×1024×8), will also support pixmap depths of 3 and 27,
and will use memory-mapped files in /usr/tmp for the
framebuffer.

xwud -in /usr/tmp/Xvfb screen0 Displays screen 0 of the server started by the preceding
example.

SEE ALSO
X(1), Xserver(1), xwd(1), xwud(1), XWDFile.h

AUTHORS
David P. Wiggins (X Consortium, Inc.)

X Version 11 Release 6

719

xvidtune
xvidtune—Video mode tuner for XFree86

SYNOPSIS
xvidtune [-prev j -next j -unlock j -query j -saver suspendtime [offtime]][–toolkitoption ...]

DESCRIPTION
Xvidtune is a client interface to the XFree86 X server video mode extension (XFree86-VidModeExtension).

When given one of the nontoolkit options, xvidtune provides a command-line interface to either switch the video mode or
get/set monitor powersaver time-outs.

Without any options (or with only toolkit options) it presents the user with various buttons and sliders that can be used to
interactively adjust existing video modes. It will also print the settings in a format suitable for inclusion in an XF86Config file.

NOTE

The original mode settings can be restored by pressing the R key, and this can be used to restore a stable screen in situa-
tions where the screen becomes unreadable.

The available buttons are

Left

Right

Up

Down

Adjust the video mode so that the display will be moved in the appropriate direction:

Wider

Narrower

Shorter

Taller

Adjust the video mode so that the display size is altered appropriately:

Quit Exit the program.

Apply Adjust the current video mode to match the selected settings.

Auto Cause the Up/Down/Right/Left, Wider/Narrower/Shorter/
Taller, Restore, and the special S3 buttons to be applied
immediately. This button can be toggled.

Test Temporarily switch to the selected settings.

Restore Return the settings to their original values.

Fetch Query the server for its current settings.

Show Print the currently selected settings to stdout in XF86Config
Modeline format. The primary selection is similarly set.

Next Switch the Xserver to the next video mode.

Prev Switch the Xserver to the previous video mode.

For some S3-based cards (964 and 968) the following are also available:

InvertVCLK Change the VCLK invert/noninvert state.

EarlySC Change the Early SC state. This affects screen wrapping.

xvidtune

Part I: User Commands720

BlankDelay1, BlankDelay2 Set the blank delay values. This affects screen wrapping.
Acceptable values are in the range 0–7. The values may be
incremented or decremented with the + and - buttons, or by
pressing the + or - keys in the text field.

For S3-864/868 based cards, InvertVCLK and BlankDelay1 may be useful. For S3 Trio32/Trio64 cards, only InvertVCLK is
available. At the moment there are no default settings available for these chips in the video mode extension and thus this
feature is disabled in xvidtune. It can be enabled by setting any of the optional S3 commands in the screen section of
XF86Config, for example, using

blank delay “” 0

OPTIONS
xvidtune accepts the standard X Toolkit command-line options as well as the following:

–prev Switch the Xserver to the previous video mode.

–next Switch the Xserver to the next video mode.

–unlock Normally, xvidtune will disable the switching of video modes
via hot keys while it is running. If for some reason the program
did not exit cleanly and they are still disabled, the program can
be rerun with this option to reenable the mode switching key
combinations.

–saver suspendtime [offtime] Set the suspend and off screen saver inactivity time-outs. The
values are in seconds.

–query Display the monitor parameters and extended screen saver
time-outs.

SEE ALSO
XF86Config(4/5)

AUTHORS
Kaleb S. Keithley (X Consortium), additions and modifications by Jon Tombs, David Dawes, and Joe Moss

X Version 11 Release 6

xvminitoppm
xvminitoppm—Convert an XV thumbnail picture to PPM

SYNOPSIS
xvminitoppm [xvminipic]

DESCRIPTION
Reads an XV thumbnail picture (a miniature picture generated by the VisualSchnauzer browser) as input. Produces a
portable pixmap as output.

SEE ALSO
ppm(5), xv(1)

AUTHOR
Copyright (c) 1993 by Ingo Wilken

14 December 1993

721

xwd
xwd—Dump an image of an X window

SYNOPSIS
xwd [-debug] [-help] [-nobdrs] [-out file] [-xy] [-frame] [-add value]
[-root j -id id j -name name] [-icmap] [-screen] [-display display]

DESCRIPTION
xwd is an X Window System window dumping utility. xwd allows X users to store window images in a specially formatted
dump file. This file can then be read by various other X utilities for redisplay, printing, editing, formatting, archiving, image
processing, and so on. The target window is selected by clicking the pointer in the desired window. The keyboard bell is
rung once at the beginning of the dump and twice when the dump is completed.

OPTIONS
-display display This argument allows you to specify the server to connect to;

see X(1).

-help Print out the Usage: command syntax summary.

-nobdrs This argument specifies that the window dump should not
include the pixels that compose the X window border. This is
useful in situations in which you may wish to include the
window contents in a document as an illustration.

-out file This argument allows the user to explicitly specify the output
file on the command line. The default is to output to standard
out.

-xy This option applies to color displays only. It selects XY format
dumping instead of the default Z format.

-add value This option specifies a signed value to be added to every pixel.

-frame This option indicates that the window manager frame should
be included when manually selecting a window.

-root This option indicates that the root window should be selected
for the window dump, without requiring the user to select a
window with the pointer.

-id id This option indicates that the window with the specified
resource id should be selected for the window dump, without
requiring the user to select a window with the pointer.

-name name This option indicates that the window with the specified
WM_NAME property should be selected for the window dump,
without requiring the user to select a window with the pointer.

-icmap Normally, the colormap of the chosen window is used to
obtain RGB values. This option forces the first installed
colormap of the screen to be used instead.

-screen This option indicates that the GetImage request used to obtain
the image should be done on the root window, rather than
directly on the specified window. In this way, you can obtain
pieces of other windows that overlap the specified window,
and more importantly, you can capture menus or other
popups that are independent windows but that appear over the
specified window.

xwd

Part I: User Commands722

ENVIRONMENT
DISPLAY To get default host and display number

FILES
XWDFile.h X Window dump file format definition file.

SEE ALSO
xwud(1), xpr(1), X(1)

AUTHORS
Tony Della Fera (Digital Equipment Corporation, MIT Project Athena) and William F. Wyatt (Smithsonian Astrophysical
Observatory)

X Version 11 Release 6

xwdtopnm
xwdtopnm—Convert an X11 or X10 window dump file into a portable anymap

SYNOPSIS
xwdtopnm [xwdfile]

DESCRIPTION
Reads an X11 or X10 window dump file as input. Produces a portable anymap as output. The type of the output file
depends on the input file. If it’s black and white, a pbm file is written; if it’s grayscale, a pgm file, else a ppm file. The program
tells you which type it is writing.

Using this program, you can convert anything on an X workstation’s screen into an anymap. Just display whatever you’re
interested in, do an xwd, run it through xwdtopnm, and then use pnmcut to select the part you want.

BUGS
I haven’t tested this tool with very many configurations, so there are probably bugs. Please let me know if you find any.

SEE ALSO
pnmtoxwd(1), pnm(5), xwd(1)

AUTHOR
Copyright (c) 1989, 1991 by Jef Poskanzer.

11 January 1991

xwininfo
xwininfo—Window information utility for X

SYNOPSIS
xwininfo [–help] [–id id] [–root] [–name name] [–int] [–children] [–tree]
[–stats] [–bits] [–events] [–size] [–wm] [–shape] [–frame] [–all] [–english]
[–metric] [–display display]

723

DESCRIPTION
xwininfo is a utility for displaying information about windows. Various information is displayed depending on which options
are selected. If no options are chosen, –stats is assumed.

The user has the option of selecting the target window with the mouse (by clicking any mouse button in the desired
window) or by specifying its window id on the command line with the –id option. Or instead of specifying the window by
its id number, the –name option may be used to specify which window is desired by name. There is also a special –root
option to quickly obtain information on the screen’s root window.

OPTIONS
–help Print out the Usage: command syntax summary.

–id id This option allows the user to specify a target window id on
the command line rather than using the mouse to select the
target window. This is very useful in debugging X applications
where the target window is not mapped to the screen or where
the use of the mouse might be impossible or interfere with the
application.

–name name This option allows the user to specify that the window name is
the target window on the command line rather than using the
mouse to select the target window.

–root This option specifies that X’s root window is the target
window. This is useful in situations where the root window is
completely obscured.

–int This option specifies that all X window ids should be
displayed as integer values. The default is to display them as
hexadecimal values.

–children This option causes the root, parent, and children windows’ ids
and names of the selected window to be displayed.

–tree This option is like –children but displays all children
recursively.

–stats This option causes the display of various attributes pertaining
to the location and appearance of the selected window.
Information displayed includes the location of the window, its
width and height, its depth, border width, class, colormap id if
any, map state, backing-store hint, and location of the corners.

–bits This option causes the display of various attributes pertaining
to the selected window’s raw bits and how the selected window
is to be stored. Displayed information includes the selected
window’s bit gravity, window gravity, backing-store hint,
backing-planes value, backing pixel, and whether or not the
window has save-under set.

–events This option causes the selected window’s event masks to be
displayed. Both the event mask of events wanted by some
client and the event mask of events not to propagate are
displayed.

–size This option causes the selected window’s sizing hints to be
displayed. Displayed information includes the following: for
both the normal size hints and the zoom size hints, the user
supplied location, if any; the program supplied location, if any;
the user supplied size, if any; the program supplied size, if any;

xwininfo

Part I: User Commands724

the minimum size, if any; the maximum size, if any; the resize
increments, if any; and the minimum and maximum aspect
ratios, if any.

–wm This option causes the selected window’s window manager
hints to be displayed. Information displayed may include
whether or not the application accepts input, what the
window’s icon window # and name is, where the window’s
icon should go, and what the window’s initial state should be.

–shape This option causes the selected window’s window and border
shape extents to be displayed.

–frame This option causes window manager frames to be considered
when manually selecting windows.

–metric This option causes all individual height, width, and x and y
positions to be displayed in millimeters as well as number of
pixels, based on what the server thinks the resolution is.
Geometry specifications that are in +x+y form are not changed.

–english This option causes all individual height, width, and x and y
positions to be displayed in inches (and feet, yards, and miles if
necessary) as well as number of pixels. –metric and –english
may both be enabled at the same time.

–all This option is a quick way to ask for all information possible.

–display display This option allows you to specify the server to connect to; see
X(1).

EXAMPLE
The following is a sample summary taken with no options specified:

xwininfo: Window id: 0x60000f “xterm” Absolute upper-left X: 2
Absolute upper-left Y: 85 Relative upper-left X: 0 Relative upper-left Y: 25
Width: 579 Height: 316 Depth: 8 Visual Class: PseudoColor Border width: 0
Class: InputOutput Colormap: 0x27 (installed) Bit Gravity State:
NorthWestGravity Window Gravity State: NorthWestGravity Backing Store State:
NotUseful Save Under State: no Map State: IsViewable Override Redirect State:
no Corners: +2+85 -699+85 -699-623 +2-623 -geometry 80x24+0+58

ENVIRONMENT
DISPLAY To get the default host and display number

SEE ALSO
X(1), xprop(1)

BUGS
Using –stats –bits shows some redundant information.

The -geometry string displayed must make assumptions about the window’s border width and the behavior of the application
and the window manager. As a result, the location given is not always correct.

AUTHOR
Mark Lillibridge (MIT Project Athena)

X Version 11 Release 6

725

xwud
xwud—Image displayer for X

SYNOPSIS
xwud [-in file] [-noclick] [-geometry geom] [-display display]
[-new] [-std <maptype>] [-raw] [-vis <vis-type-or-id>] [-help] [-rv]
[-plane number] [-fg color] [-bg color]

DESCRIPTION
xwud is an X Window System image undumping utility. xwud allows X users to display in a window an image saved in a
specially formatted dump file, such as produced by xwd(1).

OPTIONS
-bg color If a bitmap image (or a single plane of an image) is displayed,

this option can be used to specify the color to display for the 0
bits in the image.

-display display This option allows you to specify the server to connect to; see
X(1).

-fg color If a bitmap image (or a single plane of an image) is displayed,
this option can be used to specify the color to display for the 1
bits in the image.

-geometry geom This option allows you to specify the size and position of the
window. Typically, you will only want to specify the position,
and let the size default to the actual size of the image.

-help Print out a short description of the allowable options.

-in file This option enables the user to explicitly specify the input file
on the command line. If no input file is given, the standard
input is assumed.

-new This option forces creation of a new colormap for displaying
the image. If the image characteristics happen to match those
of the display, this can get the image on the screen faster, but
at the cost of using a new colormap (which on most displays
will cause other windows to go Technicolor).

-noclick Clicking any button in the window will terminate the
application, unless this option is specified. Termination can
always be achieved by typing q, Q, or Ctrl+C.

-plane number You can select a single bit plane of the image to display with
this option. Planes are numbered with zero being the least
significant bit. This option can be used to figure out which
plane to pass to xpr(1) for printing.

-raw This option forces the image to be displayed with whatever
color values happen to currently exist on the screen. This
option is mostly useful when undumping an image back onto
the same screen that the image originally came from, while the
original windows are still on the screen, and results in getting
the image on the screen faster.

-rv If a bitmap image (or a single plane of an image) is displayed,
this option forces the foreground and background colors to be
swapped. This may be needed when displaying a bitmap image
that has the color sense of pixel values 0 and 1 reversed from
what they are on your display.

xwud

Part I: User Commands726

-std maptype This option causes the image to be displayed using the
specified standard colormap. The property name is obtained
by converting the type to uppercase, prepending RGB, and
appending MAP. Typical types are best, default, and gray. See
xstd-cmap(1) for one way of creating standard colormaps.

-vis vis-type-or-id This option allows you to specify a particular visual or visual
class. The default is to pick the “best” one. A particular class
can be specified: StaticGray, GrayScale, StaticColor,
PseudoColor, DirectColor, or TrueColor. Or Match can be
specified, meaning use the same class as the source image.
Alternatively, an exact visual id (specific to the server) can be
specified, either as a hexadecimal number (prefixed with 0x) or
as a decimal number. Finally, default can be specified,
meaning to use the same class as the colormap of the root
window. Case is not significant in any of these strings.

ENVIRONMENT
DISPLAY To get default display

FILES
XWDFile.h X Window dump file format definition file

SEE ALSO
xwd(1), xpr(1), xstdcmap(1), X(1)

AUTHOR
Bob Scheifler (MIT X Consortium)

X Version 11 Release 6

ybmtopbm
ybmtopbm—Convert a Bennet Yee “face” file into a portable bitmap

SYNOPSIS
ybmtopbm [facefile]

DESCRIPTION
Reads a file acceptable to the face and xbm programs by Bennet Yee (bsy+@cs.cmu.edu). Writes a portable bitmap as output.

SEE ALSO
pbmtoybm(1), pbm(5), face(1), face(5), xbm(1)

AUTHOR
Copyright (c) 1991 by Jamie Zawinski and Jef Poskanzer.

6 March 1990

727

ytalk
ytalk—A multiuser chat program.

SYNOPSIS
ytalk [-x] username...

DESCRIPTION
ytalk (V3.0 Patch Level 1) is in essence a multiuser chat program. It works almost exactly like the UNIX talk program and
even communicates with the same talk daemon(s), but YTalk allows for multiple connections.

The username field may be formatted in several different ways:

name Some user on your machine

name@host Some user on a different machine

name#tty Some user on a particular terminal

name#tty@host Some user on a particular tty on a different machine

name@host#tty Same as name#tty@host

You can specify multiple usernames on the command line, for example,

ytalk george fred@hissun.edu marc@grumpy.cc

The -x option disables the X11 interface (described below).

For each user on the command line, ytalk will attempt to connect to the talk daemon on the specified user’s host and
determine if that user has left an invitation for you to call. If not, ytalk leaves an invitation for him and tells his talk daemon
to send an announcement to his screen. There is not yet a dedicated ytalk daemon, but there will be. Right now, ytalk is
able to communicate with both existing versions of UNIX talk daemons. For any particular host, ytalk will attempt to
communicate with a talk daemon the caller’s host also supports. If the two hosts have no daemon in common, then UNIX
talk will not function at all, but a connection is possible through (and only through) ytalk.

After a connection has been established between two users, they can chat back and forth to their hearts’ content. The
connection is terminated when one of them hits Control-C or selects Quit from the main menu.

ytalk is perfectly compatible with UNIX talk and they can even converse with each other without any problems. However,
many of the features of ytalk can only operate when you are connected to a user who is also using ytalk. For the rest of this
document, it will be assumed that all connected users are using ytalk unless otherwise stated.

If you specified more than one user on the ytalk command line, then ytalk will process and add each user to the conversa-
tion as they respond to your invitation. As each new user enters the conversation, the screen is further subdivided into
smaller and smaller windows, one for each connected user. Right now, the number of connected users is limited by the
number of lines on your terminal (or window), for each connected user needs at least three lines.

ytalk does implement primitive support of the X11 Windowing System. If the environment variable DISPLAY is set, then
ytalk attempts to connect to that X server. Further details about the X11 interface (and how to turn it off) are given later in
this section.

As each new user is added to the conversation, ytalk will transmit information about that user to all other connected ytalk
users so that their screens will also subdivide and incorporate the new user. If the new user is using UNIX talk, then
information about him will NOT be transmitted, as his screen would be unable to accept multiple connections. I have given
brief thought to allowing at least the output of UNIX talk users to be transmitted to all connected ytalk users, but I have not
written any code to do so. Note that even though UNIX talk cannot handle multiple connections, it is still possible for ytalk
to handle multiple UNIX “talk” connections. For example, george (using ytalk) could communicate with fred and joe (both
using UNIX talk), but fred and joe would be unaware of each other. The best way to understand the limitations that UNIX
“talk” places on ytalk is to test various connections between the two and see how things work.

ytalk

Part I: User Commands728

ESCAPE MENU
Whenever you are using ytalk, you can hit the Escape key to bring up a menu that at this moment has these options:

a Add a user

d Delete a user

o Options

s Shell

u User list

w Output user to file

q Quit

By choosing option a, you are given the opportunity to type the name of any user you wish to include into the conversation.
Again, YTALK will accept an invitation from that user if an invitation exists, or will leave an invitation and ring the given user.

By choosing option d, you can select the name of a connection to terminate.

By choosing option o, you can view and/or modify any of the ytalk options. (See the “Options” subsection for a list of ytalk
options.)

By choosing option s, you can invoke a shell in your ytalk window. All other users will see what happens in your shell. ytalk
will automatically resize your window down to the size of the smallest window you are connected to, in order to ensure that
all users always see the same thing.

The u option displays a list of connected and unconnected users, as well as their window sizes and what version of talk
software they are running.

By choosing option w, you can select any connected user and type the name of a file, and all further output from that user
will be dumped to the specified file. The file, if it exists, will be overwritten. If you choose w and the same user again, further
output to the file will be terminated.

Oh, one other thing: when user A attempts to ytalk to user B, but user B is already ytalking with user C, user A’s ytalk
program will realize that user B is already using ytalk, and will communicate with user B’s ytalk program directly in order to
initialize the conversation. User B will see a nice windowed message such as

Do you wish to talk with user A?

and he will be prompted for a yes/no answer. This, in my opinion, is much preferable to blitting the announcement message
and messing up user B’s screen.

RUNTIME OPTIONS
When you select Options from the main menu, you are given the opportunity to edit the ytalk options. The current options
are

s Turn scrolling [off/on]

w Turn word-wrap [off/on]

i Turn auto-import [off/on]

v Turn auto-invite [off/on]

r Turn auto-rering [off/on]

a Turn asides [off/on]

If scrolling is turned on, then a user’s window will scroll when he reaches the bottom, instead of wrapping back around to
the top.

If word-wrap is turned on, then any word that would overextend the right margin will be automatically moved to the next line
on your screen.

729

If auto-import is turned on, then ytalk will assume that you wish to talk to any users that connect to other ytalk users that
are connected to you. That last sentence does make sense; try again. ytalk will add these users to your session automatically,
without asking you for verification.

If auto-invite is turned on, then ytalk will automatically accept any connection requested by another user and add the user
to your session. You will not be asked for verification.

If auto-rering is turned on, then ytalk will automatically re-ring any user who does not respond to your invitation within 30
seconds. You will not be asked for verification.

If asides is turned on (it may not be available), then keyboard input received while the input focus is in a specific user’s
window will only be sent to that user. (See the “X11 Interface” subsection.)

Any of these options can be set to your preference in your .ytalkrc file, as described in the next subsection.

YTALK STARTUP FILE
If your home directory contains a file named .ytalkrc, then ytalk will read this file while starting up. All ytalk runtime
options, as well as some startup options, can be set in this file.

SETTING BOOLEAN OPTIONS
Boolean options can be preset with the following syntax:

turn option [off | on]

where option is one of scrolling, word-wrap, auto-import, auto-invite, auto-rering, asides, or X. Setting these options works
just like described earlier in this section. Turning X on or off will enable or disable the X11 Interface. For example, one could
enable word-wrap with the line:

turn word-wrap on

SETTING READDRESS MODES
The purpose of readdressing is to allow ytalk connections across point-to-point network gateways where the local machines
know themselves by a different address (and typically hostname) than the remote machines. The basic syntax of a readdress
command is this:

readdress from-address to-address domain

The readdress statement simply makes a claim that the machine(s) in domain communicate with the machine(s) at from-
address by sending a packet to to-address. Because most users have no use for this whatsoever, I’ll describe it only briefly.

THIS IS NOT ROUTING. For example, my machine at home is connected via PPP to the network at my office. My
machine at home thinks its Ethernet address is 192.188.253.1 and its hostname is “talisman.com”. The network at my office
has the address 192.67.141.0. When I’m connected via PPP, my home machine is placed into the office network as address
192.67.141.9 with hostname “talisman.austin.eds.com”.

ytalk needs to know that if it is running on domain 192.67.141.0 and receives packets from 192.188.253.1 that it should
respond to 192.67.141.9, not 192.188.253.1. Right? Right. Okay, okay, okay. I put this line into my .ytalkrc on both ends:

readdress talisman talisman.austin.eds.com 192.67.141.0

On my home end, this translates to

readdress 192.188.253.1 192.67.141.9 192.67.141.0

which tells my home machine to advertise itself as 192.67.141.9 instead of 192.188.253.1 when ytalking to machines on the
network 192.67.141.0. On the office end, the readdress command translates to

readdress 192.67.141.9 192.67.141.9 192.67.141.0

which the office machines basically ignore.

Enough. For more information on how to use this, consult the source code or send me a letter. :-)

ytalk

Part I: User Commands730

X11 INTERFACE
If the DISPLAY environment variable is defined when ytalk starts up, then ytalk will attempt to communicate with that X
server. A window will be created for you and each user you are connected to. The X11 Interface can be disabled either by
specifying -x on the command line or by putting this line into your .ytalkrc file:

turn X off

A window is created for each individual user in the conversation. If the input focus is in the main window (the one with
ytalk in the title bar) then anything typed will be sent to all connected users. If the input focus is in one of the user’s
windows, then anything typed will be sent as an aside to only that user. If the aside option is turned off, then ytalk will beep
and not accept anything typed when the input focus is not in the main window.

ytalk consults the X11 Resource Database for these user-definable configuration options:

ytalk.display: X server to connect to, defaulting to the DISPLAY environment variable.

ytalk.reverse: Reverse black/white pixels.

ytalk.font: Font to use, defaulting to 9x15.

ytalk.geometry: Window size, defaulting to 80x24.

FUTURE WORK
Work is being done on the following ideas:

■ Private conversations that do not get interrupted or transmitted to all ytalk connections
■ A dedicated ytalk daemon

FILES
/usr/local/etc/ytalkrc Systemwide defaults file.

$HOME/.ytalkrc User’s local configuration file. This file overrides options set in
the system ytalkrc file.

AUTHOR
Britt Yenne (yenne@austin.eds.com)

CONTRIBUTORS
Special thanks to Carl Edman for numerous code patches, beta testing, and comments. I think this guy spends as much time
on ytalk as I do. Special thanks to Tobias Hahn and Geoff W. for beta testing and suggestions. Thanks to Sitaram
Ramaswamy for the original ytalk man page. Thanks to Magnus Hammerin for Solaris 2.* support. Thanks to Jonas
Yngvesson for aside messages in X. Thanks to Andreas Stolcke for fixing the X resource database calls. Thanks to John
Vanderpool, Shih-Chen Huang, Andrew Myers, Duncan Sinclair, Evan McLean, and Larry Schwimmer for comments and
ideas. The README file shipped with ytalk gives detailed attributions.

BUGS
If you have any ideas, comments, or questions, I’d be happy to hear from you at ytalk@austin.eds.com.

24 June 1993

yuvplittoppm
yuvplittoppm—Convert a Y-, a U-, and a V- file into a portable pixmap.

SYNOPSIS
yuvsplittoppm basename width height [-ccir601]

731

DESCRIPTION
Reads three files, containing the YUV components, as input. These files are basename.Y, basename.U and basename.V. Produces
a portable pixmap on stdout.

Since the YUV files are raw files, the dimensions width and height must be specified on the command line.

OPTIONS
-ccir601 Assumes that the YUV triplets are scaled into the smaller range

of the CCIR 601 (MPEG) standard. Otherwise, the JFIF
(JPEG) standard is assumed.

SEE ALSO
ppmtoyuvsplit(1), yuvtoppm(1), ppm(5)

AUTHOR
Marcel Wijkstra (<wijkstra@fwi.uva.nl>), based on ppmtoyuvsplit

26 August 1993

yuvtoppm
yuvtoppm—Convert Abekas YUV bytes into a portable pixmap

SYNOPSIS
yuvtoppm width height [imagedata]

DESCRIPTION
Reads raw Abekas YUV bytes as input. Produces a portable pixmap as output. The input file is just YUV bytes. You have to
specify the width and height on the command line, since the program obviously can’t get them from the file. The maxval is
assumed to be 255.

SEE ALSO
ppmtoyuv(1), ppm(5)

AUTHOR
Marc Boucher (<marc@PostImage.COM>)), based on Example Conversion Program, A60/A64 Digital Video Interface Manual,
page 69. Copyright (c) 1991 by DHD PostImage, Inc. Copyright (c) 1987 by Abekas Video Systems, Inc.

25 March 1991

zcmp, zdiff
zcmp, zdiff—Compare compressed files

SYNOPSIS
zcmp [cmp_options] file1 [file2]
zdiff [diff_options] file1 [file2]

zcmp, zdiff

Part I: User Commands732

DESCRIPTION
Zcmp and zdiff are used to invoke the cmp or the diff program on compressed files. All options specified are passed directly to
cmp or diff. If only one file is specified, then the files compared are file1 and an uncompressed file1.gz. If two files are
specified, then they are uncompressed if necessary and fed to cmp or diff. The exit status from cmp or diff is preserved.

SEE ALSO
cmp(1), diff(1), zmore(1), zgrep(1), znew(1), zforce(1), gzip(1), gzexe(1)

BUGS
Messages from the cmp or diff programs refer to temporary filenames instead of those specified.

zeisstopnm
zeisstopnm—Convert a Zeiss confocal file into a portable anymap

SYNOPSIS
zeisstopnm [-pgm j -ppm][zeissfile]

DESCRIPTION
Reads a Zeiss confocal file as input. Produces a portable anymap as output. The type of the output file depends on the input
file—if it’s grayscale, a pgm file will be produced; otherwise, it will be a ppm file. The program tells you which type it is
writing.

OPTIONS
-pgm Force the output to be a pgm file

-ppm Force the output to be a ppm file

SEE ALSO
pnm(5)

AUTHOR
Copyright (c) 1993 by Oliver Trepte.

15 June 1993

zforce
zforce—Force a .gz extension on all gzip files

SYNOPSIS
zforce [name ...]

DESCRIPTION
zforce forces a .gz extension on all gzip files so that gzip will not compress them twice. This can be useful for files with
names truncated after a file transfer. On systems with a 14-character limitation on filenames, the original name is truncated
to make room for the .gz suffix. For example, 12345678901234 is renamed to 12345678901.gz. A filename such as foo.tgz is left
intact.

733

SEE ALSO
gzip(1), znew(1), zmore(1), zgrep(1), zdiff(1), gzexe(1)

zgrep
zgrep—Search possibly compressed files for a regular expression

SYNOPSIS
zgrep [grep_options] [-e] pattern filename...

DESCRIPTION
zgrep is used to invoke the grep on compressed or gziped files. All options specified are passed directly to grep. If no file is
specified, then the standard input is decompressed if necessary and fed to grep. Otherwise, the given files are uncompressed if
necessary and fed to grep.

If zgrep is invoked as zegrep or zfgrep, then egrep or fgrep is used instead of grep. If the GREP environment variable is set,
zgrep uses it as the grep program to be invoked. For example,

for sh: GREP=fgrep zgrep string files for csh: (setenv GREP fgrep; zgrep string files)

AUTHOR
Charles Levert (charles@comm.polymtl.ca)

SEE ALSO
grep(1), egrep(1), fgrep(1), zdiff(1), zmore(1), znew(1), zforce(1), gzip(1), gzexe(1)

zmore
zmore—File perusal filter for crt viewing of compressed text

SYNOPSIS
zmore [name ...]

DESCRIPTION
zmore is a filter that allows examination of compressed or plain text files one screenful at a time on a soft-copy terminal. zmore
works on files compressed with compress, pack, or gzip, and also on uncompressed files. If a file does not exist, zmore looks for
a file of the same name with the addition of a .gz, .z, or .Z suffix.

zmore normally pauses after each screenful, printing –More– at the bottom of the screen. If the user then types a carriage
return, one more line is displayed. If the user hits a space, another screenful is displayed. Other possibilities are enumerated
later.

zmore looks in the file /etc/termcap to determine terminal characteristics, and to determine the default window size. On a
terminal capable of displaying 24 lines, the default window size is 22 lines. To use a pager other than the default more, set
environment variable PAGER to the name of the desired program, such as less.

Other sequences that may be typed when zmore pauses, and their effects, are as follows (i is an optional integer argument,
defaulting to 1) :

i <space> Display i more lines, (or another screenful if no argument is
given).

ˆD Display 11 more lines (a “scroll”). If i is given, then the scroll
size is set to i.

d Same as ˆD (control-D)

zmore

Part I: User Commands734

i z Same as typing a space except that i, if present, becomes the
new window size. Note that the window size reverts back to
the default at the end of the current file.

i s Skip i lines and print a screenful of lines.

i f Skip i screenfuls and print a screenful of lines.

q or Q Quit reading the current file; go on to the next (if any).

e or q When the prompt –More–(Next file: file) is printed, this
command causes zmore to exit.

s When the prompt –More–(Next file: file) is printed, this
command causes zmore to skip the next file and continue.

= Display the current line number.

i /expr Search for the ith occurrence of the regular expression expr. If
the pattern is not found, zmore goes on to the next file (if any).
Otherwise, a screenful is displayed, starting two lines before
the place where the expression was found. The user’s erase and
kill characters may be used to edit the regular expression.
Erasing back past the first column cancels the search
command.

i n Search for the ith occurrence of the last regular expression
entered.

!command Invoke a shell with command. The character ! in command is
replaced with the previous shell command. The sequence \! is
replaced by !.

:q or :Q Quit reading the current file; go on to the next (if any) (same
as q or Q).

. (dot) Repeat the previous command.

The commands take effect immediately; that is, it is not necessary to type a carriage return. Up to the time when the
command character itself is given, the user may hit the line kill character to cancel the numerical argument being formed. In
addition, the user may hit the erase character to redisplay the –More– message.

At any time when output is being sent to the terminal, the user can hit the quit key (normally Control–n). zmore will stop
sending output, and will display the usual –More– prompt. The user may then enter one of the preceding commands in the
normal manner. Unfortunately, some output is lost when this is done because any characters waiting in the terminal’s output
queue are flushed when the quit signal occurs.

The terminal is set to noecho mode by this program so that the output can be continuous. What you type will thus not show
on your terminal, except for the / and ! commands.

If the standard output is not a teletype, then zmore acts just like zcat, except that a header is printed before each file.

FILES
/etc/termcap Terminal database

SEE ALSO
more(1), gzip(1), zdiff(1), zgrep(1), znew(1), zforce(1), gzexe(1)

znew
znew—Recompress Z files to GZ files

SYNOPSIS
znew [-ftv9PK] [name.Z ...]

735

DESCRIPTION
znew recompresses files from Z (compress) format to GZ (gzip) format. If you want to recompress a file already in gzip
format, rename the file to force a .Z extension, then apply znew.

OPTIONS
-f Force recompression from Z to GZ format even if a GZ file

already exists.

-t Test the new files before deleting originals.

-v Verbose. Display the name and percentage reduction for each
file compressed.

-9 Use the slowest compression method (optimal compression).

-P Use pipes for the conversion to reduce disk space usage.

-K Keep a Z file when it is smaller than the GZ file.

SEE ALSO
gzip(1), zmore(1), zdiff(1), zgrep(1), zforce(1), gzexe(1), compress(1)

BUGS
znew does not maintain the timestamp with the -P option if cpmod(1) is not available and touch(1) does not support the -r
option.

znew

Part I: User Commands736

737

System Calls

Part II:

Part II: System Calls738

intro
intro—Introduction to system calls

DESCRIPTION
This chapter describes the Linux system calls.

CALLING DIRECTLY
In most cases, it is unnecessary to invoke a system call directly, but there are times when the standard C library does not
implement a nice function call for you.

SYNOPSIS
#include <linux/unistd.h>

A _syscall macro

Desired system call

SETUP
The important thing to know about a system call is its prototype. You need to know how many arguments, their types, and
the function return type. Six macros make the actual call into the system easier. They have the form

syscallX(type,name,type1,arg1,type2,arg2,...)

where

X 0–5, which are the number of arguments taken by the system call

type The return type of the system call

name The name of the system call

typeN The Nth argument’s type

argN The name of the Nth argument

These macros create a function called name with the arguments you specify. Once you include _syscall() in your source file,
you call the system call by name.

EXAMPLE
{
 struct sysinfo s_info;
 int error;

 error = sysinfo(&s_info);
 printf(“code error = %d\n”, error);
 printf(“Uptime = %ds\nLoad: 1 min %d / 5 min %d / 15 min %d\n”
 “RAM: total %d / free %d / shared %d\n”
 “Memory in buffers = %d\nSwap: total %d / free %d\n”
 “Number of processes = %d\n”,
 s_info.uptime, s_info.loads[0],
 s_info.loads[1], s_info.loads[2],
 s_info.totalram, s_info.freeram,
 s_info.sharedram, s_info.bufferram,
 s_info.totalswap, s_info.freeswap,
 s_info.procs);
 return(0);
 }

739

SAMPLE OUTPUT
code error = 0
uptime = 502034s
Load: 1 min 13376 / 5 min 5504 / 15 min 1152
RAM: total 15343616 / free 827392 / shared 8237056
Memory in buffers = 5066752
Swap: total 27881472 / free 24698880
Number of processes = 40

NOTES
The _syscall() macros do not produce a prototype. You might have to create one, especially for C++ users.

System calls are not required to return only positive or negative error codes. You need to read the source to be sure how it
will return errors. Usually, it is the negative of a standard error code, for example, –EPERM. The _syscall() macros will return
the result r of the system call when r is nonnegative, but will return –1 and set the variable errno to –r when r is negative.

Some system calls, such as mmap, require more than five arguments. These are handled by pushing the arguments on the stack
and passing a pointer to the block of arguments.

When defining a system call, the argument types must be passed by value or by pointer (for aggregates such as structs).

FILES
/usr/include/linux/unistd.h

AUTHORS
Look at the header of the manual page for the author(s) and copyright conditions. Note that these can be different from page
to page.

Linux 1.2.13, 22 May 1996

exit
exit—Terminate the current process

SYNOPSIS
#include <unistd.h>
void exit(int status);

DESCRIPTION
exit terminates the calling process immediately. Any open file descriptors belonging to the process are closed; any children of
the process are inherited by process 1, init, and the process’s parent is sent a SIGCHLD signal.

status is returned to the parent process as the process’s exit status and can be collected using one of the wait family of calls.

RETURN VALUE
exit never returns.

CONFORMS TO
SVID, AT&T, POSIX, X/OPEN, BSD 4.3

NOTES
exit does not call any functions registered with the ANSI C atexit function and does not flush standard I/O buffers. To do
these things, use exit(3).

exit

Part II: System Calls740

SEE ALSO
fork(2), execve(2), waitpid(2), wait4(2), kill(2), wait(3), exit(3)

Linux, 21 July 1993

accept
accept—Accept a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
int accept(int s, struct sockaddr *addr,int*addrlen);

DESCRIPTION
The argument s is a socket that has been created with socket(2), bound to an address with bind(2), and is listening for
connections after a listen(2). The accept function extracts the first connection request on the queue of pending connec-
tions, creates a new socket with the same properties of s, and allocates a new file descriptor for the socket. If no pending
connections are present on the queue and the socket is not marked as nonblocking, accept blocks the caller until a connec-
tion is present. If the socket is marked nonblocking and no pending connections are present on the queue, accept returns an
error as described below. The accepted socket may not be used to accept more connections. The original socket s remains
open.

The argument addr is a result parameter that is filled in with the address of the connecting entity, as known to the communi-
cations layer. The exact format of the addr parameter is determined by the domain in which the communication is occurring.
The addrlen is a value-result parameter; it should initially contain the amount of space pointed to by addr; on return it will
contain the actual length (in bytes) of the address returned. This call is used with connection-based socket types, currently
with SOCK_STREAM.

It is possible to select(2) a socket for the purposes of doing an accept by selecting it for read.

For certain protocols that require an explicit confirmation, such as ISO and DATAKIT, accept can be thought of as merely
dequeuing the next connection request and not implying confirmation. Confirmation can be implied by a normal read or
write on the new file descriptor, and rejection can be implied by closing the new socket.

One can obtain user connection request data without confirming the connection by issuing a recvmsg(2) call with a msg
iovlen of 0 and a nonzero msg controllen, or by issuing a getsockopt(2) request. Similarly, one can provide user connection
rejection information by issuing a sendmsg(2) call providing only the control information, or by calling setsockopt(2).

RETURN VALUES
The call returns –1 on error. If it succeeds, it returns a nonnegative integer that is a descriptor for the accepted socket.

ERRORS
EBADF The descriptor is invalid.

ENOTSOCK The descriptor references a file, not a socket.

EOPNOTSUPP The referenced socket is not of type SOCK_STREAM.

EFAULT The addr parameter is not in a writable part of the user address space.

EWOULDBLOCK The socket is marked nonblocking and no connections are present to be accepted.

HISTORY
The accept function appeared in BSD 4.2.

741

SEE ALSO
bind(2), connect(2), listen(2), select(2), socket(2)

BSD Man Page, 24 July 1993

access
access—Checks user’s permissions for a file

SYNOPSIS
#include <unistd.h>
int access(const char *pathname,intmode);

DESCRIPTION
access checks whether the process would be allowed to read, write, or test for existence of the file (or other file system object)
whose name is pathname. If pathname is a symbolic link, permissions of the file referred by this symbolic link are tested.

mode is a mask consisting of one or more of R_OK, W_OK, X_OK, and F_OK.

R_OK, W_OK, and X_OK request checking whether the file exists and has read, write, and execute permissions, respectively. F_OK
just requests checking for the existence of the file.

The tests depend on the permissions of the directories occurring in the path to the file, as given in pathname, and on the
permissions of directories and files referred by symbolic links encountered on the way.

The check is done with the process’s real UID and GID, rather than with the effective IDs as is done when actually
attempting an operation. This is to allow set-UID programs to easily determine the invoking user’s authority.

Only access bits are checked, not the file type or contents. Therefore, if a directory is found to be “writable,” it probably
means that files can be created in the directory, and not that the directory can be written as a file. Similarly, a DOS file may
be found to be “executable,” but the execve(2) call will still fail.

RETURN VALUE
On success (all requested permissions granted), 0 is returned. On error (at least 1 bit in mode asked for a permission that is
denied, or some other error occurred), –1 is returned and errno is set appropriately.

ERRORS
EACCES The requested access would be denied, either to the file itself or one of the directories in

pathname.

EFAULT pathname points outside your accessible address space.

EINVAL mode was incorrectly specified.

ENAMETOOLONG pathname is too long.

ENOENT A directory component in pathname would have been accessible but does not exist or was a
dangling symbolic link.

ENOTDIR A component used as a directory in pathname is not, in fact, a directory.

ENOMEM Insufficient kernel memory was available.

ELOOP pathname contains a reference to a circular symbolic link, that is, a symbolic link containing
a reference to itself.

RESTRICTIONS
access returns an error if any of the access types in the requested call fails, even if other types might be successful. access may
not work correctly on NFS file systems with UID mapping enabled because UID mapping is done on the server and hidden
from the client, which checks permissions.

access

Part II: System Calls742

CONFORMS TO
SVID, AT&T, POSIX, X/OPEN, BSD 4.3

SEE ALSO
stat(2), open(2), chmod(2), chown(2), setuid(2), setgid(2)

Linux 1.2.13, 17 March 1996

acct
acct—Switches process accounting on or off

SYNOPSIS
#include <unistd.h>
int acct(const char *filename);

DESCRIPTION
Warning: Since this function is not implemented as of Linux 0.99.11, it will always return –1 and set errno to ENOSYS. If
acctkit is installed, the function performs as advertised.

When called with the name of an existing file as argument, accounting is turned on and records for each terminating process
are appended to filename as it terminates. An argument of NULL causes accounting to be turned off.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

NOTES
No accounting is produced for programs running when a crash occurs. In particular, nonterminating processes are never
accounted for.

SEE ALSO
acct(5)

Linux 0.99.11, 10 August 1993

adjtimex
adjtimex—Tunes kernel clock

SYNOPSIS
#include <sys/timex.h>
int adjtimex(struct timex *buf);

DESCRIPTION
Linux uses David Mill’s clock adjustment algorithm. adjtimex reads and optionally sets adjustment parameters for this
algorithm.

adjtimex takes a pointer to a timex structure, updates kernel parameters from field values, and returns the same structure with
current kernel values. This structure is declared as follows:

743

struct timex
 {
 int mode; /* mode selector */
 long offset; /* time offset (usec) */
 long frequency; /* frequency offset (scaled ppm) */
 long maxerror; /* maximum error (usec) */
 long esterror; /* estimated error (usec) */
 int status; /* clock command/status */
 long time_constant; /* pll time constant */
 long precision; /* clock precision (usec) (read only) */
 long tolerance; /* clock frequency tolerance (ppm)
 (read only) */
 struct timeval time; /* (read only) */
 long tick; /* usecs between clock ticks */
 };

The mode field determines which parameters, if any, to set. It may contain a bitwise-or combination of zero or more of the
following bits:

#define ADJ_OFFSET 0x0001 /* time offset */
 #define ADJ_FREQUENCY 0x0002 /* frequency offset */
 #define ADJ_MAXERROR 0x0004 /* maximum time error */
 #define ADJ_ESTERROR 0x0008 /* estimated time error */
 #define ADJ_STATUS 0x0010 /* clock status */
 #define ADJ_TIMECONST 0x0020 /* pll time constant */
 #define ADJ_TICK 0x4000 /* tick value */
 #define ADJ_OFFSET_SINGLESHOT 0x8001 /* old-fashioned adjtime */

Ordinary users are restricted to a 0 value for mode. Only the superuser may set any parameters.

RETURN VALUE
On success, adjtimex returns the value of buf.status:

#define TIME OK 0 /* clock synchronized */
#define TIME INS 1 /* insert leap second */
#define TIME DEL 2 /* delete leap second */
#define TIME OOP 3 /* leap second in progress */
#define TIME BAD 4 /* clock not synchronized */

On failure, adjtimex returns –1 and sets errno.

ERRORS
EFAULT buf does not point to writable memory.

EPERM buf.mode is nonzero and the user is not superuser.

EINVAL An attempt is made to set buf.offset to a value outside the range -131071 to +131071, or
to set buf.status to a value other than those listed above, or to set buf.tick to a value
outside the range 900000/HZ to 1100000/HZ,where HZ is the system timer interrupt
frequency.

SEE ALSO
settimeofday(2)

Linux 1.2.4, 15 April 1995

adjtimex

Part II: System Calls744

alarm
alarm—Sets an alarm clock for delivery of a signal

SYNOPSIS
#include <unistd.h>
unsigned int alarm(unsigned int seconds);

DESCRIPTION
alarm arranges for a SIGALRM signal to be delivered to the process in seconds seconds.

If seconds is 0, no new alarm is scheduled.

In any event, any previously set alarm is canceled.

RETURN VALUE
alarm returns the number of seconds remaining until any previously scheduled alarm was due to be delivered, or 0 if there
was no previously scheduled alarm.

NOTES
alarm and setitimer share the same timer; calls to one will interfere with use of the other.

Scheduling delays can, as ever, cause the execution of the process to be delayed by an arbitrary amount of time.

CONFORMS TO
SVID, AT&T, POSIX, X/OPEN, BSD 4.3

SEE ALSO
setitimer(2), signal(2), sigaction(2), gettimeofday(2), select(2), pause(2), sleep(3)

Linux, 21 July 1993

bdflush
bdflush—Starts, flushes, or tunes the buffer-dirty-flush daemon

SYNOPSIS
int bdflush(int func, long *address);
int bdflush(int func, long data);

DESCRIPTION
bdflush starts, flushes, or tunes the buffer-dirty-flush daemon. Only the superuser may call bdflush.

If func is negative or 0 and no daemon has been started, bdflush enters the daemon code and never returns.

If func is 1, some dirty buffers are written to disk.

If func is 2 or more and is even (low bit is 0), address is the address of a long word, and the tuning parameter numbered
(func–2)/2 is returned to the caller in that address.

If func is 3 or more and is odd (low bit is 1), data is a long word and the kernel sets tuning parameter numbered (func–3)/2
to that value.

The set of parameters, their values, and their legal ranges are defined in the kernel source file fs/buffer.c.

745

RETURN VALUE
If func is negative or 0 and the daemon successfully starts, bdflush never returns. Otherwise, the return value is 0 on success
and –1 on failure, with errno set to indicate the error.

ERRORS
EPERM Caller is not superuser.

EFAULT address points outside your accessible address space.

EBUSY An attempt was made to enter the daemon code after another process has already been
entered.

EINVAL An attempt was made to read or write an invalid parameter number, or to write an invalid
value to a parameter.

SEE ALSO
fsync(2), sync(2), update(8), sync(8)

Linux 1.2.4, 15 April 1995

bind
bind—Binds a name to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
int bind(int sockfd, struct sockaddr *my_addr,intaddrlen);

DESCRIPTION
bind gives the socket, sockfd, the local address my_addr. my_addr is addrlen bytes long. Traditionally, this is called assigning a
name to a socket. (When a socket is created with socket(2), it exists in a name space—an address family—but has no name
assigned.)

NOTES
Binding a name in the UNIX domain creates a socket in the file system that must be deleted by the caller—using unlink(2)
—when it is no longer needed.

The rules used in name binding vary between communication domains. Consult the manual entries in section 4 for detailed
information.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned, and errno is set appropriately.

ERRORS
EBADF sockfd is not a valid descriptor.

EINVAL The socket is already bound to an address. This may change in the future. See linux/unix/
sock.c for details.

EACCES The address is protected and the user is not the superuser.

The following errors are specific to UNIX domain (AF_UNIX) sockets:

EINVAL addr len was wrong, or the socket was not in the AF_UNIX family.

EROFS The socket inode would reside on a read-only file system.

EFAULT my_addr points outside your accessible address space.

bind

Part II: System Calls746

ENAMETOOLONG my_addr is too long.

ENOENT The file does not exist.

ENOMEM Insufficient kernel memory was available.

ENOTDIR A component of the path prefix is not a directory.

EACCES Search permission is denied on a component of the path prefix.

ELOOP my_addr contains a circular reference (that is, via a symbolic link).

HISTORY
The bind function call appeared in BSD 4.2.

SEE ALSO
accept(2), connect(2), listen(2), socket(2), getsockname(2)

Linux 0.99.11, 23 July 1993

brk, sbrk
brk, sbrk—Change data segment size

SYNOPSIS
#include <unistd.h>
int brk(void *end_data_segment);
void *sbrk(ptrdiff tincrement);

DESCRIPTION
brk sets the end of the data segment to the value specified by end_data_segment.

end_data_segment must be greater than the end of the text segment and it must be 16KB before the end of the stack.

sbrk increments the program’s data space by increment bytes. sbrk isn’t a system call; it is just a C library wrapper.

RETURN VALUE
On success, brk returns 0, and sbrk returns a pointer to the start of the new area. On error, –1 is returned and errno is set to
ENOMEM.

CONFORMS TO
BSD 4.3

brk and sbrk are not defined in the C standard and are deliberately excluded from the POSIX.1 standard (see paragraphs
B.1.1.1.3 and B.8.3.3).

SEE ALSO
execve(2), getrlimit(2), malloc(3), end(3)

Linux 0.99.11, 21 July 1993

cacheflush
cacheflush—Flushes contents of the instruction and/or data cache

SYNOPSIS

747

#include <asm/cachectl.h>
int cacheflush(char *addr,intnbytes,intcache);

DESCRIPTION
cacheflush flushes contents of indicated cache(s) for user addresses in the range addr to (addr+nbytes-1). The cache may be
one of the following:

ICACHE Flush the instruction cache.

DCACHE Write back to memory and invalidate the affected valid cache lines.

BCACHE Same as (ICACHE|DCACHE).

RETURN VALUE
cacheflush returns 0 on success or -1 on error. If errors are detected, errno will indicate the error.

ERRORS
EINVAL The cache parameter is not one of ICACHE, DCACHE, or BCACHE.

EFAULT Some or all of the address range addr to (addr+nbytes-1) is not accessible.

BUGS
The current implementation ignores the addr and nbytes parameters. Therefore, the whole cache is always flushed.

NOTE
This system call is only available on MIPS-based systems.

SEE ALSO
cachectl(2)

Linux, 27 June 95

chdir, fchdir
chdir, fchdir—Changes the working directory

SYNOPSIS
#include <unistd.h>
int chdir(const char *path);
int fchdir(int fd);

DESCRIPTION
chdir changes the current directory to that specified in path.

fchdir is identical to chdir, only the directory is given as an open file descriptor.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned, and errno is set appropriately.

ERRORS
Depending on the file system, other errors can be returned. The more general errors are listed here:

EPERM The process does not have execute permission on the directory.

EFAULT path points outside your accessible address space.

ENAMETOOLONG path is too long.

chdir, fchdir

Part II: System Calls748

EBADF fd is not a valid file descriptor.

ENOENT The file does not exist.

ENOMEM Insufficient kernel memory was available.

ENOTDIR A component of the path prefix is not a directory.

EACCES Search permission is denied on a component of the path prefix.

ELOOP path contains a circular reference (that is, via a symbolic link)

SEE ALSO
getcwd(3), chroot(2)

Linux 1.2.4, 15 April 1995

chmod, fchmod
chmod, fchmod—Changes permissions of a file

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
int chmod(const char *path,modetmode);
int fchmod(int fildes,modetmode);

DESCRIPTION
The mode of the file given by path or referenced by filedes is changed.

Modes are specified by oring the following:

S_ISUID 04000 Set user ID on execution

S_ISGID 02000 Set group ID on execution

S_ISVTX 01000 Sticky bit

S_IRUSR (S_IREAD) 00400 Read by owner

S_IWUSR (S_IWRITE) 00200 Write by owner

S_IXUSR (S_IEXEC) 00100 Execute/search by owner

S_IRGRP 00040 Read by group

S_IWGRP 00020 Write by group

S_IXGRP 00010 Execute/search by group

S_IROTH 00004 Read by others

S_IWOTH 00002 Write by others

S_IXOTH 00001 Execute/search by others

The effective UID of the process must be 0 or must match the owner of the file.

The effective UID or GID must be appropriate for setting execution bits.

Depending on the file system, set user ID and set group ID execution bits may be turned
off if a file is written. On some file systems, only the superuser can set the sticky bit, which
may have a special meaning (that is, for directories, a file can only be deleted by the owner
or the superuser).

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

749

ERRORS
Depending on the file system, other errors can be returned. The more general errors for chmod are listed here:

EPERM The effective UID does not match the owner of the file and is not 0.

EROFS The named file resides on a read-only file system.

EFAULT path points outside your accessible address space.

ENAMETOOLONG path is too long.

ENOENT The file does not exist.

ENOMEM Insufficient kernel memory was available.

ENOTDIR A component of the path prefix is not a directory.

EACCES Search permission is denied on a component of the path prefix.

ELOOP path contains a circular reference (that is, via a symbolic link)

The general errors for fchmod are listed here:

EBADF The descriptor is not value.

ENOENT See above.

EPERM See above.

EROFS See above.

SEE ALSO
open(2), chown(2), stat(2)

Linux 0.99.11, 21 July 1993

chown, fchown
chown, fchown—Changes ownership of a file

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>
int chown(const char *path, uid t owner, gid_t group);
int fchown(int fd, uid t owner, gid_t group);

DESCRIPTION
The owner of the file specified by path or by fd is changed. Only the superuser may change the owner of a file. The owner of
a file may change the group of the file to any group of which that owner is a member. The superuser may change the group
arbitrarily.

If the owner or group is specified as –1, that ID is not changed.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

ERRORS
Depending on the file system, other errors can be returned. The more general errors for chown are listed here:

EPERM The effective UID does not match the owner of the file, and is not 0; or the owner or group
were specified incorrectly.

EROFS The named file resides on a read-only file system.

EFAULT path points outside your accessible address space.

chown, fchown

Part II: System Calls750

ENAMETOOLONG path is too long.

ENOENT The file does not exist.

ENOMEM Insufficient kernel memory was available.

ENOTDIR A component of the path prefix is not a directory.

EACCES Search permission is denied on a component of the path prefix.

ELOOP path contains a circular reference (that is, via a symbolic link).

The general errors for fchown are listed here:

EBADF The descriptor is not value.

ENOENT See above.

EPERM See above.

EROFS See above.

NOTES
chown does not follow symbolic links. The prototype for fchown is only available if USE BSD is defined.

SEE ALSO
chmod(2), flock(2)

Linux 0.99.11, 21 July 1993

chroot
chroot—Changes root directory

SYNOPSIS
#include <unistd.h>
int chroot(const char *path);

DESCRIPTION
chroot changes the root directory to that specified in path. This directory will be used for pathnames beginning with /. The
root directory is inherited by all children of the current process.

Only the superuser may change the root directory.

Note that this call does not change the current working directory, so that . can be outside the tree rooted at /.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

ERRORS
Depending on the file system, other errors can be returned. The more general errors are listed here:

EPERM The effective UID does not match the owner of the file, and is not 0; or the owner or group
were specified incorrectly.

EROFS The named file resides on a read-only file system.

EFAULT path points outside your accessible address space.

ENAMETOOLONG path is too long.

ENOENT The file does not exist.

ENOMEM Insufficient kernel memory was available.

751

ENOTDIR A component of the path prefix is not a directory.

EACCES Search permission is denied on a component of the path prefix.

ELOOP path contains a circular reference (that is, via a symbolic link)

SEE ALSO
chdir(2)

Linux 1.1.46, 21 August 1994

clone
clone—Creates a child process

SYNOPSIS
#include <linux/sched.h>
#include <linux/unistd.h>

pid t clone(void *sp, unsigned long flags);

DESCRIPTION
clone is an alternate interface to fork, with more options. fork is equivalent to clone(0, SIGCLD|COPYVM).

If sp is nonzero, the child process uses sp as its initial stack pointer.

The low byte of flags contains the signal sent to the parent when the child dies. flags may also be bitwise ored with either or
both of COPYVM and COPYFD.

If COPYVM is set, child pages are copy-on-write images of the parent pages. If COPYVM is not set, the child process shares the same
pages as the parent, and both parent and child may write on the same data.

If COPYFD is set, the child’s file descriptors are copies of the parent’s file descriptors. If COPYFD is not set, the child’s file
descriptors are shared with the parent.

RETURN VALUE
On success, the PID of the child process is returned in the parent’s thread of execution, and 0 is returned in the child’s
thread of execution. On failure, a –1 will be returned in the parent’s context, no child process will be created, and errno will
be set appropriately.

ERRORS
ENOSYS clone will always return this error, unless your kernel was compiled with

CLONE_ACTUALLY_WORKS_OK defined.

EAGAIN fork cannot allocate sufficient memory to copy the parent’s page tables and allocate a task
structure for the child.

BUGS
By default, CLONE_ACTUALLY_WORKS_OK is not defined.

There is no entry for clone in /lib/libc.so.4.5.26.

Comments in the kernel as of 1.1.46 indicate that it mishandles the case where COPYVM is not set.

SEE ALSO
fork(2)

Linux 1.2.9, 10 June 1995

clone

Part II: System Calls752

close
close—Closes a file descriptor

SYNOPSIS
#include <unistd.h>
int close(int fd);

DESCRIPTION
close closes a file descriptor so that it no longer refers to any file and may be reused. Any locks held on the file it was
associated with, and owned by the process, are removed (regardless of the file descriptor that was used to obtain the lock).

If fd is the last copy of a particular file descriptor, the resources associated with it are freed; if the descriptor was the last
reference to a file that has been removed using unlink, the file is deleted.

RETURN VALUE
close returns 0 on success, or –1 if an error occurred.

ERRORS
EBADF fd isn’t a valid open file descriptor.

CONFORMS TO
SVID, AT&T, POSIX, X/OPEN, BSD 4.3

NOTES
Not checking the return value of close is a common but nevertheless serious programming error. File system implementa-
tions that use techniques as write-behind to increase performance may lead to write(2) succeeding, although the data has not
been written yet. The error status may be reported at a later write operation, but it is guaranteed to be reported on closing
the file. Not checking the return value when closing the file may lead to silent loss of data. This can especially be observed
with NFS and disk quotas.

SEE ALSO
open(2), fcntl(2), shutdown(2), unlink(2), fclose(3)

14 April 1996

connect
connect—Initiates a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
int connect(int sockfd, struct sockaddr *serv_addr,intaddrlen);

DESCRIPTION
The parameter sockfd is a socket. If it is of type SOCK_DGRAM, this call specifies the peer with which the socket is to be
associated; this address is that to which datagrams are to be sent, and the only address from which datagrams are to be
received. If the socket is of type SOCK_STREAM, this call attempts to make a connection to another socket. The other socket is

753

specified by serv_addr, which is an address in the communications space of the socket. Each communications space interprets
the serv_addr, parameter in its own way. Generally, stream sockets may successfully connect only once; datagram sockets
may use connect multiple times to change their association. Datagram sockets may dissolve the association by connecting to
an invalid address, such as a null address.

RETURN VALUE
If the connection or binding succeeds, 0 is returned. On error, –1 is returned and errno is set appropriately.

ERRORS
See the Linux kernel source code for details.

HISTORY
The connect function call first appeared in BSD 4.2.

SEE ALSO
accept(2), bind(2), listen(2), socket(2), getsockname(2)

Linux 0.99.11, 23 July 1993

dup, dup2
dup, dup2—Duplicate a file descriptor

SYNOPSIS
#include <unistd.h>
int dup(int oldfd);
int dup2(int oldfd,intnewfd);

DESCRIPTION
dup and dup2 create a copy of the file descriptor oldfd.

The old and new descriptors can be used interchangeably. They share locks, file position pointers and flags; for example, if
the file position is modified by using lseek on one of the descriptors, the position is also changed for the other.

The two descriptors do not share the close-on-exec flag, however.

dup uses the lowest-numbered unused descriptor for the new descriptor.

dup2 makes newfd be the copy of oldfd, closing newfd first if necessary.

RETURN VALUE
dup and dup2 return the new descriptor, or –1 if an error occurred (in which case errno is set appropriately).

ERRORS
EBADF oldfd isn’t an open file descriptor, or newfd is out of the allowed range for file descriptors.

EMFILE The process already has the maximum number of file descriptors open and tried to open a
new one.

WARNING
The error returned by dup2 is different from that returned by fcntl(...,F_DUPFD,...) when newfd is out of range. On some
systems dup2 also sometimes returns EINVAL like F_DUPFD.

dup, dup2

Part II: System Calls754

CONFORMS TO
SVID, AT&T, POSIX, X/OPEN, BSD 4.3

SEE ALSO
fcntl(2), open(2), close(2).

Linux 1.1.46, 21 August 1994

execve
execve—Execute program

SYNOPSIS
#include <unistd.h>
int execve (const char *filename, const char *argv [], const char *envp[]);

DESCRIPTION
execve() executes the program pointed to by filename. filename must be either a binary executable or a shell script starting
with a line in the format #! interpreter [arg].

execve() does not return on success, and the text, data, bss, and stack of the calling process are overwritten by that of the
program loaded. The program invoked inherits the calling process’s PID, and any open file descriptors that are not set to
close on exec. Signals pending on the parent process are cleared.

If the current program is being ptraced, a SIGTRAP is sent to it after a successful execve().

RETURN VALUE
On success, execve() does not return; on error –1 is returned and errno is set appropriately.

ERRORS
EACCES The file is not a regular file.

EACCES Execute permission is denied for the file.

EPERM The file system is mounted noexec.

EPERM The file system is mounted nosuid and the file has an SUID or SGID bit set.

E2BIG The argument list is too big.

ENOEXEC The magic number in the file is incorrect.

EFAULT filename points outside your accessible address space.

ENAMETOOLONG filename is too long.

ENOENT The file does not exist.

ENOMEM Insufficient kernel memory was available.

ENOTDIR A component of the path prefix is not a directory.

EACCES Search permission is denied on a component of the path prefix.

ELOOP filename contains a circular reference (that is, via a symbolic link).

CONFORMS TO
SVID, AT&T, POSIX, X/OPEN, BSD 4.3

NOTES
SUID and SGID processes can not be ptrace()’d SUID or SGID.

755

A maximum line length of 127 characters is allowed for the first line in a #! executable shell script. This may be circum-
vented by changing the max size of buf, in which case you will become bound by the 1024 byte size of a buffer, which is not
easily worked around.

SEE ALSO
execl(3), fork(2)

Linux 1.1.46, 21 August 1994

fcntl
fcntl—Manipulate file descriptor

SYNOPSIS
#include <unistd.h>
#include <fcntl.h>
int fcntl(int fd,intcmd);
int fcntl(int fd,intcmd,longarg);

DESCRIPTION
fcntl performs one of various miscellaneous operations on fd. The operation in question is determined by cmd:

F_DUPFD Makes arg be a copy of fd, closing fd first if necessary.

The same functionality can be more easily achieved by using dup2(2).

The old and new descriptors may be used interchangeably. They share locks, file position
pointers, and flags; for example, if the file position is modified by using lseek on one of the
descriptors, the position is also changed for the other.

The two descriptors do not share the close-on-exec flag, however.

On success, the new descriptor is returned.

F_GETFD Read the close-on-exec flag. If the low-order bit is 0, the file will remain open across exec;
otherwise, it will be closed.

F_SETFD Set the close-on-exec flag to the value specified by arg (only the least significant bit
is used).

F_GETFL Read the descriptor’s flags (all flags—as set by open(2)—are returned).

F_SETFL Set the descriptor’s flags to the value specified by arg.

Only O_APPEND and O_NONBLOCK may be set.

The flags are shared between copies (made with dup and so on) of the same file descriptor.
The flags and their semantics are described in open(2).

F_GETLK, F_SETLK, Manage discretionary file locks. The third argument arg is a pointer to a struct flock
and F_SETLKW (that may be overwritten by this call).

F_GETLK Return the flock structure that prevents us from obtaining the lock, or set the l type field of
the lock to F_UNLCK if there is no obstruction.

F_SETLK The lock is set (when l type is F_RDLCK or F_WRLCK) or cleared (when it is F_UNLCK).
If the lock is held by someone else, this call returns -1 and sets errno to EACCES or EAGAIN.

F_SETLKW Like F_SETLK, but instead of returning an error, we wait for the lock to be released.

F_GETOWN Get the process ID (or process group) of the owner of a socket.

Process groups are returned as negative values.

F_SETOWN Set the process or process group that owns a socket.

For these commands, ownership means receiving SIGIO or SIG-URG signals.

Process groups are specified using negative values.

fcntl

Part II: System Calls756

RETURN VALUE
The return value depends on the operation:

F_DUPFD The new descriptor.

F_GETFD Value of flag.

F_GETFL Value of flags.

F_GETOWN Value of descriptor owner.

On error, –1 is returned and errno is set appropriately.

ERRORS
EBADF fd is not an open file descriptor.

EINVAL For F_DUPFD, arg is negative or is greater than the maximum allowable value.

EMFILE For F_DUPFD, the process already has the maximum number of file descriptors open.

NOTES
The errors returned by dup2 are different from those returned by F_DUPFD.

CONFORMS TO
SVID, AT&T, POSIX, X/OPEN, BSD 4.3

SEE ALSO
dup2(2), open(2), socket(2).

Linux, 26 September 1995

fdatasync
fdatasync—Synchronizes a file’s in-core data with that on disk

SYNOPSIS
#include <unistd.h>
#ifdef POSIX SYNCHRONIZED IO
int fdatasync(int fd);
#endif

DESCRIPTION
fdatasync flushes all data buffers of a file to disk (before the system call returns). It resembles fsync but is not required to
update the metadata such as access time.

Applications that access databases or log files often write a tiny data fragment (for example, one line in a log file) and then
call fsync immediately in order to ensure that the written data is physically stored on the hard disk. Unfortunately, fsync will
always initiate two write operations: one for the newly written data and another one in order to update the modification time
stored in the inode. If the modification time is not a part of the transaction concept fdatasync can be used to avoid
unnecessary inode disk write operations.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

757

ERRORS
EBADF fd is not a valid file descriptor open for writing.

EROFS, EINVAL fd is bound to a special file which does not support synchronization.

EIO An error occurred during synchronization.

BUGS
Currently (Linux 1.3.86) fdatasync is equivalent to fsync.

CONFORMS TO
POSIX.4

SEE ALSO
fsync(2), B.O. Gallmeister, POSIX.4, O’Reilly, pp. 220–223, 343.

Linux 1.3.86, 13 April 1996

flock
flock—Applies or removes an advisory lock on an open file

SYNOPSIS
#include <sys/file.h>
int flock(int fd,intoperation);

DESCRIPTION
Apply or remove an advisory lock on an open file. The file is specified by fd. Valid operations are given here:

LOCK_SH Shared lock. More than one process may hold a shared lock for a given file at a given time.

LOCK_EX Exclusive lock. Only one process may hold an exclusive lock for a given file at a given time.

LOCK_UN Unlock.

LOCK_NB Don’t block when locking. May be specified (by oring) along with one of the other
operations.

A single file may not have both shared and exclusive locks. A file is locked (that is, the
inode), not the file descriptor. So, dup(2) and fork(2) do not create multiple instances
of a lock.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

ERRORS
EWOULDBLOCK The file is locked and the LOCK_NB flag was selected.

NOTES
Under Linux, flock is implemented as a call to fcntl. Please see fcntl(2) for more details on errors.

SEE ALSO
open(2), close(2), dup(2), execve(2), fcntl(2), fork(2)

Linux 0.99.11, 22 July 1993

flock

Part II: System Calls758

fork, vfork
fork, vfork—Creates a child process

SYNOPSIS
#include <unistd.h>
pid t fork(void);
pid t vfork(void);

DESCRIPTION
fork creates a child process that differs from the parent process only in its PID and PPID, and in the fact that resource
utilizations are set to 0. File locks and pending signals are not inherited.

Under Linux, fork is implemented using copy-on-write pages, so the only penalties incurred by fork are the time and
memory required to duplicate the parent’s page tables and to create a unique task structure for the child.

RETURN VALUE
On success, the PID of the child process is returned in the parent’s thread of execution, and a 0 is returned in the child’s
thread of execution. On failure, a –1 will be returned in the parent’s context, no child process will be created, and errno will
be set appropriately.

ERRORS
EAGAIN fork cannot allocate sufficient memory to copy the parent’s page tables and allocate a task

structure for the child.

BUGS
Under Linux, vfork is merely an alias for fork. fork never returns the error ENOMEM.

CONFORMS TO
SVID, AT&T, POSIX, X/OPEN, BSD 4.3

SEE ALSO
clone(2), execve(2), wait(2)

Linux 1.2.9, 10 June 1995

fsync
fsync—Synchronizes a file’s complete in-core state with that on disk

SYNOPSIS
#include <unistd.h>
int fsync(int fd);

DESCRIPTION
fsync copies all in-core parts of a file to disk.

In some applications, fdatasync is a more efficient alternative to fsync.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

759

ERRORS
EBADF fd is not a valid file descriptor open for writing.

EROFS, EINVAL fd is bound to a special file that does not support synchronization.

EIO An error occurred during synchronization.

CONFORMS TO
POSIX.1b

SEE ALSO
bdflush(2), fdatasync(2), sync(2), update(8), sync(8)

Linux 1.3.85, 13 April 1996

getdents
getdents—Gets directory entries

SYNOPSIS
#include <unistd.h>
#include <linux/dirent.h>
#include <linux/unistd.h>
syscall3(int, getdents, uint, fd, struct dirent *, dirp, uint, count);
int getdents(unsigned int fd, struct dirent *dirp, unsigned int count);

DESCRIPTION
getdents reads several dirent structures from the directory pointed at by fd into the memory area pointed to by dirp. The
parameter count is the size of the memory area.

The dirent structure is declared as follows:

struct dirent
 {
 long d_ino; /* inode number */
 off_t d_off; /* offset to next dirent */
 unsigned short d_reclen; /* length of this dirent */
 char d_name [NAME_MAX+1]; /* file name (null-terminated) */
 }

d_ino is an inode number. d_off is the distance from the start of the directory to the start of the next dirent. d_reclen is the
size of this entire dirent. d_name is a null-terminated filename.

This call supersedes readdir(2).

RETURN VALUE
On success, the number of bytes read is returned. On end of directory, 0 is returned. On error, –1 is returned and errno is set
appropriately.

ERRORS
EBADF Invalid file descriptor fd.

ENOTDIR File descriptor does not refer to a directory.

SEE ALSO
readdir(2), readdir(3)

Linux 1.3.6, 22 July 1995

getdents

Part II: System Calls760

getdomainname, setdomainname
getdomainname, setdomainname—Gets/sets domain name

SYNOPSIS
#include <unistd.h>
int getdomainname(char *name, size_t len);
int setdomainname(const char *name, size_t len);

DESCRIPTION
These functions are used to access or to change the domain name of the current processor.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

ERRORS
EINVAL For getdomainname, name points to NULL or name is longer than len.

EPERM For setdomainname, the caller was not the superuser.

EINVAL For setdomainname, len was too long.

CONFORMS TO
POSIX does not specify these calls.

BUGS
getdomainname is not compliant with other implementations because they always return len bytes, even if name is longer.
Linux, however, returns EINVAL in this case (as of DLL 4.4.1 libraries).

NOTES
Under Linux, getdomainname is implemented at the library level by calling uname(2).

SEE ALSO
gethostname(2), sethostname(2), uname(2)

Linux 0.99.11, 22 July 1993

getdtablesize
getdtablesize—Gets descriptor table size

SYNOPSIS
#include <unistd.h>
int getdtablesize(void);

DESCRIPTION
getdtablesize returns the maximum number of files a process can have open.

NOTES
getdtablesize is implemented as a library function in DLL 4.4.1. This function returns OPEN_MAX (set to 256 in Linux
0.99.11) if OPEN_MAX was defined when the library was compiled. Otherwise, –1 is returned and errno is set to ENOSYS.

761

SEE ALSO
close(2), dup(2), open(2)

Linux 0.99.11, 22 July 1993

getgid, getegid
getgid, getegid—Gets group identity

SYNOPSIS
#include <unistd.h>
gid_t getgid(void);
gid_t getegid(void);

DESCRIPTION
getgid returns the real group ID of the current process.

getegid returns the effective group ID of the current process.

The real ID corresponds to the ID of the calling process. The effective ID corresponds to the set ID bit on the file being
executed.

ERRORS
These functions are always successful.

CONFORMS TO
POSIX, BSD 4.3

SEE ALSO
setregid(2), setgid(2)

Linux 0.99.11, 23 July 1993

getgroups, setgroups
getgroups, setgroups—Gets/sets group access list

SYNOPSIS
#include <unistd.h>
int getgroups(int size, gid_t list[]);
#define_USE_BSD
#include <grp.h>
int setgroups(size_t size, const gid_t *list);

DESCRIPTION
getgroups Up to size supplemental groups are returned in list. If size is 0, list is not modified, but

the total number of supplemental groups for the process is returned.

setgroups Sets the supplemental groups for the process. Only the superuser may use this function.

getgroups, setgroups

Part II: System Calls762

RETURN VALUE
getgroups On success, the number of groups stored in list is returned (if size is 0, however, the

number of supplemental group IDs associated with the process is returned). On error, –1 is
returned and errno is set appropriately.

setgroups On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

ERRORS
EFAULT list has an invalid address.

EPERM For setgroups, the user is not the superuser.

EINVAL For setgroups, gidsetsize is greater than NGROUPS (32 for Linux 0.99.11).

CONFORMS TO
getgroups conforms to POSIX.1 (and is present in BSD 4.3). Since setgroups requires privilege, it is not covered under
POSIX.1.

BUGS
The USE BSD flag probably shouldn’t be required for setgroups.

SEE ALSO
initgroups(3)

Linux 0.99.11, 23 July 1993

gethostid, sethostid
gethostid, sethostid—Gets/sets the unique identifier of the current host

SYNOPSIS
#include <unistd.h>

long int gethostid(void);
int sethostid(long int hostid);

DESCRIPTION
Get or set a unique 32-bit identifier for the current machine. The 32-bit identifier is intended to be unique among all UNIX
systems in existence. This normally resembles the Internet address for the local machine, as returned by gethostbyname(3),
and thus usually never needs to be set.

The sethostid call is restricted to the superuser.

The hostid argument is stored in the file /etc/hostid.

RETURN VALUES
gethostid returns the 32-bit identifier for the current host as set by sethostid(2).

CONFORMS TO
POSIX.1 does not define these functions, but ISO/IEC 9945-1:1990 mentions them in B.4.4.1.

FILES
/etc/hostid

763

SEE ALSO
hostid(1), gethostbyname(3)

Linux 0.99.13, 29 November 1993

gethostname, sethostname
gethostname, sethostname—Gets/sets hostname

SYNOPSIS
#include <unistd.h>
int gethostname(char *name, size_t len);
int sethostname(const char *name, size_t len);

DESCRIPTION
These functions are used to access or to change the hostname of the current processor.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

ERRORS
EINVAL len is negative or, for sethostname, larger than the maximum allowed size. For gethostname

on Linux/i386, len is smaller than the actual size.

EPERM For sethostname, the caller was not the superuser.

EFAULT name is an invalid address.

CONFORMS TO
POSIX.1 does not define these functions, but ISO/IEC 9945-1:1990 mentions them in B.4.4.1.

BUGS
Some other implementations of gethostname successfully return len bytes even if name is longer. Linux/Alpha complies with
this behavior. Linux/i386, however, returns EINVAL in this case (as of DLL 4.6.27 libraries).

NOTES
Under Linux/Alpha, gethostname is a system call. Under Linux/i386, gethostname is implemented at the library level by
calling uname(2).

SEE ALSO
getdomainname(2), setdomainname(2), uname(2)

Linux 1.3.6, 22 July 1995

getitimer, setitimer
getitimer, setitimer—Gets/sets value of an interval timer

SYNOPSIS
#include <sys/time.h>
int getitimer(int which, struct itimerval *value);
int setitimer(int which,conststruct itimer-val *value, struct itimerval *ovalue);

getitimer, setitimer

Part II: System Calls764

DESCRIPTION
The system provides each process with three interval timers, each decrementing in a distinct time domain. When any timer
expires, a signal is sent to the process, and the timer (potentially) restarts.

ITIMER_REAL Decrements in real time and delivers SIGALRM upon expiration.

ITIMER_VIRTUAL Decrements only when the process is executing, and delivers SIGVTALRM upon expiration.

ITIMER_PROF Decrements both when the process executes and when the system is executing on behalf of
the process. Coupled with ITIMER_VIRTUAL, this timer is usually used to profile the time
spent by the application in user and kernel space. SIGPROF is delivered upon expiration.

Timer values are defined by the following structures:

struct itimerval {
 struct timeval it_interval; /* next value */
 struct timeval it_value; /* current value */
 };
 struct timeval {
 long tv_sec; /* seconds */
 long tv_usec; /* microseconds */
 };

getitimer(2) fills the structure indicated by value with the current setting for the timer indicated by which (one of
ITIMER_REAL, ITIMER_VIRTUAL, or ITIMER_PROF). The element it_value is set to the amount of time remaining on the timer, or
0 if the timer is disabled. Similarly, it_interval is set to the reset value. setitimer(2) sets the indicated timer to the value in
value. If ovalue is nonzero, the old value of the timer is stored there.

Timers decrement from it_value to 0, generate a signal, and reset to it_interval. A timer that is set to 0 (it_value is 0 or the
timer expires and it_interval is 0) stops.

Both tv_sec and tv_usec are significant in determining the duration of a timer.

Timers will never expire before the requested time, instead expiring some short, constant time afterward, dependent on the
system timer resolution (currently 10ms). Upon expiration, a signal will be generated and the timer reset. If the timer expires
while the process is active (always true for ITIMER_VIRT), the signal will be delivered immediately when generated. Otherwise,
the delivery will be offset by a small time dependent on the system loading.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

ERRORS
EFAULT value and ovalue are not valid pointers.

EINVAL which is not one of ITIMER_REAL, ITIMER_VIRT, or ITIMER_PROF.

SEE ALSO
gettimeofday(2), sigaction(2), signal(2)

BUGS
Under Linux, the generation and delivery of a signal are distinct and there each signal is permitted only one outstanding
event. It’s therefore conceivable that under pathologically heavy loading, ITIMER_REAL will expire before the signal from a
previous expiration has been delivered. The second signal in such an event will be lost.

Linux 0.99.11, 5 August 1993

765

getpagesize
getpagesize—Gets system page size

SYNOPSIS
#include <unistd.h>
size_t getpagesize(void);

DESCRIPTION
Returns the number of bytes in a page. This is the system’s page size, which is not necessarily the same as the hardware page
size.

NOTES
getpagesize is implemented as a library function in DLL 4.4.1. Depending on what is defined when the library is compiled,
this function returns EXEC_PAGESIZE (set to 4096 in Linux 0.99.11), NBPG (set to 4096 in Linux 0.99.11), or NBPC (not defined in
Linux 0.99.11 or DLL 4.4.1 libraries).

SEE ALSO
sbrk(2)

Linux 0.99.11, 23 July 1993

getpeername
getpeername—Gets the name of the connected peer

SYNOPSIS
int getpeername(int s, struct sockaddr *name,int*namelen);

DESCRIPTION
getpeername returns the name of the peer connected to socket s. The namelen parameter should be initialized to indicate the
amount of space pointed to by name. On return it contains the actual size of the name returned (in bytes). The name is
truncated if the buffer provided is too small.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

ERRORS
EBADF The argument s is not a valid descriptor.

ENOTSOCK The argument s is a file, not a socket.

ENOTCONN The socket is not connected.

ENOBUFS Insufficient resources were available in the system to perform the operation.

EFAULT The name parameter points to memory not in a valid part of the process address space.

HISTORY
The getpeername function call appeared in BSD 4.2.

SEE ALSO
accept(2), bind(2), getsockname(2)

BSD Man Page, 24 July 1993

getpeername

Part II: System Calls766

getpid, getppid
getpid, getppid—Gets process identification

SYNOPSIS
#include <unistd.h>
pid_t getpid(void);
pid_t getppid(void);

DESCRIPTION
getpid returns the process ID of the current process. (This is often used by routines that generate unique temporary
filenames.)

getppid returns the process ID of the parent of the current process.

CONFORMS TO
POSIX, BSD 4.3, SVID

SEE ALSO
exec(2), fork(2), kill(2), mkstemp(3), tmpnam(3), tempnam(3), tmpfile(3)

Linux 0.99.11, 23 July 1993

getpriority, setpriority
getpriority, setpriority—Gets/sets program scheduling priority

SYNOPSIS
#include <sys/time.h>
#include <sys/resource.h>
int getpriority(int which,int who);
int setpriority(int which,int who,int prio);

DESCRIPTION
The scheduling priority of the process, process group, or user, as indicated by which and who, is obtained with the getpriority
call and set with the setpriority call. which is one of PRIO_PROCESS, PRIO_PGRP,or PRIO_USER, and who is interpreted relative to
which (a process identifier for PRIO_PROCESS, process group identifier for PRIO_PGRP, and a user ID for PRIO_USER). A 0 value of
who denotes the current process, process group, or user. prio is a value in the range –20 to 20. The default priority is 0; lower
priorities cause more favorable scheduling.

The getpriority call returns the highest priority (lowest numerical value) enjoyed by any of the specified processes. The
setpriority call sets the priorities of all the specified processes to the specified value. Only the superuser may lower priorities.

RETURN VALUES
Because getpriority can legitimately return the value –1, it is necessary to clear the external variable errno prior to the call,
and then check it afterward to determine whether a –1 is an error or a legitimate value. The setpriority call returns 0 if there
is no error, or –1 if there is.

ERRORS
ESRCH No process was located using the which and who values specified.

EINVAL which was not one of PRIO_PROCESS, PRIO_PGRP,or PRIO_USER.

767

In addition to these errors, setpriority will fail with the following:

EPERM A process was located, but neither its effective nor real user ID matched the effective user ID
of the caller.

EACCES A nonsuperuser attempted to lower a process priority.

HISTORY
These function calls appeared in BSD 4.2.

SEE ALSO
nice(1), fork(2), renice(8)

BSD Man Page, 24 July 1993

getrlimit, getrusage, setrlimit
getrlimit, getrusage, setrlimit—Get/set resource limits and usage

SYNOPSIS
#include <sys/time.h>
#include <sys/resource.h>
#include <unistd.h>

int getrlimit (int resource, struct rlimit *rlim);
int getrusage (int who, struct rusage *usage);
int setrlimit (int resource, const struct rlimit *rlim);

DESCRIPTION
getrlimit and setrlimit get and set resource limits. resource should be one of the following:

RLIMIT CPU /* CPU time in seconds */
RLIMIT FSIZE /* Maximum filesize */
RLIMIT DATA /* max data size */
RLIMIT STACK /* max stack size */
RLIMIT CORE /* max core file size */
RLIMIT RSS /* max resident set size */
RLIMIT NPROC /* max number of processes */
RLIMIT NOFILE /* max number of open files */
RLIMIT MEMLOCK /* max locked-in-memory address space*/

A resource may be unlimited if you set the limit to RLIM_INFINITY. RLIMIT_OFILE is the BSD name for RLIMIT_NOFILE.

The rlimit structure is defined as follows :

struct rlimit
 {
 int rlim_cur;
 int rlim_max;
 };

getrusage returns the current resource usages for a who of either RUSAGE_SELF or RUSAGE_CHILDREN:

struct rusage
 {
 struct timeval ru_utime; /* user time used */
 struct timeval ru_stime; /* system time used */
 long ru_maxrss; /* maximum resident set size */
 long ru_ixrss; /* integral shared memory size */

getrlimit, getrusage, setrlimit

Part II: System Calls768

 long ru_idrss; /* integral unshared data size */
 long ru_isrss; /* integral unshared stack size */
 long ru_minflt; /* page reclaims */
 long ru_majflt; /* page faults */
 long ru_nswap; /* swaps */
 long ru_inblock; /* block input operations */
 long ru_oublock; /* block output operations */
 long ru_msgsnd; /* messages sent */
 long ru_msgrcv; /* messages received */
 long ru_nsignals; /* signals received */
 long ru_nvcsw; /* voluntary context switches */
 long ru_nivcsw; /* involuntary context switches */
 };

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

ERRORS
EINVAL getrlimit or setrlimit is called with a bad resource. getrusage is called with a bad who.

EPERM A nonsuperuser tries to use setrlimit() to increase the soft or hard limit above the current
hard limit, or a superuser tries to increase RLIMIT_NOFILE above the current kernel maximum.

CONFORMS TO
BSD 4.3

SEE ALSO
ulimit(2), quota(2)

Linux, 23 July 1993

getsid
getsid—Gets session ID

SYNOPSIS
#include <unistd.h>
pid_t getsid(void);

DESCRIPTION
getsid(0) returns the session ID of the calling process. getsid(p) returns the session ID of the process with process ID p.

ERRORS
On error, –1 will be returned. The only error that can happen is ESRCH, when no process with process ID p was found.

CONFORMS TO
This call is Linux specific.

SEE ALSO
setsid(2)

Linux 1.3.85, 11 April 1996

769

getsockname
getsockname—Gets socket name

SYNOPSIS
int getsockname(int s “, struct sockaddr *” name “, int *” namelen);

DESCRIPTION
getsockname returns the current name for the specified socket. The namelen parameter should be initialized to indicate the
amount of space pointed to by name. On return it contains the actual size of the name returned (in bytes).

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

ERRORS
EBADF The argument s is not a valid descriptor.

ENOTSOCK The argument s is a file, not a socket.

ENOBUFS Insufficient resources were available in the system to perform the operation.

EFAULT The name parameter points to memory not in a valid part of the process address space.

HISTORY
The getsockname function call appeared in BSD 4.2.

BUGS
Names bound to sockets in the UNIX domain are inaccessible; getsockname returns a 0-length name.

SEE ALSO
bind(2), socket(2)

BSD Man Page, 24 July 1993

getsockopt, setsockopt
getsockopt, setsockopt—Get and set options on sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
int getsockopt(int s,intlevel,intoptname,void*optval,int*optlen);
int setsockopt(int s,intlevel,intoptname, const void *optval,intoptlen);

DESCRIPTION
getsockopt and setsockopt manipulate the options associated with a socket. Options may exist at multiple protocol levels;
they are always present at the uppermost socket level.

When manipulating socket options, the level at which the option resides and the name of the option must be specified. To
manipulate options at the socket level, level is specified as SOL_SOCKET. To manipulate options at any other level, the protocol
number of the appropriate protocol controlling the option is supplied. For example, to indicate that an option is to be
interpreted by the TCP protocol, level should be set to the protocol number of TCP; see getprotoent(3).

getsockopt, setsockopt

Part II: System Calls770

The parameters optval and optlen are used to access option values for setsockopt. For getsockopt they identify a buffer in
which the value for the requested option(s) is to be returned. For getsockopt, optlen is a value-result parameter, initially
containing the size of the buffer pointed to by optval, and modified on return to indicate the actual size of the value
returned. If no option value is to be supplied or returned, optval may be NULL.

optname and any specified options are passed uninterpreted to the appropriate protocol module for interpretation. The
include file <sys/socket.h> contains definitions for socket-level options, described below. Options at other protocol levels
vary in format and name; consult the appropriate entries in section 4 of the manual.

Most socket-level options utilize an int parameter for optval. For setsockopt, the parameter should be nonzero to enable a
boolean option, or 0 if the option is to be disabled. SO_LINGER uses a struct linger parameter, defined in <linux/socket.h>,
which specifies the desired state of the option and the linger interval (see below). SO_SNDTIMEO and SO_RCVTIMEO use a struct
timeval parameter, defined in <sys/time.h>.

The following options are recognized at the socket level. Except as noted, each may be examined with getsockopt and set
with setsockopt:

SO_DEBUG Enables recording of debugging information.

SO_REUSEADDR Enables local address reuse.

SO_KEEPALIVE Enables keep connections alive.

SO_DONTROUTE Enables routing bypass for outgoing messages.

SO_LINGER Linger on close if data present.

SO_BROADCAST Enables permission to transmit broadcast messages.

SO_OOBINLINE Enables reception of out-of-band data in band.

SO_SNDBUF Sets buffer size for output.

SO_RCVBUF Sets buffer size for input.

SO_SNDLOWAT Sets minimum count for output.

SO_RCVLOWAT Sets minimum count for input.

SO_SNDTIMEO Sets time-out value for output.

SO_RCVTIMEO Sets time-out value for input.

SO_TYPE Gets the type of the socket (get only).

SO_ERROR Gets and clears error on the socket (get only).

SO_DEBUG enables debugging in the underlying protocol modules.

SO_REUSEADDR indicates that the rules used in validating addresses supplied in a bind(2) call should allow reuse of local
addresses.

SO_KEEPALIVE enables the periodic transmission of messages on a connected socket. Should the connected party fail to
respond to these messages, the connection is considered broken and processes using the socket are notified via a SIGPIPE
signal when attempting to send data.

SO_DONTROUTE indicates that outgoing messages should bypass the standard routing facilities. Instead, messages are directed to
the appropriate network interface according to the network portion of the destination address.

SO_LINGER controls the action taken when unsent messages are queued on socket and a close(2) is performed. If the socket
promises reliable delivery of data and SO_LINGER is set, the system will block the process on the close attempt until it is able to
transmit the data or until it decides it is unable to deliver the information (a time-out period, termed the linger interval, is
specified in the setsockopt call when SO_LINGER is requested). If SO_LINGER is disabled and a close is issued, the system will
process the close in a manner that allows the process to continue as quickly as possible.

The linger structure is defined in <linux/socket.h> as follows:

struct linger {
 int l_onoff; /* Linger active */
 int l_linger; /* How long to linger for */
 };

771

l_onoff indicates whether to linger. If it is set to 1, l_linger contains the time in hundredths of seconds how long the process
should linger to complete the close. If l_onoff is set to 0, the process returns immediately.

The option SO_BROADCAST requests permission to send broadcast datagrams on the socket. Broadcast was a privileged
operation in earlier versions of the system. With protocols that support out-of-band data, the SO_OOBINLINE option requests
that out-of-band data be placed in the normal data input queue as received; it will then be accessible with recv or read calls
without the MSG_OOB flag. Some protocols always behave as if this option is set.

SO_SNDBUF and SO_RCVBUF are options to adjust the normal buffer sizes allocated for output and input buffers, respectively. The
buffer size may be increased for high-volume connections or may be decreased to limit the possible backlog of incoming data.
The system places an absolute limit on these values.

SO_SNDLOWAT is an option to set the minimum count for output operations. Most output operations process all of the data
supplied by the call, delivering data to the protocol for transmission and blocking as necessary for flow control. Nonblocking
output operations will process as much data as permitted subject to flow control without blocking, but will process no data if
flow control does not allow the smaller of the low water mark value or the entire request to be processed. A select(2)
operation testing the ability to write to a socket will return true only if the low water mark amount could be processed. The
default value for SO_SNDLOWAT is set to a convenient size for network efficiency, often 1024.

SO_RCVLOWAT is an option to set the minimum count for input operations. In general, receive calls will block until any
(nonzero) amount of data is received, then return with the smaller of the amount available or the amount requested. The
default value for SO_RCVLOWAT is 1. If SO_RCVLOWAT is set to a larger value, blocking receive calls normally wait until they have
received the smaller of the low water mark value or the requested amount. Receive calls may still return less than the low
water mark if an error occurs, a signal is caught, or the type of data next in the receive queue is different than that returned.

SO_SNDTIMEO is an option to set a time-out value for output operations. It accepts a struct timeval parameter with the
number of seconds and microseconds used to limit waits for output operations to complete. If a send operation has blocked
for this much time, it returns with a partial count or with the error EWOULDBLOCK if no data were sent. In the current
implementation, this timer is restarted each time additional data are delivered to the protocol, implying that the limit applies
to output portions ranging in size from the low water mark to the high water mark for output.

SO_RCVTIMEO is an option to set a time-out value for input operations. It accepts a struct timeval parameter with the number
of seconds and microseconds used to limit waits for input operations to complete. In the current implementation, this timer
is restarted each time additional data are received by the protocol, and thus the limit is in effect an inactivity timer. If a
receive operation has been blocked for this much time without receiving additional data, it returns with a short count or with
the error EWOULDBLOCK if no data were received.

Finally, SO_TYPE and SO_ERROR are options used only with setsockopt.

SO_TYPE returns the type of the socket, such as SOCK_STREAM; it is useful for servers that inherit sockets on startup.

SO_ERROR returns any pending error on the socket and clears the error status. It may be used to check for asynchronous errors
on connected datagram sockets or for other asynchronous errors.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

ERRORS
EBADF The argument s is not a valid descriptor.

ENOTSOCK The argument s is a file, not a socket.

ENOPROTOOPT The option is unknown at the level indicated.

EFAULT The address pointed to by optval is not in a valid part of the process address space. For
getsockopt, this error may also be returned if optlen is not in a valid part of the process
address space.

getsockopt, setsockopt

Part II: System Calls772

HISTORY
These system calls appeared in BSD 4.2.

BUGS
Several of the socket options should be handled at lower levels of the system.

SEE ALSO
ioctl(2), socket(2), getprotoent(3), protocols(5)

BSD Man Page, 22 April 1996

gettimeofday, settimeofday
gettimeofday, settimeofday—Get/set time

SYNOPSIS
#include <sys/time.h>
#include <unistd.h>

int gettimeofday(struct timeval *tv, struct timezone *tz);
int settimeofday(const struct timeval *tv , const struct timezone *tz);

DESCRIPTION
gettimeofday and settimeofday can set the time as well as a time zone. tv is a timeval struct, as specified in /usr/include/
sys/time.h:

struct timeval {
 long tv_sec; /* seconds */
 long tv_usec; /* microseconds */
 };

 and tz is a timezone:

 struct timezone {
 int tz_minuteswest;
 /* minutes west of Greenwich */
 int tz_dsttime;
 /* type of dst correction */
 };

with daylight savings times defined as follows:

DST_NONE /* not on dst */
 DST_USA /* USA style dst */
 DST_AUST /* Australian style dst */
 DST_WET /* Western European dst */
 DST_MET /* Middle European dst */
 DST_EET /* Eastern European dst */
 DST_CAN /* Canada */
 DST_GB /* Great Britain and Eire */
 DST_RUM /* Rumania */
 DST_TUR /* Turkey */
 DST_AUSTALT /* Australian style with shift in 1986 */

773

And the following macros are defined to operate on this :

#define timerisset(tvp)\
 ((tvp)->tv_sec || (tvp)->tv_usec)
 #define timercmp(tvp, uvp, cmp)\
 ((tvp)->tv_sec cmp (uvp)->tv_sec ||\
 (tvp)->tv_sec == (uvp)->tv_sec &&\
 (tvp)->tv_usec cmp (uvp)->tv_usec)
 #define timerclear(tvp)
 ((tvp)->tv_sec = (tvp)->tv_usec = 0)

If either tv or tz is null, the corresponding structure is not set or returned.

Only the superuser can use settimeofday.

ERRORS
EPERM settimeofday is called by someone other than the superuser.

EINVAL Time zone (or something else) is invalid.

CONFORMS TO
BSD 4.3

SEE ALSO
date(1), adjtimex(2), time(2), ctime(3), ftime(3)

Linux 1.2.4, 15 April 1995

getuid, geteuid
getuid, geteuid—Get user identity

SYNOPSIS
#include <unistd.h>
uid_t getuid(void);
uid_t geteuid(void);

DESCRIPTION
getuid returns the real user ID of the current process.

geteuid returns the effective user ID of the current process.

The real ID corresponds to the ID of the calling process. The effective ID corresponds to the set ID bit on the file being
executed.

ERRORS
These functions are always successful.

CONFORMS TO
POSIX, BSD 4.3

SEE ALSO
setreuid(2), setuid(2)

Linux 0.99.11, 23 July 1993

getuid, geteuid

Part II: System Calls774

idle
idle—Makes process 0 idle

SYNOPSIS
#include <unistd.h>
void idle(void);

DESCRIPTION
idle is an internal system call used during bootstrap. It marks the process’s pages as swappable, lowers its priority, and enters
the main scheduling loop. idle never returns.

Only process 0 may call idle. Any user process, even a process with superuser permission, will receive EPERM.

RETURN VALUE
idle never returns for process 0, and always returns –1 for a user process.

ERRORS
EPERM Always, for a user process.

Linux 1.1.46, 21 August 1994

ioctl
ioctl—Controls devices

SYNOPSIS
#include <sys/ioctl.h>
int ioctl(int d,intrequest, ...);

(The “third” argument is traditionally char *argp and will be so named for this discussion.)

DESCRIPTION
The ioctl function manipulates the underlying device parameters of special files. In particular, many operating characteris-
tics of character special files (for example, terminals) may be controlled with ioctl requests. The argument d must be an open
file descriptor.

An ioctl request has encoded in it whether the argument is an in parameter or out parameter, and the size of the argument
argp in bytes. Macros and defines used in specifying an ioctl request are located in the file <sys/ioctl.h>.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

ERRORS
EBADF d is not a valid descriptor.

ENOTTY d is not associated with a character special device.

ENOTTY The specified request does not apply to the kind of object that the descriptor d references.

EINVAL request or argp is not valid.

HISTORY
An ioctl function call appeared in version 7 AT&T UNIX.

775

SEE ALSO
execve(2), fcntl(2), mt(4), sd(4), tty(4)

INTRODUCTION
This is ioctl List 1.3.27, a list of ioctl calls in Linux/i386 kernel 1.3.27. It contains 421 ioctls from /usr/include/
fasm,linuxg/*.h. For each ioctl, you’ll find the numerical value, name, and argument type.

An argument type of const struct foo * means the argument is input to the kernel. struct foo * means the kernel outputs
the argument. If the kernel uses the argument for both input and output, this is marked with // I-O.

Some ioctls take more arguments or return more values than a single structure. These are marked // MORE and are docu-
mented further in a separate section.

This list is incomplete. It does not include

■ ioctls defined internal to the kernel (scsi ioctl.h).
■ ioctls defined in modules distributed separately from the kernel.

And, of course, I may have errors and omissions.

Please e-mail changes and comments to mec@duracef.shout.net. I am particularly interested in loadable modules that define
their own ioctls. If you know of such a module, tell me where I can ftp it, and I’ll include its ioctls in my next release.

MAIN TABLE

<include/asm-i386/socket.h>

0x00008901 FIOSETOWN const int *

0x00008902 SIOCSPGRP const int *

0x00008903 FIOGETOWN int *

0x00008904 SIOCGPGRP int *

0x00008905 SIOCATMARK int *

0x00008906 SIOCGSTAMP timeval *

<include/asm-i386/termios.h>

0x00005401 TCGETS struct termios *

0x00005402 TCSETS const struct termios *

0x00005403 TCSETSW const struct termios *

0x00005404 TCSETSF const struct termios *

0x00005405 TCGETA struct termio *

0x00005406 TCSETA const struct termio *

0x00005407 TCSETAW const struct termio *

0x00005408 TCSETAF const struct termio *

0x00005409 TCSBRK int

0x0000540A TCXONC int

0x0000540B TCFLSH int

0x0000540C TIOCEXCL void

0x0000540D TIOCNXCL void

0x0000540E TIOCSCTTY int

0x0000540F TIOCGPGRP pid_t *

0x00005410 TIOCSPGRP const pid_t *

ioctl

Part II: System Calls776

0x00005411 TIOCOUTQ int *

0x00005412 TIOCSTI const char *

0x00005413 TIOCGWINSZ const struct winsize *

0x00005414 TIOCSWINSZ struct winsize *

0x00005415 TIOCMGET int *

0x00005416 TIOCMBIS const int *

0x00005417 TIOCMBIC const int *

0x00005418 TIOCMSET const int *

0x00005419 TIOCGSOFTCAR int *

0x0000541A TIOCSSOFTCAR const int *

0x0000541B FIONREAD int *

0x0000541B TIOCINQ int *

0x0000541C TIOCLINUX const char *

0x0000541D TIOCCONS void

0x0000541E TIOCGSERIAL struct serial_strucct *

0x0000541F TIOCSSERIAL const struct serial_strucct *

0x00005420 TIOCPKT const int *

0x00005421 FIONBIO const int *

0x00005422 TIOCNOTTY void

0x00005423 TIOCSETD const int *

0x00005424 TIOCGETD int *

0x00005425 TCSBRKP int

0x00005426 TIOCTTYGSTRUCT struct tty_strucct *

0x00005450 FIONCLEX void

0x00005451 FIOCLEX void

0x00005452 FIOASYNC const int *

0x00005453 TIOCSERCONFIG void

0x00005454 TIOCSERGWILD int *

0x00005455 TIOCSERSWILD const int *

0x00005456 TIOCGLCKTRMIOS struct termios *

0x00005457 TIOCSLCKTRMIOS const struct temios *

0x00005458 TIOCSERGSTRUCT struct async_strucct *

0x00005459 TIOCSERGETLSR int *

0x0000545A TIOCSERGETMULTI struct serial_multiport_strucct *

0x0000545B TIOCSERSETMULTI const struct serial_multiport_strucct *

<include/linux/ax25.h>

0x000089E0 SIOCAX25GETUID const struct sockaddr_ax25 *

0x000089E1 SIOCAX25ADDUID const struct sockaddr_ax25 *

0x000089E2 SIOCAX25DELUID const struct sockaddr_ax25 *

0x000089E3 SIOCAX25NOUID const int *

<include/asm-i386/termios.h>

777

0x000089E4 SIOCAX25DIGCTL const int *

0x000089E5 SIOCAX25GETPARMS struct ax25_parms_strucct * // I-O

0x000089E6 SIOCAX25SETPARMS const struct ax25_parms-struct *

<include/linux/cdk.h>

0x00007314 STL_BINTR void

0x00007315 STL_BSTART void

0x00007316 STL_BSTOP void

0x00007317 STL_BRESET void

<include/linux/cdrom.h>

0x00005301 CDROMPAUSE void

0x00005302 CDROMRESUME void

0x00005303 CDROMPLAYMSF const struct cdrom_msf *

0x00005304 CDROMPLAYTRKIND const struct cdrom_ti *

0x00005305 CDROMREADTOCHDR struct cdrom_tochdr *

0x00005306 CDROMREADTOCENTRY struct cdrom_tocentry *// I-O

0x00005307 CDROMSTOP void

0x00005308 CDROMSTART void

0x00005309 CDROMEJECT void

0x0000530A CDROMVOLCTRL const struct cdrom_volctrl *

0x0000530B CDROMSUBCHNL struct cdrom_subchnl * // I-O

0x0000530C CDROMREADMODE2 const struct cdrom_msf * // MORE

0x0000530D CDROMREADMODE1 const struct cdrom_msf * // MORE

0x0000530E CDROMREADAUDIO const struct cdrom_read_audio *

0x0000530F CDROMEJECT SW int

0x00005310 CDROMMULTISESSION struct cdrom_multisession * // I-O

0x00005311 CDROM_GET_UPC struct f char [8]; g *

0x00005312 CDROMRESET void

0x00005313 CDROMVOLREAD struct cdrom_volctrl *

0x00005314 CDROMREADRAW const struct cdrom_msf * // MORE

0x00005315 CDROMREADCOOKED const struct cdrom_msf * // MORE

0x00005316 CDROMSEEK const struct cdrom_msf *

<include/linux/cm206.h>

0x00002000 CM206CTL_GET_STAT int

0x00002001 CM206CTL_GET_LAST_STAT int

<include/linux/ax25.h>

ioctl

Part II: System Calls778

<include/linux/cyclades.h>

0x00435901 CYGETMON struct cyclades_monitor *

0x00435902 CYGETTHRESH int *

0x00435903 CYSETTHRESH int

0x00435904 CYGETDEFTHRESH int *

0x00435905 CYSETDEFTHRESH int

0x00435906 CYGETTIMEOUT int *

0x00435907 CYSETTIMEOUT int

0x00435908 CYGETDEFTIMEOUT int *

0x00435909 CYSETDEFTIMEOUT int

<include/linux/ext2 fs.h>

0x80046601 EXT2_IOC_GETFLAGS int *

0x40046602 EXT2_IOC_SETFLAGS const int *

0x80047601 EXT2_IOC_GETVERSION int *

0x40047602 EXT2_IOC_SETVERSION const int *

<include/linux/fd.h>

0x00000000 FDCLRPRM void

0x00000001 FDSETPRM const struct floppy_struct *

0x00000002 FDDEFPRM const struct floppy_struct *

0x00000003 FDGETPRM struct floppy_struct *

0x00000004 FDMSGON void

0x00000005 FDMSGOFF void

0x00000006 FDFMTBEG void

0x00000007 FDFMTTRK const struct format_descr *

0x00000008 FDFMTEND void

0x0000000A FDSETEMSGTRESH int

0x0000000B FDFLUSH void

0x0000000C FDSETMAXERRS const struct floppy_max_errors *

0x0000000E FDGETMAXERRS struct floppy_max_errors *

0x00000010 FDGETDRVTYP struct f char [16]; g *

0x00000014 FDSETDRVPRM const struct floppy_drive_params *

0x00000015 FDGETDRVPRM struct floppy_drive_params *

0x00000016 FDGETDRVSTAT struct floppy_drive_struct *

0x00000017 FDPOLLDRVSTAT struct floppy_drive_struct *

0x00000018 FDRESET int

0x00000019 FDGETFDCSTAT struct floppy_fdc_state *

0x0000001B FDWERRORCLR void

0x0000001C FDWERRORGET struct floppy_write_errors *

0x0000001E FDRAWCMD struct floppy_raw_cmd * // MORE // I-O

0x00000028 FDTWADDLE void

779

<include/linux/fs.h>

0x0000125D BLKROSET const int *

0x0000125E BLKROGET int *

0x0000125F BLKRRPART void

0x00001260 BLKGETSIZE int *

0x00001261 BLKFLSBUF void

0x00001262 BLKRASET int

0x00001263 BLKRAGET int *

0x00000001 FIBMAP int * // I-O

0x00000002 FIGETBSZ int *

<include/linux/hdreg.h>

0x00000301 HDIO_GETGEO struct hd geometry *

0x00000302 HDIO_GET_UNMASKINTR int *

0x00000304 HDIO_GET_MULTCOUNT int *

0x00000307 HDIO_GET_IDENTITY struct hd driveid *

0x00000308 HDIO_GET_KEEPSETTINGS int *

0x00000309 HDIO_GET_CHIPSET int *

0x0000030A HDIO_GET_NOWERR int *

0x0000030B HDIO_GET_DMA int *

0x0000031F HDIO_DRIVE_CMD int * // I-O

0x00000321 HDIO_SET_MULTCOUNT int

0x00000322 HDIO_SET_UNMASKINTR int

0x00000323 HDIO_SET_KEEPSETTINGS int

0x00000324 HDIO_SET_CHIPSET int

0x00000325 HDIO_SET_NOWERR int

0x00000326 HDIO_SET_DMA int

<include/linux/if eql.h>

0x000089F0 EQL_ENSLAVE struct ifreq * // MORE // I-O

0x000089F1 EQL_EMANCIPATE struct ifreq * // MORE // I-O

0x000089F2 EQL_GETSLAVECFG struct ifreq * // MORE // I-O

0x000089F3 EQL_SETSLAVECFG struct ifreq * // MORE // I-O

0x000089F4 EQL_GETMASTRCFG struct ifreq * // MORE // I-O

0x000089F5 EQL_SETMASTRCFG struct ifreq * // MORE // I-O

<include/linux/if plip.h>

0x000089F0 SIOCDEVPLIP struct ifreq * // I-O

ioctl

Part II: System Calls780

<include/linux/if ppp.h>

0x00005490 PPPIOCGFLAGS int *

0x00005491 PPPIOCSFLAGS const int *

0x00005492 PPPIOCGASYNCMAP int *

0x00005493 PPPIOCSASYNCMAP const int *

0x00005494 PPPIOCGUNIT int *

0x00005495 PPPIOCSINPSIG const int *

0x00005497 PPPIOCSDEBUG const int *

0x00005498 PPPIOCGDEBUG int *

0x00005499 PPPIOCGSTAT struct ppp_stats *

0x0000549A PPPIOCGTIME struct ppp_ddinfo *

0x0000549B PPPIOCGXASYNCMAP struct f int [8]; g *

0x0000549C PPPIOCSXASYNCMAP const struct f int [8]; g *

0x0000549D PPPIOCSMRU const int *

0x0000549E PPPIOCRASYNCMAP const int *

0x0000549F PPPIOCSMAXCID const int *

<include/linux/ipx.h>

0x000089E0 SIOCAIPXITFCRT const char *

0x000089E1 SIOCAIPXPRISLT const char *

0x000089E2 SIOCIPXCFGDATA struct ipx_config_data *

<include/linux/kd.h>

0x00004B60 GIO_FONT struct f char [8192]; g *

0x00004B61 PIO_FONT const struct f char [8192]; g *

0x00004B6B GIO_FONTX struct console_font_desc * // MORE I-O

0x00004B6C PIO_FONTX const struct console_font_desc * //MORE

0x00004B70 GIO_CMAP struct f char [48]; g *

0x00004B71 PIO_CMAP const struct f char [48]; g

0x00004B2F KIOCSOUND int

0x00004B30 KDMKTONE int

0x00004B31 KDGETLED char *

0x00004B32 KDSETLED int

0x00004B33 KDGKBTYPE char *

0x00004B34 KDADDIO int // MORE

0x00004B35 KDDELIO int // MORE

0x00004B36 KDENABIO void // MORE

0x00004B37 KDDISABIO void // MORE

0x00004B3A KDSETMODE int

0x00004B3B KDGETMODE int *

0x00004B3C KDMAPDISP void // MORE

781

0x00004B3D KDUNMAPDISP void // MORE

0x00004B40 GIO_SCRNMAP struct f char [E_TABSZ]; g *

0x00004B41 PIO_SCRNMAP const struct f char [E_TABSZ]; g *

0x00004B69 GIO_UNISCRNMAP struct f short [E_TABSZ]; g *

0x00004B6A PIO_UNISCRNMAP const struct f short [E_TABSZ]; g *

0x00004B66 GIO_UNIMAP struct unimapdesc * // MORE // I-O

0x00004B67 PIO_UNIMAP const struct unimapdesc * // MORE

0x00004B68 PIO_UNIMAPCLR const struct unimapinit *

0x00004B44 KDGKBMODE int *

0x00004B45 KDSKBMODE int

0x00004B62 KDGKBMETA int *

0x00004B63 KDSKBMETA int

0x00004B64 KDGKBLED int *

0x00004B65 KDSKBLED int

0x00004B46 KDGKBENT struct kbentry * // I-O

0x00004B47 KDSKBENT const struct kbentry *

0x00004B48 KDGKBSENT struct kbsentry * // I-O

0x00004B49 KDSKBSENT const struct kbsentry *

0x00004B4A KDGKBDIACR struct kbdiacrs *

0x00004B4B KDSKBDIACR const struct kbdiacrs *

0x00004B4C KDGETKEYCODE struct kbkeycode * // I-O

0x00004B4D KDSETKEYCODE const struct kbkeycode *

0x00004B4E KDSIGACCEPT int

<include/linux/lp.h>

0x00000601 LPCHAR int

0x00000602 LPTIME int

0x00000604 LPABORT int

0x00000605 LPSETIRQ int

0x00000606 LPGETIRQ int *

0x00000608 LPWAIT int

0x00000609 LPCAREFUL int

0x0000060A LPABORTOPEN int

0x0000060B LPGETSTATUS int *

0x0000060C LPRESET void

0x0000060D LPGETSTATS struct lp stats *

<include/linux/mroute.h>

0x000089E0 SIOCGETVIFCNT struct sioc_vif_req * // I-O

0x000089E1 SIOCGETSGCNT struct sioc_sg_req * // I-O

<include/linux/kd.h>

ioctl

Part II: System Calls782

<include/linux/mtio.h>

0x40086D01 MTIOCTOP const struct mtop *

0x801C6D02 MTIOCGET struct mtget *

0x80046D03 MTIOCPOS struct mtpos *

0x80206D04 MTIOCGETCONFIG struct mtconfiginfo *

0x40206D05 MTIOCSETCONFIG const struct mtconfiginfo *

<include/linux/netrom.h>

0x000089E0 SIOCNRGETPARMS struct nr_parms_struct * // I-O

0x000089E1 SIOCNRSETPARMS const struct nr_parms_struct *

0x000089E2 SIOCNRDECOBS void

0x000089E3 SIOCNRRTCTL const int *

<include/linux/sbpcd.h>

0x00009000 DDIOCSDBG const int *

0x00005382 CDROMAUDIOBUFSIZ int

<include/linux/scc.h>

0x00005470 TIOCSCCINI void

0x00005471 TIOCCHANINI const struct scc_modem *

0x00005472 TIOCGKISS struct ioctl_command * // I-O

0x00005473 TIOCSKISS const struct ioctl_command *

0x00005474 TIOCSCCSTAT struct scc_stat *

<include/linux/scsi.h>

0x00005382 SCSI_IOCTL_GET_IDLUN struct f int [2]; g *

0x00005383 SCSI_IOCTL_TAGGED_ENABLE void

0x00005384 SCSI_IOCTL_TAGGED_DISABLE void

0x00005385 SCSI_IOCTL_PROBE_HOST const int * // MORE

<include/linux/smb fs.h>

0x80027501 SMB_IOC_GETMOUNTUID uid t *

<include/linux/sockios.h>

0x0000890B SIOCADDRT const struct rtentry * // MORE

0x0000890C SIOCDELRT const struct rtentry * // MORE

0x00008910 SIOCGIFNAME char []

0x00008911 SIOCSIFLINK void

0x00008912 SIOCGIFCONF struct ifconf * // MORE // I-O

0x00008913 SIOCGIFFLAGS struct ifreq * // I-O

0x00008914 SIOCSIFFLAGS const struct ifreq *

783

0x00008915 SIOCGIFADDR struct ifreq * // I-O

0x00008916 SIOCSIFADDR const struct ifreq *

0x00008917 SIOCGIFDSTADDR struct ifreq * // I-O

0x00008918 SIOCSIFDSTADDR const struct ifreq *

0x00008919 SIOCGIFBRDADDR struct ifreq * // I-O

0x0000891A SIOCSIFBRDADDR const struct ifreq *

0x0000891B SIOCGIFNETMASK struct ifreq * // I-O

0x0000891C SIOCSIFNETMASK const struct ifreq *

0x0000891D SIOCGIFMETRIC struct ifreq * // I-O

0x0000891E SIOCSIFMETRIC const struct ifreq *

0x0000891F SIOCGIFMEM struct ifreq * // I-O

0x00008920 SIOCSIFMEM const struct ifreq *

0x00008921 SIOCGIFMTU struct ifreq * // I-O

0x00008922 SIOCSIFMTU const struct ifreq *

0x00008923 OLD SIOCGIFHWADDR struct ifreq * // I-O

0x00008924 SIOCSIFHWADDR const struct ifreq * // MORE

0x00008925 SIOCGIFENCAP int *

0x00008926 SIOCSIFENCAP const int *

0x00008927 SIOCGIFHWADDR struct ifreq * // I-O

0x00008929 SIOCGIFSLAVE void

0x00008930 SIOCSIFSLAVE void

0x00008931 SIOCADDMULTI const struct ifreq *

0x00008932 SIOCDELMULTI const struct ifreq *

0x00008940 SIOCADDRTOLD void

0x00008941 SIOCDELRTOLD void

0x00008950 SIOCDARP const struct arpreq *

0x00008951 SIOCGARP struct arpreq * // I-O

0x00008952 SIOCSARP const struct arpreq *

0x00008960 SIOCDRARP const struct arpreq *

0x00008961 SIOCGRARP struct arpreq * // I-O

0x00008962 SIOCSRARP const struct arpreq *

0x00008970 SIOCGIFMAP struct ifreq * // I-O

0x00008971 SIOCSIFMAP const struct ifreq *

<include/linux/soundcard.h>

0x00005100 SNDCTL_SEQ_RESET void

0x00005101 SNDCTL_SEQ_SYNC void

0xC08C5102 SNDCTL_SYNTH_INFO struct synth_info * // I-O

0xC0045103 SNDCTL_SEQ_CTRLRATE int * // I-O

0x80045104 SNDCTL_SEQ_GETOUTCOUNT int *

0x80045105 SNDCTL_SEQ_GETINCOUNT int *

0x40045106 SNDCTL_SEQ_PERCMODE void

<include/linux/sockios.h>

ioctl

Part II: System Calls784

<include/linux/soundcard.h>

0x40285107 SNDCTL FM LOAD INSTR const struct sbi_instrument *

0x40045108 SNDCTL_SEQ_TESTMIDI const int *

0x40045109 SNDCTL_SEQ_RESETSAMPLES const int *

0x8004510A SNDCTL_SEQ_NRSYNTHS int *

0x8004510B SNDCTL_SEQ_NRMIDIS int *

0xC074510C SNDCTL_MIDI_INFO struct midi_info * // I-O

0x4004510D SNDCTL_SEQ_THRESHOLD const int *

0xC004510E SNDCTL_SYNTH_MEMAVL int * // I-O

0x4004510F SNDCTL_FM_4OP_ENABLE const int *

0xCFB85110 SNDCTL_PMGR_ACCESS struct patmgr_info * // I-O

0x00005111 SNDCTL_SEQ_PANIC void

0x40085112 SNDCTL_SEQ_OUTOFBAND const struct seq_event_rec *

0xC0045401 SNDCTL_TMR_TIMEBASE int * // I-O

0x00005402 SNDCTL_TMR_START void

0x00005403 SNDCTL_TMR_STOP void

0x00005404 SNDCTL_TMR_CONTINUE void

0xC0045405 SNDCTL_TMR_TEMPO int * // I-O

0xC0045406 SNDCTL_TMR_SOURCE int * // I-O

0x40045407 SNDCTL_TMR_METRONOME const int *

0x40045408 SNDCTL_TMR_SELECT int * // I-O

0xCFB85001 SNDCTL_PMGR_IFACE struct patmgr_info * // I-O

0xC0046D00 SNDCTL_MIDI_PRETIME int * // I-O

0xC0046D01 SNDCTL_MIDI_MPUMODE const int *

0xC0216D02 SNDCTL_MIDI_MPUCMD struct mpu_command_rec * // I-O

0x00005000 SNDCTL_DSP_RESET void

0x00005001 SNDCTL_DSP_SYNC void

0xC0045002 SNDCTL_DSP_SPEED int * // I-O

0xC0045003 SNDCTL_DSP_STEREO int * // I-O

0xC0045004 SNDCTL_DSP_GETBLKSIZE int * // I-O

0xC0045006 SOUND_PCM_WRITE CHANNELS int * // I-O

0xC0045007 SOUND_PCM_WRITE FILTER int * // I-O

0x00005008 SNDCTL_DSP_POST void

0xC0045009 SNDCTL_DSP_SUBDIVIDE int * // I-O

0xC004500A SNDCTL_DSP_SETFRAGMENT int * // I-O

0x8004500B SNDCTL_DSP_GETFMTS int *

0xC0045005 SNDCTL_DSP_SETFMT int * // I-O

0x800C500C SNDCTL_DSP_GETOSPACE struct audio-buf-info *

0x800C500D SNDCTL_DSP_GETISPACE struct audio-buf-info *

0x0000500E SNDCTL_DSP_NONBLOCK void

0x80045002 SOUND_PCM_READ RATE int *

0x80045006 SOUND_PCM_READ CHANNELS int *

0x80045005 SOUND_PCM_READ BITS int *

785

0x80045007 SOUND_PCM_READ FILTER int *

0x00004300 SNDCTL_COPR_RESET void

0xCFB04301 SNDCTL_COPR_LOAD const struct copr_buffer *

0xC0144302 SNDCTL_COPR_RDATA struct copr_debug_buf * // I-O

0xC0144303 SNDCTL_COPR_RCODE struct copr_debug_buf * // I-O

0x40144304 SNDCTL_COPR_WDATA const struct copr_debug_buf *

0x40144305 SNDCTL_COPR_WCODE const struct copr_debug_buf *

0xC0144306 SNDCTL_COPR_RUN struct copr_debug_buf * // I-O

0xC0144307 SNDCTL_COPR_HALT struct copr_debug_buf * // I-O

0x4FA44308 SNDCTL_COPR_SENDMSG const struct copr_msg *

0x8FA44309 SNDCTL_COPR_RCVMSG struct copr_msg *

0x80044D00 SOUND_MIXER_READ_VOLUME int *

0x80044D01 SOUND_MIXER_READ_BASS int *

0x80044D02 SOUND_MIXER_READ_TREBLE int *

0x80044D03 SOUND_MIXER_READ_SYNTH int *

0x80044D04 SOUND_MIXER_READ_PCM int *

0x80044D05 SOUND_MIXER_READ_SPEAKER int *

0x80044D06 SOUND_MIXER_READ_LINE int *

0x80044D07 SOUND_MIXER_READ_MIC int *

0x80044D08 SOUND_MIXER_READ_CD int *

0x80044D09 SOUND_MIXER_READ_IMIX int *

0x80044D0A SOUND_MIXER_READ_ALTPCM int *

0x80044D0B SOUND_MIXER_READ_RECLEV int *

0x80044D0C SOUND_MIXER_READ_IGAIN int *

0x80044D0D SOUND_MIXER_READ_OGAIN int *

0x80044D0E SOUND_MIXER_READ_LINE1 int *

0x80044D0F SOUND_MIXER_READ_LINE2 int *

0x80044D10 SOUND_MIXER_READ_LINE3 int *

0x80044D1C SOUND_MIXER_READ_MUTE int *

0x80044D1D SOUND_MIXER_READ_ENHANCE int *

0x80044D1E SOUND_MIXER_READ_LOUD int *

0x80044DFF SOUND_MIXER_READ_RECSRC int *

0x80044DFE SOUND_MIXER_READ_DEVMASK int *

0x80044DFD SOUND_MIXER_READ_RECMASK int *

0x80044DFB SOUND_MIXER_READ_STEREODEVS int *

0x80044DFC SOUND_MIXER_READ_CAPS int *

0xC0044D00 SOUND_MIXER_WRITE_VOLUME int * // I-O

0xC0044D01 SOUND_MIXER_WRITE_BASS int * // I-O

0xC0044D02 SOUND_MIXER_WRITE_TREBLE int * // I-O

0xC0044D03 SOUND_MIXER_WRITE_SYNTH int * // I-O

0xC0044D04 SOUND_MIXER_WRITE_PCM int * // I-O

0xC0044D05 SOUND_MIXER_WRITE_SPEAKER int * // I-O

<include/linux/soundcard.h>

ioctl

Part II: System Calls786

0xC0044D06 SOUND_MIXER_WRITE_LINE int * // I-O

0xC0044D07 SOUND_MIXER_WRITE_MIC int * // I-O

0xC0044D08 SOUND_MIXER_WRITE_CD int * // I-O

0xC0044D09 SOUND_MIXER_WRITE_IMIX int * // I-O

0xC0044D0A SOUND_MIXER_WRITE_ALTPCM int * // I-O

0xC0044D0B SOUND_MIXER_WRITE_RECLEV int * // I-O

0xC0044D0C SOUND_MIXER_WRITE_IGAIN int * // I-O

0xC0044D0D SOUND_MIXER_WRITE_OGAIN int * // I-O

0xC0044D0E SOUND_MIXER_WRITE_LINE1 int * // I-O

0xC0044D0F SOUND_MIXER_WRITE_LINE2 int * // I-O

0xC0044D10 SOUND_MIXER_WRITE_LINE3 int * // I-O

0xC0044D1C SOUND_MIXER_WRITE_MUTE int * // I-O

0xC0044D1D SOUND_MIXER_WRITE_ENHANCE int * // I-O

0xC0044D1E SOUND_MIXER_WRITE_LOUD int * // I-O

0xC0044DFF SOUND_MIXER_WRITE_RECSRC int * // I-O

<include/linux/umsdos fs.h>

0x000004D2 UMSDOS_READDIR_DOS struct umsdos_ioctl * // I-O

0x000004D3 UMSDOS_UNLINK_DOS const struct umsdos_ioctl *

0x000004D4 UMSDOS_RMDIR_DOS const struct umsdos_ioctl *

0x000004D5 UMSDOS_STAT_DOS struct umsdos_ioctl * // I-O

0x000004D6 UMSDOS_CREAT_EMD const struct umsdos_ioctl *

0x000004D7 UMSDOS_UNLINK_EMD const struct umsdos_ioctl *

0x000004D8 UMSDOS_READDIR_EMD struct umsdos_ioctl * // I-O

0x000004D9 UMSDOS_GETVERSION struct umsdos_ioctl *

0x000004DA UMSDOS_INIT_EMD void

0x000004DB UMSDOS_DOS_SETUP const struct umsdos_ioctl *

0x000004DC UMSDOS_RENAME_DOS const struct umsdos_ioctl *

<include/linux/vt.h>

0x00005600 VT_OPENQRY int *

0x00005601 VT_GETMODE struct vt_mode *

0x00005602 VT_SETMODE const struct vt_mode *

0x00005603 VT_GETSTATE struct vt_stat *

0x00005604 VT_SENDSIG void

0x00005605 VT_RELDISP int

0x00005606 VT_ACTIVATE int

0x00005607 VT_WAI TACTI VE int

0x00005608 VT_DISALLOCATE int

0x00005609 VT_RESIZE const struct vt_sizes *

0x0000560A VT_RESIZEX const struct vt_consize *

<include/linux/soundcard.h>

787

MORE ARGUMENTS
Some ioctls take a pointer to a structure that contains additional pointers. These are documented here in alphabetical order.

CDROMREADAUDIO takes an input pointer const struct cdrom read audio *. The buf field points to an output buffer of length
nframes * CD FRAMESIZE RAW.

CDROMREADCOOKED, CDROMREADMODE1, CDROMREADMODE2, and CDROM-READRAW take an input pointer const struct cdrom msf *. They
use the same pointer as an output pointer to char []. The length varies by request. For CDROMREADMODE1, most drivers use
CD_FRAMESIZE, but the optics storage driver uses OPT BLOCKSIZE instead (both have the numerical value 2048).

CDROMREADCOOKED char [CD_FRAMESIZE]

CDROMREADMODE1 char [CD_FRAMESIZE or OPT_BLOCKSIZE]

CDROMREADMODE2 char [CD_FRAMESIZE_RAW0]

CDROMREADRAW char [CD_FRAMESIZE_RAW]

EQL_ENSLAVE, EQL_EMANCIPATE, EQL_GETSLAVECFG, EQL_SETSLAVECFG, EQL_GETMASTERCFG, and EQL_SETMASTERCFG take a struct
ifreq *. The ifr data field is a pointer to another structure as follows:

EQL_ENSLAVE const struct slaving_request *

EQL_EMANCIPATE const struct slaving_request *

EQL_GETSLAVECFG struct slave_config * // I-O

EQL_SETSLAVECFG const struct slave_config *

EQL_GETMASTERCFG struct master_config *

EQL_SETMASTERCFG const struct master_config *

FDRAWCMD takes a struct floppy raw cmd *. If flags & FD RAW WRITE is nonzero, then data points to an input buffer of length
length. If flags & FD RAW READ is nonzero, then data points to an output buffer of length length.

GIO_FONTX and PIO_FONTX take a struct console font desc * or a const struct console_font_desc *, respectively. chardata
points to a buffer of char [charcount]. This is an output buffer for GIO_FONTX and an input buffer for PIO_FONTX.

GIO_UNIMAP and PIO_UNIMAP take a struct unimapdesc * or a const struct unimapdesc *, respectively. entries points to a
buffer of struct unipair [entry ct]. This is an output buffer for GIO_UNIMAP and an input buffer for PIO_UNIMAP.

KDADDIO, KDDELIO, KDDISABIO, and KDENABIO enable or disable access to I/O ports. They are essentially alternate interfaces to
ioperm.

KDMAPDISP and KDUNMAPDISP enable or disable memory mappings or I/O port access. They are not implemented in the kernel.

SCSI_IOCTL_PROBE_HOST takes an input pointer const int *, which is a length. It uses the same pointer as an output pointer to
a char [] buffer of this length.

SIOCADDRT and SIOCDELRT take an input pointer whose type depends on the protocol:

Most protocols const struct rtentry *

AX.25 const struct ax25_route *

NET/ROM const struct nr_route_struct *

SIOCGIFCONF takes a struct ifconf *. The ifc buf field points to a buffer of length ifc len bytes, into which the kernel writes
a list of type struct ifreq [].

SIOCSIFHWADDR takes an input pointer whose type depends on the protocol:

Most protocols const struct ifreq *

AX.25 const char [AX25_ADDR_LEN]

TIOCLINUX takes a const char *. It uses this to distinguish several independent subcases. In the following table, N + foo means
foo after an N-byte pad. struct selection is implicitly defined in drivers/char/selection.c:

ioctl

Part II: System Calls788

TIOCLINUX-2 1 + const struct selection *

TIOCLINUX-3 void

TIOCLINUX-4 void

TIOCLINUX-5 4 + const struct f long [8]; g *

TIOCLINUX-6 char *

TIOCLINUX-7 char *

TIOCLINUX-10 1 + const char *

DUPLICATE ioctlS
This list does not include ioctls in the range SIOCDEVPRIVATE and SIOCPROTOPRIVATE:

0x00000001 FDSETPRM FIBMAP

0x00000002 FDDEFPRM FIGETBSZ

0x00005382 CDROMAUDIOBUFSIZ SCSI_IOCTL_GET_IDLUN

0x00005402 SNDCTL_TMR_START TCSETS

0x00005403 SNDCTL_TMR_STOP TCSETSW

0x00005404 SNDCTL_TMR_CONTINUE TCSETSF

Linux, 17 September 1995

ioperm
ioperm—Sets port input/output permissions

SYNOPSIS
#include <unistd.h>
int ioperm(unsigned long from, unsigned long num,intturn_on);

DESCRIPTION
ioperm sets the port access permission bits for the process for num bytes starting from port address from to the value turn_on.
The use of ioperm requires root privileges.

Only the first 0×3ff I/O ports can be specified in this manner. For more ports, the iopl function must be used. Permissions
are not inherited on fork, but on exec they are. This is useful for giving port access permissions to nonprivileged tasks.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

CONFORMS TO
ioperm is Linux specific.

SEE ALSO
iopl(2)

Linux, 21 January 1993

iopl
iopl—Changes I/O privilege level

789

SYNOPSIS
#include <unistd.h>
int iopl(int level);

DESCRIPTION
iopl changes the I/O privilege level of the current process, as specified in level.

This call is necessary to allow 8514-compatible X servers to run under Linux. Because these X servers require access to all
65536 I/O ports, the ioperm call is not sufficient.

In addition to granting unrestricted I/O port access, running at a higher I/O privilege level also allows the process to disable
interrupts. This will probably crash the system and is not recommended.

The I/O privilege level for a normal process is 0.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

ERRORS
EINVAL level is greater than 3.

EPERM The current user is not the superuser.

NOTES FROM THE KERNEL SOURCE
iopl has to be used when you want to access the I/O ports beyond the 0x3ff range: To get the full 65536 ports bitmapped,
you’d need 8KB of bitmaps/process, which is a bit excessive.

SEE ALSO
ioperm(2)

Linux 0.99.11, 24 July 1993

ipc
ipc—System V IPC system calls

SYNOPSIS
int ipc(unsigned int call, int first, int second,
int third, void *ptr, long fifth);

DESCRIPTION
ipc is a common kernel entry point for the System V IPC calls for messages, semaphores, and shared memory. call
determines which IPC function to invoke; the other arguments are passed through to the appropriate call.

User programs should call the appropriate functions by their usual names. Only standard library implementors and kernel
hackers need to know about ipc.

SEE ALSO
msgctl(2), msgget(2), msgrcv(2), msgsnd(2), semctl(2), semget(2), semop(2), shmat(2), shmctl(2), shmdt(2), shmget(2)

Linux 1.2.4, 15 April 1995

ipc

Part II: System Calls790

kill
kill—Sends signal to a process

SYNOPSIS
#include <sys/types.h>
#include <signal.h>
int kill(pid t pid,intsig);

DESCRIPTION
The kill system call can be used to send any signal to any process group or process.

If pid is positive, then signal sig is sent to pid. In this case, 0 is returned on success and a negative value is returned on error.

If pid equals –1, then sig is sent to every process except the first one, from higher numbers in the proc table to lower. In this
case, 0 is returned on success, or the error condition resulting from signaling the last process is returned.

If pid is less than –1, then sig is sent to every process in the process group –pid. In this case, the number of processes the
signal was sent to is returned and a negative value is returned for failure.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

ERRORS
EINVAL An invalid signal is sent.

ESRCH The pid or process group does not exist. Note that an existing process might be a zombie, a
process that already committed termination, but has not yet been wait()ed for.

EPERM The effective userID of the process calling kill() is not equal to the effective user ID of pid,
unless the superuser called kill().

BUGS
It is impossible to send a signal to task number one, the init process, for which it has not installed a signal handler. This is
done to ensure that the system is not brought down accidentally.

CONFORMS TO
SVID, AT&T, POSIX.1, X/OPEN, BSD 4.3

SEE ALSO
exit(2), exit(2), signal(2), signal(7)

Linux, 1 November 1995

killpg
killpg—Sends signal to a process group

SYNOPSIS
#include <signal.h>
int killpg(int pgrp,intsig);

DESCRIPTION
killpg sends the signal sig to the process group pgrp. See sigaction(2) for a list of signals. If pgrp is 0, killpg sends the signal
to the sending process’s process group.

791

The sending process and members of the process group must have the same effective user ID, or the sender must be the
superuser. As a single special case, the continue signal SIGCONT may be sent to any process that is a descendant of the current
process.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

ERRORS
EINVAL sig is not a valid signal number.

ESRCH No process can be found in the process group specified by pgrp.

ESRCH The process group was given as 0, but the sending process does not have a process group.

EPERM The sending process is not the superuser and one or more of the target processes has an
effective user ID different from that of the sending process.

HISTORY
The killpg function call appeared in BSD4.0.

SEE ALSO
kill(2), getpgrp(2), signal(2)

BSD Man Page, 23 July 1993

link
link—Makes a new name for a file

SYNOPSIS
#include <unistd.h>
int link(const char *oldpath, const char *newpath);

DESCRIPTION
link creates a new link (also known as a hard link) to an existing file.

If newpath exists, it will not be overwritten.

This new name may be used exactly as the old one for any operation; both names refer to the same file (and so have the same
permissions and ownership) and it is impossible to tell which name was the original.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

ERRORS
EXDEV oldpath and newpath are not on the same filesystem.

EPERM The filesystem containing oldpath and newpath does not support the creation of hard links.

EFAULT oldpath or newpath points outside your accessible address space.

EACCES Write access to the directory containing newpath is not allowed for the process’s effective
UID, or one of the directories in oldpath or newpath did not allow search (execute)
permission.

ENAMETOOLONG oldpath or newpath was too long.

ENOENT A directory component in oldpath or newpath does not exist or is a dangling symbolic link.

ENOTDIR A component used as a directory in oldpath or newpath is not, in fact, a directory.

link

Part II: System Calls792

ENOMEM Insufficient kernel memory was available.

EROFS The file is on a read-only filesystem.

EEXIST newpath already exists.

EMLINK The file referred to by oldpath already has the maximum number of links to it.

ELOOP oldpath or newpath contains a reference to a circular symbolic link, that is, a symbolic link
whose expansion contains a reference to itself.

ENOSPC The device containing the file has no room for the new directory entry.

EPERM oldpath is the . or .. entry of a directory.

NOTES
Hard links, as created by link, cannot span filesystems. Use symlink if this is required.

CONFORMS TO
SVID, AT&T, POSIX, BSD 4.3

BUGS
On NFS file systems, the return code may be wrong in case the NFS server performs the link creation and dies before it can
say so. Use stat(2) to find out if the link was created.

SEE ALSO
symlink(2), unlink(2), rename(2), open(2), stat(2), ln(1), link(8)

Linux, 17 August 1994

listen
listen—Listens for connections on a socket

SYNOPSIS
#include <sys/socket.h>
int listen(int_s,int backlog);

DESCRIPTION
To accept connections, a socket is first created with socket(2), a willingness to accept incoming connections and a queue
limit for incoming connections are specified with listen, and then the connections are accepted with accept(2). The listen
call applies only to sockets of type SOCK_STREAM or SOCK_SEQPACKET.

The backlog parameter defines the maximum length the queue of pending connections may grow to. If a connection request
arrives with the queue full, the client might receive an error with an indication of ECONNREFUSED, or, if the underlying protocol
supports retransmission, the request may be ignored so that retries may succeed.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

ERRORS
EBADF The argument s is not a valid descriptor.

ENOTSOCK The argument s is not a socket.

EOPNOTSUPP The socket is not of a type that supports the operation listen.

HISTORY
The listen function call appeared in BSD 4.2.

793

BUGS
If the socket is of type af_inet and the backlog argument is greater than 128, it is silently truncated to 128. For portable
applications, don’t rely on this value since BSD (and at least some BSD-derived systems) limit the backlog to 5.

SEE ALSO
accept(2), connect(2), socket(2)

BSD Man Page, 23 July 1993

llseek
_llseek—Repositions the read/write file offset

SYNOPSIS
#include <unistd.h>
#include <linux/unistd.h>
_syscall5(int, llseek, uint, fd, ulong, hi, ulong, lo, loff_t*,res,uint,wh);
int llseek(unsigned int fd, unsigned long offset_high,
unsigned long offset_low,loff_t * result , unsigned int whence);

DESCRIPTION
The _llseek function repositions the offset of the file descriptor fd to (offset_high<<32) | offset_low bytes relative to the
beginning of the file, the current position in the file, or the end of the file, depending on whether whence is SEEK_SET,
SEEK_CUR,or SEEK_END, respectively. It returns the resulting file position in the argument result.

RETURN VALUES
Upon successful completion, _llseek returns 0. Otherwise, a value of –1 is returned and errno is set to indicate the error.

ERRORS
EBADF fd is not an open file descriptor.

EINVAL whence is invalid.

CONFORMS TO
This function is Linux specific.

BUGS
There is no support for files with a size of 2GB or more.

SEE ALSO
lseek(2)

Linux 1.2.9, 10 June 1995

lseek
lseek—Repositions read/write file offset

SYNOPSIS
#include <unistd.h>
off_t lseek(int fildes,off_t offset,int whence);

lseek

Part II: System Calls794

DESCRIPTION
The lseek function repositions the offset of the file descriptor fildes to the argument offset according to the directive
whence. The argument fildes must be an open file descriptor. lseek repositions the file pointer fildes as follows:

If whence is SEEK_SET, the offset is set to offset bytes.

If whence is SEEK_CUR, the offset is set to its current location plus offset bytes.

If whence is SEEK_END, the offset is set to the size of the file plus offset bytes.

The lseek function allows the file offset to be set beyond the end of the existing end-of-file of the file. If data is later written
at this point, subsequent reads of the data in the gap return bytes of zeros (until data is actually written into the gap).

Some devices are incapable of seeking. The value of the pointer associated with such a device is undefined.

RETURN VALUES
Upon successful completion, lseek returns the resulting offset location as measured in bytes from the beginning of the file.
Otherwise, a value of –1 is returned and errno is set to indicate the error.

ERRORS
EBADF fildes is not an open file descriptor.

ESPIPE fildes is associated with a pipe, socket, or FIFO.

EINVAL whence is not a proper value.

CONFORMS TO
POSIX, BSD 4.3

BUGS
This document’s use of whence is incorrect English, but maintained for historical reasons.

SEE ALSO
dup(2), open(2), fseek(3)

Linux 1.2.9, 10 June 1995

mkdir
mkdir—Creates a directory

SYNOPSIS
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
int mkdir(const char *pathname, mode_t mode);

DESCRIPTION
mkdir attempts to create a directory named pathname.

mode specifies the permissions to use. It is modified by the process’s umask in the usual way: the permissions of the created
file is (mode & ˜umask).

The newly created directory will be owned by the effective UID of the process. If the directory containing the file has the set
group ID bit set, or if the filesystem is mounted with BSD group semantics, the new directory will inherit the group
ownership from its parent; otherwise, it will be owned by the effective GID of the process.

If the parent directory has the set group ID bit set, so will the newly created directory.

795

RETURN VALUE
mkdir returns 0 on success, or -1 if an error occurred (in which case, errno is set appropriately).

ERRORS
EEXIST pathname already exists (not necessarily as a directory).

EFAULT pathname points outside your accessible address space.

EACCES The parent directory does not allow write permission to the process, or one of the
directories in pathname did not allow search (execute) permission.

ENAMETOOLONG pathname was too long.

ENOENT A directory component in pathname does not exist or is a dangling symbolic link.

ENOTDIR A component used as a directory in pathname is not, in fact, a directory.

ENOMEM Insufficient kernel memory was available.

EROFS pathname refers to a file on a read-only filesystem and write access was requested.

ELOOP pathname contains a reference to a circular symbolic link, that is, a symbolic link whose
expansion contains a reference to itself.

ENOSPC The device containing pathname has no room for the new directory.

ENOSPC The new directory cannot be created because the user’s disk quota is exhausted.

BUGS
In some older versions of Linux (for example, 0.99pl7) all the normal filesystems sometime allow the creation of two files in
the same directory with the same name. This occurs only rarely and only on a heavily loaded system. It is believed that this
bug was fixed in the Minix filesystem in Linux 0.99pl8 prerelease; and it is hoped that it was fixed in the other filesystems
shortly afterward.

There are many infelicities in the protocol underlying NFS.

SEE ALSO
read(2), write(2), fcntl(2), close(2), unlink(2), open(2), mknod(2), stat(2), umask(2), mount(2), socket(2), socket(2), fopen(3)

Linux 1.0, 29 March 1994

mknod
mknod—Creates a directory

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
int mknod(const char *pathname, mode_t mode,dev_t dev);

DESCRIPTION
mknod attempts to create a filesystem node (file, device special file, or named pipe) named pathname, specified by mode and dev.

mode specifies both the permissions to use and the type of node to be created.

It should be a combination (using bitwise OR) of one of the file types listed below and the permissions for the new node.

The permissions are modified by the process’s umask in the usual way: The permissions of the created node is (mode &
˜umask).

mknod

Part II: System Calls796

The file type should be one of S_IFREG, S_IFCHR, S_IFBLK, or S_IFIFO to specify a normal file (which will be created empty),
character special file, block special file, or FIFO (named pipe), respectively, or 0, which will create a normal file.

If the file type is S_IFCHR or S_IFBLK, then dev specifies the major and minor numbers of the newly created device special file;
otherwise, it is ignored.

The newly created node will be owned by the effective UID of the process. If the directory containing the node has the set
group ID bit set, or if the filesystem is mounted with BSD group semantics, the new node will inherit the group ownership
from its parent directory; otherwise it will be owned by the effective GID of the process.

RETURN VALUE
mknod returns 0 on success, or -1 if an error occurred (in which case, errno is set appropriately).

ERRORS
EPERM mode requested creation of something other than a FIFO (named pipe), and the caller is not

the superuser; also returned if the filesystem containing pathname does not support the type
of node requested.

EINVAL mode requested creation of something other than a normal file, device special file or FIFO.

EEXIST pathname already exists.

EFAULT pathname points outside your accessible address space.

EACCES The parent directory does not allow write permission to the process, or one of the
directories in pathname did not allow search (execute) permission.

ENAMETOOLONG pathname was too long.

ENOENT A directory component in pathname does not exist or is a dangling symbolic link.

ENOTDIR A component used as a directory in pathname is not, in fact, a directory.

ENOMEM Insufficient kernel memory was available.

EROFS pathname refers to a file on a read-only filesystem and write access was requested.

ELOOP pathname contains a reference to a circular symbolic link, that is, a symbolic link whose
expansion contains a reference to itself.

ENOSPC The device containing pathname has no room for the new node.

BUGS
In some older versions of Linux (for example, 0.99pl7) all the normal filesystems sometime allow the creation of two files in
the same directory with the same name. This occurs only rarely and only on a heavily loaded system. It is believed that this
bug was fixed in the Minix filesystem in Linux 0.99pl8 prerelease; and it is hoped that it was fixed in the other filesystems
shortly afterward.

mknod cannot be used to create directories or socket files, and cannot be used to create normal files by users other than the
superuser.

There are many infelicities in the protocol underlying NFS.

SEE ALSO
read(2), write(2), fcntl(2), close(2), unlink(2), open(2), mkdir(2), stat(2), umask(2), mount(2), socket(2), fopen(3)

Linux 1.0, 29 March 1994

mlock
mlock—Disables paging for some parts of memory

797

SYNOPSIS
#include <sys/mman.h>
int mlock(const void *addr, size_t len);

DESCRIPTION
mlock disables paging for the memory in the range starting at addr with length len bytes. All pages that contain a part of the
specified memory range are guaranteed to be resident in RAM when the mlock system call returns successfully and they are
guaranteed to stay in RAM until the pages are unlocked again by munlock or munlockall or until the process terminates or
starts another program with exec. Child processes do not inherit page locks across a fork.

Memory locking has two main applications: real-time algorithms and high-security data processing. Real-time applications
require deterministic timing, and, like scheduling, paging is one major cause of unexpected program execution delays. Real-
time applications will usually also switch to a real-time scheduler with sched setscheduler.

Cryptographic security software often handles critical bytes such as passwords or secret keys as data structures. As a result of
paging, these secrets could be transferred onto a persistent swap store medium, where they might be accessible to the enemy
long after the security software has erased the secrets in RAM and terminated.

Memory locks do not stack, that is, pages that have been locked several times by calls to mlock or mlockall will be unlocked
by a single call to munlock for the corresponding range or by munlockall. Pages that are mapped to several locations or by
several processes stay locked into RAM as long as they are locked at least at one location or by at least one process.

On POSIX systems on which mlock and munlock are available, _POSIX_MEMLOCK_RANGE is defined in <unistd.h> and the value
PAGESIZE from <limits.h> indicates the number of bytes per page.

RETURN VALUE
On success, mlock returns 0. On error, –1 is returned, errno is set appropriately, and no changes are made to any locks in the
address space of the process.

ERRORS
ENOMEM Some of the specified address range does not correspond to mapped pages in the address

space of the process or the process tried to exceed the maximum number of allowed locked
pages.

EPERM The calling process does not have appropriate privileges. Only root processes are allowed to
lock pages.

EINVAL len was not a positive number.

STANDARDS
POSIX.1b, SVR4

SEE ALSO
munlock(2), mlockall(2), munlockall(2).

Linux 1.3.43, 26 November 1995

mlockall
mlockall—Disables paging for calling process

SYNOPSIS
#include <sys/mman.h>
int mlockall(int flags);

mlockall

Part II: System Calls798

DESCRIPTION
mlockall disables paging for all pages mapped into the address space of the calling process. This includes the pages of the
code, data and stack segments, shared libraries, user space kernel data, shared memory, and memory-mapped files. All
mapped pages are guaranteed to be resident in RAM when the mlockall system call returns successfully and they are
guaranteed to stay in RAM until the pages are unlocked again by munlock or munlockall or until the process terminates or
starts another program with exec. Child processes do not inherit page locks across a fork.

Memory locking has two main applications: real-time algorithms and high-security data processing. Real-time applications
require deterministic timing, and, like scheduling, paging is one major cause of unexpected program execution delays. Real-
time applications will usually also switch to a real-time scheduler with sched setscheduler. Cryptographic security software
often handles critical bytes such as passwords or secret keys as data structures. As a result of paging, these secrets could be
transferred onto a persistent swap store medium, where they might be accessible to the enemy long after the security software
has erased the secrets in RAM and terminated. For security applications, only small parts of memory have to be locked, for
which mlock is available.

The flags parameter can be constructed from the logical OR of the following constants:

MCL_CURRENT Lock all pages that are currently mapped into the address space of the process.

MCL_FUTURE Lock all pages that will become mapped into the address space of the process in the future.
These could be, for instance, new pages required by a growing heap and stack as well as new
memory mapped files or shared memory regions.

If MCL_FUTURE has been specified and the number of locked pages exceeds the upper limit of allowed locked pages, the system
call that caused the new mapping will fail with ENOMEM. If these new pages have been mapped by the growing stack, the kernel
will deny stack expansion and send a SIGSEGV.

Real-time processes should reserve enough locked stack pages before entering the time-critical section, so no page fault can be
caused by function calls. This can be achieved by calling a function that has a sufficiently large automatic variable and that
writes to the memory occupied by this large array in order to touch these stack pages. This way, enough pages will be
mapped for the stack and can be locked into RAM. The dummy writes ensure that not even copy-on-write page faults can
occur in the critical section.

Memory locks do not stack, that is, pages that have been locked several times by calls to mlockall or mlock will be unlocked
by a single call to munlockall. Pages that are mapped to several locations or by several processes stay locked into RAM as long
as they are locked at least at one location or by at least one process.

On POSIX systems on which mlockall and munlockall are available, POSIX MEMLOCK is defined in <unistd.h>.

RETURN VALUE
On success, mlockall returns 0. On error, –1 is returned and errno is set appropriately.

ERRORS
ENOMEM The process tried to exceed the maximum number of allowed locked pages.

EPERM The calling process does not have appropriate privileges. Only root processes are allowed to
lock pages.

EINVAL Unknown flags were specified.

STANDARDS
POSIX.1b, SVR4

SEE ALSO
munlockall(2), mlock(2), munlock(2)

Linux 1.3.43, 26 November 1995

799

mmap, munmap
mmap, munmap—Map or unmap files or devices into memory

SYNOPSIS
#include <unistd.h>
#include <sys/mman.h>
#ifdef POSIX MAPPED FILES
void * mmap(void *start, size_t length,int prot ,int flags,int fd,off_t offset);
int munmap(void *start, size_t length);
#endif

DESCRIPTION
The mmap function asks to map length bytes starting at offset offset from the file (or other object) specified by fd into
memory, preferably at address start. This latter address is a hint only, and is usually specified as 0. The actual place where
the object is mapped is returned by mmap.The prot argument describes the desired memory protection. It has the following
bits:

PROT_EXEC Pages may be executed.

PROT_READ Pages may be read.

PROT_WRITE Pages may be written.

The flags parameter specifies the type of the mapped object, mapping options, and whether modifications made to the
mapped copy of the page are private to the process or are to be shared with other references. It has the following bits:

MAP_FIXED Do not select a different address than the one specified. If the specified address cannot be
used, mmap will fail. If MAP_FIXED is specified, start must be a multiple of the pagesize. Use of
this option is discouraged.

MAP_SHARED Share this mapping with all other processes that map this object.

MAP_PRIVATE Create a private copy-on-write mapping.

These three flags are described in POSIX.4. Linux also knows about MAP_DENYWRITE, MAP_EXECUTABLE, and MAP_ANON(YMOUS).

The munmap system call deletes the mappings for the specified address range and causes further references to addresses within
the range to generate invalid memory references.

RETURN VALUE
On success, mmap returns a pointer to the mapped area. On error, MAP_FAILED (–1) is returned and errno is set appropriately.
On success, munmap returns 0, and on failure it returns –1 and sets errno (probably to EINVAL).

ERRORS
EBADF fd is not a valid file descriptor (and MAP_ANONYMOUS was not set).

EACCES MAP_PRIVATE was asked, but fd is not open for reading. Or MAP_SHARED was asked and
PROT_WRITE is set, fd is not open for writing.

EINVAL start or length, and offset are too large, or not aligned on a PAGESIZE boundary.

ETXTBUSY MAP_DENYWRITE was set but the object specified by fd is open for writing.

EAGAIN The file has been locked, or too much memory has been locked.

ENOMEM No memory is available.

CONFORMS TO
POSIX.4.

mmap, munmap

Part II: System Calls800

SEE ALSO
getpagesize(2), msync(2), shm_open(2), B. O. Gallmeister, POSIX.4, O’Reilly, pp. 128–129, 389–391.

Linux 1.3.86, 12 April 1996

modify_ldt
modify_ldt—Gets or sets ldt

SYNOPSIS
#include <linux/ldt.h> #include <linux/unistd.h>

_syscall3(int, modify_ldt, int, func, void *, ptr, unsigned long, bytecount)

int modify_ldt(int func,void *ptr, unsigned long bytecount);

DESCRIPTION
modify_ldt reads or writes the local descriptor table (ldt) for a process. The ldt is a per-process memory-management table
used by the i386 processor. For more information on this table, see an Intel 386 processor handbook.

When func is 0, modify_ldt reads the ldt into the memory pointed to by ptr. The number of bytes read is the smaller of
bytecount and the actual size of the ldt.

When func is 1, modify_ldt modifies one ldt entry. ptr points to a modify_ldt_ldt_s structure and bytecount must equal the
size of this structure.

RETURN VALUE
On success, modify_ldt returns either the actual number of bytes read (for reading) or 0 (for writing). On failure, modify_ldt
returns –1 and sets errno.

ERRORS
ENOSYS func is neither 0 nor 1.

EINVAL ptr is 0, or func is 1 and bytecount is not equal to the size of the structure
modify_ldt_ldt_s,or func is 1 and the new ldt entry has illegal values.

EFAULT ptr points outside the address space.

SEE ALSO
vm86(2)

Linux 1.3.6, 22 July 1995

get_kernel_syms, create_module, init_module, delete_module
get_kernel_syms, create_module, init_module, delete_module—Loadable module support

SYNOPSIS
#include <linux/module.h>

 int get_kernel_syms(struct kernel_sym *table);

 int create_module(char *module_name, unsigned long size);

801

 int init_module(char *module_name, char *code, unsigned codesize,
 struct mod_routines *routines, struct symbol_table *symtab);

 int delete_module(char *module_name);

 struct kernel_sym {
 unsigned long value;
 char name[SYM_MAX_NAME];
 };

 struct mod_routines {
 int (*init)(void);
 void (*cleanup)(void);
 };

 struct module_ref {
 struct module *module;
 struct module_ref *next;
 };

 struct internal_symbol {
 void *addr;
 char *name;
 };

 struct symbol_table {
 int size; /* total, including string table!!! */
 int n_symbols;
 int n_refs;
 struct internal_symbol symbol[0];
 struct module_ref ref[0];
 };

DESCRIPTION
These system calls have not yet been included in any library, which means that they have to be called by the
syscall(_NR_function) mechanism. get_kernel_syms(table); has two uses: First, if table is NULL, this call will only return the
number of symbols, including module names, that are available. This number should be used to reserve memory for that
many items of struct kernel sym.

If table is not NULL, this call will copy all kernel symbols and module names (and version info) from the kernel to the space
pointed to by table. The entries are ordered in module LIFO order. For each module an entry that describes the module will
be followed by entries describing the symbols exported by this module.

Note that for symbols that describe a module, the value part of the structure will contain the kernel address of the structure
that describes the module.

The name part of the structure is the module name prepended with #, as in #my module. The symbol that describes a module
will appear before the symbols defined by this module.

Ahead of the kernel resident symbols, a module name symbol with the “dummy” name # will appear. This information can
be used to build a table of module references when modules are stacked (or layered). create_module(module_name, size); will
allocate size bytes of kernel space for a module and also create the necessary kernel structures— called name—for the new
module. The module will now exist in kernel space, with the status MOD_UNINITIALIZED.init module(module_name, code,
codesize, routines, symtab);.

This is the actual “module loader” that will load the module named name into the kernel. The parameters code and codesize
refer to the relocated binary object module that is codesize bytes long. Note that the first 4 bytes will be used as a reference
counter in kernel space, updated by the MOD_INC_USE_COUNT and MOD_DEC_USE_COUNT macros.

get_kernel_syms, create_module, init_module, delete_module

Part II: System Calls802

The functions described in routines will be used to start and stop the module. These pointers should therefore contain the
addresses of the init_module() and cleanup_module() functions that have to be defined for all loadable modules.

If a module wants to export symbols for use by other modules, or if the module makes references to symbols defined by other
modules, the parameter symtab has to point to a structure that describes these. A NULL value for symtab means that no symbols
are exported and no references to other modules are made.

The symtab that will be copied into the kernel consists of a symbol table structure immediately followed by a string table,
containing the names of the symbols defined by the module. The size element has to include the size of this string table as
well. Special considerations follow.

The n_symbols and n_refs elements tells how many symbols and how many module references are included in the symbol
table structure. Immediately after these integers, the array of symbol definitions follows. The name element in each struct
internal symbol should actually not be an ordinary pointer, but instead the offset of the corresponding string table entry
relative to the start of the symbol table structure.

When all defined symbols have been listed, the symbol_table structure continues with the array of module references, as
described by the struct module_ref elements. Only the module field of these structures have to be initialized. The module
addresses that were obtained from a previous get_kernel_syms call, for elements with names starting with # should be copied
to this field.

If the module could be successfully loaded, and if the call to the module function init_module() also succeeds, the status of
the module will be changed to MOD_RUNNING. Otherwise, the kernel memory occupied by module will be freed.

delete_module(module_name); should be used to unload a module. If the module reference count shows that the module is not
active, and if there are no references to this module from other modules, the module function cleanup_module() will be
called. If all these steps succeed, the kernel memory occupied by the module and its structures will be freed.

DIAGNOSTICS
If there are any errors, these functions will return the value -1, and the global variable errno will contain the error number. A
descriptive text will also be written on the console device.

SEE ALSO
insmod(1), rmmod(1), lsmod(1), ksyms(1)

HISTORY
The module support was first conceived by Anonymous.

Linux version by Bas Laarhoven (bas@vimec.nl), 0.99.14 version by Jon Tombs (jon@gtex02.us.es), extended by Bjorn
Ekwall (bj0rn@blox.se).

BUGS
Naah...

Linux, 25 January 1995

mount, umount
mount, umount—Mount and unmount filesystems.

SYNOPSIS
#include <sys/mount.h>
#include <linux/fs.h>
int mount(const char *specialfile, const char * dir ,
const char * filesystemtype, unsigned long rwflag , const void * data);
int umount(const char *specialfile);
int umount(const char *dir);

803

DESCRIPTION
mount attaches the filesystem specified by specialfile (which is often a device name) to the directory specified by dir.

umount removes the attachment of the filesystem specified by specialfile or dir.

Only the superuser may mount and unmount filesystems.

The filesystemtype argument may take one of the values listed in /proc/filesystems (such as minix, ext2, msdos, proc, nfs,
iso9660).

The rwflag argument has the magic number 0xC0ED in the top 16 bits, and various mount flags (as defined in <linux/fs.h>) in
the low order 16 bits:

#define MS_RDONLY 1 /* mount read-only */
#define MS_NOSUID 2 /* ignore suid and sgid bits */
#define MS_NODEV 4 /* disallow access to device special files */
#define MS_NOEXEC 8 /* disallow program execution */
#define MS_SYNC 16 /* writes are synced at once */
#define MS_REMOUNT 32 /* alter flags of a mounted FS */
#define MS_MGC_VAL 0xC0ED0000

If the magic number is absent, then the last two arguments are not used.

The data argument is interpreted by the different filesystems.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

ERRORS
The following error values result from filesystem type independent errors. Each filesystem type may have its own special
errors and its own special behavior. See the kernel source code for details.

EPERM The user is not the superuser.

ENODEV filesystemtype not configured in the kernel.

ENOTBLK specialfile is not a block device (if a device was required).

EBUSY specialfile is already mounted. Or it cannot be remounted read-only because it still holds
files open for writing. Or, it cannot be mounted on dir because dir is still busy (it is the
working directory of some task, the mount point of another device, has open files, and so
on).

EINVAL specialfile had an invalid superblock. Or, a remount was attempted, while specialfile
was not already mounted on dir. Or, an umount was attempted, while dir was not a mount
point.

EFAULT One of the pointer arguments points outside the user address space.

ENOMEM The kernel could not allocate a free page to copy filenames or data into.

ENAMETOOLONG A pathname was longer than MAXPATHLEN.

ENOENT A pathname was empty or had a nonexistent component.

ENOTDIR The second argument, or a prefix of the first argument, is not a directory.

EACCES A component of a path was not searchable.

Or, mounting a read-only filesystem was attempted without giving the MS_RDONLY flag.

Or, the block device specialfile is located on a filesystem mounted with the MS_NODEV
option.

ENXIO The major number of the block device specialfile is out of range.

EMFILE (In case no block device is required:) Table of dummy devices is full.

mount, umount

Part II: System Calls804

CONFORMS TO
These functions are rather Linux specific.

SEE ALSO
mount(8), umount(8)

Linux 1.1.67, 28 November 1994

mprotect
mprotect—Controls allowable accesses to a region of memory

SYNOPSIS
#include <sys/mman.h>
int mprotect(caddr_t addr, size_t *len, int prot);

DESCRIPTION
mprotect controls how a section of memory can be accessed. If an access is disallowed by the protection given it, the program
receives a SIGSEGV.

prot is a bitwise-OR of the following values:

PROT_NONE The memory cannot be accessed at all.

PROT_READ The memory can be read.

PROT_WRITE The memory can be written to.

PROT_EXEC The memory can contain executing code.

The new protection replaces any existing protection. For example, if the memory had previously been marked PROT_READ, and
mprotect is then called with prot PROT_WRITE, it will no longer be readable.

RETURN VALUE
On success, mprotect returns 0. On error, –1 is returned and errno is set appropriately.

ERRORS
EINVAL addr is not a valid pointer.

EFAULT The memory cannot be accessed.

EACCES The memory cannot be given the specified access. This can happen, for example, if you
mmap(2) a file to which you have read-only access, then ask mprotect to mark it PROT_WRITE.

ENOMEM Internal kernel structures could not be allocated.

EXAMPLE
#include <stdio.h>
 #include <stdlib.h>
 #include <errno.h>
 #include <sys/mman.h>

 int
 main(void)
 {
 char *p;
 char c;

805

 /* Allocate a buffer; it will have the default
 protection of PROT_READ|PROT_WRITE. */
 p = malloc(1024);
 if (!p) {
 perror(“Couldn’t malloc(1024)”);
 exit(errno);
 }

 c = p[666]; /* Read; ok */
 p[666] = 42; /* Write; ok */

 /* Mark the buffer read-only. */
 if (mprotect(p, 1024, PROT_READ)) {
 perror(“Couldn’t mprotect”);
 exit(errno);
 }

 c = p[666]; /* Read; ok */
 p[666] = 42; /* Write; program dies on SIGSEGV */

 exit(0);
 }

SEE ALSO
mmap(2)

Linux 1.2, 23 June 1995

mremap
mremap—Remaps a virtual memory address

SYNOPSIS
#include <unistd.h>
#include <sys/mman.h>
void * mremap(void * old_address, size_t old_size , size_t new_size, unsigned long flags)

DESCRIPTION
mremap expands (or shrinks) an existing memory mapping, potentially moving it at the same time (controlled by the flags
argument and the available virtual address space).

old_address is the old address of the virtual memory block that you want to expand (or shrink). Note that old_address has to
be page aligned. old_size is the old size of the virtual memory block. new_size is the requested size of the virtual memory
block after the resize.

The flags argument is a bitmap of flags.

In Linux the memory is divided into pages. A user process has one or linear virtual memory segments. Each virtual memory
segment has one or more mappings to real memory pages (in the page table). Each virtual memory segment has its own
protection (access rights), which may cause a segmentation violation if the memory is accessed incorrectly (for example,
writing to a read-only segment). Accessing virtual memory outside of the segments will also cause a segmentation violation.

mremap uses the Linux page table scheme. mremap changes the mapping between virtual addresses and memory pages. This can
be used to implement a very efficient realloc.

mremap

Part II: System Calls806

FLAGS
MREMAP_MAYMOVE Indicates whether the operation should fail, or changes the virtual address if the resize

cannot be done at the current virtual address.

RETURN VALUE
On success, mremap returns a pointer to the new virtual memory area. On error, –1 is returned, and errno is set appropriately.

ERRORS
EINVAL An invalid argument was given. Most likely old_address was not page aligned.

EFAULT Segmentation fault. Some address in the range old_address to old_address+old_size is an
invalid virtual memory address for this process. You can also get EFAULT even if there exist
mappings that cover the whole address space requested, but those mappings are of different
types.

EAGAIN The memory segment is locked and cannot be remapped.

ENOMEM The memory area cannot be expanded at the current virtual address, and the MREMAP_MAYMOVE
flag is not set in flags. Or there is not enough (virtual) memory available.

SEE ALSO
getpagesize(2), realloc(3), malloc(3), brk(2), sbrk(2), mmap(2), your favorite OS text book for more information on paged
memory. (Modern Operating Systems by Andrew S. Tannenbaum, Inside Linux by Randolf Bentson, The Design of the UNIX
Operating System by Maurice J. Bach.)

Linux 1.3.87, 12 April 1996

msgctl
msgctl—Handles message control operations

SYNOPSIS
include <sys/types.h>
include <sys/ipc.h>
include <sys/msg.h>
int msgctl (int msqid, int cmd , struct msqid_ds *buf);
int cmd, struct msqid_ds *buf;

DESCRIPTION
The function performs the control operation specified by cmd on the message queue with identifier msqid. Legal values for cmd
are

IPC_STAT Copies info from the message queue data structure into the structure pointed to by buf. The
user must have read access privileges on the message queue.

IPC_SET Writes the values of some members of the msqid ds structure pointed to by buf to the
message queue data structure, updating also its msg_ctime member. Considered members
from the user-supplied struct msqid ds pointed to by buf are msg_perm.uid, msg_perm.gid,
and msg_perm.mode /* only lowest 9-bits */ msg_qbytes.

The calling process effective user ID must be one among superuser, creator or owner of the
message queue. Only the superuser can raise the msg_qbytes value beyond the system
parameter MSGMNB.

IPC_RMID Remove immediately the message queue and its data structures awakening all waiting reader
and writer processes (with an error return and errno set to EIDRM). The calling process
effective user ID must be one among superuser, creator or owner of the message queue.

807

RETURN VALUE
If successful, the return value will be 0;otherwise, the return value will be –1 with errno indicating the error.

ERRORS
For a failing return, errno will be set to one of the following values:

EACCESS The argument cmd is equal to IPC_STAT, but the calling process has no read access permis-
sions on the message queue msqid.

EFAULT The argument cmd has value IPC_SET or IPC_STAT, but the address pointed to by buf isn’t
accessible.

EIDRM The message queue was removed.

EINVAL Invalid value for cmd or msqid.

EPERM The argument cmd has value IPC_SET or IPC_RMID, but the calling process effective user ID
has insufficient privileges to execute the command. Note that this is also the case of a
nonsuperuser process trying to increase the msg_qbytes value beyond the value specified by
the system parameter MSGMNB.

NOTES
The IPC_INFO, MSG_STAT, and MSG_INFO control calls are used by the ipcs(1) program to provide information on allocated
resources. In the future these can be modified as needed or moved to a proc file system interface.

SEE ALSO
ipc(5), msgget(2), msgsnd(2), msgrcv(2)

Linux 0.99.13, 1 November 1993

msgget
msgget—Gets a message queue identifier

SYNOPSIS
include <sys/types.h>
include <sys/ipc.h>
include <sys/msg.h>
int msgget (key_t key,int msgflg);

DESCRIPTION
The function returns the message queue identifier associated to the value of the key argument. A new message queue is
created if key has value IPC_PRIVATE or key isn’t IPC_PRIVATE, no existing message queue is associated to key, and IPC_CREAT is
asserted in msgflg (that is, msgflg &IPC_CREAT isn’t 0). The presence in msgflg of the fields IPC_CREAT and IPC_EXCL plays the
same role, with respect to the existence of the message queue, as the presence of O_CREAT and O_EXCL in the mode argument of
the op_en(2) system call: That is, the msgget function fails if msgflg asserts both IPC_CREAT and IPC_EXCL and a message queue
already exists for key.

Upon creation, the lower 9 bits of the argument msgflg define the access permissions (for owner, group, and others) to the
message queue in the same format, and with the same meaning, as for the access permissions parameter in the open(2) or
creat(2) system calls (though the execute permissions are not used by the system).

Furthermore, while creating, the system call initializes the system message queue data structure msqid ds as follows:

msg_perm.cuid and msg_perm.uid are set to the effective user ID of the calling process.

msg_perm.cgid and msg_perm.gid are set to the effective group ID of the calling process.

msgget

Part II: System Calls808

The lowest-order 9 bits of msg_perm.mode are set to the lowest-order 9 bit of msgflg.

msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are set to 0.

msg_ctime is set to the current time.

msg_qbytes is set to the system limit MSGMNB.

If the message queue already exists, the access permissions are verified, and a check is made to see whether it is marked for
destruction.

RETURN VALUE
If successful, the return value will be the message queue identifier (a positive integer), otherwise –1 with errno indicating the
error.

ERRORS
For a failing return, errno will be set to one of the following values:

EACCES A message queue exists for key, but the calling process has no access permissions to the
queue.

EEXIST A message queue exists for key and msgflg was asserting both IPC_CREAT and IPC_EXCL.

EIDRM The message queue is marked as to be removed.

ENOENT No message queue exists for key and msgflg wasn’t asserting IPC_CREAT.

ENOMEM A message queue has to be created but the system has not enough memory for the new data
structure.

ENOSPC A message queue has to be created but the system limit for the maximum number of
message queues (MSGMNI) would be exceeded.

NOTES
IPC_PRIVATE isn’t a flag field, but a key_t type. If this special value is used for key, the system call ignores everything but the
lowest-order 9 bits of msgflg and creates a new message queue (on success).

The following is a system limit on message queue resources affecting a msgget call:

MSGMNI Systemwide maximum number of message queues; policy dependent.

BUGS
Use of IPC_PRIVATE doesn’t inhibit other processes the access to the allocated message queue.

As for the files, there is currently no intrinsic way for a process to ensure exclusive access to a message queue. Asserting both
IPC_CREAT and IPC_EXCL in msgflg only ensures (on success) that a new message queue will be created; it doesn’t imply
exclusive access to the message queue.

SEE ALSO
ftok(3), ipc(5), msgctl(2), msgsnd(2), msgrcv(2)

Linux 0.99.13, 1 November 1993

msgop
msgop—Completes message operations

SYNOPSIS
include <sys/types.h>
include <sys/ipc.h>
include <sys/msg.h>

809

int msgsnd (int msqid, struct msgbuf *msgp”,int msgsz,int msgflg);

int msgrcv (int msqid, struct msgbuf *msgp,int msgsz,long msgtyp,int msgflg);

DESCRIPTION
To send or receive a message, the calling process allocates a structure that looks like the following:

struct msgbuf {
 long mtype; /* message type, must be > 0 */
 char mtext[1]; /* message data */
};

but with an array mtext of size msgsz, a nonnegative integer value. The structure member mtype must have a strictly positive
integer value that can be used by the receiving process for message selection (see the section about msgrcv).

The calling process must have write access permissions to send and read access permissions to receive a message on the queue.

The msgsnd system call queues a copy of the message pointed to by the msgp argument on the message queue whose identifier
is specified by the value of the msqid argument.

The argument msgflg specifies the system call behavior if queuing the new message will require more than msg_qbytes in the
queue. Asserting IPC_NOWAIT, the message will not be sent and the system call fails, returning with errno set to EAGAIN.
Otherwise the process is suspended until the condition for the suspension no longer exists (in which case the message is sent
and the system call succeeds), or the queue is removed (in which case the system call fails with errno set to EIDRM), or the
process receives a signal that has to be caught (in which case the system call fails with errno set to EINTR).

Upon successful completion, the message queue data structure is updated as follows:

msg_lspid Set to the process D of the calling process.

msg_qnum Incremented by 1.

msg_stime Set to the current time.

The system call msgrcv reads a message from the message queue specified by msqid into the msgbuf pointed to by the msgp
argument, removing from the queue, on success, the read message.

The argument msgsz specifies the maximum size in bytes for the member mtext of the structure pointed to by the msgp
argument. If the message text has length greater than msgsz, then if the msgflg argument asserts MSG_NOERROR, the message text
will be truncated (and the truncated part will be lost); otherwise, the message isn’t removed from the queue and the system
call fails, returning with errno set to E2BIG.

The argument msgtyp specifies the type of message requested as follows:

If msgtyp is 0, the message on the queue’s front is read.

If msgtyp is greater than 0, the first message on the queue of type msgtyp is read if MSG_EXCEPT isn’t asserted by the msgflg
argument; otherwise, the first message on the queue of type not equal to msgtyp will be read.

If msgtyp is less than 0, the first message on the queue with the lowest type less than or equal to the absolute value of msgtyp
will be read.

The msgflg argument asserts none, one, or more (OR–ing them) among the following flags:

IPC_NOWAIT For immediate return if no message of the requested type is on the queue. The system call
fails with errno set to ENOMSG.

MSG_EXCEPT Used with msgtyp greater than 0 to read the first message on the queue with message type
that differs from msgtyp.

MSG_NOERROR To truncate the message text if longer than msgsz bytes.

msgop

Part II: System Calls810

If no message of the requested type is available and IPC_NOWAIT isn’t asserted in msgflg, the calling process is blocked until one
of the following conditions occurs:

A message of the desired type is placed on the queue.

The message queue is removed from the system. In such a case the system call fails with errno set to EIDRM.

The calling process receives a signal that has to be caught. In such a case the system call fails with errno set to EINTR.

Upon successful completion, the message queue data structure is updated as follows:

msg_lrpid Set to the process D of the calling process.

msg_qnum Decremented by 1.

msg_rtime Set to the current time.

RETURN VALUE
On a failure, both functions return –1 with errno indicating the error; otherwise, msgsnd returns 0 and msgrvc returns the
number of bytes actually copied into the mtext array.

ERRORS
When msgsnd fails, at return errno will be set to one of the following values:

EAGAIN The message can’t be sent due to the msg_qbytes limit for the queue, and IPC_NOWAIT was
asserted in mgsflg.

EACCES The calling process has no write access permissions on the message queue.

EFAULT The address pointed to by msgp isn’t accessible.

EIDRM The message queue was removed.

EINTR Sleeping on a full message queue condition, the process received a signal that had to be
caught.

EINVAL Invalid msqid value, or nonpositive mtype value, or invalid msgsz value (less than 0 or greater
than the system value MSGMAX).

ENOMEM The system has not enough memory to make a copy of the supplied msgbuf.

When msgrcv fails, at return errno will be set to one of the following values:

E2BIG The message text length is greater than msgsz and MSG_NOERROR isn’t asserted in msgflg.

EACCES The calling process has no read access permissions on the message queue.

EFAULT The address pointed to by msgp isn’t accessible.

EIDRM While the process was sleeping to receive a message, the message queue was removed.

EINTR While the process was sleeping to receive a message, the process received a signal that had to
be caught.

EINVAL Illegal msgqid value, or msgsz less than 0.

ENOMSG IPC_NOWAIT was asserted in msgflg and no message of the requested type existed on the
message queue.

NOTES
The followings are system limits affecting a msgsnd system call:

MSGMAX Maximum size for a message text; the implementation set this value to 4080 bytes.

MSGMNB Default maximum size in bytes of a message queue: policy dependent. The superuser can
increase the size of a message queue beyond MSGMNB by a msgctl system call.

The implementation has no intrinsic limits for the systemwide maximum number of message headers (MSGTQL) and for the
systemwide maximum size in bytes of the message pool (MSGPOOL).

811

SEE ALSO
ipc(5), msgctl(2), msgget(2), msgrcv(2), msgsnd(2)

Linux 0.99.13, 1 November 1993

msync
msync—Synchronizes a file with a memory map

SYNOPSIS
#include <unistd.h>
#include <sys/mman.h>

#ifdef_POSIX_MAPPED_FILES
#ifdef_POSIX_SYNCHRONIZED_IO

int msync(const void *start, size_t length,int flags);
#endif
#endif

DESCRIPTION
msync flushes changes made to the in-core copy of a file that was mapped into memory using mmap(2) back to disk. Without
use of this call, there is no guarantee that changes are written back before munmap(2) is called. To be more precise, the part of
the file that corresponds to the memory area starting at start and having length length is updated. The flags argument may
have the bits MS_ASYNC, MS_SYNC, and MS_INVALIDATE set, but not both MS_ASYNC and MS_SYNC. MS_ASYNC specifies that an update
be scheduled, but the call returns immediately. MS_SYNC asks for an update and waits for it to complete. MS_INVALIDATE asks to
invalidate other mappings of the same file (so that they can be updated with the fresh values just written).

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

ERRORS
EINVAL start is not a multiple of PAGESIZE, or any bit other than MS_ASYNC | MS_INVALIDATE |

MS_SYNC is set in flags.
EFAULT The indicated memory (or part of it) was not mapped.

CONFORMS TO
POSIX.4.

SEE ALSO
mmap(2), B.O. Gallmeister, POSIX.4, O’Reilly, pp. 128–129, 389–391.

Linux 1.3.86, 12 April 1996

munlock
munlock—Reenables paging for some parts of memory

SYNOPSIS
#include <sys/mman.h>
int munlock(const void *addr, size_t len);

munlock

Part II: System Calls812

DESCRIPTION
munlock reenables paging for the memory in the range starting at addr with length len bytes. All pages that contain a part of
the specified memory range can after calling munlock be moved to external swap space again by the kernel.

Memory locks do not stack, that is, pages that have been locked several times by calls to mlock or mlockall will be unlocked
by a single call to munlock for the corresponding range or by munlockall. Pages that are mapped to several locations or by
several processes stay locked into RAM as long as they are locked at least at one location or by at least one process.

On POSIX systems on which mlock and munlock are available, _POSIX_MEMLOCK_RANGE is defined in <unistd.h>
and the value PAGESIZE from <limits.h> indicates the number of bytes per page.

RETURN VALUE
On success, munlock returns 0. On error, –1 is returned, errno is set appropriately, and no changes are made to any locks in
the address space of the process.

ERRORS
ENOMEM Some of the specified address range does not correspond to mapped pages in the address

space of the process.

EINVAL len was not a positive number.

STANDARDS
POSIX.1b, SVR4

SEE ALSO
mlock(2), mlockall(2), munlockall(2).

Linux 1.3.43, 26 November 1995

munlockall
munlockall—Reenables paging for calling process

SYNOPSIS
#include <sys/mman.h>
int munlockall(void);

DESCRIPTION
munlockall reenables paging for all pages mapped into the address space of the calling process.

Memory locks do not stack, that is, pages that have been locked several times by calls to mlock or mlockall will be unlocked
by a single call to munlockall. Pages that are mapped to several locations or by several processes stay locked into RAM as long
as they are locked at least at one location or by at least one process.

On POSIX systems on which mlockall and munlockall are available, _POSIX_MEMLOCK is defined in <unistd.h>.

RETURN VALUE
On success, munlockall returns 0. On error, –1 is returned and errno is set appropriately.

STANDARDS
POSIX.1b, SVR4

813

SEE ALSO
mlockall(2), mlock(2), munlock(2)

Linux 1.3.43, 26 November 1995

nanosleep
nanosleep—Pauses execution for a specified time

SYNOPSIS
#include <time.h>

int nanosleep(const struct timespec *req, struct timespec *rem);

DESCRIPTION
nanosleep delays the execution of the program for at least the time specified in *req.The function can return earlier if a signal
has been delivered to the process. In this case, it returns -1, sets errno to EINTR, and writes the remaining time into the
structure pointed to by rem unless rem is NULL. The value of *rem can then be used to call nanosleep again and complete the
specified pause.

The structure timespec is used to specify intervals of time with nanosecond precision. It is specified in <time.h> and has the
form

struct timespec
{
time_t tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */
};

The value of the nanoseconds field must be in the range 0 to 999 999 999.

Compared to sleep(3) and usleep(3), nanosleep has the advantage of not affecting any signals; it is standardized by POSIX, it
provides higher timing resolution, and it allows to continue a sleep that has been interrupted by a signal more easily.

ERRORS
In case of an error or exception, the nanosleep system call returns -1 instead of 0 and sets errno to one of the following values:

EINTR The pause has been interrupted by a nonblocked signal that was delivered to the process.
The remaining sleep time has been written into *rem so that the process can easily call
nanosleep again and continue with the pause.

EINVAL The value in the tv_nsec field was not in the range 0 to 999 999 999 or tv_sec was negative.

BUGS
The current implementation of nanosleep is based on the normal kernel timer mechanism, which has a resolution of 1/HZ s
(that is, 10ms on Linux/i386 and 1ms on Linux/Alpha). Therefore, nanosleep pauses always for at least the specified time;
however, it can take up to 10ms longer than specified until the process becomes runnable again. For the same reason, the
value returned in case of a delivered signal in *rem is usually rounded to the next larger multiple of 1/HZ s.

Because some applications require much more precise pauses (for example, in order to control some time-critical hardware),
nanosleep is also capable of short high-precision pauses. If the process is scheduled under a real-time policy such as
SCHED_FIFO or SCHED_RR, then pauses of up to 2ms will be performed as busy waits with microsecond precision.

STANDARDS
POSIX.1b

nanosleep

Part II: System Calls814

SEE ALSO
sleep(3), usleep(3), sched_setscheduler(2), timer_create(2)

Linux 1.3.85, 10 April 1996

nice
nice—Changes process priority

SYNOPSIS
#include <unistd.h>
int nice(int inc);

DESCRIPTION
nice adds inc to the priority for the calling PID. Note that only the superuser may specify a negative increment, or priority
increase. Note that internally, a higher number is a higher priority. Do not confuse this with the priority scheme as used by
the nice interface.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

ERRORS
EPERM A nonsuperuser attempts to do a priority increase, a numerical decrease, by supplying a

negative inc.

CONFORMS TO
SVID EXT, AT&T, X/OPEN, BSD 4.3

SEE ALSO
nice(1), setpriority(2), fork(2), renice(8)

Linux, 28 March 1992

oldfstat, oldlstat, oldstat, oldolduname, olduname
oldfstat, oldlstat, oldstat, oldolduname, olduname—Obsolete system calls

SYNOPSIS
Obsolete system calls.

DESCRIPTION
The Linux 1.3.6 kernel implements these calls to support old executables. These calls return structures that have grown since
their first implementations, but old executables must continue to receive old smaller structures.

Current executables should be linked with current libraries and never use these calls.

SEE ALSO
fstat(2), lstat(2), stat(2), uname(2), undocumented(2), unimplemented(2)

Linux 1.3.6, 22 July 1995

815

open, creat
open, creat—Open and possibly create a file or device

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open(const char *pathname,int flags);
int open(const char *pathname,int flags,mode_t mode);
int creat(const char *pathname,mode_t mode);

DESCRIPTION
open attempts to open a file and return a file descriptor (a small, nonnegative integer for use in read, write, and so on).

flags is one of O_RDONLY, O_WRONLY, or O_RDWR, which request opening the file read-only, write-only, or read/write, respectively.

flags may also be bitwise-ORed with one or more of the following:

O_CREAT If the file does not exist it will be created.

O_EXCL When used with O_CREAT, if the file already exists, it is an error and the open will fail. See the
“Bugs” section, though.

O_NOCTTY If pathname refers to a terminal device—see tty(4)— it will not become the process’s
controlling terminal even if the process does not have one.

O_TRUNC If the file already exists, it will be truncated.

O_APPEND The file is opened in append mode. Initially, and before each write, the file pointer is
positioned at the end of the file, as if with lseek.

O_NONBLOCK or O_NDELAY The file is opened in nonblocking mode. Neither the open nor any subsequent operations on
the file descriptor that is returned will cause the calling process to wait.

O_SYNC The file is opened for synchronous I/O. Any writes on the resulting file descriptor will
block the calling process until the data has been physically written to the underlying
hardware. See the “Bugs” section, though.

Some of these optional flags can be altered using fcntl after the file has been opened.

mode specifies the permissions to use if a new file is created. It is modified by the process’s umask in the usual way: The
permission of the created file is (mode & ˜umask).

The following symbolic constants are provided for mode:

S_IRWXU 00700 user (file owner) has read, write, and execute permission.

S_IRUSR (S_IREAD) 00400 user has read permission.

S_IWUSR (S_IWRITE) 00200 user has write permission.

S_IXUSR (S_IEXEC) 00100 user has execute permission.

S_IRWXG 00070 group has read, write, and execute permission.

S_IRGRP 00040 group has read permission.

S_IWGRP 00020 group has write permission.

S_IXGRP 00010 group has execute permission.

S_IRWXO 00007 others have read, write, and execute permission.

S_IROTH 00004 others have read permission.

S_IWOTH 00002 others have write permission.

S_IXOTH 00001 others have execute permission.

mode should always be specified when O_CREAT is in the flags, and is ignored otherwise.

creat is equivalent to open with flags equal to O_CREAT|O_WRONLY|O_TRUNC.

open, creat

Part II: System Calls816

RETURN VALUE
open and creat return the new file descriptor, or –1 if an error occurred (in which case errno is set appropriately). Note that
open can open device-special files, but creat cannot create them—use mknod(2) instead.

ERRORS
EEXIST pathname already exists and O_CREAT and O_EXCL were used.

EISDIR pathname refers to a directory and the access requested involved writing.

ETXTBSY pathname refers to an executable image which is currently being executed and write access
was requested.

EFAULT pathname points outside your accessible address space.

EACCES The requested access to the file is not allowed, or one of the directories in pathname did not
allow search (execute) permission.

ENAMETOOLONG pathname was too long.

ENOENT A directory component in pathname does not exist or is a dangling symbolic link.

ENOTDIR A component used as a directory in pathname is not, in fact, a directory.

EMFILE The process already has the maximum number of files open.

ENFILE The limit on the total number of files open on the system has been reached.

ENOMEM Insufficient kernel memory was available.

EROFS pathname refers to a file on a read-only filesystem and write access was requested.

ELOOP pathname contains a reference to a circular symbolic link, that is, a symbolic link whose
expansion contains a reference to itself.

ENOSPC pathname was to be created but the device containing pathname has no room for the new file.

CONFORMS TO
SVID, AT&T, POSIX, X/OPEN, BSD 4.3

BUGS
O_SYNC is not currently implemented (as of Linux 0.99pl7).

There are many infelicities in the protocol underlying NFS, affecting amongst others O_SYNC, O_NDELAY, and O_APPEND.

O_EXCL is broken on NFS filesystems; programs that rely on it for performing locking tasks will contain a race condition. The
solution for performing atomic file locking using a lockfile is to create a unique file on the same fs (for example, incorporat-
ing hostname and PID), use link(2) to make a link to the lockfile, and use stat(2) on the unique file to check if its link
count has increased to 2. Do not use the return value of the link() call.

SEE ALSO
read(2), write(2), fcntl(2), close(2), unlink(2), mknod(2), stat(2), umask(2), mount(2), socket(2), socket(2), fopen(3), link(2)

Linux 0.99.7, 21 July 1993

outb, outw, outl, outsb, outsw, outsl
outb, outw, outl, outsb, outsw, outsl—Port output

inb, inw, inl, insb, insw, insl—Port input

outb_p, outw_p, outl_p, inb_p, inw_p, inl_p—Pause I/O

DESCRIPTION
This family of functions is used to do low-level port input and output. They are primarily designed for internal kernel use,
but can be used from user space, given the following information in addition to that given in outb(9).

817

You compile with –O or –O2 or something similar. The functions are defined as inline macros and will not be substituted in
without optimization enabled, causing unresolved references at link time.

You use ioperm(2) or alternatively iopl(2) to tell the kernel to allow the user space application to access the I/O ports in
question. Failure to do this will cause the application to receive a segmentation fault.

CONFORMS TO
outb and friends are hardware specific. The port and value arguments are in the opposite order from most DOS implementa-
tions.

SEE ALSO
outb(9), ioperm(2), iopl(2)

Linux, 29 November 1995

pause
pause—Waits for signal

SYNOPSIS
#include <unistd.h>
int pause(void);

DESCRIPTION
The pause system call causes the invoking process to sleep until a signal is received.

RETURN VALUE
pause always returns –1, and errno is set to ERESTARTNOHAND.

ERRORS
EINTR Signal was received.

CONFORMS TO
SVID, AT&T, POSIX, X/OPEN, BSD 4.3

SEE ALSO
kill(2), select(2), signal(2)

Linux, 31 August 1995

personality
personality—Sets the process execution domain

SYNOPSIS
int personality(unsigned long persona);

DESCRIPTION
Linux supports different execution domains, or personalities, for each process. Among other things, execution domains tell
Linux how to map signal numbers into signal actions. The execution domain system allows Linux to provide limited support
for binaries compiled under other UNIX-like operating systems.

personality will make the execution domain referenced by persona the new execution domain of the current process.

personality

Part II: System Calls818

RETURN VALUE
On success, persona is made the new execution domain and the previous persona is returned. On error, –1 is returned and
errno is set appropriately.

ERRORS
EINVAL persona does not refer to a valid execution domain.

FILE
/usr/include/linux/personality.h

CONFORMS TO
personality is Linux specific.

Linux 2.0, 22 July 1996

phys
phys—Allows a process to access physical addresses (this command is not implemented)

SYNOPSIS
int phys(int physnum, char *virtaddr,longsize, char *physaddr);

DESCRIPTION
Warning: Because this function is not implemented as of Linux 0.99.11, it will always return –1 and set errno to ENOSYS.

phys maps arbitrary physical memory into a process’s virtual address space. physnum is a number (0–3) that specifies which of
the four physical spaces to set up. Up to four phys calls can be active at any one time. virtaddr is the process’s virtual address.
size is the number of bytes to map in. physaddr is the physical address to map in.

Valid virtaddr and physaddr values are constrained by hardware and must be at an address multiple of the resolution of the
CPU’s memory management scheme. If size is nonzero, size is rounded up to the next MMU resolution boundary. If size is
0, any previous phys(2) mapping for that physnum is nullified.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

CONFORMS TO
version 7 AT&T UNIX

BUGS
phys is very machine dependent.

SEE ALSO
mmap(2), munmap(2)

Linux 0.99.11, 24 July 1993

pipe
pipe—Creates a pipe

819

SYNOPSIS
#include <unistd.h>
int pipe(int filedes[2]);

DESCRIPTION
pipe creates a pair of file descriptors, pointing to a pipe inode, and places them in the array pointed to by filedes. filedes[0]
is for reading, filedes[1] is for writing.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

ERRORS
EMFILE Too many file descriptors are in use by the process.

ENFILE The system file table is full.

EFAULT filedes is not valid.

SEE ALSO
read(2), write(2), fork(2), socketpair(2)

Linux 0.99.11, 23 July 1993

profil
profil—Execution time profile

SYNOPSIS
#include <unistd.h>
int profil(char *buf, int bufsiz,int offset,int scale);

DESCRIPTION
Under Linux 0.99.11, profil is not implemented in the kernel. Instead, the DLL 4.4.1 libraries provide a user-space
implementation.

buf points to bufsiz bytes of core. Every virtual 10 milliseconds, the user’s program counter (PC) is examined: offset is
subtracted and the result is multiplied by scale. If this address is in buf, the word pointed to is incremented.

If scale is less than 2 or bufsiz is 0, profiling is disabled.

RETURN VALUE
0 is always returned.

BUGS
profil cannot be used on a program that also uses ITIMER_PROF itimers.

Calling profil with an invalid buf will result in a core dump.

True kernel profiling provides more accurate results.

SEE ALSO
gprof(1), setitimer(2), signal(2), sigaction(2)

Linux 0.99.11, 23 July 1993

profil

Part II: System Calls820

ptrace
ptrace—Process trace

SYNOPSIS
#include <sys/ptrace.h>
int ptrace(int request,int pid,int addr,int data);

DESCRIPTION
ptrace provides a means by which a parent process can control the execution of a child process and examine and change its
core image. Its primary use is for the implementation of breakpoint debugging. A traced process runs until a signal occurs.
Then it stops and the parent is notified with wait(2). When the process is in the stopped state, its memory can be read and
written. The parent can also cause the child to continue execution, optionally ignoring the signal which caused stopping.

The value of the request argument determines the precise action of the system call:

PTRACE_TRACEME This process is to be traced by its parent. The parent should be expecting to trace the child.

PTRACE_PEEKTEXT, Read word at location addr.
PTRACE_PEEKDATA

PTRACE_PEEKUSR Read word at location addr in the USER area.

PTRACE_POKETEXT, Write word at location addr.
PTRACE_POKEDATA

PTRACE_POKEUSR Write word at location addr in the USER area.

PTRACE_SYSCALL, Restart after signal.
PTRACE_CONT

PTRACE_KILL Send the child a SIGKILL to make it exit.

PTRACE_SINGLESTEP Set the trap flag for single stepping.

PTRACE_ATTACH Attach to the process specified in pid.

PTRACE_DETACH Detach a process that was previously attached.

NOTES
init, the process with process ID 1, may not use this function.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned and errno is set appropriately.

ERRORS
EPERM The specified process (that is, init), cannot be traced or is already being traced.

ESRCH The specified process does not exist.

EIO Request is not valid.

CONFORMS TO
SVID EXT, AT&T, X/OPEN, BSD 4.3

SEE ALSO
gdb(1), exec(2), signal(2), wait(2)

Linux 0.99.11, 23 July 1993

821

quotactl
quotactl—Manipulates disk quotas

SYNOPSIS
#include <sys/types.h>
#include <sys/quota.h>
int quotactl (int cmd, const char *special, intid , caddr_t addr);
#include <linux/unistd.h>
syscall4(int, quotactl, int, cmd, const char *, special ,int, id, caddr_t, addr);

DESCRIPTION
The quota system defines for each user or group a soft limit and a hard limit bounding the amount of disk space that can be
used on a given filesystem. The hard limit cannot be crossed. The soft limit can be crossed, but warnings will ensue.
Moreover, the user cannot be above the soft limit for more than one week (by default) at a time: After this week the soft limit
counts as a hard limit.

The quotactl system call manipulates these quotas. Its first argument is of the form

QCMD(subcmd,type)

where type is either USRQUOTA or GRPQUOTA (for user quota and group quota, respectively.

The second argument special is the block special device these quotas apply to. It must be mounted.

The third argument ID is the user or group ID these quotas apply to (when relevant).

The fourth argument, addr, is the address of a data structure, depending on the command.

The subcmd is one of the following:

Q_QUOTAON Enables quotas. The addr argument is the pathname of the file containing the quotas for the filesystem.

Q_QUOTAOFF Disables quotas.

Q_GETQUOTA Gets limits and current usage of disk space. The addr argument is a pointer to a dqblk structure
(defined in <sys/quota.h>).

Q_SETQUOTA Sets limits and current usage; addr is as before.

Q_SETQLIM Sets limits; addr is as before.

Q_SETUSE Sets usage.

Q_SYNC Syncs disk copy of a filesystem’s quotas.

Q_GETSTATS Gets collected stats.

RETURN VALUE
On success, quotactl returns 0. On error, –1 is returned and errno is set appropriately.

ERRORS
ENOPKG The kernel was compiled without quota support.

EFAULT Bad addr value.

EINVAL type is not a known quota type. Or special could not be found.

ENOTBLK special is not a block special device.

ENODEV special cannot be found in the mount table.

EACCES The quota file is not an ordinary file.

EIO Cannot read or write the quota file.

EMFILE Too many open files: Cannot open quota file.

quotactl

Part II: System Calls822

EBUSY Q_QUOTAON was asked, but quota were enabled already.

ESRCH Q_GETQUOTA or Q_SETQUOTA or Q_SETUSE or Q_SETQLIM was asked for a filesystem that didn’t have quota
enabled.

EPERM The process was not root (for the filesystem), and Q_GETQUOTA was asked for another ID than that of the
process itself, or anything other than Q_GETSTATS or Q_SYNC was asked.

CONFORMS TO
BSD

Linux 1.3.88, 14 April 1996

read
read—Reads from a file descriptor

SYNOPSIS
#include <unistd.h>
ssize_t read(int fd,void*buf, size_t count);

DESCRIPTION
read() attempts to read up to count bytes from file descriptor fd into the buffer starting at buf.

If count is 0, read() returns 0 and has no other results. If count is greater than SSIZE_MAX, the result is unspecified.

RETURN VALUE
On success, the number of bytes read is returned (0 indicates end of file) and the file position is advanced by this number. It
is not an error if this number is smaller than the number of bytes requested; this may happen, for example, because fewer
bytes are actually available right now (maybe because we were close to end-of-file or because we are reading from a pipe, or
from a terminal), or because read() was interrupted by a signal. On error, –1 is returned and errno is set appropriately. In this
case it is left unspecified whether the file position (if any) changes.

ERRORS
EINTR The call was interrupted by a signal before any data was read.

EAGAIN Non-blocking I/O has been selected using O_NONBLOCK and no data was immediately available for
reading.

EIO I/O error. This will happen, for example, when the process is in a background process group, tries to
read from its controlling tty, and it is ignoring or blocking SIGTTIN or its process group is orphaned.

EISDIR fd refers to a directory.

EBADF fd is not a valid file descriptor or is not open for reading.

EINVAL fd is attached to an object that is unsuitable for reading.

EFAULT buf is outside your accessible address space.

Other errors may occur, depending on the object connected to fd. POSIX allows a read that is interrupted after reading some
data to return –1 (with errno set to EINTR) or to return the number of bytes already read.

CONFORMS TO
SVID, AT&T, POSIX, X/OPEN, BSD 4.3

SEE ALSO
readdir(2), write(2), write(2), fcntl(2), close(2), lseek(2), select(2), readlink(2), ioctl(2), fread(3)

Linux, 17 January 1996

823

readdir
readdir—Reads directory entry

SYNOPSIS
#include <unistd.h>
#include <linux/dirent.h>
#include <linux/unistd.h>
syscall3(int, readdir, uint, fd, struct dirent *, dirp, uint, count);
int readdir(unsigned int fd, struct dirent *dirp, unsigned int count);

DESCRIPTION
This is not the function you are interested in. Look at readdir(3) for the POSIX-conforming C library interface. This page
documents the bare kernel system call interface, which can change, and which is superseded by getdents(2).

readdir reads one dirent structure from the directory pointed at by fd into the memory area pointed to by dirp. The
parameter count is ignored; at most one dirent structure is read.

The dirent structure is declared as follows:

struct dirent
{
 long d_ino; /* inode number */
 off_t d_off; /* offset to this dirent */
 unsigned short d_reclen; /* length of this d_name */
 char d_name [NAME_MAX+1]; /* file name (null-terminated) */
}

d_ino is an inode number. d_off is the distance from the start of the directory to this dirent. d_reclen is the size of d_name, not
counting the null terminator. d_name is a null-terminated filename.

RETURN VALUE
On success, 1 is returned. On end of directory, 0 is returned. On error, –1 is returned and errno is set appropriately.

ERRORS
EBADF Invalid file descriptor fd.

ENOTDIR File descriptor does not refer to a directory.

CONFORMS TO
This system call is Linux specific.

SEE ALSO
getdents(2), readdir(3)

Linux 1.3.6, 22 July 1995

readlink
readlink—Reads value of a symbolic link

SYNOPSIS
#include <unistd.h>
int readlink(const char *path, char *buf, size_t bufsiz);

readlink

Part II: System Calls824

DESCRIPTION
readlink places the contents of the symbolic link path in the buffer buf, which has size bufsiz. Readlink does not append a
NUL character to buf.

RETURN VALUES
The call returns the count of characters placed in the buffer if it succeeds, or a –1 if an error occurs, placing the error code in
the global variable errno.

ERRORS
ENOTDIR A component of the path prefix is not a directory.

EINVAL The pathname contains a character with the high-order bit set.

ENAMETOOLONG A component of a pathname exceeded 255 characters, or an entire path name exceeded 1023
characters.

ENOENT The named file does not exist.

EACCES Search permission is denied for a component of the path prefix.

ELOOP Too many symbolic links were encountered in translating the pathname.

EINVAL The named file is not a symbolic link.

EIO An I/O error occurred while reading from the filesystem.

EFAULT buf extends outside the process’s allocated address space.

HISTORY
The readlink function call appeared in BSD 4.2.

SEE ALSO
stat(2), lstat(2), symlink(2)

BSD Man Page, 24 July 1993

readv, writev
readv, writev—Reads or writes a vector

SYNOPSIS
#include <sys/uio.h>
int readv(int fd, const struct iovec * vector, size_t count);
int writev(int fd, const struct iovec * vector, size_t count);
struct iovec {
ptr_t iov_base; /* Starting address. */
size_t iov_len; /* Length in bytes. */
};

DESCRIPTION
readv reads data from file descriptor fd and puts the result in the buffers described by vector. The number of buffers is
specified by count. The buffers are filled in the order specified. Operates just like read except that data is put in vector
instead of a contiguous buffer.

writev writes data to file descriptor fd, and from the buffers described by vector. The number of buffers is specified by count.
The buffers are used in the order specified. Operates just like write except that data is taken from vector instead of a
contiguous buffer.

825

RETURN VALUE
On success, readv returns the number of bytes read. On success, writev returns the number of bytes written. On error, –1 is
returned, and errno is set appropriately.

ERRORS
EINVAL An invalid argument was given. For instance count might be greater than MAX_IOVEC, or 0. fd could

also be attached to an object that is unsuitable for reading.

EFAULT Segmentation fault. Most likely vector or some of the iov_base pointers points to memory that is
not properly allocated.

EBADF The file descriptor fd is not valid.

EINTR The call was interrupted by a signal before any data was read/written.

EAGAIN Non-blocking I/O has been selected using O_NONBLOCK and no data was immediately available for
reading. (Or the file descriptor fd is for an object that is locked.)

EISDIR fd refers to a directory.

EOPNOTSUP fd refers to a socket or device that does not support reading/writing.

Other errors may occur, depending on the object connected to fd.

SEE ALSO
read(2), write(2), fprintf(3), fscanf(2)

Linux 1.3.86, 12 April 1996

reboot
reboot—Reboots or disables Ctrl+Alt+Del

SYNOPSIS
#include <unistd.h>
int reboot (int magic,int magic_too,int flag);

DESCRIPTION
reboot reboots the system or enables/disables CAD.

If magic = 0xfee1dead and magic_too = 672274793, the action performed will be based on flag.

If flag=0x1234567, a hard reset is performed.

If flag=0x89abcdef, CAD is enabled.

If flag=0, CAD is disabled and a signal is sent to process ID 1.

Note that reboot() does not sync()!

Only the superuser may use this function.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned, and errno is set appropriately.

ERRORS
EINVAL Bad magic numbers or flag.

EPERM A non-root user has attempted to call reboot.

readv, writev

Part II: System Calls826

CONFORMS TO
reboot is Linux specific.

SEE ALSO
sync(2), ctrlaltdel(8), halt(8), reboot(8)

Linux 0.99.10, 28 March 1992

recv, recvfrom, recvmsg
recv, recvfrom, recvmsg—Receives a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
int recv(int s, void *buf, intlen, unsigned int flags);
int recvfrom(int s, void*buf, int len, unsigned int flags,
 struct sockaddr *from, int *fromlen);
int recvmsg(int s, struct msghdr *msg, unsigned int flags);

DESCRIPTION
Warning: This is a BSD man page. As of Linux 0.99.11, recvmsg was not implemented.

recvfrom and recvmsg are used to receive messages from a socket, and may be used to receive data on a socket whether or not
it is connection oriented.

If from is non-nil, and the socket is not connection-oriented, the source address of the message is filled in. fromlen is a value-
result parameter, initialized to the size of the buffer associated with from and modified on return to indicate the actual size of
the address stored there.

The recv call is normally used only on a connected socket (see connect(2)) and is identical to recvfrom with a nil from
parameter. Because it is redundant, it might not be supported in future releases.

All three routines return the length of the message on successful completion. If a message is too long to fit in the supplied
buffer, excess bytes might be discarded depending on the type of socket from which the message is received (see socket(2)).

If no messages are available at the socket, the receive call waits for a message to arrive—unless the socket is nonblocking (see
fcntl(2)), in which case the value –1 is returned and the external variable errno is set to EWOULDBLOCK. The receive calls
normally return any data available, up to the requested amount, rather than wait for receipt of the full amount requested;
this behavior is affected by the socket-level options SO_RCVLOWAT and SO_RCVTIMEO, described in getsockopt(2).

The select(2) call may be used to determine when more data arrives.

The flags argument to a recv call is formed by oring one or more of the values:

MSG_OOB Process out-of-band data

MSG_PEEK Peek at incoming message

MSG_WAITALL Wait for full request or error

The MSG_OOB flag requests receipt of out-of-band data that would not be received in the normal data stream. Some protocols
place expedited data at the head of the normal data queue; thus this flag cannot be used with such protocols. The MSG_PEEK
flag causes the receive operation to return data from the beginning of the receive queue without removing that data from the
queue; thus, a subsequent receive call will return the same data. The MSG_WAITALL flag requests that the operation block until
the full request is satisfied. However, the call might still return less data than requested if a signal is caught, an error or
disconnect occurs, or the next data to be received is of a different type than that returned.

827

The recvmsg call uses a msghdr structure to minimize the number of directly supplied parameters. This structure has the
following form, as defined in sys/socket.h:

struct msghdr {
 caddr_t msg_name; /* optional address */
 u_int msg_namelen; /* size of address */
 struct iovec *msg_iov; /* scatter/gather array */
 u_int msg_iovlen; /* # elements in msg_iov */
 caddr_t msg_control; /* ancillary data, see below */
 u_int msg_controllen; /* ancillary data buffer len */
 int msg_flags; /* flags on received message */
};

Here msg_name and msg_namelen specify the destination address if the socket is unconnected; msg_name may be given as a null
pointer if no names are desired or required. msg_iov and msg_iovlen describe scatter gather locations, as discussed in read(2).
msg_control, which has length msg_controllen, points to a buffer for other protocol control–related messages or other
miscellaneous ancillary data. The messages are of the form

struct cmsghdr {
 u_int cmsg_len; /* data byte count, including hdr */
 int cmsg_level; /* originating protocol */
 int cmsg_type; /* protocol-specific type */
/* followed by
 u_char cmsg_data[]; */
};

You could use this, for example, to learn of changes in the data stream in XNS/SPP, or in ISO, to obtain user-
connection-request data by requesting a recvmsg with no data buffer provided immediately after an accept call.

Open file descriptors are now passed as ancillary data for AF_UNIX domain sockets, with cmsg_level set to SOL_SOCKET and
cmsg_type set to SCM_RIGHTS.

The msg_flags field is set on return according to the message received. MSG_EOR indicates end-of-record; the data returned
completed a record (generally used with sockets of type SOCK_SEQPACKET). MSG_TRUNC indicates that the trailing portion of a
datagram was discarded because the datagram was larger than the buffer supplied. MSG_CTRUNC indicates that some control
data was discarded due to lack of space in the buffer for ancillary data. MSG_OOB is returned to indicate that expedited or out-
of-band data was received.

RETURN VALUES
These calls return the number of bytes received, or –1 if an error occurred.

ERRORS
EBADF The argument s is an invalid descriptor.

ENOTCONN The socket is associated with a connection-oriented protocol and has not been connected (see
connect(2) and accept(2)).

ENOTSOCK The argument s does not refer to a socket.

EWOULDBLOCK The socket is marked non-blocking, and the receive operation would block, or a receive timeout
had been set, and the timeout expired before data was received.

EINTR The receive was interrupted by delivery of a signal before any data was available.

EFAULT The receive buffer pointer(s) point outside the process’s address space.

HISTORY
These function calls appeared in BSD 4.2.

recv, recvfrom, recvmsg

Part II: System Calls828

SEE ALSO
fcntl(2), read(2), select(2), getsockopt(2), socket(2)

BSD Man Page, 24 July 1993

rename
rename—Changes the name or location of a file

SYNOPSIS
#include <unistd.h>
int rename(const char *oldpath, const char *newpath);

DESCRIPTION
rename renames a file, moving it between directories if required.

Any other hard links to the file (as created using link) are unaffected.

If newpath already exists it will be automatically overwritten (subject to a few conditions—see the “Errors” section), so that
there is no point at which another process attempting to access newpath will find it missing.

If newpath exists but the operation fails for some reason or the system crashes, rename guarantees to leave an instance of
newpath in place.

However, when overwriting there will probably be a window in which both oldpath and newpath refer to the file being
renamed.

If oldpath refers to a symbolic link, the link will be renamed; if newpath refers to a symbolic link, the link will be overwritten.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned, and errno is set appropriately.

ERRORS
EISDIR newpath is an existing directory, but oldpath is not a directory.

EXDEV oldpath and newpath are not on the same filesystem.

ENOTEMPTY newpath is a non-empty directory.

EBUSY newpath exists and is the current working directory or root directory of some process.

EINVAL An attempt was made to make a directory a subdirectory of itself.

EMLINK oldpath already has the maximum number of links to it, or it was a directory and the directory
containing newpath has the maximum number of links.

ENOTDIR A component used as a directory in oldpath or newpath is not, in fact, a directory.

EFAULT oldpath or newpath points outside your accessible address space.

EACCES Write access to the directory containing oldpath or newpath is not allowed for the process’s effective
UID, or one of the directories in oldpath or newpath did not allow search (execute) permission, or
oldpath was a directory and did not allow write permission (needed to update the .. entry).

EPERM The directory containing oldpath has the sticky bit set, and the process’s effective UID is neither the
UID of the file to be deleted nor that of the directory containing it, or the filesystem containing
pathname does not support renaming of the type requested.

ENAMETOOLONG oldpath or newpath was too long.

ENOENT A directory component in oldpath or newpath does not exist or is a dangling symbolic link.

ENOMEM Insufficient kernel memory was available.

EROFS The file is on a read-only filesystem.

829

ELOOP oldpath or newpath contains a reference to a circular symbolic link; that is, a symbolic link whose
expansion contains a reference to itself.

ENOSPC The device containing the file has no room for the new directory entry.

CONFORMS TO
POSIX, BSD 4.3, ANSI C

BUGS
Currently (Linux 0.99pl7), most of the filesystems except Minix will not allow any overwriting renames involving directories.
You get EEXIST if you try.

On NFS filesystems, you cannot assume that just because the operation failed, the file was not renamed. If the server does
the rename operation and then crashes, the retransmitted RPC, which will be processed when the server is up again, causes a
failure. The application is expected to deal with this. See link(2) for a similar problem.

SEE ALSO
link(2), unlink(2), symlink(2), mv(1), link(8)

Linux 0.99.7, 24 July 1993

rmdir
rmdir—Deletes a directory

SYNOPSIS
#include <unistd.h>
int rmdir(const char *pathname);

DESCRIPTION
rmdir deletes a directory, which must be empty.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned, and errno is set appropriately.

ERRORS
EPERM The filesystem containing pathname does not support the removal of directories.

EFAULT pathname points outside your accessible address space.

EACCES Write access to the directory containing pathname was not allowed for the process’s effective UID,
or one of the directories in pathname did not allow search (execute) permission.

EPERM The directory containing pathname has the sticky bit (S_ISVTX) set, and the process’s effective UID is
neither the UID of the file to be deleted nor that of the directory containing it.

ENAMETOOLONG pathname was too long.

ENOENT A directory component in pathname does not exist or is a dangling symbolic link.

ENOTDIR pathname, or a component used as a directory in pathname, is not, in fact, a directory.

ENOTEMPTY pathname contains entries other than . and ...

EBUSY pathname is the current working directory or root directory of some process.

ENOMEM Insufficient kernel memory was available.

EROFS pathname refers to a file on a read-only filesystem.

ELOOP pathname contains a reference to a circular symbolic link; that is, a symbolic link containing a
reference to itself.

rmdir

Part II: System Calls830

CONFORMS TO
SVID, AT&T, POSIX, BSD 4.3

BUGS
Infelicities in the protocol underlying NFS can cause the unexpected disappearance of directories that are still being used.

SEE ALSO
rename(2), mkdir(2), chdir(2), unlink(2), rmdir(1), rm(1)

Linux 0.99.7, 24 July 1993

sched_get_priority_max, sched_get_priority_min
sched_get_priority_max, sched_get_priority_min—Gets static priority range

SYNOPSIS
#include <sched.h>
int sched_get_priority_max(int policy);
int_sched_get_priority_min(int policy);

DESCRIPTION
sched_get_priority_max returns the maximum priority value that can be used with the scheduling algorithm identified by
policy. sched_get_priority_min returns the minimum priority value that can be used with the scheduling algorithm
identified by policy. Supported policy values are SCHED_FIFO, SCHED_RR, and SCHED_OTHER.

Processes with numerically higher priority values are scheduled before processes with numerically lower priority values.
Therefore, the value returned by sched_get_priority_max will be greater than the value returned by sched_get_priority_min.

Linux allows the static priority value range 1 to 99 for SCHED_FIFO and SCHED_RR, and the priority 0 for SCHED_OTHER.
Scheduling priority ranges for the various policies are not alterable.

The range of scheduling priorities may vary on other POSIX systems, so it is a good idea for portable applications to use a
virtual priority range and map it to the interval given by sched_get_priority_max and sched_get_priority_min. POSIX.1b
requires a spread of at least 32 between the maximum and the minimum values for SCHED_FIFO and SCHED_RR.

POSIX systems on which sched_get_priority_max and sched_get_priority_min are available define
_POSIX_PRIORITY_SCHEDULING in <unistd.h>.

RETURN VALUE
On success, sched_get_priority_max and sched_get_priority_min return the maximum and minimum priority values for the
named scheduling policy. On error, –1 is returned, and errno is set appropriately.

ERRORS
EINVAL The parameter policy does not identify a defined scheduling policy.

STANDARDS
POSIX.1b (formerly POSIX.4)

SEE ALSO
sched_setscheduler(2), sched_getscheduler(2), sched_setparam(2), sched_getparam(2)

sched_setscheduler(2) has a description of the Linux scheduling scheme.

831

Programming for the Real World—POSIX.4 by Bill O. Gallmeister, O’Reilly & Associates, Inc., ISBN 1-56592-074-0

IEEE Std 1003.1b-1003 (POSIX.1b standard)

ISO/IEC 9945-1:1996

Linux 1.3.81, 10 April 1996

sched_rr_get_interval
sched_rr_get_interval—Gets the SCHED_RR interval for the named process

SYNOPSIS
#include <sched.h>
int sched_rr_get_interval(pid_t pid, struct timespec *tp);
struct timespec {
 time_t tv_sec; /* seconds */
 long tv_nsec; /* nanoseconds */
};

DESCRIPTION
sched_rr_get_interval writes into the timespec structure pointed to by tp the round-robin time quantum for the process
identified by pid. If pid is 0, the time quantum for the calling process is written into *tp. The identified process should be
running under the SCHED_RR scheduling policy.

The round robin time quantum value is not alterable under Linux 1.3.81.

POSIX systems on which sched_rr_get_interval is available define _POSIX_PRIORITY_SCHEDULING in <unistd.h>.

RETURN VALUE
On success, sched_rr_get_interval returns 0. On error, –1 is returned, and errno is set appropriately.

ERRORS
ESRCH The process whose ID is pid could not be found.

ENOSYS The system call is not yet implemented.

STANDARDS
POSIX.1b (formerly POSIX.4)

BUGS
As of Linux 1.3.81, sched_rr_get_interval returns with error ENOSYS, because SCHED_RR has not yet been fully implemented or
tested properly.

SEE ALSO
sched_setscheduler(2) has a description of the Linux scheduling scheme.

Programming for the Real World—POSIX.4 by Bill O. Gallmeister, O’Reilly & Associates, Inc., ISBN 1-56592-074-0

IEEE Std 1003.1b-1993 (POSIX.1b standard)

ISO/IEC 9945-1:1996

Linux 1.3.81, 10 April 1996

sched_rr_get_interval

Part II: System Calls832

sched_setparam, sched_getparam
sched_setparam, sched_getparam—Sets and get scheduling parameters

SYNOPSIS
#include <sched.h>
int sched_setparam(pid_t pid, const struct sched_param *p);
int sched_getparam(pid_t pid, struct sched_param *p);
struct sched_param {
...
int sched_priority;
...
};

DESCRIPTION
sched_setparam sets the scheduling parameters associated with the scheduling policy for the process identified by pid. If pid is
0, the parameters of the current process are set. The interpretation of the parameter p depends on the selected policy.
Currently, the following three scheduling policies are supported under Linux: SCHED_FIFO, SCHED_RR, and SCHED_OTHER.

sched_getparam retrieves the scheduling parameters for the process identified by pid. If pid is 0, the parameters of the current
process are retrieved.

sched_setparam checks the validity of p for the scheduling policy of the process. The parameter p->sched_priority must lie
within the range given by sched_get_priority_min and sched_get_priority_max.

POSIX systems on which sched_setparam and sched_getparam are available define _POSIX_PRIORITY_SCHEDULING in <unistd.h>.

RETURN VALUE
On success, sched_setparam and sched_getparam return 0. On error, –1 is returned, and errno is set appropriately.

ERRORS
ESRCH The process whose ID is pid could not be found.

EPERM The calling process does not have appropriate privileges. The process calling sched_setparam needs
an effective UID equal to the UID or UID of the process identified by pid, or it must be a
superuser process.

EINVAL The parameter p does not make sense for the current scheduling policy.

STANDARDS
POSIX.1b (formerly POSIX.4)

SEE ALSO
sched_setscheduler(2), sched_getscheduler(2), sched_get_priority_max(2), sched_get_priority_min(2), nice(2),
setpriority(2), getpriority(2)

sched_setscheduler(2) has a description of the Linux scheduling scheme.

Programming for the Real World—POSIX.4 by Bill O. Gallmeister, O’Reilly & Associates, Inc., ISBN 1-56592-074-0

IEEE Std 1003.1b-1993 (POSIX.1b standard)

ISO/IEC 9945-1:1996

Linux 1.3.81, 10 April 1996

833

sched_setscheduler, sched_getscheduler
sched_setscheduler, sched_getscheduler—Sets and gets scheduling algorithm/parameters

SYNOPSIS
#include <sched.h>
int sched_setscheduler(pid_t pid,intpolicy, const struct sched_param *p);
int sched_getscheduler(pid_t pid);
struct sched_param {
...
int sched_priority;
...
};

DESCRIPTION
sched_setscheduler sets both the scheduling policy and the associated parameters for the process identified by pid. If pid is 0,
the scheduler of the calling process will be set. The interpretation of the parameter p depends on the selected policy.
Currently, the following three scheduling policies are supported under Linux: SCHED_FIFO, SCHED_RR, and SCHED_OTHER; their
respective semantics are described in the following section.

sched_getscheduler queries the scheduling policy currently applied to the process identified by pid. If pid is 0, the policy of
the calling process will be retrieved.

SCHEDULING POLICIES
The scheduler is the kernel part that decides which runnable process will be executed next by the CPU. The Linux scheduler
offers three different scheduling policies, one for normal processes and two for real-time applications. A static priority value,
sched_priority, is assigned to each process, and this value can be changed only via system calls. Conceptually, the scheduler
maintains a list of runnable processes for each possible sched_priority value, and sched_priority can have a value in the
range 0 to 99. To determine the process that runs next, the Linux scheduler looks for the non-empty list with the highest
static priority and takes the process at the head of this list. The scheduling policy determines, for each process, where it will
be inserted into the list of processes with equal static priority and how it will move inside this list.

SCHED_OTHER is the default universal time-sharing scheduler policy used by most processes; SCHED_FIFO and SCHED_RR are
intended for special, time-critical applications that need precise control over the way in which runnable processes are selected
for execution. Processes scheduled with SCHED_OTHER must be assigned the static priority 0; processes scheduled under
SCHED_FIFO or SCHED_RR can have a static priority in the range 1 to 99. Only processes with superuser privileges can get a static
priority higher than 0 and can therefore be scheduled under SCHED_FIFO or SCHED_RR. The system calls sched_get_priority_min
and sched_get_priority_max can be used to find out the valid priority range for a scheduling policy in a portable way on all
POSIX.1b-conforming systems.

All scheduling is preemptive: If a process with a higher static priority gets ready to run, the current process will be preempted
and returned into its wait list. The scheduling policy determines the ordering within the list of runnable processes only
among those with equal static priority.

SCHED_FIFO: FIRST IN–FIRST OUT SCHEDULING
SCHED_FIFO can only be used with static priorities higher than 0, which means that when a SCHED_FIFO process becomes
runnable, it will always preempt immediately any currently running normal SCHED_OTHER process. SCHED_FIFO is a simple
scheduling algorithm without time slicing.

For processes scheduled under the SCHED_FIFO policy, the following rules are applied: A SCHED_FIFO process that has been
preempted by another process of higher priority will stay at the head of the list for its priority and will resume execution as
soon as all processes of higher priority are blocked again. When a SCHED_FIFO process becomes runnable, it will be inserted at
the end of the list for its priority. A call to sched_setscheduler or sched_setparam will put the SCHED_FIFO process identified by

sched_setscheduler, sched_getscheduler

Part II: System Calls834

pid at the end of the list if it was runnable. A process calling sched_yield will be put at the end of the list. No other events
will move a process scheduled under the SCHED_FIFO policy in the wait list of runnable processes with equal static priority. A
SCHED_FIFO process runs until it is blocked by an I/O request, it is preempted by a higher-priority process, or it calls
sched_yield.

SCHED_RR: ROUND-ROBIN SCHEDULING
SCHED_RR is a simple enhancement of SCHED_FIFO. Everything described in the preceding section for SCHED_FIFO also applies to
SCHED_RR, except that each process is only allowed to run for a maximum time quantum. If a SCHED_RR process has been
running for a time period equal to or longer than the time quantum, it will be put at the end of the list for its priority. A
SCHED_RR process that has been preempted by a higher-priority process and subsequently resumes execution as a running
process will complete the unexpired portion of its round-robin time quantum. The length of the time quantum can be
retrieved by sched_rr_get_interval.

SCHED_OTHER: DEFAULT LINUX TIME-SHARING SCHEDULING
SCHED_OTHER can only be used at static priority 0. SCHED_OTHER is the standard Linux time-sharing scheduler that is intended
for all processes that do not require special static-priority real-time mechanisms. The process to run is chosen from the static
priority 0 list based on a dynamic priority that is determined only inside this list. The dynamic priority is based on the nice
level (set by the nice or setpriority system call) and is increased for each time quantum the process is ready to run but is
denied to run by the scheduler. This ensures fair progress among all SCHED_OTHER processes.

RESPONSE TIME
A blocked high-priority process waiting for the I/O has a certain response time before it is scheduled again. The device driver
writer can greatly reduce this response time by using a slow interrupt interrupt handler, as described in request irq(9).

MISCELLANEOUS
Child processes inherit the scheduling algorithm and parameters across a fork.

Memory locking is usually needed for real-time processes to avoid paging delays; this can be done with mlock or mlockall.

Because a non-blocking endless loop in a process scheduled under SCHED_FIFO or SCHED_RR will block all processes with lower
priority forever, a software developer should always keep available on the console a shell scheduled under a higher static
priority than the tested application. This will allow an emergency kill of tested real-time applications that do not block or
terminate as expected. Because SCHED_FIFO and SCHED_RR processes can preempt other processes forever, only root processes
are allowed to activate these policies under Linux.

POSIX systems on which sched_setscheduler and sched_getscheduler are available define _POSIX_PRIORITY_SCHEDULING in
<unistd.h>.

RETURN VALUE
On success, sched_setscheduler returns 0. On success, sched_getscheduler returns the policy for the process (a non-negative
integer). On error, –1 is returned, and errno is set appropriately.

ERRORS
ESRCH The process whose ID is pid could not be found.

EPERM The calling process does not have appropriate privileges. Only root processes are allowed to activate
the SCHED_FIFO and SCHED_RR policies. The process calling sched_setscheduler needs an effective
UID equal to the EUID or UID of the process identified by pid, or it must be a superuser process.

EINVAL The scheduling policy is not one of the recognized policies, or the parameter p does not make sense
for the policy.

STANDARDS
POSIX.1b (formerly POSIX.4)

835

BUGS
As of Linux 1.3.81, SCHED_RR has not yet been tested carefully and might not behave exactly as described or required by
POSIX.1b.

SEE ALSO
sched_setparam(2), sched_getparam(2), sched_yield(2), sched_get_priority_max(2), sched_get_priority_min(2), nice(2),
setpriority(2), getpriority(2), mlockall(2), munlockall(2), mlock(2), munlock(2).

Programming for the Real World—POSIX.4 by Bill O. Gallmeister, O’Reilly & Associates, Inc., ISBN 1-56592-074-0

IEEE Std 1003.1b-1003 (POSIX.1b standard)

ISO/IEC 9945-1:1996—This is the new 1996 revision of POSIX.1, which contains in one single standard POSIX.1(1990),
POSIX.1b(1993), POSIX.1c(1995), and POSIX.1i(1995).

Linux 1.3.81, 10 April 1996

sched_yield
sched_yield—Yields the processor

SYNOPSIS
#include <sched.h>
int sched_yield(void);

DESCRIPTION
A process can relinquish the processor voluntarily without blocking by calling sched_yield. The process will then be moved
to the end of the queue for its static priority and a new process gets to run.

Note: If the current process is the only process in the highest priority list at that time, this process will continue to run after a
call to sched_yield.

POSIX systems on which sched_yield is available define _POSIX_PRIORITY_SCHEDULING in <unistd.h>.

RETURN VALUE
On success, sched_yield returns 0. On error, –1 is returned, and errno is set appropriately.

STANDARDS
POSIX.1b (formerly POSIX.4)

SEE ALSO
sched_setscheduler(2) for a description of Linux scheduling

Programming for the Real World—POSIX.4 by Bill O. Gallmeister, O’Reilly & Associates, Inc., ISBN 1-56592-074-0

IEEE Std 1003.1b-1993 (POSIX.1b standard)

ISO/IEC 9945-1:1996

Linux 1.3.81, 10 April 1996

select, FD_CLR, FD_ISSET, FD_SET, FD_ZERO
select, FD_CLR, FD_ISSET, FD_SET, FD_ZERO—Synchronous I/O multiplexing

select, FD_CLR, FD_ISSET, FD_SET, FD_ZERO

Part II: System Calls836

SYNOPSIS
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
int select(int n,fd_set *readfds,fd_set *writefds,fd_set *exceptfds,
 struct timeval *timeout);
FD_CLR(int fd,fd_set *set);
FD_ISSET(int fd,fd_set *set);
FD_SET(int fd,fd_set *set);
FD_ZERO(fd_set *set)

DESCRIPTION
select waits for a number of file descriptors to change status.

Three independent sets of descriptors are watched. Those listed in readfds will be watched to see if characters become
available for reading, those in writefds will be watched to see if it is okay to immediately write on them, and those in
exceptfds will be watched for exceptions. On exit, the sets are modified in place to indicate which descriptors actually
changed status.

Four macros are provided to manipulate the sets. FD_ZERO will clear a set. FD_SET and FD_CLR add or remove a given descriptor
from a set. FD_ISSET tests to see if a descriptor is part of the set; this is useful after select returns.

n is the highest-numbered descriptor in any of the three sets, plus 1.

timeout is an upper bound on the amount of time elapsed before select returns. It may be 0, which causes select to return
immediately. If timeout is NULL (no timeout), select can block indefinitely.

RETURN VALUE
On success, select returns the number of descriptors contained in the descriptor sets, which may be 0 if the timeout expires
before anything interesting happens. On error, –1 is returned, and errno is set appropriately; the sets and timeout become
undefined, so do not rely on their contents after an error.

ERRORS
EBADF An invalid file descriptor was given in one of the sets.

EINTR A non-blocked signal was caught.

EINVAL n is negative.

ENOMEM select was unable to allocate memory for internal tables.

NOTES
Some code calls select with all three sets empty, n=0, and a non-null timeout; this is a fairly portable way to sleep with
subsecond precision.

On Linux, timeout is modified to reflect the amount of time not slept; most other implementations do not do this. This
causes problems both when Linux code that reads timeout is ported to other operating systems and when code is ported to
Linux that reuses a struct timeval for multiple selects in a loop without reinitializing it. Consider timeout to be undefined
after select returns.

EXAMPLE
#include <stdio.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

837

int
main(void)
{
 fd_set rfds;
 struct timeval tv;
 int retval;

 /* Watch stdin (fd 0) to see when it has input. */
 FD_ZERO(&rfds);
 FD_SET(0, &rfds);
 /* Wait up to five seconds. */
 tv.tv_sec = 5;
 tv.tv_usec = 0;

 retval = select(1, &rfds, NULL, NULL, &tv);
 /* Don’t rely on the value of tv now! */

 if (retval)
 printf(“Data is available now.nn”);
 /* FD_ISSET(0, &rfds) will be true. */
 else
 printf(“No data within five seconds.nn”);
 exit(0);
}

SEE ALSO
accept(2), connect(2), read(2), recv(2), send(2), write(2)

Linux 1.2, 11 February 1996

semctl
semctl—Semaphore-control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
int semctl (int semid,int semnun,int cmd, union semun arg);

DESCRIPTION
The function performs the control operation specified by cmd on the semaphore set (or on the sumun-nth semaphore of the
set) identified by semid. The first semaphore of the set is indicated by a value of 0 for semun.

The type of arg is the union

union semun {
 int val; /* used for SETVAL only */
 struct semid_ds *buf; /* for IPC_STAT and IPC_SET */
 ushort *array; /* used for GETALL and SETALL */
};

Legal values for cmd are

IPC_STAT Copies info from the semaphore set data structure into the structure pointed to by arg.buf. The
argument semnum is ignored. The calling process must have read access privileges on the semaphore set.

semctl

Part II: System Calls838

IPC_SET Writes the values of some members of the semid_ds structure pointed to by arg.buf to the semaphore
set data structure, updating also its sem_ctime member. Considered members from the user-supplied
struct semid_ds pointed to by arg.buf are

sem_perm.uid

sem_perm.gid

sem_perm.mode /* only lowest 9-bits */

The calling process’s effective user ID must be super–user, creator, or owner of the semaphore set. The
argument semnum is ignored.

IPC_RMID Removes the semaphore set and its data structures immediately, awakening all waiting processes (with
an error return and errno set to EIDRM). The calling process’s effective user ID must be super–user,
creator, or owner of the semaphore set. The argument semnum is ignored.

GETALL Returns semval for all semaphores of the set into arg.array. The argument semnum is ignored. The
calling process must have read access privileges on the semaphore set.

GETNCNT The system call returns the value of semncnt for the semno–th semaphore of the set (that is, the number
of processes waiting for an increase of semval for the semno–th semaphore of the set). The calling
process must have read access privileges on the semaphore set.

GETPID The system call returns the value of sempid for the semno–th semaphore of the set (that is, the pid of the
process that executed the last semop call for the semno–th semaphore of the set). The calling process
must have read access privileges on the semaphore set.

GETVAL The system call returns the value of semval for the semno–th semaphore of the set. The calling process
must have read access privileges on the semaphore set.

GETZCNT The system call returns the value of semzcnt for the semno–th semaphore of the set (that is, the number
of processes waiting for the semval of the semno–th semaphore of the set to become 0). The calling
process must have read access privileges on the semaphore set.

SETALL Sets semval for all semaphores of the set using arg.array, updating also the sem_ctime member of the
semid_ds structure associated with the set. Undo entries are cleared for altered semaphores in all
processes. Processes sleeping on the wait queue are awakened if some semval becomes 0 or increases.
The argument semnum is ignored. The calling process must have alter access privileges on the semaphore
set.

SETVAL Sets the value of semval to arg.val for the semnum–th semaphore of the set, updating also the sem_ctime
member of the semid_ds structure associated to the set. The undo entry is cleared for the altered
semaphore in all processes. Processes sleeping on the wait queue are awakened if semval becomes 0 or
increases. The calling process must have alter access privileges on the semaphore set.

RETURN VALUE
On fail, the system call returns –1, with errno indicating the error. Otherwise the system call returns a non-negative value,
depending on cmd, as follows:

GETNCNT The value of semncnt.

GETPID The value of sempid.

GETVAL The value of semval.

GETZCNT The value of semzcnt.

ERRORS
For a failing return, errno will be set to one of the following values:

EACCESS The calling process has no access permissions needed to execute cmd.

EFAULT The address pointed to by arg.buf or arg.array isn’t accessible.

EIDRM The semaphore set was removed.

EINVAL Invalid value for cmd or semid.

839

EPERM The argument cmd has the value IPC_SET or IPC_RMID, but the calling process’s effective user ID has
insufficient privileges to execute the command.

ERANGE The argument cmd has the value SETALL or SETVAL, and the value to which semval has to be set (for some
semaphore of the set) is less than 0 or greater than the implementation value SEMVMX.

NOTES
The IPC_INFO, SEM_STAT, and SEM_INFO control calls are used by the ipcs(1) program to provide information on allocated
resources. In the future these can be modified as needed or moved to a proc filesystem interface.

The following system limit on semaphore sets affects a semctl call:

SEMVMX Maximum value for semval; implementation dependent (32767).

SEE ALSO
ipc(5), shmget(2), shmat(2), shmdt(2)

Linux 0.99.13, 1 November 1993

semget
semget—Gets a semaphore set identifier

SYNOPSIS
include <sys/types.h>
include <sys/ipc.h>
include <sys/sem.h>
int semget (key_t key,int nsems,int semflg);

DESCRIPTION
This function returns the semaphore set identifier associated with the value of the argument key. A new set of nsems
semaphores is created if key has the value IPC_PRIVATE or key isn’t IPC_PRIVATE, if no existing message queue is associated to
key, and if IPC_CREAT is asserted in semflg (that is, semflg&IPC_CREAT isn’t 0). The presence in semflg of the fields IPC_CREAT
and IPC_EXCL plays the same role, with respect to the existence of the semaphore set, as the presence of O_CREAT and O_EXCL in
the mode argument of the open(2) system call—that is, the msgget function fails if semflg asserts both IPC_CREAT and IPC_EXCL
and a semaphore set already exists for key.

Upon creation, the lower 9 bits of the argument semflg define the access permissions (for owner, group, and others) to the
semaphore set in the same format, and with the same meaning, as for the access permissions parameter in the open(2) or
creat(2) system call (although the execute permissions are not used by the system, and the term write permissions, for a
semaphore set, effectively means alter permissions).

Furthermore, while creating, the system call initializes the system semaphore set data structure semid_ds as follows:

■ sem_perm.cuid and sem_perm.uid are set to the effective user ID of the calling process.
■ sem_perm.cgid and sem_perm.gid are set to the effective group ID of the calling process.
■ The lowest-order 9 bits of sem_perm.mode are set to the lowest-order 9 bits of semflg.
■ sem_nsems is set to the value of nsems.
■ sem_otime is set to 0.
■ sem_ctime is set to the current time.

The argument nsems can be 0 (a “don’t care”) when the system call isn’t create(2). Otherwise, nsems must be greater than 0
and less or equal to the maximum number of semaphores per semid (SEMMSL).

If the semaphore set already exists, the access permissions are verified, and a check is made to see if it is marked for destruc-
tion.

semget

Part II: System Calls840

RETURN VALUE
If successful, the return value will be the semaphore set identifier (a positive integer); otherwise it will be –1, with errno
indicating the error.

ERRORS
For a failing return, errno will be set to one of the following values:

EACCES A semaphore set exists for key, but the calling process has no access permissions to the set.

EEXIST A semaphore set exists for key, and semflg was asserting both IPC_CREAT and IPC_EXCL.

EIDRM The semaphore set is marked to be deleted.

ENOENT No semaphore set exists for key, and semflg wasn’t asserting IPC_CREAT.

ENOMEM A semaphore set has to be created, but the system does not have enough memory for the new data
structure.

ENOSPC A semaphore set has to be created, but the system limit for the maximum number of semaphore
sets (SEMMNI) or the system-wide maximum number of semaphores (SEMMNS) would be exceeded.

NOTES
IPC_PRIVATE isn’t a flag field but a key_t type. If this special value is used for key, the system call ignores everything but the
lowest-order 9 bits of semflg and creates a new semaphore set (on success).

The followings are limits on semaphore set resources affecting a semget call:

SEMMNI System-wide maximum number of semaphore sets; policy dependent.

SEMMSL Maximum number of semaphores per semid; implementation dependent (500 currently).

SEMMNS System-wide maximum number of semaphores; policy dependent. A value greater than
SEMMSL×SEMMNI makes it irrelevant.

BUGS
Use of IPC_PRIVATE doesn’t inhibit other processes’ access to the allocated semaphore set.

As for the files, there is currently no intrinsic way for a process to ensure exclusive access to a semaphore set. Asserting both
IPC_CREAT and IPC_EXCL in semflg only ensures (on success) that a new semaphore set will be created; it doesn’t imply
exclusive access to the semaphore set.

The data structure associated with each semaphore in the set isn’t initialized by the system call. In order to initialize those
data structures, you have to execute a subsequent call to semctl(2) to perform a SETVAL or a SETALL command on the
semaphore set.

SEE ALSO
ftok(3), ipc(5), semctl(2), semop(2)

Linux 0.99.13, 1 November 1993

semop
semop—Semaphore operations

SYNOPSIS
include <sys/types.h>
include <sys/ipc.h>
include <sys/sem.h>
int semop (int semid,struct sembuf *sops, unsigned nsops);

841

DESCRIPTION
The function performs operations on selected members of the semaphore set indicated by semid. Each of the nsops elements
in the array pointed to by sops specifies an operation to be performed on a semaphore by a struct sembuf including the
following members:

short sem_num; /* semaphore number: 0 = first */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

Flags recognized in sem_flg are IPC_NOWAIT and SEM_UNDO. If an operation asserts SEM_UNDO, it will be undone when the process
exits.

The system call semantic assures that the operations will be performed if and only if all of them will succeed. Each operation
is performed on the sem_num–th semaphore of the semaphore set, where the first semaphore of the set is semaphore 0 and is
one of the following three:

■ If sem_op is a positive integer, the operation adds this value to semval. Furthermore, if SEM_UNDO is asserted for this
operation, the system updates the process undo count for this semaphore. The operation always goes through, so no
process sleeping can happen. The calling process must have alter permissions on the semaphore set.

■ If sem_op is 0, the process must have read access permissions on the semaphore set. If semval is 0, the operation goes
through. Otherwise, if IPC_NOWAIT is asserted in sem_flg, the system call fails (undoing all previous actions performed),
with errno set to EAGAIN. Otherwise, semzcnt is incremented by 1, and the process sleeps until one of the following
occurs:
■ semval becomes 0, at which time the value of semzcnt is decremented.
■ The semaphore set is removed, causing the system call to fail with errno set to EIDRM.
■ The calling process receives a signal that has to be caught; which causes the value of semzcnt to be decremented and

the system call to fail with errno set to EINTR.
■ If sem_op is less than 0, the process must have alter permissions on the semaphore set. If semval is greater than or equal to

the absolute value of sem_op, the absolute value of sem_op is subtracted by semval. Furthermore, if SEM_UNDO is asserted for
this operation, the system updates the process undo count for this semaphore. Then the operation goes through.
Otherwise, if IPC_NOWAIT is asserted in sem_flg, the system call fails (undoing all previous actions performed), with errno
set to EAGAIN. Otherwise, semncnt is incremented by 1 and the process sleeps until one of the following occurs:
■ semval becomes greater than or equal to the absolute value of sem_op, at which time the value of semncnt is

decremented, the absolute value of sem_op is subtracted from semval and, if SEM_UNDO is asserted for this operation,
the system updates the process undo count for this semaphore.

■ The semaphore set is removed from the system: the system call fails, with errno set to EIDRM.
■ The calling process receives a signal that has to be caught; the value of semncnt is decremented, and the system call

fails with errno set to EINTR.

In case of success, the sempid member of the structure sem for each semaphore specified in the array pointed to by sops is set
to the process ID of the calling process. Furthermore both sem_otime and sem_ctime are set to the current time.

RETURN VALUE
If successful, the system call returns 0; otherwise, it returns –1, with errno indicating the error.

ERRORS
For a failing return, errno will be set to one of the following values:

E2BIG The argument nsops is greater than SEMOPM, the maximum number of operations allowed per system
call.

EACCES The calling process has no access permissions on the semaphore set as required by one of the specified
operations.

EAGAIN An operation could not go through, and IPC_NOWAIT was asserted in its sem_flg.

EFAULT The address pointed to by sops isn’t accessible.

semop

Part II: System Calls842

EFBIG For some operation, the value of sem_num is less than 0 or greater than or equal to the number of
semaphores in the set.

EIDRM The semaphore set was removed.

EINTR Sleeping on a wait queue, the process received a signal that had to be caught.

EINVAL The semaphore set doesn’t exist, or semid is less than 0, or nsops has a non-positive value.

ENOMEM The sem_flg of some operation asserted SEM_UNDO, and the system does not have enough memory to
allocate the undo structure.

ERANGE For some operation, semop+semvalis is greater than SEMVMX, the implementation-dependent maximum
value for semval.

NOTES
The sem_undo structures of a process aren’t inherited by its child on execution of a fork(2) system call. They are instead
inherited by the substituting process resulting from the execution of the exec(2) system call.

The following are limits on semaphore set resources affecting a semop call:

SEMOPM Maximum number of operations allowed for one semop call; policy dependent.

SEMVMX Maximum allowable value for semval; implementation dependent (32767).

The implementation has no intrinsic limits for the adjust on exit maximum value (SEMAEM), the system-wide maximum
number of undo structures (SEMMNU), or the per-process maximum number of undo entries system parameters.

BUGS
The system maintains a per-process sem_undo structure for each semaphore altered by the process with undo requests. Those
structures are free at process exit. One major cause for unhappiness with the undo mechanism is that it does not fit in with
the notion of having an atomic set of operations in an array of semaphores. The undo requests for an array and each
semaphore therein might have been accumulated over many semopt calls. Should the process sleep when exiting, or should all
undo operations be applied with the IPC_NOWAIT flag in effect? Currently those undo operations that go through immediately
are applied, and those that require a wait are ignored silently. Therefore harmless undo usage is guaranteed with private
semaphores only.

SEE ALSO
ipc(5), semctl(2), semget(2)

Linux 0.99.13, 1 November 1993

send, sendto, sendmsg
send, sendto, sendmsg—Sends a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
int send(int s, const void *msg,int len, unsigned int flags);
int sendto(int s, const void *msg, int len, unsigned int flags,
 const struct sockaddr *to, int tolen);
int sendmsg(int s, const struct msghdr *msg , unsigned int flags);

DESCRIPTION
Warning: This is a BSD man page. As of Linux 0.99.11, sendmsg was not implemented.

send, sendto, and sendmsg are used to transmit a message to another socket. send may be used only when the socket is in a
connected state, whereas sendto and sendmsg may be used at any time.

843

The address of the target is given by to, with tolen specifying its size. The length of the message is given by len. If the
message is too long to pass atomically through the underlying protocol, the error EMSGSIZE is returned, and the message is not
transmitted.

No indication of failure to deliver is implicit in a send. Locally detected errors are indicated by a return value of –1.

If no message space is available at the socket to hold the message to be transmitted, send normally blocks, unless the socket
has been placed in non-blocking I/O mode. The select(2) call may be used to determine when it is possible to send more
data.

The flags parameter may include one or more of the following:

#define MSG_OOB 0x1 /* process out-of-band data */
#define MSG_DONTROUTE 0x4 /* bypass routing, use direct interface */

The flag MSG_OOB is used to send out-of-band data on sockets that support this notion (for example, SOCK_STREAM); the
underlying protocol must also support out-of-band data. MSG_DONTROUTE is usually used only by diagnostic or routing
programs.

See recv(2) for a description of the msghdr structure.

RETURN VALUES
The call returns the number of characters sent, or –1 if an error occurred.

ERRORS
EBADF An invalid descriptor was specified.

ENOTSOCK The argument s is not a socket.

EFAULT An invalid user space address was specified for a parameter.

EMSGSIZE The socket requires that message be sent atomically, and the size of the message to be sent made
this impossible.

EWOULDBLOCK The socket is marked non-blocking, and the requested operation would block.

ENOBUFS The system was unable to allocate an internal buffer. The operation might succeed when buffers
become available.

ENOBUFS The output queue for a network interface was full. This generally indicates that the interface has
stopped sending, but it might be caused by transient congestion.

HISTORY
These function calls appeared in BSD 4.2.

SEE ALSO
fcntl(2), recv(2), select(2), getsockopt(2), socket(2), write(2)

BSD Man Page, 24 July 1993

setfsgid
setfsgid—Sets group identity used for filesystem checks

SYNOPSIS
int setfsgid(uid_t fsgid);

DESCRIPTION
setfsgid sets the group ID that the Linux kernel uses to check for all accesses to the filesystem. Normally, the value of fsgid
will shadow the value of the effective group ID. In fact, whenever the effective group ID is changed, fsgid will also be
changed to the new value of the effective group ID.

setfsgid

Part II: System Calls844

An explicit call to setfsgid is usually only used by programs such as the Linux NFS server that need to change what group
ID is used for file access without a corresponding change in the real and effective group IDs. A change in the normal group
IDs for a program such as the NFS server is a security hole that can expose it to unwanted signals from other group IDs.

setfsgid will succeed only if the caller is the superuser or if fsgid matches either the real group ID, effective group ID, saved
group ID, or the current value of fsgid.

RETURN VALUE
On success, the previous value of fsgid is returned. On error, the current value of fsgid is returned.

CONFORMS TO
setfsgid is Linux specific.

BUGS
No error messages of any kind are returned to the caller. At the very least, EPERM should be returned when the call fails.

SEE ALSO
setfsuid(2)

Linux 1.3.15, 6 August 1995

setfsuid
setfsuid—Sets user identity used for filesystem checks

SYNOPSIS
int setfsuid(uid_t fsuid);

DESCRIPTION
setfsuid sets the user ID that the Linux kernel uses to check for all accesses to the filesystem. Normally, the value of fsuid
will shadow the value of the effective user ID. In fact, whenever the effective user ID is changed, fsuid will also be changed
to the new value of the effective user ID.

An explicit call to setfsuid is usually used only by programs such as the Linux NFS server that need to change what user ID
is used for file access without a corresponding change in the real and effective user IDs. A change in the normal user IDs for a
program such as the NFS server is a security hole that can expose it to unwanted signals from other user IDs.

setfsuid will succeed only if the caller is the superuser or if fsuid matches either the real user ID, effective user ID, saved user
ID, or the current value of fsuid.

RETURN VALUE
On success, the previous value of fsuid is returned. On error, the current value of fsuid is returned.

CONFORMS TO
setfsuid is Linux specific.

BUGS
No error messages of any kind are returned to the caller. At the very least, EPERM should be returned when the call fails.

SEE ALSO
setfsgid(2)

Linux 1.3.15, 6 August 1995

845

setgid
setgid—Sets group identity

SYNOPSIS
#include <unistd.h>
int setgid(gid_t gid);

DESCRIPTION
setgid sets the effective group ID of the current process. If the caller is the superuser, the real and saved group IDs are also
set.

Under Linux, setgid is implemented like SYSV, with SAVED_IDS. This allows a setgid (other than root) program to drop all its
group privileges, do some unprivileged work, and then re-engage the original effective group ID in a secure manner.

If the user is root or the program is setgid root, special care must be taken. The setgid function checks the effective gid of
the caller and, if it is that of the superuser, all process-related group IDs are set to gid. After this has occurred, it is impossible
for the program to regain root privileges.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned, and errno is set appropriately.

ERRORS
EPERM The user is not the superuser, and gid does not match the effective or saved group ID of the calling process.

CONFORMS TO
System V

SEE ALSO
getgid(2), setregid(2), setegid(2)

Linux 1.1.36, 29 July 1994

setpgid, getpgid, setpgrp, getpgrp
setpgid, getpgid, setpgrp, getpgrp—Sets/gets process group

SYNOPSIS
#include <unistd.h>
int setpgid(pid_t pid, pid_t pgid);
pid_t getpgid(pid_t pid);
int setpgrp(void);
pid_t getpgrp(void);

DESCRIPTION
setpgid sets the process group ID of the process specified by pid to pgid. If pid is 0, the process ID of the current process is
used. If pgid is 0, the process ID of the process specified by pid is used.

getpgid returns the process group ID of the process specified by pid. If pid is 0, the process ID of the current process is used.

In the Linux DLL 4.4.1 library, setpgrp simply calls setpgid(0,0).

getpgrp is equivalent to getpgid(0).

setpgid, getpgid, setpgrp, getpgrp

Part II: System Calls846

Process groups are used for distribution of signals, and by terminals to arbitrate requests for their input; processes that have
the same process group as the terminal are foreground and may read, whereas others will block with a signal if they attempt
to read.

These calls are thus used by programs such as csh(1) to create process groups in implementing job control. The TIOCGPGRP
and TIOCSPGRP calls described in termios(4) are used to get/set the process group of the control terminal.

RETURN VALUE
On success, setpgid and setpgrp return 0. On error, –1 is returned, and errno is set appropriately.

getpgid returns a process group on success. On error, –1 is returned, and errno is set appropriately.

getpgrp always returns the current process group.

ERRORS
EINVAL pgid is less than 0.

EPERM Various permission violations.

ESRCH pid does not match any process.

CONFORMS TO
The functions setpgid and getpgrp conform to POSIX.1. The function setpgrp is from BSD 4.2. I have no information on
the source of getpgid.

SEE ALSO
getuid(2), setsid(2), tcsetpgrp(3), termios(4)

Linux 1.2.4, 15 April 1995

setregid, setegid
setregid, setegid—Sets real and/or effective group ID

SYNOPSIS
#include <unistd.h>
int setregid(gid_t rgid, gid_t egid);
int setegid(gid_t egid);

DESCRIPTION
setregid sets real and effective group IDs of the current process. Unprivileged users may change the real group ID to the
effective group ID, and vice versa.

Prior to Linux 1.1.38, the saved ID paradigm, when used with setregid or setegid, was broken. Starting at 1.1.38, it is also
possible to set the effective group ID from the saved user ID.

Only the superuser may make other changes.

Supplying a value of –1 for either the real or effective group ID forces the system to leave that ID unchanged.

Currently (libc-4.x.x), setegid(egid) is functionally equivalent to setregid(-1, egid).

If the real group ID is changed or the effective group ID is set to a value not equal to the previous real group ID, the saved
group ID will be set to the new effective group ID.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned, and errno is set appropriately.

847

ERRORS
EPERM The current process is not the superuser, and changes other than swapping the effective group ID

with the real group ID, setting one to the value of the other, or setting the effective group ID to the
value of the saved group ID was specified.

HISTORY
The setregid function call appeared in BSD 4.2.

CONFORMS TO
BSD 4.3

SEE ALSO
getgid(2), setgid(2)

Linux 1.1.38, 2 August 1994

setreuid, seteuid
setreuid, seteuid—Sets real and / or effective user ID

SYNOPSIS
#include <unistd.h>
int setreuid(uid_t ruid, uid_t euid);
int seteuid(uid_t euid);

DESCRIPTION
setreuid sets real and effective user IDs of the current process. Unprivileged users may change the real user ID to the
effective user ID, and vice versa.

Prior to Linux 1.1.37, the saved ID paradigm, when used with setreuid or seteuid, was broken.

Starting at 1.1.37, it is also possible to set the effective user ID from the saved user ID.

Only the superuser may make other changes.

Supplying a value of –1 for either the real or effective user ID forces the system to leave that ID unchanged.

Currently (libc-4.x.x), seteuid(euid) is functionally equivalent to setreuid(-1, euid).

If the real user ID is changed or the effective user ID is set to a value not equal to the previous real user ID, the saved user ID
will be set to the new effective user ID.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned, and errno is set appropriately.

ERRORS
EPERM The current process is not the superuser, and changes other than swapping the effective user ID

with the real user ID, setting one to the value of the other, or setting the effective user ID to the
value of the saved user ID was specified.

HISTORY
The setreuid function call appeared in BSD 4.2.

CONFORMS TO
BSD 4.3

setreuid, seteuid

Part II: System Calls848

SEE ALSO
getuid(2), setuid(2)

Linux 1.1.38, 2 August 1994

setsid
setsid—Creates a session and sets the process group ID

SYNOPSIS
#include <unistd.h>
pid_t setsid(void);

DESCRIPTION
setsid() creates a new session if the calling process is not a process group leader. The calling process is the leader of the new
session, the process group leader of the new process group, and has no controlling tty. The process group ID and session ID
of the calling process are set to the PID of the calling process. The calling process will be the only process in this new process
group and in this new session.

RETURN VALUE
It returns the session ID of the calling process.

ERRORS
On error, –1 will be returned. The only error that can happen is EPERM, which is returned when the process group ID of any
process equals the PID of the calling process. Thus, in particular, setsid fails if the calling process is already a process group
leader.

NOTES
A process group leader is a process with process group ID equal to its PID. In order to be sure that setsid will succeed, fork,
and exit, and have the child do setsid().

CONFORMS TO
POSIX

SEE ALSO
setpgid(2), setpgrp(2)

27 August 1994

setuid
setuid—Sets user identity

SYNOPSIS
#include <unistd.h>
int setuid(uid_t uid);

DESCRIPTION
setuid sets the effective user ID of the current process. If the caller is the superuser, the real and saved user IDs are also set.

849

Under Linux, setuid is implemented like SYSV, with SAVED_IDS. This allows a setuid (other than root) program to drop all its
user privileges, do some unprivileged work, and then re-engage the original effective user ID in a secure manner.

If the user is root or the program is setuid root, special care must be taken. The setuid function checks the effective UID of
the caller, and, if it is the superuser, all process-related user IDs are set to uid. After this has occurred, it is impossible for the
program to regain root privileges.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned, and errno is set appropriately.

ERRORS
EPERM The user is not the superuser, and uid does not match the effective or saved user ID of the calling

process.

CONFORMS TO
System V

SEE ALSO
getuid(2), setreuid(2), seteuid(2)

Linux 1.1.36 29 July 1994

setup
setup—Sets up devices and filesystems, mount root filesystem

SYNOPSIS
#include <unistd.h>
syscall0(int, setup);
int setup(void);

DESCRIPTION
setup is called once from within linux/init/main.c. It calls initialization functions for devices and filesystems configured into
the kernel and then mounts the root filesystem.

No user process may call setup. Any user process, even a process with superuser permission, will receive EPERM.

RETURN VALUE
setup always returns –1 for a user process.

ERRORS
EPERM Always, for a user process.

CONFORMS TO
This function is Linux specific.

Linux 1.2.9, 3 May 1996

shmctl
shmctl—Shared memory control

shmctl

Part II: System Calls850

SYNOPSIS
#include <sys/ipc.h>
#include <sys/shm.h>
int shmctl(int shmid,int cmd, struct shmid ds *buf);

DESCRIPTION
shmctl() allows the user to receive information on a shared memory segment, set the owner, group, and permissions of a
shared memory segment, or destroy a segment. The information about the segment identified by shmid is returned in a
shmid_ds structure:

struct shmid_ds {
 struct ipc_perm shm_perm; /* operation perms */
 int shm_segsz; /* size of segment (bytes) */
 time_t shm_atime; /* last attach time */
 time_t shm_dtime; /* last detach time */
 time_t shm_ctime; /* last change time */
 unsigned short shm_cpid; /* pid of creator */
 unsigned short shm_lpid; /* pid of last operator */
 short shm_nattch; /* no. of current attaches */
 /* the following are private */
 unsigned short shm_npages; /* size of segment (pages) */
 unsigned long *shm_pages;
 struct shm_desc *attaches; /* descriptors for attaches */
};

The fields in the member shm_perm can be set:

struct ipc_perm
{
 key_t key;
 ushort uid;/*owner euid and egid */
 ushort gid;
 ushort cuid; /* creator euid and egid */
 ushort cgid;
 ushort mode; /* lower 9 bits of access modes */
 ushort seq; /* sequence number */
};

The following cmds are available:

IPC_STAT Used to copy the information about the shared memory segment into the buffer, buf. The user
must have read access to the shared memory segment.

IPC_SET Used to apply the changes the user has made to the uid, gid, or mode members of the shm_perms
field. Only the lowest 9 bits of mode are used. The shm_ctime member is also updated. The user
must be the owner, the creator, or the superuser.

IPC_RMID Used to mark the segment as destroyed. It will actually be destroyed after the last detach. (That is,
when the shm_nattch member of the associated structure shmid_ds is zero.)The user must be the
owner, the creator, or the superuser.

The user must ensure that a segment is eventually destroyed; otherwise the pages that were faulted in will remain in memory
or swap.

In addition, the superuser can prevent or allow swapping of a shared memory segment with the following cmds: (Linux only)

SHM_LOCK Prevents swapping of a shared memory segment. The user must fault in any pages that are required
to be present after locking is enabled.

SHM_UNLOCK Allows the shared memory segment to be swapped out.

The IPC_INFO, SHM_STAT, and SHM_INFO control calls are used by the ipcs(1) program to provide information on allocated
resources. In the future, these may be modified as needed or moved to a proc filesystem interface.

851

SYSTEM CALLS
fork() After a fork(), the child inherits the attached shared memory segments.

exec() After an exec(), all attached shared memory segments are detached (not destroyed).

exit() On exit(), all attached shared memory segments are detached (not destroyed).

RETURN VALUE
0 is returned on success; –1 on error.

ERRORS
On error, errno will be set to one of the following:

EACCESS Returned if IPC_STAT is requested and shm_perm.modes does not allow read access for msqid.

EFAULT The argument cmd has the value IPC_SET or IPC_STAT, but the address pointed to by buf isn’t
accessible.

EINVAL Returned if shmid is not a valid identifier, or cmd is not a valid command.

EIDRM Returned if shmid points to a removed identifier.

EPERM Returned if IPC_SET or IPC_RMID is attempted, if the user is not the creator, the owner, or the
superuser, and if the user does not have permission granted to his group or to the world.

SEE ALSO
shmget(2), shmop(2)

Linux 0.99.11, 28 November 1993

shmget
shmget—Allocates a shared memory segment

SYNOPSIS
#include <sys/ipc.h>
#include <sys/shm.h>
int shmget(key_t key,int size, int shmflg);

DESCRIPTION
shmget() returns the identifier of the shared memory segment associated with the value of the argument key. A new shared
memory segment, with its size equal to the rounding up of size to a multiple of PAGE_SIZE, is created if key has the value
IPC_PRIVATE or if key isn’t IPC_PRIVATE, if no shared memory segment is associated to key, and if IPC_CREAT is asserted in
shmflg (that is, shmflg&IPC_CREAT isn’t 0). The presence in shmflg is composed of

IPC_CREAT Creates a new segment. If this flag is not used, shmget() will find the segment associated with key,
check to see if the user has permission to receive the shmid associated with the segment, and ensure
the segment is not marked for destruction.

IPC_EXCL Used with IPC_CREAT to ensure failure if the segment exists.

mode_flags (lowest 9 bits) Specifies the permissions granted to the owner, group, and world. Presently, the
execute permissions are not used by the system.

If a new segment is created, the access permissions from shmflg are copied into the shm_perm member of the shmid_ds
structure that defines the segment. Following is the shmid_ds structure:

struct shmid_ds {
 struct ipc_perm shm_perm; /* operation perms */
 int shm_segsz; /* size of segment (bytes) */

shmget

Part II: System Calls852

 time_t shm_atime; /* last attach time */
 time_t shm_dtime; /* last detach time */
 time_t shm_ctime; /* last change time */
 unsigned short shm_cpid; /* pid of creator */
 unsigned short shm_lpid; /* pid of last operator */
 short shm_nattch; /* no. of current attaches */
};

struct ipc_perm
{
 key_t key;
 ushort uid; /* owner euid and egid */
 ushort gid;
 ushort cuid; /* creator euid and egid */
 ushort cgid;
 ushort mode; /* lower 9 bits of shmflg */
 ushort seq; /* sequence number */
};

Furthermore, while creating, the system call initializes the system shared memory segment data structure shmid_ds as follows:

■ shm_perm.cuid and shm_perm.uid are set to the effective user ID of the calling process.
■ shm_perm.cgid and shm_perm.gid are set to the effective group ID of the calling process.
■ The lowest-order 9 bits of shm_perm.mode are set to the lowest-order 9 bit of shmflg.
■ shm_segsz is set to the value of size.
■ shm_lpid, shm_nattch, shm_atime, and shm_dtime are set to 0.
■ shm_ctime is set to the current time.

If the shared memory segment already exists, the access permissions are verified, and a check is made to see if it is marked for
destruction.

SYSTEM CALLS
fork() After a fork(), the child inherits the attached shared memory segments.

exec() After an exec(), all attached shared memory segments are detached (not destroyed).

exit() On exit(), all attached shared memory segments are detached (not destroyed).

RETURN VALUE
A valid segment identifier, shmid, is returned on success, –1 on error.

ERRORS
On failure, errno is set to one of the following:

EINVAL Returned if SHMMIN is greater than size, if size is greater than SHMMAX, or if size is greater than the
size of the segment.

EEXIST Returned if IPC_CREAT | IPC_EXCL was specified and the segment exists.

EIDRM Returned if the segment is marked as destroyed or was removed.

ENOSPC Returned if all possible shared memory IDs have been taken (SHMMNI) or if allocating a segment of
the requested size would cause the system to exceed the system-wide limit on shared memory
(SHMALL).

ENOENT Returned if no segment exists for the given key, and IPC_CREAT was not specified.

EACCES Returned if the user does not have permission to access the shared memory segment.

ENOMEM Returned if no memory could be allocated for segment overhead.

853

NOTES
IPC_PRIVATE isn’t a flag field but a key_t type. If this special value is used for key, the system call ignores everything but the
lowest order 9 bits of shmflg and creates a new shared memory segment (on success).

The following are limits on shared memory segment resources affecting a shmget call:

SHMALL System-wide maximum of shared memory pages; policy dependent.

SHMMAX Maximum size, in bytes, for a shared memory segment; implementation dependent (currently
4MB).

SHMMIN Minimum size, in bytes, for a shared memory segment; implementation dependent (currently 1
byte, although PAGE_SIZE is the effective minimum size).

SHMMNI System-wide maximum number of shared memory segments; implementation dependent (currently
4096).

The implementation has no specific limits for the per-process maximum number of shared memory segments (SHMSEG).

BUGS
Use of IPC_PRIVATE does not inhibit other processes’ access to the allocated shared memory segment.

As for the files, there is currently no intrinsic way for a process to ensure exclusive access to a shared memory segment.
Asserting both IPC_CREAT and IPC_EXCL in shmflg only ensures (on success) that a new shared memory segment will be
created; it doesn’t imply exclusive access to the segment.

SEE ALSO
ftok(3), ipc(5), shmctl(2), shmat(2), shmdt(2)

Linux 0.99.11, 28 November 1993

shmop
shmop—Shared memory operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
char *shmat (int shmid, char *shmaddr, int shmflg);
int shmdt (char *shmaddr);

DESCRIPTION
The function shmat attaches the shared memory segment identified by shmid to the data segment of the calling process. The
attaching address is specified by shmaddr with one of the following criteria:

■ If shmaddr is 0, the system tries to find an unmapped region in the range 1–1.5GB, starting from the upper value and
coming down from there.

■ If shmaddr isn’t 0 and SHM_RND is asserted in shmflg, the attach occurs at the address equal to the rounding down of
shmaddr to a multiple of SHMLBA. Otherwise, shmaddr must be a page-aligned address at which the attach occurs.

If SHM RDONLY is asserted in shmflg, the segment is attached for reading, and the process must have read access permissions to
the segment. Otherwise the segment is attached for read and write, and the process must have read and write access
permissions to the segment. There is no notion of a write-only shared memory segment.

The brk value of the calling process is not altered by the attach. The segment will automatically be detached at process exit.
The same segment may be attached as a read and as a read-write segment, more than once, in the process’s address space.

shmop

Part II: System Calls854

On a successful shmat call, the system updates the members of the structure shmid_ds associated to the shared memory
segment as follows:

■ shm_atime is set to the current time.
■ shm_lpid is set to the process ID of the calling process.
■ shm_nattch is incremented by 1.

Note that the attachment will also succeed if the shared memory segment is marked to be deleted.

The function shmdt detaches from the calling process’s data segment the shared memory segment located at the address
specified by shmaddr. The detaching shared memory segment must be one among the currently attached ones (to the
process’s address space) with shmaddr equal to the value returned by its attaching shat call.

On a successful shmdt call, the system updates the members of the structure shmid_ds associated to the shared memory
segment as follows:

■ shm_dtime is set to the current time.
■ shm_lpid is set to the process ID of the calling process.
■ shm_nattch is decremented by 1. If it becomes 0 and the segment is marked for deletion, the segment is deleted.

The occupied region in the user space of the calling process is unmapped.

SYSTEM CALLS
fork() After a fork(), the child inherits the attached shared memory segments.

exec() After an exec(), all attached shared memory segments are detached (not destroyed).

exit() On exit(), all attached shared memory segments are detached (not destroyed).

RETURN VALUE
On a failure, both functions return –1 with errno indicating the error; otherwise, shmat returns the address of the attached
shared memory segment, and shmdt returns 0.

ERRORS
When shmat fails, at return errno will be set to one of the following values:

EACCES The calling process has no access permissions for the requested attach type.

EINVAL Invalid shmid value, unaligned (that is, not page-aligned and SHM_RND was not specified) or invalid
shmaddr value, or failing attach at brk.

ENOMEM Could not allocate memory for the descriptor or for the page tables.

The function shmdt can fail only if there is no shared memory segment attached at shmaddr; in such a case, errno will be set to
EINVAL at return.

NOTES
On executing a fork(2) system call, the child inherits all the attached shared memory segments.

The shared memory segments attached to a process executing anexec(2) system call will not be attached to the resulting
process.

The following is a system parameter affecting a shmat system call:

SHMLBA Segments low-boundary address multiple. Must be page aligned. For the current implementation,
the SHMBLA value is PAGE_SIZE.

The implementation has no intrinsic limit to the per-process maximum number of shared memory segments (SHMSEG)

SEE ALSO
ipc(5), shmctl(2), shmget(2)

Linux 0.99.13, 28 November 1993

855

shutdown
shutdown—Shuts down part of a full-duplex connection

SYNOPSIS
#include <sys/socket.h>
int shutdown(int s,int how);

DESCRIPTION
The shutdown call causes all or part of a full-duplex connection on the socket associated with s to be shut down. If how is 0,
further receives will be disallowed. If how is 1, further sends will be disallowed. If how is 2, further sends and receives will be
disallowed.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned, and errno is set appropriately.

ERRORS
EBADF s is not a valid descriptor.

ENOTSOCK s is a file, not a socket.

ENOTCONN The specified socket is not connected.

HISTORY
The shutdown function call appeared in BSD 4.2.

SEE ALSO
connect(2), socket(2)

BSD Man Page, 24 July 1993

sigaction, sigprocmask, sigpending, sigsuspend
sigaction, sigprocmask, sigpending, sigsuspend—POSIX signal-handling functions.

SYNOPSIS
#include <signal.h>
int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);
int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
int sigpending(sigset_t *set);
int sigsuspend(const sigset_t *mask);

DESCRIPTION
The sigaction system call is used to change the action taken by a process on receipt of a specific signal.

signum specifies the signal and can be any valid signal except SIGKILL and SIGSTOP.

If act is non–null, the new action for signal signum is installed from act. If oldact is non–null, the previous action is saved in
oldact.

The sigaction structure is defined as

struct sigaction {
 void (*sa_handler)(int);
 sigset_t sa_mask;
 int sa_flags;

sigaction, sigprocmask, sigpending, sigsuspend

Part II: System Calls856

 void (*sa_restorer)(void);
}

sa_handler specifies the action to be associated with signum and can be SIG_DFL for the default action, SIG_IGN to ignore this
signal, or a pointer to a signal-handling function.

sa_mask gives a mask of signals that should be blocked during execution of the signal handler. In addition, the signal that
triggered the handler will be blocked unless the SA_NODEFER or SA_NOMASK flag is used.

sa_flags specifies a set of flags that modify the behavior of the signal-handling process. It is formed by the bitwise OR of zero
or more of the following:

SA_NOCLDSTOP If signum is SIGCHLD, do not receive notification when child processes stop (that is, when
child processes receive one of SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU).

SA_ONESHOT or SA_RESETHAND Restores the signal action to the default state once the signal handler has been called.
(This is the default behavior of the signal(2) system call.)

SA_RESTART Provides behavior compatible with BSD signal semantics by making certain system calls
restartable across signals.

SA_NOMASK or SA_NODEFER Does not prevent the signal from being received from within its own signal handler.

The sa_restorer element is obsolete and should not be used.

The sigprocmask call is used to change the list of currently blocked signals. The behavior of the call is dependent on the value
of how, as follows:

SIG_BLOCK The set of blocked signals is the union of the current set and the set argument.

SIG_UNBLOCK The signals in set are removed from the current set of blocked signals. It is legal to
attempt to unblock a signal that is not blocked.

SIG_SETMASK The set of blocked signals is set to the argument set.

If oldset is non–null, the previous value of the signal mask is stored in oldset.

The sigpending call allows the examination of pending signals (those that have been raised while blocked). The signal mask
of pending signals is stored in set.

The sigsuspend call temporarily replaces the signal mask for the process with that given by mask and then suspends the
process until a signal is received.

RETURN VALUES
sigaction, sigprocmask, sigpending, and sigsuspend return 0 on success and -1 on error.

ERRORS
EINVAL An invalid signal was specified. This will also be generated if an attempt is made to

change the action for SIGKILL or SIGSTOP, which cannot be caught.

EFAULT act, oldact, set, or oldset points to memory that is not a valid part of the process
address space.

EINTR System call was interrupted.

NOTES
It is not possible to block SIGKILL or SIGSTOP with the sigprocmask call. Attempts to do so will be silently ignored.

Setting SIGCHLD to SIG_IGN provides automatic reaping of child processes.

The POSIX spec only defines SA_NOCLDSTOP. Use of other sa flags is non–portable.

The SA_RESETHAND flag is compatible with the SVR4 flag of the same name.

857

The SA_NODEFER flag is compatible with the SVR4 flag of the same name under kernels 1.3.9 and newer. On older kernels, the
Linux implementation will allow the receipt of any signal, not just the one you are installing (effectively overriding any
sa_mask settings).

The SA_RESETHAND and SA_NODEFER names for SVR4 compatibility are present only in library versions 3.0.9 and greater.

sigaction can be called with a null second argument to query the current signal handler. It can also be used to check whether
a given signal is valid for the current machine by calling it with null second and third arguments.

See sigsetops(3) for details on manipulating signal sets.

CONFORMS TO
POSIX, SVR4

SEE ALSO
kill(1), kill(2), killpg(2), pause(2), raise(3), siginterrupt(3), signal(2), signal(7), sigse-tops(3), sigvec(2)

Linux 1.3, 24 August 1995

signal
signal—ANSI C signal handling

SYNOPSIS
#include <signal.h>
void (*signal(int signum,void (*handler)(int)))(int);

DESCRIPTION
The signal system call installs a new signal handler for the signal with number signum. The signal handler is set to handler,
which can be a user-specified function or one of the following:

SIG_IGN Ignores the signal.

SIG_DFL Resets the signal to its default behavior.

The integer argument that is handed over to the signal-handling routine is the signal number. This makes it possible to use
one signal handler for several signals.

RETURN VALUE
signal returns the previous value of the signal handler, or SIG_ERR on error.

NOTES
Signal handlers cannot be set for SIGKILL or SIGSTOP.

Unlike on BSD systems, signals under Linux are reset to their default behavior when raised. However, if you include <bsd/
signal.h> instead of <signal.h>, signal is redefined as _bsd_signal, and signal has the BSD semantics. Both versions of
signal are library routines built on top of sigaction(2).

If you’re confused by the prototype at the top of this man page, it may help to see it separated out like this:

typedef void (*sighandler_t)(int);
sighandler_t signal(int signum, sighandler_t handler);

According to POSIX, the behavior of a process is undefined after it ignores a SIGFPE, SIGILL, or SIGSEGV signal that was not
generated by the kill() or raise() function. Integer division by 0 has undefined result. On some architectures it will
generate a SIGFPE signal. Ignoring this signal might lead to an endless loop.

signal

Part II: System Calls858

CONFORMS TO
ANSI C

SEE ALSO
kill(1), kill(2), killpg(2), pause(2), raise(3), sigaction(2), signal(7), sigsetops(3), sigvec(2), alarm(2)

Linux 2.0, 21 July 1996

sigblock, siggetmask, sigsetmask, sigmask
sigblock, siggetmask, sigsetmask, sigmask—Manipulate the signal mask

SYNOPSIS
#include <signal.h>
int sigblock(int mask);
int siggetmask(void);
int sigsetmask(int mask);
int sigmask(int signum);

DESCRIPTION
This interface is made obsolete by sigprocmask(2).

The sigblock system call adds the signals specified in mask to the set of signals currently being blocked from delivery.

The sigsetmask system call replaces the set of blocked signals totally with a new set specified in mask. Signals are blocked if
the corresponding bit in mask is a 1.

The current set of blocked signals can be obtained using siggetmask.

The sigmask macro is provided to construct the mask for a given signum.

RETURN VALUES
siggetmask returns the current set of masked signals.

sigsetmask and sigblock return the previous set of masked signals.

NOTES
Prototypes for these functions are only available if __USE_BSD is defined before <signal.h> is included.

It is not possible to block SIGKILL or SIGSTOP—this restriction is silently imposed by the system.

HISTORY
These function calls appeared in BSD 4.3 and are deprecated.

SEE ALSO
kill(2), sigprocmask(2), signal(7)

Linux 1.3, 31 August 1995

sigpause
sigpause—Atomically releases blocked signals and waits for interrupt

859

SYNOPSIS
#include <signal.h>
int sigpause(int sigmask);

DESCRIPTION
This interface is made obsolete by sigsuspend(2).

sigpause assigns sigmask to the set of masked signals and then waits for a signal to arrive; on return, the set of masked signals
is restored.

sigmask is usually 0 to indicate that no signals are to be blocked. sigpause always terminates by being interrupted, returning
–1 with errno set to EINTR.

HISTORY
The sigpause function call appeared in BSD 4.3 and is deprecated.

SEE ALSO
sigsuspend(2), kill(2), sigaction(2), sigprocmask(2), sigblock(2), sigvec(2)

Linux 1.3, 24 July 1993

sigreturn
sigreturn—Returns from the signal handler and cleans up the stack frame

SYNOPSIS
int sigreturn(unsigned long __unused);

DESCRIPTION
When the Linux kernel creates the stack frame for a signal handler, a call to sigreturn is inserted into the stack frame so that
the signal handler will call sigreturn upon return. This inserted call to sigreturn cleans up the stack so that the process can
restart from where it was interrupted by the signal.

RETURN VALUE
sigreturn never returns.

WARNING
The sigreturn call is used by the kernel to implement signal handlers. It should never be called directly. Better yet, the
specific use of the unused argument varies depending on the architecture.

CONFORMS TO
sigreturn is specific to Linux.

FILES
/usr/src/linux/arch/i386/kernel/signal.c
/usr/src/linux/arch/alpha/kernel/entry.S

SEE ALSO
kill(2), signal(2), signal(7)

Linux 1.3.20, 21 August 1995

sigreturn

Part II: System Calls860

sigvec
sigvec—BSD software signal facilities

SYNOPSIS
#include <bsd/signal.h>
int sigvec(int sig, struct sigvec *vec, struct sigvec *ovec);

DESCRIPTION
This interface is made obsolete by sigaction(2).

Under Linux, sigvec is #defined to sigaction, and provides at best a rough approximation of the BSD sigvec interface.

SEE ALSO
sigaction(2), signal(2)

Linux 1.3 31 August 1995

socket
socket—Creates an endpoint for communication

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
int socket(int domain,inttype, int protocol);

DESCRIPTION
socket creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communications domain within which communication will take place; this selects the
protocol family that should be used. These families are defined in the include file sys/socket.h. The currently understood
formats are

AF_UNIX UNIX internal protocols

AF_INET ARPA Internet protocols

AF_ISO ISO protocols

AF_NS Xerox Network Systems protocols

AF_IMPLINK IMP host at IMP link layer

The socket has the indicated type, which specifies the semantics of communication. The currently defined types are

SOCK_STREAM

SOCK_DGRAM

SOCK_RAW

SOCK_SEQPACKET

SOCK_RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection–based byte streams. An out-of-band data transmission
mechanism may be supported. A SOCK_DGRAM socket supports datagrams (connectionless, unreliable messages of a fixed,
typically small, maximum length). A SOCK_SEQPACKET socket may provide a sequenced, reliable, two-way connection–based
data transmission path for datagrams of fixed maximum length; a consumer might be required to read an entire packet with
each read system call. This facility is protocol specific, and presently is implemented only for PF_NS. SOCK_RAW sockets provide

861

access to internal network protocols and interfaces. The types SOCK_RAW, which is available only to the superuser, and
SOCK_RDM, which is planned but not yet implemented, are not described here.

The protocol specifies a particular protocol to be used with the socket. Normally only a single protocol exists to support a
particular socket type within a given protocol family. However, it is possible that many protocols may exist, in which case a
particular protocol must be specified in this manner. The protocol number to use is particular to the communication domain
in which communication is to take place; see protocols(5).

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream socket must be in a connected state before
any data can be sent or received on it. A connection to another socket is created with a connect(2) call. Once connected, data
may be transferred using read(2) and write(2) calls or some variant of the send(2) and recv(2) calls. When a session has been
completed, a close(2) may be performed. Out-of-band data can also be transmitted as described in send(2) and received as
described in recv(2).

The communications protocols used to implement a SOCK_STREAM ensure that data is not lost or duplicated. If a piece of data
for which the peer protocol has buffer space cannot be successfully transmitted within a reasonable length of time, the
connection is considered broken, and calls will indicate an error with –1 returns and with ETIMEDOUT as the specific code in the
global variable errno. The protocols optionally keep sockets warm by forcing transmissions roughly every minute in the
absence of other activity. An error is then indicated if no response can be elicited on an otherwise idle connection for a
extended period (for example, 5 minutes). A SIGPIPE signal is raised if a process sends on a broken stream; this causes naive
processes, which do not handle the signal, to exit.

SOCK_SEQPACKET sockets employ the same system calls as SOCK_STREAM sockets. The only difference is that read(2) calls will
return only the amount of data requested, and any that is remaining in the arriving packet will be discarded.

SOCK_DGRAM and SOCK_RAW sockets allow the sending of datagrams to correspondents named in send(2) calls. Datagrams are
generally received with recvfrom(2), which returns the next datagram with its return address.

An fcntl(2) call can be used to specify a process group to receive a SIGURG signal when the out-of-band data arrives. It can
also enable non-blocking I/O and asynchronous notification of I/O events via SIGIO.

The operation of sockets is controlled by socket-level options. These options are defined in the file sys/socket.h.
setsockopt(2) and getsockopt(2) and are used to set and get options, respectively.

RETURN VALUES
A –1 is returned if an error occurs; otherwise, the return value is a descriptor referencing the socket.

ERRORS
EPROTONOSUPPORT The protocol type or the specified protocol is not supported within this domain.

EMFILE The per-process descriptor table is full.

ENFILE The system file table is full.

EACCESS Permission to create a socket of the specified type and/or protocol is denied.

ENOBUFS Insufficient buffer space is available. The socket cannot be created until sufficient resources are
freed.

HISTORY
The socket function call appeared in BSD 4.2.

SEE ALSO
accept(2), bind(2), connect(2), getprotoent(3), getsockname(2), getsockopt(2), ioctl(2), listen(2), read(2), recv(2),
select(2), send(2), shutdown(2), socketpair(2), write(2)

“An Introductory 4.3 BSD Interprocess Communication Tutorial” is reprinted in UNIX Programmer’s Supplementary
Documents Volume 1

“BSD Interprocess Communication Tutorial” is reprinted in UNIX Programmer’s Supplementary Documents Volume 1

BSD Man Page, 24 July 1993

socket

Part II: System Calls862

socketcall
socketcall—Socket system calls

SYNOPSIS
int socketcall(int call, unsigned long *args);

DESCRIPTION
socketcall is a common kernel entry point for the socket system calls. call determines which socket function to invoke. args
points to a block containing the actual arguments, which are passed through to the appropriate call.

User programs should call the appropriate functions by their usual names. Only standard library implementors and kernel
hackers need to know about socketcall.

SEE ALSO
accept(2), bind(2), connect(2), getpeername(2), getsockname(2), getsockopt(2), listen(2), recv(2), recvfrom(2), send(2),
sendto(2), setsockopt(2), shutdown(2), socket(2), socketpair(2)

Linux 1.2.4, 15 April 1995

socketpair
socketpair—Creates a pair of connected sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
int socketpair(int d, int type, int protocol, int sv[2]);

DESCRIPTION
The call creates an unnamed pair of connected sockets in the specified domain d, of the specified type, and using the
optionally specified protocol. The descriptors used in referencing the new sockets are returned in sv[0] and sv[1]. The two
sockets are indistinguishable.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned, and errno is set appropriately.

ERRORS
EMFILE Too many descriptors are in use by this process.

EAFNOSUPPORT The specified address family is not supported on this machine.

EPROTONOSUPPORT The specified protocol is not supported on this machine.

EOPNOSUPPORT The specified protocol does not support creation of socket pairs.

EFAULT The address sv does not specify a valid part of the process’s address space.

HISTORY
The socketpair function call appeared in BSD 4.2.

BUGS
This call is currently implemented only for the UNIX domain.

863

SEE ALSO
read(2), write(2), pipe(2)

BSD Man Page, 24 July 1993

stat, fstat, lstat
stat, fstat, lstat—Get file status

SYNOPSIS
#include <sys/stat.h>
#include <unistd.h>
int stat(const char *file_name,struct stat *buf);
int fstat(int filedes,struct stat *buf);
int lstat(const char *file_name, struct stat *buf);

DESCRIPTION
These functions return information about the specified file. You do not need any access rights to the file to get this
information, but you need search rights to all directories named in the path leading to the file.

stat stats the file pointed to by file_name and fills in buf.

lstat is identical to stat, except that the link itself is stated, not the file that is obtained by tracing the links.

fstat is identical to stat, except that the open file pointed to by filedes (as returned by open(2)) is stated in place of
file_name.

They all return a stat structure, which is declared as follows:

struct stat
{
 dev_t st_dev; /* device */
 ino_t st_ino; /* inode */
 umode_t st_mode; /*protection */
 nlink_t st_nlink; /* number of hard links */
 uid_t st_uid; /* user ID of owner */
 gid_t st_gid; /* group ID of owner */
 dev_t st_rdev; /* device type (if inode device) */
 off_t st_size; /* total size, in bytes */
 unsigned long st_blksize; /* blocksize for filesystem I/O */
 unsigned long st_blocks; /* number of blocks allocated */
 time_t st_atime; /* time of last access */
 time_t st_mtime; /* time of last modification */
 time_t st_ctime; /* time of last change */
};

Note that st_blocks may not always be in terms of blocks of size st_blksize, and that st_blksize may instead provide a
notion of the “preferred” block size for efficient filesystem I/O.

Not all the Linux filesystems implement all the time fields. Traditionally, st_atime is changed by mknod(2), utime(2), read(2),
write(2), and truncate(2).

Traditionally, st_mtime is changed by mknod(2), utime(2), and write(2). st_mtime is not changed for changes in owner, group,
hard link count, or mode.

Traditionally, st_ctime is changed by writing or by setting inode information (that is, owner, group, link count, mode, and
so on).

stat, fstat, lstat

Part II: System Calls864

The following macros are defined to check the file type:

S_ISLNK(m) Is it a symbolic link?

S_ISREG(m) Is it a regular file?

S_ISDIR(m) Is it a directory?

S_ISCHR(m) Is it a character device?

S_ISBLK(m) Is it a block device?

S_ISFIFO(m) Is it fifo?

S_ISSOCK(m) Is it a socket?

The following flags are defined for the st_mode field:

S_IFMT 00170000 Bitmask for the file type bitfields

S_IFSOCK 0140000 Socket

S_IFLNK 0120000 Symbolic link

S_IFREG 0100000 Regular file

S_IFBLK 0060000 Block device

S_IFDIR 0040000 Directory

S_IFCHR 0020000 Character device

S_IFIFO 0010000 Fifo

S_ISUID 0004000 Set UID bit

S_ISGID 0002000 Set GID bit

S_ISVTX 0001000 Sticky bit

S_IRWXU 00700 User (file owner) has read, write, and execute permission

S_IRUSR (S_IREAD) 00400 User has read permission

S_IWUSR (S_IWRITE) 00200 User has write permission

S_IXUSR (S_IEXEC) 00100 User has execute permission

S_IRWXG 00070 Group has read, write, and execute permission

S_IRGRP 00040 Group has read permission

S_IWGRP 00020 Group has write permission

S_IXGRP 00010 Group has execute permission

S_IRWXO 00007 others have read, write, and execute permission

S_IROTH 00004 Others have read permission

S_IWOTH 00002 Others have write permission

S_IXOTH 00001 Others have execute permission

RETURN VALUE
On success, 0 is returned. On error, –1 is returned, and errno is set appropriately.

ERRORS
EBADF filedes is bad.

ENOENT File does not exist.

CONFORMS TO
SVID (not lstat()), AT&T (not lstat()), POSIX (not lstat()), X/OPEN (not lstat()), BSD 4.3

SEE ALSO
chmod(2), chown(2), readlink(2), utime(2)

Linux 1.1.75, 1 January 1995

865

statfs, fstatfs
statfs, fstatfs—Get filesystem statistics

SYNOPSIS
#include <sys/vfs.h>
int statfs(const char *path, struct statfs *buf);
int fstatfs(int fd, struct statfs *buf);

DESCRIPTION
statfs returns information about a mounted filesystem. path is the pathname of any file within the mounted filesystem. buf
is a pointer to a statfs structure defined as follows:

struct statfs {
 long f_type; /* type of filesystem (see below) */
 long f_bsize; /* optimal transfer block size */
 long f_blocks; /* total data blocks in filesystem */
 long f_bfree; /* free blocks in fs */
 long f_bavail; /* free blocks avail to non-superuser */
 long f_files; /* total file nodes in filesystem */
 long f_ffree; /* free file nodes in fs */
 fsid_t f_fsid; /* filesystem id */
 long f_namelen; /* maximum length of filenames */
 long f_spare[6]; /* spare for later */
};

Filesystem types:

linux/ext2_fs.h: EXT2_OLD_SUPER_MAGIC 0xEF51
linux/ext2_fs.h: EXT2_SUPER_MAGIC 0xEF53
linux/ext_fs.h: EXT_SUPER_MAGIC 0x137D
linux/iso_fs.h: ISOFS_SUPER_MAGIC 0x9660
linux/minix_fs.h: MINIX_SUPER_MAGIC 0x137F /* orig. minix */
linux/minix_fs.h: MINIX_SUPER_MAGIC2 0x138F /* 30 char minix */
linux/minix_fs.h: NEW_MINIX_SUPER_MAGIC 0x2468 /* minix V2 */
linux/msdos_fs.h: MSDOS_SUPER_MAGIC 0x4d44
linux/nfs_fs.h: NFS_SUPER_MAGIC 0x6969
linux/proc_fs.h: PROC_SUPER_MAGIC 0x9fa0
linux/xia_fs.h: XIAFS_SUPER_MAGIC 0x012FD16D

Fields that are undefined for a particular filesystem are set to –1. fstatfs returns the same information about an open file
referenced by descriptor fd.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned, and errno is set appropriately.

ERRORS
For statfs:

ENOTDIR A component of the path prefix of path is not a directory.

EINVAL path contains a character with the high-order bit set.

ENAMETOOLONG The length of a component of path exceeds 255 characters, or the length of path exceeds 1,023
characters.

ENOENT The file referred to by path does not exist.

EACCES Search permission is denied for a component of the path prefix of path.

ELOOP Too many symbolic links were encountered in translating path.

statfs, fstatfs

Part II: System Calls866

EFAULT buf or path points to an invalid address.

EIO An I/O error occurred while reading from or writing to the filesystem.

For fstatfs:

EBADF fd is not a valid open file descriptor.

EFAULT buf points to an invalid address.

EIO An I/O error occurred while reading from or writing to the filesystem.

SEE ALSO
stat(2)

Linux 0.99.11, 24 July 1993

stime
stime—Set time

SYNOPSIS
#include <time.h>
int stime(time_t *t);

DESCRIPTION
stime sets the system’s idea of the time and date. time, pointed to by t, is measured in seconds from 00:00:00 GMT January
1, 1970. stime() may only be executed by the superuser.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned, and errno is set appropriately.

ERRORS
EPERM The caller is not the superuser.

CONFORMS TO
SVID, AT&T, X/OPEN

SEE ALSO
date(1)

Linux 0.99.11, 24 July 1993

swapon, swapoff
swapon, swapoff—Start/stop swapping to file/device

SYNOPSIS
#include <unistd.h>
#include <linux/swap.h>
int swapon(const char *path, int swapflags);
int swapoff(const char *path);

867

DESCRIPTION
swapon sets the swap area to the file or block device specified by path. swapoff stops swapping to the file or block device
specified by path.

swapon takes a swapflags argument. If swapflags has the SWAP_FLAG_PREFER bit turned on, the new swap area will have a higher
priority than default. The priority is encoded as (prio << SWAP_FLAG_PRIO_SHIFT) & SWAP_FLAG_PRIO_MASK. These functions
may only be used by the superuser.

PRIORITY
Each swap area has a priority, either high or low. The default priority is low. Within the low-priority areas, newer areas are of
even lower priority than older areas.

All priorities set with swapflags are high priority, higher than the default. They may have any non-negative value chosen by
the caller. Higher numbers mean higher priority.

Swap pages are allocated from areas in priority order, highest priority first. For areas with different priorities, a higher-
priority area is exhausted before using a lower-priority area. If two or more areas have the same priority, and that is the
highest priority available, pages are allocated on a round-robin basis between them.

As of Linux 1.3.6, the kernel usually follows these rules, but there are exceptions.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned, and errno is set appropriately.

ERRORS
Many other errors besides the following can occur if path is not valid:

EPERM The user is not the superuser, or more than MAX_SWAPFILES (defined to be 8 in Linux 1.3.6) are in
use.

EINVAL Returned if path exists, but is neither a regular path nor a block device.

ENOENT Returned if path does not exist.

ENOMEM Returned if there is insufficient memory to start swapping.

CONFORMS TO
These functions are Linux specific.

NOTES
The partition or path must be prepared with mkswap(8).

HISTORY
The second (swapflags) argument was introduced in Linux 1.3.2.

SEE ALSO
mkswap(8), swapon(8), swapoff(8)

Linux 1.3.6, 22 July 1995

symlink
symlink—Makes a new name for a file

symlink

Part II: System Calls868

SYNOPSIS
#include <unistd.h>
int symlink(const char *oldpath, const char *newpath);

DESCRIPTION
symlink creates a symbolic link named oldpath that contains newpath.

Symbolic links are interpreted at runtime, as if the contents of the link were substituted into the path being followed to find
a file or directory.

Symbolic links may contain .. path components that (if used at the start of the link) refer to the parent directories of the one
in which the link resides.

A symbolic link (also known as a soft link) can point to an existing file or to a nonexistent one; the latter case is known as a
dangling link.

The permissions of a symbolic link are irrelevant; the ownership is ignored when following the link, but is checked when
removal or renaming of the link is requested and the link is in a directory with the sticky bit set.

If newpath exists, it will not be overwritten.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned, and errno is set appropriately.

ERRORS
EPERM The filesystem containing pathname does not support the creation of symbolic links.

EFAULT oldpath or newpath points outside your accessible address space.

EACCES Write access to the directory containing newpath is not allowed for the process’s effective UID, or
one of the directories in newpath did not allow search (execute) permission.

ENAMETOOLONG oldpath or newpath was too long.

ENOENT A directory component in newpath does not exist or is a dangling symbolic link, or oldpath is the
empty string.

ENOTDIR A component used as a directory in newpath is not, in fact, a directory.

ENOMEM Insufficient kernel memory was available.

EROFS The file is on a read-only filesystem.

EEXIST newpath already exists.

ELOOP newpath contains a reference to a circular symbolic link—that is, a symbolic link whose expansion
contains a reference to itself.

ENOSPC The device containing the file has no room for the new directory entry.

NOTES
No checking of oldpath is done.

Deleting the name referred to by a symlink will actually delete the file (unless it also has other hard links). If this behavior is
not desired, use link.

CONFORMS TO
SVID, AT&T, POSIX, BSD 4.3

BUGS
See open(2) regarding multiple files with the same name, and NFS.

869

SEE ALSO
link(2), unlink(2), rename(2), open(2), lstat(2), ln(1), link(8)

Linux, 24 July 1993

sync
sync—Commits buffer cache to disk

SYNOPSIS
#include <unistd.h>
int sync(void);

DESCRIPTION
sync first commits inodes to buffers, and then buffers to disk.

RETURN VALUE
sync always returns 0.

CONFORMS TO
SVID, AT&T, X/OPEN, BSD 4.3

BUGS
According to the standard specification (for example, SVID), sync() schedules the writes, but it might return before the
actual writing is done. However, since version 1.3.20, Linux does actually wait. (This still does not guarantee data integrity;
modern disks have large caches.)

SEE ALSO
bdflush(2), fsync(2), fdatasync(2), update(8), sync(8)

Linux 1.3.88, 15 April 1995

sysctl
sysctl—Reads/writes system parameters

SYNOPSIS
#include <unistd.h>
#include <linux/unistd.h>
#include <linux/sysctl.h>
_syscall1(int_sysctl, struct __sysctl_args *args);
int sysctl(struct __sysctl_args *args);

DESCRIPTION
The sysctl call reads and/or writes kernel parameters—for example, the hostname or the maximum number of open files.
The argument has the form

struct __sysctl__args {
 int *name; /* integer vector describing variable */
 int nlen; /* length of this vector */
 void *oldval; /* 0 or address where to store old value */
 size_t *oldlenp; /* available room for old value,

sysctl

Part II: System Calls870

 overwritten by actual size of old value */
 void *newval; /* 0 or address of new value */
 size_t newlen; /* size of new value */
};

This call does a search in a tree structure, possibly resembling a directory tree under /proc/sys, and, if the requested item is
found, calls some appropriate routine to read or modify the value.

EXAMPLE
#include <linux/unistd.h>
#include <linux/types.h>
#include <linux/sysctl.h>

_syscall1(int, _sysctl, struct __sysctl args *, args);
int sysctl(int *name, int nlen, void *oldval, size_t *oldlenp,
 void *newval, size_t newlen)
{
 struct __sysctl__args args={name,nlen,oldval,oldlenp,newval,newlen};
 return _sysctl(&args);
}

#define SIZE(x) sizeof(x)/sizeof(x[0])
#define OSNAMESZ 100

char osname[OSNAMESZ];
int osnamelth;
int name[] = { CTL_KERN, KERN_OSTYPE };

main(){
 osnamelth = SIZE(osname);
 if (sysctl(name, SIZE(name), osname, &osnamelth, 0, 0))
 perror(“sysctl”);
 else
 printf(“This machine is running %*s\n”, osnamelth, osname);
 return 0;
}

RETURN VALUES
Upon successful completion, sysctl returns 0. Otherwise, a value of –1 is returned, and errno is set to indicate the error.

ERRORS
ENOTDIR name was not found.

EPERM No search permission for one of the encountered directories, or no read permission where oldval
was nonzero, or no write permission where newval was nonzero.

EFAULT The invocation asked for the previous value by setting oldval non-NULL, but allowed zero room
in oldlenp.

CONFORMS TO
This call is Linux specific.

HISTORY
A sysctl call has been present in Linux since version 1.3.57. It originated in BSD-4.4. Only Linux has the /proc/sys mirror,
and the object-naming schemes differ between Linux and BSD 4.4, but the declaration of the sysctl(2) function is the same
in both.

871

BUGS
Not all available objects are properly documented.

It is not yet possible to change operating system by writing to /proc/sys/kernel/ostype.

SEE ALSO
proc(5)

Linux 1.3.85, 11 April 1996

sysfs
sysfs—Gets filesystem type information

SYNOPSIS
int sysfs(int option, const char * fsname);
int sysfs(int option, unsigned int fs_index, char * buf);
int sysfs(int option);

DESCRIPTION
sysfs returns information about the filesystem types currently present in the kernel. The specific form of the sysfs call and
the information returned depend on the option in effect. You can

■ Translate the filesystem identifier string fsname into a filesystem type index.
■ Translate the filesystem type index fs_index into a null-terminated filesystem identifier string. This string will be written

to the buffer pointed to by buf. Make sure that buf has enough space to accept the string.
■ Return the total number of filesystem types currently present in the kernel.

The numbering of the filesystem type indexes begins with 0.

RETURN VALUE
On success, sysfs returns the filesystem index for the first option, 0 for the second option, and the number of currently
configured filesystems for the third option. On error, –1 is returned, and errno is set appropriately.

ERRORS
EINVAL fsname is not a valid filesystem type identifier; fs_index is out of bounds; option is invalid.

EFAULT Either fsname or buf is outside your accessible address space.

CONFORMS TO
System V

Linux 1.3.16, 9 August 1995

sysinfo
sysinfo—Returns information on overall system statistics

SYNOPSIS
As of Linux 0.99.10 and image release 4.4,

#include <linux/kernel.h>
#include <linux/sys.h>
int sysinfo(struct sysinfo *info);

sysinfo

Part II: System Calls872

DESCRIPTION
sysinfo returns information in the following structure:

struct sysinfo {
 long uptime; /* Seconds since boot */
 unsigned long loads[3]; /* 1, 5, and 15 minute load averages */
 unsigned long totalram; /* Total usable main memory size */
 unsigned long freeram; /* Available memory size */
 unsigned long sharedram; /* Amount of shared memory */
 unsigned long bufferram; /* Memory used by buffers */
 unsigned long totalswap; /* Total swap space size */
 unsigned long freeswap; /* swap space still available */
 unsigned short procs; /* Number of current processes */
 char _f[22]; /* Pads structure to 64 bytes */
};

sysinfo provides a simple way of getting overall system statistics. This is more portable than reading /dev/kmem.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned, and errno is set appropriately.

ERRORS
EFAULT The pointer to struct sysinfo is invalid.

CONFORMS TO
This function is Linux specific.

BUGS
The Linux DLL 4.4.1 libraries do not contain a proper prototype for this function.

Linux 0.99.10, 24 July 1993

syslog
syslog—Reads and/or clears kernel message ring buffer; sets console_loglevel

SYNOPSIS
#include <unistd.h>
#include <linux/unistd.h>
_syscall3(int syslog, int type, char *bufp, int len);
int syslog(int type, char *bufp, int len);

DESCRIPTION
This is probably not the function you are interested in. Look at syslog(3) for the C library interface. This page only
documents the bare kernel system call interface.

The type argument determines the action taken by syslog.

From kernel/printk.c:/*

Valid commands to syslog are

0—Close the log. Currently a NOP.

1—Open the log. Currently a NOP.

2—Read from the log.

873

3—Read up to the last 4KB of messages in the ring buffer.

4—Read and clear last 4KB of messages in the ring buffer.

5—Clear ring buffer.

6—Disable printks to console.

7—Enable printks to console.

8—Set level of messages printed to console.

Only function 3 is allowed to non-root processes.

THE KERNEL LOG BUFFER
The kernel has a cyclic buffer of length LOG_BUF_LEN (4096) in which messages given as argument to the kernel function
printk() are stored (regardless of their loglevel).

The call syslog (2,buf,len) waits until this kernel log buffer is nonempty, and then reads at most len bytes into the buffer
buf. It returns the number of bytes read. Bytes read from the log disappear from the log buffer; the information can only be
read once. This is the function executed by the kernel when a user program reads /proc/kmsg.

The call syslog (3,buf,len) will read the last len bytes from the log buffer (nondestructively), but will not read more than
was written into the buffer since the last “clear ring buffer” command (which does not clear the buffer at all). It returns the
number of bytes read.

The call syslog (4,buf,len) does precisely the same, but also executes the “clear ring buffer” command.

The call syslog (5,dummy,idummy) only executes the “clear ring buffer” command.

THE LOGLEVEL
The kernel routine printk() will print a message on the console only if it has a loglevel less than the value of the variable
console_loglevel (initially DEFAULT_CONSOLE_LOGLEVEL (7), but set to 10 if the kernel command line contains the word debug,
and to 15 in case of a kernel fault—the 10 and 15 are just silly, and are equivalent to 8). This variable is set (to a value in the
range 1–8) by the call syslog (8,dummy,value). The call syslog (type,dummy,idummy) with type equal to 6 or 7, sets it to 1
(kernel panics only) or 7 (all except debugging messages), respectively.

Every text line in a message has its own loglevel. This level is DEFAULT_MESSAGE_LOGLEVEL-1 (6) unless the line starts with <d>
where d is a digit in the range 1–7, in which case the level is d. The conventional meaning of the loglevel is defined in <linux/
kernel.h> as follows:

#define KERN_EMERG “<0>” /* system is unusable */
#define KERN_ALERT “<1>” /* action must be taken immediately */
#define KERN_CRIT “<2>” /* critical conditions */
#define KERN_ERR “<3>” /* error conditions */
#define KERN_WARNING “<4>” /* warning conditions */
#define KERN_NOTICE “<5>” /* normal but significant condition */
#define KERN_INFO “<6>” /* informational */
#define KERN_DEBUG “<7>” /* debug-level messages */

RETURN VALUE
In case of error, -1 is returned, and errno is set. On success, for type equal to 2, 3, or 4, syslog() returns the number of bytes
read; otherwise, it returns 0.

ERRORS
EPERM An attempt was made to change console_loglevel or clear the kernel message ring buffer by a

process without root permissions.

EINVAL Bad parameters.

ERESTARTSYS System call was interrupted by a signal—nothing was read.

syslog

Part II: System Calls874

CONFORMS TO
This system call is Linux specific.

SEE ALSO
syslog(3)

Linux 1.2.9, 11 June 1995

termios, tcgetattr, tcsetattr, tcsendbreak, tcdrain, tcflush,
tcflow, cfgetospeed, cfgetispeed, cfsetispeed, cfsetospeed,
tcgetpgrp, tcsetpgrp

termios, tcgetattr, tcsetattr, tcsendbreak, tcdrain, tcflush, tcflow, cfgetospeed, cfgetispeed, cfsetispeed, cfsetospeed,
tcgetpgrp, tcsetpgrp—Get and set terminal attributes, do line control, get and set baud rate, get and set terminal foreground
process group ID

SYNOPSIS
#include <termios.h>
#include <unistd.h>
int tcgetattr (int fd, struct termios *termios_p);
int tcsetattr (int fd, int optional_actions, struct termios *termios_p);
int tcsendbreak (int fd, int duration);
int tcdrain (int fd);
int tcflush (int fd, int queue_selector);
int tcflow (int fd, int action);
speed_t cfgetospeed (struct termios *termios_p);
int cfsetospeed (struct termios *termios_p, speed_t speed);
speed_t cfgetispeed (struct termios *termios_p);
int cfsetispeed (struct termios *termios_p, speed_t speed);
pid_t tcgetpgrp (int fd);
int tcsetpgrp (int fd, pid_t pgrpid);

DESCRIPTION
The termios functions describe a general terminal interface that is provided to control asynchronous communications ports.

Many of the functions described here have a termios_p argument that is a pointer to a termios structure. This structure
contains the following members:

tcflag_t c_iflag; /* input modes */
tcflag_t c_oflag; /* output modes */
tcflag_t c_cflag; /* control modes */
tcflag_t c_lflag;/*local modes*/
cc_t c_cc[NCCS]; /* control chars */

The following are the c_iflag flag constants:

IGNBRK Ignore BREAK condition on input.

BRKINT If IGNBRK is not set, generate SIGINT on BREAK condition; otherwise, read BREAK as character \0.

IGNPAR Ignore framing errors and parity errors.

PARMRK If IGNPAR is not set, prefix a character with a parity error or framing error with \377 \0. If neither
IGNPAR nor PARMRK is set, read a character with a parity error or framing error as \0.

INPCK Enable input parity checking.

875

ISTRIP Strip off the eighth bit.

INLCR Translate NL to CR on input.

IGNCR Ignore carriage return on input.

ICRNL Translate carriage return to newline on input (unless IGNCR is set).

IUCLC Map uppercase characters to lowercase on input.

IXON Enable XON/XOFF flow control on output.

IXANY Enable any character to restart output.

IXOFF Enable XON/XOFF flow control on input IMAXBEL ring bell when input queue is full.

The following are the c_oflag flag constants:

OPOST Enable implementation-defined output processing.

OLCUC Map lowercase characters to uppercase on output.

ONLCR Map NL to CR-NL on output.

OCRNL Map CR to NL on output.

ONOCR Don’t output CR at column 0.

ONLRET Don’t output CR.

OFILL Send fill characters for a delay rather than use a timed delay.

OFDEL Fill character is ASCII DEL. If unset, fill character is ASCII NUL.

NLDLY Newline delay mask. Values are NL0 and NL1.

CRDLY Carriage-return delay mask. Values are CR0, CR1, CR2, and CR3.

TABDLY Horizontal-tab delay mask. Values are TAB0, TAB1, TAB2, TAB3, and XTABS. A value of XTABS expands
tabs to spaces (with tab stops every eight columns).

BSDLY Backspace delay mask. Values are BS0 and BS1.

VTDLY Vertical-tab delay mask. Values are VT0 and VT1.

FFDLY Form-feed delay mask. Values are FF0 and FF1.

The following are the c_cflag flag constants:

CSIZE Character size mask. Values are CS5, CS6, CS7,and CS8.

CSTOPB Set two stop bits rather than one.

CREAD Enable receiver.

PARENB Enable parity generation on output and parity checking for input.

PARODD Parity for input and output is odd.

HUPCL Lower modem control lines after last process closes the device (hangs up).

CLOCAL Ignore modem control lines.

CIBAUD Mask for input speeds (not used).

CRTSCTS Flow control.

The following are the c_lflag flag constants:

ISIG When any of the characters INTR, QUIT, SUSP, or DSUSP are received, generate the corresponding
signal.

ICANON Enables canonical mode. This allows the special characters EOF, EOL, EOL2, ERASE, KILL, REPRINT,
STATUS, and WERASE, and also buffers by lines.

XCASE If ICANON is also set, terminal is uppercase only. Input is converted to lowercase, except for
characters preceded by \. On output, uppercase characters are preceded by \, and lowercase
characters are converted to uppercase.

ECHO Echo input characters.

termios, tcgetattr, tcsetattr, tcsendbreak, tcdrain, tcflush, tcflow, cfgetospeed, cfgetispeed, cfsetispeed,
cfsetospeed, tcgetpgrp, tcsetpgrp

Part II: System Calls876

ECHOE If ICANON is also set, the ERASE character erases the preceding input character, and WERASE erases the
preceding word.

ECHOK If ICANON is also set, the KILL character erases the current line.

ECHONL If ICANON is also set, echo the NL character even If ECHO is not set.

ECHOCTL If ECHO is also set, ASCII control signals other than TAB, NL, START, and STOP are echoed as Ctrl+X,
where X is the character with ASCII code 0x10 greater than the control signal. For example,
character 0x28 (BS) is echoed as Ctrl+H.

ECHOPRT If ICANON and IECHO are also set, characters are printed as they are being erased.

ECHOKE If ICANON is also set, KILL is echoed by erasing each character on the line, as specified by ECHOE and
ECHOPRT.

FLUSHO Output is being flushed. This flag is toggled by typing the DISCARD character.

NOFLSH Disables flushing of the input and output queues when generating the SIGINT and SIGQUIT signals,
and flushing of the input queue when generating the SIGSUSP signal.

TOSTOP Sends the SIGTTOU signal to the process group of a background process that tries to write to its
controlling terminal.

PENDIN All characters in the input queue are reprinted when the next character is read. (bash handles
typeahead this way.)

IEXTEN Enable implementation-defined input processing.

tcgetattr() gets the parameters associated with the object referred by fd and stores them in the termios structure referenced
by termios_p. This function may be invoked from a background process; however, the terminal attributes may be subse-
quently changed by a foreground process.

tcsetattr() sets the parameters associated with the terminal (unless support is required from the underlying hardware that is
not available) from the termios structure referred to by termios_p. optional_actions specifies when the changes take effect:

TCSANOW The change occurs immediately.

TCSADRAIN The change occurs after all output written to fd has been transmitted. This function should be used
when changing parameters that affect output.

TCSAFLUSH The change occurs after all output written to the object referred to by fd has been transmitted, and
all input that has been received but not read will be discarded before the change is made.

tcsendbreak() transmits a continuous stream of zero-valued bits for a specific duration, if the terminal is using asynchronous
serial data transmission. If duration is 0, it transmits zero-valued bits for at least 0.25 seconds, and not more than 0.5
seconds. If duration is not 0, it sends zero-valued bits for duration*N seconds, where N is at least 0.25, and not more
than 0.5.

If the terminal is not using asynchronous serial data transmission, tcsendbreak() returns without taking any action.

tcdrain() waits until all output written to the object referred to by fd has been transmitted.

tcflush() discards data written to the object referred to by fd but not transmitted, or data received but not read, depending
on the value of queue_selector:

TCIFLUSH Flushes data received but not read.

TCOFLUSH Flushes data written but not transmitted.

TCIOFLUSH Flushes both data received but not read and data written but not transmitted.

tcflow() suspends transmission or reception of data on the object referred to by fd, depending on the value of action:

TCOOFF Suspends output.

TCOON Restarts suspended output.

TCIOFF Transmits a STOP character, which stops the terminal device from transmitting data to the system.

TCION Transmits a START character, which starts the terminal device transmitting data to the system.

877

The default on open of a terminal file is that neither its input nor its output is suspended.

The baud rate functions are provided for getting and setting the values of the input and output baud rates in the termios
structure. The new values do not take effect until tcsetattr() is successfully called.

Setting the speed to B0 instructs the modem to hang up. The actual bit rate corresponding to B38400 may be altered with
setserial(8).

The input and output baud rates are stored in the termios structure.

cfgetospeed() returns the output baud rate stored in the termios structure pointed to by termios_p.

cfsetospeed() sets the output baud rate stored in the termios structure pointed to by termios_p to speed, which must be one
of these constants:

B0

B50

B75

B110

B134

B150

B200

B300

B600

B1200

B1800

B2400

B4800

B9600

B19200

B38400

B57600

B115200

B230400

The zero baud rate, B0, is used to terminate the connection. If B0 is specified, the modem control lines will no longer be
asserted. Normally, this will disconnect the line. CBAUDEX is a mask for the speeds beyond those defined in POSIX.1 (57600
and later). Thus, B57600 & CBAUDEX is nonzero.

cfgetispeed() returns the input baud rate stored in the termios structure.

cfsetispeed() sets the input baud rate stored in the termios structure to speed. If the input baud rate is set to 0, it will be
equal to the output baud rate.

tcgetpgrp() returns the process group ID of the foreground processing group, or -1 on error.

tcsetpgrp() sets the process group ID to pgrpid. pgrpid must be the ID of a process group in the same session.

RETURN VALUES
cfgetispeed() returns the input baud rate stored in the termios structure.

cfgetospeed() returns the output baud rate stored in the termios structure.

tcgetpgrp() returns the process group ID of foreground processing group, or -1 on error.

All other functions return

termios, tcgetattr, tcsetattr, tcsendbreak, tcdrain, tcflush, tcflow, cfgetospeed, cfgetispeed, cfsetispeed,
cfsetospeed, tcgetpgrp, tcsetpgrp

Part II: System Calls878

0 On success.

-1 on failure (and set errno to indicate the error).

SEE ALSO
setserial(8)

Linux, 25 February 1995

time
time—Gets time in seconds

SYNOPSIS
#include <time.h>
time_t time(time_t *t);

DESCRIPTION
time returns the time since 00:00:00 GMT, January 1, 1970, measured in seconds.

If t is non null, the return value is also stored in the memory pointed to by t.

CONFORMS TO
SVID, AT&T, POSIX, X/OPEN, BSD 4.3

(Under BSD 4.3, this call is made obsolete by gettimeofday(2).)

SEE ALSO
ctime(3), date(1), ftime(3), gettimeofday(2)

Linux, 24 July 1993

times
times—Gets process times

SYNOPSIS
#include <sys/times.h>
clock_t times(struct tms *buf);

DESCRIPTION
times stores the current process times in buf.

struct tms is as defined in /usr/include/sys/times.h:

struct tms {
 time_t tms_utime; /* user time */
 time_t tms_stime; /* system time */
 time_t tms_cutime; /* user time of children */
 time_t tms_cstime; /* system time of children */
 };

times returns the number of clock ticks that have elapsed since the system has been up.

879

CONFORMS TO
SVID, AT&T, POSIX, X/OPEN, BSD 4.3

SEE ALSO
time(1), getrusage(2), wait(2)

Linux 0.99.11, 24 July 1993

truncate, ftruncate
truncate, ftruncate—Truncate a file to a specified length

SYNOPSIS
#include <unistd.h>
int truncate(const char *path, size_t length);
int ftruncate(int fd, size_t length);

DESCRIPTION
truncate causes the file named by path or referenced by fd to be truncated to at most length bytes in size. If the file
previously was larger than this size, the extra data is lost. With ftruncate, the file must be open for writing.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned, and errno is set appropriately.

ERRORS
The errors for truncate are

ENOTDIR A component of the path prefix is not a directory.

EINVAL The pathname contains a character with the high-order bit set.

ENAMETOOLONG A component of a pathname exceeded 255 characters, or an entire pathname exceeded 1,023
characters.

ENOENT The named file does not exist.

EACCES Search permission is denied for a component of the path prefix.

EACCES The named file is not writeable by the user.

ELOOP Too many symbolic links were encountered in translating the pathname.

EISDIR The named file is a directory.

EROFS The named file resides on a read-only filesystem.

ETXTBSY The file is a pure procedure (shared text) file that is being executed.

EIO An I/O error occurred updating the inode.

EFAULT path points outside the process’s allocated address space.

The errors for ftruncate are

EBADF fd is not a valid descriptor.

EINVAL fd references a socket, not a file.

EINVAL fd is not open for writing.

HISTORY
These function calls appeared in BSD 4.2.

truncate, ftruncate

Part II: System Calls880

BUGS
These calls should be generalized to allow ranges of bytes in a file to be discarded.

SEE ALSO
open(2)

BSD Man Page, 24 July 1993

umask
umask—Sets a file-creation mask

SYNOPSIS
#include <sys/stat.h>
int umask(int mask);

DESCRIPTION
umask sets the umask to mask & 0777.

RETURN VALUE
The previous value of the mask is returned.

CONFORMS TO
SVID, AT&T, POSIX, X/OPEN, BSD 4.3

SEE ALSO
creat(2), open(2)

Linux 24 July 93

uname
uname—Gets name and information about the current kernel

SYNOPSIS
#include <sys/utsname.h>
int uname(struct utsname *buf);

DESCRIPTION
uname returns system information in buf. The utsname struct is as defined in /usr/include/sys/utsname.h:

struct utsname {
 char sysname[65];
 char nodename[65];
 char release[65];
 char version[65];
 char machine[65];
 char domainname[65];
 };

RETURN VALUE
On success, 0 is returned. On error, –1 is returned, and errno is set appropriately.

881

ERRORS
EFAULT buf is not valid.

CONFORMS TO
SVID, AT&T, POSIX, X/OPEN

SEE ALSO
uname(1), getdomainname(2), gethostname(2)

Linux 0.99.11 24 July 93

none
none—Undocumented system calls

SYNOPSIS
Undocumented system calls.

DESCRIPTION
As of Linux 1.3.88, there are 163 system calls listed in /usr/include/asm/unistd.h. This man page mentions those calls that
are implemented in the kernel but not yet documented in man pages. Some of these calls do not yet have prototypes in the
libc include files.

SOLICITATION
If you have information about these system calls, please look in the kernel source code, write a man page (using a style similar
to that of the other Linux section 2 man pages), and send it to aeb@cwi.nl for inclusion in the next man page release from the
Linux Documentation Project.

STATUS
Undocumented are msync, readv, writev, getsid, fdatasync, sysctl, sched_setparam, sched_getparam, sched_setscheduler,
sched_getscheduler, sched_yield, sched_get_priority_max, sched_get_priority_min, sched_rr_get_interval.

SEE ALSO
obsolete(2), unimplemented(2)

Linux 1.3.86 12 April 1996

afs_syscall, break, gtty, lock, mpx, prof, quotactl, stty, ustat
afs_syscall, break, gtty, lock, mpx, prof, quotactl, stty, ustat—Unimplemented system calls

SYNOPSIS
Unimplemented system calls.

DESCRIPTION
These system calls are not implemented in the Linux 1.2.4 kernel.

RETURN VALUE
These system calls always return –1 and set errno to ENOSYS.

afs_syscall, break, gtty, lock, mpx, prof, quotactl, stty, ustat

Part II: System Calls882

SEE ALSO
obsolete(2), undocumented(2)

Linux 1.2.4, 15 April 1995

unlink
unlink—Deletes a name and possibly the file it refers to

SYNOPSIS
#include <unistd.h>
int unlink(const char *pathname);

DESCRIPTION
unlink deletes a name from the filesystem. If that name was the last link to a file and no processes have the file open, the file
is deleted, and the space it was using is made available for reuse.

If the name was the last link to a file but any processes still have the file open, the file will remain in existence until the last
file descriptor referring to it is closed.

If the name referred to a symbolic link, the link is removed.

If the name referred to a socket, fifo, or device, the name for it is removed but processes that have the object open can
continue to use it.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned, and errno is set appropriately.

ERRORS
EFAULT pathname points outside your accessible address space.

EACCES Write access to the directory containing pathname is not allowed for the process’s effective UID, or
one of the directories in pathname did not allow search (execute) permission.

EPERM The directory containing pathname has the sticky bit (S_ISVTX) set, and the process’s effective UID is
neither the UID of the file to be deleted nor that of the directory containing it, or pathname is a
directory.

ENAMETOOLONG pathname was too long.

ENOENT A directory component in pathname does not exist or is a dangling symbolic link.

ENOTDIR A component used as a directory in pathname is not, in fact, a directory.

EISDIR pathname refers to a directory.

ENOMEM Insufficient kernel memory was available.

EROFS pathname refers to a file on a read-only filesystem.

CONFORMS TO
SVID, AT&T, POSIX, X/OPEN, BSD 4.3

BUGS
Infelicities in the protocol underlying NFS can cause the unexpected disappearance of files that are still being used.

SEE ALSO
link(2), rename(2), open(2), rmdir(2), mknod(2), mkfifo(3), remove(3), rm(1), unlink(8).

Linux, 24 July 1993

883

uselib
uselib—Selects shared library

SYNOPSIS
#include <unistd.h>
int uselib(const char *library);

DESCRIPTION
uselib selects the shared library binary that will be used by this process.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned, and errno is set appropriately.

ERRORS
In addition to all the error codes returned by open(2) and mmap(2), the following may also be returned:

ENOEXEC The file specified by library is not executable, or does not have the correct magic numbers.

EACCES The library specified by library is not readable.

CONFORMS TO
uselib() is Linux specific.

SEE ALSO
open(2), mmap(2), ldd(1), gcc(1), ar(1), ld(1)

Linux 0.99.11, 24 July 1993

ustat
ustat—Gets filesystem statistics

SYNOPSIS
#include <sys/types.h>
int ustat(dev_t dev, struct ustat * ubuf);

DESCRIPTION
ustat returns information about a mounted filesystem. dev is a device number identifying a device containing a mounted
filesystem. ubuf is a pointer to a ustat structure that contains the following members:

daddr_t f_tfree; /* Total free blocks */
ino_t f_tinode; /* Number of free inodes */
char f_fname[6]; /* Filsys name */
char f_fpack[6]; /* Filsys pack name */

The last two fields, f_fname and f_fpack, are not implemented and will always be filled with null characters.

RETURN VALUE
On success, 0 is returned, and the ustat structure pointed to by ubuf will be filled in. On error, –1 is returned, and errno is
set appropriately.

ustat

Part II: System Calls884

ERRORS
EINVAL dev does not refer to a device containing a mounted filesystem.

EFAULT ubuf points outside of your accessible address space.

ENOSYS The mounted filesystem referenced by dev does not support this operation, or any version of Linux
before 1.3.16.

NOTES
ustat has been provided for compatibility only. All new programs should use statfs(2) instead.

HISTORY
ustat was first implemented in Linux 1.3.16. All versions of Linux before 1.3.16 will return ENOSYS.

CONFORMS TO
System V

SEE ALSO
statfs(2), stat(2)

Linux 1.3.16, 9 August 1995

utime, utimes
utime, utimes—Change access and/or modification times of an inode

SYNOPSIS
#include <sys/types.h>
#include <utime.h>
int utime(const char *filename, struct utimbuf *buf);
#include <sys/time.h>
int utimes(char *filename, struct timeval *tvp);

DESCRIPTION
utime changes the access and modification times of the inode specified by filename to the actime and modtime fields of buf,
respectively. If buf is NULL, the access and modification times of the file are set to the current time. The utimbuf structure is

struct utimbuf {
time_t actime; /* access time */
time_t modtime; /* modification time */
};

In the Linux DLL 4.4.1 libraries, utimes is just a wrapper for utime, tvp[0].tv_sec is actime, and tvp[1].tv_sec is modtime.
The timeval structure is

struct timeval {
long tv_sec; /* seconds */
long tv_usec; /* microseconds */
};

RETURN VALUE
On success, 0 is returned. On error, –1 is returned, and errno is set appropriately.

885

ERRORS
Other errors may occur.

EACCESS Permission to write the file is denied.

ENOENT filename does not exist.

CONFORMS TO
utime: SVID, POSIX
utimes:BSD4.3

SEE ALSO
stat(2)

Linux, 10 June 1995

vhangup
vhangup—Virtually hangs up the current tty

SYNOPSIS
#include <unistd.h>
int vhangup(void);

DESCRIPTION
vhangup simulates a hangup on the current terminal. This call arranges for other users to have a clean tty at login time.

RETURN VALUE
On success, 0 is returned. On error, –1 is returned, and errno is set appropriately.

ERRORS
EPERM The user is not the superuser.

SEE ALSO
init(8)

Linux 0.99.11, 24 July 1993

vm86
vm86—Enters virtual 8086 mode

SYNOPSIS
#include <sys/vm86.h>
int vm86(struct vm86_struct * info);

DESCRIPTION
Enter VM86 mode with information as specified in info:

struct vm86_struct {
 struct vm86_regs regs;
 unsigned long flags;

vm86

Part II: System Calls886

 unsigned long screen_bitmap;
};

struct vm86_regs {
/*
 * normal regs, with special meaning for the segment descriptors..
 */
 long ebx;
 long ecx;
 long edx;
 long esi;
 long edi;
 long ebp;
 long eax;
 long __null_ds;
 long __null_es;
 long __null_fs;
 long __null_gs;
 long orig_eax;
 long eip;
 long cs;
 long eflags;
 long esp;
 long ss;
/*
 * these are specific to v86 mode:
 */
 long es;
 long ds;
 long fs;
 long gs;
};

these are specific to v86 mode:

/
long es;
long ds;
long fs;
long gs;
};

RETURN VALUE
On success, 0 is returned. On error, –1 is returned, and errno is set appropriately.

ERRORS
EPERM Saved kernel stack exists.

Linux 0.99.11, 24 July 1993

wait, waitpid
wait, waitpid—Wait for process termination

SYNOPSIS
#include <sys/types.h>
#include <sys/wait.h>

887

pid_t wait(int *status)
pid_t waitpid(pid_t pid,int*status,int options);

DESCRIPTION
The wait function suspends execution of the current process until a child has exited, or until a signal is delivered whose
action is to terminate the current process or to call a signal-handling function. If a child has already exited by the time of the
call (a so–called zombie process), the function returns immediately. Any system resources used by the child are freed.

The waitpid function suspends execution of the current process until a child as specified by the pid argument has exited, or
until a signal is delivered whose action is to terminate the current process or to call a signal-handling function. Just as with
wait, if a child requested by pid has already exited by the time of the call, the function returns immediately. Any system
resources used by the child are freed.

The value of pid can be one of the following:

< –1 Wait for any child process whose process group ID is equal to the absolute value of pid.

–1 Wait for any child process; this is the same behavior that wait exhibits.

0 Wait for any child process whose process group ID is equal to that of the calling process.

> 0 Wait for the child whose process ID is equal to the value of pid.

The value of options is an OR of zero or more of the following constants:

WNOHANG Return immediately if no child has exited.

WUNTRACED Also return for children that are stopped and whose status has not been reported.

If status is not NULL, wait or waitpid stores status information in the location pointed to by statloc.

This status can be evaluated with the following macros (these macros take the stat buffer as an argument—not a pointer to
the buffer!):

WIFEXITED(status) Is nonzero if the child exited normally.

WEXITSTATUS(status) Evaluates to the least significant eight bits of the return code of the child that terminated, which
may have been set as the argument to a call to exit() or as the argument for a return statement
in the main program. This macro can only be evaluated if WIFEXITED returned nonzero.

WIFSIGNALED(status) Returns true if the child process exited because of a signal that was not caught.

WTERMSIG(status) Returns the number of the signal that caused the child process to terminate. This macro can
only be evaluated if WIFSIGNALED returned nonzero.

WIFSTOPPED(status) Returns true if the child process that caused the return is currently stopped; this is only possible
if the call was done using WUNTRACED.

WSTOPSIG(status) Returns the number of the signal that caused the child to stop. This macro can only be
evaluated if WIFSTOPPED returned nonzero.

RETURN VALUE
The process ID of the child that exited returns –1 on error or 0 if WNOHANG was used and no child was available (in which case
errno is set to an appropriate value).

ERRORS
ECHILD If the child process specified in pid does not exist.

EPERM If the effective user ID of the calling process does not match that of the process being waited
for, and the effective user ID of the calling process is not that of the superuser.

ERESTARTSYS If WNOHANG was not set and an unblocked signal or a SIGCHLD was caught; this is an extension to
the POSIX.1 standard.

wait, waitpid

Part II: System Calls888

CONFORMS TO
POSIX.1

SEE ALSO
signal(2), wait4(2), signal(7)

Linux, 24 July 1993

wait3, wait4
wait3, wait4—Wait for process termination, BSD style

SYNOPSIS
#define _USE_BSD
#include <sys/types.h>
#include <sys/resource.h>
#include <sys/wait.h>
pid_t wait3(int *status,int options,
struct rusage *rusage);
pid_t wait4(pid_t pid,int*status,int options,
struct rusage *rusage);

DESCRIPTION
The wait3 function suspends execution of the current process until a child has exited, or until a signal is delivered whose
action is to terminate the current process or to call a signal-handling function. If a child has already exited by the time of the
call (a zombie process), the function returns immediately. Any system resources used by the child are freed.

The wait4 function suspends execution of the current process until a child as specified by the pid argument has exited, or
until a signal is delivered whose action is to terminate the current process or to call a signal-handling function. If a child as
requested by pid has already exited by the time of the call (a zombie process), the function returns immediately. Any system
resources used by the child are freed.

The value of pid can be one of the following:

< –1 Wait for any child process whose process group ID is equal to the absolute value of pid.

–1 Wait for any child process; this is equivalent to calling wait3.

0 Wait for any child process whose process group ID is equal to that of the calling process.

> 0 Wait for the child whose process ID is equal to the value of pid.

The value of options is an exclusive OR of zero or more of the following constants:

WNOHANG Return immediately if no child is there to be waited for.

WUNTRACED Also return for children that are stopped and whose status has not been reported.

If status is not NULL, wait3 and wait4 store status information in the location pointed to by statloc.

This status can be evaluated with the following macros:

WIFEXITED(*status) Is nonzero if the child exited normally.

WEXITSTATUS(*status) Evaluates to the least significant eight bits of the return code of the child that terminated, which
may have been set as the argument to a call to exit or as the argument for a return statement in
the main program. This macro can only be evaluated if WIFEXITED returned nonzero.

WIFSIGNALED(*status) Returns true if the child process exited because of a signal that was not caught.

WTERMSIG(*status) Returns the number of the signal that caused the child process to terminate. This macro can
only be evaluated if WIFSIGNALED returned nonzero.

889

WIFSTOPPED(*status) Returns true if the child process that caused the return is currently stopped; this is only possible
if the call was done using WUNTRACED.

WSTOPSIG(*status) Returns the number of the signal that caused the child to stop. This macro can only be
evaluated if WIFSTOPPED returned nonzero. If rusage is not NULL, the struct rusage as defined in
<sys/resource.h> it points to will be filled with accounting information. See getrusage(2) for
details.

RETURN VALUE
These calls return the process ID of the child that exited, –1 on error, or 0 if WNOHANG was used and no child was available (in
which case errno will be set appropriately).

ERRORS
ECHILD If the child process specified in pid does not exist.

EPERM If the effective user ID of the calling process does not match that of the process being waited
for, and the effective user ID of the calling process is not that of the superuser.

ERESTARTSYS If WNOHANG was not set and an unblocked signal or a SIGCHLD was caught; this is an extension to
the POSIX.1 standard.

CONFORMS TO
POSIX.1

SEE ALSO
signal(2), getrusage(2), wait(2), signal(7)

Linux, 24 July 1993

write
write—Writes to a file descriptor

SYNOPSIS
#include <unistd.h>
ssize_t write(int fd, const void *buf, size_t count);

DESCRIPTION
write writes up to count bytes to the file referenced by the file descriptor fd from the buffer starting at buf. POSIX requires
that a read() that can be proved to occur after a write() returned returns the new data. Note that not all filesystems are
POSIX conforming.

RETURN VALUE
On success, the number of bytes written is returned (0 indicates nothing was written). On error, –1 is returned, and errno is
set appropriately. If count is 0 and the file descriptor refers to a regular file, 0 will be returned without causing any other
effect. For a special file, the results are not portable.

ERRORS
EBADF fd is not a valid file descriptor or is not open for writing.

EINVAL fd is attached to an object that is unsuitable for writing.

EFAULT buf is outside your accessible address space.

write

Part II: System Calls890

EPIPE fd is connected to a pipe or socket whose reading end is closed. When this happens, the writing
process will receive a SIGPIPE signal; if it catches, blocks, or ignores this, the error EPIPE is
returned.

EAGAIN Non-blocking I/O has been selected using O_NONBLOCK, and there was no room in the pipe or
socket connected to fd to write the data immediately.

EINTR The call was interrupted by a signal before any data was written.

ENOSPC The device containing the file referred to by fd has no room for the data.

Other errors may occur, depending on the object connected to fd.

CONFORMS TO
SVID, AT&T, POSIX, X/OPEN, BSD 4.3

SEE ALSO
open(2), read(2), fcntl(2), close(2), lseek(2), select(2), ioctl(2), fsync(2), fwrite(3)

Linux, 13 January 1996

891

Library Functions

Part III:

Part III: Library Functions892

Intro
DESCRIPTION

This chapter describes all the library functions, excluding the library functions described in Part 2, which implement system
calls. The various function groups are identified by a letter that is appended to the chapter number:

(3C) These functions—the functions from Chapter 2 and from Chapter 3S—are contained in the C standard
library libc, which will be used by cc(1) by default.

(3S) These functions are parts of the stdio(3S) library. They are contained in the standard C library libc.

(3M) These functions are contained in the arithmetic library libm. They are used by the f77(1) FORTRAN
compiler by default, but not by the cc(1) C compiler, which needs the option –lm.

(3F) These functions are part of the FORTRAN library libF77. There are no special compiler flags needed to
use these functions.

(3X) Various special libraries. The manual pages documenting their functions specify the library names.

AUTHORS
Look at the header of the manual page for the author(s) and copyright conditions. Note that these can be different from page
to page!

Linux, 13 December 1995

abort
abort—Causes abnormal program termination

SYNOPSIS
#include <stdlib.h>
void abort(void);

DESCRIPTION
The abort() function causes abnormal program termination unless the signal SIGABORT is caught and the signal handler does
not return. If the abort() function causes program termination, all open streams are closed and flushed.

If the SIGABORT function is blocked or ignored, the abort() function will still override it.

RETURN VALUE
The abort() function never returns.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
sigaction(2), exit(3)

GNU, 12 April 1993

abs
abs—Computes the absolute value of an integer

893

SYNOPSIS
#include <stdlib.h>
int abs(int j);

DESCRIPTION
The abs() function computes the absolute value of the integer argument j.

RETURN VALUE
Returns the absolute value of the integer argument.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

NOTES
Trying to take the absolute value of the most negative integer is not defined.

SEE ALSO
ceil(3), floor(3), fabs(3), labs(3), rint(3)

GNU, 6 June 1993

acos
acos—Arc cosine function

SYNOPSIS
#include <math.h>
double acos(double x);

DESCRIPTION
The acos() function calculates the arc cosine of x; that is the value whose cosine is x. If x falls outside the range –1 to 1,
acos() fails and errno is set.

RETURN VALUE
The acos() function returns the arc cosine in radians; the value is mathematically defined to be between 0 and pi (inclusive).

ERRORS
EDOM x is out of range.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
asin(3), atan(3), atan2(3), cos(3), sin(3), tan(3)

8 June 1993

acosh
acosh—Inverse hyperbolic cosine function

acosh

Part III: Library Functions894

SYNOPSIS
#include <math.h>
double acosh(double x);

DESCRIPTION
The acosh() function calculates the inverse hyperbolic cosine of x; that is the value whose hyperbolic cosine is x. If x is less
than 1.0, acosh() returns not-a-number (NaN), and errno is set.

ERRORS
EDOM x is out of range.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
asinh(3), atanh(3), cosh(3), sinh(3), tanh(3)

13 June 1993

alloca
alloca—Memory allocator

SYNOPSIS
#include <stdlib.h>
void *alloca(size_t size);

DESCRIPTION
The alloca function allocates size bytes of space in the stack frame of the caller. This temporary space is automatically freed
on return.

RETURN VALUES
The alloca function returns a pointer to the beginning of the allocated space. If the allocation fails, a NULL pointer is
returned.

CONFORMS TO
There is evidence that the alloca function appeared in 32v, pwb, pwb.2, 3bsd, and 4bsd. There is a man page for it in BSD
4.3. Linux uses the GNU version.

BUGS
The alloca function is machine dependent.

SEE ALSO
brk(2), pagesize(2), calloc(3), malloc(3), realloc(3)

GNU, 29 November 1993

asin
asin—Arc sine function

895

SYNOPSIS
#include <math.h>
double asin(double x);

DESCRIPTION
The asin() function calculates the arc sine of x, which is the value whose sine is x. If x falls outside the range –1 to 1, asin()
fails and errno is set.

RETURN VALUE
The asin() function returns the arc sine in radians, and the value is mathematically defined to be between -PI/2 and PI/2
(inclusive).

ERRORS
EDOM x is out of range.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
acos(3), atan(3), atan2(3), cos(3), sin(3), tan(3)

8 June 1993

asinh
asinh—Inverse hyperbolic sine function

SYNOPSIS
#include <math.h>
double asinh(double x);

DESCRIPTION
The asinh() function calculates the inverse hyperbolic sine of x—that is, the value whose hyperbolic sine is x.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
acosh(3), atanh(3), cosh(3), sinh(3), tanh(3)

13 June 1993

assert
assert—Abort the program if assertion is false

SYNOPSIS
#include <assert.h>
void assert (int expression);

assert

Part III: Library Functions896

DESCRIPTION
assert() prints an error message to standard output and terminates the program by calling abort() if expression is false (that
is, evaluates to 0). This only happens when the macro NDEBUG is undefined.

RETURN VALUE
No value is returned.

CONFORMS TO
ISO9899 (ANSI C)

BUGS
assert() is implemented as a macro; if the expression tested has side effects, program behavior will be different depending on
whether NDEBUG is defined. This may create Heisenbugs, which go away when debugging is turned on.

SEE ALSO
exit(3), abort(3)

GNU, 4 April 1993

atan
atan—Arc tangent function

SYNOPSIS
#include <math.h>
double atan(double x);

DESCRIPTION
The atan() function calculates the arc tangent of x—that is, the value whose tangent is x.

RETURN VALUE
The atan() function returns the arc tangent in radians, and the value is mathematically defined to be between -PI/2 and PI/2
(inclusive).

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
acos(3), asin(3), atan2(3), cos(3), sin(3), tan(3)

8 June 1993

atan2
atan2—Arc tangent function of two variables

SYNOPSIS
#include <math.h>
double atan2(double y, double x);

897

DESCRIPTION
The atan2() function calculates the arc tangent of the two variables, x and y. It is similar to calculating the arc tangent of y/x,
except that the sines of both arguments are used to determine the quadrant of the result.

RETURN VALUE
The atan2() function returns the result in radians, which is between -PI and PI (inclusive).

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
acos(3), asin(3), atan(3), cos(3), sin(3), tan(3)

8 June 1993

atanh
atanh—Inverse hyperbolic tangent function

SYNOPSIS
#include <math.h>
double atanh(double x);

DESCRIPTION
The atanh() function calculates the inverse hyperbolic tangent of x; that is the value whose hyperbolic tangent is x. If the
absolute value of x is greater than 1.0, acosh() returns not-a-number (NaN), and errno is set.

ERRORS
EDOM x is out of range.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
asinh(3), acosh(3), cosh(3), sinh(3), tanh(3)

13 June 1993

atexit
atexit—Register a function to be called at normal program termination

SYNOPSIS
#include <stdlib.h>
int atexit(void *function)(void));

DESCRIPTION
The atexit() function registers the given function to be called at normal program termination, whether via exit(2) or via
return from the program’s main. Functions so registered are called in the reverse order of their registration; no arguments are
passed.

atexit

Part III: Library Functions898

RETURN VALUE
The atexit()function returns the value 0 if successful; otherwise, the value –1 is returned, and the global variable errno is set
to indicate the error.

ERRORS
ENOMEM Insufficient memory available to add the function.

CONFORMS TO
SVID 3, BSD 4.3, ISO 9899

SEE ALSO
exit(3), on exit(3)

GNU, 29 March 1993

atof
atof—Convert a string to a double

SYNOPSIS
#include <stdlib.h>
double atof(const char *nptr);

DESCRIPTION
The atof() function converts the initial portion of the string pointed to by nptr to double. The behavior is the same as

strtod(nptr, (char **)NULL);

except that atof() does not detect errors.

RETURN VALUE
The converted value.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
atoi(3), atol(3), strtod(3), strtol(3), strtoul(3)

GNU, 29 March 1993

atoi
atoi—Convert a string to an integer

SYNOPSIS
#include <stdlib.h>
int atoi(const char *nptr);

899

DESCRIPTION
The atoi() function converts the initial portion of the string pointed to by nptr to int. The behavior is the same as

strtol(nptr, (char **)NULL, 10);

except that atoi() does not detect errors.

RETURN VALUE
The converted value.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
atof(3), atol(3), strtod(3), strtol(3), strtoul(3)

GNU, 29 March 1993

atol
atol—Convert a string to a long integer

SYNOPSIS
#include <stdlib.h>
long atol(const char *nptr);

DESCRIPTION
The atol() function converts the initial portion of the string pointed to by nptr to long. The behavior is the same as

strtol(nptr, (char **)NULL, 10);

except that atol() does not detect errors.

RETURN VALUE
The converted value.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
atof(3), atoi(3), strtod(3), strtol(3), strtoul(3)

GNU, 29 March 1993

bcmp
bcmp—Compare byte strings

SYNOPSIS
#include <string.h>
int bcmp(const void *s1, const void *s2, int n);

bcmp

Part III: Library Functions900

DESCRIPTION
The bcmp() function compares the first n bytes of the strings s1 and s2. If the two strings are equal, bcmp() returns 0;
otherwise, it returns a nonzero result. If n is 0, the two strings are assumed to be equal.

RETURN VALUE
The bcmp() function returns 0 if the strings are equal; otherwise, a nonzero result is returned.

CONFORMS TO
4.3BSD. This function is deprecated—use memcmp in new programs.

SEE ALSO
memcmp(3), strcasecmp(3), strcmp(3), strcoll(3), strncmp(3), strncasecmp(3)

GNU, 9 April 1993

bcopy
bcopy—Copy byte strings

SYNOPSIS
#include <string.h>
void bcopy (const void *src, void*dest, int n);

DESCRIPTION
The bcopy() function copies the first n bytes of the source string src to the destination string dest. If n is 0, no bytes are
copied.

RETURN VALUE
The bcopy() function returns no value.

CONFORMS TO
4.3BSD. This function is deprecated—use memcpy in new programs.

SEE ALSO
memccpy(3), memcpy(3), memmove(3), strcpy(3), strncpy(3)

GNU, 9 April 1993

bsearch
bsearch—Binary search of a sorted array.

SYNOPSIS
#include <stdlib.h>
void *bsearch(const void *key, const void *base, size_t nmemb,
size_t size,int(*compar)(const void *, const void *));

DESCRIPTION
The bsearch() function searches an array of nmemb objects, the initial member of which is pointed to by base, for a member
that matches the object pointed to by key. The size of each member of the array is specified by size.

The contents of the array should be in ascending sorted order according to the comparison function referenced by compar.

901

The compar routine is expected to have two arguments that point to the key object and to an array member, in that order, and
should return an integer less than, equal to, or greater than 0, respectively, if the key object is found to be less than, match, or
be greater than the array member.

RETURN VALUE
The bsearch() function returns a pointer to a matching member of the array, or NULL if no match is found. If there are
multiple elements that match the key, the element returned is unspecified.

CONFORMS TO
SVID 3, BSD 4.3, ISO 9899

SEE ALSO
qsort(3)

GNU, 29 March 1993

bcmp, bcopy, bzero, memccpy, memchr, memcmp, memcpy, memfrob,
memmem, memmove, memset

bcmp, bcopy, bzero, memccpy, memchr, memcmp, memcpy, memfrob, memmem, memmove, memset—Byte string operations

SYNOPSIS
#include <string.h>
int bcmp(const void *s1, const void *s2, int n);
void bcopy(const void *src, void *dest, int n);
void bzero(void *s, int n);
void *memccpy(void *dest, const void *src, int c, size_t n);
void *memchr(const void *s, int c, size_t n);
int memcmp(const void *s1, const void *s2, size_t n);
void *memcpy(void *dest, const void *src, size_t n);
void *memfrob(void *s, size_t n);
void *memmem(const void *needle, size_t needlelen,
const void *haystack, size_t haystacklen);
void *memmove(void *dest, const void *src, size_t n);
void *memset(void *s, int c, size_t n);

DESCRIPTION
The byte string functions perform operations on strings that are not NULL terminated. See the individual man pages for
descriptions of each function.

SEE ALSO
bcmp(3), bcopy(3), bzero(3), memccpy(3), memchr(3), memcmp(3), memcpy(3), memfrob(3), memmem(3), memmove(3), memset(3)

GNU, 12 April 1993

htonl, htons, ntohl, ntohs
htonl, htons, ntohl, ntohs—Convert values between host and network byte order

SYNOPSIS
#include <netinet/in.h>
unsigned long int htonl(unsigned long int hostlong);
unsigned short int htons(unsigned short int hostshort);

htonl, htons, ntohl, ntohs

Part III: Library Functions902

unsigned long int ntohl(unsigned long int netlong);
unsigned short int ntohs(unsigned short int netshort);

DESCRIPTION
The htonl() function converts the long integer hostlong from host byte order to network byte order.

The htons() function converts the short integer hostshort from host byte order to network byte order.

The ntohl() function converts the long integer netlong from network byte order to host byte order.

The ntohs() function converts the short integer netshort from network byte order to host byte order.

On the i80x86, the host byte order is least significant byte first, whereas the network byte order, as used on the Internet, is
most significant byte first.

CONFORMS TO
BSD 4.3

SEE ALSO
gethostbyname(3), getservent(3)

BSD, 15 April 1993

bzero
bzero—Writes 0s to a byte string

SYNOPSIS
#include <string.h>
void bzero(void *s, int n);

DESCRIPTION
The bzero() function sets the first n bytes of the byte string s to 0.

RETURN VALUE
The bzero() function returns no value.

CONFORMS TO
4.3BSD. This function is deprecated—use memset in new programs.

SEE ALSO
memset(3), swab(3)

GNU, 9 April 1993

catgets
catgets—Gets message from a message catalog

SYNOPSIS
#include <features.h>
#include <nl_types.h>
char *catgets(nl_catd catalog, int set_number, int
message_number, char *message);

903

DESCRIPTION
catgets() reads the message message_number, in set set_number, from the message catalog identified by catalog. (catalog is a
catalog descriptor returned from an earlier call to catopen(3).) The fourth argument message points to a default message
string that will be returned by catgets() if the identified message catalog is not currently open or is damaged. The message
text is contained in an internal buffer area and should be copied by the application if it is to be saved or modified. The return
string is always terminated with a null byte.

RETURN VALUES
On success, catgets() returns a pointer to an internal buffer area containing the null-terminated message string. catgets()
returns a pointer to message if it fails because the message catalog specified by catalog is not currently open. Otherwise,
catgets() returns a pointer to an empty string if the message catalog is available but does not contain the specified message.

NOTES
These functions are only available in libc.so.4.4.4c and above.

SEE ALSO
catopen(3), setlocale(3)

29 November 1993

catopen, catclose
catopen, catclose—Open/close a message catalog

SYNOPSIS
#include <features.h>
#include <nl_types.h>
nl catd catopen(char *name, int flag);
void catclose(nl_catd catalog);

DESCRIPTION
catopen() opens a message catalog and returns a catalog descriptor. name specifies the name of the message catalog to be
opened. If name specifies an absolute path (that is, contains a /), name specifies a pathname for the message catalog. Otherwise,
the environment variable NLSPATH is used, with name substituted for %N (see locale(5)). If NLSPATH does not exist in the
environment, or if a message catalog cannot be opened in any of the paths specified by NLSPATH, the following paths are
searched in order:

/etc/locale/LC_MESSAGES
/usr/lib/locale/LC_MESSAGES
/usr/lib/locale/name/LC_MESSAGES

In all cases, LC_MESSAGES stands for the current setting of the LC_MESSAGES category of locale from a previous call to
setlocale() and defaults to the C” locale. In the last search path, name refers to the catalog name.

The flag argument to catopen is used to indicate the type of loading desired. This should be either MCLoadBySet or MCLoadAll.
The former value indicates that only the required set from the catalog is loaded into memory when needed, whereas the latter
causes the initial call to catopen() to load the entire catalog into memory.

catclose() closes the message catalog identified by catalog. It invalidates any subsequent references to the message catalog
defined by catalog.

RETURN VALUES
catopen() returns a message catalog descriptor of type nl_catd on success. On failure, it returns –1.

catclose() returns 0 on success, or -1 on failure.

catopen, catclose

Part III: Library Functions904

NOTES
These functions are only available in libc.so.4.4.4c and above. In the case of Linux, the catalog descriptor nl_catd is actually
an area of memory assigned by mmap() and not a file descriptor, thus allowing catalogs to be shared.

SEE ALSO
catgets(3), setlocale(3)

30 November 1993

ceil
ceil—Smallest integral value not less than x

SYNOPSIS
#include <math.h>
double ceil (double x);

DESCRIPTION
The ceil() function rounds up x to the nearest integer, returning that value as a double.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
abs(3), fabs(3), floor(3), labs(3), rint(3)

6 June 1993

clientlib
clientlib—NNTP clientlib part of InterNetNews library

SYNOPSIS
extern FILE *ser_rd_fp;
extern FILE *ser_wr_fp;
extern char ser_line[];
char * getserverbyfile(file);
char *file; int server_init(host);
char *host;
int handle_server_response(response, host);
int reponse;
char *host;
void put_server(text);
char *text;
int get_server(buff, buffsize);
char *buff;
int buffsize;
void close_server();

DESCRIPTION
The routines described in this manual page are part of the InterNetNews library, libinn(3). They are replacements for the
clientlib part of the NNTP distribution, and are intended to be used in building programs such as rrn.

905

getserverbyfile calls GetConfigValue to get the name of the local NNTP server. It returns a pointer to static space. The file
parameter is ignored.

server_init opens a connect to the NNTP server at the specified host. It returns the server’s response code or –1 on error. If
a connection was made, ser_rd_fp and ser_wr_fp can be used to read from and write to the server, respectively, and ser_line
will contain the server’s response. ser_line can also be used in other routines.

handle_server_response decodes the response, which comes from the server on host. If the client is authorized, it returns 0. A
client that is only allowed to read is authorized, but handle_server_response will print a message on the standard output. If
the client is not authorized to talk to the server, a message is printed, and the routine returns –1.

put_server sends the text in buff to the server, adding the necessary NNTP line terminators and flushing the I/O buffer.

get_server reads a line of text from the server into buff, reading at most buffsize characters. Any trailing \r\n terminators
are stripped off. get_server returns –1 on error.

close_server sends a quit command to the server and closes the connection.

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
libinn(3)

clock
clock—Determine processor time

SYNOPSIS
#include <time.h>
clock_t clock(void);

DESCRIPTION
The clock() function returns an approximation of processor time used by the program.

RETURN VALUE
The value returned is the CPU time used so far as a clock_t; to get the number of seconds used, divide by CLOCKS_PER_SEC.

CONFORMS TO
ANSI C

BUGS
The C standard allows for arbitrary values at the start of the program; take the difference between the value returned from a
call to clock() at the start of the program and the value returned at the end for maximum portability.

The times() function call returns more information.

SEE ALSO
times(2)

GNU, 21 April 1993

closedir
closedir—Close a directory

closedir

Part III: Library Functions906

SYNOPSIS
#include <sys/types.h>
#include <dirent.h>
int closedir(DIR *dir);

DESCRIPTION
The closedir() function closes the directory stream associated with dir. The directory stream descriptor dir is not available
after this call.

RETURN VALUE
The closedir() function returns 0 on success or –1 on failure.

ERRORS
EBADF Invalid directory stream descriptor dir.

CONFORMS TO
SVID 3, POSIX, BSD 4.3

SEE ALSO
close(2), opendir(3), readdir(3), rewinddir(3), seekdir(3), telldir(3), scandir(3)

11 June 1995

confstr
confstr—Get configuration-dependent string variables

SYNOPSIS
#define __USE_POSIX_2
#include <unistd.h>
size_t confstr(int name, char *buf, size_t len);

DESCRIPTION
confstr() gets the value of configuration-dependent string variables.

The name argument is the system variable to be queried. The following variables are supported:

CS_PATH A value for the PATH variable that indicates where all the POSIX.2 standard utilities can be found.

If buf is not NULL, and len is not 0, confstr() copies the value of the string to buf truncated to len–1 characters if necessary,
with a null character as termination. This can be detected by comparing the return value of confstr() against len.

If len is 0 and buf is NULL, confstr() just returns the value in Return Value.

RETURN VALUE
If name does not correspond to a valid configuration variable, confstr() returns 0.

EXAMPLES
The following code fragment determines the path where you can find the POSIX.2 system utilities:

char *pathbuf; size_t n;
n = confstr(_CS_PATH,NULL,(size_t)0);
if ((pathbuf = malloc(n)) == NULL) abort();
confstr(_CS_PATH, pathbuf, n);

907

ERRORS
If the value of name is invalid, errno is set to EINVAL.

CONFORMS TO
Proposed POSIX.2

BUGS
POSIX.2 is not yet an approved standard; the information in this man page is subject to change.

SEE ALSO
sh(1), exec(2), system(3)

GNU, 17 April 1993

copysign
copysign—Copies the sign of a number

SYNOPSIS
#include <math.h>
double copysign(double x, double y);

DESCRIPTION
The copysign() function returns a value whose absolute value matches x, but whose sign matches that of y.

CONFORMS TO
BSD 4.3

GNU, 6 June 1993

cos
cos—Cosine function

SYNOPSIS
#include <math.h>
double cos(double x);

DESCRIPTION
The cos() function returns the cosine of x, where x is given in radians.

RETURN VALUE
The cos() function returns a value between –1 and 1.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
acos(3), asin(3), atan(3), atan2(3), sin(3), tan(3)

8 June 1993

cos

Part III: Library Functions908

cosh
cosh—Hyperbolic cosine function

SYNOPSIS
#include <math.h>
double cosh(double x);

DESCRIPTION
The cosh() function returns the hyperbolic cosine of x, which is defined mathematically as (exp(x)+exp(-x))/2.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
acosh(3), asinh(3), atanh(3), sinh(3), tanh(3)

13 June 1993

crypt
crypt—Password and data encryption

SYNOPSIS
#include <unistd.h>
char *crypt(const char *key, const char *salt);

DESCRIPTION
crypt is the password-encryption function. It is based on the Data Encryption Standard algorithm, with variations intended
(among other things) to discourage the use of hardware implementations of a key search.

key is a user’s typed password.

salt is a two-character string chosen from the set [a-zA-Z0-9./]. This string is used to perturb the algorithm in one of 4,096
different ways.

By taking the lowest seven bits of each character of the key, a 56-bit key is obtained. This 56-bit key is used to repeatedly
encrypt a constant string (usually a string consisting of all 0s). The returned value points to the encrypted password, a series
of 13 printable ASCII characters (with the first two characters representing the salt itself). The return value points to static
data whose content is overwritten by each call.

Warning: The key space consists of equal 7.2e16 possible values. Exhaustive searches of this key space are possible using
massively parallel computers. Software, such as crack(1), is available to search the portion of this key space that is generally
used by humans for passwords. Hence, password selection should, at minimum, avoid common words and names. Using a
passwd(1) program that checks for crackable passwords during the selection process is recommended.

The DES algorithm itself has a few quirks that make using the crypt(3) interface a very poor choice for anything other than
password authentication. If you are planning to use the crypt(3) interface for a cryptography project, don’t do it; get a good
book on encryption and one of the widely available DES libraries instead.

CONFORMS TO
SVID, X/OPEN, BSD 4.3

909

SEE ALSO
login(1), passwd(1), encrypt(3), getpass(3), passwd(5)

3 September 1994

ctermid
ctermid—Gets controlling terminal name

SYNOPSIS
#include <stdio.h>
char *ctermid(char *s);

DESCRIPTION
ctermid() returns a string that is the pathname for the current controlling terminal for this process. If s is NULL, a static buffer
is used; otherwise, s points to a buffer used to hold the terminal pathname. The symbolic constant L_ctermid is the
maximum number of characters in the returned pathname.

RETURN VALUE
This function returns the pointer to the pathname.

CONFORMS TO
POSIX.1

BUGS
The path returned might not uniquely identify the controlling terminal; it might, for example, be /dev/tty.

It is not assured that the program can open the terminal.

SEE ALSO
ttyname(3)

GNU, 6 April 1993

asctime, ctime, gmtime, localtime, mktime
asctime, ctime, gmtime, localtime, mktime—Transform binary date and time to ASCII

SYNOPSIS
#include <time.h>
char *asctime(const struct tm *timeptr);
char *ctime(const time_t *timep);
struct tm *gmtime(const time_t *timep);
struct tm *localtime(const time_t *timep);
time_t mktime(struct tm *timeptr);
extern char *tzname[2];
long int timezone;
extern int daylight;

DESCRIPTION
The ctime(), gmtime(), and localtime()functions all take an argument of data type time_t, which represents calendar time.
When interpreted as an absolute time value, it represents the number of seconds elapsed since 00:00:00 on January 1, 1970,
Coordinated Universal Time (UTC).

asctime, ctime, gmtime, localtime, mktime

Part III: Library Functions910

The asctime() and mktime() functions both take an argument representing broken-down time, which is a binary representa-
tion separated into year, month, day, and so on. Broken-down time is stored in the structure tm, which is defined in <time.h>
as follows:

struct tm
{
int tm_sec; /* seconds */
int tm_min; /* minutes */
int tm_hour; /* hours */
int tm_mday; /* day of the month */
int tm_mon; /* month */
int tm_year; /* year */
int tm_wday; /* day of the week */
int tm_yday; /* day in the year */
int tm_isdst; /* daylight saving time */
};

The members of the tm structure are

tm_sec The number of seconds after the minute, normally in the range 0 to 59, but can be up to 61 to allow for
leap seconds.

tm_min The number of minutes after the hour, in the range 0 to 59.

tm_hour The number of hours past midnight, in the range 0 to 23.

tm_mday The day of the month, in the range 1 to 31.

tm_mon The number of months since January, in the range 0 to 11.

tm_year The number of years since 1900.

tm_wday The number of days since Sunday, in the range 0 to 6.

tm_yday The number of days since January 1, in the range 0 to 365.

tm_isdst A flag that indicates whether daylight savings time is in effect at the time described. The value is positive if
daylight saving time is in effect, 0 if it is not, and negative if the information is not available.

The ctime()function converts the calendar time timep into a string of the form

“Wed Jun 30 21:49:08 1993\n”

The abbreviations for the days of the week are Sun, Mon , Tue, Wed, Thu, Fri, and Sat. The abbreviations for the months are
Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, and Dec. The return value points to a statically allocated string that might
be overwritten by subsequent calls to any of the date and time functions. The function also sets the external variable tzname
with information about the current time zone.

The gmtime() function converts the calendar time timep to broken-down time representation, expressed in Coordinated
Universal Time (UTC).

The localtime() function converts the calendar time timep to broken-time representation, expressed relative to the user’s
specified time zone. The function sets the external variables tzname with information about the current time zone, timezone
with the difference between Coordinated Universal Time and local standard time in seconds, and daylight to a nonzero
value if standard U.S. daylight saving time rules apply.

The asctime() function converts the broken-down time value timeptr into a string with the same format as ctime(). The
return value points to a statically allocated string that might be overwritten by subsequent calls to any of the date and time
functions.

The mktime() function converts a broken-down time structure, expressed as local time, to calendar time representation. The
function ignores the specified contents of the structure members tm_wday and tm_yday and recomputes them from the other
information in the broken-down time structure. Calling mktime() also sets the external variable tzname with information
about the current time zone. If the specified broken-down time cannot be represented as calendar time, mktime() returns a
value of (time_t)(–1) and does not alter the tm_wday and tm_yday members of the broken-down time structure.

911

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
date(1), gettimeofday(2), time(2), tzset(3), difftime(3), strftime(3), newctime(3)

BSD, 26 April 1996

difftime
difftime—Calculates time difference

SYNOPSIS
#include <time.h>
double difftime(time_t time1, time_t time0);

DESCRIPTION
The difftime() function returns the number of seconds elapsed between time time1 and time time0. The two times are
specified in calendar time, which represents the time elapsed since 00:00:00 on January 1, 1970, Coordinated Universal
Time (UTC).

CONFORMS TO
SVID 3, BSD 4.3, ISO 9899

SEE ALSO
date(1), gettimeofday(2), time(2), ctime(3), gmtime(3), localtime(3)

GNU, 2 July 1993

div
div—Computes the quotient and remainder of integer division

SYNOPSIS
#include <stdlib.h>
div_t div(int numer, int denom);

DESCRIPTION
The div() function computes the value numer/denom and returns the quotient and remainder in a structure named div_t that
contains two integer members named quot and rem.

RETURN VALUE
The div_t structure.

CONFORMS TO
SVID 3, BSD 4.3, ISO 9899

SEE ALSO
ldiv(3)

6 June 1993

div

Part III: Library Functions912

drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48,
seed48, lcong48

drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48—Generate uniformly distributed pseudo-
random numbers

SYNOPSIS
#include <stdlib.h>
double drand48(void);
double erand48(unsigned short int xsubi[3]);
long int lrand48(void);
long int nrand48(unsigned short int xsubi[3]);
long int mrand48(void);
long int jrand48(unsigned short int xsubi[3]);
void srand48(long int seedval);
unsigned short int * seed48(unsigned short int seed16v [3]);
void lcong48(unsigned short int param[7]);

DESCRIPTION
These functions generate pseudo-random numbers using the linear congruential algorithm and 48-bit integer arithmetic.

The drand48() and erand48() functions return non-negative double-precision floating-point values uniformly distributed
between [0.0, 1.0].

The lrand48() and nrand48() functions return non-negative long integers uniformly distributed between 0 and 2^31.

The mrand48() and jrand48() functions return signed long integers uniformly distributed between –2^31 and 2^31.

The srand48(),seed48(), and lcong48() functions are initialization functions, one of which should be called before using
drand48(), lrand48(), or mrand49(). The functions erand48(), nrand48(), and jrand48() do not require an initialization
function to be called first.

All the functions work by generating a sequence of 48-bit integers, Xi, according to the linear congruential formula

Xi+1=(aXi+c) mod m, where i >=0

The parameter m=2^48; hence 48-bit integer arithmetic is performed. Unless lcong48() is called, a and c are given by

a = 0x5DEECE66D
c = 0xB

The value returned by any of the functions drand48(), erand48(), lrand48(), nrand48(), mrand48(), or jrand48() is computed
by first generating the next 48-bit Xi in the sequence. Then the appropriate number of bits, according to the type of data
item to be returned, is copied from the high-order bits of Xi and transformed into the returned value.

The functions drand48(), lrand48(), and mrand48() store the last 48-bit Xi generated in an internal buffer. The functions
erand48(), nrand48(), and jrand48() require the calling program to provide storage for the successive Xi values in the array
argument xsubi. The functions are initialized by placing the initial value of Xi into the array before calling the function for
the first time.

The initializer function srand48() sets the high-order 32 bits of Xi to the argument seedval. The low-order 16 bits are set to
the arbitrary value 0x330E.

The initializer function seed48() sets the value of Xi to the 48-bit value specified in the array argument seed16v. The
previous value of Xi is copied into an internal buffer and a pointer to this buffer is returned by seed48().

The initialization function lcong48() allows the user to specify initial values for Xi, a and c. Array argument elements
param[0-2] specify Xi, param[3-5] specify a, and param[6] specifies c. After lcong48() has been called, a subsequent call to
either srand48() or seed48() will restore the standard values of a and c.

913

CONFORMS TO
SVID 3

NOTES
These functions are declared obsolete by SVID 3, which states that rand(3) should be used instead.

SEE ALSO
rand(3), random(3)

2 July 1993

drem
drem—Floating-point remainder function

SYNOPSIS
#include <math.h>
double drem(double x, double y);

DESCRIPTION
The drem() function computes the remainder of dividing x by y. The return value is x–n*y, where n is the quotient of x
divided by y, rounded to the nearest integer. If the quotient is 1⁄2, it is rounded to the even number.

RETURN VALUE
The drem() function returns the remainder unless y is 0, in which case the function fails and errno is set.

ERRORS
EDOM The denominator y is 0.

CONFORMS TO
BSD 4.3

SEE ALSO
fmod(3)

6 June 1993

ecvt, fcvt
ecvt, fcvt—Convert a floating-point number to a string

SYNOPSIS
#include <stdlib.h>
char *ecvt(double number, size_t ndigits,int*decpt,int*sign);
char *fcvt(double number, size_t ndigits,int*decpt,int*sign);

DESCRIPTION
The ecvt() function converts number to a NULL-terminated string of ndigits digits and returns a pointer to the string. The
string itself does not contain a decimal point; however, the position of the decimal point relative to the start of the string is

ecvt, fcvt

Part III: Library Functions914

stored in decpt. A negative value for decpt means that the decimal point is to the left of the start of the string. If the sign of
number is negative, sign is set to a nonzero value; otherwise, it’s set to 0.

The fcvt() function is identical to ecvt(), except that ndigits specifies the number of digits after the decimal point.

RETURN VALUE
Both the ecvt()and fcvt() functions return a pointer to a static string containing the ASCII representation of number. The
static string is overwritten by each call to ecvt() or fcvt().

SEE ALSO
gcvt(3), sprintf(3)

28 March 1993

erf, erfc
erf, erfc—Error function and complementary error function

SYNOPSIS
#include <math.h>
double erf(double x);
double erfc (double x);

DESCRIPTION
The erf() function returns the error function of x, defined as

erf(x) = 2/sqrt(pi)* integral from 0 to x of exp(-t*t) dt

The erfc() function returns the complementary error function of x—that is, 1.0–erf(x).

CONFORMS TO
SVID 3, BSD 4.3

SEE ALSO
exp(3)

BSD, 25 June 1993

execl, execlp, execle, exect, execv, execvp
execl, execlp, execle, exect, execv, execvp—Execute a file

SYNOPSIS
#include <unistd.h>
extern char **environ;
int execl(const char *path, const char *arg, ...);
int execlp(const char *file, const char *arg, ...);
int execle(const char *path, const char *arg, ...);
int execlp(const char *file, const char *arg, ...);
int execle(const char *path, const char *arg, ...);
int execle(const char *path, const char *arg , ..., char * const envp[]);
int exect(const char *path, char *const argv[]);
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);

915

DESCRIPTION
The exec family of functions replaces the current process image with a new process image. The functions described in this
manual page are front ends for the function execve(2). (See the manual page for execve for detailed information about the
replacement of the current process.)

The initial argument for these functions is the pathname of a file that is to be executed.

The const char *arg and subsequent ellipses in the execl, execlp, and execle functions can be thought of as arg0, arg1, …,
argn. Together they describe a list of one or more pointers to null-terminated strings that represent the argument list
available to the executed program. The first argument, by convention, should point to the file name associated with the file
being executed. The list of arguments must be terminated by a NULL pointer.

The exect, execv, and execvp functions provide an array of pointers to null-terminated strings that represent the argument
list available to the new program. The first argument, by convention, should point to the filename associated with the file
being executed. The array of pointers must be terminated by a NULL pointer.

The execle and exect functions also specify the environment of the executed process by following the NULL pointer that
terminates the list of arguments in the parameter list or the pointer to the argv array with an additional parameter. This
additional parameter is an array of pointers to null-terminated strings and must be terminated by a NULL pointer. The other
functions take the environment for the new process image from the external variable environ in the current process.

Some of these functions have special semantics.

The functions execlp and execvp will duplicate the actions of the shell in searching for an executable file if the specified
filename does not contain a slash (/) character. The search path is the path specified in the environment by the PATH variable.
If this variable isn’t specified, the default path /bin:/usr/bin: is used (is this true for Linux?). In addition, certain errors are
treated specially.

If permission is denied for a file (the attempted execve returned EACCES), these functions will continue searching the rest of
the search path. If no other file is found, however, they will return with the global variable errno set to EACCES.

If the header of a file isn’t recognized (the attempted execve returned ENOEXEC), these functions will execute the shell with
the path of the file as its first argument. (If this attempt fails, no further searching is done.)

If the file is currently busy (the attempted execve returned ETXTBUSY), these functions will sleep for several seconds, periodi-
cally re-attempting to execute the file. (Is this true for Linux?)

The function exect executes a file with the program-tracing facilities enabled (see ptrace(2)).

RETURN VALUES
If any of the exec functions returns, an error will have occurred. The return value is –1, and the global variable errno will be
set to indicate the error.

FILES
/bin/sh

ERRORS
execl, execle, execlp, and execvp may fail and set errno for any of the errors specified for the library functions execve(2) and
malloc(3).

exect and execv may fail and set errno for any of the errors specified for the library function execve(2).

SEE ALSO
sh(1), execve(2), fork(2), trace(2), environ(5), ptrace(2)

COMPATIBILITY
Historically, the default path for the execlp and execvp functions was /bin:/usr/bin. This was changed to place the current
directory last to enhance system security.

execl, execlp, execle, exect, execv, execvp

Part III: Library Functions916

The behavior of execlp and execvp when errors occur while attempting to execute the file is historic practice, but has not
traditionally been documented and is not specified by the POSIX standard.

Traditionally, the functions execlp and execvp ignored all errors except for the ones described above and ENOMEM and E2BIG,
upon which they returned. They now return if any error other than the ones described in the “Errors” section occurs.

STANDARDS
execl, execv, execle, execlp, and execvp conform to IEEE Std1003.1-88 (POSIX.1).

BSD Man Page, 29 November 1993

errno
errno—Number of last error

SYNOPSIS
#include <errno.h>
extern int errno;

DESCRIPTION
The integer errno is set by system calls (and some library functions) to indicate what went wrong. Its value is significant only
when the call returns an error (usually –1), and a library function that does succeed is allowed to change errno.

Sometimes, when –1 is also a legal return value, you have to set errno to 0 before the call in order to detect possible errors.

POSIX lists the following symbolic error names:

E2BIG Arg list too long

EACCES Permission denied

EAGAIN Resource temporarily unavailable

EBADF Bad file descriptor

EBUSY Resource busy

ECHILD No child processes

EDEADLK Resource deadlock avoided

EDOM Domain error

EEXIST File exists

EFAULT Bad address

EFBIG File too large

EINTR Interrupted function call

EINVAL Invalid argument

EIO Input/output error

EISDIR Is a directory

EMFILE Too many open files

EMLINK Too many links

ENAMETOOLONG Filename too long

ENFILE Too many open files in system

ENODEV No such device

ENOENT No such file or directory

ENOEXEC Exec format error

ENOLCK No locks available

ENOMEM Not enough space

917

ENOSPC No space left on device

ENOSYS Function not implemented

ENOTDIR Not a directory

ENOTEMPTY Directory not empty

ENOTTY Inappropriate I/O control operation

ENXIO No such device or address

EPERM Operation not permitted

EPIPE Broken pipe

ERANGE Result too large

EROFS Read-only filesystem

ESPIPE Invalid seek

ESRCH No such process

EXDEV Improper link

SEE ALSO
perror(3)

21 July 1996

exit
exit—Causes normal program termination

SYNOPSIS
#include <stdlib.h>
void exit(int status);

DESCRIPTION
The exit() function causes normal program termination, and the value of status is returned to the parent. All functions
registered with atexit() and on exit() are called in the reverse order of their registration, and all open streams are flushed
and closed.

RETURN VALUE
The exit() function does not return.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
_exit(2), atexit(3), on_exit(3)

GNU, 2 April 1993

exp, log, log10, pow
exp, log, log10, pow—Exponential, logarithmic, and power functions

SYNOPSIS
#include <math.h>
double exp(double x);

exp, log, log10, pow

Part III: Library Functions918

double log(double x);
double log10(double x);
double pow(double x, double y);

DESCRIPTION
The exp() function returns the value of e (the base of natural logarithms) raised to the power of x.

The log() function returns the natural logarithm of x.

The log10() function returns the base-10 logarithm of x.

The pow() function returns the value of x raised to the power of y.

ERRORS
The log() and log10() functions can return the following errors:

EDOM The argument x is negative.

ERANGE The argument x is 0. The log of 0 is not defined.

The pow() function can return the following error:

EDOM The argument x is negative and y is not an integral value. This would result in a complex number.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
sqrt(3), cbrt(3)

GNU June 16, 1993

expm1, log1p
expm1, log1p—Exponential minus 1, logarithm of 1 plus argument

SYNOPSIS
#include <math.h>
double expm1 (double x);
double log1p (double x);

DESCRIPTION
expm1(x) returns a value equivalent to exp (x)–1. It is computed in a way that is accurate even if the value of x is near 0—a
case where exp (x)–1 would be inaccurate due to subtraction of two numbers that are nearly equal.

log1p(x) returns a value equivalent to log (1 + x). It is computed in a way that is accurate even if the value of x is near 0.

CONFORMS TO
BSD

SEE ALSO
exp(3), log(3)

GNU, 16 September 1995

919

fabs
Fabs—Absolute value of floating-point number

SYNOPSIS
#include <math.h>
double fabs(double x);

DESCRIPTION
The fabs() function returns the absolute value of the floating-point number x.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
abs(3), ceil(3), floor(3), labs(3), rint(3)

25 June 1993

fclose
fclose—Closes a stream

SYNOPSIS
#include <stdio.h>
int fclose(FILE *stream);

DESCRIPTION
The fclose function dissociates the named stream from its underlying file or set of functions. If the stream was being used for
output, any buffered data is written first, using fflush(3).

RETURN VALUES
Upon successful completion, 0 is returned. Otherwise, EOF is returned, and the global variable errno is set to indicate the
error. In either case, no further access to the stream is possible.

ERRORS
EBADF The argument stream is not an open stream.

The fclose function may also fail and set errno for any of the errors specified for the routines close(2) or fflush(3).

SEE ALSO
close(2), fflush(3), fopen(3), setbuf(3)

STANDARDS
The fclose function conforms to ANSI C3.159-1989 (“ANSI C”).

BSD Man Page, 29 November 1993

clearerr, feof, ferror, fileno
clearerr, feof, ferror, fileno—Check and reset stream status

clearerr, feof, ferror, fileno

Part III: Library Functions920

SYNOPSIS
#include <stdio.h>
void clearerr(FILE *stream);
int feof(FILE *stream);
int ferror(FILE *stream);
int fileno(FILE *stream);

DESCRIPTION
The function clearerr clears the end-of-file and error indicators for the stream pointed to by stream.

The function feof tests the end-of-file indicator for the stream pointed to by stream, returning nonzero if it is set. The end-
of-file indicator can only be cleared by the function clearerr.

The function ferror tests the error indicator for the stream pointed to by stream, returning nonzero if it is set. The error
indicator can only be reset by the clearerr function.

The function fileno examines the argument stream and returns its integer descriptor.

ERRORS
These functions should not fail and do not set the external variable errno.

SEE ALSO
open(2), stdio(3)

STANDARDS
The functions clearerr, feof, and ferror conform to C3.159-1989 (“ANSI C”).

BSD Man Page, 29 November 1993

fflush, fpurge
fflush, fpurge—Flush a stream

SYNOPSIS
#include <stdio.h>
int fflush(FILE *stream);
int fpurge(FILE *stream);

DESCRIPTION
The function fflush forces a write of all buffered data for the given output or update stream via the stream’s underlying write
function. The open status of the stream is unaffected.

If the stream argument is NULL, fflush flushes all open output streams. (Does this happen under Linux?)

The function fpurge erases any input or output buffered in the given stream. For output streams, this discards any unwritten
output. For input streams, this discards any input read from the underlying object but not yet obtained via getc(3); this
includes any text pushed back via ungetc.

RETURN VALUES
Upon successful completion, 0 is returned. Otherwise, EOF is returned, and the global variable errno is set to indicate the
error.

ERRORS
EBADF Stream is not an open stream, or, in the case of fflush, not a stream open for writing.

The function fflush may also fail and set errno for any of the errors specified for the routine write(2).

921

BUGS
Linux may not support fpurge.

SEE ALSO
write(2), fopen(3), fclose(3), setbuf(3)

STANDARDS
The fflush function conforms to ANSI C3.159-1989 (“ANSI C”).

BSD Man Page, 29 November 1993

ffs
ffs—Finds first bit set in a word

SYNOPSIS
#include <string.h>
int ffs(int i);

DESCRIPTION
The ffs() function returns the position of the first bit set in the word i. The least significant bit is position 1, and the most
significant position 32.

RETURN VALUE
The ffs() function returns the position of the first bit set, or NULL if no bits are set.

CONFORMS TO
BSD 4.3

GNU, 13 April 1993

fgetgrent
fgetgrent—Gets group file entry

SYNOPSIS
#include <grp.h>
#include <stdio.h>
#include <sys/types.h>
struct group *fgetgrent(FILE *stream);

DESCRIPTION
The fgetgrent() function returns a pointer to a structure containing the group information from the file stream. The first
time it is called it returns the first entry; thereafter, it returns successive entries. The file stream must have the same format as
/etc/group.

The group structure is defined in <grp.h> as follows:

struct group {
 char *gr_name; /* group name */
 char *gr_passwd; /* group password */
 gid_t gr_gid; /* group id */
 char **gr_mem; /* group members */
};

fgetgrent

Part III: Library Functions922

RETURN VALUE
The fgetgrent()function returns the group information structure, or NULL if there are no more entries or an error occurs.

ERRORS
ENOMEM Insufficient memory to allocate group information structure.

CONFORMS TO
SVID 3

SEE ALSO
getgrnam(3), getgrgid(3), getgrent(3), setgrent(3), endgrent(3)

GNU, 4 April 1993

fgetpwent
fgetpwent—Gets password file entry

SYNOPSIS
#include <pwd.h>
#include <stdio.h>
#include <sys/types.h>
struct passwd *fgetpwent(FILE *stream);

DESCRIPTION
The fgetpwent() function returns a pointer to a structure containing the broken-out fields of a line in the file stream. The
first time it is called it returns the first entry; thereafter, it returns successive entries. The file stream must have the same
format as /etc/passwd.

The passwd structure is defined in <pwd.h> as follows:

struct passwd {
 char *pw_name; /* username */
 char *pw_passwd; /* user password */
 uid_t pw_uid; /* user id */
 gid_t pw_gid; /* group id */
 char *pw_gecos; /* real name */
 char *pw_dir; /* home directory */
 char *pw_shell; /* shell program */
};

RETURN VALUE
The fgetpwent() function returns the passwd structure, or NULL if there are no more entries or an error occurs.

ERRORS
ENOMEM Insufficient memory to allocate passwd structure.

FILES
/etc/passwd password database file

CONFORMS TO
SVID 3

923

SEE ALSO
getpwnam(3), getpwuid(3), getpwent(3), setpwent(3), endpwent(3), getpw(3), putpwent(3), passwd(5)

GNU, 17 May 1996

floor
floor—Largest integral value not greater than x

SYNOPSIS
#include <math.h>
double floor(double x);

DESCRIPTION
The floor() function rounds x downward to the nearest integer, returning that value as a double.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
abs(3), fabs(3), ceil(3), rint(3)

6 June 1993

fmod
fmod—Floating-point remainder function

SYNOPSIS
#include <math.h>
double fmod(double x, double y);

DESCRIPTION
The modf() function computes the remainder of dividing x by y. The return value is x–n*y, where n is the quotient of x/y,
rounded toward 0 to an integer.

RETURN VALUE
The fmod() function returns the remainder unless y is 0, in which case the function fails and errno is set.

ERRORS
EDOM The denominator y is 0.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
drem(3)

6 June 1993

fmod

Part III: Library Functions924

fnmatch
fnmatch—Matches filename or pathname

SYNOPSIS
#include <fnmatch.h>
int fnmatch(const char *pattern, const char *strings,int flags);

DESCRIPTION
fnmatch() checks the strings argument and checks whether it matches the pattern argument, which is a shell wildcard
pattern.

The flags argument modifies the behavior; it is the bitwise OR of zero or more of the following flags:

FNM_NOESCAPE If this flag is set, treat backslash as an ordinary character instead of as an escape character.

FNM_PATHNAME If this flag is set, match a slash in string only with a slash in pattern and not, for example, with
a [] - sequence containing a slash.

FNM_PERIOD If this flag is set, a leading period in string has to be matched exactly by a period in pattern. A
period is considered to be leading if it is the first character in string, or if both FNM_PATHNAME is
set and the period immediately follows a slash.

RETURN VALUE
Zero if string matches pattern, FNM_NOMATCH if there is no match, or another value if there is an error.

CONFORMS TO
Proposed POSIX.2

BUGS
POSIX.2 is not yet an approved standard; the information in this man page is subject to change.

SEE ALSO
sh(1), glob(3), glob(7)

GNU, 19 April 1993

fopen, fdopen, freopen
fopen, fdopen, freopen—Stream open functions

SYNOPSIS
#include <stdio.h>
FILE *fopen(char *path, char *mode);
FILE *fdopen(int fildes, char *mode);
FILE *freopen(char *path, char *mode,FILE*stream);

DESCRIPTION
The fopen function opens the file whose name is the string pointed to by path and associates a stream with it.

The argument mode points to a string beginning with one of the following sequences (additional characters may follow these
sequences):

r Open text file for reading. The stream is positioned at the beginning of the file.

r+ Open for reading and writing. The stream is positioned at the beginning of the file.

925

w Truncate file to zero length or create a text file for writing. The stream is positioned at the
beginning of the file.

w+ Open for reading and writing. The file is created if it does not exist; otherwise it is truncated.
The stream is positioned at the beginning of the file.

a Open for writing. The file is created if it does not exist. The stream is positioned at the end of
the file.

a+ Open for reading and writing. The file is created if it does not exist. The stream is positioned at
the end of the file.

The mode string can also include the letter b either as a third character or as a character between the characters in any of the
two-character strings described previously. This is strictly for compatibility with ANSI C3.159-1989 (ANSI C) and has no
effect; the b is ignored.

Any created files will have mode S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_IROTH|S_IWOTH (0666), as modified by the process’s
umask value. (See umask(2).)

Reads and writes may be intermixed on read/write streams in any order. Note that ANSI C requires that a file positioning
function intervene between output and input, unless an input operation encounters end-of-file. (If this condition is not met,
then a read is allowed to return the result of writes other than the most recent.) Therefore it is good practice (and indeed
sometimes necessary under Linux) to put an fseek or fgetpos operation between write and read operations on such a stream.
This operation may be an apparent no-op (as in fseek(..., 0L, SEEK_CUR)) called for its synchronizing side effect.

The fdopen function associates a stream with the existing file descriptor, fildes. The mode of the stream must be compatible
with the mode of the file descriptor. The file descriptor is not duplicated.

The freopen function opens the file whose name is the string pointed to by path and associates the stream pointed to by
stream with it. The original stream (if it exists) is closed. The mode argument is used just as in the fopen function. The
primary use of the freopen function is to change the file associated with a standard text stream (stderr, stdin, or stdout).

RETURN VALUES
On successful completion, fopen, fdopen, and freopen return a FILE pointer. Otherwise, NULL is returned, and the global
variable errno is set to indicate the error.

ERRORS
EINVAL The mode provided to fopen, fdopen, or freopen was invalid.

The fopen, fdopen, and freopen functions may also fail and set errno for any of the errors specified for the routine malloc(3).

The fopen function may also fail and set errno for any of the errors specified for the routine open(2).

The fdopen function may also fail and set errno for any of the errors specified for the routine fcntl(2).

The freopen function may also fail and set errno for any of the errors specified for the routines open(2), fclose(3) and
fflush(3).

SEE ALSO
open(2), fclose(3)

STANDARDS
The fopen and freopen functions conform to ANSI C3.159-1989 (ANSI C). The fdopen function conforms to IEEE
Std1003.1-1988 (POSIX.1).

BSD Man Page, 13 December 1995

fpathconf, pathconf
fpathconf, pathconf—Get configuration values for files

fpathconf, pathconf

Part III: Library Functions926

SYNOPSIS
#include <unistd.h>
long fpathconf(int filedes,intname);
long pathconf(char *path, int name);

DESCRIPTION
fpathconf() gets a value for the configuration option name for the open file descriptor filedes.

pathconf() gets a value for configuration option name for the filename path.

The corresponding macros defined in <unistd.h> are the minimum values; if an application wants to take advantage of values
that may change, a call to fpathconf() or pathconf() can be made, which may yield more liberal results.

Setting name equal to one of the following constants returns the following configuration options:

_PC_LINK_MAX Returns the maximum number of links to the file. If filedes or path refers to a directory, the
value applies to the whole directory. The corresponding macro is _POSIX_LINK_MAX.

_PC_MAX_CANON Returns the maximum length of a formatted input line, where filedes or path must refer to a
terminal. The corresponding macro is _POSIX_MAX_CANON.

_PC_MAX_INPUT Returns the maximum length of an input line, where filedes or path must refer to a terminal.
The corresponding macro is _POSIX_MAX_INPUT.

_PC_NAME_MAX Returns the maximum length of a filename in the directory path or filedes the process is
allowed to create. The corresponding macro is _POSIX_MAX_.

_PC PATH_MAX Returns the maximum length of a relative pathname when path or filedes is the current
working directory. The corresponding macro is _POSIX_PATH_MAX.

_PC_PIPE_BUF Returns the size of the pipe buffer, where filedes must refer to a pipe or FIFO, and path must
refer to a FIFO. The corresponding macro is _POSIX_PIPE_BUF.

_PC_CHOWN_RESTRICTED Returns nonzero if the chown(2) call may not be used on this file. If filedes or path refers to a
directory, this applies to all files in that directory. The corresponding macro is
_POSIX_CHOWN_RESTRICTED.

_PC_NO_TRUNC Returns nonzero if accessing filenames longer than _POSIX_NAME_MAX generates an error. The
corresponding macro is _POSIX_NO_TRUNC.

_PC_VDISABLE Returns nonzero if special character processing can be disabled, where filedes or path must
refer to a terminal.

RETURN VALUE
The limit is returned, if one exists. If the system does not have a limit for the requested resource, –1 is returned, and errno is
unchanged. If there is an error, –1 is returned, and errno is set to reflect the nature of the error.

CONFORMS TO
POSIX.1. Files with name lengths longer than the value returned for name equal to _PC_NAME_MAX may exist in the given
directory.

Some returned values may be huge; they are not suitable for allocating memory.

SEE ALSO
getconf(1), statfs(2), open(2), sysconf(3)

GNU, 4 April 1993

fread, fwrite
fread, fwrite—Binary stream input/output

927

SYNOPSIS
#include <stdio.h>
size_t fread(void *ptr, size_t size, size_t nmemb,FILE*stream);
size_t fwrite(void *ptr, size_t size, size_t nmemb,FILE*stream);

DESCRIPTION
The function fread reads nmemb elements of data, each size bytes long, from the stream pointed to by stream, storing them at
the location given by ptr.

The function fwrite writes nmemb elements of data, each size bytes long, to the stream pointed to by stream, obtaining them
from the location given by ptr.

RETURN VALUES
fread and fwrite return the number of items successfully read or written (that is, not the number of characters). If an error
occurs, or the end-of-file is reached, the return value is a short item count (or 0).

fread does not distinguish between end-of-file and error, and callers must use feof(3) and ferror(3) to determine which
occurred.

SEE ALSO
feof(3), ferror(3), read(2), write(2)

STANDARDS
The functions fread and fwrite conform to ANSI C3.159-1989 (“ANSI C”).

BSD Man Page, 17 May 1996

frexp
frexp—Converts floating-point number to fractional and integral components

SYNOPSIS
#include <math.h>
double frexp(double x, int *exp);

DESCRIPTION
The frexp() function is used to split the number x into a normalized fraction and an exponent that is stored in exp.

RETURN VALUE
The frexp() function returns the normalized fraction. If the argument x is not 0, the normalized fraction is x times a power
of 2, and is always in the range 1⁄2 (inclusive) to 1 (exclusive). If x is 0, the normalized fraction is 0, and 0 is stored in exp.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
ldexp(3), modf(3)

GNU, 6 June 1993

fgetpos, fseek, fsetpos, ftell, rewind
fgetpos, fseek, fsetpos, ftell, rewind—Reposition a stream

fgetpos, fseek, fsetpos, ftell, rewind

Part III: Library Functions928

SYNOPSIS
#include <stdio.h>
int fseek(FILE *stream, longo ffset, int whence);
long ftell(FILE *stream);
void rewind(FILE *stream);
int fgetpos(FILE *stream, fpos_t *pos);
int fsetpos(FILE *stream, fpos_t *pos);

DESCRIPTION
The fseek function sets the file position indicator for the stream pointed to by stream. The new position, measured in bytes,
is obtained by adding offset bytes to the position specified by whence. If whence is set to SEEK_SET, SEEK_CUR, or SEEK_END, the
offset is relative to the start of the file, the current position indicator, or end-of-file, respectively. A successful call to the fseek
function clears the end-of-file indicator for the stream and undoes any effects of the ungetc(3) function on the same stream.

The ftell function obtains the current value of the file position indicator for the stream pointed to by stream.

The rewind function sets the file position indicator for the stream pointed to by stream to the beginning of the file. It is
equivalent to

(void)fseek(stream, 0L, SEEK_SET);

except that the error indicator for the stream is also cleared. (See clearerr(3).)

The fgetpos and fsetpos functions are alternate interfaces equivalent to ftell and fseek (with whence set to SEEK_SET), setting
and storing the current value of the file offset into or from the object referenced by pos. On some non-UNIX systems, an
fpos_t object may be a complex object, and these routines might be the only way to portably reposition a text stream.

RETURN VALUES
The rewind function returns no value. Upon successful completion, fgetpos, fseek, and fsetpos return 0, and ftell returns
the current offset. Otherwise, –1 is returned, and the global variable errno is set to indicate the error.

ERRORS
EBADF The stream specified is not a seekable stream.

EINVAL The whence argument to fseek was not SEEK_SET, SEEK_END, or SEEK_CUR.

The function fgetpos, fseek, fsetpos, and ftell might also fail and set errno for any of the errors specified for the routines
fflush(3), fstat(2), lseek(2), and malloc(3).

SEE ALSO
lseek(2)

STANDARDS
The fgetpos, fsetpos, fseek, ftell, and rewind functions conform to ANSI C3.159-1989 (ANSI C).

BSD Man Page, 29 November 1993

ftime
ftime—Returns date and time

SYNOPSIS
#include <sys/timeb.h>
int ftime(struct timeb *tp);

929

DESCRIPTION
Return current date and time in tp, which is declared as follows:

struct timeb {
time_t time;
unsigned short millitm;
short timezone;
short dstflag;
};

RETURN VALUE
This function always returns 0.

NOTES
Under Linux, this function is implemented in a compatibility library instead of in the kernel.

CONFORMS TO
Version 7, BSD 4.3

Under BSD 4.3, this call is obsoleted by gettimeofday(2).

SEE ALSO
time(2)

Linux, 24 July 1993

ftok
ftok—Converts a pathname and a project identifier to a System V IPC key

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
key_t ftok (char *pathname, char proj);

DESCRIPTION
The function converts the pathname of an existing accessible file and a project identifier into a key_t type System V IPC key.

RETURN VALUE
On success, the return value will be the converted key_t value; otherwise it will be –1, with errno indicating the error as for
the stat(2) system call.

BUGS
The generated key_t value is obtained by stating the disk file corresponding to pathname in order to get its i–node number
and the minor device number of the filesystem on which the disk file resides, then by combining the 8-bit proj value along
with the lower 16 bits of the inode number with the 8 bits of the minor device number. The algorithm does not guarantee a
unique key value. In fact,

■ Two different names linking to the same file produce the same key values.
■ Using the lower 16 bits of the i–node number gives some chance (although usually small) to have the same key values

for filenames referring to different inodes.
■ Not discriminating among major device numbers gives some chance of collision (also usually small) for systems with

multiple disk controllers.

ftok

Part III: Library Functions930

SEE ALSO
ipc(5), msgget(2), semget(2), shmget(2), stat(2)

Linux 0.99.13, 1 November 1993

ftw
ftw—File tree walk

SYNOPSIS
#include <ftw.h>
int ftw(const char *directory,
int(*funcptr)(const char *file, struct stat *sb, int flag), int depth);

DESCRIPTION
ftw() walks through the directory tree, starting from the indicated directory. For each found entry in the tree, it calls funcptr
with the full pathname of the entry relative to directory, a pointer to the stat(2) structure for the entry and an int whose
value will be one of the following:

FTW_F Item is a normal file

FTW_D Item is a directory

FTW_NS The stat failed on the item

FTW_DNR Item is a directory which can’t be read

Warning: Anything other than directories, such as symbolic links, gets the FTW_F tag.

ftw() recursively calls itself for traversing found directories. To avoid using up all a program’s file descriptors, depth specifies
the number of simultaneous open directories. When the depth is exceeded, ftw() will become slower because directories have
to be closed and reopened.

To stop the tree walk, funcptr returns a nonzero value; this value will become the return value of ftp(). Otherwise, ftw() will
continue until it has traversed the entire tree (in which case it will return 0), or until it hits an error such as a malloc(3)
failure, in which case it will return –1.

Because ftp() uses dynamic data structures, the only safe way to exit a tree walk is to return a nonzero value. To handle
interrupts, for example, mark that the interrupt occurred and return a nonzero value—don’t use longjmp(3) unless the
program is going to terminate.

SEE ALSO
stat(2)

Linux, 18 July 1993

gcvt
gcvt—Converts a floating-point number to a string

SYNOPSIS
#include <stdlib.h>
char *gcvt(double number, size_t ndigit, char *buf);

DESCRIPTION
The gcvt() function converts number to a minimal-length, NULL-terminated ASCII string and stores the result in buf. It
produces ndigit significant digits in either printf() F format or E format.

931

RETURN VALUE
The gcvt() function returns the address of the string pointed to by buf.

SEE ALSO
ecvt(3), fcvt(3), sprintf(3)

29 March 1993

getcwd, get_current_dir_name, getwd
getcwd, get_current_dir_name, getwd—Get current working directory

SYNOPSIS
#include <unistd.h>
char *getcwd(char *buf, size_t size);
char *get_current_working_dir_name(void);
char *getwd(char *buf);

DESCRIPTION
The getcwd() function copies the absolute pathname of the current working directory to the array pointed to by buf, which is
of length size.

If the current absolute pathname would require a buffer longer than size elements, NULL is returned, and errno is set to
ERANGE; an application should check for this error, and allocate a larger buffer if necessary.

As an extension to the POSIX.1 standard, getcwd() allocates the buffer dynamically using malloc() if buf is NULL on call. In
this case, the allocated buffer has the length size unless size is less than 0, when buf is allocated as large as necessary. It is
possible (and, indeed, advisable) to free the buffers if they have been obtained this way.

get_current_dir_name, which is only prototyped if __USE_GNU is defined, will malloc(3) an array big enough to hold the
current directory name. If the environment variable PWD is set, and its value is correct, that value will be returned.

getwd, which is only prototyped if __USE_BSD is defined, will not malloc(3) any memory. The buf argument should be a
pointer to an array at least PATH_MAX bytes long. getwd returns only the first PATH_MAX bytes of the actual pathname.

RETURN VALUE
NULL on failure (for example, if the current directory is not readable), with errno set accordingly, and buf on success.

CONFORMS TO
POSIX.1

SEE ALSO
chdir(2), free(3), malloc(3).

GNU, 21 July 1993

getdirentries
getdirentries—Gets directory entries in a filesystem-independent format

SYNOPSIS
#define __USE_BSD or #define __USE_MISC
#include <dirent.h>
ssize_t getdirentries(int fd, char *buf, size_t nbytes ,offt *basep);

getdirentries

Part III: Library Functions932

DESCRIPTION
This function reads directory entries from the directory specified by fd into buf. At most, nbytes are read. Reading starts at
offset *basep, and *basep is updated with the new position after reading.

RETURN VALUE
getdirentries returns the number of bytes read, or 0 when at the end of the directory. If an error occurs, –1 is returned, and
errno is set appropriately.

ERRORS
See the Linux library source code for details.

SEE ALSO
open(2), lseek(2)

BSD/MISC, 22 July 1993

getenv
getenv—Gets an environment variable

SYNOPSIS
#include <stdlib.h>
char *getenv(const char *name);

DESCRIPTION
The getenv() function searches the environment list for a string that matches the string pointed to by name. The strings are of
the form name=value.

RETURN VALUE
The getenv() function returns a pointer to the value in the environment, or NULL if there is no match.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
putenv(3), setenv(3), unsetenv(3)

GNU, 3 April 1993

getgrent, setgrent, endgrent
getgrent, setgrent, endgrent—Get group file entry

SYNOPSIS
#include <grp.h>
#include <sys/types.h>
struct group *getgrent(void);
void setgrent(void);
void endgrent(void);

933

DESCRIPTION
The getgrent() function returns a pointer to a structure containing the group information from /etc/group. The first time it
is called it returns the first entry; thereafter, it returns successive entries.

The setgrent() function rewinds the file pointer to the beginning of the /etc/group file.

The endgrent() function closes the /etc/group file.

The group structure is defined in <grp.h> as follows:

struct group {
 char *gr_name; /* group name */
 char *gr_passwd; /* group password */
 gid_t gr_gid; /* group id */
 char **gr_mem; /* group members */
};

RETURN VALUE
The getgrent()function returns the group information structure, or NULL if there are no more entries or an error occurs.

ERRORS
ENOMEM Insufficient memory to allocate group information structure.

FILES
/etc/group group database file

CONFORMS TO
SVID 3, BSD 4.3

SEE ALSO
fgetgrent(3), getgrnam(3), getgrgid(3)

GNU, 4 April 1993

getgrnam, getgrgid
getgrnam, getgrgid—Get group file entry

SYNOPSIS
#include <grp.h>
#include <sys/types.h>
struct group *getgrnam(const char *name);
struct group *getgrgid(gid_t gid);

DESCRIPTION
The getgrnam() function returns a pointer to a structure containing the group information from /etc/group for the entry that
matches the group name name.

The getgrgid() function returns a pointer to a structure containing the group information from /etc/group for the entry that
matches the group id gid.

The group structure is defined in <grp.h> as follows:

struct group {
 char *gr_name; /* group name */
 char *gr_passwd; /* group password */

getgrnam, getgrgid

Part III: Library Functions934

 gid_t gr_gid; /* group id */
 char **gr_mem; /* group members */
};

RETURN VALUE
The getgrnam()and getgrgid() functions return the group information structure, or NULL if the matching entry is not found
or an error occurs.

ERRORS
ENOMEM Insufficient memory to allocate group information structure.

FILES
/etc/group group database file

CONFORMS TO
SVID 3, POSIX, BSD 4.3

SEE ALSO
fgetgrent(3), getgrent(3), setgrent(3), endgrent(3)

GNU, 4 April 1993

getlogin, cuserid
getlogin, cuserid—Get username

SYNOPSIS
#include <unistd.h>
char * getlogin (void);
#include <stdio.h>
char * cuserid (char *string);

DESCRIPTION
getlogin returns a pointer to a string containing the name of the user logged in on the controlling terminal of the process, or
a null pointer if this information cannot be determined. The string is statically allocated and might be overwritten on
subsequent calls to this function or to cuserid.

cuserid returns a pointer to a string containing a username associated with the effective user ID of the process. If string is
not a null pointer, it should be an array that can hold at least L_cuserid characters; the string is returned in this array.
Otherwise, a pointer to a string in a static area is returned. This string is statically allocated and might be overwritten on
subsequent calls to this function or to getlogin.

The macro L_cuserid is an integer constant that indicates how long an array you might need to store a username. L_cuserid is
declared in stdio.h.

These functions let your program positively identify the user who is running (cuserid) or the user who logged in this session
(getlogin). (These can differ when setuid programs are involved.) The user cannot do anything to fool these functions.

For most purposes, it is more useful to use the environment variable LOGNAME to find out who the user is. This is more flexible
precisely because the user can set LOGNAME arbitrarily.

ERRORS
ENOMEM Insufficient memory to allocate passwd structure.

935

FILES
The /etc/passwd password database file /etc/utmp (or /var/adm/utmp, or wherever your utmp file lives these days—the proper
location depends on your libc version)

CONFORMS TO
POSIX.1. System V has a cuserid function that uses the real user ID rather than the effective user ID. The cuserid function
was included in the 1988 version of POSIX, but was removed from the 1990 version.

BUGS
Unfortunately, it is often rather easy to fool getlogin(). Sometimes it does not work at all, because some program messed up
the utmp file. Often, it gives only the first eight characters of the login name. The user currently logged in on the controlling
tty of your program need not be the user who started it.

Nobody knows precisely what cuserid() does; so

■ Avoid it in portable programs
■ Avoid it altogether
■ Use getpwuid (geteuid()) instead, if that is what you meant.

Simply, do not use cuserid().

SEE ALSO
geteuid(2), getuid(2)

Linux 1.2.13, 3 September 1995

getmntent, setmntent, addmntent, endmntent, hasmntopt
getmntent, setmntent, addmntent, endmntent, hasmntopt—Get filesystem descriptor file entry

SYNOPSIS
#include <stdio.h>
#include <mntent.h>
FILE *setmntent(const char *filep, const char *type);
struct mntent *getmntent(FILE *filep);
int addmntent(FILE *filep, const struct mntent *mnt);
int endmntent(FILE *filep);
char *hasmntopt(const struct mntent *mnt, const char *opt);

DESCRIPTION
These routines are used to access the filesystem description file /etc/fstab and the mounted filesystem description file /etc/
mstab.

The setmntent() function opens the filesystem description file filep and returns a file pointer that can be used by
getmntent(). The argument type is the type of access required and can take the same values as the mode argument of fopen(3).

The getmntent() function reads the next line from the filesystem description file filep and returns a pointer to a structure
containing the broken-out fields from a line in the file. The pointer points to a static area of memory that is overwritten by
subsequent calls to getmntent().

The addmntent() function adds the mntent structure mnt to the end of the open file filep.

The endmntent() function closes the filesystem description file filep.

The hasmntopt() function scans the mnt_opts field of the mntent structure mnt for a substring that matches opt. (See
<mntent.h> for valid mount options.)

getmntent, setmntent, addmntent, endmntent, hasmntopt

Part III: Library Functions936

The mntent structure is defined in <mntent.h> as follows:

struct mntent {
 char *mnt_fsname; /* name of mounted filesystem */
 char *mnt_dir; /* filesystem path prefix */
 char *mnt_type; /* mount type (see mntent.h) */
 char *mnt_opts; /* mount options (see mntent.h) */
 int mnt_freq; /* dump frequency in days */
 int mnt_passno; /* pass number on parallel fsck */
};

RETURN VALUE
The getmntent() function returns a pointer to the mntent structure or NULL on failure.

The addmntent() function returns 0 on success and 1 on failure.

The endmntent() functions always returns 1.

The hasmntopt() function returns the address of the substring if a match is found, and NULL otherwise.

FILES
/etc/fstab filesystem description file

/etc/mtab mounted filesystem description file

CONFORMS TO
BSD 4.3

SEE ALSO
fopen(3), fstab(5)

27 June 1993

getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent—Get network entry

SYNTAX
#include <netdb.h>
struct netent *getnetent()
struct netent *getnetbyname(name)
char *name;
struct netent *getnetbyaddr(net, type)
long net; int type;
void setnetent(stayopen)
int stayopen;
void endnetent()

DESCRIPTION
The getnetent, getnetbyname, and getnetbyaddr subroutines each return a pointer to an object with the following structure,
containing the broken-out fields of a line in the network database, /etc/networks:

struct netent {
 char *n_name; /* official name of net */
 char **n_aliases; /* alias list */
 int n_addrtype; /* net number type */
 long n_net; /* net number */
};

937

The members of this structure are

n_name The official name of the network.

n_aliases A zero-terminated list of alternate names for the network.

n_addrtype The type of the network number returned: AF_INET.

n_net The network number. Network numbers are returned in machine byte order.

If the stayopen flag on a setnetent subroutine is NULL, the network database is opened. Otherwise the setnetent has the effect
of rewinding the network database. The endnetent may be called to close the network database when processing is complete.

The getnetent subroutine simply reads the next line whereas getnetbyname and getnetbyaddr search until a matching name or
net number is found (or until EOF is encountered). The type must be AF_INET. The getnetent subroutine keeps a pointer in
the database, allowing successive calls to be used to search the entire file.

A call to setnetent must be made before a while loop using getnetent to perform initialization, and an endnetent must be
used after the loop. Both getnetbyname and getnetbyaddr make calls to setnetent and endnetent.

FILES
/etc/networks

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

SEE ALSO
networks(5), RFC 1101

HISTORY
The getnetent(), getnetbyaddr(), getnetbyname(), setnetent(), and endnetent() functions appeared in 4.2BSD.

BUGS
The data space used by these functions is static; if future use requires the data, it should be copied before any subsequent calls
to these functions overwrite it. Only Internet network numbers are currently understood. Expecting network numbers to fit
in no more than 32 bits is probably naive.

getopt
getopt—Parses command-line options

SYNOPSIS
#include <unistd.h>
int getopt(int argc, char * const argv[],
 const char *optstring);
extern char *optarg;
extern int optind, opterr, optopt;
#include <getopt.h>
int getopt_long(int argc, char * const argv[],

 const char *optstring,
 const struct option *longopts, int *longindex);
int getopt_long_only(int argc, char * const argv[],

 const char *optstring,
 const struct option *longopts, int *longindex);

getopt

Part III: Library Functions938

DESCRIPTION
The getopt() function parses the command-line arguments. Its arguments argc and argv are the argument count and array as
passed to the main() function on program invocation. An element of argv that starts with - (and is not exactly - or –-) is an
option element. The characters of this element (aside from the initial -) are option characters. If getopt() is called repeatedly,
it returns successively each of the option characters from each of the option elements.

If getopt() finds another option character, it returns that character, updating the external variable optind and a static variable
nextchar so that the next call to getopt() can resume the scan with the following option character or argv element.

If there are no more option characters, getopt() returns EOF. Then optind is the index in argv of the first argv element that is
not an option.

optstring is a string containing the legitimate option characters. If such a character is followed by a colon, the option
requires an argument, so getopt places a pointer to the following text in the same argv element, or the text of the following
argv element, in optarg. Two colons mean an option takes an optional arg; if there is text in the current argv element, it is
returned in optarg; otherwise, optarg is set to 0.

By default, getargs() permutes the contents of argv as it scans, so that eventually all the non-options are at the end. Two
other modes are also implemented. If the first character of optstring is + or the environment variable POSIXLY_CORRECT is set,
option processing stops as soon as a non-option argument is encountered. If the first character of optstring is -, each non-
option argv element is handled as if it were the argument of an option with character code 1. (This is used by programs that
were written to expect options and other argv elements in any order and that care about the ordering of the two.) The special
argument – forces an end of option-scanning regardless of the scanning mode.

If getopt() does not recognize an option character, it prints an error message to stderr, stores the character in optopt, and
returns?. The calling program may prevent the error message by setting opterr to 0.

The getopt_long()function works like getopt(), except that it also accepts long options, started out by two dashes. Long
option names may be abbreviated if the abbreviation is unique or is an exact match for some defined option. A long option
may take a parameter, of the form -–arg=param or –-arg param.

longopts is a pointer to the first element of an array of struct option declared in <getopt.h>:

as struct option {
 const char *name;
 int has_arg;
 int *flag;
 int val;
};

The meanings of the different fields are

name The name of the long option.

has_arg no_argument (or 0) if the option does not take an argument, required_argument (or 1) if the
option requires an argument, or optional_argument (or 2) if the option takes an optional
argument.

flag Specifies how results are returned for a long option. If flag is NULL, getopt_long() returns val.
(For example, the calling program might set val to the equivalent short option character.)
Otherwise, getopt_long() returns 0, and flag points to a variable that is set to val if the option
is found, but left unchanged if the option is not found.

val The value to return or to load into the variable pointed to by flag.

The last element of the array has to be filled with zeroes.

If longindex is not NULL, it points to a variable that is set to the index of the long option relative to longopts.

getopt_long_only() is like getopt_long(), but - as well as -– can indicate a long option. If an option that starts with - (not –-)
doesn’t match a long option but does match a short option, it is parsed as a short option instead.

939

RETURN VALUE
The getopt()function returns the option character if the option was found successfully, : if there was a missing parameter for
one of the options, ? for an unknown option character, or EOF for the end of the option list.

getopt_long() and getopt_long_only() also return the option character when a short option is recognized. For a long option,
they return val if flag is NULL, and 0 otherwise. Error and EOF returns are the same as for getopt(), plus ? for an ambiguous
match or an extraneous parameter.

ENVIRONMENT VARIABLES
POSIXLY_CORRECT If this is set, option processing stops as soon as a non-option argument is encountered.

EXAMPLE
The following example program, from the source code, illustrates the use of getopt_long() with most of its features:

#include <stdio.h>
int
main (argc, argv)
 int argc;
 char **argv;
{
 int c;
 int digit_optind = 0;
 while (1)
 {
 int this_option_optind = optind ? optind : 1;
 int option_index = 0;
 static struct option long_options[] =
 {
 {“add”, 1, 0, 0},
 {“append”, 0, 0, 0},
 {“delete”, 1, 0, 0},
 {“verbose”, 0, 0, 0},
 {“create”, 1, 0, ‘c’},
 {“file”, 1, 0, 0g, f0, 0, 0, 0}
 };
 c = getopt_long (argc, argv, “abc:d:012”,
 long_options, &option_index);
 if (c == -1)
 break;
 switch(c)
 {
 case 0:
 printf (“option %s”, long_options[option_index].name);
 if (optarg)
 printf (“ with arg %s”, optarg);
 printf (“\n”);
 break;
 case ‘0’:
 case ‘1’:
 case ‘2’:
 if (digit_optind != 0 && digit_optind != this_option_optind)
 printf (“digits occur in two different argv-elements.\n”);
 digit_optind = this_option_optind;
 printf (“option %c\n”, c);
 break;
 case ‘a’:
 printf (“option a\n”);
 break;
 case ‘b’:

getopt

Part III: Library Functions940

 printf (“option b\n”);
 break;
 case ‘c’:
 printf (“option c with value ‘%s’\n”, optarg);
 break;
 case ‘d’:
 printf (“option d with value ‘%s’ \n”, optarg);
 break;
 case ‘?’:
 break;
 default:
 printf (“?? getopt returned character code 0%o ??\n”, c);
 }
 }
 if (optind < argc)
 {
 printf (“non-option ARGV-elements: “);
 while (optind < argc)
 printf (“%s “, argv[optind++]);
 printf (“\n”);
 }
exit (0);
}

BUGS
This man page is confusing.

CONFORMS TO
getopt(): POSIX.1, provided the environment variable POSIXLY_CORRECT is set. Otherwise, the elements of argv aren’t

really const, because they get permuted. They’re set const in the prototype to be compatible with other
systems.

GNU, 30 August 1995

getpass
getpass—Gets a password

SYNOPSIS
#include <pwd.h>
#include <unistd.h>
char *getpass(const char * prompt);

DESCRIPTION
The getpass function displays a prompt to, and reads in, a password from, /dev/tty. If this file is not accessible, getpass
displays the prompt on the standard error output and reads from the standard input.

The password may be up to _PASSWORD_LEN (currently 128) characters in length. Any additional characters and the terminat-
ing newline character are discarded. (This might be different in Linux.)

getpass turns off character echoing while reading the password.

RETURN VALUES
getpass returns a pointer to the null-terminated password.

941

FILES
/dev/tty

SEE ALSO
crypt(3)

HISTORY
A getpass function appeared in Version 7 AT&T UNIX.

BUGS
The getpass function leaves its result in an internal static object and returns a pointer to that object. Subsequent calls to
getpass will modify the same object.

The calling process should zero the password as soon as possible to avoid leaving the cleartext password visible in the
process’s address space.

BSD Man Page 29 November 1993

getprotoent, getprotobyname, getprotobynumber, setprotoent,
endprotoent

getprotoent, getprotobyname, getprotobynumber, setprotoent, endprotoent—Get protocol entry

SYNOPSIS
#include <netdb.h>
struct protoent *getprotoent(void);
struct protoent *getprotobyname(const char *name);
struct protoent *getprotobynumber(int proto);
void setprotoent(int stayopen);
void endprotoent(void);

DESCRIPTION
The getprotoent() function reads the next line from the file /etc/protocols and returns a structure protoent containing the
broken-out fields from the line. The /etc/protocols file is opened if necessary.

The getprotobyname() function returns a protoent structure for the line from /etc/protocols that matches the protocol name
name.

The getprotobynumber() function returns a protoent structure for the line that matches the protocol number number.

The setprotoent() function opens and rewinds the /etc/protocols file. If stayopen is true (1), the file will not be closed
between calls to getprotobyname() or getprotobynumber().

The endprotoent() function closes /etc/protocols.

The protoent structure is defined in <netdb.h> as follows:

struct protoent {
 char *p_name; /* official protocol name */
 char **p_aliases; /* alias list */
 int p_proto; /* protocol number */
}

getprotoent, getprotobyname, getprotobynumber, setprotoent, endprotoent

Part III: Library Functions942

The members of the protoent structure are

p_name The official name of the protocol.

p_aliases A zero-terminated list of alternative names for the protocol.

p_proto The protocol number.

RETURN VALUE
The getprotoent(), getprotobyname(), and getprotobynumber() functions return the protoent structure, or a NULL pointer if an
error occurs or the end of the file is reached.

FILES
/etc/protocols protocol database file

CONFORMS TO
BSD 4.3

SEE ALSO
getservent(3), getnetent(3), protocols(5)

BSD, 24 April 1993

getpw
getpw—Reconstructs password line entry

SYNOPSIS
#include <pwd.h>
#include <sys/types.h>
int getpw(uid_t uid, char *buf);

DESCRIPTION
The getpw() function reconstructs the password line entry for the given user UID uid in the buffer buf. The returned buffer
contains a line of format

name:passwd:uid:gid:gecos:dir:shell

The passwd structure is defined in <pwd.h> as follows:

struct passwd {
 char *pw_name; /*username*/
 char *pw_passwd; /* user password */
 uid_t pw_uid; /* user id */
 gid_t pw_gid; /* group id */
 char *pw_gecos; /* real name */
 char *pw_dir; /* home directory */
 char *pw_shell; /* shell program */
};

RETURN VALUE
The getpw()function returns 0 on success, or –1 if an error occurs.

ERRORS
ENOMEM Insufficient memory to allocate passwd structure.

943

FILES
/etc/passwd Password database file

SEE ALSO
fgetpwent(3), getpwent(3), setpwent(3), endpwent(3), getpwnam(3), getpwuid(3), putpwent(3), passwd(5)

GNU, 27 May 1996

getpwent, setpwent, endpwent
getpwent, setpwent, endpwent—get password file entry

SYNOPSIS
#include <pwd.h>
#include <sys/types.h>
struct passwd *getpwent(void);
void setpwent(void);
void endpwent(void);

DESCRIPTION
The getpwent() function returns a pointer to a structure containing the broken-out fields of a line from /etc/passwd. The
first time it is called it returns the first entry; thereafter, it returns successive entries.

The setpwent() function rewinds the file pointer to the beginning of the /etc/passwd file.

The endpwent() function closes the /etc/passwd file.

The passwd structure is defined in <pwd.h> as follows:

struct passwd {
 char *pw_name; /*username*/
 char *pw_passwd; /* user password */
 uid_t pw_uid; /* user id */
 gid_t pw_gid; /* group id */
 char *pw_gecos; /* real name */
 char *pw_dir; /* home directory */
 char *pw_shell; /* shell program */
};

RETURN VALUE
The getpwent()function returns the passwd structure, or NULL if there are no more entries or an error occurs.

ERRORS
ENOMEM Insufficient memory to allocate passwd structure.

FILES
/etc/passwd Password database file

CONFORMS TO
SVID 3, BSD 4.3

SEE ALSO
fgetpwent(3), getpwnam(3), getpwuid(3), getpw(3), putpwent(3), passwd(5).

GNU, 27 May 1996

getpwent, setpwent, endpwent

Part III: Library Functions944

getpwnam, getpwuid
getpwnam, getpwuid—Get password file entry

SYNOPSIS
#include <pwd.h>
#include <sys/types.h>
struct passwd *getpwnam(const char * name);
struct passwd *getpwuid(uid_t uid);

DESCRIPTION
The getpwnam() function returns a pointer to a structure containing the broken out fields of a line from /etc/passwd for the
entry that matches the username name.

The getpwuid() function returns a pointer to a structure containing the broken-out fields of a line from /etc/passwd for the
entry that matches the user UID uid.

The passwd structure is defined in <pwd.h> as follows:

struct passwd {
 char *pw_name; /*username*/
 char *pw_passwd; /* user password */
 uid_t pw_uid; /* user id */
 gid_t pw_gid; /* group id */
 char *pw_gecos; /* real name */
 char *pw_dir; /* home directory */
 char *pw_shell; /* shell program */
};

RETURN VALUE
The getpwnam()and getpwuid() functions return the passwd structure, or NULL if the matching entry is not found or an error
occurs.

ERRORS
ENOMEM Insufficient memory to allocate passwd structure.

FILES
/etc/passwd Password database file

CONFORMS TO
SVID 3, POSIX, BSD 4.3

SEE ALSO
fgetpwent(3), getpwent(3), setpwent(3), endpwent(3), getpw(3), putpwent(3), passwd(5)

GNU, 27 May 1996

fgetc, fgets, getc, getchar, gets, ungetc
fgetc, fgets, getc, getchar, gets, ungetc—Input of characters and strings

SYNOPSIS
#include <stdio.h>
int fgetc(FILE *stream);
char *fgets(char *s,int size, FILE *stream);

945

int getc(FILE *stream);
int getchar(void);
char *gets(char *s);
int ungetc(int c, FILE *stream);

DESCRIPTION
fgetc() reads the next character from stream and returns it as an unsigned char cast to an int, or EOF on end of file or error.

getc() is equivalent to fgetc() except that it can be implemented as a macro that evaluates stream more than once.

getchar() is equivalent to getc(stdin).

gets()reads a line from stdin into the buffer pointed to by s until either a terminating newline or EOF, which it replaces
with \0. No check for buffer overrun is performed (see the following “Bus” section).

fgets() reads in at most one less than n characters from stream and stores them into the buffer pointed to by s. Reading stops
after an EOF or a newline. If a newline is read, it is stored into the buffer. \0 is stored after the last character in the buffer.

ungetc() pushes c back to stream, cast to unsigned char, where it is available for subsequent read operations. Pushed-back
characters will be returned in reverse order; only one pushback is guaranteed.

Calls to the functions described here can be mixed with each other and with calls to other input functions from the stdio
library for the same input stream.

RETURN VALUES
fgetc(), getc(), and getchar() return the character read as an unsigned char cast to an int, or EOF on end of file or error.

gets() and fgets() return s on success, and NULL on error or when end of file occurs while no characters have been read.

ungetc() returns c on success, or EOF on error.

CONFORMS TO
ANSI—C, POSIX.1

BUGS
Because it is impossible to tell without knowing the data in advance how many characters gets() will read, and because
gets() will continue to store characters past the end of the buffer, it is extremely dangerous to use. It has been used to break
computer security. Use fgets() instead.

It is not advisable to mix calls to input functions from the stdio library with low-level calls to read() for the file descriptor
associated with the input stream; the results will be undefined and very probably not what you want.

SEE ALSO
read(2), write(2), fopen(3), fread(3), scanf(3), puts(3), fseek(3), ferror(3)

GNU, 4 April 1993

getservent, getservbyname, getservbyport, setservent,
endservent

getservent, getservbyname, getservbyport, setservent, endservent—Get service entry

SYNOPSIS
#include <netdb.h>
struct servent *getservent(void);
struct servent *getservbyname(const char *name, const char *proto);
struct servent *getservbyport(int port, const char *proto);

getservent, getservbyname, getservbyport, setservent, endservent

Part III: Library Functions946

void setservent(int stayopen);
void endservent(void);

DESCRIPTION
The getservent()function reads the next line from the file /etc/services and returns a structure, servent, containing the
broken out fields from the line. The /etc/services file is opened if necessary.

The getservbyname()function returns a servent structure for the line from /etc/services that matches the service name using
protocol proto.

The getservbyport()function returns a servent structure for the line that matches the port port given in network byte order
using protocol proto.

The setservent()function opens and rewinds the /etc/services file. If stayopen is true (1), the file will not be closed between
calls to getservbyname() and getservbyport().

The endservent() function closes /etc/services.

The servent structure is defined in <netdb.h> as follows:

struct servent {
char *s_name; /* official service name */
char **s_aliases; /* alias list */
int s_port; /* port number */
char *s_proto; /* protocol to use */
}

The members of the servent structure are:

s_name The official name of the service.

s_aliases A zero-terminated list of alternative names for the service.

s_port The port number for the service, given in network byte order.

s_proto The name of the protocol to use with this service.

RETURN VALUE
The getservent(), getservbyname(), and getservbyport() functions return the servent structure, or a NULL pointer if an error
occurs or the end of the file is reached.

FILES
/etc/services Services database file

CONFORMS TO
BSD 4.3

SEE ALSO
getprotoent(3), getnetent(3), services(5)

BSD, 22 April 1996

getusershell, setusershell, endusershell
getusershell, setusershell, endusershell—Get legal user shells

SYNOPSIS
#include <unistd.h>
char *getusershell(void);

947

void setusershell(void);
void endusershell(void);

DESCRIPTION
The getusershell() function returns the next line from the file /etc/shells, opening the file if necessary. The line should
contain the pathname of a valid user shell. If /etc/shells does not exist or is unreadable, getusershell() behaves as if /bin/sh
and /bin/csh were listed in the file.

The setusershell() function rewinds /etc/shells.

The endusershell() function closes /etc/shells.

RETURN VALUE
The getusershell() function returns a NULL pointer on end of file.

FILES
/etc/shells

CONFORMS TO
BSD 4.3

SEE ALSO
shells(5)

BSD, 4 July 1993

getutent, getutid, getutline, pututline, setutent, endutent,
utmpname

getutent, getutid, getutline, pututline, setutent, endutent, utmpname—Access utmp file entries

SYNOPSIS
#include <utmp.h>
struct utmp *getutent(void);
struct utmp *getutid(struct utmp *ut);
struct utmp *getutline(struct utmp *ut);
void pututline(struct utmp *ut);
void setutent(void);
void endutent(void);
void utmpname(const char *file);

DESCRIPTION
utmpname() sets the name of the utmp-format file for the other utmp functions to access. If utmpname() is not used to set the
filename before the other functions are used, they assume PATH_UTMP, as defined in <paths.h>.

setutent() rewinds the file pointer to the beginning of the utmp file. It is generally a good idea to call it before any of the
other functions.

endutent()closes the utmp file. It should be called when the user code is done accessing the file with the other functions.

getutent() reads a line from the current file position in the utmp file. It returns a pointer to a structure containing the fields
of the line.

getutid()searches forward from the current file position in the utmp file based on ut. If ut->ut_type is RUN_LVL, BOOT_TIME,
NEW_TIME, or OLD_TIME, getutid() will find the first entry whose ut_type field matches ut->ut_type. If ut->ut_type is

getutent, getutid, getutline, pututline, setutent, endutent, utmpname

Part III: Library Functions948

INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, getutid() will find the first entry whose ut_id field matches
ut->ut_id.

getutline() searches forward from the current file position in the utmp file. It scans entries whose ut type is USER_PROCESS or
LOGIN_PROCESS and returns the first one whose ut_line field matches ut->ut_line.

pututline()writes the utmp structure ut into the utmp file. It uses getutid() to search for the proper place in the file to insert
the new entry. If it cannot find an appropriate slot for ut, pututline() will append the new entry to the end of the file.

RETURN VALUE
getutent(), getutid(), and getutline() return a pointer to a struct utmp, which is defined in <utmp.h>.

FILES
/var/run/utmp—Database of currently logged-in users

/var/log/wtmp—Database of past user logins

CONFORMS TO
XPG 2, SVID 2, Linux FSSTND 1.2

SEE ALSO
utmp(5)

Linux libc 5.0.0, 22 March 1995

getw, putw
getw, putw—Input and output of words (ints)

SYNOPSIS
#include <stdio.h>
int getw(FILE *stream);
int putw(int w,FILE*stream);

DESCRIPTION
getw reads a word (that is, an int) from stream. It’s provided for compatibility with SVID. I recommend you use fread(3)
instead. putw writes the word w (that is, an int) to stream. It is provided for compatibility with SVID, but I recommend you
use fwrite(3) instead.

RETURN VALUES
Normally, getw returns the word read, and putw returns the word written. On error, they return EOF.

BUGS
The value returned on error is also a legitimate data value. ferror(3) can be used to distinguish between the two cases.

CONFORMS TO
SVID

SEE ALSO
fread(3), fwrite(3), ferror(3), getc(3), putc(3)

GNU, 16 September 1995

949

glob, globfree
glob, globfree—Find pathnames matching a pattern; free memory from glob()

SYNOPSIS
#include <glob.h>
int glob(const char *pattern, int flags,
int errfunc(const char * epath, int eerrno),
glob_t *pglob);
void globfree(glob_t *pglob);

DESCRIPTION
The glob() function searches for all the pathnames matching pattern according to the rules used by the shell (see glob(7)).
No tilde expansion or parameter substitution is done.

The globfree() function frees the dynamically allocated storage from an earlier call to glob().

The results of a glob() call are stored in the structure pointed to by pglob, which is a glob_t that is declared in <glob.h> as

typedef struct
{
 int gl_pathc; /* Count of paths matched so far */
 char **gl_pathv; /* List of matched pathnames. */
 int gl_offs; /* Slots to reserve in ‘gl pathv’. */
 int gl_flags; /* Flags for globbing */
} glob_t;

Results are stored in dynamically allocated storage.

The parameter flags is made up of bitwise OR of zero or more the following symbolic constants, which modify the of
behavior of glob():

GLOB_ERR Return on read error (because a directory does not have read permission, for example).

GLOB_MARK Append a slash to each path which corresponds to a directory.

GLOB_NOSORT Don’t sort the returned pathnames (they are by default).

GLOB_DOOFS pglob->gl_offs slots will be reserved at the beginning of the list of strings in pglob->pathv.

GLOB_NOCHECK If no pattern matches, return the original pattern.

GLOB_APPEND Append to the results of a previous call. Do not set this flag on the first invocation of glob().

GLOB_NOESCAPE Meta characters cannot be quoted by backslashes.

GLOB_PERIOD A leading period can be matched by meta characters.

If errfunc is not NULL, it will be called in case of an error with the arguments epath, a pointer to the path that failed, and
eerrno, the value of errno as returned from one of the calls to opendir(), readdir(), or stat(). If errfunc returns nonzero, or
if GLOB_ERR is set, glob() will terminate after the call to errfunc.

Upon successful return, pglob->gl_pathc contains the number of matched pathnames and pglob->gl_pathv a pointer to the
list of matched pathnames. The first pointer after the last pathname is NULL.

It is possible to call glob() several times. In that case, the GLOB_APPEND flag has to be set in flags on the second and later
invocations.

RETURN VALUES
On successful completion, glob() returns 0. Other possible returns are

GLOB_NOSPACE For running out of memory,

GLOB_ABEND For a read error, and

GLOB_NOMATCH For no found matches.

glob, globfree

Part III: Library Functions950

EXAMPLES
One example of use is the following code, which simulates typing in the shell:

ls -l *.c ../*.c

glob_t globbuf;
globbuf.gl_offs = 2;
glob(“*.c”, GLOB_DOOFS, NULL, &globbuf);
glob(“../*.c”, GLOB_DOOFS | GLOB_APPEND, NULL, &globbuf);
globbuf.gl_pathv[0] = “ls”;
globbuf.gl_pathv[1] = “-l”;
execvp(“ls”, &globbuf.gl_pathv[0]);

CONFORMS TO
Proposed POSIX.2

BUGS
The glob()function may fail due to failure of underlying function calls, such as malloc() or opendir(). These will store their
error code in errno.

POSIX.2 is not yet an approved standard; the information in this man page is subject to change.

SEE ALSO
ls(1), sh(1), exec(2), stat(2), malloc(3), opendir(3), readdir(3), wordexp(3), glob(7)

GNU, 13 May 1996

hosts_access, hosts_ctl
hosts_access, hosts_ctl—Access-control library functions

SYNOPSIS
#include “log_tcp.h”
extern int allow_severity;
extern int deny_severity;
int hosts_access(daemon, client)
char *daemon;
struct client_info *client;
int hosts_ctl(daemon, client_name, client_addr, client_user)
char *daemon;
char *client_name;
char *client_addr;
char *client_user;

DESCRIPTION
The routines described in this document are part of the libwrap.a library. They implement a pattern-based access-control
language with optional shell commands that are executed when a pattern fires.

In all cases, the daemon argument should specify a daemon process name (argv[0] value). The client host address should be a
valid address, or FROM_UNKNOWN if the address lookup failed. The client hostname and username should be empty strings if no
information is available, FROM_UNKNOWN if the lookup failed, or an actual hostname or username.

hosts_access() consults the access-control tables described in the hosts_access(5) manual page. hosts_access() returns 0 if
access should be denied.

hosts_ctl() is a wrapper around the hosts_access() routine with a perhaps more convenient interface (although it does not
pass on enough information to support automated remote username lookups). hosts_ctl() returns 0 if access should be
denied.

951

The allow_severity and deny_severity variables determine how accepted and rejected requests can be logged. They must be
provided by the caller and can be modified by rules in the access-control tables.

DIAGNOSTICS
Problems are reported via the syslog daemon.

SEE ALSO
hosts_access(5) (format of the access control tables), hosts_options(5), optional extensions to the base language

FILES
/etc/hosts.access, /etc/hosts.deny access-control tables

BUGS
The functions described here do not make copies of their string-valued arguments. Beware of data from functions that
overwrite their results on each call.

hosts_access() uses the strtok() library function. This may interfere with other code that relies on strtok().

AUTHOR
Wietse Venema (wietse@wzv.win.tue.nl)

Department of Mathematics and Computing Science

Eindhoven University of Technology

Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

hcreate, hdestroy, hsearch
hcreate, hdestroy, hsearch—Hash table management

SYNOPSIS
#include <search.h>
ENTRY *hsearch(ENTRY item, ACTION action);
int hcreate(unsigned nel);
void hdestroy(void);

DESCRIPTION
These three functions allow the user to create a hash table that associates a key with any data.

First, the table must be created with the function hcreate(). nel is an estimate of the number of entries in the table.
hcreate() may adjust this value upward to improve the performance of the resulting hash table. The GNU implementation
of hsearch() will also enlarge the table if it gets nearly full. malloc(3) is used to allocate space for the table.

The corresponding function hdestroy() frees the memory occupied by the hash table so that a new table can be constructed.

item is of type ENTRY, which is a typedef defined in <search.h> and includes these elements:

typedef struct entry
{
 char *key;
 char *data;
} ENTRY;

key points to the zero-terminated ASCII string that is the search key. data points to the data associated with that key. (A
pointer to a type other than character should be cast to pointer-to-character.) hsearch()searches the hash table for an item
with the same key as item, and if successful returns a pointer to it. action determines what hsearch() does after an unsuccess-
ful search. A value of ENTER instructs it to insert the new item, whereas a value of FIND means to return NULL.

hcreate, hdestroy, hsearch

Part III: Library Functions952

RETURN VALUE
hcreate() returns NULL if the hash table cannot be successfully installed.

hsearch()returns NULL if action is ENTER and there is insufficient memory to expand the hash table, or if action is FIND and
item cannot be found in the hash table.

CONFORMS TO
SVID, except that in SysV, the hash table cannot grow.

BUGS
The implementation can manage only one hash table at a time. Individual hash table entries can be added, but not deleted.

EXAMPLE
The following program inserts 24 items into a hash table and then prints some of them:

#include <stdio.h>
#include <search.h>
char *data[]={ “alpha”, “bravo”, “charley”, “delta”,
 “echo”, “foxtrot”, “golf”, “hotel”, “india”, “juliette”,
 “kilo”, “lima”, “mike”, “november”, “oscar”, “papa”,
 “quebec”, “romeo”, “sierra”, “tango”, “uniform”,
 “victor”, “whiskey”, “x-ray”, “yankee”, “zulu”
};
int main()
{
 ENTRY e, *ep;
 int i;
 /* start with small table, and let it grow */
 hcreate(3);
 for (i = 0; i < 24; i++)
 {
 e.key = data[i];
 /* data is just an integer, instead of a pointer
 to something */
 e.data = (char *)i;
 ep = hsearch(e, ENTER);
 /* there should be no failures */
 if(ep == NULL) {fprintf(stderr, “entry failed\n”); exit(1);}
 }
 for (i = 22; i < 26; i++)
 /* print two entries from the table, and show that
 two are not in the table */
 {
 e.key = data[i];
 ep = hsearch(e, FIND);
 printf(“%9.9s -> %9.9s:%d\n”, e.key, ep?ep->key:”NULL”,
 ep?(int)(ep->data):0);
 }
 return 0;
}

SEE ALSO
bsearch(3), lsearch(3), tsearch(3), malloc(3)

GNU, 30 September 1995

953

hypot
hypot—Euclidean distance function

SYNOPSIS
#include <math.h>
double hypot(double x, double y);

DESCRIPTION
The hypot() function returns the sqrt(x*x+y*y). This is the length of the hypotenuse of a right-angle triangle with sides of
length x and y, or the distance of the point (x, y) from the origin.

CONFORMS TO
SVID 3, BSD 4.3

SEE ALSO
sqrt(3)

25 June 1993

index, rindex
index, rindex—Locate character in string

SYNOPSIS
#include <string.h>
char *index(const char *s,int c);
char *rindex(const char *s,int c);

DESCRIPTION
The index() function returns a pointer to the first occurrence of the character c in the string s.

The rindex() function returns a pointer to the last occurrence of the character c in the string s.

The terminating NULL character is considered to be a part of the strings.

RETURN VALUE
The index() and rindex() functions return a pointer to the matched character, or NULL if the character is not found.

CONFORMS TO
BSD 4.3

SEE ALSO
memchr(3), strchr(3), strpbrk(3), strrchr(3), strsep(3), strspn(3), strstr(3), strtok(3)

GNU, 12 April 1993

inet_aton, inet_addr, inet_network, inet_ntoa, inet_makeaddr,
inet_lnaof, inet_netof

inet_aton, inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof, inet_netof—Internet address–manipulation
routines

inet_aton, inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof, inet_netof

Part III: Library Functions954

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
int inet_aton(const char *cp, struct in_addr *inp);
unsigned long int inet_addr(const char *cp);
unsigned long int inet_network(const char *cp);
char *inet_ntoa(struct in_addr in);
struct in_addr inet_makeaddr(int net, int host);
unsigned long int inet_lnaof(struct in_addr in);
unsigned long int inet_netof(struct in_addr in);

DESCRIPTION
inet_aton() converts the Internet host address cp from the standard numbers-and-dots notation into binary data and stores it
in the structure that inp points to. inet_aton returns nonzero if the address is valid, and 0 if it is not.

The inet_addr()function converts the Internet host address cp from numbers-and-dots notation into binary data in network
byte order. If the input is invalid, –1 is returned. This is an obsolete interface to inet_aton; it is obsolete because -1 is a valid
address (255.255.255.255), and inet_aton provides a cleaner way to indicate error return.

The inet_network() function extracts the network number in network byte order from the address cp in numbers-and-dots
notation. If the input is invalid, –1 is returned.

The inet_ntoa() function converts the Internet host address given in network byte order to a string in standard numbers-
and-dots notation. The string is returned in a statically allocated buffer, which subsequent calls will overwrite.

The inet_makeaddr() function makes an Internet host address in network byte order by combining the network number net
with the local address host in network net, both in local host byte order.

The inet_lnaof() function returns the local host address part of the Internet address in. The local host address is returned in
local host byte order.

The inet_netof()function returns the network number part of the Internet address in. The network number is returned in
local host byte order.

The structure in_addr as used in inet_ntoa(), inet_makeaddr(), inet_lnoaf(), and inet_netof() is defined in netinet/in.h as

struct in_addr {
unsigned long int s_addr;
}

Note that on the i80x86 the host byte order is Least Significant Byte first, whereas the network byte order, as used on the
Internet, is Most Significant Byte first.

CONFORMS TO
BSD 4.3

SEE ALSO
gethostbyname(3), getnetent(3), hosts(5), networks(5)

BSD, 3 September 1995

infnan
infnan—Deals with infinite or not-a-number (NaN) result

SYNOPSIS
#include <math.h>
double infnan(int error);

955

DESCRIPTION
The infnan() function returns a suitable value for infinity and not-a-number (NaN) results. The value of error can be ERANGE
to represent infinity, or anything else to represent NaN. errno is also set.

RETURN VALUE
If error is ERANGE (Infinity), HUGE_VAL is returned.

If error is -ERANGE (-Infinity), -HUGE_VAL is returned.

If error is anything else, NaN is returned.

ERRORS
ERANGE The value of error is positive or negative infinity.

EDOM The value of error is not-a-number (NaN).

CONFORMS TO
BSD 4.3

GNU, 2 June 1993

initgroups
initgroups—Initializes the supplementary group access list

SYNOPSIS
#include <grp.h>
#include <sys/types.h>
int initgroups(const char *user, gid_t group);

DESCRIPTION
The initgroups() function initializes the group access list by reading the group database /etc/group and using all groups of
which user is a member. The additional group group is also added to the list.

RETURN VALUE
The initgroups() function returns 0 on success, or –1 if an error occurs.

ERRORS
EPERM The calling process does not have sufficient privileges.

ENOMEM Insufficient memory to allocate group information structure.

FILES
/etc/group group database file

CONFORMS TO
SVID 3, BSD 4.3

SEE ALSO
getgroups(2), setgroups(2)

GNU, 5 April 1993

initgroups

Part III: Library Functions956

inndcomm
inndcomm—INND communication part of InterNetNews library

SYNOPSIS
#include “inndcomm.h”
int ICCopen()
int ICCclose()
void ICCsettimeout(i)
int i;
int ICCcommand(cmd, argv, replyp)
char cmd;
char *argv[];
char **replyp;
int ICCcancel(mesgid)
char *mesgid;
int ICCreserve(why)
char *why;
int ICCpause(why)
char *why;
int ICCgo(why)
char *why;
extern char *ICCfailure;

DESCRIPTION
The routines described in this manual page are part of the InterNetNews library, libinn(3). They are used to send com-
mands to a running innd(8) daemon on the local host. The letters ICC stand for Innd Control Command.

ICCopen creates a UNIX-domain datagram socket and binds it to the server’s control socket. It returns –1 on failure or 0 on
success. This routine must be called before any other routine.

ICCclose closes any descriptors that have been created by ICCopen. It returns –1 on failure or 0 on success.

ICCsettimeout can be called before any of the following routines to determine how long the library should wait before giving
up on getting the server’s reply. This is done by setting and catching a SIGALRM signal(2). If the timeout is less than 0, no
reply will be waited for. The SC_SHUTDOWN, SC_XABORT, and SC_XEXEC commands do not get a reply either. The default, which
can be obtained by setting the timeout to 0, is to wait until the server replies.

ICCcommand sends the command cmd with parameters argv to the server. It returns –1 on error. If the server replies, and replyp
is not NULL, it will be filled in with an allocated buffer that contains the full text of the server’s reply. This buffer is a string in
the form <digits><space><text> where digits is the text value of the recommended exit code; 0 indicates success. Replies
longer than 4,000 bytes will be truncated. The possible values of cmd are defined in the inndcomm.h header file. The param-
eters for each command are described in ctlinnd(8). This routine returns –1 on communication failure; on success it returns
the exit status sent by the server, which will never be negative.

ICCcancel sends a cancel message to the server. mesgid is the message ID of the article that should be canceled. The return
value is the same as for ICCcommand.

ICCpause, ICCreserve, and ICCgo send a pause, reserve, or go command to the server, respectively. If ICCreserve is used, the
why value used in the ICCpause invocation must match; the value used in the ICCgo invocation must always match the one
used in the ICCpause invocation. The return value for all three routines is the same as for ICCcommand.

If any of these routines fail, the ICCfailure variable will identify the system call that failed.

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
ctlinnd(8), innd(8), libinn(3).

957

insque, remque
insque, remque—Insert/Remove an item from a queue

SYNOPSIS
#include <stdlib.h>
void insque(struct qelem * elem, struct qelem * prev);
void remque(struct qelem*elem);

DESCRIPTION
insque() and remque() are functions for manipulating queues made from doubly linked lists. Each element in this list is of
type struct qelem.

The qelem structure is defined as

struct qelem {
struct qelem *q_forw;
struct qelem *q_back;
char q_data[1];
};

insque() inserts the element pointed to by elem immediately after the element pointed to by prev, which must not be NULL.

remque() removes the element pointed to by elem from the doubly linked list.

CONFORMS TO
SVR4

BUGS
The q_data field is sometimes defined to be of type char *, and under Solaris 2.x, it doesn’t appear to exist at all.

The location of the prototypes for these functions differs among several versions of UNIX. Some systems place them in
<search.h>, others in <string.h>. Linux places them in <stdlib.h> because that seems to make the most sense.

Some versions of UNIX (such as HP-UX 10.x) do not define a struct qelem but rather have the arguments to insque() and
remque() be of type void *.

GNU, 30 October 1996

isalnum, isalpha, isascii, isblank, iscntrl, isdigit, isgraph,
islower, isprint, ispunct, isspace, isupper, isxdigit

isalnum, isalpha, isascii, isblank, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit—
Character classification routines

SYNOPSIS
#include <ctype.h>
int isalnum (int c);
int isalpha (int c);
int isascii (int c);
int isblank (int c);
int iscntrl (int c);
int isdigit (int c);
int isgraph (int c);
int islower (int c);
int isprint (int c);
int ispunct (int c);

isalnum, isalpha, isascii, isblank, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit

Part III: Library Functions958

int isspace (int c);
int isupper (int c);
int isxdigit (int c);

DESCRIPTION
These functions check whether c, which must have the value of an unsigned char or EOF, falls into a certain character class
according to the current locale:

isalnum() Checks for an alphanumeric character; it is equivalent to (isalpha(c) || isdigit(c)).

isalpha() Checks for an alphabetic character; in the standard C locale, it is equivalent to (isupper(c) ||
islower(c)). In some locales, there may be additional characters for which isalpha() is true—
letters that are neither uppercase nor lowercase.

isascii() Checks whether c is a 7-bit unsigned char value that fits into the ASCII character set. This
function is a BSD extension and is also an SVID extension.

isblank() Checks for a blank character; that is, a space or a tab. This function is a GNU extension.

iscntrl() Checks for a control character.

isdigit() Checks for a digit (0 through 9).

isgraph() Checks for any printable character except space.

islower() Checks for a lowercase character.

isprint() Checks for any printable character, including space.

ispunct() Checks for any printable character that is not a space or an alphanumeric character.

isspace() Checks for whitespace characters. They are space, form-feed (‘\f’), newline (‘\n’), carriage
return (‘\r’), horizontal tab (‘\t’), and vertical tab (‘\v’).

isupper() Checks for an uppercase letter.

isxdigit() Checks for a hexadecimal digit (that is, one of 0 1 2 3 4 5 6 7 8 9 0 a b c d e f A B C D E F).

RETURN VALUE
The values returned are nonzero if the character c falls into the tested class, and 0 if it does not.

CONFORMS TO
ANSI C, BSD 4.3. isascii() is a BSD extension and is also an SVID extension. isblank() is a GNU extension.

BUGS
The details of what characters belong in which class depend on the current locale. For example, isupper() will not recognize
an A with an umlaut (Ä) as an uppercase letter in the default C locale.

SEE ALSO
tolower(3), toupper(3), setlocale(3), ascii(7), locale(7)

GNU, 2 September 1995

isatty
isatty—Tests whether this descriptor refers to a terminal

SYNOPSIS
#include <unistd.h>
int isatty (int desc);

DESCRIPTION
isatty returns 1 if desc is an open descriptor connected to a terminal, and 0 otherwise.

959

CONFORMS TO
SVID, AT&T, X/OPEN, BSD 4.3

SEE ALSO
fstat(2), ttyname(3)

Linux, 20 April 1995

isinf, isnan, finite
isinf, isnan, finite—Test for infinity or not-a-number (NaN)

SYNOPSIS
#include <math.h>
int isinf(double value);
int isnan(double value);
int finite(double value);

DESCRIPTION
The isinf() function returns –1 if value represents negative infinity, 1 if value represents positive infinity, and 0 otherwise.

The isnan() function returns a nonzero value if value is not-a-number (NaN), and 0 otherwise.

The finite() function returns a nonzero value if value is finite or is not a not-a-number (NaN) value, and 0 otherwise.

CONFORMS TO
BSD 4.3

GNU, 2 June 1993

j0, j1, jn, y0, y1, yn
j0, j1, jn, y0, y1, yn—Bessel functions

SYNOPSIS
#include <math.h>
double j0(double x);
double j1(double x);
double jn(int n, double x);
double y0(double x);
double y1(double x);
double yn(int n, double x);

DESCRIPTION
The j0() and j1() functions return Bessel functions of x of the first kind of orders 0 and 1, respectively. The jn()function
returns the Bessel function of x of the first kind of order n.

The y0() and y1() functions return Bessel functions of x of the second kind, orders 0 and 1, respectively. The yn()function
returns the Bessel function of x of the second kind, order n.

For the functions y0(), y1() and yn(),the value of x must be positive. For negative values of x, these functions return
–HUGE_VAL.

CONFORMS TO
SVID 3, BSD 4.3

j0, j1, jn, y0, y1, yn

Part III: Library Functions960

BUGS
There are errors of up to 2e–16 in the values returned by j0(), j1(), and jn() for values of x between –8 and 8.

26 June 1993

killpg
killpg—Sends a signal to all members of a process group

SYNOPSIS
#include <signal.h>
int killpg(pid_t pidgrp, int signal);

DESCRIPTION
The killpg() function causes the signal signal to be sent to all the processes in the process group pidgrp or to the processes’
own process group if pidgrp is equal to 0.

It is equivalent to kill(-pidgrp,signal);.

RETURN VALUE
The value returned is –1 on error, or 0 for success.

ERRORS
Errors are returned in errno and can be one of the following:

EINVAL Signal is invalid.

ESRCH Process group does not exist.

EPERM The user ID of the calling process is not equal to that of the process the signal is sent to, and the user ID is
not that of the super-user.

SEE ALSO
kill(2), signal(2), signal(7)

GNU, 4 April 1993

labs
labs—Computes the absolute value of a long integer

SYNOPSIS
#include <stdlib.h>
long int labs(long int j);

DESCRIPTION
The labs() function computes the absolute value of the long integer argument j.

RETURN VALUE
Returns the absolute value of the long integer argument.

CONFORMS TO
SVID 3, BSD 4.3, ISO 9899

961

NOTES
Trying to take the absolute value of the most negative integer is not defined.

SEE ALSO
abs(3), ceil(3), floor(3), fabs(3), rint(3)

GNU, 6 June 1993

ldexp
ldexp—Multiplies floating-point number by integral power of 2

SYNOPSIS
#include <math.h>
double ldexp(double x, int exp);

DESCRIPTION
The ldexp() function returns the result of multiplying the floating-point number x by 2 raised to the power exp.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
frexp(3), modf(3)

BSD, 6 June 1993

ldiv
ldiv—Computes the quotient and remainder of long integer division

SYNOPSIS
#include <stdlib.h>
ldiv_t ldiv(long int numer, long int denom);

DESCRIPTION
The ldiv() function computes the value numer/denom and returns the quotient and remainder in a structure named ldiv_t
that contains two long integer members named quot and rem.

RETURN VALUE
The ldiv_t structure.

CONFORMS TO
SVID 3, BSD 4.3, ISO 9899

SEE ALSO
div(3)

GNU, 29 March 1993

ldiv

Part III: Library Functions962

lgamma
lgamma—Logs gamma function

SYNOPSIS
#include <math.h>
double lgamma(double x);

DESCRIPTION
The lgamma() function returns the log of the absolute value of the Gamma function. The sign of the Gamma function is
returned in the external integer signgam.

For negative integer values of x, lgamma() returns HUGE_VAL, and errno is set to ERANGE.

ERRORS
ERANGE Invalid argument—negative integer value of x.

CONFORMS TO
SVID 3, BSD 4.3

SEE ALSO
infnan(3)

BSD, 25 June 1993

libinn
libinn—InterNetNews library routines

SYNOPSIS
#include “libinn.h”
typedef struct _TIMEINFO {
 time_t time;
 long usec;
 long tzone;
} TIMEINFO;

char *GenerateMessageID()

void HeaderCleanFrom(from)
char *from;

char *HeaderFind(Article, Header, size)
char *Article;
char *Header;
int size;

FILE *CAopen(FromServer, ToServer)
FILE *FromServer;
FILE *ToServer;

FILE *CAlistopen(FromServer, ToServer, request)
FILE *FromServer;
FILE *ToServer;
char *request;

963

void CAclose()

struct _DDHANDLE *DDstart(FromServer, ToServer)
FILE *FromServer;
FILE *ToServer;
} DDHANDLE;

void DDcheck(h, group)
DDHANDLE *h;
char *group;

char * DDend(h)
DDHANDLE *h;

void CloseOnExec(fd, flag)
int fd;
int flag;

int SetNonBlocking(fd, flag)
int fd;
int flag;

int LockFile(fd, flag)
int fd;
int flag;

char * GetConfigValue(value)
char *value;

char * GetFileConfigValue(value)
char *value;

char * GetFQDN()

char * GetModeratorAddress(group)
char *group;

int GetResourceUsage(usertime, systime)
double *usertime;
double *systime;

int GetTimeInfo(now)
TIMEINFO *now;

int NNTPlocalopen(FromServerp, ToServerp, errbuff)
FILE **FromServerp;
FILE **ToServerp;
char *errbuff;

int NNTPremoteopen(FromServerp, ToServerp, errbuff)
FILE **FromServerp;
FILE **ToServerp;
char *errbuff;

int NNTPconnect(host, FromServerp, ToServerp, errbuff)
char *host;
FILE **FromServerp;
FILE **ToServerp;
char *errbuff;

int NNTPcheckarticle(text)

libinn

Part III: Library Functions964

char *text;

int NNTPsendarticle(text, ToServer, Terminate)
char *text;
FILE *ToServer;
int Terminate;

int NNTPsendpassword(server, FromServer, ToServer)
char *server;
FILE *FromServer;
FILE *ToServer;

void Radix32(value, p)
unsigned long value;
char *p;

char * ReadInFile(name, Sbp)
char *name;
struct stat *Sbp;

char * ReadInDescriptor(fd, Sbp)
int fd;
struct stat *Sbp;

char * INNVersion()

DESCRIPTION
libinn is a library of utility routines for manipulating Usenet articles and related data. It is not necessary to use the header file
libinn.h; if it is not available, it is only necessary to properly declare the TIMEINFO datatype, as shown in the preceding code.

GenerateMessageID uses the current time, process ID, and fully qualified domain name of the local host to create a Message
ID header that is highly likely to be unique. The returned value points to static space that is reused on subsequent calls.

HeaderCleanFrom removes the extraneous information from the value of a From or Reply-To header and leaves just the official
mailing address. In particular, the following transformations are made to the from parameter:

address –> address
address (stuff) –> address
stuff <address>–> address

The transformations are simple and are based on RFC 1036, which limits the format of the header.

HeaderFind searches through Article looking for the specified Header. size should be the length of the header name. It
returns a pointer to the value of the header, skipping leading whitespace, or NULL if the header cannot be found. Article
should be a standard C string containing the text of the article; the end of a header is indicated by a blank line: two
consecutive \n characters.

CAopen and CAclose provide news clients with access to the active file; the CA stands for Client Active. CAopen opens the
active(5) file for reading. It returns a pointer to an open FILE, or NULL on error. If a local or an NFS-mounted copy exists,
CAopen will use that file. The FromServer and ToServer parameters should be FILEs connected to the NNTP server for input
and output, respectively. (See the discussions of NNTPremoteopen and NNTPlocalopen later in this section.) If either parameter is
NULL, CAopen will just return NULL if the file is not locally available. If neither is NULL, CAopen will use them to query the NNTP
server using the “list” command to make a local temporary copy.

The CAlistopen sends a “list” command to the server and returns a temporary file containing the results. The request
parameter, if not NULL, will be sent as an argument to the command. Unlike CAopen, this routine will never use a locally
available copy of the active file.

CAclose closes the active file and removes any temporary file that might have been created by CAopen or CAlistopen.

965

CloseOnExec can make a descriptor close-on-exec so that it is not shared with any child processes. If the flag is nonzero, the file
is so marked; if it is 0, the close-on-exec mode is cleared.

DDstart, DDcheck, and DDend are used to set the Distribution header; the DD stands for Default Distribution. The
distrib.pats(5) file is consulted to determine the proper value for the Distribution header after all newsgroups have been
checked. DDstart begins the parsing. It returns a pointer to an opaque handle that should be used on subsequent calls. The
FromServer and ToServer parameters should be FILEs connected to the NNTP server for input and output, respectively. If
either parameter is NULL, an empty default will ultimately be returned if the file is not locally available.

DDcheck should be called with the handle, h, returned by DDstart and a new group, group, to check. It can be called as often as
necessary.

DDend releases any state maintained in the handle and returns an allocated copy of the text that should be used for the
Distribution header.

SetNonBlocking enables (if flag is nonzero) or disables (if flag is 0) non-blocking I/O on the indicated descriptor. It returns
–1 on failure and 0 on success.

LockFile tries to lock the file descriptor fd. If flag is nonzero it will block until the lock can be made; otherwise it will return
–1 if the file cannot be locked. It returns –1 on failure and 0 on success.

GetConfigValue returns the value of the specified configuration parameter. (See inn.conf(5) for details on the parameters and
their interpretation.) The returned value points to static space that is reused on subsequent calls.

GetFileConfigValue returns the specified configuration parameter from the inn.conf file without checking for any defaults.
The returned value points to static space that is reused on subsequent calls, or NULL if the value is not present.

GetFQDN returns the fully qualified domain name of the local host. The returned value points to static space that is reused on
subsequent calls, or NULL on error.

GetModeratorAddress returns the mailing address of the moderator for the specified group or NULL on error. (See moderators(5)
for details on how the address is determined.) GetModeratorAddress does no checking to see if the specified group is actually
moderated. The returned value points to static space that is reused on subsequent calls.

GetResourceUsage fills in the usertime and systime parameters with the total user and system time used by the current process
and any children it may have spawned. It gets the values by doing a times(2) system call. It returns –1 on failure, or 0 on
success.

GetTimeInfo fills in the now parameter with information about the current time and tzone. The time and usec fields will be
filled in by a call to gettimeofday(2). The time field will be filled in by a call to time(2), and the usec field will be set to 0. The
tzone field will be filled in with the current offset from GMT. This is done by calling localtime(3) and taking the value of
the tm_gmtoff field, negating it, and dividing it by 60. This is done by calling localtime(3) and comparing the value with that
returned by a call to gmtime(3). For efficiency, the tzone field is only recalculated if more than an hour has passed since the
last time GetTimeInfo was called. This routine returns –1 on failure, and 0 on success.

NNTPlocalopen opens a connection to the private port of an InterNetNews server running on the local host. It returns –1 on
failure, or 0 on success. FromServerp and ToServerp will be filled in with FILEs that can be used to communicate with the
server. errbuff can either be NULL or a pointer to a buffer at least 512 bytes long. If it is not NULL, and the server refuses the
connection, it will be filled in with the text of the server’s reply. This routine is not for general use; it is a subroutine for
compatibility with systems that have UNIX-domain stream sockets. It always returns –1.

NNTPremoteopen does the same as NNTPlocalopen, except that it calls GetConfigValue to find the name of the local server and
opens a connection to the standard NNTP port. Any client program can use this routine. It returns –1 on failure, or 0 on
success.

NNTPconnect is the same as NNTPremoteopen, except that the desired host is given as the host parameter.

NNTPcheckarticle verifies that the text meets the NNTP limitations on line length. It returns –1 on failure, or 0 if the text is
valid.

libinn

Part III: Library Functions966

NNTPsendarticle writes text on ToServer using NNTP conventions for line termination. The text should consist of one or
more lines ending with a newline. If Terminate is nonzero, the routine will also write the NNTP data-termination marker on
the stream. It returns –1 on failure, or 0 on success.

NNTPsendpassword sends authentication information to an NNTP server by finding the appropriate entry in the
passwd.nntp(5) file. server contains the name of the host; GetConfigValue will be used if server is NULL. FromServer and
ToServer should be FILEs that are connected to the server. No action is taken if the specified host is not listed in the password
file.

Radix32 converts the number in value into a radix-32 string in the buffer pointed to by p. The number is split into five-bit
pieces, and each piece is converted into a character using the alphabet 0…9a…v to represent the numbers 0–32. Only the
lowest 32 bits of value are used, so p need only point to a buffer of eight bytes (seven characters and the trailing \0).

ReadInFile reads the file named name into allocated memory, appending a terminating \0 byte. It returns a pointer to the
space, or NULL on error. If Sbp is not NULL, it is taken as the address of a place to store the results of a stat(2) call.

ReadInDescriptor performs the same function as ReadInFile, except that fd refers to an already-open file.

INNVersion returns a pointer to a string identifying the INN version, suitable for printing in logon banners.

EXAMPLES
char *p;
char *Article;
char buff[256];
FILE *F;
FILE *ToServer;
FILE *FromServer;
if ((p = HeaderFind(Article, “From”, 4)) == NULL)
 Fatal(“Can’t find From line”);
(void)strcpy(buff, p);
HeaderCleanFrom(buff);
if ((F = CAopen(FromServer, ToServer)) == NULL)
 Fatal(“Can’t open active file”);
/* Don’t pass the file on to our children. */
CloseOnExec(fileno(F), 1);
/* Make a local copy. */
p = ReadInDescriptor(fileno(F), (struct stat *)NULL);
/* Close the file. */
CAclose();
if (NNTPremoteopen(&FromServer, &ToServer) < 0)
 Fatal(“Can’t connect to server”);
if ((p = GetModeratorAddress(“comp.sources.unix”)) == NULL)
Fatal(“Can’t find moderator’s address”);

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
active(5), dbz(3z), parsedate(3), inn.conf(5), inndcomm(3), moderators(5), passwd.nntp(5)

GNU, 30 October 1996

libpbm
libpbm—Functions to support portable bitmap programs

967

SYNOPSIS
#include <pbm.h>
cc ... libpbm.a

DESCRIPTION—PACKAGEWIDE ROUTINES
The following sections describe string and file management routines available in libpbm.

KEYWORD MATCHING
The following does a case-insensitive match of str against keyword:

int pm_keymatch(char* str, char* keyword, int minchars)

str can be a leading substring of keyword, but at least minchars must be present.

LOG BASE TWO
This converts between a maxval and the minimum number of bits required to hold it:

int pm_maxvaltobits(int maxval)
int pm_bitstomaxval(int bits)

MESSAGES AND ERRORS
This is a printf()-style routine to write an informational message:

void pm_message(char* fmt, ...)

This is a printf() style routine to write an error message and abort:

void pm_error(char* fmt, ...)

The following writes a usage message; the string should indicate what arguments are to be provided to the program:

void pm_usage(char* usage)

GENERIC FILE MANAGEMENT
The following opens the given file for reading, with appropriate error checking:

FILE* pm_openr(char* name)

A filename of - is taken as equivalent to stdin.

The following opens the given file for writing, with appropriate error checking:

FILE* pm_openw(char* name)

The following closes the file descriptor, with appropriate error checking:

void pm_close(FILE* fp)

ENDIAN I/O
The following are routines to read and write short and long ints in either big- or little-endian byte order:

int pm_readbigshort(FILE* in, short* sP)
int pm_writebigshort(FILE* out, short s)
int pm_readbiglong(FILE* in, long* lP)
int pm_writebiglong(FILE* out, long l)
int pm_readlittleshort(FILE* in, short* sP)
int pm_writelittleshort(FILE* out, short s)
int pm_readlittlelong(FILE* in, long* lP)
int pm_writelittlelong(FILE* out, long l)

DESCRIPTION—PBM-SPECIFIC ROUTINES
The following sections describe file management routines available in libpbm.

libpbm

Part III: Library Functions968

TYPES AND CONSTANTS
Each bit should contain only the values of PBM_WHITE or PBM_BLACK:

typedef ... bit;
#define PBM_WHITE ...
#define PBM_BLACK ...

These are routines for distinguishing different file formats and types:

#define PBM_FORMAT ...
#define RPBM_FORMAT ...
#define PBM_TYPE PBM_FORMAT
#define PBM_FORMAT TYPE(f) ...

INITIALIZATION
All PBM programs must call this routine:

void pbm_init(int* argcP, char* argv[])

MEMORY MANAGEMENT
This allocates an array of bits:

bit** pbm_allocarray(int cols, int rows)

This allocates a row of the given number of bits:

bit* pbm_allocrow(int cols)

This frees the array allocated with pbm_allocarray() containing the given number of rows:

void pbm_freearray(bit** bits, int rows)

This frees a row of bits:

void pbm_freerow(bit* bitrow)

READING FILES
This reads the header from a PBM file, filling in the rows, cols, and format variables:

void pbm_readpbminit(FILE* fp, int* colsP, int* rowsP, int* formatP)

This reads a row of bits into the bitrow array (format and cols are filled in by pbm_readpbminit()):

void pbm_readpbmrow(FILE* fp, bit* bitrow, int cols, int format)

This function combines pbm_readpbminit(), pbm_allocarray(), and pbm_readpbmrow():

bit** pbm_readpbm(FILE* fp, int* colsP, int* rowsP)

It reads an entire bitmap file into memory, returning the allocated array and filling in the rows and cols variables.

This reads an entire file or input stream of unknown size to a buffer and allocates more memory as needed:

char* pm_read unknown size(FILE* fp, long* nread)

The calling routine has to free the allocated buffer with free(). pm_read_unknown_size() returns a pointer to the allocated
buffer; the nread argument returns the number of bytes read.

WRITING FILES
This writes the header for a portable bitmap file:

void pbm_writepbminit(FILE* fp, int cols, int rows, int forceplain)

The forceplain flag forces a plain-format file to be written, as opposed to a raw-format one.

This writes a row from a portable bitmap:

void pbm_writepbmrow(FILE* fp, bit* bitrow, int cols, int forceplain)

969

This writes the header and all data for a portable bitmap:

void pbm_writepbm(FILE* fp, bit** bits, int cols, int rows, int forceplain)

This function combines pbm_writepbminit() and pbm_writepbmrow().

SEE ALSO
libpgm(3), libppm(3), libpnm(3)

AUTHOR
Copyright  1989, 1991 by Tony Hansen and Jef Poskanzer

libpgm
libpgm—Functions to support portable graymap programs

SYNOPSIS
#include <pgm.h>
cc ... libpgm.a libpbm.a

DESCRIPTION
The following sections describe memory and file management routines available in libpgm.

TYPES AND CONSTANTS
Each gray should contain only the values between 0 and PGM_MAXMAXVAL.

pgm_pbmmaxval is the maxval used when a PGM program reads a PBM file. Normally it is 1, but for some programs, a larger
value gives better results.

typedef ... gray;
#define PGM_MAXMAXVAL ...
extern gray pgm_pbmmaxval;

The following are for distinguishing different file formats and types:

#define PGM_FORMAT ...
#define RPGM_FORMAT ...
#define PGM_TYPE PGM FORMAT
int PGM_FORMAT_TYPE(int format)

INITIALIZATION
All PGM programs must call this routine:

void pgm_init(int* argcP, char* argv[])

MEMORY MANAGEMENT
This allocates an array of grays:

gray** pgm_allocarray(int cols, int rows)

This allocates a row of the given number of grays:

gray* pgm_allocrow(int cols)

This frees the array allocated with pgm_allocarray() containing the given number of rows:

void pgm_freearray(gray** grays, int rows)

This frees a row of grays:

void pgm_freerow(gray* grayrow)

libpgm

Part III: Library Functions970

READING FILES
This reads the header from a PGM file, filling in the rows, cols, maxval, and format variables:

void pgm_readpgminit(FILE* fp, int* colsP, int* rowsP, gray* maxvalP,
int* formatP)

This reads a row of grays into the grayrow array. format, cols, and maxval are filled in by pgm_readpgminit():

void pgm_readpgmrow(FILE* fp, gray* grayrow, int cols, gray maxval, int format)

This function combines pgm_readpgminit(), pgm_allocarray(), and pgm_readpgmrow():

gray** pgm_readpgm(FILE* fp, int* colsP, int* rowsP, gray* maxvalP)

It reads an entire graymap file into memory, returning the allocated array and filling in the rows, cols, and maxval variables.

WRITING FILES
This writes the header for a portable graymap file:

void pgm_writepgminit(FILE* fp, int cols, int rows, gray maxval,
int forceplain)

The forceplain flag forces a plain-format file to be written, as opposed to a raw-format one.

This writes a row from a portable graymap:

void pgm_writepgmrow(FILE* fp, gray* grayrow, int cols, gray maxval,
int forceplain)

This function combines pgm_writepgminit() and pgm_writepgmrow(); it writes the header and all data for a portable graymap:

void pgm_writepgm(FILE* fp, gray** grays, int cols, int rows, gray maxval, int forceplain)

SEE ALSO
libpbm(3), libppm(3), libpnm(3)

AUTHOR
Copyright  1989, 1991 by Tony Hansen and Jef Poskanzer.

libpnm
libpnm—Functions to support portable anymap programs

SYNOPSIS
#include <pnm.h>
cc ... libpnm.a libppm.a libpgm.a libpbm.a

DESCRIPTION
The following sections describe memory and file management routines available in libpnm.

TYPES AND CONSTANTS
Each xel contains three xelvals, each of which should contain only a value between 0 and PNM_MAXMAXVAL. pnm_pbmmaxval is
the maxval used when a PNM program reads a PBM file. Normally it is 1, but for some programs, a larger value gives better
results.

typedef ... xel;
typedef ... xelval;
#define PNM_MAXMAXVAL ...
extern xelval pnm_pbmmaxval;

971

XEL MANIPULATIONS
This macro extracts a single value from an xel when you know it’s from a PBM or PGM file:

xelval PNM_GET1(xel x)

When the xel is from a PPM file, use PPM_GETR(), PPM_GETG(), and PPM GETB().

This macro assigns a single value to an xel when you know it’s from a PBM or PGM file:

void PNM_ASSIGN1(xel x, xelval v)

When the xel is from a PPM file, use PPM_ASSIGN().

This macro checks two xels for equality:

int PNM_EQUAL(xel x, xel y)

This one is for distinguishing different file types:

int PNM_FORMAT TYPE(int format)

INITIALIZATION
All PNM programs must call this routine:

void pnm_init(int* argcP, char* argv[])

MEMORY MANAGEMENT
This allocates an array of xels:

xel** pnm_allocarray(int cols, int rows)

This allocates a row of the given number of xels:

xel* pnm_allocrow(int cols)

This frees the array allocated with pnm_allocarray() that contains the given number of rows:

void pnm_freearray(xel** xels, int rows)

This frees a row of xels:

void pnm_freerow(xel* xelrow)

READING FILES
This reads the header from a PNM file, filling in the rows, cols, maxval, and format variables:

void pnm_readpnminit(FILE* fp, int* colsP, int* rowsP, xelval* maxvalP,
int* formatP)

This reads a row of xels into the xelrow array. format, cols, and maxval are filled in by pnm_readpnminit():

void pnm_readpnmrow(FILE* fp, xel* xelrow, int cols, xelval maxval, int format)

This reads an entire anymap file into memory, returning the allocated array and filling in the rows, cols, maxval, and format
variables:

xel** pnm_readpnm(FILE* fp, int* colsP, int* rowsP, xelval* maxvalP,
int* formatP)

This function combines pnm_readpnminit(), pnm_allocarray(), and pnm_readpnmrow(). Unlike the equivalent functions in
PBM, PGM, and PPM, it returns the format so you can tell what type the file is.

WRITING FILES
This writes the header for a portable anymap file:

void pnm_writepnminit(FILE* fp, int cols, int rows, xelval maxval, int format,
int force-plain)

libpnm

Part III: Library Functions972

Unlike the equivalent functions in PBM, PGM, and PPM, you have to specify the output type. The forceplain flag forces a
plain-format file to be written, as opposed to a raw-format one.

This writes a row from a portable anymap:

void pnm_writepnmrow(FILE* fp, xel* xelrow, int cols, xelval maxval, int format,
int forceplain)

This writes the header and all data for a portable anymap:

void pnm_writepnm(FILE* fp, xel** xels, int cols, int rows, xelval maxval, int format,
int forceplain)

This function combines pnm_writepnminit() and pnm_writepnmrow().

FORMAT PROMOTION
This promotes a row of xels from one maxval and format to a new set:

void pnm_promoteformatrow(xel* xelrow, int cols, xelval maxval, int format, xelval new-maxval,
int newformat)

Use this when combining multiple anymaps of different types—just take the maximum value of the maxvals and the max of
the formats, and promote them all to that.

This promotes an entire anymap:

void pnm_promoteformat(xel** xels, int cols, int rows, xelval maxval,
int format, xelval newmaxval, int newformat)

XEL MANIPULATION
These return a white or black xel, respectively, for the given maxval and format:

xel pnm_whitexel(xelval maxval, int format)
xel pnm_blackxel(xelval maxval, int format)

This inverts an xel:

void pnm_invertxel(xel* x, xelval maxval, int format)

This figures out an appropriate background xel based on this row:

xel pnm_backgroundxelrow(xel* xelrow, int cols, xelval maxval, int format)

This figures out a background xel based on an entire anymap:

xel pnm_backgroundxel(xel** xels, int cols, int rows, xelval maxval,
int format)

This can do a slightly better job than pnm_backgroundxelrow().

SEE ALSO
pbm(3), pgm(3), ppm(3)

AUTHOR
Copyright  1989, 1991 by Tony Hansen and Jef Poskanzer.

973

libppm
libppm—Functions to support portable pixmap programs

SYNOPSIS
#include <ppm.h>
cc ... libppm.a libpgm.a libpbm.a

TYPES AND CONSTANTS
typedef ... pixel;
typedef ... pixval;
#define PPM_MAXMAXVAL ...
extern pixval ppm_pbmmaxval;

Each pixel contains three pixvals, each of which should contain only the values between 0 and PPM_MAXMAXVAL. ppm_pbmmaxval
is the maxval used when a PPM program reads a PBM file. Normally it is 1; however, for some programs, a larger value gives
better results.

For distinguishing different file formats and types, use

#define PPM_FORMAT ...
#define RPPM_FORMAT ...
#define PPM_TYPE PPM_FORMAT
int PPM_FORMAT_TYPE(int format)

These three macros retrieve the red, green, or blue value from the given pixel:

pixval PPM_GETR(pixel p)
pixval PPM_GETG(pixel p)
pixval PPM_GETB(pixel p)

This macro assigns the given red, green, and blue values to the pixel:

void PPM_ASSIGN(pixel p, pixval red, pixval grn, pixval blu)

This macro checks two pixels for equality:

int PPM_EQUAL(pixel p, pixel q)

The following macro scales the colors of pixel p according the old and new maximum values and assigns the new values to
newp. It is intended to make writing ppm to whatever easier.

void PPM_DEPTH(pixel newp, pixel p, pixval oldmaxval, pixval newmaxval)

This macro determines the luminance of the pixel p:

float PPM_LUMIN(pixel p)

MEMORY MANAGEMENT
Allocate an array of pixels:

pixel** ppm_allocarray(int cols, int rows)

Allocate a row of the given number of pixels:

pixel* ppm_allocrow(int cols)

Free the array allocated with ppm_allocarray() containing the given number of rows:

void ppm_freearray(pixel** pixels, int rows)

Free a row of pixels:

void pbm_freerow(pixel* pixelrow)

libppm

Part III: Library Functions974

READING PBM FILES
void ppm_readppminit(FILE* fp, int* colsP, int* rowsP, pixval* maxvalP, int* formatP)

Read the header from a PPM file, filling in the rows, cols, maxval, and format variables.

void ppm_readppmrow(FILE* fp, pixel* pixelrow, int cols, pixval maxval, int format)

Read a row of pixels into the pixelrow array. Format, cols, and maxval were filled in by ppm readppminit().

pixel** ppm_readppm(FILE* fp, int* colsP, int* rowsP, pixval* maxvalP)

Read an entire pixmap file into memory, returning the allocated array and filling in the rows, cols, and maxval variables. This
function combines ppm_readppminit(), ppm_allocarray(), and ppm_readppmrow().

WRITING FILES
void ppm_writeppminit(FILE* fp, int cols, int rows, pixval maxval, int forceplain)

Write the header for a portable pixmap file. The forceplain flag forces a plain-format file to be written, as opposed to a raw-
format one.

void ppm_writeppmrow(FILE* fp, pixel* pixelrow, int cols, pixval maxval, int forceplain)

Write a row from a portable pixmap.

void ppm_writeppm(FILE* fp, pixel** pixels, int cols, int rows, pixval maxval, int force-plain)

Write the header and all data for a portable pixmap. This function combines ppm_writeppminit() and ppm_writeppmrow().

COLOR NAMES
This line parses an ASCII color name into a pixel:

pixel ppm_parsecolor(char* colorname, pixval maxval)

The color can be specified in three ways: as a name, assuming that a pointer to an X11-style color names file was compiled
in; as an X11-style hexadecimal number (#rgb, #rrggbb, #rrrgggbbb, or #rrrrggggbbbb); or as a triplet of decimal floating
point numbers separated by commas (r.r,g.g,b.b).

This line returns a pointer to a string describing the given color:

char* ppm_colorname(pixel* colorP, pixval maxval, int hexok)

If the X11 color names file is available and the color appears in it, that name is returned. Otherwise, if the hexok flag is true,
then a hexadecimal colorspec is returned; if hexok is false and the X11 color names file is available, then the closest matching
color is returned; otherwise, it’s an error.

SEE ALSO
pbm(3), pgm(3)

AUTHOR
Copyright  1989, 1991 by Tony Hansen and Jef Poskanzer

localeconv
localeconv—Gets numeric formatting information

SYNOPSIS
#include <locale.h>
struct lconv *localeconf(void);

975

DESCRIPTION
The localeconf() function returns a string to a struct lconv for the current locale.

CONFORMS TO
This command conforms to ANSI C and POSIX.1.

Linux supports the portable locales C and POSIX and also the European Latin-1 ISO-8859-1, and Russian KOI-8 locales.

The printf() family of functions may or may not honor the current locale.

SEE ALSO
locale(1), localedef(1), strcoll(3), isalpha(3), setlocale(3), strftime(3), locale(7)

GNU, 25 April 1993

longjmp
longjmp—Nonlocal jump to a saved stack context

SYNOPSIS
#include <setjmp.h>
void longjmp(jmp_buf env,int val);

DESCRIPTION
longjmp() and setjmp(3) are useful for dealing with errors and interrupts encountered in a low-level subroutine of a program.
longjmp() restores the environment saved by the last call of setjmp() with the corresponding env argument. After longjmp() is
completed, program execution continues as if the corresponding call of setjmp() had just returned the value val. longjmp()
cannot cause 0 to be returned. If longjmp is invoked with a second argument of 0, 1 will be returned instead.

RETURN VALUE
This function never returns.

CONFORMS TO
POSIX

NOTES
POSIX does not specify if the signal context will be restored or not. If you want to save restore signal masks, use
siglongjmp(3). longjmp() makes programs hard to understand and maintain. If possible, an alternative should be used.

SEE ALSO
setjmp(3), sigsetjmp(2), siglongjmp(2)

25 November 1994

lfind, lsearch
lfind, lsearch—Linear search of an array

SYNOPSIS
#include <stdlib.h>
void *lfind(const void *key, const void *base, size t *nmemb,

lfind, lsearch

Part III: Library Functions976

size_t size,int(*compar)(const void *, const void *));
void *lsearch(const void *key, const void *base, size_t *nmemb,
size_t size,int(*compar)(const void *, const void *));

DESCRIPTION
lfind() and lsearch() perform a linear search for key in the array base, which has *nmemb elements of size bytes each. The
comparison function referenced by compar is expected to have two arguments that point to the key object and to an array
member, in that order, and which returns zero if the key object matches the array member, and non-zero otherwise.

If lsearch() does not find a matching element, then the key object is inserted at the end of the table, and *nmemb is
incremented.

RETURN VALUE
lfind() returns a pointer to a matching member of the array, or NULL if no match is found. lsearch()returns a pointer to a
matching member of the array, or to the newly added member if no match is found.

CONFORMS TO
SVID 3, BSD 4.3, ISO 9899

SEE ALSO
bsearch(3), hsearch(3), tsearch(3)

GNU, 17 September 1995

calloc, malloc, free, realloc
calloc, malloc, free, realloc—Allocate and free dynamic memory

SYNOPSIS
#include <stdlib.h>
void *calloc(size_t nmemb, size_t size);
void *malloc(size_t size);
void free(void *ptr);
void *realloc(void *ptr, size_t size);

DESCRIPTION
calloc() allocates memory for an array of nmemb elements of size bytes each and returns a pointer to the allocated memory.
The memory is set to zero.

malloc() allocates size bytes and returns a pointer to the allocated memory. The memory is not cleared.

free() frees the memory space pointed to by ptr, which must have been returned by a previous call to malloc(), calloc() or
realloc(). If ptr is NULL, no operation is performed.

realloc() changes the size of the memory block pointed to by ptr to size bytes. The contents will be unchanged to the
minimum of the old and new sizes; newly allocated memory will be uninitialized. If ptr is NULL, the call is equivalent to
malloc(size); if size is equal to zero, the call is equivalent to free(ptr). Unless ptr is NULL, it must have been returned by an
earlier call to malloc(), calloc(), or realloc().

RETURN VALUES
For calloc() and malloc(), the value returned is a pointer to the allocated memory, which is suitably aligned for any kind of
variable, or NULL if the request fails.

free() returns no value.

977

realloc()returns a pointer to the newly allocated memory, which is suitably aligned for any kind of variable and may be
different from ptr, or NULL if the request fails or if size was equal to 0. If realloc() fails, the original block is left untouched;
it is not freed or moved.

CONFORMS TO
ANSI C

SEE ALSO
brk(2)

GNU, 4 April 1993

mblen
mblen—Determines the number of bytes in a character

SYNOPSIS
#include <stdlib.h>
int_mblen(const char *s, size_t n);

DESCRIPTION
The mblen() function scans the first n bytes of the string s and returns the number of bytes in a character. The mblen()
function is equivalent to

mbtowc((wchat t*)0,s,n);

except that the shift state of the mbtowc() function is not affected.

RETURN VALUE
The mblen()returns the number of bytes in a character, or –1 if the character is invalid, or 0 if it is a NULL string.

CONFORMS TO
SVID 3, ISO 9899

SEE ALSO
mbstowcs(3), mbtowc(3), wcstombs(3), wctomb(3)

GNU, 29 March 1993

mbstowcs
mbstowcs—Converts a multibyte string to a wide character string

SYNOPSIS
#include <stdlib.h>
size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);

DESCRIPTION
The mbstowcs() function converts a sequence of multibyte characters from the array s into a sequence of wide characters and
stores up to n wide characters in the array pwcs.

mbstowcs

Part III: Library Functions978

RETURN VALUE
mbstowcs() returns the number of wide characters stored, or –1 if s contains an invalid multibyte character.

CONFORMS TO
SVID 3, ISO 9899

SEE ALSO
mblen(3), mbtowc(3), wcstombs(3), wctomb(3)

GNU, 29 March 1993

mbtowc
mbtowc—Converts a multibyte character to a wide character

SYNOPSIS
#include <stdlib.h>
int mbtowc(wchar_t *pwc, const char *s, size_t n);

DESCRIPTION
The mbtowc() function converts a multibyte character s, which is no longer than n bytes, into a wide character and, if pwc is
not NULL, stores the wide character in pwc.

RETURN VALUE
mbtowc() returns the number of bytes in the multibyte character, or –1 if the multibyte character is not valid.

CONFORMS TO
SVID 3, ISO 9899

SEE ALSO
mblen(3), mbstowcs(3), wcstombs(3), wctomb(3)

GNU, 29 March 1993

memccpy
memccpy—Copies memory area

SYNOPSIS
#include <string.h>
void *memccpy(void *dest, const void *src,int c, size_t n);

DESCRIPTION
The memccpy() function copies no more than n bytes from memory area src to memory area dest, stopping when the
character c is found.

RETURN VALUE
The memccpy() function returns a pointer to the next character in dest after c, or NULL if c was not found in the first n
characters of src.

979

CONFORMS TO
SVID 3, BSD 4.3

SEE ALSO
bcopy(3), memcpy(3), memmove(3), strcpy(3), strncpy(3)

GNU, 10 April 1993

memchr
memchr—Scans memory for a character

SYNOPSIS
#include <string.h>
void *memchr(const void *s,int c, size_t n);

DESCRIPTION
The memchr() function scans the first n bytes of the memory area pointed to by s for the character c. The first byte to match c
(interpreted as an unsigned character) stops the operation.

RETURN VALUE
The memchr() function returns a pointer to the matching byte or NULL if the character does not occur in the given memory
area.

CONFORMS TO
SVID 3, BSD 4.3, ISO 9899

SEE ALSO
index(3), rindex(3), strchr(3), strpbrk(3), strrchr(3), strsep(3), strspn(3), strstr(3)

GNU, 12 April 1993

memcmp
memcmp—Compares memory areas

SYNOPSIS
#include <string.h>
int memcmp(const void *s1, const void *s2, size_t n);

DESCRIPTION
The memcmp() function compares the first n bytes of the memory areas s1 and s2. It returns an integer less than, equal to, or
greater than zero if s1 is found, respectively, to be less than, to match, or to be greater than s2.

RETURN VALUE
The memcmp() function returns an integer less than, equal to, or greater than zero if the first n bytes of s1 is found, respec-
tively, to be less than, to match, or be greater than the first n bytes of s2.

memcmp

Part III: Library Functions980

CONFORMS TO
SVID 3, BSD 4.3, ISO 9899

SEE ALSO
bcmp(3), strcasecmp(3), strcmp(3), strcoll(3), strncmp(3), strncasecmp(3)

10 April 1993

memcpy
memcpy—Copies memory area

SYNOPSIS
#include <string.h>
void *memcpy(void *dest, const void *src, size_t n);

DESCRIPTION
The memcpy() function copies n bytes from memory area src to memory area dest. The memory areas may not overlap. Use
memmove(3) if the memory areas do overlap.

RETURN VALUE
The memcpy() function returns a pointer to dest.

CONFORMS TO
SVID 3, BSD 4.3, ISO 9899

SEE ALSO
bcopy(3), memccpy(3), memmove(3), strcpy(3), strncpy(3)

GNU, 10 April 1993

memfrob
memfrob—Frobnicates (encrypts) a memory area

SYNOPSIS
#include <string.h>
void *memfrob(void *s, size_t n);

DESCRIPTION
The memfrob() function encrypts the first n bytes of the memory area s by using exclusive OR on each character with the
number 42. The effect can be reversed by using memfrob() on the encrypted memory area.

Note that this function is not a proper encryption routine as the XOR constant is fixed, and is only suitable for hiding strings.

RETURN VALUE
The memfrob() function returns a pointer to the encrypted memory area.

981

CONFORMS TO
The memfrob() function is unique to the Linux C Library and GNU C Library.

SEE ALSO
strfry(3)

GNU, 12 April 1993

memmem
memmem—Locates a substring

SYNOPSIS
#include <string.h>
void *memmem(const void *needle, size_t needlelen,
const void *haystack, size_t haystacklen”);”

DESCRIPTION
The memmem() function finds the first occurrence of the substring needle of length needlelen in the memory area haystack of
length haystacklen.

RETURN VALUE
The memmem() function returns a pointer to the beginning of the substring, or NULL if the substring is not found.

SEE ALSO
strstr(3)

GNU, 11 April 1993

memmove
memmove—Copies memory area

SYNOPSIS
#include <string.h>
void *memmove(void *dest, const void *src, size_t n);

DESCRIPTION
The memmove() function copies n bytes from memory area src to memory area dest. The memory areas may overlap.

RETURN VALUE
The memmove() function returns a pointer to dest.

CONFORMS TO
SVID 3, BSD 4.3, ISO 9899

SEE ALSO
bcopy(3), memccpy(3), memcpy(3), strcpy(3), strncpy(3)

GNU, 10 April 1993

memmove

Part III: Library Functions982

memset
memset—Fills memory with a constant byte

SYNOPSIS
#include <string.h>
void *memset(void *s,int c, size_t n);

DESCRIPTION
The memset() function fills the first n bytes of the memory area pointed to be s with the constant byte c.

RETURN VALUE
The memset() function returns a pointer to the memory area s.

CONFORMS TO
SVID 3, BSD 4.3, ISO 9899

SEE ALSO
bzero(3), swab(3)

GNU, 11 April 1993

mkfifo
mkfifo—Makes a FIFO special file (a named pipe)

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
int mkfifo (const char *pathname,mode_t mode);

DESCRIPTION
mkfifo makes a FIFO special file with name pathname. mode specifies the FIFO’s permissions. It is modified by the process’s
umask in the usual way: the permissions of the created file are (mode&umask).

A FIFO special file is similar to a pipe, except that it is created in a different way. Instead of being an anonymous communi-
cations channel, a FIFO special file is entered into the filesystem by calling mkfifo.

After you have created a FIFO special file in this way, any process can open it for reading or writing, in the same way as an
ordinary file. However, it has to be open at both ends simultaneously before you can proceed to do any input or output
operations on it. Opening a FIFO for reading normally blocks until some other process opens the same FIFO for writing,
and vice versa.

RETURN VALUE
The normal, successful return value from mkfifo is 0. In the case of an error, -1 is returned (in which case, errno is set
appropriately).

ERRORS
EACCES One of the directories in pathname did not allow search (execute) permission.

EEXIST pathname already exists.

983

ENAMETOOLONG Either the total length of pathname is greater than PATH_MAX, or an individual
filename component has a length greater than NAME_MAX. In the GNU system,
there is no imposed limit on overall filename length, but some filesystems may
place limits on the length of a component.

ENOENT A directory component in pathname does not exist or is a dangling symbolic
link.

ENOSPC The directory or filesystem has no room for the new file.

ENOTDIR A component used as a directory in pathname is not, in fact, a directory.

EROFS pathname refers to a read-only filesystem.

CONFORMS TO
POSIX.1

SEE ALSO
mkfifo(1), read(2), write(2), open(2), close(2), stat(2), umask(2)

Linux 1.2.13, 3 September 1995

mkstemp
mkstemp—Creates a unique temporary file

SYNOPSIS
#include <unistd.h>
int *mkstemp(char *template);

DESCRIPTION
The mkstemp() function generates a unique temporary filename from template. The last six characters of template must be
XXXXXX and these are replaced with a string that makes the filename unique. The file is then created with mode read/write and
permissions 0666.

RETURN VALUE
The mkstemp() function returns the file descriptor fd of the temporary file.

ERRORS
EINVAL The last six characters of template were not XXXXXX.

EEXIST The temporary file is not unique.

CONFORMS TO
BSD 4.3

SEE ALSO
mktemp(3), tmpnam(3), tempnam(3), tmpfile(3)

GNU, 3 April 1993

mktemp
mktemp—Makes a unique temporary filename

mktemp

Part III: Library Functions984

SYNOPSIS
#include <unistd.h>
char *mktemp(char *template);

DESCRIPTION
The mktemp() function generates a unique temporary filename from template. The last six characters of template must be
XXXXXX and these are replaced with a string that makes the filename unique.

RETURN VALUE
The mktemp() function returns a pointer to template on success, and NULL on failure.

ERRORS
EINVAL The last six characters of template were not XXXXXX.

CONFORMS TO
BSD 4.3. POSIX dictates tmpnam().

SEE ALSO
mkstemp(3), tmpnam(3), tempnam(3), tmpfile(3)

GNU, 3 April 1993

modf
modf—Extracts signed integral and fractional values from floating-point number

SYNOPSIS
#include <math.h>
double modf(double x, double *iptr);

DESCRIPTION
The modf() function breaks the argument x into an integral part and a fractional part, each of which has the same sign as x.
The integral part is stored in iptr.

RETURN VALUE
The modf() function returns the fractional part of x.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
frexp(3), ldexp(3)

6 June 1993

asctime, ctime, difftime, gmtime, localtime, mktime
asctime, ctime, difftime, gmtime, localtime, mktime—Convert date and time to ASCII

985

SYNOPSIS
extern char *tzname[2];

void tzset()

#include <sys/types.h>

char *ctime(clock)
const time_t *clock;

double difftime(time1, time0)
time_t time1;
time_t time0;

#include <time.h>

char *asctime(tm)
const struct tm *tm;

struct tm *localtime(clock)
const time_t *clock;

struct tm *gmtime(clock)
const time_t *clock;

time_t mktime(tm)
struct tm *tm;

cc ... -lz

DESCRIPTION
ctime converts a long integer, pointed to by clock, representing the time in seconds since 00:00:00 UTC, January 1, 1970,
and returns a pointer to a 26-character string of the form Thu Nov 24 18:22:48 1986. (Note: UTC is Coordinated Universal
Time.) All the fields have constant width.

localtime and gmtime return pointers to tm structures, described in the following paragraphs. localtime corrects for the time
zone and any time zone adjustments (such as Daylight Saving Time in the United States). Before doing so, localtime calls
tzset (if tzset has not been called in the current process). After filling in the tm structure, localtime sets the tm_isdst’th
element of tzname to a pointer to an ASCII string that’s the time zone abbreviation to be used with localtime’s return value.

gmtime converts to Coordinated Universal Time.

asctime converts a time value contained in a tm structure to a 26-character string, as shown in the preceding example, and
returns a pointer to the string.

mktime converts the broken-down time, expressed as local time, in the structure pointed to by tm into a calendar time value
with the same encoding as that of the values returned by the time function. The original values of the tm_wday and tm_yday
components of the structure are ignored, and the original values of the other components are not restricted to their normal
ranges. (A positive or zero value for tm_isdst causes mktime to presume initially that summer time (for example, Daylight
Saving Time in the United States) respectively, is or is not in effect for the specified time. A negative value for tm_isdst
causes the mktime function to attempt to divine whether summer time is in effect for the specified time.) On successful
completion, the values of the tm_wday and tm_yday components of the structure are set appropriately, and the other
components are set to represent the specified calendar time, but with their values forced to their normal ranges; the final
value of tm_mday is not set until tm_mon and tm_year are determined. mktime returns the specified calendar time; if the calendar
time cannot be represented, it returns -1.

asctime, ctime, difftime, gmtime, localtime, mktime

Part III: Library Functions986

difftime returns the difference between two calendar times, (time1 - time0), expressed in seconds.

Declarations of all the functions and externals, and the tm structure, are in the <time.h> header file. The structure (of type)
struct tm includes the following fields:

 int tm_sec; / seconds (0 - 60) /
 int tm_min; / minutes (0 - 59) /
 int tm_hour; / hours (0 - 23) /
 int tm_mday; / day of month (1 - 31) /
 int tm_mon; / month of year (0 - 11) /
 int tm_year; / year – 1900 /
 int tm_wday; / day of week (Sunday = 0) /
 int tm_yday; / day of year (0 - 365) /
 int tm_isdst; / is summer time in effect? /
 char tm_zone; / abbreviation of timezone name /
 long tm_gmtoff; / offset from UTC in seconds /

The tm_zone and tm_gmtoff fields exist, and are filled in, only if arrangements to do so were made when the library containing
these functions was created. There is no guarantee that these fields will continue to exist in this form in future releases of this
code.

Tm_isdst is non-zero if summer time is in effect.

Tm_gmtoff is the offset (in seconds) of the time represented from UTC, with positive values indicating east of the Prime
Meridian.

FILES
/usr/local/etc/zoneinfo Time zone information directory

/usr/local/etc/zoneinfo/localtime Local time zone file

/usr/local/etc/zoneinfo/posixrules Used with POSIX-style TZs

/usr/local/etc/zoneinfo/GMT For UTC leap seconds

If /usr/local/etc/zoneinfo/GMT is absent, UTC leap seconds are loaded from /usr/local/etc/zoneinfo/posixrules.

SEE ALSO
getenv(3), newtzset(3), time(2), tzfile(5)

NOTES
The return values point to static data; the data is overwritten by each call. The tm_zone field of a returned struct tm points to
a static array of characters, which will also be overwritten at the next call (and by calls to tzset).

Avoid using out-of-range values with mktime when setting up lunch with promptness sticklers in Riyadh.

tzset
tzset—Initializes time conversion information

SYNOPSIS
void tzset();
cc ... -lz

987

DESCRIPTION
tzset uses the value of the environment variable TZ to set time conversion information used by localtime.If TZ does not
appear in the environment, the best available approximation to local wall clock time, as specified by the tzfile(5)-format file
localtime in the system time conversion information directory, is used by localtime. If TZ appears in the environment but its
value is a null string, Coordinated Universal Time (UTC) is used (without leap second correction). If TZ appears in the
environment and its value is not a null string, it is used in one of the following ways:

If the value begins with a colon, it is used as a pathname of a file from which to read the time conversion information.

If the value does not begin with a colon, it is first used as the pathname of a file from which to read the time conversion
information, and, if that file cannot be read, is used directly as a specification of the time conversion information.

When TZ is used as a pathname, if it begins with a slash, it is used as an absolute pathname; otherwise, it is used as a
pathname relative to a system time conversion information directory. The file must be in the format specified in tzfile(5).

When TZ is used directly as a specification of the time conversion information, it must have the following syntax (spaces
inserted for clarity):

std offset[dst[offset][,rule]]

The elements are as follows:

std and dst Three or more bytes that are the designation for the standard (std) or
summer (dst) time zone. Only std is required; if dst is missing, then
summer time does not apply in this locale. Uppercase and lowercase
letters are explicitly allowed. Any characters except a leading colon (:),
digits, comma (,), minus (-), plus (+), and ASCII NUL are allowed.

offset Indicates the value one must add to the local time to arrive at
Coordinated Universal Time. The offset has the form:

hh[:mm[:ss]]

The minutes (mm) and seconds (ss) are optional. The hour (hh) is required
and may be a single digit. The offset following std is required. If no
offset follows dst, summer time is assumed to be one hour ahead of
standard time. One or more digits may be used; the value is always
interpreted as a decimal number. The hour must be between zero and 24,
and the minutes (and seconds)—if present—between zero and 59. If
preceded by a “+”, the time zone shall be east of the Prime Meridian;
otherwise, it shall be west (which may be indicated by an optional
preceding “-”).

rule Indicates when to change to and back from summer time. The rule has
the form:

date/time,date/time

where the first date describes when the change from standard to summer
time occurs and the second date describes when the change back happens.
Each time field describes when, in current local time, the change to the
other time is made.

The format of date is one of the following:

The d’th day (0 <= d <= 6) of week n of month m of the year (1 <= n
<= 5, 1 <= m <= 12, where week 5 means “the last d day in month m”
which may occur in either the fourth or the fifth week). Week 1
is the first week in which the d’th day occurs. Day zero is Sunday.

Jn The Julian day n (1 <= n <= 365). Leap days are not counted; that is, in
all years—including leap years—February 28 is day 59 and March 1 is
day 60. It is impossible to explicitly refer to the occasional February 29.

tzset

Part III: Library Functions988

n The zero-based Julian day (0 <= n <= 365). Leap days are counted, and it
is possible to refer to February 29.

Mm.n.d The d’th day (0 <= d <= 6) of week n of month m of the year (1 <= n <= 5,
1 <= m <= 12, where week 5 means “the last d day in month m,” which
may occur in either the fourth or the fifth week). Week 1 is the first week
in which the d’th day occurs. Day zero is Sunday.

The time has the same format as offset except that no leading sign (“+”
or “-”) is allowed. The default, if time is not given, is 02:00:00.

If no rule is present in TZ, the rules specified by the tzfile(5)-format file posixrules in the system time conversion
information directory are used, with the standard and summer time offsets from UTC replaced by those specified by the
offset values in TZ.

For compatibility with System V Release 3.1, a semicolon (;) may be used to separate the rule from the rest of the specifica-
tion.

If the TZ environment variable does not specify a tzfile(5)-format and cannot be interpreted as a direct specification, UTC is
used.

FILES
/usr/local/etc/zoneinfo Time zone information directory

/usr/local/etc/zoneinfo/localtime Local time zone file

/usr/local/etc/zoneinfo/posixrules Used with POSIX-style TZs

/usr/local/etc/zoneinfo/GMT For UTC leap seconds

If /usr/local/etc/zoneinfo/GMT is absent, UTC leap seconds are loaded from /usr/local/etc/zoneinfo/posixrules.

SEE ALSO
getenv(3), newctime(3), time(2), tzfile(5)

on_exit
on exit—Registers a function to be called at normal program termination

SYNOPSIS
#include <stdlib.h>
int on_exit(void (*function)(int , void *), void *arg);

DESCRIPTION
The on_exit() function registers the given function to be called at normal program termination, whether via exit(2) or via
return from the program’s main. The function is passed the argument to exit(3) and the arg argument from on_exit().

RETURN VALUE
The on_exit() function returns the value 0 if successful; otherwise, the value –1 is returned.

SEE ALSO
exit(3), atexit(3)

GNU, 2 April 1993

989

opendir
opendir—Opens a directory

SYNOPSIS
#include <sys/types.h>
#include <dirent.h>
DIR *opendir(const char *name);

DESCRIPTION
The opendir() function opens a directory stream corresponding to the directory name, and returns a pointer to the directory
stream. The stream is positioned at the first entry in the directory.

RETURN VALUE
The opendir() function returns a pointer to the directory stream or NULL if an error occurred.

ERRORS
EACESS Permission denied

EMFILE Too many file descriptors in use by process

ENFILE Too many files are currently open in the system

ENOENT Directory does not exist, or name is an empty string

ENOMEM Insufficient memory to complete the operation

ENOTDIR name is not a directory

CONFORMS TO
SVID 3, POSIX, BSD 4.3

SEE ALSO
open(2), readdir(3), closedir(3), rewinddir(3), seekdir(3), telldir(3), scandir(3)

11 June 1995

parsedate
parsedate—Converts time and date string to number

SYNOPSIS
#include <sys/types.h>
typedef struct_TIMEINFO f
time_t time;
long usec;
long tzone;
} TIMEINFO;
time_t
parsedate(text, now)
char *text;
TIMEINFO *now;

DESCRIPTION
parsedate converts many common time specifications into the number of seconds since the epoch, that is, a time_t; see
time(2).

parsedate

Part III: Library Functions990

parsedate returns the time, or –1 on error. text is a character string containing the time and date. now is a pointer to the time
that should be used for calculating relative dates. If now is NULL, then GetTimeInfo in libinn(3) is used to obtain the current
time and time zone.

The character string consists of zero or more specifications of the following form:

time A time of day, which is of the form hh[:mm[:ss]] [meridian][zone]or hhmm
[meridian][zone]. If no meridian is specified, hh is interpreted on a 24-hour
clock.

date A specific month and day with optional year. The acceptable formats are
mm/dd[/yy], yyyy/mm/dd, monthname dd[, yy], dd monthname [yy], and
day,ddmonthnameyy, and day, dd monthname yy. The default year is the current
year. If the year is less then 100, then 1900 is added to it; if it is less then 21,
then 2000 is added to it.

relative time A specification relative to the current time. The format is number unit;
acceptable units are year, month, week, day, hour, minute (or min), and second
(or sec). The unit can be specified as a singular or plural, as in 3 weeks.

The actual date is calculated according to the following steps. First, any absolute date or time is processed and converted.
Using that time as the base, day-of-week specifications are added. Next, relative specifications are used. If a date or day is
specified, and no absolute or relative time is given, midnight is used. Finally, a correction is applied so that the correct hour
of the day is produced after allowing for Daylight Savings Time differences.

parsedate ignores case when parsing all words; unknown words are taken to be unknown time zones, which are treated as
GMT. The names of the months and days of the week can be abbreviated to their first three letters, with optional trailing
period. Periods are ignored in any time zone or meridian values.

BUGS
parsedate does not accept all desirable and unambiguous constructions. Semantically incorrect dates such as “February 31”
are accepted.

Daylight Savings Time is always taken as a one-hour change that is wrong for some places. The Daylight Savings Time
correction can get confused if parsing a time within an hour of when the reckoning changes, or if given a partial date.

HISTORY
Originally written by Steven M. Bellovin (smb@research.att.com) while at the University of North Carolina at Chapel Hill
and distributed under the name getdate.

A major overhaul was done by Rich $alz (rsalz@bbn.com) and Jim Berets (jberets@bbn.com) in August, 1990.

It was further revised (primarily to remove obsolete constructs and time zone names) a year later by Rich (now
rsalz@osf.org) for InterNetNews, and the name was changed.

SEE ALSO
date(1), ctime(3), libinn(3), time(2)

perror
perror—Prints a system error message

SYNOPSIS
#include <stdio.h>

void perror(const char *s);

#include <errno.h>

991

const char *sys_errlist[];
int sys_nerr;

DESCRIPTION
The routine perror() produces a message on the standard error output, describing the last error encountered during a call to
a system or library function. The argument string s is printed first, then a colon and a blank, then the message and a newline.
To be of most use, the argument string should include the name of the function that incurred the error. The error number is
taken from the external variable errno, which is set when errors occur but not cleared when nonerroneous calls are made.

The global error list sys_errlist[] indexed by errno can be used to obtain the error message without the newline. The largest
message number provided in the table is sys_nerr –1. Be careful when directly accessing this list because new error values
may not have been added to sys_errlist[].

When a system call fails, it usually returns –1 and sets the variable errno to a value describing what went wrong. (These values
can be found in <errno.h>.) Many library functions do likewise. The function perror() serves to translate this error code into
human-readable form. Note that errno is undefined after a successful library call. This call may well change this variable,
even though it succeeds, for example, because it internally used some other library function that failed. Thus, if a failing call
is not immediately followed by a call to perror,the value of errno should be saved.

CONFORMS TO
ANSI C, BSD 4.3, POSIX, X/OPEN

SEE ALSO
strerror(3)

16 May 1996

popen, pclose
popen, pclose—Process I/O

SYNOPSIS
#include <stdio.h>

FILE *popen(const char *command, const char *type);

int pclose(FILE *stream);

DESCRIPTION
The popen() function opens a process by creating a pipe, forking, and invoking the shell. Because a pipe is by definition
unidirectional, the type argument may specify only reading or writing, not both; the resulting stream is correspondingly
read-only or write-only.

The command argument is a pointer to a null-terminated string containing a shell command line. This command is passed to
/bin/sh using the –c flag; interpretation, if any, is performed by the shell. The mode argument is a pointer to a null-
terminated string which must be either r for reading or w for writing.

The return value from popen() is a normal standard I/O stream in all respects save that it must be closed with pclose() rather
than fclose(). Writing to such a stream writes to the standard input of the command; the command’s standard output is the
same as that of the process that called popen(), unless this is altered by the command itself. Conversely, reading from a
“popened” stream reads the command’s standard output, and the command’s standard input is the same as that of the
process that called popen.

popen, pclose

Part III: Library Functions992

Note that output popen streams are fully buffered by default.

The pclose function waits for the associated process to terminate and returns the exit status of the command as returned by
wait4.

RETURN VALUE
The popen function returns NULL if the fork(2) or pipe(2) calls fail, or if it cannot allocate memory.

The pclose function returns –1 if stream is not associated with a “popened” command, if stream already “pclosed,” or if wait4
returns an error.

ERRORS
The popen function does not reliably set errno. (Is this true for Linux?)

BUGS
The standard input of a command opened for reading shares its seek offset with the process that called popen(); therefore, if
the original process has done a buffered read, the command’s input position may not be as expected. Similarly, the output
from a command opened for writing may become intermingled with that of the original process. The latter can be avoided
by calling fflush(3) before popen.

Failure to execute the shell is indistinguishable from the shell’s failure to execute command, or an immediate exit of the
command. The only hint is an exit status of 127. (Is this true under Linux?)

The function popen() always calls sh, never calls csh.

HISTORY
A popen() and a pclose() function appeared in Version 7 AT&T UNIX.

SEE ALSO
fork(2), sh(1), pipe(2), wait4(2), fflush(3), fclose(3), fopen(3), stdio(3), system(3), fclose(3), fopen(3), stdio(3), system(3).

BSD man page, 17 May 1996

printf, fprintf, sprintf, snprintf, vprintf, vfprintf,
vsprintf, vsnprintf

printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf, vsnprintf—Formatted output conversion

SYNOPSIS
#include <stdio.h>

int printf(const char *format, ...);
int fprintf(FILE *stream, const char *format, ...);
int sprintf(char *str, const char *format, ...);
int snprintf(char *str, size_t size, const char *format, ...);

#include <stdarg.h>

int vprintf(const char *format,va_list ap);
ant vfprintf(FILE *stream, const char *format,va_list ap);
int vsprintf(char *str, char *format, va_list ap);
int vsnprintf(char *str, size_t size, char *format,va_list ap);

993

DESCRIPTION
The printf family of functions produces output according to a format, as described in the following paragraphs. The
functions printf and vprintf write output to stdout, the standard output stream; fprintf and vfprintf write output to the
given output stream; sprintf, snprintf, vsprintf, and vsnprintf write to the character string str.

These functions write the output under the control of a format string that specifies how subsequent arguments (or arguments
accessed via the variable-length argument facilities of stdarg(3)) are converted for output.

These functions return the number of characters printed (not including the trailing \0 used to end output to strings).
snprintf and vsnprintf do not write more than size bytes (including the trailing \0), and return -1 if the output was
truncated due to this limit.

The format string is composed of zero or more directives: ordinary characters (not %), which are copied unchanged to the
output stream; and conversion specifications, each of which results in fetching zero or more subsequent arguments. Each
conversion specification is introduced by the character %. The arguments must correspond properly (after type promotion)
with the conversion specifier. After the %, zero or more of the following flags appear in sequence:

Specifying that the value should be converted to an alternate form. For c, d, i, n, p, s, and u
conversions, this option has no effect. For o conversions, the precision of the number is increased to
force the first character of the output string to a zero (except if a zero value is printed with an explicit
precision of zero). For x and X conversions, a non-zero result has the string 0x (or 0X for X
conversions) prepended to it. For e, E, f, g, and G conversions, the result will always contain a decimal
point, even if no digits follow it (normally, a decimal point appears in the results of those conversions
only if a digit follows). For g and G conversions, trailing zeros are not removed from the result as they
would otherwise be.

0 Specifying zero padding. For all conversions except n, the converted value is padded on the left with
zeros rather than blanks. If a precision is given with a numeric conversion (d, i, o, u, i, x, and X), the
0 flag is ignored.

– (a negative field width flag) Indicates the converted value is to be left adjusted on the field boundary.
Except for n conversions, the converted value is padded on the right with blanks, rather than on the
left with blanks or zeros. A – overrides a 0 if both are given.

‘ ‘ (a space) Specifying that a blank should be left before a positive number produced by a signed
conversion (d, e, E, f, g, G, or i).

+ Specifying that a sign always be placed before a number produced by a signed conversion.
A + overrides a space if both are used.

‘ Specifying that in a numerical argument the output is to be grouped if the locale information
indicates any. Note that many versions of gcc cannot parse this option and will issue a warning.

An optional decimal digit string specifying a minimum field width. If the converted value has fewer
characters than the field width, it will be padded with spaces on the left (or right, if the left-
adjustment flag has been given) to fill out the field width.

An optional precision, in the form of a period (.) followed by an optional digit string. If the digit
string is omitted, the precision is taken as zero. This gives the minimum number of digits to appear
for d, i, o, u, x, and X conversions; the number of digits to appear after the decimal point for e, E, and
f conversions; the maximum number of significant digits for g and G conversions; or the maximum
number of characters to be printed from a string for s conversions.

The optional character h, specifying that a following d, i, o, u, x, or X conversion corresponds to a
short int or unsigned short int argument, or that a following n conversion corresponds to a pointer
to a short int argument.

The optional character l (ell) specifying that a following d, i, o, u, x, or X conversion applies to a
pointer to a long int or unsigned long int argument, or that a following n conversion corresponds to
a pointer to a long int argument. Linux provides a non-ANSI–compliant use of two l flags as a
synonym to q or L. Thus, ll can be used in combination with float conversions. This usage is,
however, strongly discouraged.

printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf, vsnprintf

Part III: Library Functions994

The character L specifying that a following e, E, f, g, or G conversion corresponds to a long double
argument, or a following d, i, o, u, x, or X conversion corresponds to a long long argument. Note that
long long is not specified in ANSI C and therefore not portable to all architectures.

The optional character q. This is equivalent to L. See the “Standards” and “Bugs” sections for
comments on the use of ll, L, and q.

A Z character specifying that the following integer (d, i, o, u, i, x, and X) conversion corresponds to a
size_t argument.

A character that specifies the type of conversion to be applied.

A field width or precision, or both, may be indicated by an asterisk * instead of a digit string. In this case, an int argument
supplies the field width or precision. A negative field width is treated as a left adjustment flag followed by a positive field
width; a negative precision is treated as though it were missing.

The conversion specifiers and their meanings are as follows:

diouxX The int (or appropriate variant) argument is converted to signed decimal (d and i),
unsigned octal (o), unsigned decimal (u), or unsigned hexadecimal (x and X) notation. The
letters abcdef are used for x conversions; the letters ABCDEF are used for X conversions. The
precision, if any, gives the minimum number of digits that must appear; if the converted
value requires fewer digits, it is padded on the left with zeros.

eE The double argument is rounded and converted in the style [–]d.ddde\dd where there is
one digit before the decimal-point character and the number of digits after it is equal
to the precision; if the precision is missing, it is taken as 6; if the precision is zero, no
decimal-point character appears. An E conversion uses the letter E (rather than e) to
introduce the exponent. The exponent always contains at least two digits; if the value is
zero, the exponent is 00.

f The double argument is rounded and converted to decimal notation in the style
[-]ddd.ddd, where the number of digits after the decimal-point character is equal to
the precision specification. If the precision is missing, it is taken as 6; if the precision is
explicitly zero, no decimal-point character appears. If a decimal point appears, at least one
digit appears before it.

g The double argument is converted in style f or e (or E for G conversions). The precision
specifies the number of significant digits. If the precision is missing, 6 digits are given; if
the precision is zero, it is treated as 1. Style e is used if the exponent from its conversion is
less than negative 4 or greater than or equal to the precision. Trailing zeros are removed
from the fractional part of the result; a decimal point appears only if it is followed by at
least one digit.

c The int argument is converted to an unsigned char, and the resulting character is written.

s The char * argument is expected to be a pointer to an array of character type (pointer to a
string). Characters from the array are written up to (but not including) a terminating NUL
character; if a precision is specified, no more than the number specified are written. If a
precision is given, no null character need be present; if the precision is not specified, or is
greater than the size of the array, the array must contain a terminating NUL character.

p The void * pointer argument is printed in hexadecimal (as if by %#x or %#lx).

n The number of characters written so far is stored into the integer indicated by the int *
(or variant) pointer argument. No argument is converted.

% A % is written. No argument is converted. The complete conversion specification is %%.

In no case does a nonexistent or small field width cause truncation of a field; if the result of a conversion is wider than the
field width, the field is expanded to contain the conversion result.

995

EXAMPLES
To print a date and time in the form “Sunday, July 3, 10:02,” where weekday and month are pointers to strings:

#include <stdio.h>
fprintf(stdout, “%s, %s %d, %.2d:%.2d\n”,
weekday, month, day, hour, min);

To print to five decimal places:

#include <math.h>
#include <stdio.h>
fprintf(stdout, “pi = %.5f\n”, 4 * atan(1.0));

To allocate a 128-byte string and print into it:

 #include <stdio.h>
 #include <stdlib.h>
 #include <stdarg.h>

 char *newfmt(const char *fmt, ...)
 {
 char *p;
 va_list ap;
 if ((p = malloc(128)) == NULL)
 return (NULL);
 va_start(ap, fmt);
 (void) vsnprintf(p, 128, fmt, ap);
 va_end(ap);
 return (p);
 }

SEE ALSO
printf(1), scanf(3)

STANDARDS
The fprintf, printf, sprintf, vprintf, vfprintf, and vsprintf functions conform to ANSI C3.159-1989 (“ANSI C”).

The q flag is the BSD 4.4 notation for long long, while ll or the usage of L in integer conversions is the GNU notation.

The Linux version of these functions is based on the GNU libio library. Take a look at the info documentation of GNU
libc (glibc-1.08) for a more concise description.

BUGS
Some floating point conversions under Linux cause memory leaks.

All functions are fully ANSI C3.159-1989 conformant, but provide the additional flags q, Z, and ‘ as well as an additional
behavior of the L and l flags. The latter may be considered to be a bug, as it changes the behavior of flags defined in ANSI
C3.159-1989.

The effect of padding the %p format with zeros (either by the 0 flag or by specifying a precision), and the benign effect (that
is, none) of the # flag on %n and %p conversions, as well as nonsensical combinations that are not standard; such combinations
should be avoided.

Some combinations of flags defined by ANSI C are not making sense (for example, %Ld). While they may have a well-defined
behavior on Linux, this need not to be so on other architectures. Therefore, it usually is better not to use flags that are not
defined by ANSI C at all; in other words, that use q instead of L in combination with diouxX conversions or ll.

The usage of q is not the same as on BSD 4.4, as it may be used in float conversions equivalently to L.

printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf, vsnprintf

Part III: Library Functions996

Because sprintf and vsprintf assume an infinitely long string, callers must be careful not to overflow the actual space; this is
often impossible to assure.

Linux man page, 28 January 1996

psignal
psignal—Prints signal message

SYNOPSIS
#include <signal.h>
void psignal(int sig, const char *s);
extern const char *const sys_siglist[]

DESCRIPTION
The psignal() function displays a message on stderr consisting of the string s, a colon, a space, and a string describing the
signal number sig. If sig is invalid, the message displayed will indicate an unknown signal.

The array sys siglist holds the signal description strings indexed by signal number.

RETURN VALUE
The psignal() function returns no value.

CONFORMS TO
BSD 4.3

SEE ALSO
perror(3), strsignal(3)

GNU, 13 April 1993

putenv
putenv—Changes or adds an environment variable

SYNOPSIS
#include <stdlib.h>
int putenv(const char *string);

DESCRIPTION
The putenv() function adds or changes the value of environment variables. The argument string is of the form name = value.
If name does not already exist in the environment, then string is added to the environment. If name does exist, then the value
of name in the environment is changed to value.

RETURN VALUE
The putenv() function returns zero on success, or –1 if an error occurs.

ERRORS
ENOMEM Insufficient space to allocate new environment

997

CONFORMS TO
SVID 3, POSIX, BSD 4.3

SEE ALSO
getenv(3), setenv(3), unsetenv(3)

GNU, 8 April 1993

putpwent
putpwent—Writes a password file entry

SYNOPSIS
#include <pwd.h>
#include <stdio.h>
#include <sys/types.h>
int putpwent(const struct passwd *p,FILE*stream);

DESCRIPTION
The putpwent() function writes a password entry from the structure p in the file associated with stream.

The passwd structure is defined in <pwd.h> as follows:

 struct passwd {
 char *pw_name; /* user name */
 char *pw_passwd; /* user password */
 uid_t pw_uid; /* user id */
 gid_t pw_gid; /* group id */
 char *pw_gecos; /* real name */
 char *pw_dir; /* home directory */
 char *pw_shell; /* shell program */
 };

RETURN VALUE
The putpwent() function returns 0 on success, or –1 if an error occurs.

ERRORS
EINVAL Invalid (NULL) argument given

CONFORMS TO
SVID 3

SEE ALSO
fgetpwent(3), getpwent(3), setpwent(3), endpwent(3), getpwnam(3), getpwuid(3), getpw(3)

GNU, 9 April 1993

fputc, fputs, putc, putchar, puts
fputc, fputs, putc, putchar, puts—Output of characters and strings

fputc, fputs, putc, putchar, puts

Part III: Library Functions998

SYNOPSIS
#include <stdio.h>
int fputc(int c,FILE*stream);
int fputs(const char *s,FILE*stream);
int putc(int c,FILE *stream);
int putchar(int c);
int puts(char *s);
int ungetc(int c,FILE *stream);

DESCRIPTION
fputc() writes the character c, cast to an unsigned char, to stream.

fputs() writes the string s to stream, without its trailing \0.

putc() is equivalent to fputc() except that it may be implemented as a macro that evaluates stream more than once.

putchar(c); is equivalent to putc(c,stdout).

puts() writes the string s and a trailing newline to stdout.

Calls to the functions described here can be mixed with each other and with calls to other output functions from the stdio
library for the same output stream.

RETURN VALUES
fputc(), putc(), and putchar() return the character written as an unsigned char cast to an int or EOF on error.

puts() and fputs() return a non-negative number on success, or EOF on error.

CONFORMS TO
ANSI C, POSIX.1

BUGS
It is not advisable to mix calls to output functions from the stdio library with low-level calls to write() for the file descriptor
associated with the same output stream; the results will be undefined and very probably not what you want.

SEE ALSO
write(2), fopen(3), fwrite(3), scanf(3), gets(3), fseek(3), ferror(3)

GNU, 4 April 1993

qio
qio—Quick I/O part of InterNetNews library

SYNOPSIS
 #include “qio.h”
 QIOSTATE *
 QIOopen(name, size)
 char *name;
 int size;
 QIOSTATE * QIOfdopen(fd, size)
 int fd;
 int size;
 void QIOclose(qp)
 QIOSTATE *qp;

999

 char * QIOread(qp)
 QIOSTATE *qp;
 int QIOlength(qp)
 QIOSTATE *qp;
 int QIOtoolong(qp)
 QIOSTATE *qp;
 int QIOerror(qp)
 QIOSTATE *qp;
 int QIOtell(qp)
 QIOSTATE *qp;
 int QIOrewind(qp)
 QIOSTATE *qp;
 int QIOfileno(qp)
 QIOSTATE *qp;

DESCRIPTION
The routines described in this manual page are part of the InterNetNews library, libinn(3). They are used to provide quick
read access to files. The letters QIO stand for Quick I/O.

QIOopen opens the file name for reading. It uses a buffer of size bytes, which must also be larger then the longest expected line.
The header file defines the constant QIO_BUFFER as a reasonable default. If size is zero, then QIOopen will call stat(2) and use
the returned block size; if that fails it will use QIO_BUFFER. It returns NULL on error, or a pointer to a handle to be used in other
calls. QIOfdopen performs the same function except that fd refers to an already-open descriptor.

QIOclose closes the open file and releases any resources used by it.

QIOread returns a pointer to the next line in the file. The trailing newline will be replaced with a \0. If EOF is reached, an error
occurs, or if the line is longer than the buffer, QIOread returns NULL.

After a successful call to QIOread, QIOlength will return the length of the current line.

The functions QIOtoolong and QIOerror can be called after QIOread returns NULL to determine if there was an error, or if the
line was too long. If QIOtoolong returns non-zero, then the current line did not fit in the buffer, and the next call to QIOread
will try read the rest of the line. Long lines can only be discarded. If QIOerror returns non-zero, then a serious I/O error
occurred.

QIOtell returns the lseek(2) offset at which the next line will start.

QIOrewind sets the read pointer back to the beginning of the file.

QIOfileno returns the descriptor of the open file.

QIOlength, QIOtoolong, QIOerror, QIOtell, and QIOfileno are implemented as macros defined in the header file.

EXAMPLE
 QIOSTATE *h;
 long offset;
 char *p;
 h = QIOopen(“/etc/motd”, QIO_BUFFER);
 for (offset = QIOtell(h); (p = QIOread(h)) != NULL; offset = QIOtell(h))
 printf(“At %ld, %s\n”, offset, p);
 if (QIOerror(h)) {
 perror(“Read error”);
 exit(1);
 }
 QIOclose(h);

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

qio

Part III: Library Functions1000

qsort
qsort—Sorts an array

SYNOPSIS
#include <stdlib.h>
void qsort(void *base, size_t nmemb, size_t size,int(*compar)
(const void *, const void *));

DESCRIPTION
The qsort() function sorts an array with nmemb elements of size size.The base argument points to the start of the array.

The contents of the array are sorted in ascending order according to a comparison function pointed to by compar, which is
called with two arguments that point to the objects being compared.

The comparison function must return an integer less than, equal to, or greater than zero if the first argument is considered to
be respectively less than, equal to, or greater than the second. If two members compare as equal, their order in the sorted
array is undefined.

RETURN VALUE
The qsort() function returns no value.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
sort(1)

GNU, 29 March 1993

raise
raise—Sends a signal to the current process

SYNOPSIS
#include <signal.h>
int raise (int sig);

DESCRIPTION
The raise function sends a signal to the current process. It is equivalent to

kill(getpid(),sig)

RETURN VALUE
Zero on success, non-zero for failure.

CONFORMS TO
ANSI C

SEE ALSO
kill(2), signal(2), getpid(2)

GNU, 31 August 1995

1001

rand, srand
rand, srand—Random number generator

SYNOPSIS
#include <stdlib.h>
int rand(void);
void srand(unsigned int seed);

DESCRIPTION
The rand() function returns a pseudo-random integer between 0 and RAND_MAX.

The srand() function sets its argument as the seed for a new sequence of pseudo-random integers to be returned by rand().
These sequences are repeatable by calling srand() with the same seed value.

If no seed value is provided, the rand() function is automatically seeded with a value of 1.

RETURN VALUE
The rand() function returns a value between 0 and RAND_MAX. The srand() returns no value.

NOTES
The versions of rand() and srand() in the Linux C Library use the same random number generator as random() and
srandom(), so the lower-order bits should be as random as the higher-order bits. However, on older rand() implementations,
the lower-order bits are much less random than the higher-order bits.

In Numerical Recipes in C: The Art of Scientific Computing (William H. Press, Brian P. Flannery, Saul A. Teukolsky, William
T. Vetterling; New York: Cambridge University Press, 1990, first ed, p. 207), the following comments are made:

“If you want to generate a random integer between 1 and 10, you should always do it by

j=1+(int) (10.0*rand()/(RAND+MAX+1.0));

and never by anything resembling

j=1+((int) (1000000.0*rand()) % 10);

(which uses lower-order bits).”

Random-number generation is a complex topic. The Numerical Recipes in C book (see preceding reference) provides an
excellent discussion of practical random-number generation issues in Chapter 7, “Random Numbers.”

For a more theoretical discussion that also covers many practical issues in depth, please see Chapter 3, “Random Numbers,”
in Donald E. Knuth’s The Art of Computer Programming, Volume 2 (Seminumerical Algorithms), 2nd ed.; Reading,
Massachusetts: Addison-Wesley Publishing Company, 1981.

CONFORMS TO
SVID 3, BSD 4.3, ISO 9899

SEE ALSO
random(3), srandom(3), initstate(3), setstate(3)

GNU, 18 May 1995

random, srandom, initstate, setstate
random, srandom, initstate, setstate—Random number generator

random, srandom, initstate, setstate

Part III: Library Functions1002

SYNOPSIS
#include <stdlib.h>
long int random(void);
void srandom(unsigned int seed);
char *initstate(unsigned int seed, char *state,int n);
char *setstate(char *state);

DESCRIPTION
The random() function uses a nonlinear additive feedback random number generator employing a default table of size 31 long
integers to return successive pseudo-random numbers in the range from 0 to RAND_MAX. The period of this random number
generator is very large, approximately 16*((2**31)–1).

The srandom() function sets its argument as the seed for a new sequence of pseudo-random integers to be returned by
random(). These sequences are repeatable by calling srandom() with the same seed value. If no seed value is provided, the
random() function is automatically seeded with a value of 1.

The initstate() function allows a state array state to be initialized for use by random().The size of the state array n is used by
initstate() to decide how sophisticated a random number generator it should use—the larger the state array, the better the
random numbers will be. seed is the seed for the initialization, which specifies a starting point for the random number
sequence, and provides for restarting at the same point.

The setstate() function changes the state array used by the random() function. The state array state is used for random
number generation until the next call to initstate() or setstate(). state must first have been initialized using initstate().

RETURN VALUE
The random() function returns a value between 0 and RAND_MAX. The srandom() function returns no value. The initstate()
and setstate() functions return a pointer to the previous state array.

ERRORS
EINVAL A state array of less than 8 bytes was specified to initstate().

NOTES
Current “optimal” values for the size of the state array n are 8, 32, 64, 128, and 256 bytes; other amounts will be rounded
down to the nearest known amount. Using less than 8 bytes will cause an error.

CONFORMS TO
BSD 4.3

SEE ALSO
rand(3), srand(3)

GNU, 28 March 1993

readdir
readdir—Reads a directory

SYNOPSIS
#include <sys/types.h>
#include <dirent.h>
struct dirent *readdir(DIR *dir);

1003

DESCRIPTION
The readdir() function returns a pointer to a dirent structure representing the next directory entry in the directory stream
pointed to by dir. It returns NULL on reaching the end-of-file or if an error occurred.

The data returned by readdir() is overwritten by subsequent calls to readdir() for the same directory stream.

According to POSIX, the dirent structure contains a field char_d_name[] of unspecified size, with at most NAME_MAX characters
preceding the terminating null character. Use of other fields will harm the portability of your programs.

RETURN VALUE
The readdir() function returns a pointer to a dirent structure, or NULL if an error occurs or end-of-file is reached.

ERRORS
EBADF Invalid directory stream descriptor dir

CONFORMS TO
SVID 3, POSIX, BSD 4.3

SEE ALSO
read(2), opendir(3), closedir(3), rewinddir(3), seekdir(3), telldir(3), scandir(3)

22 April 1996

readv, writev
readv, writev—Reads or writes data into multiple buffers

SYNOPSIS
#include <sys/uio.h>
int readv(int filedes, const struct iovec *vector,
size_t count);
int writev(int filedes, const struct iovec *vector,
size_t count);

DESCRIPTION
The readv() function reads count blocks from the file associated with the file descriptor filedes into the multiple buffers
described by vector.

The writev() function writes at most count blocks described by vector to the file associated with the file descriptor filedes.

The pointer vector points to a struct iovec defined in <sys/uio.h> as

struct iovect
{
void *iovbase; /* Starting address */
size_t iov_len; /* Number of bytes */
} ;

Buffers are processed in the order vector[0], vector[1], ... vector[count].

The readv() function works just like read(2) except that multiple buffers are filled.

The writev() function works just like write(2) except that multiple buffers are written out.

RETURN VALUES
The readv() function returns the number of bytes or –1 on error; the writev() function returns the number of bytes written.

readv, writev

Part III: Library Functions1004

ERRORS
The readv() and writev() functions can fail and set errno to the following values:

EBADF fd is not a valid file descriptor.

EINVAL fd is unsuitable for reading (for readv()) or writing (for writev()).

EFAULT buf is outside the processes’ address space.

EAGAIN Nonblocking I/O had been selected in the open() call, and reading or writing could not be
done immediately.

EINTR Reading or writing was interrupted before any data was transferred.

CONFORMS TO
unknown

BUGS
It is not advisable to mix calls to functions like readv() or writev(), which operate on file descriptors, with the functions
from the stdio library; the results will be undefined and probably not what you want.

SEE ALSO
read(2), write(2)

GNU, 25 April 1993

realpath
realpath—Returns the canonicalized absolute pathname.

SYNOPSIS
#include <sys/param.h>
#include <unistd.h>
char *realpath(char *path, char resolved_path[]);

DESCRIPTION
realpath expands all symbolic links and resolves references to /./, /../ and extra / characters in the null-terminated string
named by path and stores the canonicalized absolute pathname in the buffer of size MAXPATHLEN named by resolved_path. The
resulting path will have no symbolic link, /./, or /../ components.

RETURN VALUE
If there is no error, it returns a pointer to the resolved_path.

Otherwise, it returns a NULL pointer and places in resolved_path the absolute pathname of the path component that could not
be resolved. The global variable errno is set to indicate the error.

ERRORS
ENOTDIR A component of the path prefix is not a directory.

EINVAL The pathname contains a character with the high-order bit set.

ENAMETOOLONG A component of a pathname exceeded MAXNAMLEN characters, or an entire path
name exceeded MAXPATHLEN characters.

ENOENT The named file does not exist.

EACCES Search permission is denied for a component of the path prefix.

ELOOP Too many symbolic links were encountered in translating the pathname.

EIO An I/O error occurred while reading from the filesystem.

1005

SEE ALSO
readlink(2), getcwd(3)

GNU, 29 July 1994

Re_comp, re_exec
re_comp, re_exec—BSD regex functions

SYNOPSIS
#include <regex.h>
char *re comp(char *regex);
int re exec(char *string);

DESCRIPTION
re_comp is used to compile the null-terminated regular expression pointed to by regex. The compiled pattern occupies a static
area, the pattern buffer, which is overwritten by subsequent use of re_comp. If regex is NULL, no operation is performed and
the pattern buffer’s contents are not altered.

re_exec is used to assess whether the null-terminated string pointed to by string matches the previously compiled regex.

RETURN VALUE
re_comp returns NULL on successful compilation of regex; otherwise, it returns a pointer to an appropriate error message.

re_exec returns 1 for a successful match, zero for failure.

CONFORMS TO
BSD 4.3

SEE ALSO
regex(7), GNU regex manual

Linux, 14 July 1995

regcomp, regexec, regerror, regfree
regcomp, regexec, regerror, regfree—POSIX regex functions

SYNOPSIS
#include <regex.h>
int regcomp(regex_t *preg, const char *regex,int cflags);
int regexec(const regex_t *preg, const char *string, size_t nmatch, regmatch_t pmatch[], int eflags);
size_t regerror(int errcode, const regex_t *preg, char *errbuf, size_t errbuf_size);
void regfree(regex_t *preg);

POSIX REGEX COMPILING
regcomp is used to compile a regular expression into a form that is suitable for subsequent regexec searches.

regcomp is supplied with preg, a pointer to a pattern buffer storage area; regex, a pointer to the null-terminated string; and
cflags, flags used to determine the type of compilation. All regular expression searching must be done via a compiled pattern
buffer; thus, regexec must always be supplied with the address of a regcomp initialized pattern buffer.

regcomp, regexec, regerror, regfree

Part III: Library Functions1006

cflags may be the bitwise or of one or more of the following:

REG_EXTENDED Use POSIX extended regular expression syntax when interpreting regex. If
not set, POSIX basic regular expression syntax is used.

REG_ICASE Do not differentiate case. Subsequent regexec searches using this pattern
buffer will be case-insensitive.

REG_NOSUB Support for substring addressing of matches is not required. The nmatch and
pmatch parameters to regexec are ignored if the pattern buffer supplied was
compiled with this flag set.

REG_NEWLINE Match-any-character operators don’t match a newline. A nonmatching list
([^...]) not containing a newline matches a newline. Match-beginning-of-
line operator (^) matches the empty string immediately after a newline,
regardless of whether eflags, the execution flags of regexec, contains
REG_NOTBOL. Match-end-of-line operator ($) matches the empty string
immediately before a newline, regardless of whether eflags contains
REG_NOTEOL.

POSIX REGEX MATCHING
regexec is used to match a null-terminated string against the precompiled pattern buffer, preg. nmatch and pmatch are used to
provide information regarding the location of any matches. eflags may be the bitwise or of one or both of REG_NOTBOL and
REG_NOTEOL, which cause changes in matching behavior described in the following list.

REG_NOTBOL The match-beginning-of-line operator always fails to match (but see the
compilation flag REG_NEWLINE, in the preceding subsection). This flag may be used
when different portions of a string are passed to regexec and the beginning of the
string should not be interpreted as the beginning of the line.

REG_NOTEOL The match-end-of-line operator always fails to match (but see the compilation
flag REG_NEWLINE, in the preceding subsection).

BYTE OFFSETS
Unless REG_NOSUB was set for the compilation of the pattern buffer, it is possible to obtain substring match addressing
information. pmatch must be dimensioned to have at least nmatch elements. These are filled in by regexec with substring
match addresses. Any unused structure elements will contain the value -1.

The regmatch_t structure that is the type of pmatch is defined in regex.h:

 typedef struct
 {
 regoff_t rm_so;
 regoff_t rm_eo;
 } regmatch_t;

Each rm_so element that is not -1 indicates the start offset of the next largest substring match within the string. The relative
rm_eo element indicates the end offset of the match.

POSIX ERROR REPORTING
regerror is used to turn the error codes that can be returned by both regcomp and regexec into error message strings.

regerror is passed the error code, errcode; the pattern buffer, preg; a pointer to a character string buffer, errbuf; and the size
of the string buffer, errbuf_size. It returns the size of the errbuf required to contain the null-terminated error message string.
If both errbuf and errbuf_size are non-zero, errbuf is filled in with the first errbuf_size - 1 characters of the error message
and a terminating null.

1007

POSIX PATTERN BUFFER FREEING
Supplying regfree with a precompiled pattern buffer, preg will free the memory allocated to the pattern buffer by the
compiling process, regcomp.

RETURN VALUE
regcomp returns zero for a successful compilation or an error code for failure.

regexec returns zero for a successful match or REG_NOMATCH for failure.

ERRORS
The following errors can be returned by regcomp:

REG_BADRPT Invalid use of repetition operators, such as using * as the first character

REG_BADBR Invalid use of back reference operator

REG_EBRACE Unmatched brace interval operators

REG_EBRACK Unmatched bracket list operators

REG_ERANGE Invalid use of the range operator; for example, the ending point of the range
occurs prior to the starting point

REG_ECTYPE Unknown character class name

REG_EPAREN Unmatched parenthesis group operators

REG_ESUBREG Invalid back reference to a subexpression

REG_EEND Non-specific error

REG_ESCAPE Invalid escape sequence

REG_BADPAT Invalid use of pattern operators such as group or list

REG_ESIZE Compiled regular expression requires a pattern buffer larger than 64Kb

REG_ESPACE The regex routines ran out of memory

CONFORMS TO
POSIX

SEE ALSO
regex(7), GNU regex manual

Linux, 13 July 1994

remove
remove—Deletes a name and possibly the file to which it refers

SYNOPSIS
#include <stdio.h>
int remove(const char *pathname);

DESCRIPTION
remove deletes a name from the filesystem. If that name was the last link to a file and no processes have the file open, the file
is deleted and the space it was using is made available for reuse.

If the name was the last link to a file but any processes still have the file open, the file will remain in existence until the last
file descriptor referring to it is closed.

remove

Part III: Library Functions1008

If the name referred to a symbolic link, the link is removed.

If the name referred to a socket, fifo, or device, the name for it is removed, but processes that have the object open may
continue to use it.

RETURN VALUE
On success, zero is returned. On error, –1 is returned, and errno is set appropriately.

ERRORS
EFAULT pathname points outside your accessible address space.

EACCES Write access to the directory containing pathname is not allowed for the
process’s effective uid, or one of the directories in pathname did not allow search
(execute) permission.

EPERM The directory containing pathname has the sticky-bit (S_ISVTX) set and the
process’s effective uid is neither the uid of the file to be deleted nor that of the
directory containing it.

ENAMETOOLONG pathname was too long.

ENOENT A directory component in pathname does not exist or is a dangling symbolic
link.

ENOTDIR A component used as a directory in pathname is not, in fact, a directory.

EISDIR pathname refers to a directory.

ENOMEM Insufficient kernel memory was available.

EROFS pathname refers to a file on a read-only filesystem.

CONFORMS TO
SVID, AT&T, POSIX, X/OPEN, BSD 4.3

BUGS
Inadequacies in the protocol underlying NFS can cause the unexpected disappearance of files that are still being used.

SEE ALSO
unlink(2), rename(2), open(2), rmdir(2), mknod(2), mkfifo(3), link(2), rm(1), unlink(8)

Linux, 13 July 1994

res_query, res_search, res_mkquery, res_send, res_init,
dn_comp, dn_expand

res_query, res_search, res_mkquery, res_send, res_init, dn_comp, dn_expand—Resolver routines

SYNOPSIS
 #include <sys/types.h>
 #include <netinet/in.h>
 #include <arpa/nameser.h>
 #include <resolv.h>

res_query(dname, class, type, answer, anslen)
const char *dname;
int class, type;
u_char *answer;
int anslen;

1009

res_search(dname, class, type, answer, anslen)
const char *dname;
int class, type;
u char *answer;
int anslen;

res mkquery(op, dname, class, type, data, datalen, newrr, buf, buflen)
int op;
const char *dname;
int class, type;
const char *data;
int datalen;
struct rrec *newrr;
u_char *buf;
int buflen;

res_send(msg, msglen, answer, anslen)
const u_char *msg;
int msglen;
u_char *answer;
int anslen;

res_init()

dn_comp(exp_dn, comp_dn, length, dnptrs, lastdnptr)
const char *exp_dn;
u char *comp_dn;
int length;
u_char **dnptrs, **lastdnptr;

dn_expand(msg, eomorig, comp_dn, exp_dn, length)
const u_char *msg, *eomorig, *comp_dn;
char *exp_dn;
int length;
hstrerror(int err);

DESCRIPTION
These routines are used for making, sending and interpreting query and reply messages with Internet domain name servers.

Global configuration and state information that is used by the resolver routines is kept in the structure _res. Most of the
values have reasonable defaults and can be ignored. Options stored in _res.options are defined in resolv.h and are as
follows. Options are stored as a simple bit mask containing the bitwise or of the options enabled.

RES_INIT True if the initial name server address and default domain name are
initialized (that is, res_init has been called).

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this option, res_send should
continue until it finds an authoritative answer or finds an error.
Currently, this is not implemented.

RES_USEVC Use TCP connections for queries instead of UDP datagrams.

RES_STAYOPEN Used with RES_USEVC to keep the TCP connection open between queries.
This is useful only in programs that regularly do many queries. UDP
should be the normal mode used.

RES_IGNTC Unused currently (ignore truncation errors—don’t retry with TCP).

RES_RECURSE Set the recursion-desired bit in queries. This is the default. (res_send does
not do iterative queries and expects the name server to handle recursion.)

res_query, res_search, res_mkquery, res_send, res_init, dn_comp, dn_expand

Part III: Library Functions1010

RES_DEFNAMES If set, res_search will append the default domain name to single-
component names (those that do not contain a dot). This option is
enabled by default.

RES_DNSRCH If this option is set, res_search will search for hostnames in the current
domain and in parent domains; see hostname(7). This is used by the
standard host lookup routine gethostbyname(3). This option is enabled
by default.

RES_NOALIASES This option turns off the user level aliasing feature controlled by the
HOSTALIASES environment variable. Network daemons should set this
option.

The res_init routine reads the configuration file (if any; see resolver(5)) to get the default domain name, search list and the
Internet address of the local name server(s). If no server is configured, the host running the resolver is tried. The current
domain name is defined by the hostname if not specified in the configuration file; it can be overridden by the environment
variable LOCALDOMAIN. This environment variable may contain several blank-separated tokens if you wish to override the
search list on a per-process basis. This is similar to the search command in the configuration file. Another environment
variable (RES_OPTIONS) can be set to override certain internal resolver options that are otherwise set by changing fields in the
_res structure or are inherited from the configuration file’s options command. The syntax of the RES_OPTIONS environment
variable is explained in resolver(5). Initialization normally occurs on the first call to one of the other resolver routines.

The res_query function provides an interface to the server query mechanism. It constructs a query, sends it to the local
server, awaits a response, and makes preliminary checks on the reply. The query requests information of the specified type
and class for the specified fully-qualified domain name dname. The reply message is left in the answer buffer with length
anslen supplied by the caller.

The res_search routine makes a query and awaits a response like res_query, but in addition, it implements the default and
search rules controlled by the RES_DEFNAMES and RES_DNSRCH options. It returns the first successful reply.

The remaining routines are lower-level routines used by res_query. The res_mkquery function constructs a standard query
message and places it in buf. It returns the size of the query, or –1 if the query is larger than buflen. The query type op is
usually QUERY, but can be any of the query types defined in <arpa/nameser.h>. The domain name for the query is given by
dname. Newrr is currently unused but is intended for making update messages.

The res_send routine sends a preformatted query and returns an answer. It will call res_init if RES_INIT is not set, send the
query to the local name server, and handle time-outs and retries. The length of the reply message is returned, or –1 if there
were errors.

The dn_comp function compresses the domain name exp_dn and stores it in comp_dn.The size of the compressed name is
returned or –1 if there were errors. The size of the array pointed to by comp_dn is given by length. The compression uses an
array of pointers dnptrs to previously-compressed names in the current message. The first pointer points to the beginning of
the message and the list ends with NULL. The limit to the array is specified by lastdnptr. A side effect of dn_comp is to update
the list of pointers for labels inserted into the message as the name is compressed. If dnptr is NULL, names are not compressed.
If lastdnptr is NULL, the list of labels is not updated.

The dn_expand entry expands the compressed domain name comp_dn to a full domain name. The compressed name is
contained in a query or reply message; msg is a pointer to the beginning of the message. The uncompressed name is placed in
the buffer indicated by exp_dn, which is of size length. The size of compressed name is returned or –1 if there was an error.

FILES
/etc/resolv.conf See resolver(5)

1011

SEE ALSO
gethostbyname(3), named(8), resolver(5), hostname(7),

RFC1032, RFC1033, RFC1034, RFC1035, RFC974

SMM: 11 Name Server Operations Guide for BIND

11 December 1995

rewinddir
rewinddir—Resets directory stream

SYNOPSIS
#include <sys/types.h>
#include <dirent.h>
void rewinddir(DIR *dir);

DESCRIPTION
The rewinddir() function resets the position of the directory stream dir to the beginning of the directory.

RETURN VALUE
The readdir() function returns no value.

CONFORMS TO
SVID 3, POSIX, BSD 4.3

SEE ALSO
opendir(3), readdir(3), closedir(3), seekdir(3), telldir(3), scandir(3)

11 June 1995

rint
rint—Rounds to closest integer

SYNOPSIS
#include <math.h>
double rint(double x);

DESCRIPTION
The rint() function rounds x to an integer value according to the prevalent rounding mode. The default rounding mode is
to round to the nearest integer.

RETURN VALUE
The rint() function returns the integer value as a floating-point number.

CONFORMS TO
BSD 4.3

rint

Part III: Library Functions1012

SEE ALSO
abs(3), ceil(3), fabs(3), floor(3), labs(3)

6 June 1993

rquota
rquota—Implements quotas on remote machines

SYNOPSIS
/usr/include/rpcsvc/rquota.x

DESCRIPTION
The rquota() protocol inquires about quotas on remote machines. It is used in conjunction with NFS because NFS itself
does not implement quotas.

PROGRAMMING
#include <rpcsvc/rquota.h>

The following XDR routines are available in librpcsvc: xdr_getquota_arg:

xdr_getquota_rslt
xdr_rquota

SEE ALSO
quota(1), quotactl(2)

6 October 1987

scandir, alphasort
scandir, alphasort—Scan a directory for matching entries

SYNOPSIS
#include <dirent.h>
int scandir(const char *dir, struct dirent ***namelist,
int (*select)(const struct dirent *),
int (*compar)(const struct dirent **, const struct dirent **));
int alphasort(const struct dirent **a, const struct dirent **b);

DESCRIPTION
The scandir() function scans the directory dir, calling select() on each directory entry. Entries for which select() returns
non-zero are stored in strings allocated via malloc(), sorted using qsort() with the comparison function compar(), and
collected in array namelist that is allocated via malloc().If select is NULL, all entries are selected.

The alphasort() function can be used as the comparison function for the scandir() function to sort the directory entries into
alphabetical order. Its parameters are the two directory entries, a and b, to compare.

RETURN VALUE
The scandir() function returns the number of directory entries selected or –1 if an error occurs.

The alphasort() function returns an integer less than, equal to, or greater than zero if the first argument is considered to be
respectively less than, equal to, or greater than the second.

1013

ERRORS
ENOMEM Insufficient memory to complete the operation

CONFORMS TO
BSD 4.3

EXAMPLE
 /* print files in current directory in reverse order */
 #include <dirent.h>
 main(){
 struct dirent **namelist;
 int n;

 n = scandir(“.”, &namelist, 0, alphasort);
 if (n < 0)
 perror(“scandir”);
 else
 while(n—) printf(“%s\n”, namelist[n]->d_name);
 }

SEE ALSO
opendir(3), readdir(3), closedir(3), rewinddir(3), telldir(3), seekdir(3)

GNU, 11 April 1996

scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf
scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf—Input format conversion

SYNOPSIS
#include <stdio.h>
int scanf(const char *format, ...);
int fscanf(FILE *stream, const char *format, ...);
int sscanf(const char *str, const char *format, ...);
#include <stdarg.h>
int vscanf(const char *format,valist ap);
int vsscanf(const char *str, const char *format,va_ist ap);
int vfscanf(FILE *stream, const char *format,va_list ap);

DESCRIPTION
The scanf family of functions scans input according to a format as described below. This format may contain conversion
specifiers ; the results from such conversions, if any, are stored through the pointer arguments. The scanf function reads
input from the standard input stream stdin, fscanf reads input from the stream pointer stream, and sscanf reads its input
from the character string pointed to by str.

The vfscanf function is analogous to vfprintf(3) and reads input from the stream pointer stream using a variable argument
list of pointers (see stdarg(3)). The vscanf function scans a variable argument list from the standard input and the vsscanf
function scans it from a string; these are analogous to the vprintf and vsprintf functions respectively.

Each successive pointer argument must correspond properly with each successive conversion specifier. All conversions are
introduced by the % (percent sign) character. The format string may also contain other characters. Whitespace (such as
blanks, tabs, or newlines) in the format string match any amount of whitespace, including none, in the input. Everything else
matches only itself. Scanning stops when an input character does not match such a format character. Scanning also stops
when an input conversion cannot be made.

scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf

Part III: Library Functions1014

CONVERSIONS
Following the % character introducing a conversion, there may be a number of flag characters, as follows:

* Suppresses assignment. The conversion that follows occurs as usual, but no pointer is used; the result of
the conversion is simply discarded.

a Indicates that the conversion will be s, malloc will be applied to the needed memory space for the string,
and the pointer to it will be assigned to the char pointer variable, which does not have to be initialized
before. This flag does not exist in ANSI C.

h Indicates that the conversion will be one of dioux or n and the next pointer is a pointer to a short int
(rather than int).

l Indicates either that the conversion will be one of dioux or n and the next pointer is a pointer to a long
int (rather than int), or that the conversion will be one of efg and the next pointer is a pointer to
double (rather than float). Specifying two l flags is equivalent to the L flag.

L Indicates that the conversion will be either efg and the next pointer is a pointer to long double or the
conversion will be dioux and the next pointer is a pointer to long long. (Note that long long is not an
ANSI C type. Any program using this will not be portable to all architectures).

q Equivalent to L. This flag does not exist in ANSI C.

In addition to these flags, there may be an optional maximum field width, expressed as a decimal integer, between the % and
the conversion. If no width is given, a default of infinity is used (with one exception, below); otherwise, at most this many
characters are scanned in processing the conversion. Before conversion begins, most conversions skip whitespace; this
whitespace is not counted against the field width.

The following conversions are available:

% Matches a literal %. That is, %% in the format string matches a single input % character. No conversion is
done, and assignment does not occur.

d Matches an optionally signed decimal integer; the next pointer must be a pointer to int.

D Equivalent to ld; this exists only for backwards compatibility.

i Matches an optionally signed integer; the next pointer must be a pointer to int. The integer is read in
base 16 if it begins with 0x or 0X, in base 8 if it begins with 0, and in base 10 otherwise. Only
characters that correspond to the base are used.

o Matches an unsigned octal integer; the next pointer must be a pointer to unsigned int.

u Matches an unsigned decimal integer; the next pointer must be a pointer to unsigned int.

x Matches an unsigned hexadecimal integer; the next pointer must be a pointer to unsigned int.

X Equivalent to x.

f Matches an optionally signed floating-point number; the next pointer must be a pointer to float.

e Equivalent to f.

g Equivalent to f.

E Equivalent to f.

s Matches a sequence of nonwhitespace characters; the next pointer must be a pointer to char, and the
array must be large enough to accept all the sequence and the terminating NUL character. The input
string stops at whitespace or at the maximum field width, whichever occurs first.

c Matches a sequence of width count characters (default 1); the next pointer must be a pointer to char,
and there must be enough room for all the characters (no terminating NUL is added). The usual skip of
leading whitespace is suppressed. To skip whitespace first, use an explicit space in the format.

[Matches a nonempty sequence of characters from the specified set of accepted characters; the next
pointer must be a pointer to char, and there must be enough room for all the characters in the string,
plus a terminating NUL character. The usual skip of leading whitespace is suppressed. The string is to be
made up of characters in (or not in) a particular set; the set is defined by the characters between the
open bracket [character and a close bracket] character. The set excludes those characters if the first

1015

character after the open bracket is a circumflex (^). To include a close bracket in the set, make it the
first character after the open bracket or the circumflex; any other position will end the set. The hyphen
character (-) is also special; when placed between two other characters, it adds all intervening
characters to the set. To include a hyphen, make it the last character before the final close bracket. For
instance, [ˆ]0-9-] means the set “everything except close bracket, zero through nine, and hyphen.”
The string ends with the appearance of a character not in (or, with a circumflex, in) the set or when
the field width runs out.

p Matches a pointer value (as printed by %p in printf(3); the next pointer must be a pointer to void.

n Nothing is expected; instead, the number of characters consumed thus far from the input is stored
through the next pointer, which must be a pointer to int. This is not a conversion, although it can be
suppressed with the * flag.

RETURN VALUES
These functions return the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of a matching failure. Zero indicates that, while there was input available, no conversions were assigned; typically, this is due
to an invalid input character, such as an alphabetic character for a %d conversion. The value EOF is returned if an input failure
occurs before any conversion such as an end-of-file occurs. If an error or end-of-file occurs after conversion has begun, the
number of conversions which were successfully completed is returned.

SEE ALSO
strtol(3), strtoul(3), strtod(3), getc(3), printf(3)

STANDARDS
The functions fscanf, scanf, and sscanf conform to ANSI C3.159-1989 (ANSI C).

The q flag is the BSD 4.4 notation for long long, while ll or the usage of L in integer conversions is the GNU notation.

The Linux version of these functions is based on the GNU libio library. Take a look at the info documentation of GNU
libc (glibc-1.08) for a more concise description.

BUGS
All functions are fully ANSI C3.159-1989-conformant, but provide the additional flags q and a as well as an additional
behavior of the L and l flags. The latter may be considered to be a bug, as it changes the behavior of flags defined in ANSI
C3.159-1989.

Some combinations of flags defined by ANSI C are not making sense in ANSI C (for example, %Ld). While they may have a
well-defined behavior on Linux, this need not to be so on other architectures. Therefore, it usually is better to use flags that
are not defined by ANSI C at all, that is, use q instead of L in combination with diouxX conversions or ll.

The usage of q is not the same as on BSD 4.4, as it may be used in float conversions equivalently to L.

Linux man page, 1 November 1995

seekdir
seekdir—Sets the position of the next readdir() call in the directory stream.

SYNOPSIS
#include <dirent.h>
void seekdir(DIR *dir,off_t offset);

DESCRIPTION
The seekdir() function sets the location in the directory stream from which the next readdir() call will start. seekdir()
should be used with an offset returned by telldir().

seekdir

Part III: Library Functions1016

RETURN VALUE
The seekdir() function returns no value.

CONFORMS TO
BSD 4.3

SEE ALSO
lseek(2), opendir(3), readdir(3), closedir(3), rewinddir(3), telldir(3), scandir(3)

31 March 1993

setbuf, setbuffer, setlinebuf, setvbuf
setbuf, setbuffer, setlinebuf, setvbuf—Stream buffering operations

SYNOPSIS
#include <stdio.h>

int setbuf(FILE *stream, char *buf);
int setbuffer(FILE *stream, char *buf, size_tsize);
int setlinebuf(FILE *stream);
int setvbuf(FILE *stream, char *buf,intmode , size_t size);

DESCRIPTION
The three types of buffering available are unbuffered, block buffered, and line buffered. When an output stream is unbuf-
fered, information appears on the destination file or terminal as soon as written; when it is block buffered, many characters
are saved up and written as a block; when it is line buffered, characters are saved up until a newline is output or input is read
from any stream attached to a terminal device (typically stdin). The function fflush(3) may be used to force the block out
early. (See fclose(3).) Normally all files are block buffered. When the first I/O operation occurs on a file, malloc(3) is called,
and a buffer is obtained. If a stream refers to a terminal (as stdout normally does), it is line buffered. The standard error
stream stderr is always unbuffered.

The setvbuf function may be used at any time on any open stream to change its buffer. The mode parameter must be one of
the following three macros:

_IONBF Unbuffered

_IOLBF Line buffered

_IOFBF Fully buffered

Except for unbuffered files, the buf argument should point to a buffer at least size bytes long; this buffer will be used instead
of the current buffer. If the argument buf is NULL, only the mode is affected; a new buffer will be allocated on the next read or
write operation. The setvbuf function may be used at any time, but can only change the mode of a stream when it is not
“active”; that is, before any I/O, or immediately after a call to fflush.

The other three calls are, in effect, simply aliases for calls to setvbuf. The setbuf function is exactly equivalent to the call:

setvbuf(stream, buf, buf ?_IOFBF :_IONBF, BUFSIZ);

The setbuffer function is the same, except that the size of the buffer is up to the caller, rather than being determined by the
default BUFSIZ. The setlinebuf function is exactly equivalent to the call:

setvbuf(stream, (char *)NULL,_IOLBF, 0);

1017

SEE ALSO
fopen(3), fclose(3), fread(3), malloc(3), puts(3), printf(3)

STANDARDS
The setbuf and setvbuf functions conform to ANSI C3.159-1989 (ANSI C).

BUGS
The setbuffer and setlinebuf functions are not portable to versions of BSD before 4.2BSD, and may not be available under
Linux. On 4.2BSD and 4.3BSD systems, setbuf always uses a suboptimal buffer size and should be avoided. You must make
sure that both buf and the space it points to still exist by the time stream is closed, which also happens at program termina-
tion. For example, the following is illegal:

 #include <stdio.h>
 int main()
 {
 char buf[BUFSIZ];
 setbuf(stdin, buf);
 printf(“Hello, world!\n”);
 return 0;
 }

BSD man page, 29 November 1993

setenv
setenv—Changes or adds an environment variable

SYNOPSIS
#include <stdlib.h>
int setenv(const char *name, const char *value,int overwrite);
void unsetenv(const char *name);

DESCRIPTION
The setenv() function adds the variable name to the environment with the value value, if name does not already exist. If name
does exist in the environment, then its value is changed to value if overwrite is non-zero; if overwrite is zero, then the value
of name is not changed.

The unsetenv() function deletes the variable name from the environment.

RETURN VALUE
The setenv() function returns zero on success, or –1 if there was insufficient space in the environment.

CONFORMS TO
BSD 4.3

SEE ALSO
getenv(3), putenv(3)

BSD, 4 April 1993

setenv

Part III: Library Functions1018

setjmp
setjmp—Saves stack context for nonlocal goto

SYNOPSIS
#include <setjmp.h>
int setjmp(jmp_buf env);

DESCRIPTION
setjmp and longjmp(3) are useful for dealing with errors and interrupts encountered in a low-level subroutine of a program.
setjmp() saves the stack context/environment in env for later use by longjmp(). The stack context will be invalidated if the
function which called setjmp() returns.

RETURN VALUE
It returns the value 0 if returning directly and non-zero when returning from longjmp() using the saved context.

CONFORMS TO
POSIX

NOTES
POSIX does not specify if the signal context will be saved or not. If you want to save signal masks, use sigsetjmp(3). setjmp()
makes programs hard to understand and maintain. If possible, an alternative should be used.

SEE ALSO
longjmp(3), sigsetjmp(2), siglongjmp(2)

25 November 1994

setlocale
setlocale—Sets the current locale

SYNOPSIS
#include <locale.h>
char *setlocale(int category, const char * locale);

DESCRIPTION
The setlocale() function is used to set or query the program’s current locale. If locale is C or POSIX, the current locale is
set to the portable locale.

If locale is “”, the locale is set to the default locale that is selected from the environment variable LANG.

On startup of the main program, the portable locale is selected as default.

The argument category determines which functions are influenced by the new locale:

LC_ALL For all of the locale.

LC_COLLATE For the functions strcoll() and strxfrm().

LC_CTYPE For the character classification and conversion routines.

LC_MONETARY For localeconv().

LC_NUMERIC For the decimal character.

LC_TIME For strftime(). NULL if the request can not be honored. This string may be
allocated in static storage.

1019

A program may be made portable to all locales by calling setlocale(LC_ALL, “”””””) after program initialization, by using the
values returned from a localeconv() call for locale–dependent information and by using strcoll() or strxfrm() to compare
strings.

CONFORMS TO
ANSI C, POSIX.1

Linux supports the portable locales C and POSIX and also the European Latin-1 and Russian locales.

The printf() family of functions may or may not honor the current locale.

SEE ALSO
locale(1), localedef(1), strcoll(3), isalpha(3), localeconv(3), strftime(3), locale(7)

GNU, 18 April 1993

siginterrupt
siginterrupt—Allows signals to interrupt system calls

SYNOPSIS
#include <signal.h>
int siginterrupt(int sig,int flag);

DESCRIPTION
The siginterrupt() function changes the restart behavior when a system call is interrupted by the signal sig.If the flag
argument is false (0), then systems calls will be restarted if interrupted by the specified signal sig. This is the default behavior
in Linux. However, when a new signal handler is specified with the signal(2) function, the system call is interrupted by
default.

If the flag argument is true (1) and no data has been transferred, then a system call interrupted by the signal sig will return
–1 and the global variable errno will be set to EINTR.

If the flag argument is true (1) and data transfer has started, then the system call will be interrupted and will return the
actual amount of data transferred.

RETURN VALUE
The siginterrupt() function returns 0 on success, or –1 if the signal number sig is invalid.

ERRORS
EINVAL The specified signal number is invalid.

CONFORMS TO
BSD 4.3

SEE ALSO
signal(2)

13 April 1993

sigemptyset, sigfillset, sigaddset, sigdelset, sigismember
sigemptyset, sigfillset, sigaddset, sigdelset, sigismember—POSIX signal set operations

sigemptyset, sigfillset, sigaddset, sigdelset, sigismember

Part III: Library Functions1020

SYNOPSIS
#include <signal.h>
int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigaddset(sigset_t *set,int signum);
int sigdelset(sigset_t *set,int signum);
int sigismember(const sigset_t *set,int signum);

DESCRIPTION
The sigsetops(3) functions allow the manipulation of POSIX signal sets.

sigemptyset initializes the signal set given by set to empty, with all signals excluded from the set.

sigfillset initializes set to full, including all signals.

sigaddset and sigdelset add and delete, respectively, signal signum from set.

sigismember tests whether signum is a member of set.

RETURN VALUES
sigemptyset, sigfullset, sigaddset, and sigdelset return 0 on success and -1 on error.

sigismember returns 1 if signum is a member of set, 0 if signum is not a member, and -1 on error.

ERRORS
EINVAL sig is not a valid signal.

CONFORMS TO
POSIX

SEE ALSO
sigaction(2), sigpending(2), sigprocmask(2), sigsuspend(2)

Linux 1.0, 24 September 1994

sin
sin—Sine function

SYNOPSIS
#include <math.h>
double sin(double x);

DESCRIPTION
The sin() function returns the sine of x, where x is given in radians.

RETURN VALUE
The sin() function returns a value between –1 and 1.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

1021

SEE ALSO
acos(3), asin(3), atan(3), atan2(3), cos(3), tan(3)

8 June 1993

sinh
sinh—Hyperbolic sine function

SYNOPSIS
#include <math.h>
double sinh(double x);

DESCRIPTION
The sinh() function returns the hyperbolic sine of x, which is defined mathematically as [exp(x)–exp(-x)] / 2.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
acosh(3), asinh(3), atanh(3), cosh(3), tanh(3)

13 June 1993

sleep
sleep—Sleeps for the specified number of seconds

SYNOPSIS
#include <unistd.h>
unsigned int sleep(unsigned int seconds);

DESCRIPTION
sleep() makes the current process sleep until seconds seconds have elapsed or a signal arrives that is not ignored.

RETURN VALUE
The return value is zero if the requested time has elapsed, or the number of seconds left to sleep.

CONFORMS TO
POSIX.1

BUGS
sleep()may be implemented using SIGALRM; mixing calls to alarm() and sleep() is a bad idea.

Using longjmp() from a signal handler or modifying the handling of SIGALRM while sleeping will cause undefined results.

SEE ALSO
signal(2), alarm(2)

GNU, 7 April 1993

sleep

Part III: Library Functions1022

snprintf, vsnprintf
snprintf, vsnprintf—Formatted output conversion

SYNOPSIS
#include <stdio.h>

int snprintf (char *str, size_t n,
const char *format, ...);

#include <stdarg.h>

int vsnprintf (char *str, size_t n,
const char *format, va_list ap);

DESCRIPTION
snprintf writes output to the string str, under control of the format string that specifies how subsequent arguments are
converted for output. It is similar to sprintf(3), except that n specifies the maximum number of characters to produce.
The trailing null character is counted towards this limit, so you should allocate at least n characters for the string str.

vsnprintf is the equivalent of snprintf with the variable argument list specified directly as for vprintf.

RETURN VALUE
The return value is the number of characters stored, not including the terminating null. If this value equals n, then there was
not enough space in str for all the output. You should try again with a bigger output string.

EXAMPLE
Here is a sample program that dynamically enlarges its output buffer:

 /* Construct a message describing the value of a
 variable whose name is NAME and whose value is
 VALUE. */
 char *
 make_message (char *name, char *value)
 {
 /* Guess we need no more than 100 chars of space. */
 int size = 100;
 char *buffer = (char *) xmalloc (size);
 while (1)
 {
 /* Try to print in the allocated space. */
 int nchars = snprintf (buffer, size,
 “value of %s is %s”, name, value);
 /* If that worked, return the string. */
 if (nchars < size)
 return buffer;
 /* Else try again with twice as much space. */
 size *= 2;
 buffer = (char *) xrealloc (size, buffer);
 }
 }

CONFORMS TO
These are GNU extensions.

1023

SEE ALSO
printf(3), sprintf(3), vsprintf(3), stdarg(3)

GNU, 16 September 1995

sqrt
sqrt—Square root function

SYNOPSIS
#include <math.h>
double sqrt(double x);

DESCRIPTION
The sqrt() function returns the non-negative square root of x. It fails and sets errno to EDOM, if x is negative.

ERRORS
EDOM x is negative.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
hypot(3)

21 June 1993

stdarg
stdarg—Variable argument lists

SYNOPSIS
#include <stdarg.h>
void va_start(va_list ap, last);
type va_arg(va_list ap, type);
void va_end(va_list ap);

DESCRIPTION
A function may be called with a varying number of arguments of varying types. The include file stdarg.h declares a type
va_list and defines three macros for stepping through a list of arguments whose number and types are not known to the
called function.

The called function must declare an object of type va_list that is used by the macros va_start, va_arg, and va_end.

The va_start macro initializes ap for subsequent use by va_arg and va_end, and must be called first.

The parameter last is the name of the last parameter before the variable argument list; that is, the last parameter of which
the calling function knows the type.

Because the address of this parameter is used in the va_start macro, it should not be declared as a register variable, a
function, or an array type.

The va_start macro returns no value.

stdarg

Part III: Library Functions1024

The va_arg macro expands to an expression that has the type and value of the next argument in the call. The parameter ap is
the va_list ap initialized by va_start. Each call to va_arg modifies ap so that the next call returns the next argument. The
parameter type is a type name specified so that the type of a pointer to an object that has the specified type can be obtained
simply by adding a * to type.

If there is no next argument, or if type is not compatible with the type of the actual next argument (as promoted according
to the default argument promotions), random errors will occur.

The first use of the va_arg macro after that of the va_start macro returns the argument after last. Successive invocations
return the values of the remaining arguments.

The va_end macro handles a normal return from the function whose variable argument list was initialized by va_start.

The va_end macro returns no value.

EXAMPLE
The function foo takes a string of format characters and prints out the argument associated with each format character based
on the type.

 void foo(char *fmt, ...)
 {
 va_list ap;
 int d;
 char c, *p, *s;

 va_start(ap, fmt);
 while (*fmt)
 switch(*fmt++) {
 case ‘s’: /* string */
 s = va_arg(ap, char *);
 printf(“string %s\n”, s);
 break;
 case ‘d’: /* int */
 d = va_arg(ap, int);
 printf(“int %d\n”, d);
 break;
 case ‘c’: /* char */
 c = va_arg(ap, char);
 printf(“char %c\n”, c);
 break;
 }
 va_end(ap);
 }

STANDARDS
The va_start, va_arg, and va_end macros conform to ANSI C3.159-1989 (ANSI C).

COMPATIBILITY
These macros are not compatible with the historic macros they replace. A backwards-compatible version can be found in the
include file varargs.h.

BUGS
Unlike the varargs macros, the stdarg macros do not permit programmers to code a function with no fixed arguments. This
problem generates work mainly when converting varargs code to stdarg code, but it also creates difficulties for variadic
functions that wish to pass all of their arguments on to a function that takes a va_list argument, such as vfprintf(3).

BSD man page, 29 November 1993

1025

stdio
stdio—Standard input/output library functions

SYNOPSIS
#include <stdio.h>
FILE *stdin;
FILE *stdout;
FILE *stderr;

DESCRIPTION
The standard I/O library provides a simple and efficient buffered stream I/O interface. Input and output is mapped into
logical data streams and the physical I/O characteristics are concealed. The functions and macros are listed in this section;
more information is available from the individual man pages.

A stream is associated with an external file (which may be a physical device) by opening a file, which may involve creating a
new file. Creating an existing file causes its former contents to be discarded. If a file can support positioning requests (such as
a disk file, as opposed to a terminal), then a file position indicator associated with the stream is positioned at the start of the
file (byte zero), unless the file is opened with append mode. If append mode is used, the position indicator will be placed the
end-of-file. The position indicator is maintained by subsequent reads, writes, and positioning requests. All input occurs as if
the characters were read by successive calls to the fgetc(3) function; all output takes place as if all characters were read by
successive calls to the fputc(3) function.

A file is disassociated from a stream by closing the file. Output streams are flushed (any unwritten buffer contents are
transferred to the host environment) before the stream is disassociated from the file. The value of a pointer to a FILE object is
indeterminate after a file is closed (garbage).

A file may be subsequently reopened, by the same or another program execution, and its contents reclaimed or modified (if it
can be repositioned at the start). If the main function returns to its original caller, or the exit(3) function is called, all open
files are closed (hence all output streams are flushed) before program termination. Other methods of program termination,
such as abort(3) do not bother about closing files properly.

At program startup, three text streams are predefined and need not be opened explicitly: standard input (for reading
conventional input), standard output (for writing conventional input), and standard error (for writing diagnostic output).
These streams are abbreviated stdin, stdout, and stderr. When opened, the standard error stream is not fully buffered; the
standard input and output streams are fully buffered if and only if the streams do not to refer to an interactive device.

Output streams that refer to terminal devices are always line buffered by default; pending output to such streams is written
automatically whenever an input stream that refers to a terminal device is read. In cases where a large amount of computation
is done after printing part of a line on an output terminal, it is necessary to fflush(3) the standard output before going off
and computing so that the output will appear.

The stdio library is a part of the library libc and routines are automatically loaded as needed by the compilers cc(1) and
pc(1). The SYNOPSIS sections of the following manual pages indicate which include files are to be used, what the compiler
declaration for the function looks like, and which external variables are of interest.

The following are defined as macros; these names may not be reused without first removing their current definitions with
#undef: BUFSIZ, EOF, FILENAME_MAX, FOPEN_MAX, L_cuserid, L_ctermid, L_tmpnam, NULL, SEEK_END, SEEK_SET, SEE_CUR, TMP_MAX,
clearerr, feof, ferror, fileno, fropen, fwopen, getc, getchar, putc, putchar, stderr, stdin, stdout. Function versions of the
macro functions feof, ferror, clearerr, fileno, getc, getchar, putc, and putchar exist and will be used if the macros
definitions are explicitly removed.

SEE ALSO
open(2), close(2), read(2), write(2)

stdio

Part III: Library Functions1026

BUGS
The standard buffered functions do not interact well with certain other library and system functions, especially vfork and
abort. This may not be the case under Linux.

STANDARDS
The stdio library conforms to ANSI C3.159-1989 (ANSI C).

LIST OF FUNCTIONS

Function Description

clearerr Check and reset stream status

fclose Close a stream

fdopen Stream open functions

feof Check and reset stream status

ferror Check and reset stream status

fflush Flush a stream

fgetc Get next character or word from input stream

fgetline Get a line from a stream

fgetpos Reposition a stream

fgets Get a line from a stream

fileno Check and reset stream status

fopen Stream open functions

fprintf Formatted output conversion

fpurge Flush a stream

fputc Output a character or word to a stream

fputs Output a line to a stream

fread Binary stream input/output

freopen Stream open functions

fropen Open a stream

fscanf Input format conversion

fseek Reposition a stream

fsetpos Reposition a stream

ftell Reposition a stream

fwrite Binary stream input/output

getc Get next character or word from input stream

getchar Get next character or word from input stream

gets Get a line from a stream

getw Get next character or word from input stream

mktemp Make temporary filename (unique)

perror System error messages

printf Formatted output conversion

putc Output a character or word to a stream

putchar Output a character or word to a stream

puts Output a line to a stream

putw Output a character or word to a stream

1027

remove Remove directory entry

rewind Reposition a stream

scanf Input format conversion

setbuf Stream buffering operations

setbuffer Stream buffering operations

setlinebuf Stream buffering operations

setvbuf Stream buffering operations

sprintf Formatted output conversion

sscanf Input format conversion

strerror System error messages

sys_errlist System error messages

sys_nerr System error messages

tempnam Temporary file routines

tmpfile Temporary file routines

tmpnam Temporary file routines

ungetc Un-get character from input stream

vfprintf Formatted output conversion

vfscanf Input format conversion

vprintf Formatted output conversion

vscanf Input format conversion

vsprintf Formatted output conversion

vsscanf Input format conversion

BSD man page, 29 November 1993

stpcpy
stpcpy—Copies a string returning a pointer to its end

SYNOPSIS
#include <string.h>
char *stpcpy(char *dest, const char *src);

DESCRIPTION
The stpcpy() function copies the string pointed to by src (including the terminating \0 character) to the array pointed to by
dest. The strings may not overlap, and the destination string dest must be large enough to receive the copy.

RETURN VALUE
stpcpy() returns a pointer to the end of the string dest (that is, the address of the terminating null character) rather than the
beginning.

EXAMPLE
For example, this program uses stpcpy to concatenate foo and bar to produce foobar, which it then prints:

 #include <string.h>

 int
 main (void)
 {

stpcpy

Part III: Library Functions1028

 char *to = buffer;
 to = stpcpy (to, “foo”);
 to = stpcpy (to, “bar”);
 printf (“%s\n”, buffer);
 }

CONFORMS TO
This function is not part of the ANSI or POSIX standards, and is not customary on UNIX systems, but is not a GNU
invention either. Perhaps it comes from MS-DOS.

SEE ALSO
strcpy(3), bcopy(3), memccpy(3), memcpy(3), memmove(3)

GNU, 3 September 1995

strcasecmp, strncasecmp
strcasecmp, strncasecmp—Compare two strings, ignoring case

SYNOPSIS
#include <string.h>
int strcasecmp(const char *s1, const char *s2);
int strncasecmp(const char *s1, const char *s2, size_t n);

DESCRIPTION
The strcasecmp() function compares the two strings s1 and s2, ignoring the case of the characters. It returns an integer less
than, equal to, or greater than zero if s1 is found, respectively, to be less than, to match, or be greater than s2.

The strncasecmp() function is similar, except it only compares the first n characters of s1.

RETURN VALUE
The strcasecmp() and strncasecmp() functions return an integer less than, equal to, or greater than zero if s1 (or the first n
bytes thereof) is found, respectively, to be less than, to match, or be greater than s2.

CONFORMS TO
BSD 4.3

SEE ALSO
bcmp(3), memcmp(3), strcmp(3), strcoll(3), strncmp(3)

11 April 1993

strcat, strncat
strcat, strncat—Concatenate two strings

SYNOPSIS
#include <string.h>
char *strcat(char *dest, const char *src);
char *strncat(char *dest, const char *src, size_t n);

1029

DESCRIPTION
The strcat() function appends the src string to the dest string, overwriting the \0 character at the end of dest, and then
adds a terminating \0 character. The strings may not overlap, and the dest string must have enough space for the result.

The strncat() function is similar, except that only the first n characters of src are appended to dest.

RETURN VALUE
The strcat() and strncat() functions return a pointer to the resulting string dest.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
bcopy(3), memccpy(3), memcpy(3), strcpy(3), strncpy(3)

GNU, 11 April 1993

strchr, strrchr
strchr, strrchr—Locate character in string

SYNOPSIS
#include <string.h>
char *strchr(const char *s,int c);
char *strrchr(const char *s,int c);

DESCRIPTION
The strchr() function returns a pointer to the first occurrence of the character c in the string s.

The strrchr() function returns a pointer to the last occurrence of the character c in the string s.

RETURN VALUE
The strchr() and strrchr() functions return a pointer to the matched character or NULL if the character is not found.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
index(3), memchr(3), rindex(3), strpbrk(3), strsep(3), strspn(3), strstr(3), strtok(3)

12 April 1993

strcmp, strncmp
strcmp, strncmp—Compare two strings

SYNOPSIS
#include <string.h>
int strcmp(const char *s1, const char *s2);
int strncmp(const char *s1, const char *s2, size_t n);

strcmp, strncmp

Part III: Library Functions1030

DESCRIPTION
The strcmp() function compares the two strings s1 and s2. It returns an integer less than, equal to, or greater than zero if s1
is found, respectively, to be less than, to match, or be greater than s2.

The strncmp() function is similar, except it only compares the first n characters of s1.

RETURN VALUE
The strcmp() and strncmp() functions return an integer less than, equal to, or greater than zero if s1 (or the first n bytes
thereof) is found, respectively, to be less than, to match, or be greater than s2.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
bcmp(3), memcmp(3), strcasecmp(3), strncasecmp(3), strcoll(3)

11 April 1993

strcoll
strcoll—Compares two strings using the current locale

SYNOPSIS
#include <string.h>
int strcoll(const char *s1, const char *s2);

DESCRIPTION
The strcoll() function compares the two strings s1 and s2. It returns an integer less than, equal to, or greater than zero if s1
is found, respectively, to be less than, to match, or be greater than s2. The comparison is based on strings interpreted as
appropriate for the program’s current locale for category LC_COLLATE. (See setlocale(3)).

RETURN VALUE
The strcoll() function returns an integer less than, equal to, or greater than zero if s1 is found, respectively, to be less than,
to match, or be greater than s2, when both are interpreted as appropriate for the current locale.

CONFORMS TO
SVID 3, BSD 4.3, ISO 9899

NOTES
The Linux C Library currently hasn’t implemented the complete POSIX-collating.

In the POSIX or C locales, strcoll() is equivalent to strcmp().

SEE ALSO
bcmp(3), memcmp(3), strcasecmp(3), strcmp(3), strxfrm(3), setlocale(3)

GNU, 12 April 1993

strcpy, strncpy
strcpy, strncpy—Copy a string

1031

SYNOPSIS
#include <string.h>
char *strcpy(char *dest, const char *src);
char *strncpy(char *dest, const char *src, size_t n);

DESCRIPTION
The strcpy() function copies the string pointed to be src (including the terminating \0 character) to the array pointed to by
dest. The strings may not overlap, and the destination string dest must be large enough to receive the copy.

The strncpy() function is similar, except that not more than n bytes of src are copied. Thus, if there is no null byte among
the first n bytes of src, the result will not be null-terminated.

In the case where the length of src is less than that of n, the remainder of dest will be padded with nulls.

RETURN VALUE
The strcpy() and strncpy() functions return a pointer to the destination string dest.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
bcopy(3), memccpy(3), memcpy(3), memmove(3)

GNU, 11 April 1993

strdup
strdup—Duplicates a string

SYNOPSIS
#include <string.h>
char *strdup(const char *s);

DESCRIPTION
The strdup() function returns a pointer to a new string that is a duplicate of the string s. Memory for the new string is
obtained with malloc(3), and can be freed with free(3).

RETURN VALUE
The strdup() function returns a pointer to the duplicated string, or NULL if insufficient memory was available.

ERRORS
ENOMEM Insufficient memory available to allocate duplicate string

CONFORMS TO
SVID 3, BSD 4.3

SEE ALSO
calloc(3), malloc(3), realloc(3), free(3)

GNU, 12 April 1993

strdup

Part III: Library Functions1032

strerror
strerror—Returns string describing error code

SYNOPSIS
#include <string.h>

char *strerror(int errnum);

DESCRIPTION
The strerror() function returns a string describing the error code passed in the argument errnum. The string can only be
used until the next call to strerror().

RETURN VALUE
The strerror() function returns the appropriate description string, or an unknown error message if the error code is
unknown.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
errno(3), perror(3), strsignal(3)

GNU, 13 April 1993

strfry
strfry—Randomizes a string

SYNOPSIS
#include <string.h>
char *strfry(char *string);

DESCRIPTION
The strfry() function randomizes the contents of string by using rand(3) to randomly swap characters in the string. The
result is an anagram of string.

RETURN VALUE
The strfry() function returns a pointer to the randomized string.

CONFORMS TO
The strfry() function is unique to the Linux C Library and GNU C Library.

SEE ALSO
memfrob(3)

GNU, 12 April 1993

strftime
strftime—Formats date and time

1033

SYNOPSIS
#include <time.h>
size t strftime(char *s, size_t max, const char *format,
const struct tm *tm);

DESCRIPTION
The strftime() function formats the broken-down time tm according to the format specification format and places the result
in the character array s of size max.

Ordinary characters placed in the format string are copied to s without conversion. Conversion specifiers are introduced by a
% character, and are replaced in s as follows:

%a The abbreviated weekday name according to the current locale

%A The full weekday name according to the current locale

%b The abbreviated month name according to the current locale

%B The full month name according to the current locale

%c The preferred date and time representation for the current locale

%d The day of the month as a decimal number (range 01 to 31)

%H The hour as a decimal number using a 24-hour clock (range 00 to 23)

%I The hour as a decimal number using a 12-hour clock (range 01 to 12)

%j The day of the year as a decimal number (range 001 to 366)

%m The month as a decimal number (range 01 to 12)

%M The minute as a decimal number

%p Either a.m. or p.m. according to the given time value, or the corresponding strings for the current
locale

%S The second as a decimal number

%U The week number of the current year as a decimal number, starting with the first Sunday as the first
day of the first week

%W The week number of the current year as a decimal number, starting with the first Monday as the first
day of the first week

%w The day of the week as a decimal, Sunday being 0

%x The preferred date representation for the current locale without the time

%X The preferred time representation for the current locale without the date

%y The year as a decimal number without a century (range 00 to 99)

%Y The year as a decimal number including the century

%Z The time zone or name or abbreviation

%% A literal % character

The broken-down time structure tm is defined in <time.h> as follows:

struct tm
{
int tm sec; /* seconds */
int tm min; /* minutes */
int tm hour; /* hours */
int tm mday; /* day of the month */
int tm mon; /* month */
int tm year; /* year */
int tm wday; /* day of the week */
int tm yday; /* day in the year */
int tm isdst; /* daylight saving time */
};

strftime

Part III: Library Functions1034

The members of the tm structure are

tm_sec The number of seconds after the minute, normally in the range 0 to 59, but can be up to
61 to allow for leap seconds.

tm_min The number of minutes after the hour, in the range 0 to 59.

tm_hour The number of hours past midnight, in the range 0 to 23.

tm_mday The day of the month, in the range 1 to 31.

tm_mon The number of months since January, in the range 0 to 11.

tm_year The number of years since 1900.

tm_wday The number of days since Sunday, in the range 0 to 6.

tm_yday The number of days since January 1, in the range 0 to 365.

tm_isdst A flag that indicates whether daylight saving time is in effect at the time described. The
value is positive if daylight saving time is in effect, zero if it is not, and negative if the
information is not available.

RETURN VALUE
The strftime() function returns the number of characters placed in the array s, not including the terminating NULL character.
If the value equals max, it means that the array was too small.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
date(1), time(2), ctime(3), setlocale(3), sprintf(3)

NOTES
The function supports only those locales specified in locale(7)

GNU, 2 July 1993

strcasecmp, strcat, strchr, strcmp, strcoll, strcpy, strcspn,
strdup, strfry, strlen, strncat, strncmp, strncpy, strncasecmp,
strpbrk, strrchr, strsep, strspn, strstr, strtok, strxfrm,
index, rindex

strcasecmp, strcat, strchr, strcmp, strcoll, strcpy, strcspn, strdup, strfry, strlen, strncat, strncmp, strncpy, strncasecmp,
strpbrk, strrchr, strsep, strspn, strstr, strtok, strxfrm, index, rindex—String operations

SYNOPSIS
#include <string.h>
int strcasecmp(const char *s1, const char *s2);
char *strcat(char *dest, const char *src);
char *strchr(const char *s,int c);
int strcmp(const char *s1, const char *s2);
int strcoll(const char *s1, const char *s2);
char *strcpy(char *dest, const char *src);
size_t strcspn(const char *s, const char *reject);
char *strdup(const char *s);

1035

char *strfry(char *string);
size_t strlen(const char *s);
char *strncat(char *dest, const char *src, size_t n);
int strncmp(const char *s1, const char *s2, size_t n);
char *strncpy(char *dest, const char *src, size_t n);
int strncasecmp(const char *s1, const char *s2, size_t n);
char *strpbrk(const char *s, const char *accept);
char *strrchr(const char *s,int c);
char *strsep(char **stringp, const char *delim);
size_t strspn(const char *s, const char *accept);
char *strstr(const char *haystack, const char *needle);
char *strtok(char *s, const char *delim);
size_t strxfrm(char *dest, const char *src, size_t n);
char *index(constchar*”s,int c);
char *rindex(const char *s,int c);

DESCRIPTION
The string functions perform string operations on NULL-terminated strings. See the individual man pages for descriptions of
each function.

SEE ALSO
index(3), rindex(3), strcasecmp(3), strcat(3), strchr(3), strcmp(3), strcoll(3), strcpy(3), strcspn(3), strdup(3), strfry(3),
strlen(3), strncat(3), strncmp(3), strncpy(3), strncasecmp(3), strpbrk(3), strrchr(3), strsep(3), strspn(3), strstr(3),
strtok(3), strxfrm(3)

9 April 1993

strlen
strlen—Calculates the length of a string

SYNOPSIS
#include <string.h>
size_t strlen(const char *s);

DESCRIPTION
The strlen() function calculates the length of the string s, not including the terminating \0 character.

RETURN VALUE
The strlen() function returns the number of characters in s.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
string(3)

12 April 1993

strpbrk
strpbrk—Searches a string for any of a set of characters

strpbrk

Part III: Library Functions1036

SYNOPSIS
#include <string.h>
char *strpbrk(const char *s, const char *accept);

DESCRIPTION
The strpbrk() function locates the first occurrence in the string s of any of the characters in the string accept.

RETURN VALUE
The strpbrk() function returns a pointer to the character in s that matches one of the characters in accept.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
index(3), memchr(3), rindex(3), strchr(3), strsep(3), strspn(3), strstr(3), strtok(3)

12 April 1993

strptime
strptime—Converts a string representation of time to a time tm structure

SYNOPSIS
#include <time.h>
char *strptime(char *buf, const char *format, const struct tm *tm);

DESCRIPTION
strptime() is the complementary function to strftime() and converts the character string pointed to by buf to a time value,
which is stored in the tm structure pointed to by tm, using the format specified by format. format is a character string that
consists of field descriptors and text characters, reminiscent of scanf(3). Each field descriptor consists of a % character
followed by another character that specifies the replacement for the field descriptor. All other characters are copied from
format into the result. The following field descriptors are supported:

%% Same as %.

%a, %A Day of week, using locale’s weekday names; either the abbreviated or full name may be
specified.

%b, %B, %h Month, using locale’s month names; either the abbreviated or full name may be
specified.

%c Date and time as %x, %X.

%C Date and time, in locale’s long-format date and time representation.

%d, %e Day of month (1–31; leading zeroes are permitted but not required).

%D Date as %m/%d/%y.

%H, %k Hour (0–23; leading zeroes are permitted but not required).

%I, %l Hour (0–12; leading zeroes are permitted but not required).

%j Day number of year (001–366).

%m Month number (1–12; leading zeroes are permitted but not required).

%M Minute (0–59; leading zeroes are permitted but not required).

%p Locale’s equivalent of a.m. or p.m.

%r Time as %I:%M:%S %p.

1037

%R Time as %H:%M.

%S Seconds (0–61; leading zeroes are permitted but not required; extra second allowed for
leap years).

%T Time as %H:%M:%S.

%w Weekday number (0–6) with Sunday as the first day of the week.

%x Date, using locale’s date format.

%X Time, using locale’s time format.

%y Year within century (0–99; leading zeroes are permitted but not required.
Unfortunately, this makes the assumption that we are stuck in the 20th century, as
1900 is automatically added onto this number for the tm year field.)

%Y Year, including century (for example, 1988).

Case is ignored when matching items such as month or weekday names.

The broken-down time structure tm is defined in <time.h> as follows:

struct tm
{
 int tm_sec; /* seconds */
 int tm_min; /* minutes */
 int tm_hour; /* hours */
 int tm_mday; /* day of the month */
 int tm_mon; /* month */
 int tm_year; /* year */
 int tm_wday; /* day of the week */
 int tm_yday; /* day in the year */
 int tm_isdst; /* daylight saving time */
};

RETURN VALUE
The strptime() function returns a pointer to the character following the last character in the string pointed to by buf.

SEE ALSO
strftime(3), time(2), setlocale(3), scanf(3)

BUGS
The return values point to static data, whose contents are overwritten by each call.

NOTES
This function is only available in libraries newer than version 4.6.5.

The function supports only those locales specified in locale(7).

GNU, 26 September 1994

strsep
strsep—Extracts token from string

SYNOPSIS
#include <string.h>
char *strsep(char **stringp, const char *delim);

strsep

Part III: Library Functions1038

DESCRIPTION
The strsep() function returns the next token from the string stringp which is delimited by delim. The token is terminated
with a \0 character and stringp is updated to point past the token.

RETURN VALUE
The strsep() function returns a pointer to the token, or NULL if delim is not found in stringp.

CONFORMS TO
BSD 4.3

SEE ALSO
index(3), memchr(3), rindex(3), strchr(3), strpbrk(3), strspn(3), strstr(3), strtok(3)

GNU, 12 April 1993

strsignal
strsignal—Returns string describing signal

SYNOPSIS
#include <string.h>
char *strsignal(int sig);
extern const char * const sys_siglist[]

DESCRIPTION
The strsignal() function returns a string describing the signal number passed in the argument sig. The string can only be
used until the next call to strsignal().

The array sys_siglist holds the signal description strings indexed by signal number.

RETURN VALUE
The strsignal() function returns the appropriate description string, or an unknown signal message if the signal number is
invalid.

SEE ALSO
psignal(3), strerror(3)

GNU, 13 April 1993

strspn, strcspn
strspn, strcspn—Search a string for a set of characters

SYNOPSIS
#include <string.h>
size t strspn(const char *s, const char *accept);
size t strcspn(const char *s, const char *reject);

DESCRIPTION
The strspn() function calculates the length of the initial segment of s, which consists entirely of characters in accept.

The strcspn() function calculates the length of the initial segment of s, which consists entirely of characters not in reject.

1039

RETURN VALUE
The strspn() function returns the number of characters in the initial segment of s, which consist only of characters from
accept.

The strcspn() function returns the number of characters in the initial segment of s, which are not in the string reject.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
index(3), memchr(3), rindex(3), strchr(3), strpbrk(3), strsep(3), strstr(3), strtok(3)

12 April 1993

strstr
strstr—Locates a substring

SYNOPSIS
#include <string.h>
char *strstr(const char *haystack, const char *needle);

DESCRIPTION
The strstr() function finds the first occurrence of the substring needle in the string haystack. The terminating \0 characters
are not compared.

RETURN VALUE
The strstr() function returns a pointer to the beginning of the substring, or NULL if the substring is not found.

SEE ALSO
index(3), memchr(3), rindex(3), strchr(3), strpbrk(3), strsep(3), strspn(3), strtok(3)

GNU, 12 April 1993

strtod
strtod—Converts ASCII string to double

SYNOPSIS
#include <stdlib.h>
double strtod(const char *nptr, char **endptr);

DESCRIPTION
The strtod() function converts the initial portion of the string pointed to by nptr to double representation.

The expected form of the string is optional leading whitespace as checked by isspace(3), an optional plus (+) or minus sign
(-) followed by a sequence of digits optionally containing a decimal point character, optionally followed by an exponent. An
exponent consists of an E or e, followed by an optional plus or minus sign, followed by a nonempty sequence of digits. If the
locale is not C or POSIX, different formats may be used.

strtod

Part III: Library Functions1040

RETURN VALUES
The strtod function returns the converted value, if any.

If endptr is not NULL, a pointer to the character after the last character used in the conversion is stored in the location
referenced by endptr.

If no conversion is performed, zero is returned and the value of nptr is stored in the location referenced by endptr.

If the correct value would cause overflow, plus or minus HUGE_VAL is returned (according to the sign of the value), and ERANGE
is stored in errno. If the correct value would cause underflow, zero is returned and ERANGE is stored in errno.

ERRORS
ERANGE Overflow or underflow occurred.

CONFORMS TO
ANSI C

SEE ALSO
atof(3), atoi(3), atol(3), strtol(3), strtoul(3)

BSD man page, 4 March 1996

strtok
strtok—Extracts token from string

SYNOPSIS
#include <string.h>
char *strtok(char *s, const char *delim);

DESCRIPTION
A token is a nonempty string of characters not occurring in the string delim, followed by \0 or by a character occurring in
delim.

The strtok() function can be used to parse the string s into tokens. The first call to strtok() should have s as its first
argument. Subsequent calls should have the first argument set to NULL. Each call returns a pointer to the next token, or NULL
when no more tokens are found.

If a token ends with a delimiter, this delimiting character is overwritten with a \0 and a pointer to the next character is saved
for the next call to strtok. The delimiter string delim may be different for each call.

BUGS
This function modifies its first argument. The identity of the delimiting character is lost.

RETURN VALUE
The strtok() function returns a pointer to the next token, or NULL if there are no more tokens.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
index(3), memchr(3), rindex(3), strchr(3), strpbrk(3), strsep(3), strspn(3), strstr(3)

GNU, 10 February 1996

1041

strtol
strtol—Converts a string to a long integer

SYNOPSIS
#include <stdlib.h>
long int strtol(const char *nptr, char **endptr,int base);

DESCRIPTION
The strtol() function converts the string in nptr to a long integer value according to the given base, which must be between
2 and 36 inclusive, or be the special value 0.

The string must begin with an arbitrary amount of whitespace (as determined by isspace(3)) followed by a single optional +
or - sign. If base is zero or 16, the string may then include a 0x prefix, and the number will be read in base 16; otherwise, a
zero base is taken as 10 (decimal) unless the next character is 0, in which case it is taken as 8 (octal).

The remainder of the string is converted to a long int value in the obvious manner, stopping at the first character that is not
a valid digit in the given base. (In bases above 10, the letter A in either upper- or lowercase represents 10, B represents 11, and
so forth, with Z representing 35.)

If endptr is not NULL, strtol() stores the address of the first invalid character in *endptr. If there were no digits at all, strtol()
stores the original value of nptr in *endptr. (Thus, if *nptr is not \0 but **endptr is \0 on return, the entire string is valid.)

RETURN VALUE
The strtol() function returns the result of the conversion, unless the value would underflow or overflow. If an underflow
occurs, strtol() returns LONG_MIN. If an overflow occurs, strtol() returns LONG_MAX. In both cases, errno is set to ERANGE.

ERRORS
ERANGE The given string was out of range; the value converted has been clamped.

CONFORMS TO
SVID 3, BSD 4.3, ISO 9899

SEE ALSO
atof(3), atoi(3), atol(3), strtod(3), strtoul(3)

BUGS
Ignores the current locale.

GNU, 10 June 1995

strtoul
strtoul—Converts a string to an unsigned long integer.

SYNOPSIS
#include <stdlib.h>
unsigned long int strtoul(const char *nptr, char **endptr,
int base);

strtoul

Part III: Library Functions1042

DESCRIPTION
The strtoul() function converts the string in nptr to an unsigned long integer value according to the given base, which must
be between 2 and 36 inclusive, or be the special value 0.

The string must begin with an arbitrary amount of whitespace (as determined by isspace(3)) followed by a single optional +
or - sign. If base is zero or 16, the string may then include a 0x prefix, and the number will be read in base 16; otherwise, a
zero base is taken as 10 (decimal) unless the next character is 0, in which case it is taken as 8 (octal).

The remainder of the string is converted to an unsigned long int value in the obvious manner, stopping at the first character
that is not a valid digit in the given base. (In bases above 10, the letter A in either upper- or lowercase represents 10, B
represents 11, and so forth, with Z representing 35.)

If endptr is not NULL, strtoul() stores the address of the first invalid character in *endptr. If there were no digits at all,
strtoul() stores the original value of nptr in *endptr. (Thus, if *nptr is not \0 but **endptr is \0 on return, the entire string is
invalid.)

RETURN VALUE
The strtoul() function returns either the result of the conversion or, if there was a leading minus sign, the negation of the
result of the conversion, unless the original (non-negated) value would overflow; in the latter case, strtoul() returns
ULONG_MAX and sets the global variable errno to ERANGE.

ERRORS
ERANGE The given string was out of range; the value converted has been clamped.

CONFORMS TO
SVID 3, BSD 4.3, ISO 9899

SEE ALSO
atof(3), atoi(3), atol(3), strtod(3), strtol(3)

BUGS
strtoul ignores the current locale.

GNU, 29 March 1993

strxfrm
strxfrm—String transformation

SYNOPSIS
#include <string.h>

size t strxfrm(char *dest, const char *src, size_t n);

DESCRIPTION
The strxfrm() function transforms the src string into a form such that the result of strcmp() on two strings that have been
transformed with strxfrm() is the same as the result of strcoll() on the two strings before their transformation. The first n
characters of the transformed string are placed in dest. The transformation is based on the program’s current locale for
category LC_COLLATE. (See setlocale(3)).

RETURN VALUE
The strxfrm() function returns the number of bytes required to store the transformed string in dest excluding the terminat-
ing \0 character. If the value returned is n or more, the contents of dest are indeterminate.

1043

CONFORMS TO
SVID 3, BSD 4.3, ISO 9899

NOTES
The Linux C Library currently hasn’t implemented the complete POSIX-collating.

In the POSIX or C locales strxfrm() is equivalent to copying the string with strncpy().

SEE ALSO
bcmp(3), memcmp(3), strcasecmp(3), strcmp(3), strcoll(3), setlocale(3)

GNU, 12 April 1993

swab
swab—Swaps adjacent bytes

SYNOPSIS
#include <string.h>
void swab(const void *from, void*to, size_t n);

DESCRIPTION
The swab() function copies n bytes from the array pointed to by from to the array pointed to by to, exchanging adjacent even
and odd bytes. This function is used to exchange data between machines that have different low/high byte ordering.

RETURN VALUE
The swab() function returns no value.

CONFORMS TO
SVID 3, BSD 4.3

SEE ALSO
bstring(3)

GNU, 13 April 1993

sysconf
sysconf—Gets configuration information at runtime

SYNOPSIS
#include <unistd.h>
long sysconf(int name);

DESCRIPTION
sysconf() provides a way for the application to determine values for system limits or options at runtime.

The equivalent macros defined in <unistd.h> can only give conservative values; if an application wants to take advantage of
values that may change, a call to sysconf() can be made, which may yield more liberal results.

For getting information about a particular file, see fpathconf() or pathconf().

The following values are supported for name. First, the POSIX.1_compatible values:

sysconf

Part III: Library Functions1044

_SC_ARG_MAX The maximum length of the arguments to the exec() family of
functions; the corresponding macro is ARG_MAX.

_SC_CHILD_MAX The number of simultaneous processes per user ID; the corresponding
macro is _POSIX_CHILD_MAX.

_SC_CLK_TCK The number of clock ticks per second; the corresponding macro is
CLK_TCK.

_SC_STREAM_MAX The maximum number of streams that a process can have open at any
time. The corresponding POSIX macro is STREAM_MAX; the
corresponding standard C macro is FOPEN_MAX.

_SC_TZNAME_MAX The maximum number of bytes in a time zone name; the
corresponding macro is TZNAME_MAX.

_SC_OPEN_MAX The maximum number of files that a process can have open at any
time; the corresponding macro is _POSIX_OPEN_MAX.

_SC_JOB_CONTROL This indicates whether POSIX–style job control is supported, the
corresponding macro is _POSIX_JOB_CONTROL.

_SC_SAVED_IDS This indicates whether a process has a saved set-user-ID and a saved
set-group-ID; the corresponding macro is _POSIX_SAVED_IDS.

_SC_VERSION Indicates the year and month the POSIX.1 standard was approved in
the format YYYYMML; the value 199009L indicates the most recent
revision, 1990.

Next, the POSIX.2 values:

_SC_BC_BASE_MAX Indicates the maximum obase value accepted by the bc(1) utility; the
corresponding macro is BC_BASE_MAX.

_SC_BC_DIM_MAX Indicates the maximum value of elements permitted in an array by
bc(1); the corresponding macro is BC_DIM_MAX.

_SC_BC_SCALE_MAX Indicates the maximum scale value allowed by bc(1); the
corresponding macro is BC_SCALE_MAX.

_SC_BC_STRING_MAX Indicates the maximum length of a string accepted by bc(1); the
corresponding macro is BC_STRING_MAX.

_SC_COLL_WEIGHTS_MAX Indicates the maximum numbers of weights that can be assigned to an
entry of the LC_COLLATE order keyword in the locale definition file; the
corresponding macro is COLL_WEIGHTS_MAX.

_SC_EXPR_NEST_MAX Is the maximum number of expressions that can be nested within
parentheses by expr(1). The corresponding macro is EXPR_NEST_MAX.

_SC_LINE_MAX The maximum length of a utility’s input line length, either from
standard input or from a file. This includes length for a trailing
newline. The corresponding macro is LINE_MAX.

_SC_RE_DUP_MAX The maximum number of repeated occurrences of a regular
expression when the interval notation \{m,n\} is used. The value of
the corresponding macro is RE_DUP_MAX.

_SC_2_VERSION Indicates the version of the POSIX.2 standard in the format of
YYYYMML. The corresponding macro is POSIX2_VERSION.

_SC_2_DEV Indicates whether the POSIX.2 C language development facilities are
supported. The corresponding macro is POSIX2_C_DEV.

_SC_2_FORT_DEV Indicates whether the POSIX.2 FORTRAN development utilities are
supported. The corresponding macro is POSIX2_FORT_RUN.

_SC_2_FORT_RUN Indicates whether the POSIX.2 FORTRAN runtime utilities are
supported. The corresponding macro is POSIX2_FORT_RUN.

1045

POSIX2_LOCALEDEF Indicates whether the POSIX.2 creation of locates via locale(1) is
supported. The corresponding macro is POSIX2_LOCALEDEF.

_SC_2_SW_DEV Indicates whether the POSIX.2 software development utilities option
is supported. The corresponding macro is POSIX2_SW_DEV.

RETURN VALUE
The value returned is the value of the system resource, 1 if a queried option is available, 0 if it is not, or –1 on error. The
variable errno is not set.

CONFORMS TO
POSIX.1, proposed POSIX.2

BUGS
It is difficult use ARG_MAX because it is not specified how much of the argument space for exec() is consumed by the user’s
environment variables.

Some returned values may be huge; they are not suitable for allocating memory.

POSIX.2 is not yet an approved standard; the information in this man page is subject to change.

SEE ALSO
bc(1), expr(1), locale(1), fpathconf(3), pathconf(3)

GNU, 18 April 1993

closelog, openlog, syslog
closelog, openlog, syslog—Send messages to the system logger

SYNOPSIS
#include <syslog.h>
void openlog(char *ident,int option,int facility);
void syslog(int priority, char *format, ...);
void closelog(void);

DESCRIPTION
closelog() closes the descriptor being used to write to the system logger. The use of closelog() is optional.

openlog() opens a connection to the system logger for a program. The string pointed to by ident is added to each message,
and is typically set to the program name. Values for option and facility are given in the next subsection. The use of
openlog() is optional; it will automatically be called by syslog() if necessary, in which case ident will default to NULL.

syslog() generates a log message, which will be distributed by syslogd(8). priority is a combination of the facility and the
level, values for which are given in the next subsection. The remaining arguments are a format, as in printf(3) and any
arguments required by the format, except that the two characters %m will be replaced by the error message string (strerror)
corresponding to the present value of errno.

PARAMETERS
This section lists the parameters used to set the values of option, facility, and priority.

closelog, openlog, syslog

Part III: Library Functions1046

OPTION
The option argument to openlog() is an OR of any of these:

LOG_CONS Write directly to system console if there is an error while sending to system logger

LOG_NDELAY Open the connection immediately (normally, the connection is opened when the
first message is logged)

LOG_PERROR Print to stderr as well

LOG_PID Include PID with each message

FACILITY
The facility argument is used to specify what type of program is logging the message. This lets the configuration file specify
that messages from different facilities will be handled differently.

LOG_AUTH Security/authorization messages (DEPRECATED use LOG_AUTHPRIV
instead)

LOG_AUTHPRIV Security/authorization messages (private)

LOG_CRON Clock daemon (cron and at)

LOG_DAEMON Other system daemons

LOG_KERN Kernel messages

LOG_LOCAL0 through Reserved for local use
LOG_LOCAL7

LOG_LPR Line printer subsystem

LOG_MAIL Mail subsystem

LOG_NEWS Usenet news subsystem

LOG_SYSLOG Messages generated internally by syslogd

LOG_USER (default) Generic user-level messages

LOG_UUCP UUCP subsystem

LEVEL
This determines the importance of the message. The levels, in order of decreasing importance, are

LOG_EMERG System is unusable

LOG_ALERT Action must be taken immediately

LOG_CRIT Critical conditions

LOG_ERR Error conditions

LOG_WARNING Warning conditions

LOG_NOTICE Normal, but significant, condition

LOG_INFO Informational message

LOG_DEBUG Debug-level message

HISTORY
A syslog function call appeared in BSD 4.2.

SEE ALSO
logger(1), syslog.conf(5), syslogd(8)

Linux, 15 February 1994

1047

system
system—Executes a shell command

SYNOPSIS
#include <stdlib.h>
int system (const char * string);

DESCRIPTION
system() executes a command specified in string by calling /bin/sh -c string, and returns after the command has been
completed. During execution of the command, SIGCHLD will be blocked, and SIGINT and SIGQUIT will be ignored.

RETURN VALUE
The value returned is 127 if the execve() call for /bin/sh fails, –1 if there was another error, and the return code of the
command otherwise.

If the value of string is NULL, system() returns non-zero if the shell is available, and zero if not.

system() does not affect the wait status of any other children.

CONFORMS TO
ANSI C, POSIX.1, proposed POSIX.2, BSD 4.3

BUGS
Do not use system() from a program with suid or sgid privileges, because strange values for some environment variables
might be used to subvert system integrity. Use the exec(2) family of functions instead, but not execlp(2) or execvp(2).

The check for the availability of /bin/sh is not actually performed; it is always assumed to be available.

It is possible for the shell command to return 127, so that code is not a sure indication that the execve() call failed; check
errno to make sure.

SEE ALSO
sh(1), exec(2), signal(2)

GNU, 13 April 1993

tan
tan—Tangent function

SYNOPSIS
#include <math.h>
double tan(double x);

DESCRIPTION
The tan() function returns the tangent of x, where x is given in radians.

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

tan

Part III: Library Functions1048

SEE ALSO
acos(3), asin(3), atan(3), atan2(3), cos(3), sin(3)

8 June 1993

tanh
tanh—Hyperbolic tangent function

SYNOPSIS
#include <math.h>
double tanh(double x);

DESCRIPTION
The tanh() function returns the hyperbolic tangent of x, which is defined mathematically as sinh(x) / cosh(x).

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
acosh(3), asinh(3), atanh(3), cosh(3), sinh(3)

13 June 1993

telldir
telldir—Returns current location in directory stream

SYNOPSIS
#include <dirent.h>
off t telldir(DIR *dir);

DESCRIPTION
The telldir() function returns the current location associated with the directory stream dir.

RETURN VALUE
The telldir() function returns the current location in the directory stream or –1 if an error occurs.

ERRORS
EBADF Invalid directory stream descriptor dir

CONFORMS TO
BSD 4.3

SEE ALSO
opendir(3), readdir(3), closedir(3), rewinddir(3), seekdir(3), scandir(3)

31 March 1993

1049

tempnam
tempnam—Creates a name for a temporary file

SYNOPSIS
#include <stdio.h>
char *tempnam(const char *dir, const char *pfx);

DESCRIPTION
The tempnam() function generates a unique temporary filename using up to five characters of pfx, if it is not NULL. The
directory to place the file is searched for in the following order:

1. The directory specified by the environment variable TMPDIR, if it is writable
2. The directory specified by the argument dir, if it is not NULL
3. The directory specified by P_tmpdir
4. The directory \tmp

The storage for the filename is allocated by malloc(), and so can be freed by the function free().

RETURN VALUE
The tempnam() function returns a pointer to the unique temporary filename, or NULL if a unique filename cannot be
generated.

ERRORS
EEXIST Unable to generate a unique filename

CONFORMS TO
SVID 3, BSD 4.3

SEE ALSO
mktemp(3), mkstemp(3), tmpnam(3), tmpfile(3)

GNU, 3 April 1993

termios, tcgetattr, tcsetattr, tcsendbreak, tcdrain, tcflush,
tcflow, cfmakeraw, cfgetospeed, cfgetispeed, cfsetispeed,
cfsetospeed, tcgetpgrp, tcsetpgrp

termios, tcgetattr, tcsetattr, tcsendbreak, tcdrain, tcflush, tcflow, cfmakeraw, cfgetospeed, cfgetispeed, cfsetispeed,
cfsetospeed, tcgetpgrp, tcsetpgrp—Get and set terminal attributes, line control, get and set baud rate, get and set terminal
foreground process group ID

SYNOPSIS
#include <termios.h>
#include <unistd.h>

int tcgetattr (int fd, struct termios *termios_p);
int tcsetattr (int fd,int optional_actions, struct termios *termios_p);
int tcsendbreak (int fd,int duration);
int tcdrain (int fd);
int tcflush (int fd,int queue_selector);

termios, tcgetattr, tcsetattr, tcsendbreak, tcdrain, tcflush, tcflow, cfmakeraw, cfgetospeed, cfgetispeed,
cfsetispeed, cfsetospeed, tcgetpgrp, tcsetpgrp

Part III: Library Functions1050

int tcflow (int fd,int action);
int cfmakeraw (struct termios *termios_p);
speed_t cfgetospeed (struct termios *termios_p);
int cfsetospeed (struct termios *termios_p, speed_t speed);
speed_t cfgetispeed (struct termios *termios_p);
int cfsetispeed (struct termios *termios_p, speed_t speed);
pid_t tcgetpgrp (int fd);
int tcsetpgrp (int fd, pid_t pgrpid);

DESCRIPTION
The termios functions describe a general terminal interface that is provided to control asynchronous communications ports.

Many of the functions described here have a termios_p argument that is a pointer to a termios structure. This structure
contains the following members:

tcflag_t c_iflag; /* input modes */
tcflag_t c_oflag; /* output modes */
tcflag_t c_cflag; /* control modes */
tcflag_t c_lflag;/*localmodes*/
cc_t c_cc[NCCS]; /* control chars */

The c_iflag flag constants are

IGNBRK Ignore BREAK condition on input.

BRKINT If IGNBRK is not set, generate SIGINT on BREAK condition, else read BREAK as character \0.

IGNPAR Ignore framing errors and parity errors.

PARMRK If IGNPAR is not set, prefix a character with a parity error or framing error with \377 \0.
If neither IGNPAR nor PARMRK is set, read a character with a parity error or framing error
as \0.

INPCK Enable input parity checking.

ISTRIP Strip off eighth bit.

INLCR Translate NL to CR on input.

IGNCR Ignore carriage return on input.

ICRNL Translate carriage return to newline on input (unless IGNCR is set).

IUCLC Map uppercase characters to lowercase on input.

IXON Enable XON/XOFF flow control on output.

IXANY Enable any character to restart output.

IXOFF Enable XON/XOFF flow control on input.

IMAXBEL Ring bell when input queue is full.

The c_oflag flag constants are

OPOST Enable implementation-defined output processing.

OLCUC Map lowercase characters to uppercase on output.

ONLCR Map NL to CR-NL on output.

OCRNL Map CR to NL on output.

ONOCR Don’t output CR at column 0.

ONLRET Don’t output CR.

OFILL Send fill characters for a delay, rather than using a timed delay.

OFDEL Fill character is ASCII DEL. If unset, fill character is ASCII NUL.

NLDLY Newline delay mask. Values are NL0 and NL1.

CRDLY Carriage return delay mask. Values are CR0, CR1, CR2,or CR3.

1051

TABDLY Horizontal tab delay mask. Values are TAB0, TAB1, TAB2, TAB3, or XTABS. A value of XTABS
expands tabs to spaces (with tab stops every eight columns).

BSDLY Backspace delay mask. Values are BS0 or BS1.

VTDLY Vertical tab delay mask. Values are VT0 or VT1.

FFDLY Form feed delay mask. Values are FF0 or FF1.

The c_cflag flag constants are

CSIZE Character size mask. Values are CS5, CS6, CS7,or CS8.

CSTOPB Set two stop bits, rather than one.

CREAD Enable receiver.

PARENB Enable parity generation on output and parity checking for input.

PARODD Parity for input and output is odd.

HUPCL Lower modem control lines after last process closes the device (hang up).

CLOCAL Ignore modem control lines.

CIBAUD Mask for input speeds (not used).

CRTSCTS Flow control.

The c_lflag flag constants are

ISIG When any of the characters INTR, QUIT, SUSP, or DSUSP are received, generate the
corresponding signal.

ICANON Enable canonical mode. This enables the special characters EOF, EOL, EOL2, ERASE, KILL,
REPRINT, STATUS, and WERASE, and buffers by lines.

XCASE If ICANON is also set, terminal is uppercase only. Input is converted to lowercase, except
for characters preceded by \. On output, uppercase characters are preceded by \ and
lowercase characters are converted to uppercase.

ECHO echo input characters.

ECHOE If ICANON is also set, the ERASE character erases the preceding input character, and WERASE
erases the preceding word.

ECHOK If ICANON is also set, the KILL character erases the current line.

ECHONL If ICANON is also set, echo the NL character even if ECHO is not set.

ECHOCTL If ECHO is also set, ASCII control signals other than TAB, NL, START, and STOP are echoed as
ˆX, where X is the character with ASCII code 0x10 greater than the control signal. For
example, character 0x28 (BS) is echoed as ˆH.

ECHOPRT If ICANON and IECHO are also set, characters are printed as they are being erased.

ECHOKE If ICANON is also set, KILL is echoed by erasing each character on the line, as specified by
ECHOE and ECHOPRT.

FLUSHO Output is being flushed. This flag is toggled by typing the DISCARD character.

NOFLSH Disable flushing the input and output queues when generating the SIGINT and SIGQUIT
signals, and flushing the input queue when generating the SIGSUSP signal.

TOSTOP Send the SIGTTOU signal to the process group of a background process that tries to write
to its controlling terminal.

PENDIN All characters in the input queue are reprinted when the next character is read. (bash
handles typeahead this way.)

IEXTEN Enable implementation-defined input processing.

tcgetattr() gets the parameters associated with the object referred by fd and stores them in the termios structure referenced
by termios_p. This function may be invoked from a background process; however, the terminal attributes may be
subsequently changed by a foreground process.

termios, tcgetattr, tcsetattr, tcsendbreak, tcdrain, tcflush, tcflow, cfmakeraw, cfgetospeed, cfgetispeed,
cfsetispeed, cfsetospeed, tcgetpgrp, tcsetpgrp

Part III: Library Functions1052

tcsetattr() sets the parameters associated with the terminal (unless support is required from the underlying hardware that is
not available) from the termios structure referred to by termios_p. optional_actions specifies when the changes take effect:

TCSANOW The change occurs immediately.

TCSADRAIN The change occurs after all output written to fd has been transmitted. This function
should be used when changing parameters that affect output.

TCSAFLUSH The change occurs after all output written to the object referred by fd has been
transmitted, and all input that has been received but not read will be discarded
before the change is made.

tcsendbreak() transmits a continuous stream of zero-valued bits for a specific duration, if the terminal is using asynchronous
serial data transmission. If duration is zero, it transmits zero-valued bits for at least 0.25 seconds, and not more that 0.5
seconds. If duration is not zero, it sends zero-valued bits for duration*N seconds, where N is at least 0.25, and not more than
0.5.

If the terminal is not using asynchronous serial data transmission, tcsendbreak() returns without taking any action.

tcdrain()waits until all output written to the object referred to by fd has been transmitted.

tcflush()discards data written to the object referred to by fd but not transmitted, or data received but not read, depending
on the value of queue_selector:

TCIFLUSH Flushes data received but not read

TCOFLUSH Flushes data written but not transmitted

TCIOFLUSH Flushes both data received but not read, and data written but not transmitted

tcflow()suspends transmission or reception of data on the object referred to by fd, depending on the value of action:

TCOOFF Suspends output

TCOON Restarts suspended output

TCIOFF Transmits a STOP character, which stops the terminal device from transmitting
data to the system

TCION Transmits a START character, which starts the terminal device transmitting data
to the system

The default on open of a terminal file is that neither its input nor its output is suspended.

The baud rate functions are provided for getting and setting the values of the input and output baud rates in the termios
structure. The new values do not take effect until tcsetattr() is successfully called.

Setting the speed to B0 instructs the modem to hang up. The actual bit rate corresponding to B38400 may be altered with
setserial(8).

The input and output baud rates are stored in the termios structure.

cfmakeraw sets the terminal attributes as follows:

termios_p->c_iflag &= ˜(IGNBRK|BRKINT|PARMRK|ISTRIP
|INLCR|IGNCR|ICRNL|IXON);
termios_p->c_oflag &= ˜OPOST;
termios_p->c_lflag &= ˜(ECHO|ECHONL|ICANON|ISIG|IEXTEN);
termios_p->c_cflag &= ˜(CSIZE|PARENB) ;
termios_p->c_cflag |=CS8;

cfgetospeed() returns the output baud rate stored in the termios structure pointed to by termios_p.

cfsetospeed() sets the output baud rate stored in the termios structure pointed to by termios_p to speed, which must be one
of these constants:

B0
B50
B75

1053

B110
B134
B150
B200
B300
B600
B1200
B1800
B2400
B4800
B9600
B19200
B38400
B57600
B115200
B230400

The zero baud rate, B0, is used to terminate the connection. If B0 is specified, the modem control lines shall no longer be
asserted. Normally, this will disconnect the line. CBAUDEX is a mask for the speeds beyond those defined in POSIX.1 (57600
and above). Thus, B57600 & CBAUDEX is non-zero.

cfgetispeed() returns the input baud rate stored in the termios structure.

cfsetispeed() sets the input baud rate stored in the termios structure to speed. If the input baud rate is set to zero, the input
baud rate will be equal to the output baud rate.

tcgetpgrp() returns process group ID of foreground processing group, or -1 on error.

tcsetpgrp() sets process group ID to pgrpid. pgrpid must be the ID of a process group in the same session.

RETURN VALUES
cfgetispeed() returns the input baud rate stored in the termios structure.

cfgetospeed() returns the output baud rate stored in the termios structure.

tcgetpgrp() returns process group ID of foreground processing group, or -1 on error.

All other functions return

0 On success

-1 On failure and set errno to indicate the error

SEE ALSO
setserial(8)

Linux, 2 September 1995

tmpfile
tmpfile—Creates a temporary file

SYNOPSIS
#include <stdio.h>
FILE *tmpfile (void);

DESCRIPTION
The tmpfile() function generates a unique temporary filename using the path prefix P_tmpdir defined in <stdio.h>. The
temporary file is then opened in binary read/write (w+b) mode. The file will be automatically deleted when it is closed or the
program terminates.

tmpfile

Part III: Library Functions1054

RETURN VALUE
The tmpfile() function returns a stream descriptor, or NULL if a unique filename cannot be generated or the unique file
cannot be opened.

ERRORS
EACCES Search permission denied for directory in file’s path prefix

EEXIST Unable to generate a unique filename

EMFILE Too many file descriptors in use by process

ENFILE Too many files open in system

EROFS Read-only filesystem

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
mktemp(3), mkstemp(3), tmpnam(3), tempnam(3)

GNU, 3 April 1993

tmpnam
tmpnam—Creates a name for a temporary file

SYNOPSIS
#include <stdio.h>
char *tmpnam(char *s);

DESCRIPTION
The tmpnam() function generates a unique temporary filename using the path prefix P_tmpdir defined in <stdio.h>. If the
argument s is NULL, tmpnam() returns the address of an internal static area that holds the filename, which is overwritten by
subsequent calls to tmpnam(). If s is not NULL, the filename is returned in s.

RETURN VALUE
The tmpnam() function returns a pointer to the unique temporary filename, or NULL if a unique name cannot be generated.

ERRORS
EEXIST Unable to generate a unique filename

CONFORMS TO
SVID 3, POSIX, BSD 4.3, ISO 9899

SEE ALSO
mktemp(3), mkstemp(3), tempnam(3), tmpfile(3)

GNU, 3 April 1993

1055

toascii
toascii—Converts character to ASCII

SYNOPSIS
#include <ctype.h>
int toascii (int c);

DESCRIPTION
toascii() converts c to a 7-bit unsigned char value that fits into the ASCII character set, by clearing the high-order bits.

RETURN VALUE
The value returned is that of the converted character.

CONFORMS TO
SVID, BSD

BUGS
Many people will be unhappy if you use this function. This function will convert accented letters into random characters.

SEE ALSO
isascii(3), toupper(3), tolower(3)

GNU, 16 September 1995

toupper, tolower
toupper, tolower—Convert letter to uppercase or lowercase

SYNOPSIS
#include <ctype.h>
int toupper (int c);
int tolower (int c);

DESCRIPTION
toupper() converts the letter c to uppercase, if possible.

tolower() converts the letter c to lowercase, if possible.

RETURN VALUE
The value returned is that of the converted letter, or c if the conversion was not possible.

CONFORMS TO
ANSI C, BSD 4.3

BUGS
The details of what constitutes an uppercase or lowercase letter depend on the current locale. For example, the default locale
does not know about umlauts, so no conversion is done for them.

In some non-English locales, there are lowercase letters with no corresponding uppercase equivalent; the German sharp s is
one example.

toupper, tolower

Part III: Library Functions1056

SEE ALSO
isalpha(3), setlocale(3), locale(7)

GNU, 4 April 1993

tsearch, tfind, tdelete, twalk
tsearch, tfind, tdelete, twalk—Manage a binary tree

SYNOPSIS
#include <search.h>
void *tsearch (const void *key,void **rootp,
int (*compar)(const void *, const void *));
void *tfind (const void *key, const void **rootp,
int (*compar)(const void *, const void *));
void *tdelete (const void *key,void**rootp,
int (*compar)(const void *, const void *));
void twalk (const void *root,void (*action)(const void*nodep,
const VISIT which,
const int depth));

DESCRIPTION
tsearch, tfind, twalk, and tdelete manage a binary tree. They are generalized from Knuth (6.2.2) Algorithm T. The first
field in each node of the tree is a pointer to the corresponding data item. (The calling program must store the actual data.)
compar points to a comparison routine, which takes pointers to two items. It should return an integer that is negative, zero, or
positive, depending on whether the first item is less than, equal to, or greater than the second.

tsearch searches the tree for an item. key points to the item to be searched for. rootp points to a variable that points to the
root of the tree. If the tree is empty, then the variable that rootp points to should be set to NULL. If the item is found in the
tree, then tsearch returns a pointer to it. If it is not found, then tsearch adds it, and returns a pointer to the newly added
item.

tfind is like tsearch, except that if the item is not found, then tfind returns NULL.

tdelete deletes an item from the tree. Its arguments are the same as for tsearch.

twalk performs depth-first, left-to-right traversal of a binary tree. root points to the starting node for the traversal. If that
node is not the root, then only part of the tree will be visited. twalk calls the user function action each time a node is visited
(that is, three times for an internal node, and once for a leaf). action, in turn, takes three arguments. The first is a pointer to
the node being visited. The second is an integer that takes on the values preorder, postorder, and endorder depending on
whether this is the first, second, or third visit to the internal node, or leaf if it is the single visit to a leaf node. (These symbols
are defined in <search.h>.) The third argument is the depth of the node, with zero being the root.

RETURN VALUE
tsearch returns a pointer to a matching item in the tree, or to the newly added item, or NULL if there was insufficient memory
to add the item. tfind returns a pointer to the item, or NULL if no match is found. If there are multiple elements that match
the key, the element returned is unspecified.

tdelete returns a pointer to the parent of the item deleted, or NULL if the item was not found.

tsearch, tfind, and tdelete also return NULL if rootp was NULL on entry.

WARNINGS
twalk takes a pointer to the root, while the other functions take a pointer to a variable that points to the root.

twalk uses postorder to mean “after the left subtree, but before the right subtree.” Some authorities would call this inorder,
and reserve postorder to mean “after both subtrees.”

1057

tdelete frees the memory required for the node in the tree. The user is responsible for freeing the memory for the
corresponding data.

The example program depends on the fact that twalk makes no further reference to a node after calling the user function
with argument endorder or leaf. This works with the GNU library implementation, but is not in the SysV documentation.

EXAMPLE
The following program inserts twelve random numbers into a binary tree, then prints the numbers in order. The numbers
are removed from the tree and their storage freed during the traversal.

 #include <search.h>
 #include <stdlib.h>
 #include <stdio.h>

 void *root=NULL;

 void *xmalloc(unsigned n)
 {
 void *p;
 p = malloc(n);
 if(p) return p;
 fprintf(stderr, “insufficient memory\n”);
 exit(1);
 }

 int compare(const void *pa, const void *pb)
 {
 if(*(int *)pa < *(int *)pb) return -1;
 if(*(int *)pa > *(int *)pb) return 1;
 return 0;
 }

 void action(const void *nodep, const VISIT which, const int depth)
 {
 int *datap;
 void *val;

 switch(which)
 {
 case preorder:
 break;
 case postorder:
 datap = *(int **)nodep;
 printf(“%6d\n”, *datap);
 break;
 case endorder:
 datap = *(int **)nodep;
 (void)tdelete(datap, &root, compare);
 free(datap);
 break;
 case leaf:
 datap = *(int **)nodep;
 printf(“%6d\n”, *datap);
 val = tdelete(datap, &root, compare);
 free(datap);
 break;
 }
 return;

tsearch, tfind, tdelete, twalk

Part III: Library Functions1058

 }

 int main()
 {
 int i, *ptr;
 void *val;

 for (i = 0; i < 12; i++)
 {
 ptr = (int *)xmalloc(sizeof(int));
 *ptr = rand()&0xff;
 val = tsearch((void *)ptr, &root, compare);
 if(val == NULL) exit(1);
 }
 twalk(root, action);
 return 0;
 }

CONFORMS TO
SVID

SEE ALSO
qsort(3), bsearch(3), hsearch(3), lsearch(3)

GNU, 24 September 1995

ttyname
ttyname—Returns name of a terminal

SYNOPSIS
#include <unistd.h>
char *ttyname (int desc);

DESCRIPTION
Returns a pointer to the pathname of the terminal device that is open on the file descriptor desc, or NULL on error (for
example, if desc is not connected to a terminal).

CONFORMS TO
POSIX.1

SEE ALSO
isatty(3), fstat(3)

Linux, 20 April 1995

tzset
tzset—Initializes time conversion information

SYNOPSIS
#include <time.h>
void tzset (void);
extern char *tzname[2];

1059

DESCRIPTION
The tzset() function initializes the tzname variable from the TZ environment variable. This function is automatically called
by the other time conversion functions that depend on the time zone.

If the TZ variable does not appear in the environment, the tzname variable is initialized with the best approximation of local
wall clock time, as specified by the tzfile(5)-format file /usr/lib/zoneinfo/localtime.

If the TZ variable does appear in the environment but its value is NULL or its value cannot be interpreted using any of the
formats specified in the following paragraphs, Coordinated Universal Time (UTC) is used.

The value of TZ can be one of three formats. The first format is used when there is no daylight saving time in the local time
zone:

std offset

The std string specifies the name of the time zone and must be three or more alphabetic characters. The offset string
immediately follows std and specifies the time value to be added to the local time to get Coordinated Universal Time
(UTC). The offset is positive if the local time zone is west of the Prime Meridian and negative if it is east. The hour must be
between 0 and 24, and the minutes and seconds 0 and 59.

The second format is used when there is daylight saving time:

std offset dst [offset],start[/time],end[/time]

There are no spaces in the specification. The initial std and offset specify the standard time zone, as described. The dst
string and offset specify the name and offset for the corresponding daylight savings time zone. If the offset is omitted, it
defaults to one hour ahead of standard time.

The start field specifies when Daylight Savings Time goes into effect and the end field specifies when the change is made
back to Standard Time. These fields may have the following formats:

Jn This specifies the Julian day with n between 1 and 365. February 29 is never counted even in
leap years.

n This specifies the Julian day with n between 1 and 365. February 29 is counted in leap years.

Mm.w.d This specifies day d (0 <= d <= 6) of week w (1 <= w <=5) of month m (1 <= m <= 12). Week
1 is the first week in which day d occurs and week 5 is the last week in which day d occurs.
Day 0 is a Sunday.

The time fields specify when, in the local time currently in effect, the change to the other time occurs. If omitted, the default
is 02:00:00.

The third format specifies that the time zone information should be read from a file:

:[filespec]

If the file specification filespec is omitted, the time zone information is read from /usr/lib/zoneinfo/localtime, which is in
tzfile(5) format. If filespec is given, it specifies an-other tzfile(5)-format file to read the time zone information from. If
filespec does not begin with a /, the file specification is relative to the system time conversion information directory /usr/
lib/zoneinfo.

FILES
/usr/lib/zoneinfo System time zone directory

/usr/lib/zoneinfo/localtime Local time zone file

/usr/lib/zoneinfo/posixrules Rules for POSIX-style TZs

CONFORMS TO
SVID 3, POSIX, BSD 4.3

tzset

Part III: Library Functions1060

SEE ALSO
date(1), gettimeofday(2), time(2), ctime(3), getenv(3), tzfile(5)

BSD, 2 July 1993

none
none—Undocumented library functions

SYNOPSIS
Undocumented library functions

DESCRIPTION
This man page mentions those library functions that are implemented in the standard libraries but not yet documented in
man pages.

SOLICITATION
If you have information about these functions, please look in the source code, write a man page (using a style similar to that
of the other Linux section 3 man pages), and send it to aeb@cwi.nl for inclusion in the next man page release.

THE LIST
des_setparity, dn_skipname, ecb_crypt, encrypt, endnetgrent, endrpcent, endutent, execlp, fcrypt, fp_nquery, fp_query,
fp_resstat, get_myaddress, getnetgrent, getnetname, getopt_long_only, getpublickey, getrpcbyname, getrpcbynumber,
getrpcent, getrpcport, getsecretkey, getutid, getutline, h_errlist, host2netname, hostalias, inet_nsap_addr,
inet_nsap_ntoa_init_des, innetgr, key_decryptsession, key_encryptsession, key_gendes, key_setsecret, lfind, libc_nls_init,
lockf, lsearch, mcheck, memalign, mstats, mtrace, netname2host, netname2user, nlist, obstack_free, p_cdname, p_cdnname,
p_class, p_fqname, p_option, p_query, p_rr, p_time, p_type, passwd2des, pmap_getmaps, pmap_getport, pmap_rmtcall, pmap_set,
pmap_unset, putlong, putshort, pututline, rcmd, re_compile_fastmap, re_compile_pattern, re_match, re_match_2, re_rx_search,
re_search, re_search_2, re_set_registers, re_set_syntax, registerrpc, res_send_setqhook, res_send_setrhook, rexec,
rresvport, rtime, ruserok, ruserpass, setfileno, sethostfile, setkey, setlogmask, setnetgrent, setrpcent, setutent,
siglongjmp, snprintf, stpcpy, svc_exit, svc_getreq, svc_getreqset, svc_register, svc_run, svc_sendreply, svc_unregister,
svcerr_auth, svcerr_decode, svcerr_noproc, svcerr_noprog, svcerr_progvers, svcerr_systemerr, svcerr_weakauth,
svcfd_create, svcraw_create, svctcp_create, svcudp_bufcreate, svcudp_create, svcudp_enablecachesyscall, tdelete, tell,
tfind, timegm, tr_break, tsearch, twalk, tzsetwall, ufc_dofinalperm, ufc_doit, user2netname, utmpname, valloc, vsnprintf,
vsyslog, xdecrypt, xdr_accepted_reply, xdr_array, xdr_authdes_cred, xdr_authdes_verf, xdr_authunix_parms, xdr_bool,
xdr_bytes, xdr_callhdr, xdr_callmsg, xdr_char, xdr_cryptkeyarg, xdr_cryptkeyres, xdr_datum, xdr_des_block, xdr_domainname,
xdr_double, xdr_enum, xdr_float, xdr_free, xdr_getcredres, xdr_int, xdr_keybuf, xdr_keystatus, xdr_long, xdr_mapname,
xdr_netnamestr, xdr_netobj, xdr_opaque, xdr_opaque_auth, xdr_passwd, xdr_peername, xdr_pmap, xdr_pmaplist, xdr_pointer,
xdr_reference, xdr_rejected_reply, xdr_replymsg, xdr_rmtcall_args, xdr_rmtcallres, xdr_short, xdr_string, xdr_u_char,
xdr_u_int, xdr_u_long, xdr_u_short, xdr_union, xdr_unixcred, xdr_vector, xdr_void, xdr_wrapstring, xdr_yp_buf,
xdr_yp_inaddr, xdr_ypbind_binding, xdr_ypbind_resp, xdr_ypbind_resptype, xdr_ypbind_setdom, xdr_ypdelete_args,
xdr_ypmaplist, xdr_ypmaplist_str, xdr_yppasswd, xdr_ypreq_key, xdr_ypreq_nokey, xdr_ypresp_all, xdr_ypresp_all_seq,
xdr_ypresp_key_val, xdr_ypresp_maplist, xdr_ypresp_master, xdr_ypresp_order, xdr_ypresp_val, xdr_ypstat,
xdr_ypupdate_args, xdrmem_create, xdrrec_create, xdrrec_endofrecord, xdrrec_eof, xdrrec_skiprecord, xdrstdio_create,
xencrypt, xprt_register, xprt_unregister, yp_all, yp_bind, yp_first, yp_get_default_domain, yp_maplist, yp_master, yp_match,
yp_next, yp_order, yp_unbind, yp_update, yperr_string, ypprot_err

Linux 1.3.15, 25 August 1995

1061

usleep
usleep—Suspends execution for interval of microseconds

SYNOPSIS
#include <unistd.h>
void usleep(unsigned long usec);

DESCRIPTION
The usleep() function suspends execution of the calling process for usec microseconds. The sleep may be lengthened slightly
by any system activity or by the time spent processing the call.

CONFORMS TO
BSD 4.3

SEE ALSO
setitimer(2), getitimer(2), sleep(3), alarm(3), select(3)

4 July 1993

wcstombs
wcstombs—Converts a wide character string to a multibyte character string

SYNOPSIS
#include <stdlib.h>
size_t wcstombs(char *s, const wchar_t *pwcs, size_t n);

DESCRIPTION
The wcstombs() function converts a sequence of wide characters from the array pwcs into a sequence of multibyte characters
and stores up to n bytes of multibyte characters in the array s.

RETURN VALUE
wcstombs() returns the number of bytes stored in s or –1 if s contains an invalid wide character.

CONFORMS TO
SVID 3, ISO 9899

SEE ALSO
mblen(3), mbtowc(3), mbstowcs(3), wctomb(3)

GNU, 29 March 1993

wctomb
wctomb—Converts a wide character to a multibyte character

SYNOPSIS
#include <stdlib.h>
int wctomb(char *s, wchar_t wchar);

wctomb

Part III: Library Functions1062

DESCRIPTION
The wctomb() function converts a wide character wchar into a multibyte character and, if s is not NULL, stores the multibyte
character representation in s.

RETURN VALUE
wctomb() returns the number of bytes in the multibyte character or –1 if the wide character is not valid.

CONFORMS TO
SVID 3, ISO 9899

SEE ALSO
mblen(3), mbstowcs(3), mbtowc(3), wcstombs(3)

GNU, 29 March 1993

1063

Special Files

Part IV:

Part IV: Special Files1064

INTRODUCTION
This part describes special files.

FILES
/dev/* Device files

AUTHORS
Look at the header of the manual page for the author(s) and copyright conditions. Note that these can be different from page
to page.

Linux, 24 July 1993

charsets
charsets—Programmer’s view of character sets and internationalization

DESCRIPTION
Linux is an international operating system. Several of its utilities and device drivers (including the console driver) support
multilingual character sets including Latin-alphabet letters with diacritical marks, accents, ligatures, and entire non-Latin
alphabets including Greek, Cyrillic, Arabic, and Hebrew.

This manual page presents a programmer’s-eye view of different character-set standards and how they fit together on Linux.
Standards discussed include ASCII, ISO 8859, KOI8-R, Unicode, ISO 2022, and ISO 4873.

ASCII
ASCII (American Standard Code for Information) is the original 7-bit character set, originally designed for American
English. It is currently described by the ECMA-6 standard.

An ASCII variant replacing the American crosshatch/octothorpe/hash pound symbol with the British pound-sterling symbol
is used in Great Britain; when needed, the American and British variants may be distinguished as U.S. ASCII and U.K.
ASCII.

As Linux was written for hardware designed in the United States, it natively supports U.S. ASCII.

ISO 8859
ISO 8859 is a series of 10 8-bit character sets, all of which have U.S. ASCII in their low (7-bit) half, invisible control
characters in positions 128 to 159, and 96 fixed-width graphics in positions 160-255.

Of these, the most important is ISO 8859-1 (Latin-1). It is natively supported in the Linux console driver, fairly well
supported in X11R6, and is the base character set of HTML.

Console support for the other 8859 character sets is available under Linux through user-mode utilities (such as setfont(8))
that modify keyboard bindings and the EGA graphics table and employ the “user mapping” font table in the console driver.

Here are brief descriptions of each set:

8859-1 (Latin-1) Latin-1 covers most Western European languages such as Albanian, Catalan, Danish,
Dutch, English, Faroese, Finnish, French, German, Galician, Irish, Icelandic, Italian,
Norwegian, Portuguese, Spanish, and Swedish. The lack of the ligatures Dutch ij,
French oe, and old-style German quotation marks is tolerable.

8859-2 (Latin-2) Latin-2 supports most Latin-written Slavic and Central European languages: Czech,
German, Hungarian, Polish, Rumanian, Croatian, Slovak, and Slovene.

8859-3 (Latin-3) Latin-3 is popular with authors of Esperanto, Galician, Maltese, and Turkish.

8859-4 (Latin-4) Latin-4 introduced letters for Estonian, Latvian, and Lithuanian. It is essentially
obsolete; see 8859-10 (Latin-6).

1065

8859-5 Cyrillic letters supporting Bulgarian, Byelorussian, Macedonian, Russian, Serbian, and
Ukrainian. Ukrainians read the letter ghe with downstroke as heh and would need a ghe
with upstroke to write a correct ghe. (See the discussion of KOI8-R in the next
subsection.)

8859-6 Supports Arabic. The 8859-6 glyph table is a fixed font of separate letter forms, but a
proper display engine should combine there pairwise into initial, medial, and final
forms.

8859-7 Supports modern Greek.

8859-8 Supports Hebrew.

8859-9 (Latin-5) This is a variant of Latin-1 that replaces rarely used Icelandic letters with Turkish ones.

8859-10 (Latin-6) Latin-6 adds the last Inuit (Greenlandic) and Sami (Lappish) letters that were missing in
Latin 4 to cover the entire Nordic area. RFC 1345 listed a preliminary and different
Latin 6. Skolt Sami still needs a few more accents than these.

KOI8-R
KOI8-R is a non-ISO character set popular in Russia. The lower half is U.S. ASCII; the upper is a Cyrillic character set
somewhat better designed than ISO 8859-5.

Console support for KOI8-R is available under Linux through user-mode utilities that modify keyboard bindings and the
EGA graphics table, and that employ the “user mapping” font table in the console driver.

UNICODE
Unicode (ISO 10646) is a standard that aims to unambiguously represent every known glyph in every human language.
Unicode’s native encoding is 32-bit (older versions used 16 bits). Information on Unicode is available at http://www.
unicode.com.

Linux represents Unicode using the 8-bit Unicode Transfer Format (UTF-8). UTF-8 is a variable length encoding of
Unicode. It uses 1 byte to code 7 bits, 2 bytes for 11 bits, 3 bytes for 16 bits, 4 bytes for 21 bits, 5 bytes for 26 bits, and
6 bytes for 31 bits.

Let 0, 1, x stand for a zero, one, or arbitrary bit. A byte 0xxxxxxx stands for the Unicode 00000000 0xxxxxxx, which codes the
same symbol as the ASCII 0xxxxxxx. Thus, ASCII goes unchanged into UTF-8, and people using only ASCII do not notice
any change—not in code, and not in file size.

A byte 110xxxxx is the start of a 2-byte code, and 110xxxxx 10yyyyyy is assembled into 00000xxx xxyyyyyy. A byte 1110xxxx is
the start of a 3-byte code, and 1110xxxx 10yyyyyy 10zzzzzz is assembled into xxxxyyyy yyzzzzzz. (When UTF-8 is used to code
the 31-bit ISO 10646, then this progression continues up to 6-byte codes.)

For ISO-8859-1 users this means that the characters with high bit set now are coded with two bytes. This tends to expand
ordinary text files by one or two percent. There are no conversion problems, however, since the Unicode value of ISO-8859-
1 symbols equals their ISO-8859-1 value (extended by eight leading zero bits). For Japanese users, this means that the 16-bit
codes now in common use will take three bytes, and extensive mapping tables are required. Many Japanese therefore prefer
ISO 2022.

Note that UTF-8 is self-synchronizing: 10xxxxxx is a tail, any other byte is the head of a code. Note that the only way ASCII
bytes occur in a UTF-8 stream is as themselves. In particular, there are no embedded NULs or /s that form part of some larger
code.

Because ASCII, and, in particular, NUL and /, are unchanged, the kernel does not notice that UTF-8 is being used. It does not
care at all what the bytes it is handling stand for.

Rendering of Unicode data streams is typically handled through subfont tables that map a subset of Unicode to glyphs.
Internally, the kernel uses Unicode to describe the subfont loaded in video RAM. This means that in UTF-8 mode one can
use a character set with 512 different symbols. This is not enough for Japanese, Chinese, and Korean, but it is enough for
most other purposes.

charsets

Part IV: Special Files1066

ISO 2022 AND ISO 4873
The ISO 2022 and 4873 standards describe a font-control model based on VT100 practice. This model is (partially)
supported by the Linux kernel and by xterm(1). It is popular in Japan and Korea.

There are four graphic character sets, called G0, G1, G2, and G3, and one of them is the current character set for codes with
high bit zero (initially G0), and one of them is the current character set for codes with high bit one (initially G1). Each
graphic character set has 94 or 96 characters, and is essentially a 7-bit character set. It uses codes either 040–0177 (041–0176)
or 0240–0377 (0241–0376). G0 always has size 94 and uses codes 041–0176.

Switching between character sets is done using the shift functions ˆN (SO or LS1), ˆO (SI or LS0), ESC n (LS2), ESC o (LS3), ESC
N (SS2),

ESC O (SS3), ESC ˜ (LS1R), ESC } (LS2R), ESC | (LS3R). The function LSn makes character set Gn the current one for codes with
high bit zero. The function LSnR makes character set Gn the current one for codes with high bit one. The function SSn makes
character set Gn (n=2 or 3) the current one for the next character only (regardless of the value of its high order bit).

A 94-character set is designated as Gn character set by an escape sequence ESC (xx (for G0), ESC) xx (for G1), ESC * xx (for
G2), ESC + xx (for G3), where xx is a symbol or a pair of symbols found in the ISO 2375 International Register of Coded
Character Sets. For example, ESC (@ selects the ISO 646 character set as G0, ESC (A selects the U.K. standard character set
(with pound instead of number sign), ESC (B selects ASCII (with dollar instead of currency sign), ESC (M selects a character
set for African languages, ESC (! A selects the Cuban character set, and so on.

A 96-character set is designated as Gn character set by an escape sequence ESC - xx (for G1), ESC . xx (for G2) or ESC / xx
(for G3). For example, ESC - G selects the Hebrew alphabet as G1.

A multibyte character set is designated as Gn character set by an escape sequence ESC $ xx or ESC $ (xx (for G0), ESC $)
xx (for G1), ESC $ * xx (for G2), ESC $ + xx (for G3). For example, ESC $ (C selects the Korean character set for G0. The
Japanese character set selected by ESC $ B has a more recent version selected by ESC & @ESC $ B.

ISO 4873 stipulates a narrower use of character sets, where G0 is fixed (always ASCII), so that G1, G2, and G3 can only be
invoked for codes with the high order bit set. In particular, ˆN and ˆO are not used anymore, ESC (xx can be used only with
xx=B, and ESC) xx, ESC * xx, ESC + xx are equivalent to ESC - xx, ESC . xx, and ESC / xx, respectively.

SEE ALSO
console(4), console_ioctl(4), console_codes(4)

Linux, 5 November 1996

console
console—Console terminal and virtual consoles

DESCRIPTION
A Linux system has up to 63 virtual consoles (character devices with major number 4 and minor number 1 to 63), usually
called /dev/ttyn with 1 n 63. The current console is also addressed by /dev/console or /dev/tty0, the character device with
major number 4 and minor number 0. The device files /dev/* are usually created using the script MAKEDEV, or using mknod(1),
usually with mode 0622 and owner root.tty.

Before kernel version 1.1.54, the number of virtual consoles was compiled into the kernel (in tty.h: #define NR_CONSOLES 8)
and could be changed by editing and recompiling because version 1.1.54 virtual consoles are created on-the-fly, as soon as
they are needed.

Common ways to start a process on a console are the following:

■ Tell init(8) (in inittab(5)) to start a getty(8) on the console
■ Ask open(1) to start a process on the console
■ Start X; it will find the first unused console and display its output there. (There is also the ancient doshell(8).)

1067

Common ways to switch consoles are the following:

■ Use Alt+Fn or Ctrl+Alt+Fn to switch to console n; AltGr+Fn might bring you to console n+12 [here Alt and AltGr refer
to the left and right Alt keys, respectively]

■ Use Alt+RightArrow or Alt+LeftArrow to cycle through the presently allocated consoles
■ Use the program chvt(1). (The key mapping can be set by the user; see loadkeys(1); the preceding key combinations are

according to the default settings.)

The command disalloc(8) will free the memory taken by the screen buffers for consoles that no longer have any associated
process.

PROPERTIES
Consoles carry a lot of state. I hope to document that some other time. The most important fact is that the consoles simulate
vt100 terminals. In particular, a console is reset to the initial state by printing the two characters ESC c. All escape sequences
can be found in console codes(4).

FILES
/dev/console
/dev/tty*

SEE ALSO
charsets(4), console_codes(4), console_ioctl(4), mknod(1), tty(4), ttys(4), getty(8), init(8), chvt(1), open(1), disalloc(8),
loadkeys(1), resizecons(8), setfont(8), mapscrn(8)

Linux, 31 October 1994

console_codes
console_codes—Linux console escape and control sequences

DESCRIPTION
The Linux console implements a large subset of the VT102 and ECMA-48/ISO 6429/ANSI X3.64 terminal controls, plus
certain private-mode sequences for changing the color palette, character-set mapping, and so on. In the following tabular
descriptions, the second column gives ECMA-48 or DEC mnemonics (the latter if prefixed with DEC) for the given
function. Sequences without a mnemonic are neither ECMA-48 nor VT102.

After all the normal output processing has been done, and a stream of characters arrives at the console driver for actual
printing, the first thing that happens is a translation from the code used for processing to the code used for printing.

If the console is in UTF-8 mode, then the incoming bytes are first assembled into 16-bit Unicode codes. Otherwise, each
byte is transformed according to the current mapping table (which translates it to a Unicode value). (See the “Character Sets”
subsection for discussion.)

In the normal case, the Unicode value is converted to a font index, and this is stored in video memory, so that the corre-
sponding glyph (as found in video ROM) appears on the screen. Note that the use of Unicode (and the design of the PC
hardware) allows the use of 512 different glyphs simultaneously.

If the current Unicode value is a control character, or you are currently processing an escape sequence, the value will treated
specially. Instead of being turned into a font index and rendered as a glyph, it may trigger cursor movement or other control
functions. (See the “Linux Console Controls” subsection.)

It is generally not good practice to hardwire terminal controls into programs. Linux supports a terminfo(5) database of
terminal capabilities. Rather than emitting console escape sequences by hand, you will almost always want to use a
terminfo-aware screen library or utility such as ncurses(3), tput(1), or reset(1).

console_codes

Part IV: Special Files1068

LINUX CONSOLE CONTROLS
This section describes all the control characters and escape sequences that invoke special functions (that is, anything other
than writing a glyph at the current cursor location) on the Linux console.

CONTROL CHARACTERS
A character is a control character if (before transformation according to the mapping table) it has one of the 14 codes 00
(NUL), 07 (BEL), 08 (BS), 09 (HT), 0a (LF), 0b (VT), 0c (FF), 0d (CR), 0e (SO), 0f (SI), 18 (CAN), 1a (SUB), 1b (ESC), 7f (DEL). One can
set a display control characters mode (see below), and allow 07, 09, 0b, 18, 1a, 7f to be displayed as glyphs. On the other
hand, in UTF-8 mode all codes 00–1f are regarded as control characters, regardless of any display control characters mode.

If you have a control character, it is acted upon immediately and then discarded (even in the middle of an escape sequence)
and the escape sequence continues with the next character. (However, ESC starts a new escape sequence, possibly aborting a
previous unfinished one, and CAN and SUB abort any escape sequence.) The recognized control characters are BEL, BS, HT, LF,
VT, FF, CR, SO, SI, CAN, SUB, ESC, DEL, CSI. They do what one would expect:

BEL (0x07, ˆG) beeps.

BS (0x08, ˆH) backspaces one column (but not past the beginning of the line).

HT (0x09, ˆI) goes to the next tab stop or to the end of the line if there is no earlier tab stop.

LF (0x0A, ˆJ), VT (0x0B, ˆK) and FF (0x0C, ˆL) all give a linefeed.

CR (0x0D, ˆM) gives a carriage return.

SO (0x0E, ˆN) activates the G1 character set, and if LF/NL (new line mode) is set, also a carriage return.

SI (0x0F, ˆO) activates the G0 character set.

CAN (0x18, ˆX) and SUB (0x1A, ˆZ) interrupt escape sequences.

ESC (0x1B, ˆ[) starts an escape sequence.

DEL (0x7F) is ignored.

CSI (0x9B) is equivalent to ESC [.

ESC SEQUENCES, NOT CSI SEQUENCES
ESC c RIS Reset.

ESC D IND Linefeed.

ESC E NEL Newline.

ESC H HTS Set tab stop at current column.

ESC M RI Reverse linefeed.

ESC Z DECID DEC private identification. The kernel returns the string
ESC [? 6 c, claiming that it is a VT102.

ESC 7 DECSC Save current state (cursor coordinates, attributes, character
sets).

ESC 8 DECRC Restore most recently saved state.

ESC [CSI Control sequence introducer.

ESC % Start sequence selecting character set.

ESC % @ Select default (ISO 646 / ISO 8859-1).

ESC % G Select UTF-8.

ESC % 8 Select UTF-8 (obsolete).

ESC # 8 DECALN DEC screen alignment test: fill screen with Es.

ESC (Start sequence defining G0 character set.

ESC (B Select default (ISO 8859-1 mapping).

ESC (0 Select vt100 graphics mapping.

1069

ESC (U Select null mapping—straight to character ROM.

ESC (K Select user mapping, the map that is loaded by the utility
mapscrn(8).

ESC) Start sequence defining G1 (followed by one of B, 0, U, K, as
above).

ESC > DECPNM Set numeric keypad mode.

ESC = DECPAM Set application keypad mode.

ESC] OSC (Should be: Operating system command) ESC] P nrrggbb:
set palette, with parameter given in 7 hexadecimal digits
after the final P :-(. Here n is the color (0–16), and rrggbb
indicates the red/green/blue values (0–255). ESC] R: reset
palette.

ECMA-48 CSI SEQUENCES
CSI (or ESC [) is followed by a sequence of parameters, at most NPAR(16), that are decimal numbers separated by semicolons.
An empty or absent parameter is taken to be 0. The sequence of parameters may be preceded by a single question mark.

However, after CSI [(or ESC [[) a single character is read and this entire sequence is ignored. (The idea is to ignore an
echoed function key.)

The action of a CSI sequence is determined by its final character.

Character Function Description

@ ICH Insert the indicated # of blank characters.

A CUU Move cursor up the indicated # of rows.

B CUD Move cursor down the indicated # of rows.

C CUF Move cursor right the indicated # of columns.

D CUB Move cursor left the indicated # of columns.

E CNL Move cursor down the indicated # of rows, to column 1.

F CPL Move cursor up the indicated # of rows, to column 1.

G CHA Move cursor to indicated column in current row.

H CUP Move cursor to the indicated row, column (origin at 1,1).

J ED Erase display (default: from cursor to end of display).

ESC [1 J: erase from start to cursor.

ESC [2 J: erase whole display.

K EL Erase line (default: from cursor to end of line).

ESC [1 K: erase from start of line to cursor.

ESC [2 K: erase whole line.

L IL Insert the indicated # of blank lines.

M DL Delete the indicated # of lines.

P DCH Delete the indicated # of characters on the current line.

X ECH Erase the indicated # of characters on the current line.

a HPR Move cursor right the indicated # of columns.

c DA Answer ESC [? 6 c: ‘I am a VT102’.

d VPA Move cursor to the indicated row, current column.

e VPR Move cursor down the indicated # of rows.

f HVP Move cursor to the indicated row, column.

continues

console_codes

Part IV: Special Files1070

g TBC Without parameter: clear tab stop at the current position.

ESC [3 g: delete all tab stops.

h SM Set mode.

l RM Reset mode.

m SGR Set attributes.

n DSR Status report.

q DECLL Set keyboard LEDs.

ESC [0 q: clear all LEDs

ESC [1 q: set Scroll Lock LED

ESC [2 q: set Num Lock LED

ESC [3 q: set Caps Lock LED

r DECSTBM Set scrolling region; parameters are top and bottom row.

s ? Save cursor location.

u ? Restore cursor location.

‘ HPA Move cursor to indicated column in current row.

ECMA-48 SET GRAPHICS RENDITION
The ECMA-48 SGR sequence ESC [<parameters> m sets display attributes. Several attributes can be set in the same
sequence.

Parameter Result

0 Reset all attributes to their defaults.

1 Set bold.

2 Set half-bright (simulated with color on a color display).

4 Set underscore (simulated with color on a color display).

(The colors used to simulate dim or underline are set using ESC])

5 Set blink.

7 Set reverse video.

10 Reset selected mapping, display control flag, and toggle meta flag.

11 Select null mapping, set display control flag, reset toggle meta flag.

12 Select null mapping, set display control flag, set toggle meta flag. (The toggle meta flag
causes the high bit of a byte to be toggled before the mapping table translation is done.)

21 Set normal intensity. (This is not compatible with ECMA-48.)

22 Set normal intensity.

24 Underline off.

25 Blink off.

27 Reverse video off.

30 Set black foreground.

31 Set red foreground.

32 Set green foreground.

33 Set brown foreground.

34 Set blue foreground.

35 Set magenta foreground.

Character Function Description

1071

36 Set cyan foreground.

37 Set white foreground.

38 Set underscore on, set default foreground color.

39 Set underscore off, set default foreground color.

40 Set black background.

41 Set red background.

42 Set green background.

43 Set brown background.

44 Set blue background.

45 Set magenta background.

46 Set cyan background.

47 Set white background.

49 Set default background color.

ECMA-48 MODE SWITCHES
ESC [3 h DECCRM (default off): Display control chars.

ESC [4 h DECIM (default off): Set insert mode.

ESC [20 h LF/NL (default off): Automatically follow echo of LF, VT, or FF with CR.

ECMA-48 STATUS REPORT COMMANDS
ESC [5 n Device status report (DSR): Answer is ESC [0 n (Terminal OK).

ESC [6 n Cursor position report (CPR): Answer is ESC [y ; x R, where x, y is the cursor
location.

DEC PRIVATE MODE(DECSET/DECRST) SEQUENCES
These are not described in ECMA-48. The Set Mode sequences are listed; the Reset Mode sequences are obtained by
replacing the final h by l.

ESC [? 1 h DECCKM (default off): When set, the cursor keys send an ESC O prefix, rather than
ESC [.

ESC [? 3 h DECCOLM (default off = 80 columns): 80/132 col mode switch. The driver sources note
that this alone does not suffice; some user-mode utility such as resizecons(8) has to
change the hardware registers on the console video card.

ESC [? 5 h DECSCNM (default off): Set reverse-video mode.

ESC [? 6 h DECOM (default off): When set, cursor addressing is relative to the upper left corner of
the scrolling region.

ESC [? 7 h DECAWM(default on): Set autowrap on. In this mode, a graphics character emitted after
column 80 (or column 132 of DECCOLM is on) forces a wrap to the beginning of the
following line first.

ESC [? 8 h DECARM (default on): Set keyboard autorepreat on.

ESC [? 9 h X10 Mouse Reporting (default off): Set reporting mode to 1 (or reset to 0).
(See “Mouse Tracking.”)

ESC [? 25 h DECCM (default on): Make cursor visible.

ESC [? 1000 h X11 Mouse Reporting (default off): Set reporting mode to 2 (or reset to 0).
(See “Mouse Tracking.”)

Parameter Result

console_codes

Part IV: Special Files1072

LINUX CONSOLE PRIVATE CSI SEQUENCES
The following sequences are neither ECMA-48 nor native VT102. They are native to the Linux console driver. Colors are in
SGR parameters: 0 = black, 1 = red, 2 = green, 3 = brown, 4 = blue, 5 = magenta, 6 = cyan, 7 = white.

ESC [1 ; n] Set color n as the underline color

ESC [2 ; n] Set color n as the dim color

ESC [8] Make the current color pair the default attributes

ESC [9 ; n] Set screen blank time-out to n minutes

ESC [10 ; n] Set bell frequency in Hz

ESC [11 ; n] Set bell duration in msec

ESC [12 ; n] Bring specified console to the front

ESC [13] Unblank the screen

ESC [14] Set the VESA powerdown interval

CHARACTER SETS
The kernel knows about four translations of bytes into console-screen symbols. The four tables are

■ Latin1 to PC
■ VT100 graphics to PC
■ PC to PC
■ User-defined

There are two character sets, called G0 and G1, and one of them is the current character set. (Initially G0.) Typing ˆN causes
G1 to become current, ˆO causes G0 to become current.

These variables G0 and G1 point to a translation table, and can be changed by the user. Initially, they point at the first two
tables, Latin1 to PC and VT100 graphics to PC, respectively. The sequences ESC (B and ESC (0 and ESC (U and ESC (K
cause G0 to point at the first, second, third, and fourth translation tables in the preceding list, respectively. The sequences ESC
) B and ESC) 0 and ESC) U and ESC) K cause G1 to point at the first, second, third, and fourth translation tables in the
preceding list, respectively.

The sequence ESC c causes a terminal reset, which is what you want if the screen is all garbled. The oft-advised “echo ˆVˆO”
will only make G0 current, but there is no guarantee that G0 points at the first table. In some distributions there is a program
reset(1) that just does echo ˆ[c. If your terminfo entry for the console is correct (and has an entry rs1=c), then tput reset
will also work.

The user-defined mapping table can be set using mapscrn(8). The result of the mapping is that if a symbol c is printed, the
symbol s = map[c] is sent to the video memory. The bitmap that corresponds to s is found in the character ROM, and can be
changed using setfont(8).

MOUSE TRACKING
The mouse tracking facility is intended to return xterm-compatible mouse status reports. Because the console driver has no
way to know the device or type of the mouse, these reports are returned in the console input stream only when the virtual
terminal driver receives a mouse update ioctl. These ioctls must be generated by a mouse-aware user-mode application such
as the gpm(8) daemon.

Parameters for all mouse tracking escape sequences generated by xterm encode numeric parameters in a single character as
value+040. For example, ! is 1. The screen coordinate system is 1-based.

The X10 compatibility mode sends an escape sequence on button press encoding the location and the mouse button pressed.
It is enabled by sending ESC [? 9 h and disabled with ESC [? 9 l. On button press, xterm sends ESC [M bxy (six charac-
ters). Here b is button 1, and x and y are the x and y coordinates of the mouse when the button was pressed. This is the same
code the kernel also produces.

1073

Normal tracking mode (not implemented in Linux 2.0.24) sends an escape sequence on both button press and release.
Modifier information is also sent. It is enabled by sending ESC [? 1000 h and disabled with ESC [1000 l. On button press
or release, xterm sends ESC [M bxy. The low two bits of b encode button information: 0=MB1 pressed, 1=MB2 pressed,
2=MB3 pressed, 3=release. The upper bits encode what modifiers were down when the button was pressed and are added
together: 4=Shift, 8=Meta, 16=Control. Again, x and y are the x and y coordinates of the mouse event. The upper-left corner
is (1,1).

COMPARISONS WITH OTHER TERMINALS
Many different terminal types are described, like the Linux console, as being VT100-compatible. Here we discuss differences
between the Linux console and the two most important others, the DEC VT102 and xterm(1).

CONTROL-CHARACTER HANDLING
The vt102 also recognized the following control characters:

NUL (0x00) was ignored.

ENQ (0x05) triggered an answerback message.

DC1 (0x11, ˆQ, XON) resumed transmission.

DC3 (0x13, ˆS, XOFF) caused vt100 to ignore (and stop transmitting) all codes except XOFF and XON.

VT100-like DC1/DC3 processing may be enabled by the tty driver.

The xterm program (in vt100 mode) recognizes the control characters BEL, BS, HT, LF, VT, FF, CR, SO, SI, ESC.

ESCAPE SEQUENCES
The following VT100 console sequences are not implemented on the Linux console:

Escape Sequence Function Description

ESC N SS2 Single shift 2. (Select G2 character set for the next
character only.)

ESC O SS3 Single shift 3. (Select G3 character set for the next
character only.)

ESC P DCS Device control string (ended by ESC \).

ESC X SOS Start of string.

ESC ˆ PM Privacy message (ended by ESC\).

ESC \ ST String terminator.

ESC * ... Designate G2 character set.

ESC + ... Designate G3 character set.

The program xterm (in vt100 mode) recognizes ESC c, ESC # 8, ESC >, ESC =, ESC D, ESC E, ESC H, ESC M, ESC N, ESC O, ESC P
... ESC ESC Z (it answers ESC [? 1 ; 2 c, “I am a vt100 with advanced video option”) and ESC ˆ ... ESC with the same
meanings as indicated above. It accepts ESC (, ESC), ESC *, ESC + followed by 0, A, B for the DEC special character and line
drawing set, UK, and USASCII, respectively. It accepts ESC] for the setting of certain resources:

ESC] 0 ; txt BEL Set icon name and window title to txt.

ESC]1 ; txt BEL Set icon name to txt.

ESC] 2 ; txt BEL Set window title to txt.

ESC] 4 6 ; name BEL Change log file to name (normally disabled by a compile-time option).

ESC] 5 0 ; fn BEL Set font to fn.

It recognizes the following with slightly modified meaning:

ESC 7 DECSC Save cursor

ESC 8 DECRC Restore cursor

console_codes

Part IV: Special Files1074

It also recognizes

ESC F Cursor to lower-left corner of screen (if enabled by the
hpLowerleftBugCompat resource).

ESC l Memory lock (per HP terminals). Locks memory above the
cursor.

ESC m Memory unlock (per HP terminals).

ESC n LS2 Invoke the G2 character set.

ESC o LS3 Invoke the G3 character set.

ESC j LS3R Invoke the G3 character set as GR.

Has no visible effect in xterm.

ESC g LS2R Invoke the G2 character set as GR.

Has no visible effect in xterm.

ESC ˜ LS1R Invoke the G1 character set as GR.

Has no visible effect in xterm.

It does not recognize ESC % ...

CSI SEQUENCES
The xterm program (as of XFree86 3.1.2G) does not recognize the blink or invisible-mode SGRs. Stock X11R6 versions do
not recognize the color-setting SGRs. All other ECMA-48 CSI sequences recognized by Linux are also recognized by xterm,
and vice versa.

The xterm program will recognize all of the DEC Private Mode sequences listed earlier, but none of the Linux private-mode
sequences. For discussion of xterm’s own private-mode sequences, refer to the Xterm Control Sequences document by Edward
Moy and Stephen Gildea, available with the X distribution.

BUGS
In 2.0.23, CSI is broken, and NUL is not ignored inside escape sequences.

SEE ALSO
console(4), console_ioctl(4), charsets(4)

Linux, 31 October 1996

console ioctls
console ioctls—Ioctls for console terminal and virtual consoles

DESCRIPTION
The following Linux-peculiar ioctl() requests are supported. Each requires a third argument, assumed here to be argp.

WARNING

If you use the following information, you are going to burn yourself. Ioctls are undocumented Linux internals, liable to
be changed without warning. Use POSIX functions.

1075

KDGETLED Get state of LEDs. argp points to a long int. The lower three bits of *argp are set to
the state of the LEDs, as follows:

LED_CAP 0x04 caps lock LED

LEC_NUM 0x02 num lock LED

LED_SCR 0x01 scroll lock LED

KDSETLED Set the LEDs. The LEDs are set to correspond to the lower three bits of argp.
However, if a higher order bit is set, the LEDs revert to normal, displaying the state
of the keyboard functions of caps lock, num lock, and scroll lock.

Before 1.1.54, the LEDs just reflected the state of the corresponding keyboard flags,
and KDGETLED/KDSETLED would also change the keyboard flags. Since 1.1.54 the LEDs
can be made to display arbitrary information, but by default they display the
keyboard flags. The following two ioctls are used to access the keyboard flags.

KDGKBLED Get keyboard flags CapsLock, NumLock, ScrollLock (not lights). argp points to a char
that is set to the flag state. The low order three bits (mask 0x7) get the current flag
state, and the low order bits of the next nibble (mask 0x70) get the default flag state
(since 1.1.54).

KDSKBLED Set keyboard flags CapsLock, NumLock, ScrollLock (not lights). argp has the desired
flag state. The low order three bits (mask 0x7) have the flag state, and the low order
bits of the next nibble (mask 0x70) have the default flag state (since 1.1.54).

KDGKBTYPE Get keyboard type. This returns the value KB 101, defined as 0x02.

KDADDIO Add I/O port as valid. Equivalent to ioperm(arg,1,1).

KDDELIO Delete I/O port as valid. Equivalent to ioperm(arg,1,0).

KDENABIO Enable I/O to video board. Equivalent to ioperm(0x3b4, 0x3df-0x3b4+1, 1).

KDDISABIO Disable I/O to video board. Equivalent to ioperm(0x3b4, 0x3df-0x3b4+ 1, 0).

KDSETMODE Set text/graphics mode. argp is one of these:

KD_TEXT 0x00

KD_GRAPHICS 0x01

KDGETMODE Get text/graphics mode. argp points to a long which is set to one of the above values.

KDMKTONE Generate tone of specified length. The lower 16 bits of argp specify the period in
clock cycles, and the upper 16 bits give the duration in msec. If the duration is zero,
the sound is turned off. Control returns immediately. For example, argp = (125<<16)
+ 0x637 would specify the beep normally associated with a ctrl-G.

KIOCSOUND Start or stop sound generation. The lower 16 bits of argp specify the period in clock
cycles (that is, argp = 1193180/frequency). argp = 0 turns sound off. In either case,
control returns immediately.

GIO_CMAP Get the current default color map from kernel. argp points to a 48-byte array.
(Since 1.3.3.)

PIO_CMAP Change the default text-mode color map. argp points to a 48-byte array that
contains, in order, the red, green, and blue values for the 16 available screen colors: 0
is off, and 255 is full intensity. The default colors are, in order: black, dark red, dark
green, brown, dark blue, dark purple, dark cyan, light grey, dark grey, bright red,
bright green, yellow, bright blue, bright purple, bright cyan, and white. (Since
1.3.3.)

GIO_FONT Gets 256-character screen font in expanded form. argp points to an 8192-byte array.
Fails with error code EINVAL if the currently loaded font is a 512-character font, or if
the console is not in text mode.

console ioctls

Part IV: Special Files1076

GIO_FONTX Gets screen font and associated information. argp points to a struct consolefontdesc
(see PIO_FONTX). On call, the charcount field should be set to the maximum number
of characters that would fit in the buffer pointed to by chardata. On return, the
charcount and charheight are filled with the respective data for the currently loaded
font, and the chardata array contains the font data if the initial value of charcount
indicated enough space was available; otherwise the buffer is untouched and errno is
set to ENOMEM. (Since 1.3.1.)

PIO_FONT Sets 256-character screen font. Load font into the EGA/VGA character generator.
argp points to a 8192-byte map, with 32 bytes per character. Only first N of them are
used for an 8xN font (0 < N <= 32). This call also invalidates the Unicode mapping.

PIO_FONTX Sets screen font and associated rendering information. argp points to a
struct consolefontdesc {
u_short charcount; /* characters in font

 (256 or 512) */
u_short charheight; /* scan lines per

 character (1-32) */
char *chardata; /* font data in

 expanded form */
};

If necessary, the screen will be appropriately resized, and SIGWINCH sent to the
appropriate processes. This call also invalidates the Unicode mapping. (Since 1.3.1.)

PIO_FONTRESET Resets the screen font, size, and Unicode mapping to the bootup defaults. argp is
unused, but should be set to NULL to ensure compatibility with future versions of
Linux. (Since 1.3.28.)

GIO_SCRNMAP Get screen mapping from kernel. argp points to an area of size E_TABSZ, which is
loaded with the font positions used to display each character. This call is likely to
return useless information if the currently loaded font is more than 256 characters.

GIO_UNISCRNMAP Get full Unicode screen mapping from kernel. argp points to an area of size
E_TABSZ*sizeof (unsigned short), which is loaded with the Unicodes each character
represent. A special set of Unicodes, starting at U+F000, are used to represent “direct
to font” mappings. (Since 1.3.1.)

PIO_SCRNMAP Loads the user-definable (fourth) table in the kernel that maps bytes into console
screen symbols. argp points to an area of size E_TABSZ.

PIO_UNISCRNMAP Loads the user-definable (fourth) table in the kernel that maps bytes into Unicodes,
which are then translated into screen symbols according to the currently loaded
Unicode-to-font map. Special Unicodes starting at U+F000 can be used to map
directly to the font symbols. (Since 1.3.1.)

GIO_UNIMAP Get Unicode-to-font mapping from kernel. argp points to a
struct unimapdesc {
u_short entry_ct;
struct unipair *entries;
};
where entries points to an array of
struct unipair {
u_short unicode;
u_short fontpos;
};
(Since 1.1.92.)

PIO_UNIMAP Put Unicode-to-font mapping in kernel. argp points to a struct unimapdesc.
(Since 1.1.92.)

1077

PIO_UNIMAPCLR Clear table, possibly advise hash algorithm. argp points to a
struct unimapinit {
u short advised hashsize; /* 0 if no opinion */
u short advised hashstep; /* 0 if no opinion */
u short advised hashlevel; /* 0 if no opinion */
};

(Since 1.1.92.)

KDGKBMODE Gets current keyboard mode. argp points to a long, which is set to one of these:

K_RAW 0x00

K_XLATE 0x01

K_MEDIUMRAW 0x02

K_UNICODE 0x03

KDSKBMODE Sets current keyboard mode. argp is a long equal to one of the above values.

KDGKBMETA Gets meta key handling mode. argp points to a long which is set to one of these:

K_METABIT 0x03 Set high order bit

K_ESCPREFIX 0x04 Escape prefix

KDSKBMETA Sets meta key handling mode. argp is a long equal to one of the preceding values.

KDGKBENT Gets one entry in key translation table (keycode to action code). argp points to a
struct kbentry {
u_char kb_table;
u_char kb_index;
u_short kb_value;
};

with the first two members filled in: kb_table selects the key table (0 <= kb_table
<MAX_NR_KEYMAPS), and kb_index is the keycode (0 <= kb index <NR_KEYS). kb_value is
set to the corresponding action code, or K_HOLE if there is no such key, or K_NOSUCHMAP
if kb_table is invalid.

KDSKBENT Sets one entry in translation table. argp points to a struct kbentry.

KDGKBSENT Gets one function key string. argp points to a
struct kbsentry {
u_char kb_func;
u_char kb_string[512];
;

kb_string is set to the (NULL-terminated) string corresponding to the kb_functh
function key action code.

KDSKBSENT Sets one function key string entry. argp points to a struct kbsentry.

KDGKBDIACR Read kernel accent table. argp points to a
struct kbdiacrs {
unsigned int kb_cnt;
struct kbdiacr kbdiacr[256];
};

where kb_cnt is the number of entries in the array, each of which is a

struct kbdiacr { u_char diacr, base, result ;};

KDGETKEYCODE Read kernel keycode table entry (scan code to keycode). argp points to a

struct kbkeycode { unsigned int scancode, keycode; };

keycode is set to correspond to the given scancode.(89<=scancode <= 255 only.
For 1 <= scancode <= 88, keycode==scancode.) (Since 1.1.63.)

KDSETKEYCODE Write kernel keycode table entry. argp points to struct kbkeycode. (Since 1.1.63.)

console ioctls

Part IV: Special Files1078

KDSIGACCEPT The calling process indicates its willingness to accept the signal argp when it is
generated by pressing an appropriate key combination. (1 <= argp <=NSIG).

(See spawn_console() in linux/drivers/char/keyboard.c.)

VT_OPENQRY Returns the first available (nonopened) console. argp points to an int that is set to
the number of the vt (1 <= *argp <=MAX_NR_CONSOLES).

VT_GETMODE Get mode of active vt. argp points to a
struct vt mode {
char mode;/*vtmode*/
char waitv; /* if set, hang on writes if not active */
short relsig; /* signal to raise on release req */
short acqsig; /* signal to raise on acquisition */
short frsig; /* unused (set to 0) */
};

mode is set to one of these values:

VT_AUTO Auto vt switching

VT_PROCESS Process controls switching

VT_ACKACQ Acknowledge switch

VT_SETMODE Set mode of active vt. argp points to a struct vt_mode.

VT_GETSTATE Get global vt state info. argp points to a
struct vt_stat {
ushort v_active; /* active vt */
ushort v_signal;/*signalto send*/
ushort v_state;/*vtbitmask*/
};

For each vt in use, the corresponding bit in the v state member is set. (Kernels 1.0
through 1.1.92.)

VT_RELDISP Release a display.

VT_ACTIVATE Switch to vt argp (1 <= argp <=MAX_NR_CONSOLES).

VT_WAITACTIVE Wait until vt argp has been activated.

VT_DISALLOCATE Deallocate the memory associated with vt argp. (Since 1.1.54.)

VT_RESIZE Set the kernel’s idea of screensize. argp points to a
struct vt_sizes {
ushort v_rows;/*#rows*/
ushort v_cols;/*#columns */
ushort v_scrollsize; /* no longer used */
};

Note that this does not change the video mode. See resizecons(8). (Since 1.1.54.)

VT_RESIZEX Set the kernel’s idea of various screen parameters. argp points to a

struct vt_consize {

ushort v_rows; /* number of rows */

ushort v_cols; /* number of columns */

ushort v_vlin; /* number of pixel rows on screen */

ushort v_clin; /* number of pixel rows per character */

ushort v_vcol; /* number of pixel columns on screen */

ushort v_ccol; /* number of pixel columns per character */

};

Any parameter may be set to zero, indicating no change, but if multiple parameters
are set, they must be self-consistent. Note that this does not change the video mode.
See resizecons(8). (Since 1.3.3.)

1079

The action of the following ioctls depends on the first byte in the struct pointed to by argp, referred to here as the subcode.
These are legal only for the superuser or the owner of the current tty.

TIOCLINUX, subcode=0 Dump the screen. Disappeared in 1.1.92. (With kernel 1.1.92 or later, read from
/dev/vcsN or /dev/vcsaN instead.)

TIOCLINUX, subcode=1 Get task information. Disappeared in 1.1.92.

TIOCLINUX, subcode=2 Set selection. argp points to a

struct{fchar subcode; short xs, ys, xe, ye; short sel_mode; }

xs and ys are the starting column and row. xe and ye are the ending column and
row. (Upper-left corner is row=column=1.) sel_mode is 0 for character-by-character
selection, 1 for word-by-word selection, or 2 for line-by-line selection. The indicated
screen characters are highlighted and saved in the static array sel buffer in devices/
char/console.c.

TIOCLINUX, subcode=3 Paste selection. The characters in the selection buffer are written to fd.

TIOCLINUX, subcode=4 Unblank the screen.

TIOCLINUX, subcode=5 Sets contents of a 256-bit look up table defining characters in a “word”, for word-
by-word selection. (Since 1.1.32.)

TIOCLINUX, subcode=6 argp points to a char that is set to the value of the kernel variable shift state. (Since
1.1.32.)

TIOCLINUX, subcode=7 argp points to a char that is set to the value of the kernel variable report mouse.
(Since 1.1.33.)

TIOCLINUX, subcode=8 Dump screen width and height, cursor position, and all the character-attribute pairs.
(Kernels 1.1.67 through 1.1.91 only. With kernel 1.1.92 or later, read from /dev/
vcsa* instead.)

TIOCLINUX, subcode=9 Restore screen width and height, cursor position, and all the character-attribute
pairs. (Kernels 1.1.67 through 1.1.91 only. With kernel 1.1.92 or later, write to
/dev/vcsa* instead.)

TIOCLINUX, subcode=10 Handles the power saving feature of the new generation of monitors. VESA screen
blanking mode is set to argp[1], which governs what screen blanking does:

0 Screen blanking is disabled.

1 The current video adapter register settings are saved, then the
controller is programmed to turn off the vertical synchronization
pulses. This puts the monitor into standby mode. If your monitor has
an Off_Mode timer, then it will eventually power down by itself.

2 The current settings are saved, then both the vertical and horizontal
synchronization pulses are turned off. This puts the monitor into off
mode. If your monitor has no Off_Mode timer, or if you want your
monitor to power down immediately when the blank timer times out,
then you choose this option. (Caution: Powering down frequently
will damage the monitor.) (Since 1.1.76.)

RETURN VALUES
-1 for error, and errno is set.

ERRORS
errno may take on these values:

EBADF File descriptor is invalid.

ENOTTY File descriptor is not associated with a character special device, or the specified
request does not apply to it.

console ioctls

Part IV: Special Files1080

EINVAL File descriptor or argp is invalid.

EPERM Permission violation.

WARNING

Do not regard this man page as documentation of the Linux console ioctls. This is provided for the curious only, as an
alternative to reading the source. Ioctls are undocumented Linux internals, liable to be changed without warning. (And
indeed, this page more or less describes the situation as of kernel version 1.1.94; there are many minor and not-so-minor
differences with earlier versions.)
Very often, ioctls are introduced for communication between the kernel and one particular well-known program (fdisk,
hdparm, setserial, tunelp, loadkeys, selection, setfont, and so on), and their behavior will be changed when required by
this particular program.
Programs using these ioctls will not be portable to other versions of UNIX, will not work on older versions of Linux, and
will not work on future versions of Linux.
Use POSIX functions.

SEE ALSO
kbd_mode(1), loadkeys(1), dumpkeys(1), mknod(1), setleds(1), setmetamode(1), ioperm(2), termios(2), execve(2), fcntl(2),
charsets(4), console(4), console_codes(4), mt(4), sd(4), tty(4), ttys(4), vcs(4), vcsa(4), mapscrn(8), setfont(8), resizecons(8),
/usr/include/linux/kd.h, /usr/include/linux/vt.h.

Linux, 18 September 1995

fd
fd—Floppy disk device

CONFIGURATION
Floppy drives are block devices with major number 2. Typically, they are owned by root.floppy (that is, user root, group
floppy) and have either mode 0660 (access checking via group membership) or mode 0666 (everybody has access). The minor
numbers encode the device type, drive number, and controller number. For each device type (that is, combination of density
and track count), there is a base minor number. To this base number, add the drive’s number on its controller and 128 if the
drive is on the secondary controller. In the following device tables, n represents the drive number.

WARNING

If you use formats with more tracks than supported by your drive, you may cause it mechanical damage. Trying once if
more tracks than the usual 40/80 are supported should not damage it, but no warranty is given for that. Don’t create
device entries for those formats to prevent their usage if you are not sure.

1081

Drive-independent device files that automatically detect the media format and capacity are

Name Base minor #

fdn 0

5.25-inch double density device files:

Name Capac. Cyl. Sect. Heads Base minor #

fdnd360 360K 40 9 2 4

5.25-inch high density device files:

Name Capac. Cyl. Sect. Heads Base minor #

fdnh360 360K 40 9 2 20

fdnh410 410K 41 10 2 48

fdnh420 420K 42 10 2 64

fdnh720 720K 80 9 2 24

fdnh880 880K 80 11 2 80

fdnh1200 1200K 80 15 2 8

fdnh1440 1440K 80 18 2 40

fdnh1476 1476K 82 18 2 56

fdnh1494 1494K 83 18 2 72

fdnh1600 1600K 80 20 2 92

3.5-inch double density device files:

Name Capac. Cyl. Sect. Heads Base minor #

fdnD360 360K 80 9 1 12

fdnD720 720K 80 9 2 16

fdnD800 800K 80 10 2 120

fdnD1040 1040K 80 13 2 84

fdnD1120 1120K 80 14 2 88

3.5-inch high density device files:

Name Capac. Cyl. Sect. Heads Base minor #

fdnH360 360K 40 9 2 12

fdnH720 720K 80 9 2 16

fdnH820 820K 82 10 2 52

fdnH830 830K 83 10 2 68

fdnH1440 1440K 80 18 2 28

fdnH1600 1600K 80 20 2 124

fdnH1680 1680K 80 21 2 44

fdnH1722 1722K 82 21 2 60

fdnH1743 1743K 83 21 2 76

fdnH1760 1760K 80 22 2 96

fdnH1840 1840K 80 23 2 116

fdnH1920 1920K 80 24 2 100

fd

Part IV: Special Files1082

3.5-inch extra density device files:

Name Capac. Cyl. Sect. Heads Base minor #

fdnE2880 2880K 80 36 2 32

fdnCompaQ 2880K 80 36 2 36

fdnE3200 3200K 80 40 2 104

fdnE3520 3520K 80 44 2 108

fdnE3840 3840K 80 48 2 112

DESCRIPTION
fd special files access the floppy disk drives in raw mode. The following ioctl(2) calls are supported by fd devices:

FDCLRPRM clears the media information of a drive (geometry of disk in drive).

FDSETPRM sets the media information of a drive. The media information will be lost when the media is changed.

FDDEFPRM sets the media information of a drive (geometry of disk in drive). The media information will not be lost when the
media is changed. This will disable autodetection. In order to re-enable autodetection, you have to issue an FDCLRPRM.

FDGETDRVTYP displays the type of a drive (name parameter). For formats that work in several drive types, FDGETDRVTYP returns a
name that is appropriate for the oldest drive type that supports this format.

FDFLUSH invalidates the buffer cache for the given drive.

FDFLUSH invalidates the buffer cache for the given drive.

FDSETMAXERRS sets the error thresholds for reporting errors, aborting the operation, recalibrating, resetting, and reading sector
by sector.

FDSETMAXERRS gets the current error thresholds.

FDGETDRVTYP gets the internal name of the drive.

FDWERRORCLR clears the write error statistics.

FDWERRORGET reads the write error statistics. These include the total number of write errors, the location and disk of the first
write error, and the location and disk of the last write error. Disks are identified by a generation number that is incremented
at (almost) each disk change.

FDTWADDLE switches the drive motor off for a few microseconds. This might be needed in order to access a disk whose sectors
are too close together.

FDSETDRVPRM sets various drive parameters.

FDGETDRVPRM reads these parameters back.

FDGETDRVSTAT gets the cached drive state (disk changed, write protected et al.)

FDPOLLDRVSTAT polls the drive and return its state.

FDGETFDCSTAT gets the floppy controller state.

FDRESET resets the floppy controller under certain conditions.

FDRAWCMD sends a raw command to the floppy controller.

For more precise information, consult also the <linux/fd.h> and <linux/fdreg.h> include files, as well as the manual page for
floppy control.

NOTES
The various formats allow you to read and write many types of disks. However, if a floppy is formatted with a too small
intersector gap, performance may drop, up to needing a few seconds to access an entire track. To prevent this, use interleaved
formats. It is not possible to read floppies that are formatted using GCR (group code recording), which is used by Apple II
and Macintosh computers (800K disks). Reading floppies that are hard sectored (one hole per sector, with the index hole
being a little skewed) is not supported. This used to be common with older 8-inch floppies.

1083

FILES
/dev/fd*

AUTHORS
Alain Knaff (Alain.Knaff@imag.fr), David Niemi (niemidc@clark.net), Bill Broadhurst (bbroad@netcom.com).

SEE ALSO
floppycontrol(1), mknod(1), chown(1), getfdprm(1), superformat(1), mount(8), setfd-prm(8)

Linux, 29 January 1995

hd
hd—MFM/IDE hard disk device

DESCRIPTION
hd* are block devices to access MFM/IDE hard disk drives in raw mode. The master drive on the primary IDE controller
(major device number 3) is hda; the slave drive is hdb. The master drive of the second controller (major device number 22) is
hdc and the slave hdd.

General IDE block device names have the form hdX , or hdXP, where X is a letter denoting the physical drive, and P is a
number denoting the partition on that physical drive. The first form, hdX, is used to address the whole drive. Partition
numbers are assigned in the order the partitions are discovered, and only nonempty, nonextended partitions get a number.
However, partition numbers 1–4 are given to the four partitions described in the MBR (the primary partitions), regardless of
whether they are unused or extended. Thus, the first logical partition will be hdX5. Both DOS-type partitioning and BSD-
disk label partitioning are supported. You can have at most 63 partitions on an IDE disk.

For example, /dev/hda refers to all of the first IDE drive in the system; and /dev/hdb3 refers to the third DOS primary
partition on the second one.

They are typically created by the following:

mknod -m 660 /dev/hda b 3 0
mknod -m 660 /dev/hda1 b 3 1
mknod -m 660 /dev/hda2 b 3 2

...
mknod -m 660 /dev/hda8 b 3 8
mknod -m 660 /dev/hdb b 3 64
mknod -m 660 /dev/hdb1 b 3 65
mknod -m 660 /dev/hdb2 b 3 66

...
mknod -m 660 /dev/hdb8 b 3 72
chown root.disk /dev/hd*

FILES
/dev/hd*

SEE ALSO
mknod(1), chown(1), mount(8), sd(4)

Linux, 17 December 1992

hd

Part IV: Special Files1084

ispell
ispell—Format of ispell dictionaries and affix files

DESCRIPTION
ispell(1) requires two files to define the language that it is spell checking. The first file is a dictionary containing words for
the language, and the second is an affix file that defines he meaning of special flags in the dictionary. The two files are
combined by buildhash (see spell(1)) and written to a hash file that is not described here.

A raw ispell dictionary (either the main dictionary or your own personal dictionary) contains a list of words, one per line.
Each word may optionally be followed by a slash (/) and one or more flags, which modify the root word as explained later.
Depending on the options with which ispell was built, case may or may not be significant in either the root word or the
flags, independently. Specifically, if the compile-time option CAPITALIZATION is defined, case is significant in the root word; if
not, case is ignored in the root word. If the compile-time option MASKBITS is set to a value of 32, case is ignored in the flags;
otherwise, case is significant in the flags. Contact your system administrator or ispell maintainer for more information (or
use the –vv flag to find out). The dictionary should be sorted with the –f flag of sort(1) before the hash file is built; this is
done automatically by unchlist(1), which is the normal way of building dictionaries.

If the dictionary contains words that have string characters (see the affix file documentation, following), they must be
written in the format given by the defstringtype statement in the affix file. This will be the case for most non-English
languages. Be careful to use this format, rather than that of your favorite formatter, when adding words to a dictionary. If
you add words to your personal dictionary during an ispell session, they will automatically be converted to the correct
format. This feature can be used to convert an entire dictionary if necessary:

echo qqqqq > dummy.dict
buildhash dummy.dict affix-file dummy.hash
awk ‘fprint “*”gENDfprint “#”g’ old-dict-file \
| ispell -a -T old-dict-string-type \
-d ./dummy.hash -p ./new-dict-file \
> /dev/null
rm dummy.*

The case of the root word controls the case of words accepted by ispell, as follows:

1. If the root word appears only in lowercase (for example, bob), it will be accepted in lowercase, capitalized, or all capitals.
2. If the root word appears capitalized (for example, Robert), it will not be accepted in all lowercase, but will be accepted

capitalized or all in capitals.
3. If the root word appears all in capitals (for example, UNIX), it will only be accepted all in capitals.
4. If the root word appears with a “funny” capitalization (for example, ITCorp), a word will be accepted only if it follows

that capitalization, or if it appears all in capitals.
5. More than one capitalization of a root word may appear in the dictionary. Flags from different capitalizations are

combined using OR.

Redundant capitalizations (for example, bob and Bob) will be combined by buildhash and by ispell (for personal dictionar-
ies), and can be removed from a raw dictionary by munchlist.

For example, the dictionary

bob
Robert
UNIX
ITcorp
ITCorp

will accept bob, Bob, BOB, Robert, ROBERT, UNIX, ITcorp, ITCorp, and ITCORP, and will reject all others. Some of the unacceptable
forms are bOb, robert, Unix, and ItCorp.

1085

As mentioned, root words in any dictionary may be extended by flags. Each flag is a single alphabetic character, which
represents a prefix or suffix that may be added to the root to form a new word. For example, in an English dictionary the D
flag can be added to bathe to make bathed. Because flags are represented as a single bit in the hashed dictionary, this results
in significant space savings. The munchlist script will reduce an existing raw dictionary by adding flags when possible.

When a word is extended with an affix, the affix will be accepted only if it appears in the same case as the initial (prefix) or
final (suffix) letter of the word. Thus, for example, the entry UNIX/M in the main dictionary (M means add an apostrophe and
an s to make a possessive) would accept UNIX’S but would reject UNIX’s. If UNIX’s is legal, it must appear as a separate
dictionary entry, and it will not be combined by munchlist. (In general, you don’t need to worry about these things;
munchlist guarantees that its output dictionary will accept the same set of words as its input, so all you have to do is add
words to the dictionary and occasionally run munchlist to reduce its size.)

As mentioned, the affix definition file describes the affixes associated with particular flags. It also describes the character set
used by the language.

Although the affix-definition grammar is designed for a line-oriented layout, it is actually a free-format grammar and can be
laid out weirdly if you want. Comments are started by a pound (sharp) sign (#), and continue to the end of the line.
Backslashes are supported in the usual fashion (\nnn, plus specials \n, \r, \t, \v, \f, \b, and the new hex format \xnn). Any
character with special meaning to the parser can be changed to an uninterpreted token by backslashing it; for example, you
can declare a flag named asterisk or colon with flag n*: or flag n::.

The grammar will be presented in a top-down fashion, with discussion of each element. An affix-definition file must contain
exactly one table:

table :[headers][prefixes][suffixes]

At least one of prefixes and suffixes is required. They can appear in either order.

headers :[options] char-sets

The headers describe options global to this dictionary and language. These include the character sets to be used and the
formatter, and the defaults for certain ispell flags.

options : { fmtr-stmt | opt-stmt | flag-stmt | num-stmt }

The options statements define the defaults for certain ispell flags and for the character sets used by the formatters.

fmtr-stmt : { nroff-stmt | tex-stmt }

A fmtr-stmt statement describes characters that have special meaning to a formatter. Normally, this statement is not
necessary, but some languages may have preempted the usual defaults for use as language-specific characters. In this case,
these statements may be used to redefine the special characters expected by the formatter.

nroff-stmt : { nroffchars | troffchars } string

The nroffchars statement allows redefinition of certain nroff control characters. The string given must be exactly five
characters long, and must list substitutions for the left and right parentheses, the period, the backslash, and the asterisk. (The
right parenthesis is not currently used, but is included for completeness.) For example, the statement:

nroffchars {}.*

would replace the left and right parentheses with left and right curly braces for purposes of parsing nroff/troff strings, with
no effect on the others (admittedly a contrived example). Note that the backslash is escaped with a backslash.

tex-stmt : { TeXchars | texchars } string

The TeXchars statement allows redefinition of certain TeX/LaTeX control characters. The string given must be exactly
thirteen characters long, and must list substitutions for the left and right parentheses, the left and right square brackets, the
left and right curly braces, the left and right angle brackets, the backslash, the dollar sign, the asterisk, the period or dot, and
the percent sign. For example, the statement:

texchars ()\[]<\><\>\\$*.%

ispell

Part IV: Special Files1086

would replace the functions of the left and right curly braces with the left and right angle brackets for purposes of parsing
TeX/LaTeX constructs, while retaining their functions for the tib bibliographic preprocessor. Note that the backslash, the
left square bracket, and the right angle bracket must be escaped with a backslash.

opt-stmt : { cmpnd-stmt | aff-stmt }
cmpnd-stmt : compoundwords compound-opt
 aff-stmt : allaffixes on-or-off
 on-or-off : { on | off }
compound-opt : { on-or-off | controlled character }

An opt-stmt, used in the preceding code, controls certain ispell defaults that are best made language-specific. The
allaffixes statement controls the default for the –P and –m options to ispell. If allaffixes is turned off (the default), ispell
will default to the behavior of the –P flag: root/affix suggestions will only be made if there are no “near misses.” If allaffixes
is turned on, ispell will default to the behavior of the –m flag: root/affix suggestions will always be made.

The compoundwords statement controls the default for the –B and –C options to ispell. If compoundwords is turned off (the
default), ispell will default to the behavior of the –B flag: run-together words will be reported as errors. If compoundwords is
turned on, ispell will default to the behavior of the –C flag: run-together words will be considered as compounds if both are
in the dictionary. This is useful for languages such as German and Norwegian, which form large numbers of compound
words. Finally, if compoundwords is set to controlled, only words marked with the flag indicated by character (which should
not be otherwise used) will be allowed to participate in compound formation. Because this option requires the flags to be
specified in the dictionary, it is not available from the command line.

flag-stmt : flagmarker character

The flagmarker statement describes the character that is used to separate affix flags from the root word in a raw dictionary
file. This must be a character that is not found in any word (including in string characters; see following). The default is /
because this character is not normally used to represent special characters in any language.

num-stmt : compoundmin digit

The compoundmin statement controls the length of the two components of a compound word. This only has an effect if
compoundwords is turned on or if the –C flag is given to ispell. In that case, only words at least as long as the given minimum
will be accepted as components of a compound. The default is 3 characters.

char-sets : norm-sets [alt-sets]

The character-set section describes the characters that can be part of a word, and defines their collating order. There must
always be a definition of “normal” character sets; in addition, there may be one or more partial definitions of “alternate” sets
that are used with various text formatters.

norm-sets :[deftype] charset-group

A “normal” character set may optionally begin with a definition of the file suffixes that make use of this set. Following this
are one or more character-set declarations.

deftype : defstringtype name deformatter suffix*

The defstringtype declaration gives a list of file suffixes that should make use of the default string characters defined as part of
the base character set; it is only necessary if string characters are being defined. The name parameter is a string giving the
unique name associated with these suffixes; often it is a formatter name. If the formatter is a member of the troff family,
nroff should be used for the name associated with the most popular macro package; members of the TeX family should use
tex. Other names may be chosen freely, but they should be kept simple, as they are used in ispell’s –T switch to specify a
formatter type. The deformatter parameter specifies the deformatting style to use when processing files with the given
suffixes. Currently, this must be either tex or nroff. The suffix parameters are a whitespace-separated list of strings which, if
present at the end of a filename, indicate that the associated set of string characters should be used by default for this file. For
example, the suffix list for the troff family typically includes suffixes such as .ms, .me, .mm, and so on.

charset-group : { char-stmt | string-stmt | dup-stmt}*

1087

A char-stmt describes single characters; a string-stmt describes characters that must appear together as a string, and which
usually represent a single character in the target language. Either may also describe conversion between uppercase and
lowercase. A dup-stmt is used to describe alternate forms of string characters, so that a single dictionary may be used with
several formatting programs that use different conventions for representing non-ASCII characters.

 char-stmt : wordchars character-range
 | wordchars lowercase-range uppercase-range
 | boundarychars character-range
 | boundarychars lowercase-range uppercase-range
 string-stmt : stringchar string
 | stringchar lowercase-string uppercase-string

Characters described with the boundarychars statement are considered part of a word only if they appear singly, embedded
between characters declared with the wordchars or stringchar statements. For example, if the hyphen is a boundary character
(useful in French), the string foo-bar would be a single word, but -foo would be the same as foo, and foo–bar would be two
words separated by nonword characters.

If two ranges or strings are given in a char-stmt or string-stmt, the first describes characters that are interpreted as lowercase
and the second describes uppercase. In the case of a stringchar statement, the two strings must be of the same length. Also,
in a stringchar statement, the actual strings may contain both uppercase and characters themselves without difficulty; for
instance, the statement:

stringchar “*(sS” “*(Ss”

is legal and will not interfere with (or be interfered with by) other declarations of “s” and “S” as lowercase and uppercase,
respectively.

A final note on string characters: some languages collate certain special characters as if they were strings. For example, the
German “a-umlaut” is traditionally sorted as if it were ae. ispell is not capable of this; each character must be treated as an
individual entity. So in certain cases, ispell will sort a list of words into a different order than the standard “dictionary”
order for the target language.

alt-sets : alttype [alt-stmt*]

Because different formatters use different notations to represent non-ASCII characters, ispell must be aware of the represen-
tations used by these formatters. These are declared as alternate sets of string characters.

alttype : altstringtype name suffix*

The altstringtype statement introduces each set by declaring the associated formatter name and filename suffix list. This
name and list are interpreted exactly as in the defstringtype statement. Following this header are one or more alt-stmts that
declare the alternate string characters used by this formatter.

alt-stmt : altstringchar alt-string std-string

The altstringchar statement describes alternate representations for string characters. For example, the –mm macro package
of troff represents the German “a-umlaut” as a*:, while TeX uses the sequence \”a. If the troff versions are declared as the
standard versions using stringchar, the TeX versions may be declared as alternates by using the statement:

altstringchar \\\”a a*

When the altstringchar statement is used to specify alternate forms, all forms for a particular formatter must be declared
together as a group. Also, each formatter or macro package must provide a complete set of characters, both uppercase and
lowercase, and the character sequences used for each formatter must be completely distinct. Character sequences that
describe uppercase and lowercase versions of the same printable character must also be the same length. It may be necessary
to define some new macros for a given formatter to satisfy these restrictions. (The current version of buildhash does not
enforce these restrictions, but failure to obey them may result in errors being introduced into files that are processed with
ispell.)

An important minor point is that ispell assumes that all characters declared as wordchars or boundarychars will occupy
exactly one position on the terminal screen.

ispell

Part IV: Special Files1088

A single character-set statement can declare either a single character or a contiguous range of characters. A range is given as in
egrep and the shell: [a-z] means lowercase alphabetics; [ˆa-z] means all but lowercase, and so on. All character-set state-
ments are combined (unioned) to produce the final list of characters that may be part of a word. The collating order of the
characters is defined by the order of their declaration; if a range is used, the characters are considered to have been declared in
ASCII order. Characters that have case are collated next to each other, with the uppercase character first.

The character-declaration statements have a rather strange behavior caused by the need to match each lowercase character
with its uppercase equivalent. In any given wordchars or boundarychars statement, the characters in each range are first sorted
into ASCII collating sequence, then matched one-for-one with the other range. (The two ranges must have the same number
of characters). Thus, for example, the two statements:

wordchars [aeiou] [AEIOU]
wordchars [aeiou] [UOIEA]

would produce exactly the same effect. To get the vowels to match up “wrong,” you would have to use separate statements:

wordchars a U
wordchars e O
wordchars i I
wordchars o E
wordchars u A

which would cause uppercase e to be O, and lowercase 0 to be e. This should normally be a problem only with languages that
have been forced to use a strange ASCII collating sequence. If your uppercase and lowercase letters both collate in the same
order, you shouldn’t have to worry about this “feature.”

The prefixes and suffixes sections have exactly the same syntax, except for the introductory keyword:

prefixes : prefixes flagdef*
suffixes : suffixes flagdef*
flagdef : flag [*jÚ] char : repl *

A prefix or suffix table consists of an introductory keyword and a list of flag definitions. Flags can be defined more than once,
in which case the definitions are combined. Each flag controls one or more repls (replacements), which are conditionally
applied to the beginnings or endings of various words.

Flags are named by a single character char. Depending on a configuration option, this character can be either any uppercase
letter (the default configuration) or any 7-bit ASCII character. Most languages should be able to get along with just 26 flags.

A flag character may be prefixed with one or more option characters. (If you wish to use one of the option characters as a flag
character, simply enclose it in double quotes.)

The asterisk (*) option means that this flag participates in cross-product formation. This only matters if the file contains both
prefix and suffix tables. If so, all prefixes and suffixes marked with an asterisk will be applied in all cross-combinations to the
root word. For example, consider the root fix with prefixes pre and in, and suffixes es and ed. If all flags controlling these
prefixes and suffixes are marked with an asterisk, then the single root fix would also generate prefix, prefixes, prefixed, infix,
infixes, infixed, fix, fixes, and fixed. Cross-product formation can produce a large number of words quickly, some of which
may be illegal, so watch out. If cross-products produce illegal words, munchlist will not produce those flag combinations, and
the flag will not be useful.

repl : condition* > [- strip-string ,] append-string

The ~ option specifies that the associated flag is only active when a compound word is being formed. This is useful in a
language like German, in which the form of a word sometimes changes inside a compound.

A repl is a conditional rule for modifying a root word. Up to eight conditions may be specified. If the conditions are
satisfied, the rules on the rightside of the repl are applied, as follows:

1. If a strip-string is given, it is first stripped from the beginning or ending (as appropriate) of the root word.
2. The append-string is added at that point.

1089

For example, the condition . means “any word”, and the condition Y means “any word ending in Y.” The following (suffix)
replacements:

. > MENT
Y > -Y,IES

would change induce to inducement and fly to flies. (If they were controlled by the same flag, they would also change fly to
flyment, which might not be what was wanted. munchlist can be used to protect against this sort of problem; see the
command sequence given in the next paragraph.)

No matter how much you might want it, the strings on the right must be strings of specific characters, not ranges. The
reasons are rooted deeply in the way ispell works, and it would be difficult or impossible to provide for more flexibility. For
example, you might want to write:

[EY] > -[EY],IES

This will not work. Instead, you must use two separate rules:

E > -E,IES
Y > -Y,IES

The application of repls can be restricted to certain words with conditions:

condition : { . | character | range }

A condition is a restriction on the characters that adjoin, and/or are replaced by, the right-hand side of the repl. Up to
eight conditions may be given, which should be enough context for anyone. The right-hand side will be applied only
if the conditions in the repl are satisfied. The conditions also implicitly define a length; roots shorter than the number of
conditions will not pass the test. (As a special case, a condition of a single dot defines a length of zero, so that the rule applies
to all words indiscriminately.) This length is independent of the separate test that insists that all flags produce an output
word length of at least four.

Conditions that are single characters should be separated by whitespace. For example, to specify words ending in ED, write
this:

E D> -ED,ING # As in covered > covering

If you write this:

ED > -ED,ING

the effect will be the same as

[ED] > -ED,ING

As a final, minor but important point, it is sometimes useful to rebuild a dictionary file using an incompatible suffix file. For
example, suppose you expand the R flag to generate “er” and “ers” (thus making the Z flag somewhat obsolete). To build a
new dictionary newdict that using new affixes will accept exactly the same list of words as the old list olddict did using old
affixes, the –c switch of munchlist is useful, as in the following example:

$ munchlist -c oldaffixes -l newaffixes olddict > newdict

If you use this procedure, your new dictionary will always accept the same list the original did, even if you badly screwed up
the affix file. This is because munchlist compares the words generated by a flag with the original word list and refuses to use
any flags that generate illegal words. (Don’t forget that the munchlist step takes a long time and eats up temporary file space.)

EXAMPLES
As an example of conditional suffixes, here is the specification of the S flag from the English affix file:

flag *S:
[ˆAEIOU]Y > -Y,IES # As in imply > implies
[AEIOU]Y > S # As in convey > conveys
[SXZH] > ES # As in fix > fixes
[ˆSXZHY] > S #As in bat > bats

ispell

Part IV: Special Files1090

The first line applies to words ending in Y but not in vowel-Y. The second takes care of the vowel-Y words. The third then
handles those words that end in a sibilant or near-sibilant, and the last picks up everything else.

Note that the conditions are written very carefully so that they apply to disjoint sets of words. In particular, note that the
fourth line excludes words ending in Y as well as the obvious SXZH. Otherwise, it would convert “imply” into “implys.”

Although the English affix file does not do so, you can also have a flag generate more than one variation on a root word. For
example, you could extend the English R flag as follows:

flag *R:
E > R #As in skate > skater
E > RS # As in skate > skaters
[ˆAEIOU]Y > -Y,IER # As in multiply > multiplier
[ˆAEIOU]Y > -Y,IERS # As in multiply > multipliers
[AEIOU]Y > ER # As in convey > conveyer
[AEIOU]Y > ERS # As in convey > conveyers
[ˆEY] > ER # As in build > builder
[ˆEY] > ERS # As in build > builders

This flag would generate both “skater” and “skaters” from “skate.” This capability can be very useful in languages that make
use of noun, verb, and adjective endings. For instance, one could define a single flag that generated all the German “weak”
verb endings.

SEE ALSO
ispell(1)

Local

lp
lp—Line printer devices.

SYNOPSIS
#include <linux/lp.h>

CONFIGURATION
lp[02] are character devices for the parallel line printers; they have major number 6 and minor number 02. The minor
numbers correspond to the printer port base addresses 0x03bc, 0x0378, and 0x0278. Usually, they have mode 220 and are
owned by root and group lp. You can use printer ports either with polling or with interrupts. Interrupts are recommended
when high traffic is expected, such as for laser printers. For usual dot matrix printers, polling will usually be enough. The
default is polling.

DESCRIPTION
The following ioctl(2) calls are supported:

int ioctl(int fd, LPTIME, int arg) Sets the amount of time that the driver sleeps before rechecking the
printer when the printer’s buffer appears to be filled to arg. If you have a
fast printer, decrease this number; if you have a slow printer, then
increase it. This is in hundredths of a second; the default 2 is 0.05
seconds. It only influences the polling driver.

int ioctl(int fd, LPCHAR, int arg) Sets the maximum number of busy-wait iterations that the polling driver
does while waiting for the printer to get ready for receiving a character to
arg. If printing is too slow, increase this number; if the system gets too
slow, decrease this number. The default is 1000. It only influences the
polling driver.

1091

int ioctl(int fd, LPABORT, int arg) If arg is 0, the printer driver will retry on errors; otherwise, it will abort.
The default is 0.

int ioctl(int fd, LPABORTOPEN, int arg) If arg is 0, open(2) will be aborted on error; otherwise, the error will be
ignored. The default is to ignore it.

int ioctl(int fd, LPCAREFUL, int arg) If arg is 0, then the out-of-paper, offline, and error signals are required to
be false on all writes; otherwise, they are ignored. The default is to ignore
them.

int ioctl(int fd, LPWAIT, int arg) Sets the number of busy-wait iterations to wait before strobing the printer
to accept a just-written character and the number of iterations to wait
before turning the strobe off again to arg. The specification says this time
should be 0.5 microseconds, but experience has shown the delay caused
by the code is already enough. For that reason, the default value is 0. This
is used for both the polling and the interrupt driver.

int ioctl(int fd, LPSETIRQ, int arg) This ioctl() requires superuser privileges. It takes an int containing the
new IRQ as argument. As a side effect, the printer is reset. When arg is 0,
the polling driver will be used, which is also default.

int ioctl(int fd, LPGETIRQ, int *arg) Stores the currently used IRQ in arg.

int ioctl(int fd, LPGETSTATUS, int *arg) Stores the value of the status port in arg. The bits have the following
meaning:

LP_PBUSY Inverted busy input, active high

LP_PACK Unchanged acknowledge input, active low

LP_POUTPA Unchanged out-of-paper input, active high

LP_PSELECD Unchanged selected input, active high

LP_PERRORP Unchanged error input, active low

Refer to your printer manual for the meaning of the signals. Note that
undocumented bits can also be set, depending on your printer.

int ioctl(int fd, LPRESET) Resets the printer. No argument is used.

FILES
/dev/lp*

AUTHORS
The printer driver was originally written by Jim Weigand and Linus Torvalds. It was further improved by Michael K.
Johnson. The interrupt code was written by Nigel Gamble. Alan Cox modularized it. LPCAREFUL, LPABORT, LPGETSTATUS were
added by Chris Metcalf.

SEE ALSO
mknod(1), chown(1), chmod(1), tunelp(8), lpcntl(8)

15 January 1995

mem, kmem, port
mem, kmem, port—System memory, kernel memory, and system ports

DESCRIPTION
mem is a character device file that is an image of the main memory of the computer. It can be used, for example, to examine
(and even patch) the system.

mem, kmem, port

Part IV: Special Files1092

Byte addresses in mem are interpreted as physical memory addresses. References to non-existent locations cause errors to be
returned.

Examining and patching is likely to lead to unexpected results when read-only or write-only bits are present.

It is typically created by

mknod -m 660 /dev/mem c 1 1
chown root.mem /dev/mem

The file kmem is the same as mem, except that the kernel virtual memory rather than physical memory is accessed.

It is typically created by

mknod -m 640 /dev/kmem c 1 2
chown root.mem /dev/kmem

port is similar to mem, but the IO ports are accessed.

It is typically created by

mknod -m 660 /dev/port c 1 4
chown root.mem /dev/port

FILES
/dev/mem

/dev/kmem

/dev/port

SEE ALSO
mknod(1), chown(1), ioperm(2)

Linux, 21 November 1992

mouse
mouse—Serial mouse interface.

CONFIG
Serial mice are connected to a serial RS232/V24 dialout line; see cua(4) for a description.

DESCRIPTION
The pinout of the usual 9 pin plug as used for serial mice is

Pin Name Used for

2 RX Data

3 TX -12 V, Imax = 10 mA

4 DTR +12 V, Imax = 10 mA

7 RTS +12 V, Imax = 10 mA

5 GND Ground

This is the specification; in fact, 9 V suffices with most mice.

The mouse driver can recognize a mouse by dropping RTS to low. About 14ms later, the mouse will send 0x4D on the data
line. After a further 63ms, Microsoft-compatible mice will send 0x33. Other mice send different values.

1093

The relative mouse movement is sent as dx (positive means right) and dy (positive means down). Various mice can operate at
different speeds. To select speeds, cycle through the speeds 9600, 4800, 2400, and 1200 bits/sec, each time writing the two
characters from the table below and waiting 0.1 seconds. The following table shows available speeds and the strings that
select them:

Bits/sec String

9600 *q

4800 *p

2400 *o

1200 *n

The first byte of a data packet can be used to synchronization purposes.

MICROSOFT PROTOCOL
The Microsoft protocol uses 1 start bit, 7 data bits, no parity, and 1 stop bit at the speed of 1200 bits/sec. Data is sent to
RxD in 3-byte packets. The dx and dy movements are sent as two’s-complement, lb (rb) is set when the left (right) button is
pressed:

Byte d6 d5 d4 d3 d2 d1 d0

1 1 lb rb dy7 dy6 dx7 dx7

2 0 dx5 dx4 dx3 dx2 dx1 dx0

3 0 dy5 dy4 dy3 dy2 dy1 dy0

Original Microsoft mice have only two buttons. However, there are some three-button mice that also use the Microsoft
protocol. Pressing the third button is reported by sending a packet with zero movement and no buttons pressed.

MOUSESYSTEMS PROTOCOL
The MouseSystems protocol uses 1 start bit, 8 data bits, no parity, and 2 stop bits at the speed of 1200 bits/sec. Data is sent
to RxD in 5-byte packets. dx is sent as the sum of the two two’s-complement values, dy is send as negated sum of the two
two’s-complement values. lb (mb, rb) is cleared when the left (middle, right) button is pressed:

Byte d7 d6 d5 d4 d3 d2 d1 d0

1 1 ? ? ? ? lb mb rb

2 0 dxa6 dxa5 dxa4 dxa3 dxa2 dxa1 dxa0

3 0 dxb6 dxb5 dxb4 dxb3 dxb2 dxb1 dxb0

4 0 dya6 dya5 dya4 dya3 dya2 dya1 dya0

5 0 dyb6 dyb5 dyb4 dyb3 dyb2 dyb1 dyb0

SUN PROTOCOL
The Sun protocol uses 1 start bit, 8 data bits, no parity, and 2 stop bits at the speed of 1200 bits/sec. Data is sent to RxD in
3-byte packets. dx is sent as single two’s-complement value, dy as negated two’s-complement value. lb (mb, rb) is cleared when
the left (middle, right) button is pressed:

Byte d7 d6 d5 d4 d3 d2 d1 d0

1 1 ? ? ? ? lb mb rb

2 0 dx6 dx5 dx4 dx3 dx2 dx1 dx0

3 0 dy6 dy5 dy4 dy3 dy2 dy1 dy0

mouse

Part IV: Special Files1094

MM PROTOCOL
The MM protocol uses 1 start bit, 8 data bits, odd parity, and 1 stop bit at the speed of 1200 bits/sec. Data is sent to RxD in
3-byte packets. dx and dy are sent as single signed values, the sign bit indicating a negative value. lb (mb, rb) is set when the
left (middle, right) button is pressed:

Byte d7 d6 d5 d4 d3 d2 d1 d0

1 1 ? ? dxs dys lb mb rb

2 0 dx6 dx5 dx4 dx3 dx2 dx1 dx0

3 0 dy6 dy5 dy4 dy3 dy2 dy1 dy0

FILES
/dev/mouse a commonly used symlink pointing to a mouse device

SEE ALSO
cua(4), bm(4)

Linux, 10 February 1996

null, zero
null, zero—Data sink.

DESCRIPTION
Data written on a null or zero special file is discarded.

Reads from the null special file always return end of file, whereas reads from zero always return \0 characters.

null and zero are typically created by

mknod -m 666 /dev/null c 1 3
mknod -m 666 /dev/zero c 1 5
chown root.mem /dev/null /dev/zero

NOTES
If these devices are not writable and readable for all users, many programs will act strangely.

FILES
/dev/null

/dev/zero

SEE ALSO
mknod(1), chown(1)

Linux, 21 November 1992

ram
ram—Ram disk device.

1095

DESCRIPTION
ram is a block device to access the ram disk in raw mode.

It is typically created by

mknod -m 660 /dev/ram b 1 1
chown root.disk /dev/ram

FILES
/dev/ram

SEE ALSO
mknod(1), chown(1), mount(8)

Linux, 21 November 1992

sd
sd—Driver for SCSI disk drives.

SYNOPSIS
#include <linux/hdreg.h>

CONFIG
The block device name has the following form: sdlp, where l is a letter denoting the physical drive, and p is a number
denoting the partition on that physical drive. Often, the partition number, p, will be left off when the device corresponds to
the whole drive.

SCSI disks have a major device number of 8 and a minor device number of the form (16 * drive_number) + partition_number,
where drive_number is the number of the physical drive in order of detection and partition_number is as follows:

Partition 0 The whole drive

Partitions 1-4 The DOS “primary” partitions

Partitions 5-8 The DOS “extended” (or “logical”) partitions

For example, /dev/sda will have major 8 and minor 0 and will refer to all the first SCSI drives in the system; /dev/sdb3 will
have major 8 and minor 19 and will refer to the third DOS “primary” partition on the second SCSI drive in the system.

At this time, only block devices are provided. Raw devices have not yet been implemented.

DESCRIPTION
The following ioctls are provided:

HDIO_REQ Returns the BIOS disk parameters in the following structure:
struct hd geometry {
unsigned char heads;
unsigned char sectors;
unsigned short cylinders;
unsigned long start;
};

A pointer to this structure is passed as the ioctl(2) parameter.

The information returned in the parameter is the disk geometry of the
drive as understood by DOS! This geometry is not the physical geometry
of the drive. It is used when constructing the drive’s partition table,

sd

Part IV: Special Files1096

however, and is needed for convenient operation of fdisk(1), efdisk(1),
and lilo(1). If the geometry information is not available, zero is returned
for all the parameters.

BLKGETSIZE Returns the device size in sectors. The ioctl(2) parameter should be a
pointer to a long.

BLKRRPART Forces a re-read of the SCSI disk partition tables. No parameter is
needed.

The scsi(4) ioctls are also supported. If the ioctl(2) parameter is
required and it is NULL, then ioctl(2) will return -EINVAL.

FILES
/dev/sd[a-h]: The whole device

/dev/sd[a-h][0-8]: Individual block partitions

SEE ALSO
scsi(4)

17 December 1992

st
st—SCSI tape device.

SYNOPSIS
#include <sys/mtio.h>
int ioctl(int fd, int request [, (void *)arg3])
int ioctl(int fd, MTIOCTOP, (struct mtop *)mt_cmd)
int ioctl(int fd, MTIOCGET, (struct mtget *)mt_status)
int ioctl(int fd, MTIOCPOS, (struct mtpos *)mt_pos)

DESCRIPTION
The st driver provides the interface to a variety of SCSI tape devices. Currently, the driver takes control of all detected
devices of type sequential-access. The st driver uses major device number 9.

Each device uses two minor device numbers: a principal minor device number, n, assigned sequentially in order of detection,
and a no-rewind device number, (n + 128). Devices opened using the principal device number are sent a REWIND command
when they are closed. Devices opened using the no-rewind device number are not. Options such as density or block size are
not coded in the minor device number. These options must be set by explicit ioctl() calls and remain in effect when the
device is closed and reopened.

Devices are typically created by

mknod -m 660 /dev/st0 c 9 0
mknod -m 660 /dev/st1 c 9 1
mknod -m 660 /dev/nst0 c 9 128
mknod -m 660 /dev/nst1 c 9 129

There is no corresponding block device. The character device provides buffering and read-ahead by default and supports
reads and writes of arbitrary size (limited by the driver’s internal buffer size, which defaults to 32768 bytes but can be
changed either by using a kernel startup option or by changing a compile-time constant).

Device /dev/tape is usually created as a hard or soft link to the default tape device on the system.

1097

ioctlS
The driver supports three ioctl requests. Requests not recognized by the st driver are passed to the scsi driver. The
definitions below are from /usr/include/linux/mtio.h:

MTIOCTOP: PERFORM A TAPE OPERATION
This request takes an argument of type (struct mtop *). Not all drives support all operations. The driver returns an EIO
error if the drive rejects an operation.

/* Structure for MTIOCTOP – mag tape op command: */
struct mtop {
short mt_op; /* operations defined below */
int mt_count; /* how many of them */
};

Magnetic tape operations:

MTBSF Backward space over mt_count filemarks.

MTBSFM Backward space over mt_count filemarks. Reposition the tape to the EOT
side of the last filemark.

MTBSR Backward space over mt_count records (tape blocks).

MTBSS Backward space over mt_count setmarks.

MTEOM Go to the end of the recorded media (for appending files).

MTERASE Erase tape.

MTFSF Forward space over mt_count filemarks.

MTFSFM Forward space over mt_count filemarks. Reposition the tape to the BOT
side of the last filemark.

MTFSR Forward space over mt_count records (tape blocks).

MTFSS Forward space over mt_count setmarks.

MTNOP No op; flushes the driver’s buffer as a side effect. Should be used before
reading status with MTIOCGET.

MTOFFL Rewind and put the drive off line.

MTRESET Reset drive.

MTRETEN Retention tape.

MTREW Rewind.

MTSEEK Seek to the tape block number specified in mt_count. This operation
requires either a SCSI-2 drive that supports the LOCATE command (device-
specific address) or a Tandberg-compatible SCSI-1 drive (Tandberg,
Archive Viper, Wangtek,…). The block number should be one that was
previously returned by MTIOCPOS because the number is device-specific.

MTSETBLK Set the drive’s block length to the value specified in mt_count. A block
length of zero sets the drive to variable block size mode.

MTSETDENSITY Set the tape density to the code in mt_count. Some useful density
codes are
18 0x00 Implicit 0x11 QIC-525
0x04 QIC-11 0x12 QIC-1350
0x05 QIC-24 0x13 DDS
0x0F QIC-120 0x14 Exabyte EXB-8200
0x10 QIC-150 0x15 Exabyte EXB-8500

MTWEOF Write mt_count filemarks.

MTWSM Write mt_count setmarks.

st

Part IV: Special Files1098

MTSETDRVBUFFER Set various drive and driver options according to bits encoded in
mt_count. These consist of the drive’s buffering mode, six Boolean driver
options, and the buffer write threshold. These parameters are initialized
only when the device is first detected. The settings persist when the device
is closed and reopened. A single operation can affect just the buffering
mode, just the Boolean options, or just the write threshold.

A value having zeros in the high-order 4 bits will be used to set the drive’s
buffering mode. The buffering modes are:

0 The drive will not report GOOD status on write commands until
the data blocks are actually written to the medium.

1 The drive may report GOOD status on write commands as soon
as all the data has been transferred to the drive’s internal
buffer.

2 The drive may report GOOD status on write commands as soon
as all the data has been transferred to the drive’s internal buffer
and all buffered data from different initiators has been
successfully written to the medium.

To control the write threshold, the value in mt_count must include the
constant MT_ST_WRITE_THRESHOLD logically ORed with a block count in the
low 28 bits. The block count refers to 1024-byte blocks, not the physical
block size on the tape. The threshold cannot exceed the driver’s internal
buffer size (see the description).

To set and clear the Boolean options, the value in mt_count must include
the constant MT_ST_BOOLEANS logically ORed with whatever combination
of the following options is desired. Any options not specified are set false.
The Boolean options are

MT_ST_BUFFER_WRITES (Default: true) Buffer all write operations. If this option is false and the
drive uses a fixed block size, then all write operations must be for a
multiple of the block size. This option must be set false to write reliable
multi-volume archives.

MT_ST_ASYNC_WRITES (Default: true) When this options is true, write operations return
immediately without waiting for the data to be transferred to the drive if
the data fits into the driver’s buffer. The write threshold determines how
full the buffer must be before a new SCSI write command is issued. Any
errors reported by the drive will be held until the next operation. This
option must be set false to write reliable multi-volume archives.

MT_ST_READ_AHEAD (Default: true) This option causes the driver to provide read buffering
and read-ahead. If this option is false and the drive uses a fixed block size,
then all read operations must be for a multiple of the block size.

MT_ST_TWO_FM (Default: false) This option modifies the driver behavior when a file is
closed. The normal action is to write a single filemark. If the option is
true, the driver will write two filemarks and backspace over the
second one.

Note that this option should not be set true for QIC tape drives because
they are unable to overwrite a filemark. These drives detect the end of
recorded data by testing for blank tape rather than two consecutive
filemarks.

MT_ST_DEBUGGING (Default: false) This option turns on various debugging messages from
the driver (effective only if the driver was compiled with DEBUG defined).

MT_ST_FAST_EOM (Default: false) This option causes the MTEOM operation to be sent directly
to the drive, potentially speeding up the operation but causing the driver

1099

to lose track of the current file number normally returned by the MTIOCGET
request. If MT_ST_FAST_EOM is false, the driver will respond to an MTEOM
request by forward spacing over files.

Example:
struct mtop mt_cmd;
mt_cmd.mt_op = MTSETDRVBUFFER;
mt_cmd.mt_count =MT_ST_BOOLEANS |
 MT_ST_BUFFER_WRITES |
 MT_ST_ASYNC_WRITES;
ioctl(fd, MTIOCTOP, &mt_cmd);

MTIOCGET: GET STATUS
This request takes an argument of type (struct mtget *). The driver returns an EIO error if the drive rejects an operation.

/* structure for MTIOCGET - mag tape get status command */
struct mtget {
 long mt_type;
 long mt_resid;
 /* the following registers are device dependent */
 long mt_dsreg;
 long mt_gstat;
 long mt_erreg;
 /* The next two fields are not always used */
 daddr_t mt_fileno;
 daddr_t mt_blkno;
};

The header file defines many values for mt_type, but the current driver reports only the generic types MT_ISSCSI1 (Generic
SCSI-1 tape) and MT_ISSCSI2 (Generic SCSI-2 tape).

mt_resid is always zero. (Not implemented for SCSI tape drives.)

mt_dsreg reports the drive’s current settings for block size (in the low 24 bits) and density (in the high 8 bits). These fields are
defined by MT_ST_BLKSIZE_SHIFT, MT_ST_BLKSIZE_MASK, MT_ST_DENSITY_SHIFT, and MT_ST_DENSITY_MASK.

mt_gstat reports generic (device independent) status information. The header file defines macros for testing these status bits:

GMT_EOF(x) The tape is positioned just after a filemark (always false after an MTSEEK
operation).

GMT_BOT(x) The tape is positioned at the beginning of the first file (always false after
an MTSEEK operation).

GMT_EOT(x) A tape operation has reached the physical End of Tape.

GMT_SM(x) The tape is currently positioned at a setmark (always false after an MTSEEK
operation).

GMT_EOD(x) The tape is positioned at the end of recorded data.

GMT_WR_PROT(x) The drive is write-protected. For some drives this can also mean that the
drive does not support writing on the current medium type.

GMT_ONLINE(x) The last open() found the drive with a tape in place and ready for
operation.

GMT_D_6250(x), GMT_D_1600(x), GMT_D_800(x) This generic status information reports the current density setting for
9-track tape drives only.

GMT_DR_OPEN(x) The drive does not have a tape in place.

GMT_IM_REP_EN(x) Immediate report mode (not supported).

mt_erreg: The only field defined in mt_erreg is the recovered error
count in the low 16 bits (as defined by MT_ST_SOFTERR_SHIFT and
MT_ST_SOFTERR_MASK). Due to inconsistencies in the way drives report
recovered errors, this count is often not maintained.

st

Part IV: Special Files1100

mt_fileno reports the current file number (zero-based). This value is set to
-1 when the file number is unknown (such as after MTBSS or MTSEEK).

mt_blkno reports the block number (zero-based) within the current file.
This value is set to -1 when the block number is unknown (such as after
MTBSF, MTBSS, or MTSEEK).

MTIOCPOS: GET TAPE POSITION
This request takes an argument of type (struct mtpos *) and reports the drive’s notion of the current tape block number,
which is not the same as mt_blkno returned by MTIOCGET. This drive must be a SCSI-2 drive that supports the READ POSITION
command (device-specific address) or a Tandberg-compatible SCSI-1 drive (Tandberg, Archive Viper, Wangtek,…).

/* structure for MTIOCPOS - mag tape get position command */
struct mtpos {
long mt_blkno; /* current block number */
};

RETURN VALUE
EIO The requested operation could not be completed.

ENOSPC A write operation could not be completed because the tape reached end-
of-medium.

EACCES An attempt was made to write or erase a write-protected tape. (This error
is not detected during open().)

ENXIO During opening, the tape device does not exist.

EBUSY The device is already in use or the driver was unable to allocate a buffer.

EOVERFLOW An attempt was made to read or write a variable-length block that is
larger than the driver’s internal buffer.

EINVAL An ioctl() had an illegal argument, or a requested block size was illegal.

ENOSYS Unknown ioctl().

COPYRIGHT
Copyright 1995, Robert K. Nichols.

Permission is granted to make and distribute verbatim copies of this manual, provided the copyright notice and this
permission notice are preserved on all copies. Additional permissions are contained in the header of the source file.

SEE ALSO
mt(1)

Linux 1.1.86, 31 January 1995

tty
tty—Controlling terminal.

DESCRIPTION
The file /dev/tty is a character file with major number 5 and minor number 0, usually of mode 0666 and owner.group
root.tty. It is a synonym for the controlling terminal of a process, if any.

In addition to the ioctl() requests supported by the device that tty refers to, the following ioctl() request is supported:

1101

TIOCNOTTY Detach the current process from its controlling terminal and remove it
from its current process group, without attaching it to a new process
group (that is, set its process group ID to zero). This ioctl() call only
works on file descriptors connected to /dev/tty; this is used by daemon
processes when they are invoked by a user at a terminal. The process
attempts to open /dev/tty; if the open succeeds, it detaches itself from the
terminal by using TIOCNOTTY, but if the open fails, it is obviously not
attached to a terminal and does not need to detach itself.

FILES
/dev/tty

SEE ALSO
mknod(1), chown(1), getty(1), termios(2), console(4), ttys(4)

Linux, 21 January 1992

ttys
ttys—Serial terminal lines.

DESCRIPTION
ttyS[0-3] are character devices for the serial terminal lines.

They are typically created by

mknod -m 660 /dev/ttyS0 c 4 64 # base address 0x03f8
mknod -m 660 /dev/ttyS1 c 4 65 # base address 0x02f8
mknod -m 660 /dev/ttyS2 c 4 66 # base address 0x03e8
mknod -m 660 /dev/ttyS3 c 4 67 # base address 0x02e8
chown root.tty /dev/ttyS[0-3]

FILES
/dev/ttyS[0-3]

SEE ALSO
mknod(1), chown(1), getty(1), tty(4)

Linux, 19 December 1992

vcs, vcsa
vcs, vcsa—Virtual console memory.

DESCRIPTION
/dev/vcs0 is a character device with major number 7 and minor number 0, usually of mode 0644 and owner root.tty.
It refers to the memory of the currently displayed virtual console terminal.

/dev/vcs[1-63] are character devices for virtual console terminals; they have major number 7 and minor number 1 to 63,
usually mode 0644 and owner root.tty. /dev/vcsa[0-63] are the same but include attributes and are prefixed with four bytes,
giving the screen dimensions and cursor position: lines, columns, x, y.(x = y = 0 at the top-left corner of the screen.)

vcs, vcsa

Part IV: Special Files1102

These replace the screendump ioctls of console(4), so the system administrator can control access using filesystem permis-
sions.

The devices for the first eight virtual consoles may be created by

for x in 0 1 2 3 4 5 6 7 8; do
mknod -m 644 /dev/vcs$x c 7 $x;
mknod -m 644 /dev/vcsa$x c 7 $[$x+128];
done
chown root.tty /dev/vcs*

No ioctl() requests are supported.

EXAMPLES
You can do a screendump on vt3 by switching to vt1 and typing cat /dev/vcs3 >foo.

This program displays the character and screen attributes under the cursor of the second virtual console and then changes the
background color there:

#include <unistd.h>
#include <stdio.h>
#include <fcntl.h>

void main()
{ int fd;
 struct {char lines, cols, x, y;} scrn;
 char ch, attrib;

 fd = open(“/dev/vcsa2”, O_RDWR);
 (void)read(fd, &scrn, 4);
 (void)lseek(fd, 4 + 2*(scrn.y*scrn.cols + scrn.x), 0);
 (void)read(fd, &ch, 1);
 (void)read(fd, &attrib, 1);
 printf(“ch=’%c’ attrib=0x%02x\n”, ch, attrib);
 attrib ˆ= 0x10;
 (void)lseek(fd, -1, 1);
 (void)write(fd, &attrib, 1);
}

FILES
/dev/vcs[0-63]

/dev/vcsa[0-63]

AUTHOR
Andries Brouwer (aeb@cwi.nl)

HISTORY
Introduced with version 1.1.92 of the Linux kernel.

SEE ALSO
console(4), tty(4), ttys(4), selection(1)

Linux, 19 February 1995

1103

File Formats

Part V:

Part V: File Formats1104

intro
intro—Introduction to file formats.

DESCRIPTION
This chapter describes various file formats and protocols, and the used C structures, if any.

AUTHORS
Look at the header of the manual page for the authors and copyright conditions. Note that these can be different from page
to page!

Linux, 24 July 1993

active, active.times
active, active.times—List of active Usenet newsgroups.

DESCRIPTION
The file /news/lib/active lists the newsgroups that the local site receives. Each newsgroup should be listed only once. Each
line specifies one group; their order in the file does not matter. Within each newsgroup, articles are assigned unique names,
which are monotonically increasing numbers.

If an article is posted to newsgroups not mentioned in this file, those newsgroups are ignored. If no valid newsgroups are
specified, the article is filed into the newsgroup “junk” and only propagated to sites that receive the “junk” newsgroup.

Each line consists of four fields specified by a space:

name himark lomark flags

The first field is the name of the newsgroup. Newsgroups that start with the three characters to. are treated specially; see
innd(8). The second field is the highest article number that has been used in that newsgroup. The third field is the lowest
article number in the group; this number is not guaranteed to be accurate and should only be taken as a hint. Note that
because of article cancellations, there may be gaps in the numbering sequence. If the lowest article number is greater than the
highest article number, there are no articles in the newsgroup. To make it possible to update an entry in-place without
rewriting the entire file, the second and third fields are padded with leading zeros to make them a fixed width.

The fourth field can contain one of the following flags:

y Local postings are allowed

n No local postings are allowed, only remote ones

m The group is moderated and all postings must be approved

j Articles in this group are not kept but only passed on

x Articles cannot be posted to this newsgroup

=foo.bar Articles are locally filed into the foo.bar group

If a newsgroup has the j flag, then no articles will be filed into that newsgroup and local postings to that group should not be
generated. If an article for such a newsgroup is received from a remote site, it will be filed into the “junk” newsgroup if it is
not cross-posted. This is different from not having a newsgroup listed in the file because sites can subscribe to j newsgroups
and the article will be propagated to them.

If the fourth field of a newsgroup starts with an equal sign, then the newsgroup is an alias. Articles can be posted to the group
but will be treated as if they were posted to the group named after the equal sign. The second and third fields are ignored.
Note that the newsgroup header is not modified (Alias groups are typically used during a transition and are typically created
with ctlinnd(8)). An alias newsgroup should not point to another alias.

1105

The file /news/lib/active.times provides a chronological record of when newsgroups are created. This file is normally
updated by innd(8) whenever a ctlinnd newgroup command is done. Each line consist of three fields:

name time creator

The first field is the name of the newsgroup. The second field is the time it was created, expressed as the number of seconds
since the epoch—a time_t; see gettimeofday(2). The third field is the electronic mail address of the person who created the
group.

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
ctlinnd(8), innd(8)

adduser.conf
adduser.conf—Configuration file for adduser(8) and addgroup(8).

SYNOPSIS
/etc/adduser.conf

DESCRIPTION
The file adduser.conf contains defaults for the programs adduser(8) and addgroup(8). Each option takes the form option =
value.

The valid configuration options are

DSHELL The login shell to be used for all new users. Defaults to /bin/bash.

DHOME The directory in which new home directories should be created. Defaults to /home.

SKEL The directory from which skeletal user configuration files should be copied. Defaults to /
etc/skel.

FIRST_UID Specifies the lowest valid UID for normal users on your system. IDs below FIRST_UID are
reserved for administrative and system accounts. Defaults to 1000.

USERGROUPS The USERGROUPS variable can be either yes or no. If yes, each created user will be given their
own group to use as a default, and their setup will arrange to have them create files group-
writable by default, thus allowing them to effectively use group-writeable filespace areas
(such as /usr/local). If no, each created user will be placed in the group whose GID is
USERS_GID, and they will create files not group-writeable by default.

USERS_GID If USERGROUPS is no, then USERS_GID is the GID given to all newly created users. The default
value is 100.

FILES
/etc/adduser.conf

SEE ALSO
adduser(8)

Debian GNU/Linux version 1.94

adduser.conf

Part V: File Formats1106

aliases
aliases—Aliases file for sendmail.

SYNOPSIS
aliases

DESCRIPTION
This file describes user ID aliases used by . The file resides in and is formatted as a series of lines of the form:

name: name_1, name_2, name_3, ...

The name is the name to alias, and the name_n are the aliases for that name. Lines beginning with whitespace are continuation
lines. Lines beginning with # are comments.

Aliasing occurs only on local names. Loops cannot occur because no message will be sent to any person more than once.

After aliasing has been done, local and valid recipients who have a .forward file in their home directory have messages
forwarded to the list of users defined in that file.

This is only the raw data file; the actual aliasing information is placed into a binary format in the files and using the program
newaliases(1). A newaliases command should be executed each time the aliases file is changed for the change to take effect.

 SEE ALSO
newaliases(1), dbm(3), sendmail(8), “Sendmail Installation and Operation Guide,” “Sendmail: An Internetwork Mail
Router.”

 BUGS
Because of restrictions in dbm(3), a single alias cannot contain more than about 1000 bytes of information. You can get longer
aliases by “chaining”—that is, making the last name in the alias a dummy name that is a continuation alias.

 HISTORY
The aliases file format appeared in BSD 4.0.

BSD 4, 10 May 1991

cfingerd
cfingerd—Configurable finger daemon.

SYNOPSIS
cfingerd [–c|–d|–e|–o|–v]

–c Check configuration

–d Run as daemon, not inetd

–e Emulate local finger without inetd

–o Turn off all finger queries

–v Request version information

–c checks your installed configuration. This makes sure there are no existing errors in the current cfingerd.conf file.

–d runs cfingerd as a daemon. Don’t run cfingerd this way if you’re using inetd.

–e allows you to emulate a local finger on a user that exists on your system. This makes it so that you can test cfingerd on
your system before installing it. Using the –e directive is the same as installing the software, typing finger username@ and
getting the output. Using –e username does the same.

1107

–o turns off all finger queries. This makes it so that no one can finger your system—no matter what they try to do.

–v requests cfingerd version information.

DESCRIPTION
cfingerd is a totally new and totally configurable finger daemon—one of the first. It utilizes the finger port (port 79) to
provide useful information on each user on your system. However, cfingerd provides a unique twist.

cfingerd was designed for the sole purpose of making output on finger queries configurable. If you want to change any text
that is displayed during finger queries, you can configure the finger daemon to display just about anything you want.

cfingerd also takes into account any security breaches and attempts to close them. With .nofinger files, this is displayed
instead of finger information, making it possible for users to keep themselves relatively anonymous from outside users.

WHY WAS IT DONE?
The answer is simple: security. Many sites turn off finger for the reason that they don’t want outside users to see who’s on
their system or get information about a specific user on their system. This seemed unfair to the rest of the users out there, so
this program was created. Those sites were waiting for this type of program. Many sites that originally had their finger turned
off turned them back on because of cfingerd.

Many sites complained that they wanted the capability to create a fake user or a user that doesn’t exist but calls a prewritten
shell script. cfingerd takes this into account and provides the best method possible for creating such scripts. (See
cfingerd.conf(5) for more information on the configuration file.)

FEATURES cfingerd PROVIDES AND DESCRIPTIONS OF EACH
cfingerd was totally rewritten. Why is this? The older version of cfingerd had quite a few bugs, and it didn’t quite do all the
things that cfingerd now does. This new version was totally revamped, and most of the bugs that were in the older version of
cfingerd were removed in this one. The code is also more compact.

Header and footer displays were a big part of the original release of cfingerd and shall continue to remain in all versions.
Headers and footers are only displays at the beginning and ending of all finger displays and are used as unique little
advertisements.

The last time displayed is always a critical issue. It’s covered in cfingerd. cfingerd simply shows how many times this user is
connected, what their idle time is on each tty they’re connected to, and whether they are accepting messages. If they’re not
accepting messages, a [MESG-N] display will be shown. This display also shows the last time mail was read and whether this
user has mail.

Stand-alone and inetd support is compiled into the program, but only inetd support is given for the time being. The reason
is that I have not yet added the option for stand-alone daemon mode.

.nofinger files are used when a user wants to remain anonymous. These files should be placed in their home directories and
can display anything they want. There’s just a few restrictions. These .nofinger display files cannot be character devices,
directories, FIFOs, soft or hard links, or anything else of that caliber. They must only be normal files.

Fake users were supported for the simple fact that many sites want to create users who don’t exist and make them execute a
shell. If you want this done, install a fake user. Read cfingerd.conf(5) for more information on these useful options.

Service displays were used to show what fake users you have installed on your system. These can be formatted however you
want and are explained in cfingerd.conf(5).

Searching for usernames is a powerful feature that cfingerd takes full advantage of. If you are looking for a specific username
on the system or don’t know what their name is, simply use the search.username directive with cfingerd, and you can search
for a user on your system.

Searching for usernames is not case sensitive. If you are searching for a specific username or part of the user’s name, chances
are that it’ll be displayed.

cfingerd

Part V: File Formats1108

There’s also an option to display your public PGP key if you have one. This is very useful if you want to keep your mail or
other information secret to yourself and don’t want “big brother” watching over your shoulder as you talk among yourselves.
(Thanks to Andy Smith for this patch.) The standard plan file is .plan, project is .project, and PGP info is .pgpkey.

Remember, any or all of these options stated can be turned on or off at will. If you want a specific option turned off, turn it
off.

ERROR MESSAGES
Any error messages that result are fairly easy to debug if you know what to look for.

Segmentation violations don’t always occur, but if they ever do, you can pretty easily figure out what’s going on. Unfortu-
nately, cfingerd doesn’t have any compatibility with older cfingerd.conf files, so if you get a segmentation violation, this
means (usually) that your cfingerd.conf file needs to be replaced.

Time-outs usually mean that a script has timed out or a connection to another site timed out.

SYSLOGGING MESSAGES
There’s no real way to describe SYSLOG messages because they can be changed as the system administrator chooses. Although,
examples can be given based on the standard configuration that was distributed.

If any IP addresses cannot be matched to a hostname, SYSLOG will display IP: Hostname not matched.

If the renice fails (to make the program run at the highest priority), then SYSLOG will display Fatal - Nice died: (reason).

If there is no buffer information is waiting in the STDIN buffer, SYSLOG will display STDIN contains no data.

If a trusted host fingers your site, a <- Trusted will appear.

If a rejected host fingers your site, a <- Rejected will appear.

If root is fingered on your site, it will display Root.

If a service listing was fingered on your site, SYSLOG will display Service listing.

If a user listing was requested, SYSLOG will display User listing.

If a fake user was requested, SYSLOG will display Fake user.

If whois data was requested, SYSLOG will display Whois request. (Note that whois was not implemented in this release because
it wasn’t RFC compliant.)

Any extra information pertaining to the incoming finger is displayed in the syslogging area. (It’s also recommended that you
reconfigure syslog.conf(5) to display to an unused VT.)

BUGS
When data is forwarded to other sites for fingering, it shows the output of the system that it forwarded the finger request to.
This has got to change.

On ELF-specific systems, services lists usually show a bit of garbage at the beginning of the finger display. This doesn’t
appear to be a problem on a.out systems, so if you have ELF, you might want to compile cfingerd as a.out if this becomes a
problem.

PLANS
Any other options or improvements will probably come from user suggestions.

Later plans will mean you can define your own display formats for the finger display. This means that you can redefine how
you want your finger display to look.

CONTACTING
If you like the software and you want to learn more about it or want to see a feature added to it that isn’t already here, write
to khollis@bitgate.com.

1109

I’ve received calls at work pertaining to the software, and although I appreciate the fact that people like the software I wrote,
I’d appreciate it if you leave me e–mail and be considerate.

cfingerd is now being maintained by Michael Jarvis. Any additions after cfingerd 1.2.3 should be directed toward Michael.
You can reach him at mjarvis@qns.com.

If you want to see other projects that Bitgate Software is currently developing, check out the Web page at http://
www.bitgate.com/. This will contain all the update information on the software that is being developed and that is already
released.

SEE ALSO
cfingerd.conf(5), finger(1), userlist(1), syslog.conf(5)

cfingerd 1.2.3, 24 May 1996

cfingerd.conf
cfingerd.conf—Configurable finger daemon configuration file.

SYNOPSIS
/etc/cfingerd.conf

DESCRIPTION
cfingerd.conf is the configuration file for cfingerd. This has been totally rewritten to support a more readable configuration
file. This version of the new configuration file is not compatible with the older versions from 1.0.3 or earlier.

Each line in the configuration file is split into three sections: FILES, CONFIG, and HOSTS. Each one of those sections is split into
subsections.

Subtext of each option is either Boolean options, string options, or switchable options, all changeable by the system
administrator.

Each section is split into a series of sections that resembles C-type definition; it’s not exact but close enough to be familiar.
There’s only one exception: These are not case sensitive. Any casing will do as long as the option is legal.

Thus, each option is formatted like this:

OPTION sub_option_name = {
(tab/space) string_option = “string format”,
(tab/space) boolean_option = [BOOL, BOOL],
(tab/space) +/–internal_config_option
(tab/space) host.name.here
}

This shows that string options are strings put into quotes, Boolean options are given as TRUE and FALSE, switchable options
are given with the + or – directive, and hostnames are used as substrings so that wildcards are not necessary.

You can add comments using the hash mark (#) at the beginning of the line. Please note that no comments are allowed inside
of an OPTION.

DISPLAY FILES SECTION (FILES display files)
Each option here is a string option. These are formatted as the example shows.

PLAN is the plan file that is used when displaying a plan. The standard here is .plan.

PROJECT is the project file that is used when displaying a project description. The standard here is .project.

PGP_KEY is the Pretty–Good–Privacy file that is shown when displaying a public or private key. The standard here is .pgpkey.

cfingerd.conf

Part V: File Formats1110

(The preceding three files must be world readable but should not be world writable. This makes sure that cfingerd can read
the file once it becomes the “nobody” UID/GID. This is generally a good idea for protection.)

NO_FINGER is the file that is shown when a user wants to remain anonymous. This is usually the case with root users (which
should be standard anyway). The standard here is .nofinger. This file can only be a standard displayable file.

LOGFILE is the file that is used to keep logs of everything that happens to both your system and the finger program. These logs
are kept as backups for your finger file and can be used to guard against attacks against your system if a finger attack occurs.
Remember, the cfingerd.conf file is root owned, so this file should be kept in a safe, hidden place.

HEADER_DISPLAY is the file that is displayed at the top of each finger display. The standard here is /etc/cfingerd/
top_finger.txt.

FOOTER_DISPLAY is the file that is displayed at the end of each finger display. The standard here is /etc/cfingerd/
bottom_finger.txt.

NO_USER_BANNER is the file that is displayed if the user doesn’t exist. The standard here is /etc/cfingerd/nouser_banner.txt.

NO_NAME_BANNER is the file that is displayed if no name was specified in a finger display. This is used in conjunction with the
SYSTEM_LIST option (explained later). The standard here is /etc/cfingerd/noname_banner.txt.

REJECTED_BANNER is the file that is displayed if a rejected host tries to finger your system for any reason. The standard here is /
etc/cfingerd/rejected_banner.txt.

FINGER DISPLAY CONFIGURE SECTION (CONFIG finger display)
Each option in this section is Boolean. The way this works is as follows: The first Boolean option is the setting for a remote
host or a host that fingers you from the outside. The second Boolean option is the setting for the local host or trusted host.
This is what people from your own system will see.

Each option has a – or + option. This is for user–overridable options, which will be in the next release of cfingerd. These will
allow users to manipulate if this information is displayed when that specific user is fingered.

HEADER_FILE displays the header file at the beginning of each finger query.

FOOTER_FILE displays the footer file at the end of each finger query.

LOGIN_ID displays the login ID of that particular user.

REAL_NAME displays the real name of that particular user.

DIRECTORY displays the user’s directory.

SHELL displays the user’s shell.

ROOM_NUMBER displays the user’s room number.

WORK_NUMBER displays the user’s work phone number.

HOME_NUMBER displays the user’s home phone number.

OTHER displays the user’s other information.

LAST_TIME_ON displays the last time the user logged into the fingered system.

IF_ONLINE displays whether the user is currently logged into the fingered system.

TIME_MAIL_READ displays the last time that the fingered user read mail.

DAY_MAIL_READ displays the last day that the fingered user read his or her mail.

ORIGINATION displays the site from which the user logged in (if applicable).

PLAN displays the user’s plan file.

PROJECT displays the user’s project file.

PGP displays the user’s Pretty–Good–Privacy key file.

1111

NO_NAME_BANNER displays the banner if no username was given.

REJECTED_BANNER displays the rejected banner if the site fingering your system was in the banned–site listing.

SYSTEM_LIST displays the system list if one was requested.

NO_NAME displays the no–name display file if no user was selected.

INTERNAL CONFIG CONFIGURE SECTION (CONFIG internal config)
Each item in this section is a switchable option. This means that a + before the item is turned on and a – before the item is
turned off.

ALLOW_MULTIPLE_FINGER_DISPLAY allows you to give a sorted output of all users on more than one specific system. This is useful
when you have more than one ISP machine, located in different cities or even states.

ALLOW_SEARCHABLE_FINGER allows you to let others outside your system (or within it) to search for a specific username by using
the search.username directive.

ALLOW_NO_IP_MATCH_FINGER allows you to let sites finger your system if a hostname could not be matched to their IP address
successfully.

ALLOW_USER_OVERRIDE will allow your users to override specific options in the FINGER DISPLAY section that you enable.

ALLOW_USERLIST_ONLY will allow other sites that are fingering your system for a specific compiled user list to finger your system
and get a user listing of who’s online. This could be a security risk, so you might want to turn this option off if you feel it’s a
security risk.

ALLOW_FINGER_FORWARDING will allow other sites to forward finger requests to a different machine if the user could not be
located on the current machine. (In order to use this option, you must have the HOSTS finger forward option set and have
other sites in there.)

ALLOW_STRICT_FORMATTING makes the finger display remove all returns between display options. This makes the finger display
look horrible (as with GNU Finger or the other generic fingers) and makes your system look, well, “generic.”

ALLOW_VERBOSE_TIMESTAMPING makes the timestamp that is displayed (at any place) very verbose. For instance, where it used to
say

On since Sat Aug 12 03:43PM(PDT)

would now be shown as

On since Sat Aug 12, 1995 03:43PM(PDT)

(Basically, ALLOW_VERBOSE_TIMESTAMPING just takes up more room on the display field.)

ALLOW_NONIDENT_ACCESS lets you only allow connections from sites that run the ident daemon (or RFC 1413-compliant
program.) This is for security sake and is a good measure against unknown users trying to finger your system. If this option is
enabled, users who do not have identd running on their system (such as Windows users) will be able to finger your system.
Systems not running identd will return unknown as the user ID and will not be permitted to finger a user on your system.

ALLOW_FINGER_LOGGING enables cfingerd to use the LOGFILE file to store any logs of activity that happen to your system via
finger.

ALLOW_LINE_PARSING makes cfingerd parse each line of every display file (including the plan, project, and pgp files) for any
cfingerd-specific $ commands. If any are found, cfingerd will parse these commands and display correct information
accordingly. Otherwise, if this is turned off, the display will appear without parsed commands.

ALLOW_EXECUTION will allow users to execute scripts in place of their .plan, .project, and .pgp files. This is used to display the
standard output of another program directly to the screen of the user. Keep in mind that this is a huge security risk if you
choose to use it. It’s normally suggested that this option remain off, but you can turn it on if necessary. Nevertheless, these
programs are called as nobody.nogroup.

cfingerd.conf

Part V: File Formats1112

ALLOW_FAKEUSER_FINGER turns on or off the fake user option in cfingerd. If you want fake users to be defined and available to
be fingered, you will want to enable this option. This can be a security risk in some instances if you allow for searchable
fingers and your script calls an execute routine on that variable. Chances are that’ll never happen.

ALLOW_USERLOG will allow users to keep track of who has fingered them and at what time. A little file called .fingerlog will
appear in their directory, which they can examine to see who has fingered them. If you don’t care about this, you can disable
it. Otherwise, it’s not a bad idea. (It also logs root fingers as well.)

SYSTEM LIST SITES CONFIGURE SECTION (CONFIG system list sites)
This is just a series of hostnames that you want to finger when displaying your user-list display. If you have more than one
system that you want to show, simply put their hostname in this list, separated on a line by itself.

For example, if I have a separate ISP system that I’m running on the side, say chatlink.com, I would change my configuration
to say

CONFIG system_list_sites = { chatlink.com, localhost }

Remember, if you are listing only a couple of sites, list the sites you will want to have listed (in order) first. The ending entry
must be localhost or the finger listing will not include your site. If you include localhost anywhere else in the list, it will
stop once it has reached the localhost entry, so remember to list it last!

I want to get a user listing from my own machine and from chatlink.com’s system. This would be automatically formatted
nicely (sorted and parsed) and would display on the screen in sorted order. This program is usually used in tandem with the
supplied userlist(1) program.

If no system list sites are specified, multiple system sites will not be specified.

TRUSTED HOST SECTION (HOSTS trusted)
This is a listing of the sites that you allow to finger your system exclusively, giving them the same access that your local users
would get. In other words, they are treated as localhost users.

Each site that you list in this section should be separated by using the , directive. You can include up to 80 sites in this
listing.

Wildcards are supported in this section, and you can use them in the regex format as well. Any wildcards with *, ?, or any
other regex wildcard matching character will work. IP addresses will also work. Hostnames are compared case insensitive.

REJECTED HOST SECTION (HOSTS rejected)
This is a listing of the sites that you do not allow to finger your system. These sites don’t get to finger anyone (or anything
for that matter) on your system, regardless of what they try to do. In essence, finger is cut off to that particular system.

Each site that you list in this section should be separated by using the , directive. You can include up to 80 sites in this
listing.

Wildcards are supported in this section, and you can use them in the regex format as well. Any wildcards with *, ?, or any
other regex wildcard matching character will work. IP addresses will also work. Hostnames are compared case insensitive.

FORWARDED HOST SECTION (HOSTS finger forward)
This is a listing of sites that are used to forward a finger query to when a finger request was processed but that particular user
was not found on the associated system. It will step through this listing, and it will search for the user in question. If the user
could not be found, then it will step through to the next host and the next, until it finds one.

Each site that you list in this section should be separated by using the , directive. You can include up to 80 sites in this
listing.

Wildcards are supported in this section, and you can use them in the regex format as well. Any wildcards with *, ?, or any
other regex wildcard matching character will work. Hostnames are compared case insensitive.

If you do not specify any forwarding sites in this section, finger forwarding will be disabled for your system.

1113

FINGER STRINGS CONFIGURE SECTION (CONFIG finger strings)
Each option in this section is a string that can be changed to fit your needs when displaying finger information. These strings
are limited to about 20 characters on the display. (If you use more than 20, the finger display will end up looking strange.)

USER_NAME is the string that is displayed when the user’s username is shown.

REAL_NAME is the string that is displayed when the user’s real name is shown.

DIRECTORY is the string that is displayed when the user’s directory is shown.

SHELL is the string that is displayed when the user’s shell is shown.

ROOM_NUMBER is the string that is displayed when the user’s room number is shown.

WORK_NUMBER is the string that is displayed when the user’s work phone number is shown.

HOME_NUMBER is the string that is displayed when the user’s home phone number is shown.

OTHER is the string that is displayed when the user’s other display information is show.

PLAN is the string that is displayed when the user’s plan is shown.

PROJECT is the string that is displayed when the user’s project is shown.

PGPKEY is the string that is displayed when the user’s PGP key is shown.

NO_PLAN is the string that is displayed when the user doesn’t have a plan file to show you.

NO_PROJECT is the string that is displayed when the user doesn’t have a project file to show you.

NO_PGP is the string that is displayed when the user doesn’t have a PGP key file to show you.

WAIT is the string that is shown when the system gathers information from other sites for a user listing.

INTERNAL STRINGS CONFIGURE SECTION (CONFIG internal strings)
These strings are changeable and can be any length you want (within reason). These strings are concatenated into the
syslogging display when the appropriate finger has been issued. This section also includes error messages that may occur.

NO_IP_HOST is shown when there is no hostname that matches the incoming IP address. This usually indicates that either the
site didn’t register its IP address with the InterNIC or it is coming from a hacked site.

RENICE_FATAL is shown when the system failed to change the execution priority on the current process of cfingerd.

STDIN_EMPTY is shown when the input buffer on the cfingerd port is empty. (This should never really happen; it’s here for
sanity.)

TRUSTED_HOST is shown when a trusted host fingers your system. If you do not specify a trusted host, cfingerd will insert
localhost into this field.

REJECTED_HOST is shown when a rejected host fingers your system. If you do not specify a rejected host, cfingerd will insert
0.0.0.0 into this field.

ROOT_FINGER is shown when a user fingers root.

SERVICE_FINGER is shown when a user requests fake user services from your system.

USER_LIST is shown when a user requests a user listing from your system.

FAKE_USER is shown when a user fingers a fake user from your system.

WHOIS_USER is shown when a user fingers a user with a WHOIS query. (This option is not yet available.)

FINGER_DENY is shown when a user tries to finger with a forward request such as user@host1@host2. This is not supported
because it could result in finger loops and a lot of traffic.

SIGNAL STRINGS CONFIGURE SECTION (CONFIG signal strings)
This section is used in changing the output that is given when a system crashes, or a signal is caught, and reported to the
finger output.

cfingerd.conf

Part V: File Formats1114

The supported caught signals are as follows:

SIGHUP, SIGINT, SIGQUIT, SIGILL, SIGTRAP, SIGABRT, SIGFPE, SIGUSR1, SIGSEGV, SIGUSR2, SIGPIPE, SIGALRM, SIGTERM, SIGCONT,
SIGTSTP, SIGTTIN, SIGTTOU, SIGIO, SIGXCPU, SIGXFSZ, SIGVTALRM, SIGPROF, SIGWINCH

FINGER PROGRAMS FILES SECTION (FILES finger programs)
These are the programs that are called when a specific action is take on the finger display.

FINGER is the file that is used when a user listing is requested from your machine. This is used in the standard user list and in
the sorted user list, so it is wise to use the standard here: /usr/sbin/userlist.

WHOIS is the program that is used when a WHOIS request is done on a specific user.

FINGER FAKE USERS FILES SECTION (FILES finger fakeusers)
These are the ever–popular fake users that you can create on your system. These users are ones that don’t exist (and should
not exist, for that matter). These are, instead, treated as normal scripts that can be called for your use.

The format is as follows for fake users:

fake_username Script_name SEARCHBOOL script

fake_username is the name of the fake user you want to request. Make sure that this is a user that does not exist on your
system. Keep in mind that if you create a fake username and that user already exists, the fake username will be shown.

Script_name is the standard name of your script. This is used in the display of your services listing.

SEARCHBOOL specifies whether parameters can be sent to that specific fake user. If you decide to use the SEARCHBOOL option
(TRUE in this case), the passed variables are

$1 First passed option

$2 Second passed option

$3 Third passed option

$4 Fourth passed option

(If more than four options were passed to this, the request will be ignored, and an error message will be returned to the user
who requested the finger request.)

script is the location of your script. It should be chmod 700 and readable only by root.

If you do not specify any fake users, a fake user called None will be created. This is a fake user that does nothing and calls /
dev/null for the script.

SERVICES HEADER CONFIGURE SECTION (CONFIG services header)
This is the display that is given during a services finger. It should be formatted the same way that you want it to display on
the screen.

When specifying the finger formatted options, you should specify them as C formatted strings as well, with the standard
options. This should always be given last in the display.

An example of this is

Welcome to this system’s services!
User: Service name: Searchable:
——– ——————– ———–
%-8s %-20s %-s

Remember to keep the format string last or a SIGSEGV will result.

SERVICES POSITIONS CONFIGURE SECTION (CONFIG services positions)
This specifies where in the preceding display string that the information from a service listing is to appear. These numbers
can be anywhere between 1 and 3.

1115

USER specifies the position of the username listing.

SERVICE specifies the position of the service full–name listing.

SEARCH specifies the position of the Boolean search display.

CONTACTING
If you like this program and have questions or comments about the program’s functionality or what–have–you, write to
khollis@bitgate.com.

As always, I appreciate any suggestions or bug reports you might have, so bring them on!

SEE ALSO
cfingerd(8), cfingerd.text(5), userlist(1), finger(1), regex(3), regexp(3)

16 May 1996

cfingerd text rules
EXPLANATION

cfingerd offers different commands that can be placed in text files to display corresponding information. Each command
used with cfingerd in text files begins with a dollar sign ($). This usually indicates to cfingerd that when it’s displaying a file,
it parses the command directly after that character.

If you want to display a raw $ sign, simply put two $ signs together, or $$.

TEXT COMMANDS
The following is a list of text commands and what they do. Each of the text commands can be in any text case; it doesn’t
matter.

$CENTER Displays the entire contents of the line. This command must start at the beginning of the
line. This is a very common command.

$DATE Displays the current system date in the format of MM/DD/YY.

$TIME Displays the current system time in the format HH:MM A/PM (time zone).

$IDENT Displays the identity of the current person fingering your system.

$COMPILE_DATETIME Displays the date and time of which the current issue of cfingerd was compiled on your
system.

$VERSION Displays the current version of cfingerd.

$EXEC Executes a file with x parameters after it. The $EXEC command must be on a line by itself
in order to function properly. The command is executed as nobody.nogroup.

SEE ALSO
cfingerd(8), cfingerd.conf(5), finger(1), userlist(1), any of the included docs with the standard cfingerd distribution.

cfingerd 1.2.1, 6 Jan 1996

control.ctl
control.ctl—Specify handling of Usenet control messages.

control.ctl

Part V: File Formats1116

DESCRIPTION
The file /news/lib/control.ctl is used to determine what action is taken when a control message is received. It is read by the
parsecontrol script, which is called by all the control scripts. (For an explanation of how the control scripts are invoked, see
innd(8).)

The file consists of a series of lines; blank lines and lines beginning with a number sign (#) are ignored. All other lines consist
of four fields separated by a colon:

message:from:newsgroups:action

The first field is the name of the message for which this line is valid. It should be either the name of the control message, or
the word all to mean that it is valid for all messages.

The second field is a shell-style pattern that matches the e-mail address of the person posting the message. (The poster’s
address is first converted to lowercase.) The matching is done using the shell’s case statement; see sh(1) for details.

If the control message is newgroup or rmgroup, then the third field specifies the shell-style pattern that must match the group
being created or removed. If the control message is of a different type, then this field is ignored.

The fourth field specifies what action to take if this line is selected for the message. The following actions are understood:

doit The action requested by the control message should be performed. In most cases, the control script
will also send mail to Usenet.

doifarg If the control message has an argument, this is treated as a doit action. If no argument was given, it
is treated as a mail entry. This is used in a sendsys entries script so that a site can request its own
newsfeeds(5) entry by posting a sendsys mysite article. On the other hand, sendsys bombs ask that
the newsfeeds file be sent; if you use doifarg, such messages will not be processed automatically.

doit=file The action is performed, but a log entry is written to the specified log file, file. If file is the word
mail, then the record is mailed. A null string is equivalent to /dev/null. A pathname that starts with
a slash is taken as the absolute filename to use as the log. All other pathnames are written to /var/
log/news/file.log. The log is written by writelog (see newslog(8)).

drop No action is taken; the message is ignored.

log A one-line log notice is sent to standard error. innd normally directs this to the file /var/log/news/
errlog.

log=file A log entry is written to the specified log file, file, which is interpreted as described previously.

mail A mail message is sent to the news administrator.

Lines are matched in order; the last match found in the file is the one that is used. For example, with the following three
lines:

newgroup:*:*:drop
newgroup:tale@*.uu.net:comp.*|misc.*|news.*|rec.*|sci.*|soc.*|talk.*:doit
newgroup:kre@munnari.oz.au:aus.*:mail

A newgroup coming from tale at a UUNET machine will be honored if it is in the mainstream Usenet hierarchy. If kre
posts a newgroup message creating aus.foo, then mail will be sent. All other newgroup messages are ignored.

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
innd(8), newsfeeds(5), scanlogs(8)

cvs
cvs—Concurrent Versions System support files.

1117

SYNOPSIS
$CVSROOT/CVSROOT/commitinfo,v
$CVSROOT/CVSROOT/cvsignore,v
$CVSROOT/CVSROOT/cvswrappers,v
$CVSROOT/CVSROOT/editinfo,v
$CVSROOT/CVSROOT/history
$CVSROOT/CVSROOT/loginfo,v
$CVSROOT/CVSROOT/modules,v
$CVSROOT/CVSROOT/rcsinfo,v
$CVSROOT/CVSROOT/taginfo,v

DESCRIPTION
cvs is a system for providing source control to hierarchical collections of source directories. Commands and procedures for
using cvs are described in cvs(1). cvs manages source repositories, the directories containing master copies of the revision-
controlled files, by copying particular revisions of the files to (and modifications back from) developers’ private working
directories. In terms of file structure, each individual source repository is an immediate subdirectory of $CVSROOT. The files
described here are supporting files; they do not have to exist for cvs to operate, but they allow you to make cvs operation
more flexible.

You can use the modules file to define symbolic names for collections of source maintained with cvs. If there is no modules
file, developers must specify complete pathnames (absolute or relative to $CVSROOT) for the files they want to manage with cvs
commands. You can use the commitinfo file to define programs to execute whenever cvs commit is about to execute. These
programs are used for “precommit” checking to verify that the modified, added, and removed files are really ready to be
committed. Some uses for this check might be to turn off a portion (or all) of the source repository from a particular person
or group or perhaps to verify that the changed files conform to the site’s standards for coding practice.

You can use the cvswrappers file to record cvs wrapper commands to be used when checking files into and out of the
repository. Wrappers allow the file or directory to be processed on the way in and out of cvs. The intended uses are many;
one possible use is to reformat a C file before the file is checked in so all the code in the repository looks the same. You can
use the loginfo file to define programs to execute after any commit, which writes a log entry for changes in the repository.
These logging programs might be used to append the log message to a file or send the log message through electronic mail to
a group of developers. You can also post the log message to a particular newsgroup.

You can use the taginfo file to define programs to execute after any tag or rtag operation. These programs might be used to
append a message to a file listing the new tag name and the programmer who created it, to send mail to a group of develop-
ers, or to post a message to a particular newsgroup. You can use the rcsinfo file to define forms for log messages. You can use
the editinfo file to define a program to execute for editing or validating cvs commit log entries. This is most useful when used
with a rcsinfo forms specification because it can verify that the proper fields of the form were filled in by the user commit-
ting the change. You can use the cvsignore file to specify the default list of files to ignore during update. You can use the
history file to record the cvs commands that affect the repository. The creation of this file enables history logging.

FILES
modules The modules file records your definitions of names for collections of source code.

cvs will use these definitions if you use cvs to check in a file with the right
format to $CVSROOT/CVSROOT/modules,v. The modules file can contain blank lines
and comments (lines beginning with #) as well as module definitions. Long lines
can be continued on the next line by specifying a backslash (\) as the last
character on the line. A module definition is a single line of the modules file in
either of two formats. In both cases, mname represents the symbolic module name,
and the remainder of the line is its definition.

mname –a aliases ...

This represents the simplest way of defining a module mname. The –a flags the
definition as a simple alias: cvs will treat any use of mname (as a command
argument) as if the list of names aliases had been specified instead. aliases may

cvs

Part V: File Formats1118

contain either other module names or paths. When you use paths in aliases,cvs
checkout creates all intermediate directories in the working directory, just as if the
path had been specified explicitly in the cvs arguments.

mname [options] dir [files ...] [&module ...]

In the simplest case, this form of module definition reduces to mname dir. This
defines all the files in directory dir as module mname. dir is a relative path (from
$CVSROOT) to a directory of source in one of the source repositories. In this case,
on checkout, a single directory called mname is created as a working directory; no
intermediate directory levels are used by default, even if dir was a path involving
several directory levels. By explicitly specifying files in the module definition after
dir, you can select particular files from directory dir. The sample definition for
modules is an example of a module defined with a single file from a particular
directory. Here is another example:

m4test unsupported/gnu/m4 foreach.m4 forloop.m4

With this definition, executing cvs checkout m4test will create a single working
directory m4test containing the two files listed, which both come from a
common directory several levels deep in the cvs source repository. A module
definition can refer to other modules by including &module in its definition. The
checkout command creates a subdirectory for each such module in your working
directory. New in cvs 1.3; avoid this feature if sharing module definitions with
older versions of cvs.

Finally, you can use one or more of the following options in module definitions:
–d name names the working directory something other than the module name.
This option is new in cvs 1.3; avoid this feature if sharing module definitions
with older versions of cvs. –i prog allows you to specify a program prog to run
whenever files in a module are committed. prog runs with a single argument, the
full pathname of the affected directory in a source repository. The commitinfo,
loginfo, and editinfo files provide other ways to call a program on commit. –o
prog allows you to specify a program prog to run whenever files in a module are
checked out. prog runs with a single argument, the module name. –e prog allows
you to specify a program prog to run whenever files in a module are exported.
prog runs with a single argument, the module name. –t prog allows you to
specify a program prog to run whenever files in a module are tagged. prog runs
with two arguments: the module name and the symbolic tag specified to rtag. –u
prog allows you to specify a program prog to run whenever cvs update is executed
from the top-level directory of the checked-out module. prog runs with a single
argument, the full path to the source repository for this module.

commitinfo, loginfo, rcsinfo, editinfo These files all specify programs to call at different points in the cvs commit
process. They have a common structure. Each line is a pair of fields: a regular
expression, separated by whitespace from a filename or command-line template.
Whenever one of the regular expression matches a directory name in the
repository, the rest of the line is used. If the line begins with a # character, the
entire line is considered a comment and is ignored. Whitespace between the
fields is also ignored. For loginfo, the rest of the line is a command-line template
to execute. The templates can include not only a program name, but also
whatever list of arguments you want. If you write %s somewhere on the argument
list, cvs supplies, at that point, the list of files affected by the commit. The first
entry in the list is the relative path within the source repository where the change
is being made. The remaining arguments list the files that are being modified,
added, or removed by this commit invocation. For taginfo, the rest of the line is
a command-line template to execute. The arguments passed to the command are,

1119

in order, the tagname, operation (add for tag, mov for tag -F, and del for tag -d),
and repository, and any remaining are pairs of filename revision. A nonzero exit
of the filter program will cause the tag to be aborted. For commitinfo, the rest of
the line is a command-line template to execute. The template can include not
only a program name but also whatever list of arguments you want. The full path
to the current source repository is appended to the template, followed by the
filenames of any files involved in the commit (added, removed, and modified
files). For rcsinfo, the rest of the line is the full path to a file that should be
loaded into the log message template. For editinfo, the rest of the line is a
command-line template to execute. The template can include not only a
program name but also whatever list of arguments you want. The full path to the
current log message template file is appended to the template. You can use one of
two special strings instead of a regular expression: ALL specifies a command-line
template that must always be executed, and DEFAULT specifies a command-line
template to use if no regular expression is a match. The commitinfo file contains
commands to execute before any other commit activity, to allow you to check
any conditions that must be satisfied before commit can proceed. The rest of the
commit will execute only if all selected commands from this file exit with exit
status 0. The rcsinfo file allows you to specify log templates for the commit
logging session; you can use this to provide a form to edit when filling out the
commit log. The field after the regular expression, in this file, contains filenames
(of files containing the logging forms) rather than command templates. The
editinfo file allows you to execute a script before the commit starts but after the
log information is recorded. These “edit” scripts can verify information recorded
in the log file. If the edit script exits with a nonzero exit status, the commit is
aborted. The loginfo file contains commands to execute at the end of a commit.
The text specified as a commit log message is piped through the command;
typical uses include sending mail, filing an article in a newsgroup, or appending
to a central file.

cvsignore, .cvsignore The default list of files (or sh(1) filename patterns) to ignore during cvs update.
At startup time, cvs loads the compiled default list of filename patterns (see
cvs(1)). Then the per-repository list included in $CVSROOT/CVSROOT/cvsignore is
loaded, if it exists.

Then the per-user list is loaded from $HOME/.cvsignore. Finally, as cvs traverses
through your directories, it will load any per-directory .cvsignore files whenever
it finds one. These per-directory files are only valid for exactly the directory that
contains them, not for any subdirectories.

history Create this file in $CVSROOT/CVSROOT to enable history logging (see the description
of cvs history).

SEE ALSO
cvs(1)

COPYING
Copyright  1992, Cygnus Support, Brian Berliner, and Jeff Polk.

Permission is granted to make and distribute verbatim copies of this manual, provided the copyright notice and this
permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

cvs

Part V: File Formats1120

Permission is granted to copy and distribute translations of this manual into another language, under the preceding
conditions for modified versions, except that this permission notice may be included in translations approved by the Free
Software Foundation instead of in the original English.

12 February 1992

DEVINFO
DEVINFO—Device entry database.

DESCRIPTION
DEVINFO is a text file that describes all the possible devices for a system. It is used by MAKEDEV(8) to create special file entries in /
dev. It may be named either /dev/DEVINFO or /etc/devinfo. Information about custom local devices, if any, should be placed
in DEVINFO.local or /etc/devinfo.local, which has the same syntax.

The file format is free-form. C, C++, and shell comments are understood. There are basically four statements:

ignore { proc-device... } This causes the specified names to be ignored if found in /proc/devices.

batch { device... } This creates a “batch”—a collection of devices that will all be created when the batch is
invoked. For example, in the standard DEVINFO, “generic” is a batch.

block device-spec This defines one or more block devices.

char device-spec This defines one or more character devices.

Here is a sample device-spec:

(std, 1) {
mem (kmem) : 1
null (public) : 3
core -> “/proc/kcore”
}

This example defines a group of devices called std, with major number 1. Running will create all the devices in the group;
running, for example, would make just the one device null.

It is possible to specify, instead of just std, something like std=foo. In this case, the stuff on the right-hand side of the equals
sign specifies a name from /proc/devices, and the major number will be retrieved from there if present. If an entry from /
proc/devices is specified, the explicit major number may be omitted. In this case, if the number is not found in /proc/
devices, attempts to create the device will be rejected.

Inside the braces is a list of specific devices. The name in parenthesis is the “class”; this is something specified in MAKEDEV.cfg
that determines the ownership and permissions of the special file created. In the preceding example, the device mem was set to
have the class kmem, but null was set to be public. Ordinarily, you’d define public to be mode 666 but kmem to be mode 660
and owned by group kmem. The number after the colon is the minor number for this particular device; for instance, 3 for
null.

You may also specify a symbolic link with ->. For instance, core was made a link to /proc/kcore. Note that names may
contain any characters, but names that contain things other than alphanumerics, dash, and underscore should be put in
double quotes.

An entire range of devices can be created. You may specify a range of numbers in brackets:

tty[1-8] (tty) : 1

This creates tty1–tty8 with minor device numbers starting with 1. If you specify the range in hex (prefixed by 0x), the device
names will be created numbered in hex, as is normal for ptys. The range may appear inside the name string, but there may
only be one range.

1121

There is a special syntax for creating the entire banks of devices for a hard drive:

hd[a-d] 8/64

What this means is as follows: Create hda, and eight partitions on hda (hda1 through hda8), starting with minor number 0.
Then create hdb, and eight partitions, starting with minor number 64. Then hdc, and so on, with minor number 64*2 =
128—and so forth. These are automatically placed in the class disk. The necessary groups and batches are created so you can
ask MAKEDEV to create hd or hda or hda1 and expect it to do the correct thing.

Note that simple arithmetic is permitted for specifying the minor device number, as this often makes things much clearer
and less likely to be accidentally broken.

SEE ALSO
MAKEDEV(8), MAKEDEV.cfg(5)

Version 1.4, January 1995

environ
environ—User environment.

SYNOPSIS
extern char **environ;

DESCRIPTION
An array of strings called the environment is made available by exec(2) when a process begins. By convention, these strings
have the form name=value. Common examples are

USER The name of the logged-in user (used by some BSD-derived programs).

LOGNAME The name of the logged-in user (used by some System-V derived programs).

HOME A user’s login directory, set by login(1) from the password file passwd(5).

LANG The name of a locale to use for locale categories when not overridden by LC_ALL or more
specific environment variables.

PATH The sequence of directory prefixes that sh(1) and many other programs apply in searching
for a file known by an incomplete pathname. The prefixes are separated by :.

SHELL The filename of the user’s login shell.

TERM The terminal type for which output is to be prepared.

Further names maybe placed in the environment by the export command and name=value in sh(1) or by the setenv command
if you use csh(1). Arguments may also be placed in the environment at the point of an exec(2).

It is risky practice to set name=value pairs that conflict with well-known shell variables. Setting these could cause surprising
behavior in subshells or system(3) commands.

SEE ALSO
login(1), sh(1), bash(1), csh(1), tcsh(1), exec(2), system(3)

Linux, 21 October 1996

expire.ctl
expire.ctl—Control file for Usenet article expiration.

expire.ctl

Part V: File Formats1122

DESCRIPTION
The file /news/lib/expire.ctl is the default control file for the expire(8) program, which reads it at startup. Blank lines and
lines beginning with a number sign (#) are ignored. All other lines should be in one of two formats.

The first format specifies how long to keep a record of fully expired articles. This is useful when a newsfeed intermittently
offers older news that is not kept around very long. (The case of very old news is handled by the –c flag of innd(8).) There
should only be one line in this format, which looks like this:

/remember/:days

Where days is a floating-point number that specifies the upper limit to remember a Message-ID, even if the article has
already expired. (It does not affect article expirations.)

Most of the lines in the file will consist of five colon-separated fields, as follows:

pattern:modflag:keep:default:purge

The pattern field is comma-separated set of single wildmat(3)-style patterns that specify the newsgroups to which the rest of
the line applies. Because the file is interpreted in order, the most general patterns should be specified first, and the most
specific patterns should be specified last.

The modflag field can be used to further limit newsgroups to which the line applies and should be chosen from the following
set:

M Only moderated groups

U Only unmoderated groups

A All groups

The next three fields are used to determine how long an article should be kept. Each field should be either a number of days
(fractions such as 8.5 are allowed) or the word never. The most common use is to specify the default value for how long an
article should be kept. The first and third fields—keep and purge—specify the boundaries within which an Expires header
will be honored. They are ignored if an article has no Expires header. The fields are specified in the file as “lower-bound
default upper-bound,” and they are explained in this order. Because most articles do not have explicit expiration dates,
however, the second field tends to be the most important one.

The keep field specifies how many days an article should be kept before it will be removed. No article in the newsgroup will
be removed if it has been filed for less than keep days, regardless of any expiration date. If this field is the word never, then an
article cannot have been kept for enough days so it will never be expired.

The default field specifies how long to keep an article if no Expires header is present. If this field is the word never, then
articles without explicit expiration dates will never be expired.

The purge field specifies the upper bound on how long an article can be kept. No article will be kept longer than the number
of days specified by this field. All articles will be removed after they have been kept for purge days. If purge is the word never,
then the article will never be deleted.

It is often useful to honor the expiration headers in articles, especially those in moderated groups. To do this, set keep to zero,
default to whatever value you want, and purge to never. To ignore any Expires header, set all three fields to the same value.

There must be exactly one line with a pattern of * and a modflags of A; this matches all groups and is used to set the
expiration default. It should be the first expiration line. For example:

How long to keep expired history
/remember/:5
Most things stay for two weeks
:A:14:14:14
Believe expiration dates in moderated groups, up to six weeks
:M:1:30:42
Keep local stuff for a long time
foo.*:A:30:30:30

1123

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
expire(8), wildmat(3)

exports
exports—NFS filesystems being exported.

SYNOPSIS
/etc/exports

DESCRIPTION
The file /etc/exports serves as the access control list for filesystems that can be exported to NFS clients. It is used by both the
NFS mount daemon mountd(8) and the NFS file server daemon nfsd(8).

The file format is similar to the SunOS exports file, except that several additional options are permitted. Each line contains a
mount point and a list of machine or netgroup names allowed to mount the filesystem at that point. An optional parenthe-
sized list of mount parameters may follow each machine name. Blank lines are ignored, and a # introduces a comment to the
end of the line.

GENERAL OPTIONS
secure This option requires that requests originate on an Internet port less than IPPORT_RESERVED

(1024). This option is on by default. To turn it off, specify insecure.

ro Allow only read-only requests on this NFS volume. The default is to allow write requests as
well, which can also be made explicit by using the rw option.

link_relative Convert absolute symbolic links (where the link contents start with a slash) into relative
links by prepending the necessary number of ../s to get from the directory containing the
link to the root on the server. This has subtle, perhaps questionable, semantics when the file
hierarchy is not mounted at its root.

link_absolute Leave all symbolic links as they are. This is the default operation.

USER ID MAPPING
nfsd bases its access control to files on the server machine on the UID and GID provided in each NFS RPC request. The
normal behavior a user would expect is that she can access her files on the server just as she would on a normal filesystem.
This requires that the same UIDs and GIDs are used on the client and the server machine. This is not always true, nor is it
always desirable.

Very often, it is not desirable that the root user on a client machine is also treated as root when accessing files on the NFS
server. To this end, UID 0 is normally mapped to a different ID: the so-called anonymous or nobody UID. This mode of
operation (called root squashing) is the default and can be turned off with no_root_squash.

By default, nfsd tries to obtain the anonymous UID and GID by looking up user nobody in the password file at startup
time. If it isn’t found, a UID and GID of -2 (65534) is used. These values can also be overridden by the anonuid and anongid
options.

In addition to this, nfsd lets you specify arbitrary UIDs and GIDs that should be mapped to user nobody as well. Finally,
you can map all user requests to the anonymous UID by specifying the all_squash option.

For the benefit of installations where UIDs differ between different machines, nfsd provides a way to dynamically map server
UIDs to client UIDs and vice versa. This is enabled with the map daemon option and uses the UGID RPC protocol. For this
to work, you have to run the ugidd(8) mapping daemon on the client host.

exports

Part V: File Formats1124

Here’s the complete list of mapping options:

root_squash Map requests from UID/GID 0 to the anonymous UID/GID. Note that this does not
apply to any other UIDs that might be equally sensitive, such as user bin.

no_root_squash Turn off root squashing. This option is mainly useful for diskless clients.

squash_uids and squash_gids This option specifies a list of UIDs or GIDs that should be subject to anonymous mapping.
A valid list of IDs looks like this:

squash_uids=0-15,20,25-50

Usually, your squash lists will look a lot simpler, such as

squash_uids=0-100

all_squash Map all UIDs and GIDs to the anonymous user. Useful for NFS-exported public FTP
directories, newsspool directories, and so on. The opposite option is no_all_squash, which is
the default setting.

map_daemon This option turns on dynamic UID/GID mapping. Each UID in an NFS request will be
translated to the equivalent server UID, and each UID in an NFS reply will be mapped the
other way round. This option requires that rpc.ugidd(8) runs on the client host. The default
setting is map_identity, which leaves all UIDs untouched. The normal squash options apply
regardless of whether dynamic mapping is requested.

anonuid and anongid These options explicitly set the UID and GID of the anonymous account. This option is
primarily useful for PC/NFS clients, where you might want all requests appear to be from
one user. As an example, consider the export entry for /home/joe in the section “Example,”
which maps all requests to UID 150 (which is supposedly that of user joe).

EXAMPLE
sample /etc/exports file
/ master(rw) trusty(rw,no_root_squash)
/projects proj*.local.domain(rw)
/usr *.local.domain(ro) @trusted(rw)
/home/joe pc001(rw,all_squash,anonuid=150,anongid=100)
/pub (ro,insecure,all_squash)

The first line exports the entire filesystem to machines master and trusty. In addition to write access, all UID squashing is
turned off for host trusty. The second and third entry show examples for wildcard hostnames and netgroups (this is the
entry @trusted). The fourth line shows the entry for the PC/NFS client discussed previously. The last line exports the public
FTP directory to every host in the world, executing all requests under the nobody account. The insecure option in this entry
also allows clients with NFS implementations that don’t use a reserved port for NFS.

CAVEATS
Unlike other NFS server implementations, this nfsd allows you to export both a directory and a subdirectory thereof to the
same host, for instance /usr and /usr/X11R6. In this case, the mount options of the most specific entry apply. For instance,
when a user on the client host accesses a file in /usr/X11R6, the mount options given in the /usr/X11R6 entry apply. This is
also true when the latter is a wildcard or netgroup entry.

FILES
/etc/exports Configuration file for nfsd(8)

/etc/passwd The password file

DIAGNOSTICS
An error parsing the file is reported using syslogd(8) as level NOTICE from a DAEMON whenever nfsd(8) or mountd(8) is started.
Any unknown host is reported at that time, but often not all hosts are not yet known to named(8) at boot time, so as hosts are
found, they are reported with the same syslogd(8) parameters.

1125

SEE ALSO
mountd(8), nfsd(8), nfs(5), passwd(5)

21 October 1996

filesystems
filesystems—Linux filesystem types: minix, ext, ext2, xia, msdos, umsdos, vfat, proc, nfs, iso9660, hpfs, sysv, smb, ncpfs.

DESCRIPTION
In the file /proc/filesystems, you can find which filesystems your kernel currently supports. (If you need a currently
unsupported one, insert the corresponding module or recompile the kernel.)

Following is a description of the various filesystems.

minix The filesystem used in the Minix operating system, the first to run under Linux. It has a number
of shortcomings: a 64MB partition size limit, short filenames, a single time stamp, and so on. It
remains useful for floppies and RAM disks.

ext An elaborate extension of the minix filesystem. It has been completely superseded by the second
version of the extended filesystem (ext2) and will eventually be removed from the kernel.

ext2 The high performance disk filesystem used by Linux for fixed disks as well as removable media.

The second extended filesystem was designed as an extension of the extended filesystem (ext).
ext2 offers the best performance (in terms of speed and CPU usage) of the filesystems supported
under Linux.

xiafs Designed and implemented to be a stable, safe filesystem by extending the Minix filesystem code.
It provides the basic, most requested features without undue complexity. The xia filesystem is no
longer actively developed or maintained. It is used infrequently.

msdos The filesystem used by DOS, Windows, and some OS/2 computers. msdos filenames can be no
longer than an eight-character name followed by an optional period and three-character
extension.

umsdos An extended DOS filesystem used by Linux. It adds capability for long filenames, UID/GID,
POSIX permissions, and special files (devices, named pipes, and so on) under the DOS
filesystem, without sacrificing compatibility with DOS.

vfat Extended DOS filesystem used by Microsoft Windows 95 and Windows NT. vfat adds
capability for long filenames under the MS-DOS filesystem.

proc A pseudo-filesystem that is used as an interface to kernel data structures rather than reading and
interpreting /dev/kmem. In particular, its files do not take disk space. See proc(5).

iso9660 A CD-ROM filesystem type conforming to the ISO 9660 standard.

High Sierra Linux supports High Sierra, the precursor to the ISO 9660 standard for CD-ROM filesystems. It
is automatically recognized within the iso9660 filesystem support under Linux.

Rock Ridge Linux also supports the System Use Sharing Protocol records specified by the Rock Ridge
Interchange Protocol. They are used to further describe the files in the iso9660 filesystem to a
UNIX host and provides information such as long filenames, UID/GID, POSIX permissions,
and devices. It is automatically recognized within the iso9660 filesystem support under Linux.

hpfs The High Performance Filesystem, used in OS/2. This filesystem is read-only under Linux due to
the lack of available documentation.

sysv An implementation of the SystemV/Coherent filesystem for Linux. It implements all Xenix FS,
SystemV/386 FS, and Coherent FS.

nfs The network filesystem used to access disks located on remote computers.

filesystems

Part V: File Formats1126

smb A network filesystem that supports the SMB protocol, used by Windows for Workgroups,
Windows NT, and LAN Manager.

To use smb, you need a special mount program, which can be found in the ksmbfs package at
ftp://sunsite.unc.edu/pub/Linux/system/Filesystems/smbfs.

ncpfs A network filesystem that supports the NCP protocol, used by Novell NetWare.

To use ncpfs, you need special programs found at ftp://linux01.gwdg.de/pub/ncpfs.

SEE ALSO
proc(5), fsck(8), mkfs(8), mount(8)

25 March 1996

fstab
fstab—Static information about the filesystems.

SYNOPSIS
#include <fstab.h>

DESCRIPTION
The file fstab contains descriptive information about the various filesystems. fstab is only read by programs and not written;
it is the duty of the system administrator to properly create and maintain this file. Each filesystem is described on a separate
line; fields on each line are separated by tabs or spaces. The order of records in fstab is important because fsck(8), mount(8),
and umount(8) sequentially iterate through fstab doing their thing.

The first field (fs_spec) describes the block special device or remote filesystem to be mounted.

The second field (fs_file) describes the mount point for the filesystem. For swap partitions, this field should be specified as
none.

The third field (fs_vfstype) describes the type of the filesystem. The system currently supports three types of filesystems:

minix A local filesystem, supporting filenames of length 14 or 30 characters.

ext A local filesystem with longer filenames and larger inodes. This filesystem has been replaced
by the ext2 filesystem and should no longer be used.

ext2 A local filesystem with longer filenames, larger inodes, and a lot of other features.

xiafs A local filesystem with longer filenames, larger inodes, and a lot of other features.

msdos A local filesystem for MS-DOS partitions.

hpfs A local filesystem for HPFS partitions.

iso9660 A local filesystem used for CD-ROM drives.

nfs A filesystem for mounting partitions from remote systems.

swap A disk partition to be used for swapping.

If vfs_fstype is specified as ignore, the entry is ignored. This is useful to show disk partitions that are currently unused.

The fourth field (fs_mntops) describes the mount options associated with the filesystem.

It is formatted as a comma-separated list of options. It contains at least the type of mount plus any additional options
appropriate to the filesystem type. For documentation on the available options for non-NFS file systems, see mount(8). For
documentation on all NFS-specific options, take a look at nfs(5). Common for all types of filesystems are the options noauto
(do not mount when mount -a is given, such as at boot time) and user (allow a user to mount). For more details, see mount(8).

The fifth field (fs_freq) is used for these filesystems by the dump(8) command to determine which filesystems need to be
dumped. If the fifth field is not present, a value of zero is returned and dump will assume that the filesystem does not need to
be dumped.

1127

The sixth field (fs_passno) is used by the fsck(8) program to determine the order in which filesystem checks are done at
reboot time. The root filesystem should be specified with a fs_passno of 1, and other filesystems should have a fs_passno of 2.
Filesystems within a drive will be checked sequentially, but filesystems on different drives will be checked at the same time to
utilize parallelism available in the hardware. If the sixth field is not present or zero, a value of zero is returned and fsck will
assume that the filesystem does not need to be checked.

The proper way to read records from fstab is to use the routine getmntent(3).

FILES
/etc/fstab

BUGS
The documentation in mount(8) is often more up-to-date.

SEE ALSO
getmntent(3), mount(8), swapon(8), nfs(5)

HISTORY
The fstab file format appeared in 4.0 BSD.

Linux 0.99, 27 November 1993

groff_font
groff_font—Format of groff device and font description files.

DESCRIPTION
The groff_font format is roughly a superset of the ditroff font format. Unlike the ditroff font format, there is no associated
binary format. The font files for device name are stored in a directory devname. There are two types of file: a device description
file called DESC and for each font F, a font file called F. These are text files; there is no associated binary format.

DESC FILE FORMAT
The DESC file can contain the following types of lines:

res n There are n machine units per inch.

hor n The horizontal resolution is n machine units.

vert n The vertical resolution is n machine units.

sizescale n The scale factor for point sizes. By default, this has a value of 1. One scaled point is
equal to one point/n. The arguments to the unitwidth and sizes commands are
given in scaled points.

unitwidth n Quantities in the font files are given in machine units for fonts whose point size is n
scaled points.

tcommand This means that the postprocessor can handle the t and u output commands.

sizes s1 s2 ... sn0 This means that the device has fonts at s1, s2,…sn scaled points. The list of sizes
must be terminated by a 0. Each si can also be a range of sizes m–n. The list can
extend over more than one line.

styles S1 S2 ... Sm The first m font positions will be associated with styles S1…Sm.

fonts n F1 F2 F3 ... Fn Fonts F1…Fn will be mounted in the font positions m+1,…,m+n where m is the
number of styles. This command may extend over more than one line. A font name
of 0 will cause no font to be mounted on the corresponding font position.

groff_font

Part V: File Formats1128

family fam The default font family is fam.

charset This line and everything following in the file are ignored. It is allowed for the sake of
backwards compatibility.

The res, unitwidth, fonts, and sizes lines are compulsory. Other commands are ignored by troff but may be used by
postprocessors to store arbitrary information about the device in the DESC file.

FONT FILE FORMAT
A font file has two sections. The first section is a sequence of lines, each containing a sequence of blank delimited words; the
first word in the line is a key, and subsequent words give a value for that key.

name F The name of the font is F.

spacewidth n The normal width of a space is n.

slant n The characters of the font have a slant of n degrees. (Positive means forward.)

ligatures lig1 lig2 ... lign [0] Characters lig1, lig2,…,lign are ligatures; possible ligatures are ff, fi, fl, and ffl.
For backwards compatibility, the list of ligatures may be terminated with a 0. The
list of ligatures may not extend over more than one line.

special The font is special; this means that when a character is requested that is not present
in the current font, it will be searched for in any special fonts that are mounted.

Other commands are ignored by troff but may be used by postprocessors to store arbitrary information about the font in the
font file.

The first section can contain comments, which start with the # character and extend to the end of a line.

The second section contains one or two subsections. It must contain a charset subsection and it may also contain a kernpairs
subsection. These subsections can appear in any order. Each subsection starts with a word on a line by itself.

The word charset starts the charset subsection. The charset line is followed by a sequence of lines. Each line gives
information for one character. A line comprises a number of fields separated by blanks or tabs. The format is

name metrics type code comment

name identifies the character: if name is a single character c, it corresponds to the groff input character c; if it is of the form \c
where c is a single character, then it corresponds to the groff input character nc; otherwise, it corresponds to the groff input
character \[name] (if it is exactly two characters xx, it can be entered as \(xx). groff supports eight-bit characters; however,
some utilities have difficulties with eight-bit characters. For this reason, there is a convention that the name charn is
equivalent to the single character whose code is n. For example, char163 is equivalent to the character with code 163, which is
the pounds sterling sign in ISO Latin-1. The name — is special and indicates that the character is unnamed; such characters
can only be used by means of the \N escape sequence in troff.

The type field gives the character type:

1 The character has an descender, such as p.

2 The character has an ascender, such as b.

3 The character has both an ascender and a descender, such as (.

The code field gives the code that the postprocessor uses to print the character. The character can also be input to groff using
this code by means of the \N escape sequence. The code can be any integer. If it starts with a 0, it will be interpreted as octal;
if it starts with 0x or 0X, it will be interpreted as hexadecimal.

Anything on the line after the code field will be ignored.

The metrics field has the form:

width[,height[,depth[,italic_correction[,left_italic_correction
➥[,subscript_correction]]]]]

There must not be any spaces between these subfields. Missing subfields are assumed to be 0. The subfields are all decimal
integers. Because there is no associated binary format, these values are not required to fit into a variable of type char as they

1129

are in ditroff. The width subfields gives the width of the character. The height subfield gives the height of the character
(upwards is positive); if a character does not extend above the baseline, it should be given a zero height, rather than a negative
height. The depth subfield gives the depth of the character, that is, the distance below the lowest point below the baseline to
which the character extends (downwards is positive); if a character does not extend below above the baseline, it should be
given a zero depth, rather than a negative depth. The italic_correction subfield gives the amount of space that should be
added after the character when it is immediately to be followed by a character from a roman font. The
left_italic_correction subfield gives the amount of space that should be added before the character when it is immediately
to be preceded by a character from a roman font. The subscript_correction gives the amount of space that should be added
after a character before adding a subscript. This should be less than the italic_correction.

A line in the charset section can also have the format

name “

This indicates that name is just another name for the character mentioned in the preceding line.

The word kernpairs starts the kernpairs section. This contains a sequence of lines of the form:

c1 c2 n

This means that when character c1 appears next to character c2, the space between them should be increased by n. Most
entries in kernpairs section will have a negative value for n.

FILES
/usr/lib/groff/font/dev name/DESC Device description file for device name.

/usr/lib/groff/font/devname/F Font file for font F of device name.

SEE ALSO
groff_out(5), gtroff(1)

Groff Version 1.09, 14 February 1994

groff_out
groff_out—groff intermediate output format.

DESCRIPTION
This manual page describes the format output by GNU troff. The output format used by GNU troff is very similar to that
used by UNIX device-independent troff. Only the differences are documented here.

The argument to the s command is in scaled points (units of points/n, where n is the argument to the sizescale command in
the DESC file.) The argument to the x Height command is also in scaled points.

The first three output commands are guaranteed to be

x T device
x res n h v
x init

If the tcommand line is present in the DESC file, troff will use the following two commands:

txxx xxx is any sequence of characters terminated by a space or a newline; the first
character should be printed at the current position, the current horizontal position
should be increased by the width of the first character, and so on for each character.
The width of the character is that given in the font file, appropriately scaled for the
current point size and rounded so that it is a multiple of the horizontal resolution.
Special characters cannot be printed using this command.

groff_out

Part V: File Formats1130

unxxx This is same as the t command except that after printing each character, the current
horizontal position is increased by the sum of the width of that character and n.

Note that single characters can have the eighth bit set, as can the names of fonts and special characters.

The names of characters and fonts can be of arbitrary length; drivers should not assume that they will be only two characters
long.

When a character is to be printed, that character will always be in the current font. Unlike device-independent troff, it is not
necessary for drivers to search special fonts to find a character.

The D drawing command has been extended. These extensions will not be used by GNU pic if the –n option is given.

Df n\n Set the shade of gray to be used for filling solid objects to n; n must be an integer
between 0 and 1000, where 0 corresponds to solid white and 1000 to solid black and
values in between correspond to intermediate shades of gray. This applies only to
solid circles, solid ellipses, and solid polygons. By default, a level of 1000 will be
used. Whatever color a solid object has, it should completely obscure everything
beneath it. A value greater than 1000 or less than 0 can also be used: This means fill
with the shade of gray that is currently being used for lines and text. Normally, this
will be black, but some drivers may provide a way of changing this.

DC d\n Draw a solid circle with a diameter of d with the leftmost point at the current
position.

DE dx dy\n Draw a solid ellipse with a horizontal diameter of dx and a vertical diameter of dy
with the leftmost point at the current position.

Dp dx1 dy1 dx2 dy2 ... dxn dyn\n Draw a polygon with, for i = 1, ..., n+1, the ith vertex at the current position +
∑

i–1
f=1

 (dxj, dyj). At the moment, GNU pic only uses this command to generate
triangles and rectangles.

DP dx1 dy1 dx2 dy2 ... dxn dyn\n Like Dp, but draw a solid rather than outlined polygon.

Dt n\n Set the current line thickness to n machine units. Traditionally, UNIX troff drivers
use a line thickness proportional to the current point size; drivers should continue to
do this if no Dt command has been given or if a Dt command has been given with a
negative value of n. A zero value of n selects the smallest available line thickness.

A difficulty arises in how the current position should be changed after the execution of these commands. This is not of great
importance because the code generated by GNU pic does not depend on this. Given a drawing command of the form

\Dc x1 y1 x2 y2 ... xn yn

where c is not one of c, e, l, a, or ~, UNIX troff will treat each of the xi as a horizontal quantity and each of the yi as a
vertical quantity and will assume that the width of the drawn object is ∑

n
i=1 xi and that the height is ∑

n
i=1 yi. (The

assumption about the height can be seen by examining the st and sb registers after using such a D command in a \w escape
sequence.) This rule also holds for all the original drawing commands with the exception of De. For the sake of compatibil-
ity, GNU troff also follows this rule, even though it produces an ugly result in the case of the Df, Dt, and, to a lesser extent,
DE commands. Thus after executing a D command of the form

Dc x1 y1 x2 y2 ... xn yn\n

the current position should be increased by (∑
n
i=1 xi; ∑

n
i=1 yi).

A continuation convention permits the argument to the x X command to contain newlines: when outputting the argument
to the x X command, GNU troff will follow each newline in the argument with a + character (as usual, it will terminate the
entire argument with a newline); thus if the line after the line containing the x X command starts with +, then the newline
ending the line containing the x X command should be treated as part of the argument to the x X command, the + should be
ignored, and the part of the line following the + should be treated like the part of the line following the x X command.

1131

SEE ALSO
groff_font(5)

groff version 1.09, 14 February 1994

group
group—User group file.

DESCRIPTION
/etc/group is an ASCII file that defines the groups to which users belong. There is one entry per line, and each line has the
format

group_name:passwd:GID:user_list

The field descriptions are

group_name The name of the group.

passwd The (encrypted) group password. If this field is empty, no password is needed.

GID The numerical group ID.

user_list All the group member’s usernames, separated by commas.

FILES
/etc/group

SEE ALSO
login(1), newgrp(1), passwd(5)

Linux, 29 December 1992

history
history—Record of current and recently expired Usenet articles.

DESCRIPTION
The file /news/lib/history keeps a record of all articles currently stored in the news system, as well as those that have been
received but since expired.

The file consists of text lines. Each line corresponds to one article. The file is normally kept sorted in the order in which
articles are received, although this is not a requirement. innd(8) appends a new line each time it files an article, and expire(8)
builds a new version of the file by removing old articles and purging old entries.

Each line consists of two or three fields separated by a tab, shown below as \t:

<Message–ID>\t date
<Message–ID>\t date \t files

The Message–ID field is the value of the article’s Message-ID header, including the angle brackets.

The date field consists of three subfields separated by a tilde. All subfields are the text representation of the number of
seconds since the epoch—a time_t; see gettimeofday(2). The first subfield is the article’s arrival date. If copies of the article
are still present, then the second subfield is either the value of the article’s Expires header or a hyphen if no expiration date
was specified. If an article has been expired, the second subfield will be a hyphen. The third subfield is the value of the
article’s Date header, recording when the article was posted.

history

Part V: File Formats1132

The files field is a set of entries separated by one or more spaces. Each entry consists of the name of the newsgroup, a slash,
and the article number. This field is empty if the article has been expired.

For example, an article cross-posted to comp.sources.unix and comp.sources.d that was posted on February 10, 1991, (and
received three minutes later) with an expiration date of May 5, 1991, could have a history line (broken into two lines for
display) like the following:

<312@litchi.foo.com> \t 666162000˜673329600˜666162180
\t comp.sources.unix/1104 comp.sources.d/7056

In addition to the text file, there is a dbz(3z) database associated with the file that uses the Message-ID field as a key to
determine the offset in the text file where the associated line begins. For historical reasons, the key includes the trailing \0
byte (which is not stored in the text file).

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
dbz(3z), expire(8), innd(8), news-recovery(8)

hosts.nntp, hosts.nntp.nolimit
hosts.nntp, hosts.nntp.nolimit—List of hosts that feed NNTP news.

DESCRIPTION
The file /news/lib/hosts.nntp is read by innd(8) to get the list of hosts that feed the local site Usenet news using the NNTP
protocol. The server reads this file at startup or when directed to by ctlinnd(8). When a hosts connects to the NNTP port of
the system on which innd is running, the server will do a check to see if their Internet address is the same as one of the hosts
named in this file. If the host is not mentioned, then innd will spawn an nnrpd(8) to process the connection, with the
accepted connection on standard input and standard output.

Comments begin with a number sign (#) and continue through the end of the line. Blank lines and comments are also
ignored. All other lines should consist of two or three fields separated by a colon.

The first field should be either an Internet address in dotted-quad format or an address that can be parsed by
gethostbyname(3). If a host’s entry has multiple addresses, all of them will be added to the access list. The second field, which
may be blank, is the password the foreign host is required to use when first connecting. The third field, which may be
omitted, is a list of newsgroups to which the host may post articles. This list is parsed as a newsfeeds(5) subscription list;
groups not in the list are ignored.

Because innd is usually started at system boot time, the local nameserver may not be fully operational when innd parses this
file. As a work-around, a ctlinnd reload command can be performed after a delay of an hour or so. It is also possible to
provide both a host’s name and its dotted-quad address in the file.

For example:

FOO has a password, UUNET doesn’t.
UUNET cannot post to local groups.
These are comment lines.
news.foo.com:magic
uunet.uu.net::!foo.*

If the file contains passwords, it should not be world-readable. The file /news/lib/hosts.nntp.nolimit, if it exists, is read
whenever the hosts.nntp file is read. It has the same format, although only the first field is used. Any host mentioned in this
file is not subject to the incoming connections limit specified by innd’s –c flag. This can be used to allow local hosts or time-
sensitive peers to connect regardless of the local conditions.

1133

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
ctlinnd(8), innd(8), nnrpd(8)

hosts_access
hosts_access—Format of host access control files.

DESCRIPTION
This manual page describes a simple access control language that is based on client (hostname/address, username) and server
(process name) patterns. Examples are given at the end. The impatient reader can skip to the “Examples” section for a quick
introduction.

In the following text, daemon is the process name of a network daemon process, and client is the name or address of a host
requesting service. Network daemon process names are specified in the inetd configuration file.

ACCESS CONTROL FILES
The access control software consults two files. The search stops at the first match:

Access will be granted when a (daemon,client) pair matches an entry in the /etc/hosts.allow file.

Otherwise, access will be denied when a (daemon,client) pair matches an entry in the /etc/hosts.deny file.

Otherwise, access will be granted.

A non-existing access control file is treated as if it were an empty file. Thus, access control can be turned off by providing no
access control files.

ACCESS CONTROL RULES
Each access control file consists of zero or more lines of text. These lines are processed in order of appearance. The search
terminates when a match is found.

A newline character is ignored when it is preceded by a backslash character.

Blank lines or lines that begin with a # character are ignored.

All other lines should satisfy the following format, things between [] being optional:

daemon_list : client_list [: shell_command]

daemon_list is a list of one or more daemon process names (argv[0] values) or wildcards.

client_list is a list of one or more hostnames, host addresses, patterns, or wildcards that will be matched against the remote
hostname or address.

List elements should be separated by blanks or commas.

With the exception of NIS (YP) netgroup lookups, all access control checks are case insensitive.

PATTERNS
The access control language implements the following patterns:

A string that begins with a . character: A client name or address is matched if its last components match the specified
pattern. For example, the pattern .tue.nl matches the hostname wzv.win.tue.nl.

A string that ends with a . character: A client name or address is matched if its first fields match the given string. For
example, the pattern 131.155. matches the address of (almost) every host on the Eindhoven University network
(131.155.x.x).

hosts_access

Part V: File Formats1134

A string that begins with a @ character is treated as a netgroup name: Netgroups are usually supported on systems with NIS
(formerly YP) databases. A client hostname is matched if it is a (host) member of the specified netgroup.

An expression of the form n.n.n.n/m.m.m.m is interpreted as a net/mask pair. A client address is matched if net is equal to the
bitwise AND of the address and the mask. For example, the net/mask pattern 131.155.72.0/255.255.254.0 matches every address
in the range 131.155.72.0 through 131.155.73.255.

WILDCARDS
The access control language supports explicit wildcards:

ALL If this token appears in a daemon list, it matches all network daemon process names. If the ALL
token appears in a client list, it matches all client names and addresses.

LOCAL Matches any string that does not contain a dot character. Typical use is in client lists.

UNKNOWN Matches any host whose name or address are unknown. Should be used with care: Hostnames
may be unavailable due to temporary nameserver problems. A network address will be
unavailable when the software cannot figure out what type of network it is talking to.

KNOWN Matches any host whose name and address are known. Should be used with care: Hostnames
may be unavailable due to temporary nameserver problems. A network address will be
unavailable when the software cannot figure out what type of network it is talking to.

FAIL Like the ALL wildcard but causes the software to pretend that the scan of the current access
control table fails. FAIL is being phased out; it will become an undocumented feature. The
EXCEPT operator is a much cleaner alternative.

OPERATORS
EXCEPT Intended use is of the form: list_1 EXCEPT list_2; this construct matches anything that

matches list_1 unless it matches list_2. This construct can be used in daemon lists and in
client lists. The EXCEPT operator can be nested: If the control language would permit the use
of parentheses, a EXCEPT b EXCEPT c would parse as (a EXCEPT (b EXCEPT c)).

SHELL COMMANDS
If the first-matched access control rule contains a shell command, that command is subjected to the following substitutions:

%a Expands to the remote host address.

%c Expands to client information: user@host, user@address, a hostname, or just an address,
depending on how much information is available.

%h Expands to the remote hostname (or address, if the hostname is unavailable).

%d Expands to the daemon process name (argv[0] value).

%p Expands to the daemon process ID.

%u Expands to the remote username (or unknown).

%% Expands to a single % character.

Characters in % expansions that may confuse the shell are replaced by underscores. The result is executed by a /bin/sh child
process with standard input, output, and error connected to /dev/null. Specify an & at the end of the command if you do not
want to wait until it has completed.

Shell commands should not rely on the PATH setting of the inetd. Instead, they should use absolute pathnames, or they
should begin with an explicit PATH=whatever statement.

REMOTE USERNAME LOOKUP
When the client host supports the RFC 931 protocol or one of its descendants (TAP, IDENT) the wrapper programs can
retrieve additional information about the owner of a connection. When available, remote username information is logged
together with the client hostname and can be used to match patterns like

daemon_list : ... user_pattern@host_pattern ...

1135

The daemon wrappers can be configured at compile time to perform rule-driven username lookups (default) or to always
interrogate the client host. In the case of rule-driven username lookups, the preceding rule would cause username lookup
only when both the daemon_list and the host_pattern match.

A user pattern has the same syntax as a daemon process name, hostname, or host address pattern, so the same wildcards and
so on apply (but netgroup membership of users is not supported). One should not get carried away with username lookups,
however.

The remote username information cannot be trusted when it is needed most—that is, when the remote system has been
compromised. In general, ALL and (UN)KNOWN are the only username patterns that make sense.

Username lookups are possible only with TCP-based services and only when the client host runs a suitable daemon; in all
other cases the result is unknown.

A well-known UNIX kernel bug may cause loss of service when username lookups are blocked by a firewall. The wrapper
README document describes a procedure to find out if your kernel has this bug.

Username lookups cause noticeable delays for PC users. The default time-out for username lookups is ten seconds: too short
to cope with slow networks but long enough to irritate PC users.

Selective username lookups can alleviate the last problem. For example, a rule like

daemon_list : @pcnetgroup ALL@ALL

would match members of the pcnetgroup without doing username lookups but would perform username lookups with all
other systems.

EXAMPLES
The language is flexible enough that different types of access control policy can be expressed with a minimum of fuss.
Although the language uses two access control tables, the most common policies can be implemented with one of the tables
being trivial or even empty.

When reading the following examples, it is important to realize that the allow table is scanned before the deny table, that the
search terminates when a match is found, and that access is granted when no match is found at all.

The examples use host and domain names. They can be improved by including address or network/netmask information to
reduce the impact of temporary nameserver lookup failures.

MOSTLY CLOSED
In this case, access is denied by default. Only explicitly authorized hosts are permitted access.

The default policy (no access) is implemented with a trivial deny file:

/etc/hosts.deny:

ALL: ALL

This denies all service to all hosts, unless they are permitted access by entries in the allow file.

The explicitly authorized hosts are listed in the allow file:

/etc/hosts.allow:

ALL: LOCAL @some_netgroup
ALL: .foobar.edu EXCEPT terminalserver.foobar.edu

The first rule permits access to all services from hosts in the local domain (no . in the hostname) and from members of the
some_netgroup netgroup. The second rule permits access to all services from all hosts in the .foobar.edu domain, with the
exception of terminalserver.foobar.edu.

MOSTLY OPEN
Here, access is granted by default; only explicitly specified hosts are refused service.

hosts_access

Part V: File Formats1136

The default policy (access granted) makes the allow file redundant so that it can be omitted. The explicitly non-authorized
hosts are listed in the deny file:

/etc/hosts.deny:

ALL: some.host.name, .some.domain
ALL EXCEPT in.fingerd: other.host.name, .other.domain

The first rule denies some hosts all services; the second rule still permits finger requests from other hosts.

BOOBY TRAPS
The next example permits tftp requests from hosts in the local domain. Requests from any other hosts are denied. Instead of
the requested file, a finger probe is sent to the offending host. The result is mailed to the superuser.

/etc/hosts.allow:

in.tftpd: LOCAL, .my.domain
/etc/hosts.deny:
in.tftpd: ALL: (/some/where/safe_finger -l @%h | \
/usr/ucb/mail -s %d-%h root) &

The safe_finger command comes with the tcpd wrapper and should be installed in a suitable place. It limits possible damage
from data sent by the remote finger server. It gives better protection than the standard finger command.

The expansion of the %h (remote host) and %d (service name) sequences is described in the section on shell commands.

Warning: Do not booby-trap your finger daemon, unless you are prepared for infinite finger loops.

On network firewall systems, this trick can be carried even further. The typical network firewall only provides a limited set of
services to the outer world. All other services can be “bugged” just like the preceding tftp example. The result is an excellent
early-warning system.

DIAGNOSTICS
An error is reported when a syntax error is found in a host access control rule, when the length of an access control rule
exceeds the capacity of an internal buffer, when an access control rule is not terminated by a newline character, when the
result of %<character> expansion would overflow an internal buffer, and when a system call fails that shouldn’t. All problems
are reported via the syslog daemon.

 FILES
/etc/hosts.allow, (daemon,client) pairs that are granted access.

/etc/hosts.deny, (daemon,client) pairs that are denied access.

SEE ALSO
tcpd(8), TCP/IP daemon wrapper program

BUGS
If a nameserver lookup times out, the hostname will not be available to the access control software, even though the host is
registered.

Domain nameserver lookups are case insensitive; NIS (formerly YP) netgroup lookups are case sensitive.

AUTHOR
Wietse Venema (wietse@wzv.win.tue.nl), Department of Mathematics and Computing Science, Eindhoven University of
Technology, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

1137

hosts_options
hosts_options—Host access control language extensions.

DESCRIPTION
This document describes optional extensions to the language described in the hosts_access(5) document. The extensions are
enabled at program build time by editing the makefile.

The extensible language uses the following format:

daemon_list : client_list : option : option ...

The first two fields are described in the hosts_access(5) manual page. The remainder of the rules is a list of zero or more
options. Any : characters within options should be protected with a backslash.

An option is of the form keyword or keyword = value. Options are processed in the specified order. With some options, the
value is subjected to %<character> substitutions.

OPTIONS
severity = mail.info Change the severity level at which the event will be logged. Facility names (such as

mail) are optional and are not supported on systems with older syslog implementa-
tions. The severity option can be used to emphasize or to completely ignore specific
events.

allow (deny) Grant (deny) service, even when the matched rule was found in the hosts.deny
(hosts.allow) file. These options must appear at the end of a rule.

With the allow and deny keywords, it is possible to keep all access control rules within a single file—for example, in the
hosts.allow file:

ALL: .friendly.domain: allow
ALL: ALL: deny

This permits access from specific hosts only. On the other hand,

ALL: .trouble.makers: deny
ALL: ALL: allow

This permits access from all hosts except a few troublemakers.

twist = shell_command Replace the current process by an instance of the
specified shell command, after performing the
%<character> expansions described in the
hosts_access(5) manual page. stdin, stdout, and
stderr are connected to the remote client process.
This option must appear at the end of a rule.
Examples:

in.ftpd : ... : twist = /bin/echo 421 Some bounce message sends a customized bounce
message to the remote client instead of running the
real FTP daemon.

in.telnetd : ... : twist = PATH=/some/other; exec in.telnetd Runs /some/other/in.telnetd without polluting its
command-line array or its process environment.

Warning: In case of UDP services, do not twist into
commands that use the standard I/O or the
read(2)/write(2) routines to communicate with the
client process; UDP requires other I/O primitives.

spawn = shell_command Execute the shell command in a child process, after
performing the %<character> expansions described
in the hosts_access(5) manual page. The command

hosts_options

Part V: File Formats1138

is executed with stdin, stdout, and stderr
connected to the null device so that it won’t mess
up the conversation with the remote host. Example:

spawn = (/some/where/safe_finger -l @%h | /usr/ucb/mail root) & Executes, in a background child process, the shell
command safe_finger -l @%h | mail root after
replacing %h by the name or address of the remote
host.

The example uses the safe_finger command
instead of the regular finger command to limit
possible damage from data sent by the finger server.
The safe_finger command is part of the daemon
wrapper package; it is a wrapper around the regular
finger command that filters the data sent by the
remote host.

umask = 022 Like the umask command that is built into the shell.
An umask of 022 prevents the creation of files with
group and world write permission. The umask
argument should be an octal number.

keepalive Causes the server to periodically send a message to
the client. The connection is considered broken
when the client does not respond. The keepalive
option can be useful when users turn off their
machine while it is still connected to a server. The
keepalive option is not useful for datagram (UDP)
services.

linger = number_of_seconds Specifies how long the kernel will try to deliver not-
yet delivered data after the server process closes a
connection.

nice = niceval

nice (no argument) Change the nice value of the process (default 10).
Specify a positive value to spend more CPU
resources on other processes.

user = nobody Assume the privileges of the nobody account. This is
useful with inetd implementations that run all
services with root privilege. It is good practice to
run services such as finger at a reduced privilege
level.

group = tty Assume the privileges of the tty group. This is
useful mostly in combination with the user option.
In order to switch both user and group IDs, switch
group ID before switching user ID.

setenv = name value Place a (name, value) pair into the process environ-
ment. The value is subjected to %<character>
expansions and may contain whitespace (but
leading and trailing blanks are stripped off).

Warning: Many network daemons reset their
environment before spawning a login or shell
process.

1139

rfc931 = timeout_in_seconds

rfc931 (no argument) Look up the remote user name with the RFC 931
(ident and so on) protocol. This option is silently
ignored in case of services based on transports other
than TCP. It requires that the client system runs an
RFC 931 (ident and so on) compliant daemon and
may cause noticeable delays with connections from
non-UNIX hosts. The time-out period is optional.
If no time-out is specified, a default value is taken.

DIAGNOSTICS
When a syntax error is found in an access control rule, the error is reported to the syslog daemon; further options will be
ignored, and service is denied.

SEE ALSO
hosts_access(5), the default access control language

AUTHOR
Wietse Venema (wietse@wzv.win.tue.nl), Department of Mathematics and Computing Science, Eindhoven University of
Technology, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

inittab
inittab—Format of the inittab file used by the SysV-compatible init process.

DESCRIPTION
The inittab file describes which processes are started at bootup and during normal operation (such as /etc/rc, gettys). init
distinguishes multiple run levels, of which each can have its own set of processes that are started. Valid runlevels are 0–6 and
A, B, and C for ondemand entries. An entry in the inittab file has the following format:

id:runlevels:action:process

Lines beginning with # are ignored.

id A unique two-character-sequence which identifies an entry in inittab.

Note: For gettys or other login processes, the id field should be the tty suffix of the
corresponding tty, such as 1 for tty1. Otherwise, the login accounting will not work
correctly. This is a bug in login and will be fixed.

runlevels Describes in which run levels the specified action should be taken.

action Describes which action should be taken.

process Specifies the process to be executed. If the process field starts with a + character, init will
not do utmp and wtmp accounting for that process. This is needed for gettys that insist on
doing their own utmp/wtmp housekeeping. This is also a historic bug.

Valid actions are

respawn The process will be restarted whenever it terminates (such as getty).

wait The process will be started once when the specified run level is entered and init will wait
for its termination.

once The process will be executed once when the specified run level is entered.

boot The process will be executed during system boot. The run level field is ignored.

inittab

Part V: File Formats1140

bootwait The process will be executed during system boot while init waits for its termination (such
as /etc/rc). The runlevel field is ignored.

off This does nothing.

ondemand A process marked with ondemand will be executed whenever the specified ondemand run level
is called. However, no runlevel change will occur.

initdefault An initdefault-entry specifies the run level that should be entered after system boot. If
none exists, init will ask for a runlevel on the console.

sysinit The process will be executed during system boot. It will be executed before any boot or
bootwait entries.

powerwait The process will be executed when init receives the SIGPWR signal, indicating that there is
something wrong with the power. init will wait for the process to finish before continuing.

powerfail As powerwait but init will not wait for the processes completion.

powerokwait The process will be executed when init receives the SIGPWR signal, provided there is a file
called /etc/powerstatus containing the word OK. This means that the power has come back
again.

ctrlaltdel The process will be executed when init receives the SIGINT signal. This means that someone
on the system console pressed the Ctrl+Alt+Del key combination. Typically, one wants to
execute some sort of shutdown either to get into single–user level or to reboot the machine.

The runlevel field may contain multiple characters for different run levels, such as 123 if the process should be started in run
levels 1, 2 and 3. Ondemand entries may contain an A, B, or C. The runlevel field of sysinit, boot, and bootwait entries are
ignored.

When the run level is changed, any running processes that are not specified for the new run level are killed, first with SIGTERM
and then with SIGKILL.

EXAMPLES
This is an example of an inittab that resembles the old Linux inittab:

inittab for linux
id:1:initdefault:
rc::bootwait:/etc/rc
1:1:respawn:/etc/getty 9600 tty1
2:1:respawn:/etc/getty 9600 tty2
3:1:respawn:/etc/getty 9600 tty3
4:1:respawn:/etc/getty 9600 tty4

This inittab file executes /etc/rc during boot and starts gettys on tty1–tty4.

A more elaborate inittab with different run levels (see the comments inside) is

#Level to run in
id:4:initdefault:
ud::boot:/etc/update
rc::bootwait:/etc/rc
cr::boot:/etc/crond
#
level 1: getty on tty1
level 2: getty on tty1-4
level 3: tty1-4, dialin via modem(ttys2)
level 4: tty1-4, ttyb
#
mr:126:once:/usr/bin/nodialin
mi:345:once:/usr/bin/dialin
1:1234:respawn:/etc/getty 9600 tty1
2:234:respawn:/etc/getty 9600 tty2
3:234:respawn:/etc/getty 9600 tty3

1141

4:234:respawn:/etc/getty 9600 tty4
s2:3:respawn:/etc/mgetty ttys2 19200
b:4:respawn:/etc/getty 19200L ttyb
ca::ctrlaltdel:/etc/shutdown -t3 -rf now

FILES
/etc/inittab

AUTHOR
init was written by Miquel van Smoorenburg (miquels@drinkel.nl.mugnet.org). The manual page was written by Sebastian
Lederer (lederer@francium.informatik.uni-bonn.de) and modified by Michael Haardt (u31b3hs@pool.informatik.rwth-
aachen.de).

SEE ALSO
init(8), telinit(8)

13 May 1993

inn.conf
inn.conf—Configuration data for InterNetNews programs.

DESCRIPTION
The file /news/lib/inn.conf is used to determine various parameters. Blank lines and lines starting with a number sign (#) are
ignored. All other lines specify parameters that may be read and should be of the following form:

name : [optional whitespace] value

Everything after the whitespace and up to the end of the line is taken as the value; multi-word values should not be put in
quotes. The case of names is significant; server is not the same as Server or SERVER.

Some parameters specified in the file may be overridden by environment variables, and some file parameters may be used to
mask real data, such as when hiding a cluster of hosts behind a single electronic mail hostname. The current set of parameters
is as follows:

fromhost This is the name of the host to use when building the From header line. The default is the
fully qualified domain name of the local host. The value of the FROMHOST environment
variable, if it exists, overrides this.

moderatormailer This names the default machine that contains forwarding aliases for all moderated groups. It
is only used if the moderators(5) file doesn’t exist or if the group is not matched by that file.
The value is interpreted as a pattern match; see moderators(5).

organization This specifies what to put in the Organization header if it is blank. The value of the
ORGANIZATION environment variable, if it exists, overrides this.

pathhost This specifies how to name the local site when building the Path header line. The default is
the fully qualified domain name of the local host.

server This specifies the name of the NNTP server to which an article should be posted. The value
of the NNTPSERVER environment variable, if it exists, overrides this.

domain This should be the domain name of the local host. It should not have a leading period, and
it should not be a full host address. It is used only if the GetFQDN routine in libinn(3) cannot
get the fully qualified domain name by using either the gethostname(2) or gethostbyname(3)
calls. The check is very simple; if either routine returns a name with a period in it, then it is
assumed to have the full domain name.

inn.conf

Part V: File Formats1142

Three parameters are used only by nnrpd when accepting postings from clients:

mime-version If this parameter is present, then nnrpd will add the necessary MIME (Multipurpose Internet
Mail Extensions) headers to all any articles that do not have a Mime-Version header. This
parameter specifies the MIME version and should normally be 1.0.

mime-contenttype If MIME headers are being added, this parameter specifies the value of the Content-Type
header. The default value is text/plain; charset=US-ASCII.

mime-encoding If MIME headers are being added, this parameter specifies the value of the Content-
Transfer-Encoding header. The default value is 7bit.

Note that this file can be identical on all machines in an organization.

EXAMPLE
fromhost: foo.com

moderatormailer: %s@uunet.uu.net

organization: Foo, Incorporated

#pathhost: Use FQDN.

server: news.foo.com

domain: foo.com

This file is intended to be fairly static; any changes made to it are typically not reflected until a program restarts.

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
libinn(3), moderators(5)

innwatch.ctl
innwatch.ctl—Control Usenet supervision by innwatch.

DESCRIPTION
The file /news/lib/innwatch.ctl is used to determine what actions are taken during the periodic supervisions by innwatch.

The file consists of a series of lines; blank lines and lines beginning with a number sign (#) are ignored. All other lines consist
of seven fields, each preceded by a delimiting character:

:label:state:condition:test:limit:command:reason

The delimiter can be any one of several non-alphanumeric characters that does not appear elsewhere in the line; there is no
way to quote it to include it in any of the fields. Any of !, ,, :, @, ;, or ? is a good choice. Each line can have a different
delimiter; the first character on each line is the delimiter for that line. Whitespace surrounding delimiters, except before the
first, is ignored and does not form part of the fields; whitespace within fields is permitted. All delimiters must be present.

The first field is a label for the control line. It is used as an internal state indicator and in ctlinnd messages to control the
server. If omitted, the line number is used.

The second field specifies when this control line should be used. It consists of a list of labels and special indicators separated
by whitespace. If the current state matches against any of the labels in this field, this line will be used as described below. The
values that may be used are

– This line matches if the current state is the same as the label on this line, or if the current state
is run, the initial state. This is also the default state if this field is empty.

1143

+ This line matches if the current state is run.

* This line always matches.

label This line matches if the current state is the specified label.

–label This line matches if the current state is not the specified label.

The third field specifies a shell command that is invoked if this line matches. Do not use any shell filename expansion
characters such as *, ?, or [(even quoted, they’re not likely to work as intended). If the command succeeds, as indicated by
its exit status, it is expected to have printed a single integer to standard output. This gives the value of this control line, to be
used below. If the command fails, the line is ignored. The command is executed with its current directory set to the
newsspool directory, /news/spool.

The fourth field specifies the operator to use to test the value returned above. It should be one of the two-letter numeric test
operators defined in test(1) such as eq, lt, and the like. The leading dash (–) should not be included.

The fifth field specifies a constant with which to compare the value using the operator just defined. This is done by invoking
the command

test value -operator constant

The line is said to “succeed” if it returns true.

The sixth field specifies what should be done if the line succeeds and in some cases if it fails. Any of the following words may
be used:

throttle Causes innwatch to throttle the server if this line succeeds. It also sets the state to the value of
the line’s label. If the line fails and the state was previously equal to the label on this line (that
is, this line had previously succeeded), then a go command will be sent to the server, and
innwatch will return to the run state. The throttle is only performed if the current state is run
or a state other than the label of this line, regardless of whether the command succeeds.

pause Is identical to throttle except that the server is paused.

shutdown Sends a shutdown command to the server. It is for emergency use only.

flush Sends a flush command to the server.

go Causes innwatch to send a go command to the server and to set the state to run.

exit Causes innwatch to exit.

skip The result of the control file is skipped for the current pass.

The last field specifies the reason that is used in those ctlinnd commands that require one. More strictly, it is part of the
reason; innwatch appends some information to it. In order to enable other sites to recognize the state of the local innd server,
this field should usually be set to one of several standard values. Use No space if the server is rejecting articles because of a
lack of filesystem resources. Use loadav if the server is rejecting articles because of a lack of CPU resources.

Once innwatch has taken some action as a consequence of its control line, it skips the rest of the control file for this pass. If
the action was to restart the server (that is, issue a go command), then the next pass will commence almost immediately so
that innwatch can discover any other condition that may mean that the server should be suspended again.

EXAMPLES
@@@df .|awk ‘NR==2 {print $4}’@lt@10000@throttle@No space
@@@df -i .|awk ‘NR==2 {print $4}’@lt@1000@throttle@No space (inodes)

The first line causes the server to be throttled if the free space drops below 10000 units (using whatever units df uses) and
restarted again when free space increases above the threshold.

The second line does the same for inodes.

The next three lines act as a group and should appear in the following order. It is easier to explain them, however, if they are
described from the last up.

innwatch.ctl

Part V: File Formats1144

!load!load hiload!loadavg!lt!5!go!
:hiload:+ load:loadavg:gt:8:throttle:loadav
/load/+/loadavg/ge/6/pause/loadav

The final line causes the server to be paused if innwatch is in the run state and the load average rises to, or above, six. The
state is set to load when this happens. The previous line causes the server to be throttled when innwatch is in the run or load
state, and the load average rises above eight. The state is set to hiload when this happens. Note that innwatch can switch the
server from paused to throttled if the load average rises from below six to between six and seven and then to above eight. The
first line causes the server to be sent a go command if innwatch is in the load or hiload state and the load average drops below
five.

Note that all three lines assume a mythical command loadavg that is assumed to print the current load average as an integer.
In more practical circumstances, a pipe of uptime into awk is more likely to be useful.

BUGS
This file must be tailored for each individual site; the sample supplied is truly no more than a sample. The file should be
ordered so that the more common problems are tested first.

The run state is not actually identified by the label with that three letter name, and using it will not work as expected.

Using an “unusual” character for the delimiter such as (, *, &, “”, and the like is likely to lead to obscure and hard-to-locate
bugs.

HISTORY
Written by (kre@munnari.oz.au) for InterNetNews.

SEE ALSO
innd(8), ctlinnd(8), news.daily(8)

ipc
ipc—System V interprocess communication mechanisms.

SYNOPSIS
include <sys/types.h>
include <sys/ipc.h>
include <sys/msg.h>
include <sys/sem.h>
include <sys/shm.h>

DESCRIPTION
The manual page refers to the Linux implementation of the System V interprocess communication mechanisms: message
queues, semaphore sets, and shared memory segments. In the following, the word resource means an instantiation of one
among such mechanisms.

RESOURCE ACCESS PERMISSIONS
For each resource, the system uses a common structure of type struct ipc_perm to store information needed in determining
permissions to perform an ipc operation. The ipc_perm structure, defined by the <sys/ipc.h> system header file, includes the
following members:

ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort uid; /* owner user id */
ushort gid; /* owner group id */
ushort mode; /* r/w permissions */

1145

The mode member of the ipc_perm structure defines, with its lower nine bits, the access permissions to the resource for a
process executing an ipc system call. The permissions are interpreted as follows:

0400 Read by user.

0200 Write by user.

0040 Read by group.

0020 Write by group.

0004 Read by others.

0002 Write by others.

Bits 0100, 0010, and 0001 (the execute bits) are unused by the system. Furthermore “write” effectively means “alter” for a
semaphore set.

The same system header file defines also the following symbolic constants:

IPC_CREAT Create entry if key doesn’t exists.

IPC_EXCL Fail if key exists.

IPC_NOWAIT Error if request must wait.

IPC_PRIVATE Private key.

IPC_RMID Remove resource.

IPC_SET Set resource options.

IPC_STAT Get resource options.

Note that IPC_PRIVATE is a key_t type, whereas all the others symbolic constants are flag fields ORable into an int type
variable.

MESSAGE QUEUES
A message queue is uniquely identified by a positive integer (its msqid) and has an associated data structure of type struct
msquid_ds, defined in <sys/msg.h>, containing the following members:

struct ipc_perm msg_perm;
ushort msg_qnum; /* no of messages on queue */
ushort msg_qbytes; /* bytes max on a queue */
ushort msg_lspid; /* pid of last msgsnd call */
ushort msg_lrpid; /* pid of last msgrcv call */
time_t msg_stime; /* last msgsnd time */
time_t msg_rtime; /* last msgrcv time */
time_t msg_ctime; /* last change time */

msg_perm ipc_perm structure that specifies the access permissions on the message queue.

msg_qnum Number of messages currently on the message queue.

msg_qbytes Maximum number of bytes of message text allowed on the message queue.

msg_lspid ID of the process that performed the last msgsnd system call.

msg_lrpid ID of the process that performed the last msgrcv system call.

msg_stime Time of the last msgsnd system call.

msg_rtime Time of the last msgcv system call.

msg_ctime Time of the last system call that changed a member of the msqid_ds structure.

SEMAPHORE SETS
A semaphore set is uniquely identified by a positive integer (its semid) and has an associated data structure of type struct
semid_ds, defined in <sys/sem.h>, containing the following members:

struct ipc_perm sem_perm;
time_t sem_otime; /* last operation time */

ipc

Part V: File Formats1146

time_t sem_ctime; /* last change time */
ushort sem_nsems; /* count of sems in set */

sem_perm ipc_perm structure that specifies the access permissions on the semaphore set.

sem_otime Time of last semop system call.

sem_ctime Time of last semctl system call that changed a member of the above structure or of one
semaphore belonging to the set.

sem_nsems Number of semaphores in the set. Each semaphore of the set is referenced by a non-negative
integer ranging from 0 to sem_nsems–1.

A semaphore is a data structure of type struct sem containing the following members:

ushort semval; /* semaphore value */
short sempid; /* pid for last operation */
ushort semncnt; /* no. of awaiting semval to increase */
ushort semzcnt; /* no. of awaiting semval = 0 */

semval Semaphore value: a non-negative integer.

sempid ID of the last process that performed a semaphore operation on this semaphore.

semncnt Number of processes suspended awaiting for semval to increase.

semznt Number of processes suspended awaiting for semval to become zero.

SHARED MEMORY SEGMENTS
A shared memory segment is uniquely identified by a positive integer (its shmid) and has an associated data structure of type
struct shmid_ds, defined in <sys/shm.h>, containing the following members:

struct ipc_perm shm_perm;
int shm_segsz; /* size of segment */
ushort shm_cpid; /* pid of creator */
ushort shm_lpid; /* pid, last operation */
short shm_nattch; /* no. of current attaches */
time_t shm_atime; /* time of last attach */
time_t shm_dtime; /* time of last detach */
time_t shm_ctime; /* time of last change */

shm_perm ipc_perm structure that specifies the access permissions on the shared memory segment.

shm_segsz Size in bytes of the shared memory segment.

shm_cpid ID of the process that created the shared memory segment.

shm_lpid ID of the last process that executed a shmat or shmdt system call.

shm_nattch Number of current alive attaches for this shared memory segment.

shm_atime Time of the last shmat system call.

shm_dtime Time of the last shmdt system call.

shm_ctime Time of the last shmctl system call that changed shmid_ds.

SEE ALSO
ftok(3), msgctl(2), msgget(2), msgrcv(2), msgsnd(2), semctl(2), semget(2), semop(2), shmat(2), shmctl(2), shmget(2), shmdt (2)

Linux 0.99.13, 1 November 1993

issue
issue—Issue identification file.

1147

DESCRIPTION
The file /etc/issue is a text file that contains a message or system identification to be printed before the login prompt. It
may contain various @char and \char sequences if supported by getty(1).

FILES
/etc/issue

SEE ALSO
getty(1), motd(5)

Linux, 24 July 1993

lilo.conf
lilo.conf—Configuration file for LILO.

DESCRIPTION
This file, by default /etc/lilo.conf, is read by the boot loader installer LILO (see lilo(8)).

It might look as follows:

boot = /dev/hda
delay = 40
compact
vga = normal
root = /dev/hda1
read-only
image = /zImage-1.5.99
 label = try
image = /zImage-1.0.9
 label = 1.0.9
image = /tamu/vmlinuz
 label = tamu
 root = /dev/hdb2
 vga = ask
other = /dev/hda3
 label = dos
 table = /dev/hda

This configuration file specifies that LILO uses the Master Boot Record on /dev/hda. (For a discussion of the various ways to
use LILO and the interaction with other operating systems, see user.tex from the LILO documentation.)

When booting, the boot loader will wait 4 seconds (40 deciseconds) for you to press Shift. If you don’t, then the first kernel
image mentioned (/zImage-1.5.99, which you probably installed just 5 minutes ago) will be booted. If you do, the boot
loader will ask you which image to boot. In case you forgot the possible choices, press Tab (or ? if you have a U.S. keyboard),
and you will be presented with a menu. You now have the choice of booting this brand new kernel, an old trusted kernel, or
a kernel on another root file system (just in case you did something stupid on your usual root) or booting a different
operating system. There can be up to 16 images mentioned in lilo.conf.

As can be seen previously, a configuration file starts with a number of global options (the top six lines in the example),
followed by descriptions of the options for the various images. An option in an image description will override a global
option.

lilo.conf

Part V: File Formats1148

GLOBAL OPTIONS
There are many possible keywords. The description that follows is almost literally from user.tex (just slightly abbreviated):

backup=backup-file Copy the original boot sector to backup-file (which may also be a device, such as /dev/null)
instead of /boot/boot.NNNN.

boot=boot-device Sets the name of the device (such as a hard disk partition) that contains the boot sector. If
this keyword is omitted, the boot sector is read from (and possibly written to) the device
that is currently mounted as root.

compact Tries to merge read requests for adjacent sectors into a single read request. This drastically
reduces load time and keeps the map smaller. Using compact is especially recommended
when booting from a floppy disk.

default=name Uses the specified image as the default boot image. If default is omitted, the image
appearing first in the configuration file is used.

delay=tsecs Specifies the number of tenths of a second the boot loader should wait before booting the
first image. This is useful on systems that immediately boot from the hard disk after
enabling the keyboard. The boot loader doesn’t wait if delay is omitted or is set to zero.

disk=device-name Defines non-standard parameters for the specified disk. See section “Disk Geometry” of
user.tex for details.

disktab=disktab-file Specifies the name of the disk parameter table. The map installer looks for /etc/disktab if
disktab is omitted. The use of disktabs is discouraged.

fix-table This allows LILO to adjust 3-D addresses in partition tables. Each partition entry contains a
3-D (sector/head/cylinder) and a linear address of the first and the last sector of the
partition. If a partition is not track-aligned and if certain other operating systems (such as
PC/MS-DOS or OS/2) are using the same disk, they may change the 3-D address. LILO
can store its boot sector only on partitions where both address types correspond. LILO
readjusts incorrect 3-D start addresses if fix-table is set.

Warning: This does not guarantee that other operating systems may not attempt to reset the
address later. It is also possible that this change has other, unexpected side effects. The
correct fix is to repartition the drive with a program that does align partitions to tracks.
Also, with some disks (such as some large EIDE disks with address translation enabled),
under some circumstances, it may even be unavoidable to have conflicting partition table
entries.

force-backup=backup-file Like backup but overwrite an old backup copy if it exists.

ignore-table Tells LILO to ignore corrupt partition tables.

install=boot-sector Install the specified file as the new boot sector. If install is omitted, /boot/boot.b is used as
the default.

linear Generate linear sector addresses instead of sector/head/cylinder addresses. Linear addresses
are translated at runtime and do not depend on disk geometry. Note that boot disks may
not be portable if linear is used because the BIOS service to determine the disk geometry
does not work reliably for floppy disks. When using linear with large disks, /sbin/lilo may
generate references to inaccessible disk areas because 3-D sector addresses are not known
before boot time.

lock Enables automatic recording of boot command lines as the defaults for the following boots.
This way, LILO “locks” on a choice until it is manually overridden.

map=map-file Specifies the location of the map file. If map is omitted, the file /boot/map is used.

message=message-file Specifies a file containing a message that is displayed before the boot prompt. No message is
displayed while waiting for a shifting key after printing LILO . In the message, the FF
character (Ctrl+L) clears the local screen. The size of the message file is limited to 65,535
bytes. The map file has to be rebuilt if the message file is changed or moved.

nowarn Disables warnings about possible future dangers.

1149

optional The per-image option optional applies to all images.

password=password The per-image option password=... applies to all images.

prompt Forces entering the boot prompt without expecting any prior key presses. Unattended
reboots are impossible if prompt is set and timeout isn’t.

restricted The per-image option restricted applies to all images.

serial=parameters Enables control from a serial line. The specified serial port is initialized and the boot loader
is accepting input from it and from the PC’s keyboard. Sending a break on the serial line
corresponds to pressing a Shift key on the console in order to get the boot loader’s
attention. All boot images should be password-protected if the serial access is less secure
than access to the console, such as if the line is connected to a modem. The parameter string
has the following syntax:

<port>[,<bps>[<parity>[<bits>]]]

<port>: The number of the serial port, zero-based. 0 corresponds to COM1 alias /dev/ttyS0,
and so on. All four ports can be used (if present). <bps>: The baud rate of the serial port.
The following baud rates are supported: 110, 150, 300, 600, 1200, 2400, 4800, and 9600
bps. Default is 2400 bps.

<parity>: The parity used on the serial line. The boot loader ignores input parity and strips
the eighth bit. The following (uppercase or lowercase) characters are used to describe the
parity: n for no parity, e for even parity, and o for odd parity.

<bits>: The number of bits in a character. Only 7 and 8 bits are supported. Default is 8 if
parity is none and 7 if parity is even or odd.

If serial is set, the value of delay is automatically raised to 20. For example, serial=0,2400n8
initializes COM1 with the default parameters.

timeout=tsecs Sets a time-out (in tenths of a second) for keyboard input. If no key is pressed for the
specified time, the first image is automatically booted. Similarly, password input is aborted
if the user is idle for too long. The default time-out is infinite.

verbose=level Turns on a lot of progress reporting. Higher numbers give more verbose output. If –v is
additionally specified on the LILO command line, the level is increased accordingly. The
maximum verbosity level is 5.

Additionally, the kernel configuration parameters append, ramdisk, read-only, read-write, root, and vga can be set in the
global options section. They are used as defaults if they aren’t specified in the configuration sections of the respective kernel
images.

PER-IMAGE SECTION
A per-image section starts with either a line

image=pathname

to indicate a file or device containing the boot image of a Linux kernel or a line

other=pathname

to indicate an arbitrary system to boot.

In the former case, if an image line specifies booting from a device, then one has to indicate the range of sectors to be mapped
using

range=start-end

In the latter case (booting another system), there are the three options:

loader=chain-loader This specifies the chain loader that should be used. By default, /boot/chain.b is used. The
chain loader must be specified if booting from a device other than the first hard or floppy
disk.

lilo.conf

Part V: File Formats1150

table=device This specifies the device that contains the partition table. The boot loader will not pass
partition information to the booted operating system if this variable is omitted. (Some
operating systems have other means to determine from which partition they have been
booted. For example, MS-DOS usually stores the geometry of the boot disk or partition in
its boot sector.) Note that /sbin/lilo must be rerun if a partition table mapped referenced
with table is modified.

unsafe Do not access the boot sector at map creation time. This disables some sanity checks,
including a partition table check. If the boot sector is on a fixed-format floppy disk device,
using UNSAFE avoids the need to put a readable disk into the drive when running the map
installer. unsafe and table are mutually incompatible.

In both cases, the following options apply:

label=name The boot loader uses the main file name (without its path) of each image specification to
identify that image. A different name can be used by setting the variable label.

alias=name A second name for the same entry can be used by specifying an alias.

lock (See previous description.)

optional Omit the image if it is not available at map creation time. This is useful to specify test
kernels that are not always present.

password=password Protect the image by a password.

restricted A password is only required to boot the image if parameters are specified on the command
line (such as single).

KERNEL OPTIONS
If the booted image is a Linux kernel, then one may pass command-line parameters to this kernel.

append=string Appends the options specified to the parameter line passed to the kernel. This is typically
used to specify parameters of hardware that can’t be entirely autodetected or for which
probing may be dangerous. Example: append = “hd=64,32,202”.

literal=string Like append but removes all other options (such as setting of the root device). Because vital
options can be removed unintentionally with literal, this option cannot be set in the
global options section.

ramdisk=size This specifies the size of the optional RAM disk. A value of zero indicates that no RAM disk
should be created. If this variable is omitted, the RAM disk size configured into the boot
image is used.

read-only This specifies that the root filesystem should be mounted read-only. Typically, the system
startup procedure remounts the root filesystem read-write later (such as after fscking it).

read-write This specifies that the root filesystem should be mounted read-write.

root=root-device This specifies the device that should be mounted as root. If the special name current is used,
the root device is set to the device on which the root filesystem is currently mounted. If the
root has been changed with -r, the respective device is used. If the variable root is omitted,
the root device setting contained in the kernel image is used. (That is set at compile time
using the ROOT DEV variable in the kernel makefile and can later be changed with the rdev(8)
program.)

vga=mode This specifies the VGA text mode that should be selected when booting. The following
values are recognized (case is ignored):

normal: Select normal 80x25 text mode.

extended (or ext): Select 80x50 text mode.

ask: Stop and ask for user input (at boot time).

<number>: Use the corresponding text mode. A list of available modes can be obtained by
booting with vga=ask and pressing Enter.

1151

If this variable is omitted, the VGA mode setting contained in the kernel image is used.
(That is set at compile time using the SVGA MODE variable in the kernel makefile and can later
be changed with the rdev(8) program.)

SEE ALSO
lilo(8), rdev(8). The LILO distribution comes with very extensive documentation of which the preceding information is an
extract.

28 July 1995

MAKEDEV.cfg
MAKEDEV.cfg—Configuration for MAKEDEV(8).

DESCRIPTION
MAKEDEV.cfg is a text file that tells MAKEDEV(8) what to do (and equally importantly, what not to do). Unlike DEVINFO(5), which
is meant to be centrally maintained, it contains all local configuration for a particular site and all customization. There are
basically two kinds of declaration in this file: a “class” declaration and an “omit” declaration.

A class declaration has the form

class name : owner group-owner permissions

This says that any devices placed in the specified class by DEVINFO should be created with this ownership and these permis-
sions. A sample entry might be

class public: root system 0666

This says that devices marked public should be owned by root.system and have mode 666.

An omit declaration has the form

omit { device... }

This causes the specified devices to never be created, even if explicitly specified. Use caution when setting this up. The intent
is to be able to run MAKEDEV update and not have it create all sorts of useless devices you’d never use.

SEE ALSO
MAKEDEV(8), DEVINFO(5)

Version 1.4, January 1995

moderators
moderators—Mail addresses for moderated Usenet newsgroups.

DESCRIPTION
The GetModeratorAddress(3) routine reads the file /news/lib/moderators to determine how to reach the moderator of a
newsgroup. This is used by inews(1) when an unapproved local posting is made to a moderated newsgroup.

The file is read until a match is found. Blank lines and lines starting with a number sign (#) are ignored. All other lines
should consist of two fields separated by a colon.

The first field is a wildmat(3)-style pattern. If it matches the name of the newsgroup, then the second field is taken to be a
format string for sprintf(3). This string should have at most one %s parameter, which will be given the name of the
newsgroup with periods transliterated to dashes.

moderators

Part V: File Formats1152

Here is a sample file:

foo.important:announce-request@foo.com
foo.*:%s@mailer.foo.com
gnu.*:%s@prep.ai.mit.edu
:%s@uunet.uu.net

Using this file, postings to the moderated newsgroup in the left column will be sent to the address shown in the right
column:

foo.important announce-request@foo.com
foo.x.announce foo-x-announce@mailer.foo.com
gnu.emacs.sources gnu-emacs-sources@prep.ai.mit.edu
comp.sources.unix comp-sources-unix@uunet.uu.net

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
inews(1), inn.conf(5), libinn(3), wildmat(3)

/etc/modules
/etc/modules—Kernel modules to load at boot time.

DESCRIPTION
The /etc/modules file contains the names of kernel modules that are to be loaded at boot time, one per line. Comments
begin with a #, and everything on the line after them are ignored.

Debian GNU/Linux version 0.93

motd
motd—Message of the day.

DESCRIPTION
The contents of /etc/motd are displayed by login(1) after a successful login but just before it executes the login shell.

The motd stands for “message of the day,” and this file has been traditionally been used for exactly that. (It requires much less
disk space than mail to all users.)

FILES
/etc/motd

SEE ALSO
login(1) issue(5)

Linux, 29 December 1992

mtools
mtools—Table of DOS devices.

1153

DESCRIPTION
/etc/mtools.conf and ~/.mtoolsrc are the configuration files for mtools. These configuration files describe the following
items:

Global configuration flags and variables

Per-drive flags and variables

Character translation tables

/etc/mtools.conf is the system-wide configuration file, and ~/.mtoolsrc is the user’s private configuration file.

GENERAL SYNTAX
The configuration files is made up of sections. Each section starts with a keyword identifying the section followed by a colon.
Then follow variable assignments and flags. Variable assignments take the following form:

name=value

Flags are lone keywords without an equal sign and value following them. A section either ends at the end of the file or where
the next section begins.

Lines starting with a hash (#) are comments. Newline characters are equivalent to whitespace (except where ending a
comment). The configuration file is case insensitive, except for items enclosed in quotes (such as filenames).

DEFAULT VALUES
For most platforms, mtools contains reasonable compiled-in defaults. You usually don’t need to bother with the configura-
tion file, if all you want to do with mtools is access your floppy drives. On the other hand, the configuration file is needed if
you also want to use mtools to access your hard disk partitions and dosemu image files.

GLOBAL VARIABLES
Global variables may be set to 1 or to 0.

The following global flags are recognized:

MTOOLS_SKIP_CHECK If this is set to 1, mtools skips most of its sanity checks. This is needed to read some Atari
disks that have been made with the earlier ROMs and that would not be recognized
otherwise.

MTOOLS_FAT_COMPATIBILITY If this is set to 1, mtools skips the FAT size checks. Some disks have a bigger FAT than they
really need. These are rejected if this option is not set.

MTOOLS_LOWER_CASE If this is set to 1, mtools displays all-uppercase short filenames as lowercase. This has been
done to allow a behavior that is consistent with older versions of mtools, which didn’t know
about the case bits.

For example, inserting the following line into your configuration file instructs mtools to skip the sanity checks:
MTOOLS_SKIP_CHECK=1.

Global variables may also be set via the environment: export MTOOLS_SKIP_CHECK=1.

PER-DRIVE FLAGS AND VARIABLES
Per-drive flags and values may be described in a drive section. A drive section starts with drive driveletter:.

Then follow variable-value pairs and flags.

GENERAL PURPOSE DRIVE VARIABLES
The following variables are available:

file The name of the file or device holding the disk image. This is mandatory. The filename
should be enclosed in quotes.

mtools

Part V: File Formats1154

use_xdf If this is set to a nonzero value, mtools also tries to access this disk as an Xdf disk. Xdf is a
high-capacity format used by OS/2. This is off by default.

partition Tells mtools to treat the drive as a partitioned device and to use the given partition. Only
primary partitions are accessible using this method, and they are numbered from 1 to 4. For
logical partitions, use the more general offset variable. The partition variable is intended
for Syquests, ZIP drives, and DOSEMU hdimages. It is not recommended for hard disks to
which direct access to partitions is available.

offset Describes where in the file the MS-DOS filesystem starts. This is useful for logical partitions
in DOSEMU hdimages and for ATARI RAM disks. By default, this is zero, meaning that
the filesystem starts right at the beginning of the device or file.

fat_bits The number of FAT bits. This can be 12 or 16. This is very rarely needed because it can
almost always be deduced from information in the boot sector. On the contrary, describing
the number of fat bits can actually be harmful if you get it wrong. You should only use it if
mtools gets the autodetected number of fat bits wrong or if you want to mformat a disk with
a weird number of fat bits.

Only the file option is mandatory. The other parameters may be left out. In that case, a default value or an autodetected
value is used.

DRIVE GEOMETRY CONFIGURATION
Geometry information describes the physical characteristics about the disk. Its has three purposes:

mformat The geometry information is written into the boot sector of the newly made disk. However,
you may also describe the geometry information on the command line. See mformat(1) for
details.

filtering On some Unices, device nodes only support one physical geometry. The geometry is
compared to the actual geometry stored on the boot sector to make sure that this device
node is able to correctly read the disk. If the geometry doesn’t match, this drive entry fails,
and the next drive entry bearing the same drive letter is tried. See the next section “Supply-
ing Multiple Descriptions for a Drive” for more details on supplying several descriptions for
a drive letter.

If no geometry information is supplied in the configuration file, all disks are accepted. On
Linux (and on Sparc), there exist device nodes with configurable geometry (/dev/fd0, /dev/
fd1 etc), so filtering is not needed (and ignored) for disk drives. (mtools still does do
filtering on plain files (disk images) in Linux: This is mainly intended for test purposes
because I don’t have access to a UNIX that would actually need filtering.)

initial geometry The geometry information (if available) is also used to set the initial geometry on
configurable device nodes. This initial geometry is used to read the boot sector, which
contains the real geometry. If no geometry information is supplied in the configuration file,
no initial configuration is done. On Linux, this is not really needed either because the
configurable devices are able to autodetect the disk type accurately enough (for most
common formats) to read the boot sector.

Wrong geometry information may lead to very bizarre errors. That’s why I strongly recommend that you don’t use geometry
configuration unless you really need it.

The following geometry related variables are available:

cylinders The number of cylinders.

heads The number of heads (sides).

sectors The number of sectors per track.

1155

For example, the following drive section describes a 1.44M drive:

drive a:
file=”/dev/fd0H1440"
fat_bits=12
tracks=80 heads=2 sectors=18

The following shorthand geometry descriptions are available:

1.44M High density, 3 1/2 disk. Equivalent to fat_bits=12 tracks=80 heads=2 sectors=18.

1.2M High density, 5 1/4 disk. Equivalent to fat_bits=12 tracks=80 heads=2 sectors=15.

720K Double density, 3 1/2 disk. Equivalent to fat_bits=12 tracks=80 heads=2 sectors=9.

360K Double density, 5 1/4 disk. Equivalent to fat_bits=12 tracks=40 heads=2 sectors=9.

The shorthand format descriptions may be amended. For example, 360K sectors=8 describes a 320K disk and is equivalent to
fat_bits=12 tracks=40 heads=2 sectors=8.

OPEN FLAGS
Moreover, the following flags are available:

sync All I/O operations are done synchronously.

nodelay The device or file is opened with the O_NDELAY flag. This is needed on some non-Linux
architectures.

exclusive The device or file is opened with the O_EXCL flag. On Linux, this ensures exclusive access to
the floppy drive. On most other architectures and for plain files, it has no effect at all.

SUPPLYING MULTIPLE DESCRIPTIONS FOR A DRIVE
It is possible to supply multiple descriptions for a drive. In that case, the descriptions are tried in order until one is found
that fits. Descriptions may fail for several reasons:

■ The geometry is not appropriate
■ There is no disk in the drive
■ Other problems

Multiple definitions are useful when using physical devices that are only able to support one single disk geometry:

drive a: file=”/dev/fd0H1440" 1.44m
drive a: file=”/dev/fd0H720" 720k

This instructs mtools to use /dev/fd0H1440 for 1.44M (high density) disks and /dev/fd0H720 for 720K (double density) disks.
On Linux, this feature is not really needed because the /dev/fd0 device is able to handle any geometry.

You can also use multiple drive descriptions to access both of your physical drives through one drive letter:

drive z: file=”/dev/fd0"
drive z: file=”/dev/fd1"

With this description, mdir z: accesses your first physical drive if it contains a disk. If the first drive doesn’t contain a disk,
mtools checks the second drive.

When using multiple configuration files, drive descriptions in the files parsed last override descriptions for the same drive in
earlier files. In order to avoid this, use the drive+ or +drive keywords instead of drive. The first adds a description to the end
of the list (will be tried last), and the second adds it to the start of the list.

CHARACTER TRANSLATION TABLES
If you live in the USA, in Western Europe, or in Australia, you can skip this section.

mtools

Part V: File Formats1156

INTRODUCTION
DOS uses a different character code mapping from UNIX. Seven-bit characters still have the same meaning; only characters
with the eight-bit set are affected. To make matters worse, there are several translation tables available depending on the
country where you are. The appearance of the characters is defined using code pages. These code pages aren’t the same for all
countries. For instance, some code pages don’t contain upper -case accented characters. On the other hand, some code pages
contain characters that don’t exist in UNIX, such as certain line-drawing characters or accented consonants used by some
Eastern European countries. This affects two things relating to filenames:

Uppercase characters In short names, only uppercase characters are allowed. This also holds for accented
characters. For instance, in a code page that doesn’t contain accented uppercase characters,
the accented lowercase characters get transformed into their unaccented counterparts.

Long filenames Microsoft has finally come to their senses and uses a more standard mapping for the long
filenames. They use Unicode, which is basically a 32-bit version of ASCII. Its first 256
characters are identical to UNIX ASCII. Thus, the code page also affects the correspondence
between the codes used in long names and those used in short names.

mtools considers the filenames entered on the command line as having the UNIX mapping and translates the characters to
get short names. By default, code page 850 is used with the Swiss uppercase/lowercase mapping. I chose this code page
because its set of existing characters most closely matches UNIX’s. Moreover, this code page covers most characters in use in
the USA, Australia, and Western Europe. However, it is still possible to chose a different mapping. There are two methods:
the country variable and explicit tables.

CONFIGURATION USING COUNTRY
The COUNTRY variable is recommended for people that also have access to MS-DOS system files and documentation. If you
don’t have access to these, I’d suggest you use explicit tables instead.

Syntax: COUNTRY=” country [,[codepage], country.sys]”

This tells mtools to use a UNIX-to-DOS translation table that matches codepage and an lowercase-to-uppercase table for
country and to use the country.sys file to get the lowercase-to-uppercase table. The country code is most often the telephone
prefix of the country. Refer to the DOS help page on country for more details. The codepage and the country.sys parameters
are optional. Don’t type in the square brackets; they are only there to indicate which parameters are optional. The
country.sys file is supplied with MS-DOS. In most cases, you don’t need it because the most common translation tables are
compiled into mtools. Don’t worry if you run a UNIX-only box that lacks this file.

If codepage is not given, a per-country default code page is used. If the country.sys parameter isn’t given, compiled-in
defaults are used for the lowercase-to-uppercase table. This is useful for other Unices than Linux, which may have no
country.sys file available online.

The UNIX-to-DOS are not contained in the country.sys file, and thus mtools always uses compiled-in defaults for those.
Thus, only a limited amount of code pages are supported. If your preferred code page is missing, or if you know the name of
the Windows 95 file that contains this mapping, drop me a line at Alain.Knaff@inrialpes.fr.

The COUNTRY variable can also be set using the environment.

CONFIGURATION USING EXPLICIT TRANSLATION TABLES
Translation tables may be described in lines in the configuration file. Two tables are needed: first the DOS-to-UNIX table
and then the lowercase-to-uppercase table. A DOS-to-UNIX table starts with the tounix keyword, followed by a colon and
128 hexadecimal numbers. A lower-to-upper table starts with the fucase keyword, followed by a colon and 128 hexadecimal
numbers.

The tables only show the translations for characters whose codes is greater than 128 because translation for lower codes is
trivial. Example:

1157

tounix:

0xc7 0xfc 0xe9 0xe2 0xe4 0xe0 0xe5 0xe7
0xea 0xeb 0xe8 0xef 0xee 0xec 0xc4 0xc5
0xc9 0xe6 0xc6 0xf4 0xf6 0xf2 0xfb 0xf9
0xff 0xd6 0xdc 0xf8 0xa3 0xd8 0xd7 0x5f
0xe1 0xed 0xf3 0xfa 0xf1 0xd1 0xaa 0xba
0xbf 0xae 0xac 0xbd 0xbc 0xa1 0xab 0xbb
0x5f 0x5f 0x5f 0x5f 0x5f 0xc1 0xc2 0xc0
0xa9 0x5f 0x5f 0x5f 0x5f 0xa2 0xa5 0xac
0x5f 0x5f 0x5f 0x5f 0x5f 0x5f 0xe3 0xc3
0x5f 0x5f 0x5f 0x5f 0x5f 0x5f 0x5f 0xa4
0xf0 0xd0 0xc9 0xcb 0xc8 0x69 0xcd 0xce
0xcf 0x5f 0x5f 0x5f 0x5f 0x7c 0x49 0x5f
0xd3 0xdf 0xd4 0xd2 0xf5 0xd5 0xb5 0xfe
0xde 0xda 0xd9 0xfd 0xdd 0xde 0xaf 0xb4
0xad 0xb1 0x5f 0xbe 0xb6 0xa7 0xf7 0xb8
0xb0 0xa8 0xb7 0xb9 0xb3 0xb2 0x5f 0x5f

fucase:

0x80 0x9a 0x90 0xb6 0x8e 0xb7 0x8f 0x80
0xd2 0xd3 0xd4 0xd8 0xd7 0xde 0x8e 0x8f
0x90 0x92 0x92 0xe2 0x99 0xe3 0xea 0xeb
0x59 0x99 0x9a 0x9d 0x9c 0x9d 0x9e 0x9f
0xb5 0xd6 0xe0 0xe9 0xa5 0xa5 0xa6 0xa7
0xa8 0xa9 0xaa 0xab 0xac 0xad 0xae 0xaf
0xb0 0xb1 0xb2 0xb3 0xb4 0xb5 0xb6 0xb7
0xb8 0xb9 0xba 0xbb 0xbc 0xbd 0xbe 0xbf
0xc0 0xc1 0xc2 0xc3 0xc4 0xc5 0xc7 0xc7
0xc8 0xc9 0xca 0xcb 0xcc 0xcd 0xce 0xcf
0xd1 0xd1 0xd2 0xd3 0xd4 0x49 0xd6 0xd7
0xd8 0xd9 0xda 0xdb 0xdc 0xdd 0xde 0xdf
0xe0 0xe1 0xe2 0xe3 0xe5 0xe5 0xe6 0xe8
0xe8 0xe9 0xea 0xeb 0xed 0xed 0xee 0xef
0xf0 0xf1 0xf2 0xf3 0xf4 0xf5 0xf6 0xf7
0xf8 0xf9 0xfa 0xfb 0xfc 0xfd 0xfe 0xff

The first table maps DOS character codes to UNIX character codes. For example, the DOS character number 129 is a u with
two dots on top of it. To translate it into UNIX, we look at the character number 1 in the first table (1 = 129 - 128). This is
0xfc. (Beware; numbering starts at 0.) The second table maps lowercase DOS characters to uppercase DOS characters. The
same lowercase u with dots maps to character 0x9a, which is an uppercase U with dots in DOS.

UNICODE CHARACTERS GREATER THAN 256
If an existing MS-DOS name contains Unicode character greater than 256, these are translated to underscores or to
characters that are close in visual appearance. For example, accented consonants are translated into their unaccented
counterparts. This translation is used for mdir and for the UNIX filenames generated by mcopy. Linux does support Unicode
too, but unfortunately, too few applications support it yet to bother with it in mtools. Most importantly, xterm can’t display
Unicode yet. If there is sufficient demand, I might include support for Unicode in the UNIX filenames as well.

Caution: When deleting files with mtools, the underscore matches all characters that can’t be represented in UNIX. Be
careful before mdel!

LOCATION OF CONFIGURATION FILES AND PARSING ORDER
The configuration files are parsed in the following order:

Compiled-in defaults

mtools

Part V: File Formats1158

/etc/mtools.conf

/etc/mtools. This is for backwards compatibility only and is only parsed if mtools.conf doesn’t exist.

~/.mtoolsrc

Options described in the later files override those described in the earlier files. Drives defined in earlier files persist if they are
not overridden in the later files. For instance, drives A and B may be defined in /etc/mtools.conf and drives C and D may be
defined in ~/.mtoolsrc. However, if ~/.mtoolsrc also defines drive A, this new description would override the description of
drive A in /etc/mtools.conf instead of adding to it. If you want to add a new description to a drive already described in an
earlier file, you need to use either the +drive or drive+ keywords.

BACKWARDS COMPATIBILITY
The syntax described herein is new for version mtools 2.5.4. The old line-oriented syntax is still supported. Each line
beginning with a single letter is considered to be a drive description using the old syntax. Old style and new style drive
sections may be mixed within the same configuration file to make upgrading easier. Support for the old syntax will be phased
out eventually, and to discourage its use, I purposefully omit its description here.

FILES
/etc/mtools.conf

˜/.mtoolsrc

SEE ALSO
mtools(1)

5 December 1995

newsfeeds
newsfeeds—Determine where Usenet articles get sent.

DESCRIPTION
The file /news/lib/newsfeeds specifies how incoming articles should be distributed to other sites. It is parsed by the
InterNetNews server innd(8) when it starts up or when directed to by ctlinnd(8).

The file is interpreted as a set of lines according to the following rules. If a line ends with a backslash, then the backslash, the
newline, and any whitespace at the start of the next line is deleted. This is repeated until the entire “logical” line is collected.
If the logical line is blank or starts with a number sign (#), it is ignored.

All other lines are interpreted as feed entries. An entry should consist of four colon-separated fields; two of the fields may
have optional subfields, marked off by a slash. Fields or subfields that take multiple parameters should be separated by a
comma. Extra whitespace can cause problems. Except for the site names, case is significant. The format of an entry is

sitename[/exclude,exclude,...]\
:pattern,pattern...[/distrib,distrib...]\
:flag,flag...\
:param

Each field is described below.

The sitename is the name of the site to which a news article can be sent. It is used for writing log entries and for determining
if an article should be forwarded to a site. If sitename already appears in the article’s Path header, then the article will not be
sent to the site. The name is usually whatever the remote site uses to identify itself in the Path line but can be almost any
word that makes sense; special local entries (such as archivers or gateways) should probably end with an exclamation point to
make sure that they do not have the same name as any real site. For example, gateway is an obvious name for the local entry
that forwards articles out to a mailing list. If a site with the name gateway posts an article, when the local site receives the

1159

article, it will see the name in the Path and not send the article to its own gateway entry. If an entry has an exclusion subfield,
then the article will not be sent to that site if any of the names specified as excludes appear in the Path header. The same
sitename can be used more than once; the appropriate action will be taken for each site that should receive the article,
regardless of the name, although this is recommended only for program feeds to avoid confusion. Case is not significant in
site names.

The patterns specify which groups to send to the site and are interpreted to build a “subscription list” for the site. The
default subscription is to get all groups. The patterns in the field are wildmat(3)-style patterns and are matched in order
against the list of newsgroups that the local site receives. If the first character of a pattern is an exclamation mark, then any
groups matching the pattern are removed from the subscription; otherwise, any matching groups are added. For example, to
receive all comp groups but only comp.sources.unix within the sources newsgroups, the following set of patterns can be used:

comp.*,!comp.sources.*,comp.sources.unix

There are three things to note about this example. The first is that the trailing .* is required. The second is that, again, the
result of the last match is the most important. The third is that comp.sources.* could be written as comp.sources*, but this
would not have the same effect if there were a comp.sources-only group.

See innd(8) for details on the propagation of control messages.

A subscription can be further modified by specifying “distributions” that the site should or should not receive. The default is
to send all articles to all sites that subscribe to any of the groups where it has been posted, but if an article has a Distribution
header and any distribs are specified, then they are checked according to the following rules:

1. If the Distribution header matches any of the values in the subfield, then the article is sent.
2. If a distrib starts with an exclamation point and it matches the Distribution header, then the article is not sent.
3. If Distribution header does not match any distrib in the site’s entry and no negations were used, then the article is not

sent.
4. If Distribution header does not match any distrib in the site’s entry and any distrib started with an exclamation point,

then the article is sent.

If an article has more than one distribution specified, then each one is evaluated according to the preceding rules. If any of
the specified distributions indicate that the article should be sent, it is. If none do, it is not sent: The rules are used as a
“logical or.” It is almost definitely a mistake to have a single feed that specifies distributions that start with an exclamation
point along with some that don’t.

Distributions are text words, not patterns; it is usually a mistake to have entries like * or all there.

The flags parameter specifies miscellaneous parameters. They may be specified in any order; flags that take values should
have the value immediately after the flag letter with no whitespace. The valid flags are

< size An article will only be sent to the site if it is less than size bytes long. The default is no
limit.

A checks An article will only be sent to the site if it meets the requirements specified in the checks,
which should be chosen from the following set:

d Distribution header required

p Do not check Path header before propagating.

B high/low If a site is being fed by a file, channel, or exploder, the server will usually start trying to write
the information as soon as possible. Providing a buffer may give better system performance
and help smooth out overall load if a large batch of news comes in. The value of the this flag
should be two numbers separated by a slash. The first specifies the point at which the server
can start draining the feed’s I/O buffer, and the second specifies when to stop writing and
begin buffering again; the units are bytes. The default is to do no buffering, sending output
as soon as it is possible to do so.

F name This flag specifies the name of the file that should be used if it is necessary to begin spooling
for the site. If name is not an absolute pathname, it is taken to be relative to /news/spool/
out.going. Then, if the destination is a directory, the file to go in that directory will be used
as filename.

newsfeeds

Part V: File Formats1160

G count If this flag is specified, an article will only be sent to the site if it is posted to no more than
count newsgroups.

H count If this flag is specified, an article will only be sent to the site if it has count or fewer sites in
its Path line. This flag should only be used as a rough guide because of the loose interpreta-
tion of the Path header; some sites put the poster’s name in the header, and some sites that
might logically be considered to be one hop become two because they put the posting
workstation’s name in the header. The default value for count is one.

I size The flag specifies the size of the internal buffer for a file feed. If there are more file feeds
than allowed by the system, they will be buffered internally in least recently used order. If
the internal buffer grows bigger than size bytes, however, the data will be written out to the
appropriate file.

N modifiers The newsgroups that a site receives are modified according to the modifiers, which should
be chosen from the following set:

m Only moderated groups

u Only unmoderated groups

S size If the amount of data queued for the site gets to be larger than size bytes, then the server
will switch to spooling, appending to a file specified by the F flag or /news/spool/out.going/
sitename if the F flag is not specified. Spooling usually happens only for channel or exploder
feeds.

T type This flag specifies the type of feed for the site. type should be a letter chosen from the
following set:

c Channel

f File

l Log entry only

m Funnel (multiple entries feed into one)

p Program

x Exploder. Each feed is described in the section on feed types.

The default is Tf.

W items If a site is fed by file, channel, or exploder, this flag controls what information is written. If
a site is fed by a program, only the asterisk (*) has any effect. The items should be chosen
from the following set:

b Size of the article in bytes.

f Article’s full pathname.

g The newsgroup the article is in; if cross-posted, then the first of the groups
this site gets.

m Article’s Message-ID.

n Article’s pathname relative to the spool directory.

p The site that fed the article to the server; from the Path header.

s The IP address of the site that sent the article.

t Time article was received as seconds since epoch.

* Names of the appropriate funnel entries; or all sites that get the article.

D Value of the Distribution header; ? if none present.

H All headers.

N Value of the Newsgroups header.

O Overview data.

R Information needed for replication. More than one letter can be used; the
entries will be separated by a space and written in the order in which they are
specified. The default is Wn.

1161

The H and O items are intended for use by programs that create news overview databases. If H
is present, then the all the article’s headers are written followed by a blank line. An Xref
header (even if one does not appear in the filed article) and a Bytes header, specifying the
article’s size, will also be part of the headers. If used, this should be the only item in the list;
if preceded by other items, however, a newline will be written before the headers. The O
generates input to the overchan(8) program. It, too, should be the only item in the list.

The asterisk has special meaning. It expands to a space-separated list of all sites that received
the current article. If the site is the target of a funnel, however (that is, it is named by other
sites that have a Tm flag), then the asterisk expands to the names of the funnel feeds that
received the article. If the site is fed by a program, then an asterisk in the param field will be
expanded into the list of funnel feeds that received the article. A site fed by a program
cannot get the site list unless it is the target of other Tm feeds.

The interpretation of the param field depends on the type of feed, and is explained in more detail in the section on feed types.
It can be omitted.

The site named ME is special. There should only be one such entry, and it should be the first entry in the file. If the ME entry
has a subscription list, then that list is automatically prepended to the subscription list of all other entries. For example,
,!control,!junk,!foo. can be used to set up the initial subscription list for all feeds so that local postings are not propa-
gated unless foo.* explicitly appears in the site’s subscription list. Note that most subscriptions should have !junk,!control
in their pattern list; see the discussion of control messages in innd(8). (Unlike other news software, it does not affect what
groups are received; that is done by the active(5) file.)

If the ME entry has a distribution subfield, then only articles that match the distribution list are accepted; all other articles are
rejected. A commercial news server, for example, might have /!local to reject local postings from other, misconfigured, sites.

FEED TYPES
innd provides four basic types of feeds: log, file, program, and channel. An exploder is a special type of channel. In addition,
several entries can feed into the same feed; these are funnel feeds, which refer to an entry that is one of the other types. Note
that the term “feed” is technically a misnomer because the server does not transfer articles but reports that an article should
be sent to the site.

The simplest feed is one that is fed by a log entry. Other than a mention in the news logfile, no data is ever written out. This
is equivalent to a Tf entry writing to /dev/null except that no file is opened.

A site fed by a file is simplest type of feed. When the site should receive an article, one line is written to the file named by the
param field. If param is not an absolute pathname, it is taken to be relative to /news/spool/out.going. If empty, the filename
defaults to /news/spool/out.going/sitename. This name should be unique.

When a site fed by a file is flushed (see ctlinnd), the following steps are performed. The script doing the flush should have
first renamed the file. The server tries to write out any buffered data and then closes the file. The renamed file is now
available for use. The server will then reopen the original file, which will now get created.

A site fed by a program has a process spawned for every article that the site receives. The param field must be a sprintf(3)
format string that may have a single %s parameter, which will be given a pathname for the article, relative to the news spool
directory. The full pathname may be obtained by prefixing the %s in the param field by the news spool directory prefix.
Standard input will be set to the article or /dev/null if the article cannot be opened for some reason. Standard output and
error will be set to the error log. The process will run with the user and group ID of the /news/lib/innd directory. innd will
try to avoid spawning a shell if the command has no shell meta-characters; this feature can be defeated by appending a
semicolon to the end of the command. The full pathname of the program to be run must be specified; for security, PATH is
not searched.

If the entry is the target of a funnel, and if the W* flag is used, then a single asterisk may be used in the param field where it
will be replaced by the names of the sites that fed into the funnel. If the entry is not a funnel, or if the W* flag is not used,
then the asterisk has no special meaning.

newsfeeds

Part V: File Formats1162

Flushing a site fed by a program does no action.

When a site is fed by a channel or exploder, the param field names the process to start. Again, the full pathname of the process
must be given. When the site is to receive an article, the process receives a line on its standard input telling it about the
article. Standard output and error and the user and group ID of the all subprocess are set as for a program feed. If the process
exits, it will be restarted. If the process cannot be started, the server will spool input to a file named /news/spool/out.going/
sitename. It will then try to start the process some time later.

When a site fed by a channel or exploder is flushed, the server closes down its end of the pipe. Any pending data that has not
been written will be spooled; see the description of the S flag. No signal is sent; it is up to the program to notice EOF on its
standard input and exit. The server then starts a new process.

Exploders are a superset of channel feeds. In addition to channel behavior, exploders can be sent command lines. These lines
start with an exclamation point, and their interpretation is up to the exploder. The following messages are generated
automatically by the server:

newgroup group
rmgroup group
flush
flush site

These messages are sent when the ctlinnd command of the same name is received by the server. In addition, the send
command can be used to send an arbitrary command line to the exploder child-process. The primary exploder is buffchan(8).

Funnel feeds provide a way of merging several site entries into a single output stream. For a site feeding into a funnel, the
param field names the actual entry that does the feeding.

For more details on setting up different types of news feeds, see the INN installation manual.

EXAMPLES
Initial subscription list and our distributions.
ME:*,!junk,!foo.*/world,usa,na,ne,foo,ddn,gnu,inet\
::
Feed all moderated source postings to an archiver
source-archive!:!*,comp.sources.*\
:Tp,Nm:/usr/local/bin/archive %s
Watch for big postings
watcher!:*\
:Tc,Wbnm\
:exec awk ‘$1 > 1000000 { print “BIG”, $2, $3 }’ >/dev/console
A UUCP feed, where we try to keep the “batching” between 4 and 1K.
ihnp4:/world,usa,na,ddn,gnu\
:Tf,Wfb,B4096/1024:
Usenet as mail; note ! in funnel name to avoid Path conflicts.
Can’t use ! in “fred” since it would like look a UUCP address.
fred:!*,comp.sources.unix,comp.sources.bugs\
:Tm:mailer!
barney@bar.com:!*,news.software.nntp,comp.sources.bugs\
:Tm:mailer!
mailer!:!*\
:W*,Tp:/usr/ucb/Mail -s “News article” *
NNTP feeds fed off-line via nntpsend or equivalent.
feed1::Tf,Wnm:feed1.domain.name
peer.foo.com:foo.*:Tf,Wnm:peer.foo.com
Real-time transmission.
mit.edu:/world,usa,na,ne,ddn,gnu,inet\
:Tc,Wnm:/nntplink -i stdin mit.edu
Two sites feeding into a hypothetical NNTP fan-out program:
nic.near.net:\
:Tm:nntpfunnel1

1163

uunet.uu.net/uunet:!ne.*/world,usa,na,foo,ddn,gnu,inet\
:Tm:nntpfunnel1
nntpfunnel1:!*\
:Tc,Wmn*:/nntpfanout
A UUCP site that wants comp.* and moderated soc groups
uucpsite!comp:!*,comp.*/world,usa,na,gnu\
:Tm:uucpsite
uucpsite!soc:!*,soc.*/world,usa,na,gnu\
:Tm,Nm:uucpsite
uucpsite:!*\
:Tf,Wfb:/usr/spool/batch/uucpsite

The last two sets of entries show how funnel feeds can be used. For example, the nntpfanout program would receive lines like
the following on its standard input:

<123@litchi.foo.com> comp/sources/unix/888 nic.near.net uunet.uu.net
<124@litchi.foo.com> ne/general/1003 nic.near.net

Because the UUCP funnel is only destined for one site, the asterisk is not needed and entries like the following will be
written into the file:

<qwe#37x@snark.uu.net>comp/society/folklore/3
<123@litchi.foo.com> comp/sources/unix/888

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
active(5), buffchan(8), ctlinnd(8), innd(8), wildmat(3)

newslog
newslog—Description of Usenet log files.

DESCRIPTION
Most log files created by Usenet programs reside in the /var/log/news directory and have a .log extension. Several versions
are usually kept with an additional extension such as .1, .2, and so on; the higher the number, the older the log. The older
versions are compressed.

The scanlogs script and related utilities (see newslog(8)) are responsible for rotating and compressing these files.

Some log files always have data, others only have data if there is a problem, and others are only created if a particular
program is used or configuration parameter is set. The innstat script (see newslog(8)) monitors the size of all log files.

The following files will only accumulate data under the direction of control.ctl(5):

control.log, miscctl.log, newgroup.log, rmgroup.log, unwanted.log

In order to create these files, the message and action fields of control.ctl should be chosen from the following table:

Message Action Meaning

all log=miscctl Log all messages by default

default log=miscctl Log unknown messages

newgroup doit=newgroup Create group and log message

newgroup log=newgroup Log message

continues

newslog

Part V: File Formats1164

rmgroup doit=rmgroup Remove group and log message

rmgroup log=rmgroup Log message

“other” doit=miscctl Log and process the message

“other” log=miscctl Log message

Here, “other” refers to any other control message such as:

checkgroups ihave sendme sendsys senduuname version

The following is a list of log files.

control.log This file maintains a count of the number of newgroup and rmgroup control messages seen for
each newsgroup. The count is of the number of control messages with identical arguments,
regardless of whether they were actually processed. All control arguments, including invalid
ones, are counted. This file is updated by tally.control, which is invoked by scanlogs if
either the newgroup or rmgroup logs exist. This file is not rotated.

errlog This file contains the standard output and standard error of any program spawned by
innd(8). The most common programs are the control-message handlers found in /news/bin/
control. This file should be empty. Scanlogs will print the entire contents of this log file if it
is non-empty.

expire.log By default, when news.daily is going to expire old news articles, it writes the date to this
file, followed by any output from expire(8) and the ending date. All lines but the first are
indented four spaces.

miscctl.log When control.ctl is configured as described above, all control messages except newgroup
and rmgroup are appended to this file by writelog. There will be a summary line describing
the message and the action taken, followed by the article indented by four spaces and a
blank line.

newgroup.log When control.ctl is configured as described above, all newgroup messages are appended to
this file using the same format as for miscctl.log.

news This file logs articles received by innd. scanlogs summarizes the rejected articles reported in
this file.

news.crit All critical error messages issued by innd are appended to this file via syslog(3). This log file
should be empty. scanlogs will print the entire contents of this log file if it is non-empty.
You should have the following line in your syslog.conf(5) file:

news.crit /var/log/news/news.crit

news.err All major error messages issued by innd are appended to this file via syslog. This log file
should be empty. scanlogs will print the entire contents of this log file if it is non-empty.
You should have the following line in your syslog.conf file:

news.err /var/log/news/news.err

news.notice All standard error messages and status messages issued by innd are appended to this file via
syslog. scanlogs uses the awk(1) script innlog.awk to summarize this file. You should have
the following line in your syslog.conf file:

news.notice /var/log/news/news.notice

nntpsend.log The nntpsend(8) programs appends all status messages to this file.

rmgroup.log When control.ctl is configured as described previously, all rmgroup messages are appended
to this file using the same format as for miscctl.log.

unwanted.log This log maintains a count of the number of articles that were rejected because they were
posted to newsgroups that do not exist at the local site. This file is updated by
tally.unwanted and maintained in reverse numeric order (the most popular rejected group
first). This file is not rotated.

Message Action Meaning

1165

HISTORY
Written by Landon Curt Noll (chongo@toad.com) and Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
control.ctl(5), ctlinnd(8), expire(8), innd(8), news.daily(8), nntpsend(8), newslog(8)

nfs
nfs—NFS fstab format and options.

SYNOPSIS
/etc/fstab

DESCRIPTION
The fstab file contains information about which filesystems to mount where and with what options. For NFS mounts, it
contains the server name and exported server directory to mount from, the local directory that is the mount point, and the
NFS-specific options that control the way the filesystem is mounted. Here is an example from an /etc/fstab file from an
NFS mount.

server:/usr/local/pub /pub nfs rsize=8192,wsize=8192,timeo=14,intr

OPTIONS
rsize=n The number of bytes NFS uses when reading files from an NFS server. The default value is

dependent on the kernel, currently 1024 bytes. (However, throughput is improved greatly by
asking for rsize=8192.)

wsize=n The number of bytes NFS uses when writing files to an NFS server. The default value is
dependent on the kernel, currently 1024 bytes. (However, throughput is improved greatly by
asking for wsize=8192.)

timeo=n The value in tenths of a second before sending the first retransmission after an RPC time-
out. The default value is 7 tenths of a second. After the first time-out, the time-out is
doubled after each successive time-out until a maximum time-out of 60 seconds is reached
or the enough retransmissions have occurred to cause a major time-out. Then, if the
filesystem is hard mounted, each new time-out cascade restarts at twice the initial value of
the previous cascade, again doubling at each retransmission. The maximum time-out is
always 60 seconds. Better overall performance may be achieved by increasing the time-out
when mounting on a busy network, to a slow server, or through several routers or gateways.

retrans=n The number of minor time-outs and retransmissions that must occur before a major time-
out occurs. The default is 3 time-outs. When a major time-out occurs, the file operation is
either aborted or a “server not responding” message is printed on the console.

acregmin=n The minimum time in seconds that attributes of a regular file should be cached before
requesting fresh information from a server. The default is 3 seconds.

acregmax=n The maximum time in seconds that attributes of a regular file can be cached before
requesting fresh information from a server. The default is 60 seconds.

acdirmin=n The minimum time in seconds that attributes of a directory should be cached before
requesting fresh information from a server. The default is 30 seconds.

acdirmax=n The maximum time in seconds that attributes of a directory can be cached before requesting
fresh information from a server. The default is 60 seconds.

actimeo=n Using actimeo sets all of acregmin, acregmax, acdirmin, and acdirmax to the same value. There
is no default value.

nfs

Part V: File Formats1166

retry=n The number of times to retry a backgrounded NFS mount operation before giving up. The
default value is 10000 times.

namlen=n When an NFS server does not support version 2 of the RPC mount protocol, this option
can be used to specify the maximum length of a filename that is supported on the remote
filesystem. This is used to support the POSIX pathconf functions. The default is 255
characters.

port=n The numeric value of the port to connect to the NFS server on. If the port number is 0 (the
default) then query the remote host’s port mapper for the port number to use. If the remote
host’s NFS daemon is not registered with its port mapper, the standard NFS port number
2049 is used instead.

mountport=n The numeric value of the mountd port.

mounthost=name The name of the host running mountd.

mountprog=n Use an alternate RPC program number to contact the mount daemon on the remote host.
This option is useful for hosts that can run multiple NFS servers. The default value is
100005, which is the standard RPC mount daemon program number.

mountvers=n Use an alternate RPC version number to contact the mount daemon on the remote host.
This option is useful for hosts that can run multiple NFS servers. The default value is
version 1.

nfsprog=n Use an alternate RPC program number to contact the NFS daemon on the remote host.
This option is useful for hosts that can run multiple NFS servers. The default value is
100003, which is the standard RPC NFS daemon program number.

nfsvers=n Use an alternate RPC version number to contact the NFS daemon on the remote host. This
option is useful for hosts that can run multiple NFS servers. The default value is version 2.

bg If the first NFS mount attempt times out, continue trying the mount in the background.
The default is to not to background the mount on time-out but to fail.

fg If the first NFS mount attempt times out, fail immediately. This is the default.

soft If an NFS file operation has a major time-out, then report an I/O error to the calling
program. The default is to continue retrying NFS file operations indefinitely.

hard If an NFS file operation has a major time-out, then report “server not responding” on the
console and continue retrying indefinitely. This is the default.

intr If an NFS file operation has a major time-out and it is hard mounted, then allow signals to
interrupt the file operation and cause it to return EINTR to the calling program. The default
is to not allow file operations to be interrupted.

posix Mount the NFS filesystem using POSIX semantics. This allows an NFS filesystem to
properly support the POSIX pathconf command by querying the mount server for the
maximum length of a filename. To do this, the remote host must support version 2 of the
RPC mount protocol. Many NFS servers support only version 1.

nocto Suppress the retrieval of new attributes when creating a file.

noac Disable all forms of attribute caching entirely. This extracts a server performance penalty,
but it allows two different NFS clients to get reasonably good results when both clients are
actively writing to a common filesystem on the server.

tcp Mount the NFS filesystem using the TCP protocol instead of the default UDP protocol.
Many NFS severs only support UDP.

udp Mount the NFS filesystem using the UDP protocol. This is the default. All the non-value
options have corresponding nooption forms. For example, nointr means don’t allow file
operations to be interrupted.

FILES
/etc/fstab

1167

SEE ALSO
fstab(5), mount(8), umount(8), exports(5)

AUTHOR
Rick Sladkey (jrs@world.std.com)

BUGS
The bg, fg, retry, posix, and nocto options are parsed by mount but currently are silently ignored. The tcp and namlen
options are implemented but are not currently supported by the Linux kernel. The umount command should notify the server
when an NFS filesystem is unmounted.

Linux 0.99, 20 November 1993

nnrp.access
nnrp.access—Access file for on-campus NNTP sites.

DESCRIPTION
The file /news/lib/nnrp.access specifies the access control for those NNTP sites that are not handled by the main
InterNetNews daemon innd(8). The nnrpd(8) server reads it when first spawned by innd.

Comments begin with a number sign (#) and continue through the end of the line. Blank lines and comments are ignored.
All other lines should consist of five fields separated by colons:

hosts:perms:username:password:patterns

The first field is a wildmat(3)-style pattern specifying the names or Internet address of a set of hosts. Before a match is
checked, the client’s hostname (or its Internet address if gethostbyaddr(3) fails) is converted to lowercase. Each line is
matched in turn, and the last successful match is taken as the correct one.

The second field is a set of letters specifying the permissions granted to the client. The perms should be chosen from the
following set:

R The client can retrieve articles

P The client can post articles

The third and fourth fields specify the username and password that the client must use to authenticate themselves before the
server will accept any articles. Note that no authentication (other than a matching entry in this file) is required for
newsreading. If they are empty, then no password is required. Whitespace in these fields will result in the client being unable
to properly authenticate themselves and may be used to disable access.

The fifth field is a set of patterns identifying the newsgroups that the client is allowed to access. The patterns are interpreted
in the same manner as the newsfeeds(5) file. The default, however, denies access to all groups.

The access file is normally used to provide host-level access control for reading and posting articles. There are times, however,
when this is not sufficient and user-level access control is needed. Whenever an NNTP authinfo command is used, the nnrpd
server rereads this file and looks for a matching username and password. If the local newsreaders are modified to send the
authinfo command, then all host entries can have no access and specific users can be granted the appropriate read and post
access. For example:

host:perm:user:pass:groups
Default is no access.
:: -no- : -no- :!*
FOO hosts have no password, can read anything.
.foo.com:Read Post:::*
A related workstation can’t access FOO newsgroups.
lenox.foo.net:RP:martha:hiatt:*,!foo.*

nnrp.access

Part V: File Formats1168

If the file contains passwords, it should not be world-readable.

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
innd(8), newsfeeds(5), nnrpd(8), wildmat(3)

nntpsend.ctl
nntpsend.ctl—List of sites to feed via nntpsend.

DESCRIPTION
The file /news/lib/nntpsend.ctl specifies the default list of sites to be fed by nntpsend(8).

Comments begin with a number sign (#) and continue through the end of the line. Blank lines and comments are ignored.
All other lines should consist of four fields separated by a colon.

The first field is the name of the site as specified in the newsfeeds(5) file.

The second field should be the hostname or IP address of the remote site.

The third field, if non-empty, specifies the default tail truncation size of site’s batchfile. This is passed to shrinkfile as the –s
flag. If this field is empty, no truncation is performed.

The fourth field specifies some default flags passed to innxmit(8). The flag –a is always given to innxmit and need not appear
here. If no –t timeout flag is given in this field and on the nntpsend command line, –t 180 will be given to innxmit.

HISTORY
Written by Landon Curt Noll (chongo@toad.com) for InterNetNews.

SEE ALSO
innxmit(8), newsfeeds(5), nntpsend(8), trunc(1)

nologin
nologin—Prevent usual users from logging into the system.

DESCRIPTION
If the file /etc/nologin exists, login(1) will allow access only to root. Other users will be shown the contents of this file and
their logins refused.

FILES
/etc/nologin

SEE ALSO
login(1), shutdown(8)

Linux, 29 December 1992

overview.fmt
overview.fmt—Format of news overview database.

1169

DESCRIPTION
The file /news/lib/overview.fmt specifies the organization of the news overview database. Blank lines and lines beginning
with a number sign (#) are ignored. The order of lines in this file is important; it determines the order in which the fields will
appear in the database.

Most lines will consist of an article header name, optionally followed by a colon. A trailing set of lines can have the word full
appear after the colon; this indicates that the header should appear as well as its value.

If this file is changed, it is usually necessary to rebuild the existing overview database using expireover(8) after removing all
existing overview files.

The default file, show here, is compatible with Geoff Collyer’s nov package:

Subject:
From:
Date:
Message-ID:
References:
Bytes:
Lines:
Some newsreaders get better performance if Xref is present
#Xref:full

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews. Intended to be compatible with the nov package written by
Geoff Collyer (geoff@world.std.com).

passwd
passwd—Password file.

DESCRIPTION
passwd is an ASCII file that contains a list of the system’s users and the passwords they must use for access. The password file
should have general read permission (many utilities, such as ls(1), use it to map user IDs to usernames) but write access only
for the superuser.

In the good old days, there was no great problem with this general read permission. Everybody could read the encrypted
passwords, but the hardware was too slow to crack a well-chosen password, and moreover, the basic assumption used to be
that of a friendly user community. These days, many people run some version of the shadow password suite, where /etc/
passwd has *s instead of passwords, and the encrypted passwords are in /etc/shadow, which is readable by root only.

When you create a new login, leave the password field empty and use passwd(1) to fill it. A star (*) in the password field
means that this user cannot log in via login(1).

There is one entry per line, and each line has the format:

login_name:passwd:UID:GID:user_name:directory:shell

The field descriptions are

login_name The name of the user on the system.

password The encrypted optional user password.

UID The numerical user ID.

GID The numerical group ID for this user.

user_name The (optional) comment field (often a full username).

directory The user’s $HOME directory.

shell The program to run at login (if empty, use /bin/sh).

passwd

Part V: File Formats1170

NOTE
If your root file system is on /dev/ram, you must save a changed password file to your root filesystem floppy before you shut
down the system and check the access rights. If you want to create user groups, their GIDs must be equal and there must be
an entry in /etc/group, or no group will exist.

FILES
/etc/passwd

SEE ALSO
passwd(1), login(1), group(5), shadow(5)

Linux, 24 July 1993

passwd.nntp
passwd.nntp—Passwords for connecting to remote NNTP servers.

DESCRIPTION
The file /news/lib/passwd.nntp contains host-name-password triplets for use when authenticating client programs to NNTP
servers. This file is normally interpreted by the NNTPsend-password routine in libinn(3). Blank lines and lines beginning with
a number sign (#) are ignored. All other lines should consist of three or fields separated by colons:

host:name:password
host:name:password:style

The first field is the name of a host and is matched in a case-insensitive manner. The second field is a username, and the
third is a password. The optional fourth field specifies the type of authentication to use. The default is authinfo, which
means that NNTP authinfo commands are used to authenticate to the remote host. If either the username or password are
empty, then the related command will not be sent. (The authinfo command is a common extension to RFC 977.) For
example:

UUNET needs a password, MIT doesn’t.
mit.edu:bbn::authinfo
uunet.uu.net:bbn:yoyoma:authinfo

This file should not be world-readable.

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
innd(8), libinn(3)

pbm
pbm—Portable bitmap file format.

DESCRIPTION
The portable bitmap format is a lowest common denominator monochrome file format. It was originally designed to make it
reasonable to mail bitmaps between different types of machines using the typical stupid network mailers we have today. Now
it serves as the common language of a large family of bitmap conversion filters. The definition is as follows:

A “magic number” for identifying the file type. A pbm file’s magic number is the two characters P1.

1171

Whitespace (blanks, Tabs, CRs, LFs).

A width, formatted as ASCII characters in decimal.

Whitespace.

A height, again in ASCII decimal.

Whitespace.

Width * height bits, each either 1 or 0, starting at the top-left corner of the bitmap, proceeding in normal English reading
order.

The character 1 means black; 0 means white.

Whitespace in the bits section is ignored.

Characters from a # to the next end-of-line are ignored (comments).

No line should be longer than 70 characters.

Here is an example of a small bitmap in this format:

P1
feep.pbm
24 7
0 0
0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0
0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0
0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0
0 0

Programs that read this format should be as lenient as possible, accepting anything that looks remotely like a bitmap.

There is also a variant on the format, available by setting the RAWBITS option at compile time. This variant is different in the
following ways:

The “magic number” is P4 instead of P1.

The bits are stored eight per byte, high bit first and low bit last.

No whitespace is allowed in the bits section, and only a single character of whitespace (typically a newline) is allowed after
the height.

The files are eight times smaller and many times faster to read and write.

SEE ALSO
atktopbm(1), brushtopbm(1), cmuwmtopbm(1), g3topbm(1), gemtopbm(1), icontopbm(1), macptopbm(1), mgrtopbm(1), pi3topbm(1),
xbmtopbm(1), ybmtopbm(1), pbmto10x(1), pnmtoascii(1), pbmtoatk(1), pbmtobbnbg(1), pbmtocmuwm(1), pbmtoepson(1), pbmtog3(1),
pbmtogem(1), pbmtogo(1), pbmtoicon(1), pbmtolj(1), pbmtomacp(1), pbmtomgr(1), pbmtopi3(1), pbmtoplot(1), pbmtoptx(1),
pbmtox10bm(1), pbmtoxbm(1), pbmtoybm(1), pbmtozinc(1), pbmlife(1), pbmmake(1), pbmmask(1), pbmreduce(1), pbmtext(1),
pbmupc(1), pnm(5), pgm(5), ppm(5)

AUTHOR
Copyright 1989, 1991 by Jef Poskanzer.

27 September 1991

pgm
pgm—Portable graymap file format.

pgm

Part V: File Formats1172

DESCRIPTION
The portable graymap format is a lowest common denominator grayscale file format. The definition is as follows:

A “magic number” for identifying the file type. A pgm file’s magic number is the two characters P2.

Whitespace (blanks, Tabs, CRs, LFs).

A width, formatted as ASCII characters in decimal.

Whitespace.

A height, again in ASCII decimal.

Whitespace.

The maximum gray value, again in ASCII decimal.

Whitespace.

Width * height gray values, each in ASCII decimal, between 0 and the specified maximum value, separated by whitespace,
starting at the top-left corner of the graymap, proceeding in normal English reading order. A value of 0 means black, and the
maximum value means white.

Characters from a # to the next end-of-line are ignored (comments).

No line should be longer than 70 characters.

Here is an example of a small graymap in this format:

P2
feep.pgm
24 7
15
0 0
0 3 3 3 3 0 0 7 7 7 7 0 0 11 11 1111 0 0 15 1515 15 0
0 3 0 0 0 0 0 7 0 0 0 0 0 11 0 0 0 0 0 15 0 0 150
0 3 3 3 0 0 0 7 7 7 0 0 0 11 11 110 0 0 15 15 15 150
0 3 0 0 0 0 0 7 0 0 0 0 0 11 0 0 0 0 0 15 0 0 0 0
0 3 0 0 0 0 0 7 7 7 7 0 0 11 11 1111 0 0 15 0 0 0 0
0 0

Programs that read this format should be as lenient as possible, accepting anything that looks remotely like a graymap.

There is also a variant on the format, available by setting the RAWBITS option at compile time. This variant is different in the
following ways:

The “magic number” is P5 instead of P2.

The gray values are stored as plain bytes, instead of ASCII decimal.

No whitespace is allowed in the grays section, and only a single character of whitespace (typically a newline) is allowed after
the maxval.

The files are smaller and many times faster to read and write.

Note that this raw format can only be used for maxvals less than or equal to 255. If you use the pgm library and try to write a
file with a larger maxval, it will automatically fall back on the slower but more general plain format.

SEE ALSO
fitstopgm(1), fstopgm(1), hipstopgm(1), lispmtopgm(1), psidtopgm(1), rawtopgm(1), pgmbentley(1), pgmcrater(1), pgmedge(1),
pgmenhance(1), pgmhist(1), pgmnorm(1), pgmoil(1), pgmramp(1), pgmtexture(1), pgmtofits(1), pgmtofs(1), pgmtolispm(1),
pgmtopbm(1), pnm(5), pbm(5), ppm(5)

AUTHOR
Copyright 1989, 1991 by Jef Poskanzer.

12 November 1991

1173

pnm
pnm—Portable anymap file format.

DESCRIPTION
The pnm programs operate on portable bitmaps, graymaps, and pixmaps produced by the pbm, pgm, and ppm segments. There is
no file format associated with pnm itself.

SEE ALSO
anytopnm(1), rasttopnm(1), tifftopnm(1), xwdtopnm(1), pnmtops(1), pnmtorast(1), pnmtotiff(1), pnmtoxwd(1), pnmarith(1),
pnmcat(1), pnmconvol(1), pnmcrop(1), pnmcut(1), pnmdepth(1), pnmenlarge(1), pnmfile(1), pnmflip(1), pnmgamma(1), pnmindex(1),
pnminvert(1), pnmmargin(1), pnmnoraw(1), pnmpaste(1), pnmrotate(1), pnmscale(1), pnmshear(1), pnmsmooth(1), pnmtile(1),
ppm(5), pgm(5), pbm(5)

AUTHOR
Copyright 1989, 1991 by Jef Poskanzer.

27 September 1991

ppm
ppm—Portable pixmap file format.

DESCRIPTION
The portable pixmap format is a lowest common denominator color image file format. The definition is as follows:

A “magic number” for identifying the file type. A ppm file’s magic number is the two characters P3.

Whitespace (blanks, Tabs, CRs, LFs).

A width, formatted as ASCII characters in decimal.

Whitespace.

A height, again in ASCII decimal.

Whitespace.

The maximum color-component value, again in ASCII decimal.

Whitespace.

Width * height pixels, each three ASCII decimal values between 0 and the specified maximum value, starting at the top-left
corner of the pixmap, proceeding in normal English reading order. The three values for each pixel represent red, green, and
blue; a value of 0 means that color is off, and the maximum value means that color is maxed out.

Characters from a # to the next end-of-line are ignored (comments).

No line should be longer than 70 characters.

Here is an example of a small pixmap in this format:

P3
feep.ppm
4 4
15
0 0 0 0 0 0 0 0 0 15 0 15
0 0 0 0 15 7 0 0 0 0 0 0
0 0 0 0 0 0 0 15 7 0 0 0
15 0 150 0 0 00 0 0 0 0

Programs that read this format should be as lenient as possible, accepting anything that looks remotely like a pixmap.

ppm

Part V: File Formats1174

There is also a variant on the format, available by setting the RAWBITS option at compile time. This variant is different in the
following ways:

The “magic number” is P6 instead of P3.

The pixel values are stored as plain bytes, instead of ASCII decimal.

Whitespace is not allowed in the pixels area, and only a single character of whitespace (typically a newline) is allowed after
the maxval.

The files are smaller and many times faster to read and write.

Note that this raw format can only be used for maxvals less than or equal to 255. If you use the ppm library and try to write a
file with a larger maxval, it will automatically fall back on the slower but more general plain format.

SEE ALSO
giftoppm(1), gouldtoppm(1), ilbmtoppm(1), imgtoppm(1), mtvtoppm(1), pcxtoppm(1), pgmtoppm(1), pi1toppm(1), picttoppm(1),
pjtoppm(1), qrttoppm(1), rawtoppm(1), rgb3toppm(1), sldtoppm(1), spctoppm(1), sputoppm(1), tgatoppm(1), ximtoppm(1),
xpmtoppm(1), yuvtoppm(1), ppmtoacad(1), ppmtogif(1), ppmtoicr(1), ppmtoilbm(1), ppmtopcx(1), ppmtopgm(1), ppmtopi1(1),
ppmtopict(1), ppmtopj(1), ppmtopuzz(1), ppmtorgb3(1), ppmtosixel(1), ppmtotga(1), ppmtouil(1), ppmtoxpm(1), ppmtoyuv(1),
ppmdither(1), ppmforge(1), ppmhist(1), ppmmake(1), ppmpat(1), ppmquant(1), ppmquantall(1), ppmrelief(1), pnm(5), pgm(5), pbm(5)

AUTHOR
Copyright 1989, 1991 by Jef Poskanzer.

27 September 1991

/proc
/proc—Process information pseudo-filesystem.

DESCRIPTION
/proc is a pseudo-filesystem that is used as an interface to kernel data structures rather than reading and interpreting /dev/
kmem. Most of it is read-only, but some files allow kernel variables to be changed.

The following outline gives a quick tour through the /proc hierarchy.

[number] There is a numerical subdirectory for each running process; the subdirectory is named by the
process ID. Each contains the following pseudo-files and directories.

cmdline This holds the complete command line for the process, unless the whole process has been swapped
out or unless the process is a zombie. In either of these later cases, there is nothing in this file: That
is, a read on this file will return as having read 0 characters. This file is null-terminated but not
newline-terminated.

cwd This is a link current working directory of the process. To find out the cwd of process 20, for
instance, you can do this: cd /proc/20/cwd; /bin/pwd. Note that the pwd command is often a shell
built in and might not work properly in this context.

environ This file contains the environment for the process. The entries are separated by null characters, and
there may be a null character at the end. Thus, to print out the environment of process 1, you
would do

(cat /proc/1/environ; echo) | tr “\000” “\n”

For a reason why one should want to do this, see lilo(8).

exe A pointer to the binary that was executed and appears as a symbolic link. readlink(2) on the exe
special file returns a string in the format:

[device]:inode

For example, [0301]:1502 is inode 1502 on device major 03 (IDE, MFM, and so on drives), minor

1175

01 (first partition on the first drive). Also, the symbolic link can be dereferenced normally;
attempting to open exe will open the executable. You can even type /proc/[number]/exe to run
another copy of the same process as [number].

find(1) with the -inum option can be used to locate the file.

fd This is a subdirectory containing one entry for each file that the process has open, named by its file
descriptor, and that is a symbolic link to the actual file (as the exe entry does). Thus, 0 is standard
input, 1 standard output, 2 standard error, and so on.

Programs that will take a filename but will not take the standard input and that write to a file but
will not send their output to standard output can be effectively foiled this way, assuming that -i is
the flag designating an input file and -o is the flag designating an output file:

foobar -i /proc/self/fd/0 -o /proc/self/fd/1 ...

and you have a working filter. Note that this will not work for programs that seek on their files
because the files in the fd directory are not seekable.

/proc/self/fd/N is approximately the same as /dev/fd/N in some UNIX and UNIX-like systems.
Most Linux MAKEDEV scripts symbolically link /dev/fd to /proc/self/fd, in fact.

maps A file containing the currently mapped memory regions and their access permissions.

The format is

address perms offset dev inode

00000000-0002f000 r-x– 00000400 03:03 1401

0002f000-00032000 rwx-p 0002f400 03:03 1401

00032000-0005b000 rwx-p 00000000 00:00 0

60000000-60098000 rwx-p 00000400 03:03 215

60098000-600c7000 rwx-p 00000000 00:00 0

bfffa000-c0000000 rwx-p 00000000 00:00 0

address is the address space in the process that it occupies. perms is a set of permissions: r = read, w
= write, x = execute, s = shared, p = private (copy on write).

offset is the offset into the file/whatever, dev is the device (major: minor), and inode is the inode
on that device. 0 indicates that no inode is associated with the memory region, as the case would be
with bss.

mem This is not the same as the mem (1,1) device, despite the fact that it has the same device numbers.
The /dev/mem device is the physical memory before any address translation is done, but the mem file
here is the memory of the process that accesses it. This cannot be mmap(2)ed currently, and will not
be until a general mmap(2) is added to the kernel. (This might have happened by the time you read
this.)

mmap Directory of maps by mmap(2) that are symbolic links such as exe, fd/*, and so on. Note that maps
includes a superset of this information, so /proc/*/mmap should be considered obsolete.

0 is usually libc.so.4.

/proc/*/mmap was removed in Linux kernel version 1.1.40. (It really was obsolete!)

root UNIX and Linux support the idea of a per-process root of the filesystem, set by the chroot(2)
system call. root points to the filesystem root and behaves as exe, fd/*, and so on do.

stat Status information about the process. This is used by ps(1). The fields, in order, with their proper
scanf(3) format specifiers, are

pid %d The process ID.

comm %s The filename of the executable in parentheses. This is visible whether or not
the executable is swapped out.

/proc

Part V: File Formats1176

state %c One character from the string RSDZT where R is running, S is sleeping in an
interruptible wait, D is sleeping in an uninterruptible wait or swapping, Z is
zombie, and T is traced or stopped (on a signal).

ppid %d The PID of the parent.

pgrp %d The process group ID of the process.

session %d The session ID of the process.

tty %d The tty the process uses.

tpgid %d The process group ID of the process that currently owns the tty that the
process is connected to.

flags %u The flags of the process. Currently, every flag has the math bit set because
crt0.s checks for math emulation, so this is not included in the output. This
is probably a bug because not every process is a compiled C program. The
math bit should be a decimal 4, and the traced bit is decimal 10.

minflt %u The number of minor faults the process has made, those that have not
required loading a memory page from disk.

cminflt %u The number of minor faults that the process and its children have made.

majflt %u The number of major faults the process has made, those that have required
loading a memory page from disk.

cmajflt %u The number of major faults that the process and its children have made.

utime %d The number of jiffies that this process has been scheduled in user mode.

stime %d The number of jiffies that this process has been scheduled in kernel mode.

cutime %d The number of jiffies that this process and its children have been scheduled
in user mode.

cstime %d The number of jiffies that this process and its children have been scheduled
in kernel mode.

counter %d The current maximum size in jiffies of the process’s next timeslice, or what is
currently left of its current timeslice if it is the currently running process.

priority %d The standard nice value, plus fifteen. The value is never negative in the
kernel.

timeout %u The time in jiffies of the process’s next time-out.

itrealvalue %u The time (in jiffies) before the next SIGALRM is sent to the process due to an
interval timer.

starttime %d Time the process started in jiffies after system boot.

vsize %u Virtual memory size.

rss %u Resident set size: Number of pages the process has in real memory, minus 3
for administrative purposes. This is just the pages that count toward text,
data, or stack space. This does not include pages that have not been demand-
loaded in or that are swapped out.

rlim %u Current limit in bytes on the rss of the process (usually 2,147,483,647).

startcode %u The address above which program text can run.

endcode %u The address below which program text can run.

startstack %u The address of the start of the stack.

kstkesp %u The current value of esp (32-bit stack pointer), as found in the kernel stack
page for the process.

kstkeip %u The current EIP (32-bit instruction pointer).

signal %d The bitmap of pending signals (usually 0).

blocked %d The bitmap of blocked signals (usually 0, 2 for shells).

1177

sigignore %d The bitmap of ignored signals.

sigcatch %d The bitmap of catched signals.

wchan %u This is the “channel” in which the process is waiting. This is the address of a
system call and can be looked up in a name list if you need a textual name. (If
you have an up-to-date /etc/psdatabase, then try ps -l to see the WCHAN field
in action.)

cpuinfo This is a collection of CPU and system architecture dependent items; for each supported architec-
ture is a different list. The only two common entries are cpu, which is the CPU currently in use,
and BogoMIPS, a system constant that is calculated during kernel initialization.

devices Text listing of major numbers and device groups. This can be used by MAKEDEV scripts for consis-
tency with the kernel.

dma This is a list of the registered ISA DMA (direct memory access) channels in use.

filesystems A text listing of the filesystems that were compiled into the kernel. Incidentally, this is used by
mount(1) to cycle through different filesystems when none is specified.

interrupts This is used to record the number of interrupts per each IRQ on (at least) the i386 architecture.
Very easy to read formatting done in ASCII.

ioports This is a list of currently registered input-output port regions that are in use.

kcore This file represents the physical memory of the system and is stored in the core file format. With
this pseudo-file and an unstripped kernel (/usr/src/linux/tools/zSystem) binary, GDB can be used
to examine the current state of any kernel data structures.

The total length of the file is the size of physical memory (RAM) plus 4KB.

kmsg This file can be used instead of the syslog(2) system call to log kernel messages. A process must
have superuser privileges to read this file, and only one process should read this file. This file should
not be read if a syslog process is running that uses the syslog(2) system call facility to log kernel
messages.

Information in this file is retrieved with the dmesg(8) program.

ksyms This holds the kernel exported symbol definitions used by the modules(X) tools to dynamically link
and bind loadable modules.

loadavg The load average numbers give the number of jobs in the run queue averaged over 1, 5, and 15
minutes. They are the same as the load average numbers given by uptime(1) and other programs.

malloc This file is only present if CONFIGDEBUGMALLOC was defined during compilation.

meminfo This is used by free(1) to report the amount of free and used memory (both physical and swap) on
the system as well as the shared memory and buffers used by the kernel.

It is in the same format as free(1) except in bytes rather than KB.

modules A text list of the modules that have been loaded by the system.

net Various net pseudo-files, all of which give the status of some part of the networking layer. These
files contain ASCII structures and are therefore readable with cat. However, the standard
netstat(8) suite provides much cleaner access to these files.

arp This holds an ASCII readable dump of the kernel ARP table used for address resolutions. It will
show both dynamically learned and pre-programmed ARP entries. The format is

IP address HW type Flags HW address

10.11.100.129 0x1 0x6 00:20:8A:00:0C:5A

10.11.100.5 0x1 0x2 00:C0:EA:00:00:4E

44.131.10.6 0x3 0x2 GW4PTS

IP address is the IPv4 address of the machine. The HW type is the hardware type of the address from
RFC 826. The flags are the internal flags of the ARP structure (as defined in /usr/include/linux/
if_arp.h) and the HW address is the physical layer mapping for that IP address if it is known.

/proc

Part V: File Formats1178

dev The dev pseudo-file contains network device status information. This gives the number of received
and sent packets, the number of errors and collisions, and other basic statistics. These are used by
the ifconfig(8) program to report device status. The format is

Inter-| Receive | Transmit
face |packets errs drop fifo frame|packets errs drop fifo colls carrier

lo: 0 0 0 0 0 2353 0 0 0 0 0

eth0: 644324 1 0 0 1 563770 0 0 0 581 0

ipx No information.

ipx_route No information.

rarp This file uses the same format as the ARP file and contains the current reverse mapping database
used to provide rarp(8) reverse address lookup services. If rarp is not configured into the kernel,
this file will not be present.

raw Holds a dump of the RAW socket table. Much of the information is not of use apart from
debugging. The sl value is the kernel hash slot for the socket; the local_address is the local address
and protocol number pair. St is the internal status of the socket. The tx_queue and rx_queue are the
outgoing and incoming data queue in terms of kernel memory usage. The tr, tm->when, and rexmits
fields are not used by RAW. The uid field holds the creator euid of the socket.

route No information but looks similar to route(8).

snmp This file holds the ASCII data needed for the IP, ICMP, TCP, and UDP management information
bases for an snmp agent. As of writing, the TCP mib is incomplete. It should be completed by 1.2.0.

tcp Holds a dump of the TCP socket table. Much of the information is not of use apart from
debugging. The sl value is the kernel hash slot for the socket; the local_address is the local address
and port number pair. The remote_address is the remote address and port number pair (if
connected). St is the internal status of the socket. The tx_queue and rx_queue are the outgoing and
incoming data queue in terms of kernel memory usage. The tr, tm->when, and rexmits fields hold
internal information of the kernel socket state and are only useful for debugging. The uid field
holds the creator euid of the socket.

udp Holds a dump of the UDP socket table. Much of the information is not of use apart from
debugging. The sl value is the kernel hash slot for the socket; the local_address is the local address
and port number pair. The remote_address is the remote address and port number pair (if
connected). St is the internal status of the socket. The tx_queue and rx_queue are the outgoing and
incoming data queue in terms of kernel memory usage. The tr, tm->when, and rexmits fields are not
used by UDP. The uid field holds the creator euid of the socket. The format is

sl local_address rem_address st tx_queue rx_queue tr rexmits tm->when uid

1: 01642C89:0201 0C642C89:03FF 01 00000000:00000001 01:000071BA 00000000 0

1: 00000000:0801 00000000:0000 0A 00000000:00000000 00:00000000 6F000100 0
1: 00000000:0201 00000000:0000 0A 00000000:00000000 00:00000000 00000000 0

unix Lists the UNIX domain sockets present within the system and their status. The format is

Num RefCount Protocol Flags Type St Path
0: 00000002 00000000 00000000 0001 03
1: 00000001 00000000 00010000 0001 01 /dev/printer

Num is the kernel table slot number, RefCount is the number of users of the socket, Protocol is
currently always 0, and Flags represents the internal kernel flags holding the status of the socket.
Type is currently always 1 (UNIX domain datagram sockets are not yet supported in the kernel). St
is the internal state of the socket and Path is the bound path (if any) of the socket.

1179

pci This is a listing of all PCI devices found during kernel initialization and their configuration.

scsi A directory with the SCSI mid-level pseudo-file and various SCSI low-level driver directories,
which contain a file for each SCSI host in this system, all of which give the status of some part
of the SCSI IO subsystem. These files contain ASCII structures and are therefore readable with
cat.

You can also write to some of the files to reconfigure the subsystem or switch certain features on
or off.

scsi/scsi This is a listing of all SCSI devices known to the kernel. The listing is similar to the one seen
during bootup. scsi currently supports only the single device command, which allows root to
add a hot-plugged device to the list of known devices.

An echo ‘scsisingledevice1 0 5 0’> /proc/scsi/scsi will cause host scsi1 to scan on SCSI
channel 0 for a device on ID 5 LUN 0. If there is already a device known on this address or the
address is invalid, an error will be returned.

drivername drivername can currently be NCR53c7xx, aha152x, aha1542, aha1740, aic7xxx, buslogic, eata_dma,
eata_pio, fdomain, in2000, pas16, qlogic, scsi_debug, seagate, t128, u15-24f, ultrastor, or
wd7000. These directories show up for all drivers that registered at least one SCSI HBA. Every
directory contains one file per registered host. Every host-file is named after the number the
host got assigned during initialization.

Reading these files will usually show driver and host configuration, statistics, and so on.

Writing to these files allows different things on different hosts. For example, with the latency
and nolatency commands, root can switch on and off command latency measurement code in
the eata_dma driver. With the lockup and unlock commands, root can control bus lockups
simulated by the scsi_debug driver.

self This directory refers to the process accessing the /proc filesystem and is identical to the /proc
directory named by the process ID of the same process.

stat kernel/system statistics.

cpu 3357 0 4313 1362393 The number of jiffies (1/100ths of a second) that the system spent in user mode, user mode
with low priority (nice), system mode, and the idle task. The last value should be 100 times the
second entry in the uptime pseudo-file.

disk 0 0 0 0 The four disk entries are not implemented at this time. I’m not even sure what this should be
because kernel statistics on other machines usually track both transfer rate and I/Os per second
and this only allows for one field per drive.

page 5741 1808 The number of pages the system paged in and the number that were paged out (from disk).

swap 1 0 The number of swap pages that have been brought in and out.

intr 1462898 The number of interrupts received from the system boot.

ctxt 115315 The number of context switches that the system underwent.

btime 769041601 Boot time in seconds since the epoch (January 1, 1970).

sys This directory (present since 1.3.57) contains a number of files and subdirectories correspond-
ing to kernel variables. These variables can be read and sometimes modified using the proc
filesystem and using the sysctl(2) system call. Presently, there are subdirectories kernel, net,
and vm that each contain more files and subdirectories.

kernel This contains the files domainname, file-max, file-nr, hostname, inode-max, inode-nr, osrelease,
ostype, panic, real-root-dev, securelevel, and version, with function fairly clear from the
name.

The (read-only) file file-nr gives the number of files presently opened. The file file-max gives
the maximum number of open files the kernel is willing to handle. If 1024 is not enough for
you, try echo 4096 > /proc/sys/kernel/file-max.

Similarly, the files inode-nr and inode-max indicate the present and the maximum number of
inodes.

/proc

Part V: File Formats1180

The files ostype, osrelease, and version give substrings of /proc/version.

The file panic gives r/w access to the kernel variable panic_timeout. If this is zero, the kernel will
loop on a panic; if nonzero, it indicates that the kernel should autoreboot after this number of
minutes.

The file securelevel seems rather meaningless at present; root is just too powerful.

uptime This file contains two numbers: the uptime of the system (seconds) and the amount of time
spent in idle process (seconds).

version This string identifies the kernel version that is currently running. For instance:

Linux version 1.0.9 (quinlan@phaze) #1 Sat May 14 01:51:54 EDT 1994

SEE ALSO
cat(1), find(1), free(1), mount(1), ps(1), tr(1), uptime(1), readlink(2), mmap(2), chroot(2), syslog(2), hier(7), arp(8),
dmesg(8), netstat(8), route(8), ifconfig(8), procinfo(8) and much more

CONFORMS TO
This roughly conforms to a Linux 1.3.11 kernel. Please update this as necessary! Last updated for Linux 1.3.11.

CAVEATS
Note that many strings (the environment and command line) are in the internal format, with subfields terminated by null
bytes, so you might find that things are more readable if you use od -c or tr “\000” “\n” to read them.

This manual page is incomplete, possibly inaccurate, and is the kind of thing that needs to be updated very often.

BUGS
The /proc filesystem may introduce security holes into processes running with chroot(2). For example, if /proc is mounted in
the chroot hierarchy, a chdir(2) to /proc/1/root will return to the original root of the filesystem. This may be considered a
feature instead of a bug because Linux does not yet support the fchroot(2) call.

22 July 1996

protocols
protocols—The protocols definition file.

DESCRIPTION
This file is a plain ASCII file, describing the various DARPA Internet protocols that are available from the TCP/IP
subsystem. It should be consulted instead of using the numbers in the ARPA include files or, even worse, just guessing them.
These numbers will occur in the protocol field of any IP header.

Keep this file untouched because changes would result in incorrect IP packages. Protocol numbers and names are specified by
the DDN Network Information Center.

Each line is of the following format:

protocol number aliases ...

The fields are delimited by spaces or tabs. Empty lines and lines starting with a hash mark (#) are ignored. Remainder of lines
are also ignored from the occurrence of a hash mark.

The field descriptions are

protocol The native name for the protocol—for example, ip, tcp, or udp.

number The official number for this protocol as it will appear within the IP header.

aliases Optional aliases for the protocol.

1181

This file might be distributed over a network using a network-wide naming service such as Yellow Pages/NIS or BIND/
Hesoid.

FILES
/etc/protocols The protocols definition file.

SEE ALSO
getprotoent(3), Guide to Yellow Pages Service, Guide to BIND/Hesiod Service

Linux, 18 October 1995

rcsfile
rcsfile—Format of RCS file.

DESCRIPTION
An RCS file’s contents are described by the grammar below.

The text is free format: space, backspace, tab, newline, vertical tab, form feed, and carriage return (collectively, whitespace)
have no significance except in strings. However, whitespace cannot appear within an ID, num, or sym, and an RCS file must
end with a newline.

Strings are enclosed by @. If a string contains a @, it must be doubled; otherwise, strings can contain arbitrary binary data.

The meta syntax uses the following conventions: | (bar) separates alternatives; { and } enclose optional phrases. { and }*
enclose phrases that can be repeated zero or more times. { and {+ enclose phrases that must appear at least once and can be
repeated. Terminal symbols are in boldface; non-terminal symbols are in italics.

rcstext ::= admin {delta}* desc {deltatext}*
 admin ::= head {num};
 { branch {num}; }
 access {id}*;
 symbols {sym : num}*;
 locks {id : num}*; {strict ;}

 { comment {string}; }
 { expand {string}; }
 { newphrase }*
 delta ::= num
 date num;
 author id;
 state {id};
 branches {num}*;
 next {num};
 { new-phrase }*
 desc ::= desc string
 deltatext ::= num
 log string
 { newphrase }*
 text string
 num ::= {digit | .}+
 digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
 id ::= {num} idchar {idchar | num}*
 sym ::= {digit}* idchar {idchar | digit}*
 idchar ::= any visible graphic character except special
 special ::= $ | , | . | : | ; | @
 string ::= @{any character, with @doubled}*@

rcsfile

Part V: File Formats1182

 newphrase ::= id word* ;
 word ::= id | num | string | :

Identifiers are case sensitive. Keywords are in lowercase only. The sets of keywords and identifiers can overlap. In most
environments, RCS uses the ISO8859/1 encoding: visible graphic characters are codes 041–176 and 240–377, and
whitespace characters are codes 010–015 and 040.

Dates, which appear after the date keyword, are of the form Y.mm.dd.hh.mm.ss, where Y is the year, mm the month (01–12),
dd the day (01–31), hh the hour (00–23), mm the minute (00–59), and ss the second (00–60). Y contains just the last two
digits of the year for years from 1900 through 1999, and all the digits of years thereafter. Dates use the Gregorian calendar;
times use UTC.

The newphrase productions in the grammar are reserved for future extensions to the format of RCS files. No newphrase will
begin with any keyword already in use.

The delta nodes form a tree. All nodes whose numbers consist of a single pair (such as 2.3, 2.1, 1.3, and so on) are on the
trunk and are linked through the next field in order of decreasing numbers. The head field in the admin node points to the
head of that sequence (contains the highest pair). The branch node in the admin node indicates the default branch (or
revision) for most RCS operations. If empty, the default branch is the highest branch on the trunk.

All delta nodes whose numbers consist of 2n fields (n2) (such as 3.1.1.1, 2.1.2.2, and so on) are linked as follows. All nodes
whose first 2n–1 number fields are identical are linked through the next field in order of increasing numbers. For each such
sequence, the delta node whose number is identical to the first 2n–2 number fields of the deltas on that sequence is called
the branchpoint. The branches field of a node contains a list of the numbers of the first nodes of all sequences for which it is
a branchpoint. This list is ordered in increasing numbers.

The following diagram shows an example of an RCS file’s organization.

 Head
 |
 |
 v / \
 -------- / \
 / \ / \ | | / \ / \
 / \ / \ | 2.1 | / \ / \
 / \ / \ | | / \ / \
/1.2.1.3\ /1.3.1.1\ | | /1.2.2.2\ /1.2.2.1.1.1\
--------- --------- --------- --------- -------------
 ˆ ˆ | ˆ ˆ
 | | | | |
 | | v | |
 / \ | --------- / \ |
 / \ | \ 1.3 / / \ |
 / \ --------- \ / / \---------
/1.2.1.1\ \ / /1.2.2.1\
--------- \ / ---------
 ˆ | ˆ
 | | |
 | v |
 | --------- |
 | \ 1.2 / |
 --------------------------\ /---------
 \ /
 \ /
 |
 |
 v

 \ 1.1 /
 \ /
 \ /
 \ /

1183

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907. Manual Page Revision: 5.6; Release Date: 1995/
06/05. Copyright 1982, 1988, 1989, Walter F. Tichy. Copyright 1990, 1991, 1992, 1993, 1994, 1995, Paul Eggert.

SEE ALSO
rcsintro(1), ci(1), co(1), ident(1), rcs(1), rcsclean(1), rcsdiff(1), rcsmerge(1), rlog(1), Walter F. Tichy, RCS, “A System
for Version Control,” Software—Practice & Experience, 15, 7 (July 1985), 637-654.

GNU, 5 June 1995

resolver
resolver—Resolver configuration file.

SYNOPSIS
/etc/resolv.conf

DESCRIPTION
The resolver is a set of routines in the C library (resolv(3)) that provides access to the Internet Domain Name System. The
resolver configuration file contains information that is read by the resolver routines the first time they are invoked by a
process. The file is designed to be human readable and contains a list of keywords with values that provide various types of
resolver information.

On a normally configured system, this file should not be necessary. The only nameserver to be queried will be on the local
machine, the domain name is determined from the host name, and the domain search path is constructed from the domain
name.

The different configuration options are

nameserver Internet address (in dot notation) of a nameserver that the resolver should query. Up to
MAXNS (currently 3) nameservers may be listed, one per keyword. If there are multiple servers,
the resolver library queries them in the order listed. If no nameserver entries are present, the
default is to use the nameserver on the local machine. (The algorithm used is to try a
nameserver, and if the query times out, try the next until you run out of nameservers, and
then repeat trying all the nameservers until a maximum number of retries are made.)

domain Local domain name. Most queries for names within this domain can use short names
relative to the local domain. If no domain entry is present, the domain is determined from
the local hostname returned by gethostname(2); the domain part is taken to be everything
after the first .. Finally, if the hostname does not contain a domain part, the root domain is
assumed.

search Search list for hostname lookup. The search list is normally determined from the local
domain name; by default, it contains only the local domain name. This may be changed by
listing the desired domain search path following the search keyword with spaces or tabs
separating the names. Most resolver queries will be attempted using each component of the
search path in turn until a match is found. Note that this process may be slow and will
generate a lot of network traffic if the servers for the listed domains are not local and that
queries will time out if no server is available for one of the domains.

The search list is currently limited to six domains with a total of 256 characters.

sortlist sortlist allows addresses returned by gethostbyname to be sorted. A sort list is specified by
IP address netmask pairs. The netmask is optional and defaults to the natural netmask of
the net. The IP address and optional network pairs are separated by slashes. Up to 10 pairs
may be specified.

sortlist 130.155.160.0/255.255.240.0 130.155.0.0

resolver

Part V: File Formats1184

options options allows certain internal resolver variables to be modified. The syntax is

options option ...

where option is one of the following:

debug sets RESDEBUG in res.options.

ndots:n sets a threshold for the number of dots that must appear in a name given to
res_query (see resolver(3)) before an initial absolute query will be made. The default for n is
1, meaning that if there are any dots in a name, the name will be tried first as an absolute
name before any search list elements are appended to it.

The domain and search keywords are mutually exclusive. If more than one instance of these keywords is present, the last
instance wins.

The search keyword of a system’s resolv.conf file can be overridden on a per-process basis by setting the environment
variable LOCALDOMAIN to a space-separated list of search domains.

The options keyword of a system’s resolv.conf file can be amended on a per-process basis by setting the environment
variable RES_OPTIONS to a space-separated list of resolver options as explained previously.

The keyword and value must appear on a single line, and the keyword (such as nameserver) must start the line. The value
follows the keyword, separated by whitespace.

FILES
/etc/resolv.conf

SEE ALSO
gethostbyname(3), resolver(3), hostname(7), named(8), Name Server Operations Guide for BIND

11 November 1993

securetty
securetty—File that lists ttys from which root can log in.

DESCRIPTION
/etc/securetty is used by login(1); the file contains the device names of tty lines (one per line, without leading /dev/) on
which root is allowed to log in.

FILES
/etc/securetty

SEE ALSO
login(1)

Linux, 29 December 1992

services
services—Internet network services list.

DESCRIPTION
services is a plain ASCII file providing a mapping between friendly textual names for Internet services and their underlying
assigned port numbers and protocol types. Every networking program should look into this file to get the port number (and

1185

protocol) for its service. The C library routines getservent(3), getservbyname(3), getservbyport(3), setservent(3), and
endservent(3) support querying this file from programs.

Port numbers are assigned by the IANA (Internet Assigned Numbers Authority), and their current policy is to assign both
TCP and UDP protocols when assigning a port number. Therefore, most entries will have two entries, even for TCP-only
services.

Port numbers below 1024 (so-called low-numbered ports) can only be bound to by root (see bind(2), tcp(7), and udp(7).)
This is so that clients connecting to low-numbered ports can trust that the service running on the port is the standard
implementation and not a rogue service run by a user of the machine. Well-known port numbers specified by the IANA are
normally located in this root-only space.

The presence of an entry for a service in the services file does not necessarily mean that the service is currently running on
the machine. See inetd.conf(5) for the configuration of Internet services offered. Note that not all networking services are
started by inetd(8) and so won’t appear in inetd.conf(5). In particular, news (NNTP) and mail (SMTP) servers are often
initialized from the system boot scripts.

The location of the services file is defined by PATH SERVICES in /usr/include/netdb.h. This is usually set to /etc/services.

Each line describes one service and is of the form:

service-name port/protocol [aliases ...]

service-name The friendly name the service is known by and looked up under. It is case sensitive. Often,
the client program is named after the service-name.

port The port number (in decimal) to use for this service.

protocol The type of protocol to be used. This field should match an entry in the protocols(5) file.
Typical values include tcp and udp.

aliases An optional space- or tab-separated list of other names for this service (see the Bugs section
below). Again, the names are case sensitive.

Either spaces or tabs may be used to separate the fields.

Comments are started by the hash sign (#) and continue until the end of the line. Blank lines are skipped.

The service-name should begin in the first column of the file because leading spaces are not stripped. service-names can be
any printable characters excluding space and tab; however, a conservative choice of characters should be used to minimize
inter-operability problems. For example, a–z, 0–9, and hyphen (–) would seem a sensible choice.

Lines not matching this format should not be present in the file. (Currently, they are silently skipped by getservent(3),
getservbyname(3), and getservbyport(3). However, this behavior should not be relied on.)

As a backwards compatibility feature, the slash (/) between the port number and protocol name can in fact be either a slash
or a comma (,). Use of the comma in modern installations is depreciated.

This file might be distributed over a network using a network-wide naming service such as Yellow Pages/NIS or BIND/
Hesiod.

A sample services file might look like this:

netstat 15/tcp
qotd 17/tcp quote
msp 18/tcp # message send protocol
msp 18/udp # message send protocol
chargen 19/tcp ttytst source
chargen 19/udp ttytst source
ftp 21/tcp
22 - unassigned
telnet 23/tcp

services

Part V: File Formats1186

BUGS
There is a maximum of 35 aliases, due to the way the getservent(3) code is written.

Lines longer than BUFSIZ (currently 1024) characters will be ignored by getservent(3), getservbyname(3), and
getservbyport(3). However, this will also cause the next line to be misparsed.

FILES
/etc/services The Internet network services list

/usr/include/netdb.h Definition of _PATH_SERVICES

SEE ALSO
getservent(3), getservbyname(3), getservbyport(3), setservent(3), endservent(3), protocols(5), listen(2), inetd.conf(5),
inetd(8), Assigned Numbers RFC, most recently RFC 1700 (AKA STD0002), Guide to Yellow Pages Service, Guide to
BIND/Hesiod Service.

Linux, 11 January 1996

shells
shells—Pathnames of valid login shells.

DESCRIPTION
/etc/shells is a text file that contains the full pathnames of valid login shells. This file is consulted by chsh(1) and is available
to be queried by other programs.

EXAMPLES
/etc/shells may contain the following paths:

/bin/sh
/bin/csh

FILES
/etc/shells

SEE ALSO
chsh(1)

21 November 1993

syslog.conf
syslog.conf—syslogd(8) configuration file.

DESCRIPTION
The syslog.conf file is the configuration file for the syslogd(8) program. It consists of lines with two fields: the selector
field, which specifies the types of messages and priorities to which the line applies, and an action field, which specifies the
action to be taken if a message syslogd received matches the selection criteria. There cannot be any spaces in the action field.
The selector field is separated from the action field by one or more tab or space characters. (This is a departure from the
standard BSD way of doing things; both tabs and spaces can be used to separate the selector from the action.)

The selector functions are encoded as a facility, a period (.), and a level, with no intervening whitespace. Both the facility
and the level are case insensitive.

1187

The facility describes the part of the system generating the message and is one of the following keywords: auth, authpriv,
cron, daemon, kern, lpr, mail, mark, news, syslog, user, uucp, and local0 through local7. These keywords (with the exception
of mark) correspond to the similar Dv LOG_ values specified to the openlog(3) and syslog(3) library routines.

The level describes the severity of the message and is a keyword, optionally preceded by an equals (=), from the following
ordered list (higher to lower): emerg, alert, crit, err, warning, notice, info, and debug. These keywords correspond to the
similar Dv LOG_ values specified to the syslog library routine.

See syslog(3) for further descriptions of both the facility and level keywords and their significance.

If a received message matches the specified facility and is of the specified level (or a higher level if level was specified without
=), the action specified in the action field will be taken.

Multiple selectors may be specified for a single action by separating them with semicolon (;) characters. It is important to
note, however, that each selector can modify the ones preceding it.

Multiple facilities may be specified for a single level by separating them with comma (,) characters.

An asterisk (*) can be used to specify all facilities or all levels.

The special facility “mark” receives a message at priority “info” every 20 minutes (see syslogd(8)). This is not enabled by a
facility field containing an asterisk.

The special level “none” disables a particular facility.

The action field of each line specifies the action to be taken when the selector field selects a message. There are four forms:

A pathname (beginning with a leading slash). Selected messages are appended to the file.

A hostname (preceded by an at (@) sign). Selected messages are forwarded to the syslogd program on the named host.

A comma-separated list of users. Selected messages are written to those users if they are logged in.

An asterisk. Selected messages are written to all logged-in users.

Blank lines and lines whose first non-blank character is a hash (#) character are ignored.

EXAMPLES
A configuration file might appear as follows:

Log all kernel messages, authentication messages of
level notice or higher and anything of level err or
higher to the console.
Don’t log private authentication messages!
.err;kern.;auth.notice;authpriv.none /dev/console

Log anything (except mail) of level info or higher.
Don’t log private authentication messages!
*.info;mail.none;authpriv.none /var/log/messages

Log debug messages only
*.=debug /var/log/debug

The authpriv file has restricted access.
authpriv.* /var/log/secure

Log all the mail messages in one place.
mail.* /var/log/maillog

Everybody gets emergency messages, plus log them on another
machine.
*.emerg *
*.emerg @arpa.berkeley.edu

syslog.conf

Part V: File Formats1188

Root and Eric get alert and higher messages.
*.alert root,eric

Save mail and news errors of level err and higher in a
special file.
uucp,news.crit /var/log/spoolerr

FILES
/etc/syslog.conf The syslogd(8) configuration file.

BUGS
The effects of multiple selectors are sometimes not intuitive. For example mail.crit,*.err will select mail facility messages at
the level of err or higher, not at the level of crit or higher.

SEE ALSO
syslog(3), syslogd(8)

10 May 1991

termcap
termcap—Terminal capability database.

DESCRIPTION
The termcap database is an obsolete facility for describing the capabilities of character-cell terminals and printers. It is
retained only for capability with old programs; new ones should use the terminfo(5) database and associated libraries.

/etc/termcap is an ASCII file (the database master) that lists the capabilities of many different types of terminals. Programs
can read termcap to find the particular escape codes needed to control the visual attributes of the terminal actually in use.
(Other aspects of the terminal are handled by stty.) The termcap database is indexed on the TERM environment variable.

termcap entries must be defined on a single logical line, with \ used to suppress the newline. Fields are separated by :. The
first field of each entry starts at the left-hand margin and contains a list of names for the terminal, separated by |.

The first subfield may (in BSD termcap entries from versions 4.3 and prior) contain a short name consisting of two
characters. This short name may consist of capital or small letters. In 4.4 BSD termcap entries, this field is omitted.

The second subfield (first in the newer 4.4 BSD format) contains the name used by the environment variable TERM. It should
be spelled in lowercase letters. Selectable hardware capabilities should be marked by appending a hyphen and a suffix to this
name. Usual suffixes are w (more than 80 characters wide), am (automatic margins), nam (no automatic margins) and rv
(reverse video display). The third subfield contains a long and descriptive name for this termcap entry.

Subsequent fields contain the terminal capabilities; any continued capability lines must be indented one tab from the left
margin.

Although there is no defined order, it is suggested to write first Boolean, then numeric, and at last string capabilities, each
sorted alphabetically without looking at lower or upper spelling. Capabilities of similar functions can be written in one line.

Example:

Head line: vt|vt101|DEC VT 101 terminal in 80 character mode:\
Head line: Vt|vt101-w|DEC VT 101 terminal in (wide) 132 character mode:\
Boolean: :bs:\
Numeric: :co#80:\
String: :sr=nE[H:\

1189

Boolean Capabilities

5i Printer will not echo on screen

am Automatic margins which means automatic line wrap

bs Ctrl+H (8 dec.) performs a backspace

bw Backspace on left margin wraps to previous line and right margin

da Display retained above screen

db Display retained below screen

eo A space erases all characters at cursor position

es Escape sequences and special characters work in status line

gn Generic device

hc This is a hardcopy terminal

HC The cursor is hard to see when not on bottom line

hs Has a status line

hz Hazeltine bug; the terminal cannot print tilde characters

in Terminal inserts nulls, not spaces, to fill whitespace

km Terminal has a meta key

mi Cursor movement works in insert mode

ms Cursor movement works in standout/underline mode

NP No pad character

NR ti does not reverse te

nx No padding; must use XON/XOFF

os Terminal can overstrike

ul Terminal underlines, although it cannot overstrike

xb Beehive glitch; F1 sends Escape and F2 sends ˆC

xn Newline/wraparound glitch

xo Terminal uses XON/XOFF protocol

xs Text typed over standout text will be displayed in standout

xt Teleray glitch; destructive tabs and odd standout mode

Numeric Capabilities

co Number of columns

dB Delay in milliseconds for backspace on hardcopy terminals

dC Delay in milliseconds for carriage return on hardcopy terminals

dF Delay in milliseconds for form feed on hardcopy terminals

dN Delay in milliseconds for newline on hardcopy terminals

dT Delay in milliseconds for tabulator stop on hardcopy terminals

dV Delay in milliseconds for vertical tabulator stop on hardcopy terminals

it Difference between tab positions

lh Height of soft labels

lm Lines of memory

lw Width of soft labels

continues

termcap

Part V: File Formats1190

li Number of lines

Nl Number of soft labels

pb Lowest baud rate that needs padding

sg Standout glitch

ug Underline glitch

vt Virtual terminal number

ws Width of status line if different from screen width

String Capabilities

!1 Shifted save key

!2 Shifted suspend key

!3 Shifted undo key

#1 Shifted help key

#2 Shifted home key

#3 Shifted input key

#4 Shifted cursor left key

%0 Redo key

%1 Help key

%2 Mark key

%3 Message key

%4 Move key

%5 Next-object key

%6 Open key

%7 Options key

%8 Previous-object key

%9 Print key

%a Shifted message key

%b Shifted move key

%c Shifted next key

%d Shifted options key

%e Shifted previous key

%f Shifted print key

%g Shifted redo key

%h Shifted replace key

%i Shifted cursor right key

%j Shifted resume key

&0 Shifted cancel key

&1 Reference key

&2 Refresh key

&3 Replace key

&4 Restart key

Numeric Capabilities

1191

&5 Resume key

&6 Save key

&7 Suspend key

&8 Undo key

&9 Shifted begin key

*0 Shifted find key

*1 Shifted command key

*2 Shifted copy key

*3 Shifted create key

*4 Shifted delete character

*5 Shifted delete line

*6 Select key

*7 Shifted end key

*8 Shifted clear line key

*9 Shifted exit key

@0 Find key

@1 Begin key

@2 Cancel key

@3 Close key

@4 Command key

@5 Copy key

@6 Create key

@7 End key

@8 Enter/send key

@9 Exit key

al Insert one line

AL Insert %1 lines

ac Pairs of block graphic characters to map alternate character set

ae End alternative character set

as Start alternative character set for block graphic characters

bc Backspace if not ˆH

bl Audio bell

bt Move to previous tab stop

cb Clear from beginning of line to cursor

cc Dummy command character

cd Clear to end of screen

ce Clear to end of line

ch Move cursor horizontally only to column %1

cl Clear screen and cursor home

cm Cursor move to row %1 and column %2 (on screen)

CM Move cursor to row %1 and column %2 (in memory)

String Capabilities

continues

termcap

Part V: File Formats1192

cr Carriage return

cs Scroll region from line %1 to %2

ct Clear tabs

cv Move cursor vertically only to line %1

dc Delete one character

DC Delete %1 characters

dl Delete one line

DL Delete %1 lines

dm Begin delete mode

do Cursor down one line

DO Cursor down #1 lines

ds Disable status line

eA Enable alternate character set

ec Erase %1 characters starting at cursor

ed End delete mode

ei End insert mode

ff Formfeed character on hardcopy terminals

fs Return character to its position before going to status line

F1 The string sent by function key f11

F2 The string sent by function key f12

F3 The string sent by function key f13

… …

F9 The string sent by function key f19

FA The string sent by function key f20

FB The string sent by function key f21

… …

FZ The string sent by function key f45

Fa The string sent by function key f46

Fb The string sent by function key f47

… …

Fr The string sent by function key f63

hd Move cursor a half line down

ho Cursor home

hu Move cursor a half line up

i1 Initialization string 1 at login

i3 Initialization string 3 at login

is Initialization string 2 at login

ic Insert one character

IC Insert %1 characters

if Initialization file

im Begin insert mode

String Capabilities

1193

ip Insert pad time and needed special characters after insert

iP Initialization program

K1 Upper-left key on keypad

K2 Center key on keypad

K3 Upper-right key on keypad

K4 Bottom-left key on keypad

K5 Bottom-right key on keypad

k0 Function key 0

k1 Function key 1

k2 Function key 2

k3 Function key 3

k4 Function key 4

k5 Function key 5

k6 Function key 6

k7 Function key 7

k8 Function key 8

k9 Function key 9

k; Function key 10

ka Clear all tabs key

kA Insert line key

kb Backspace key

kB Back tab stop

kC Clear screen key

kd Cursor down key

kD Key for delete character under cursor

ke Turn keypad off

kE Key for clear to end of line

kF Key for scrolling forward/down

kh Cursor home key

kH Cursor down key

kI Insert character/insert mode key

kl Cursor left key

kL Key for delete line

kM Key for exit insert mode

kN Key for next page

kP Key for previous page

kr Cursor right key

kR Key for scrolling backward/up

ks Turn keypad on

kS Clear to end of screen key

kt Clear this tab key

continues

String Capabilities

termcap

Part V: File Formats1194

kT Set tab here key

ku Cursor up key

l0 Label of zeroth function key, if not f0

l1 Label of first function key, if not f1

l2 Label of first function key, if not f2

… …

la Label of tenth function key, if not f10

le Cursor left one character

ll Move cursor to lower-left corner

LE Cursor left %1 characters

LF Turn soft labels off

LO Turn soft labels on

mb Start blinking

MC Clear soft margins

md Start bold mode

me End all modes such as so, us, mb, md, and mr

mh Start half bright mode

mk Dark mode (Characters invisible)

ML Set left soft margin

mm Put terminal in meta mode

mo Put terminal out of meta mode

mp Turn on protected attribute

mr Start reverse mode

MR Set right soft margin

nd Cursor right one character

nw Carriage return command

pc Padding character

pf Turn printer off

pk Program key %1 to send string %2 as if typed by user

pl Program key %1 to execute string %2 in local mode

pn Program soft label %1 to show string %2

po Turn the printer on

pO Turn the printer on for %1 (<256) bytes

ps Print screen contents on printer

px Program key %1 to send string %2 to computer

r1 Reset string 1 to set terminal to sane modes

r2 Reset string 2 to set terminal to sane modes

r3 Reset string 3 to set terminal to sane modes

RA Disable automatic margins

rc Restore saved cursor position

rf Reset string file name

String Capabilities

1195

RF Request for input from terminal

RI Cursor right %1 characters

rp Repeat character %1 for %2 times

rP Padding after character sent in replace mode

rs Reset string

RX Turn off XON/XOFF flow control

sa Set %1 %2 %3 %4 %5 %6%7 %8 %9 attributes

SA Enable automatic margins

sc Save cursor position

se End standout mode

sf Normal scroll one line

SF Normal scroll %1 lines

so Start standout mode

sr Reverse scroll

SR Scroll back %1 lines

st Set tabulator stop in all rows at current column

SX Turn on XON/XOFF flow control

ta Move to next hardware tab

tc Read in terminal description from another entry

te End program that uses cursor motion

ti Begin program that uses cursor motion

ts Move cursor to column %1 of status line

uc Underline character under cursor and move cursor right

ue End underlining

up Cursor up one line

UP Cursor up %1 lines

us Start underlining

vb Visible bell

ve Normal cursor visible

vi Cursor invisible

vs Standout cursor

wi Set window from line %1 to %2 and column %3 to %4

XF XOFF character if not ˆS

There are several ways of defining the control codes for string capabilities:

Normal characters except ˆ, \, and % represent themselves.

A ˆx means Ctrl+x. Ctrl+A equals 1 decimal. \x means a special code. x can be one of the following characters:

E Escape (27).

n Linefeed (10).

r Carriage return (13).

t Tabulation (9).

String Capabilities

termcap

Part V: File Formats1196

b Backspace (8).

f Form feed (12).

0 Null character. A \xxx specifies the octal character xxx.

i Increments parameters by one.

r Single parameter capability.

+ Add value of next character to this parameter and do binary output.

2 Do ASCII output of this parameter with a field width of 2.

d Do ASCII output of this parameter with a field width of 3.

% Print a %

If you use binary output, then you should avoid the null character because it terminates the string. You should reset tabulator
expansion if a tabulator can be the binary output of a parameter.

Warning: The preceding metacharacters for parameters may be wrong; they document Minix termcap, which may not be
compatible with Linux termcap.

The block graphic characters can be specified by three string capabilities:

as Start the alternative charset.

ae End it.

ac Pairs of characters. The first character is the name of the block graphic symbol and
the second character is its definition.

The following names are available:

+ Right arrow (>)

, Left arrow (<)

. Down arrow (v)

0 Full square (#)

I Latern (#)

- Upper arrow (ˆ)

‘ Rhombus (+)

a Chess board (:)

f Degree (‘)

g Plus-minus (#)

h Square (#)

j Right bottom corner (+)

k Right upper corner (+)

l Left upper corner (+)

m Left bottom corner (+)

n Cross (+)

o Upper horizontal line (-)

q Middle horizontal line (-)

s Bottom horizontal line (_)

t Left tee (+)

u Right tee (+)

v Bottom tee (+)

w Normal tee (+)

x Vertical line (_)

˜ Paragraph (???)

1197

The values in parentheses are suggested defaults that are used by curses if the capabilities are missing.

SEE ALSO
termcap(3), curses(3), terminfo(5)

Linux

ttytype
ttytype—Terminal name and device list.

DESCRIPTION
The /etc/ttytype file associates termcap/terminfo terminal type names with tty lines. Each line consists of a terminal type,
followed by whitespace, followed by a tty name (a device name without the /dev/ prefix).

This association is used by the program tset(1) to set the environment variable TERM to the default terminal name for the
user’s current tty.

This facility was designed for a traditional time-sharing environment featuring character-cell terminals hardwired to a UNIX
minicomputer. It is little used on modern workstation and personal UNIXes.

EXAMPLE
A typical /etc/ttytype is

con80x25 tty1
vt320 ttys0

FILES
/etc/ttytype The tty definitions file

SEE ALSO
getty(1), terminfo(5), termcap(5)

Linux, 24 July 1993

tzfile
tzfile—Time zone information.

SYNOPSIS
#include <tzfile.h>

DESCRIPTION
The time zone information files used by tzset(3) begin with bytes reserved for future use, followed by six four-byte values of
type long, written in a “standard” byte order (the high-order byte of the value is written first). These values are, in order

tzh_ttisgmtcnt The number of GMT/local indicators stored in the file.

tzh_ttisstdcnt The number of standard/wall indicators stored in the file.

tzh_leapcnt The number of leap seconds for which data is stored in the file.

tzh_timecnt The number of “transition times” for which data is stored in the file.

tzh_typecnt The number of “local time types” for which data is stored in the file (must not be zero).

tzh_charcnt The number of characters of “time zone abbreviation strings” stored in the file.

tzfile

Part V: File Formats1198

The preceding header is followed by tzh_timecnt four-byte values of type long, sorted in ascending order. These values are
written in “standard” byte order. Each is used as a transition time (as returned by time(2)) at which the rules for computing
local time change. Next come tzh_timecnt one-byte values of type unsigned char; each one tells which of the different types
of “local time” types described in the file is associated with the same-indexed transition time. These values serve as indices
into an array of ttinfo structures that appears next in the file; these structures are defined as follows:

struct ttinfo {
long tt_gmtoff;
int tt_isdst;
unsigned int tt_abbrind;
};

Each structure is written as a four-byte value for tt_gmtoff of type long, in a standard byte order, followed by a one-byte
value for tt_isdst and a one-byte value for tt_abbrind. In each structure, tt_gmtoff gives the number of seconds to be added
to GMT, tt_isdst tells whether tm_isdst should be set by localtime(3) and tt_abbrind serves as an index into the array of
time zone abbreviation characters that follow the ttinfo structures in the file.

Then there are tzh_leapcnt pairs of four-byte values, written in standard byte order; the first value of each pair gives the time
(as returned by time(2)) at which a leap second occurs; the second gives the total number of leap seconds to be applied after
the given time. The pairs of values are sorted in ascending order by time.

Then there are tzh_ttisstdcnt standard/wall indicators, each stored as a one-byte value; they tell whether the transition times
associated with local time types were specified as standard time or wall clock time and are used when a time zone file is used
in handling POSIX-style time zone environment variables.

Finally, there are tzh_ttisgmtcnt GMT/local indicators, each stored as a one-byte value; they tell whether the transition times
associated with local time types were specified as GMT or local time and are used when a time zone file is used in handling
POSIX-style time zone environment variables.

Localtime uses the first standard-time ttinfo structure in the file (or simply the first ttinfo structure in the absence of a
standard-time structure) if either tzh_timecnt is zero or the time argument is less than the first transition time recorded in the
file.

SEE ALSO
newctime(3)

utmp, wtmp
utmp, wtmp—Login records.

SYNOPSIS
#include <utmp.h>

DESCRIPTION
The utmp file allows you to discover information about who is currently using the system. There may be more users currently
using the system because not all programs use utmp logging.

Warning: utmp must not be writable because many system programs depend on its integrity. You risk faked system log files
and modifications of system files if you leave utmp writable to any user.

The file is a sequence of entries with the following structure declared in the include file:

#define UT_UNKNOWN 0
#define RUN_LVL 1
#define BOOT_TIME 2
#define NEW_TIME 3
#define OLD_TIME 4

1199

#define INIT_PROCESS 5
#define LOGIN_PROCESS 6
#define USER_PROCESS 7
#define DEAD_PROCESS 8

#define UT_LINESIZE 12
#define UT_NAMESIZE 8
#define UT_HOSTSIZE 16

struct utmp {
 short ut_type; /* type of login */
 pid_t ut_pid; /* pid of process */
 char ut_line[UT_LINESIZE]; /* device name of tty – “/dev/” */
 char ut_id[2]; /* init id or abbrev. ttyname */
 time_t ut_time; /* login time */
 char ut_user[UT_NAMESIZE]; /* user name */
 char ut_host[UT_HOSTSIZE]; /* host name for remote login */
 long ut_addr; /* IP addr of remote host */
};

This structure gives the name of the special file associated with the user’s terminal, the user’s login name, and the time of
login in the form of time(2). String fields are terminated by \0 if they are shorter than the size of the field.

The first entries ever created result from init(8) processing inittab(5). Before an entry is processed, though, init(8) cleans
up utmp by setting ut_type to DEAD_PROCESS, clearing ut_user, ut_host and ut_time with null bytes for each record that ut_type
is not DEAD_PROCESS or RUN_LVL and where no process with PID ut_pid exists. If no empty record with the needed ut_id can be
found, init creates a new one. It sets ut_id from the inittab, ut_pid and ut_time to the current values, and ut_type to
INIT_PROCESS.

getty(8) locates the entry by the PID, changes ut_type to LOGIN_PROCESS, changes ut_time, sets ut_line and waits for
connection to be established. login(8), after a user has been authenticated, changes ut_type to USER_PROCESS, changes ut_time,
and sets ut_host and ut_addr. Depending on getty(8) and login(8), records may be located by ut_line instead of the
preferable ut_pid.

When init(8) finds that a process has exited, it locates its utmp entry by ut_pid, sets ut_type to DEAD_PROCESS, and clears
ut_user, ut_host, and ut_time with null bytes.

xterm(1) and other terminal emulators directly create a USER_PROCESS record and generate the ut_id by using the last two
letters of /dev/ttyp%c or by using p%d for /dev/pts/%d.

If they find a DEAD_PROCESS for this ID, they recycle it; otherwise, they create a new entry. If they can, they will mark it as
DEAD_PROCESS on exiting and it is advised that they null ut_line, ut_time, ut_user, and ut_host as well.

xdm(8) should not create an utmp record because there is no assigned terminal. Letting it create one will result in trouble such
as finger: cannot stat /dev/machine.dom. It should create wtmp entries, though, just like ftpd(8) does.

telnetd(8) sets up a LOGIN_PROCESS entry and leaves the rest to login(8) as usual. After the Telnet session ends, telnetd(8)
cleans up utmp in the described way.

The wtmp file records all logins and logouts. Its format is exactly like utmp except that a null username indicates a logout on
the associated terminal. Furthermore, the terminal name ~ with username shutdown or reboot indicates a system shutdown or
reboot and the pair of terminal names “|”/”}” logs the old/new system time when date(1) changes it. wtmp is maintained by
login(1) and init(1) and some variation of getty(1). Neither of these programs creates the file, so if it is removed, record-
keeping is turned off.

FILES
/var/run/utmp
/var/log/wtmp

utmp, wtmp

Part V: File Formats1200

CONFORMING TO
Linux utmp entries conform neither to v7/BSD nor to SYSV: They are a mix of the two. v7/BSD has fewer fields; most
importantly, it lacks ut_type, which causes native v7/BSD-like programs to display (for example) dead or login entries.
Further there is no configuration file that allocates slots to sessions. BSD does so because it lacks ut_id fields. In Linux (as in
SYSV), the ut_id field of a record will never change once it is set, which reserves that slot without needing a configuration
file. Clearing ut_id may result in race conditions leading to corrupted utmp entries and potential security holes. Clearing the
previously mentioned fields by filling them with null bytes is not required by SYSV semantics, but it allows you to run many
programs that assume BSD semantics and that do not modify utmp. Linux uses the BSD conventions for line contents. SYSV
only uses the type field to mark them and logs informative messages such as new time in the line field. SYSV has one more
field to log the exit status of dead processes. UT_UNKNOWN seems to be a Linux invention. There is no type ACCOUNTING in Linux.
SYSV has no ut_host or ut_addr fields. Unlike various other systems, where utmp logging can be disabled by removing the
file, utmp must always exist on Linux. If you want to disable who(1), then do not make utmp world readable.

RESTRICTIONS
The file format is machine dependent, so it is recommended that it be processed only on the machine architecture where it
got created.

SEE ALSO
ac(1), date(1), last(1), login(1), who(1), getutent(3), init(8)

20 July 1996

uuencode
uuencode—Format of an encoded uuencode file.

DESCRIPTION
Files output by uuencode(1) consist of a header line, followed by a number of body lines, and a trailer line. The uudecode(1)
command will ignore any lines preceding the header or following the trailer. Lines preceding a header must not, of course,
look like a header.

The header line is distinguished by having the first six characters begin. The word begin is followed by a mode (in octal) and
a string that names the remote file. A space separates the three items in the header line.

The body consists of a number of lines, each at most 62 characters long (including the trailing newline). These consist of a
character count, followed by encoded characters, followed by a newline. The character count is a single printing character
and represents an integer, the number of bytes the rest of the line represents. Such integers are always in the range from 0 to
63 and can be determined by subtracting the character space (octal 40) from the character.

Groups of three bytes are stored in four characters, six bits per character. All are offset by a space to make the characters
print. The last line may be shorter than the normal 45 bytes. If the size is not a multiple of three, this fact can be determined
by the value of the count on the last line. Extra garbage will be included to make the character count a multiple of four. The
body is terminated by a line with a count of zero. This line consists of one ASCII space.

The trailer line consists of end on a line by itself.

SEE ALSO
uuencode(1), uudecode(1), uusend(1), uucp(1), mail(1)

HISTORY
The uuencode file format appeared in BSD 4.0.

1201

XF86Config
XF86Config—Configuration file for XFree86.

DESCRIPTION
XFree86 uses a configuration file called XF86Config for its initial setup. This configuration file is searched for in the following
places:

/etc/XF86Config
<XRoot>/lib/X11/XF86Config.hostname
<XRoot>/lib/X11/XF86Config

<XRoot> refers to the root of the X11 install tree.

This file is composed of a number of sections. Each section has the form:

Section “SectionName”
SectionEntry ...
EndSection

The section names are

Files File pathnames

ServerFlags Server flags

Keyboard Keyboard configuration

Pointer Pointer configuration

Monitor Monitor description

Device Graphics device description

Screen Screen configuration

The Files section is used to specify the default font path and the path to the RGB database. These paths can also be set from
the command line (see Xserver(1)). The entries available for this section are

FontPath “path” Sets the search path for fonts. This path is a comma-separated list of directories that the X
server searches for font databases. Multiple FontPath entries may be specified, and they will
be concatenated to build up the fontpath used by the server.

X11R6 allows the X server to request fonts from a font server. A font server is specified by
placing a “<trans>/<hostname>:<port_number>” entry into the fontpath. For example, the
fontpath

“/usr/X11R6/lib/X11/fonts/misc/,tcp/zok:7100”

tells the X server to first try to locate the font in the local directory /usr/X11R6/lib/X11/
fonts/misc. If that fails, then request the font from the font server running on machine zok
listening for connections on TCP port number 7100.

RGBPath “path” Sets the path name for the RGB color database.

The ServerFlags section is used to specify some miscellaneous X server options. The entries available for this section are

NoTrapSignals This prevents the X server from trapping a range of unexpected fatal signals and exiting
cleanly. Instead, the X server will die and drop core where the fault occurred. The default
behavior is for the X server exit cleanly but still drop a core file. In general, you never want
to use this option unless you are debugging an X server problem.

DontZap This disallows the use of the Ctrl+Alt+Backspace sequence. This sequence allows you to
terminate the X server. Setting DontZap allows this key sequence to be passed to clients.

DontZoom This disallows the use of the Ctrl+Alt+Keypad-Plus and Ctrl+Alt+Keypad-Minus sequences.
These sequences allow you to switch between video modes. Setting DontZoom allows these
key sequences to be passed to clients.

XF86Config

Part V: File Formats1202

The Keyboard section is used to specify the keyboard input device, parameters, and some default keyboard mapping options.
The entries available for this section are

Protocol “kbd-protocol” kbd-protocol may be either Standard or Xqueue. Xqueue is specified when using the event
queue driver on SVR3 or SVR4.

AutoRepeat delay rate Changes the behavior of the autorepeat of the keyboard. This does not work on all
platforms.

ServerNumLock Forces the X server to handle the numlock key internally. The X server sends a different set
of keycodes for the numpad when the numlock key is active. This enables applications to
make use of the numpad.

LeftAlt mapping RightAlt mapping AltGr mapping
ScrollLock mapping RightCtl mapping

Allows a default mapping to be set for the preceding keys (note that AltGr is a synonym for RightAlt). The values that may be
specified for mapping are

Meta

Compose

ModeShift

ModeLock

ScrollLock

Control

The default mapping when none of these options are specified is

LeftAlt Meta

RightAlt Meta

ScrollLock Compose

RightCtl Control

XLeds led ... Makes led available for clients instead of using the traditional function (Scroll Lock, Caps
Lock, and Num Lock). led is a list of numbers in the range 1 to 3.

VTSysReq Enables the SYSV-style VT switch sequence for non-SYSV systems that support VT
switching. This sequence is Alt-SysRq followed by a function key (Fn). This prevents the X
server trapping the keys used for the default VT switch sequence.

VTInit “command” Runs command after the VT used by the server has been opened. The command string is
passed to /bin/sh -c and is run with the real user’s ID with stdin and stdout set to the VT.
The purpose of this option is to allow system-dependent VT initialization commands to be
run. One example is a command to disable the two-key VT switching sequence that is the
default on some systems.

The Pointer section is used to specify the pointer device and parameters. The entries available for this section are

Protocol “protocol-type” Specifies the pointer device protocol type. The protocol types available are

BusMouse

Logitech

Microsoft

MMSeries

Mouseman

MouseSystems

PS/2

1203

MMHitTab

Xqueue

OSMouse

One should specify BusMouse for the Logitech bus mouse. Also, many newer Logitech serial mice use either the Microsoft or
MouseMan protocol. Xqueue should be specified here if it was used in the Keyboard section. OSMouse refers to the event-driver
mouse interface available on SCO’s SVR3. This may optionally be followed by a number specifying the number of buttons
the mouse has.

Device “pointer-dev” Specifies the device the server should open for pointer input (such as /dev/tty00
or /dev/mouse). A device should not be specified when using the Xqueue or
OSMouse protocols.

BaudRate rate Sets the baud rate of the serial mouse to rate. For mice that allow dynamic speed
adjustments (such as Logitech), the baud rate is changed in the mouse.
Otherwise, the rate is simply set on the computer’s side to allow mice with non-
standard rates (the standard rate is 1200).

Emulate3Buttons Enables the emulation of the third mouse button for mice that only have two
physical buttons. The third button is emulated by pressing both buttons
simultaneously.

Emulate3Timeout timeout Sets the time (in milliseconds) that the server waits before deciding if two
buttons were pressed “simultaneously” when three-button emulation is enabled.
The default time-out is 50ms.

ChordMiddle Handles mice that send left+right events when the middle button is used (such as
some Logitech Mouseman mice).

SampleRate rate Sets the number of motion/button-events the mouse sends per second. This is
currently only supported for some Logitech mice.

ClearDTR This option clears the DTR line on the serial port used by the mouse. This
option is only valid for a mouse using the MouseSystems protocol. Some dual-
protocol mice require DTR to be cleared to operate in MouseSystems mode. Note,
in versions of XFree86 prior to 2.1, this option also cleared the RTS line. A
separate ClearRTS option has since been added for mice that require this.

ClearRTS This option clears the RTS line on the serial port used by the mouse. This option
is only valid for a mouse using the MouseSystems protocol. Some dual-protocol
mice require both DTR and RTS to be cleared to operate in MouseSystems mode.
Both the ClearDTR and ClearRTS options should be used for such mice.

The Monitor sections are used to define the specifications of a monitor and a list of video modes suitable for use with a
monitor. More than one Monitor section may be present in an XF86Config file. The entries available for this section are

Identifier “ID string” This specifies a string by which the monitor can be referred to in a later Screen
section. Each Monitor section should have a unique ID string.

VendorName “vendor” This optional entry specifies the monitor’s manufacturer.

ModelName “model” This optional entry specifies the monitor’s model.

HorizSync horizsync-range Gives the ranges of horizontal sync frequencies supported by the monitor.
horizsync-range may be a comma-separated list of either discrete values or ranges
of values. A range of values is two values separated by a dash. By default, the
values are in units of kHz. They may be specified in MHz or Hz if MHz or Hz is
added to the end of the line. The data given here is used by the X server to
determine if video modes are within the specifications of the monitor. This
information should be available in the monitor’s handbook.

XF86Config

Part V: File Formats1204

VertRefresh vertrefresh-range Gives the ranges of vertical refresh frequencies supported by the monitor.
vertrefresh-range may be a comma-separated list of either discrete values
or ranges of values. A range of values is two values separated by a dash. By
default, the values are in units of Hz. They may be specified in MHz or
kHz if MHz or kHz is added to the end of the line. The data given here is
used by the X server to determine if video modes are within the
specifications of the monitor. This information should be available in the
monitor’s handbook.

Gamma gamma-values This is an optional entry that can be used to specify the gamma
correction for the monitor. It may be specified as either a single value or
as three separate RGB values. Not all X servers are capable of using this
information.

Mode “name” Indicates the start of a multi-line video mode description. The mode
description is terminated with an End-Mode line. The mode description
consists of the following entries:

DotClock clock The dot clock rate to be used for the mode.

HTimings hdisp hsyncstart hsyncend htotal Specifies the horizontal timings for the mode.

VTimings vdisp vsyncstart vsyncend vtotal Specifies the vertical timings for the mode.

Flags “flag” ... Specifies an optional set of mode flags. Interlace indicates that the mode
is interlaced. DoubleScan indicates a mode where each scanline is doubled.
+HSync and -HSync can be used to select the polarity of the HSync signal.
+VSync and -VSync can be used to select the polarity of the VSync signal.
Composite can be used to specify composite sync on hardware where this is
supported. Additionally, on some hardware, +CSync and -CSync may be
used to select the composite sync polarity.

Modeline “name” mode-description A single line format for specifying video modes. The mode-description is
in four sections, the first three of which are mandatory. The first is the
pixel clock. This is a single number specifying the pixel clock rate for the
mode. The second section is a list of four numbers specifying the
horizontal timings. These numbers are the hdisp, hsyncstart, hsyncend,
htotal. The third section is a list of four numbers specifying the vertical
timings. These numbers are vdisp, vsyncstart, vsyncend, vtotal. The final
section is a list of flags specifying other characteristics of the mode.
Interlace indicates that the mode is interlaced. DoubleScan indicates a
mode where each scanline is doubled. +HSync and –HSync can be used to
select the polarity of the HSync signal. +VSync and –VSync can be used to
select the polarity of the VSync signal. Composite can be used to specify
composite sync on hardware where this is supported. Additionally, on
some hardware, +CSync and -CSync may be used to select the composite
sync polarity.

The Device sections are used to define a graphics device (video board). More than one Device section may be present in an
XF86Config file. The entries available for this section are

Identifier “ID string” This specifies a string by which the graphics device can be referred to in a
later Screen section. Each Device section should have a unique ID string.

VendorName “vendor” This optional entry specifies the graphics device’s manufacturer.

BoardName “model” This optional entry specifies the name of the graphics device.

Chipset “chipset-type” This optional entry specifies the chipset used on the graphics board. In
most cases, this entry is not required because the X servers will probe the
hardware to determine the chipset type.

1205

Ramdac “ramdac-type” This optional entry specifies the type of RAMDAC used on the graphics board.
This is only used by a few of the X servers, and in most cases, it is not required
because the X servers will probe the hardware to determine the RAMDAC type
where possible.

DacSpeed speed This optional entry specifies the RAMDAC speed rating (which is usually
printed on the RAMDAC chip). The speed is in MHz. This is only used by a
few of the X servers and only needs to be specified when the speed rating of the
RAMDAC is different from the default built in to the X server.

Clocks clock ... Specifies the dotclocks that are on your graphics board. The clocks are in MHz
and may be specified as a floating-point number. The value is stored internally to
the nearest kHz. The ordering of the clocks is important. It must match the
order in which they are selected on the graphics board. Multiple Clocks lines may
be specified. For boards with programmable clock chips, the ClockChip entry
should be used instead of this. A Clocks entry is not mandatory for boards with
non-programmable clock chips but is highly recommended because it prevents
the clock probing phase during server startup. This clock probing phase can
cause problems for some monitors.

ClockChip “clockchip-type” This optional entry is used to specify the clock chip type on graphics boards that
have a programmable clock generator. Only a few X servers support program-
mable clock chips. For details, see the appropriate X server manual page.

ClockProg command [textclock] This optional entry runs command to set the clock on the graphics board instead of
using the internal code. The command string must consist of the full pathname
(and no flags). When using this option, a Clocks entry is required to specify
which clock values are to be made available to the server (up to 128 clocks may
be specified). The optional textclock value is to tell the server that command must
be run to restore the text-mode clock at server exit (or when VT switching).
textclock must match one of the values in the Clocks entry. This parameter is
required when the clock used for text mode is a programmable clock.

The command is run with the real user’s ID with stdin and stdout set to the
graphics console device. Two arguments are passed to the command. The first is
the clock frequency in MHz as a floating-point number and the second is the
index of the clock in the Clocks entry. The command should return an exit status
of 0 when successful and something in the range 1–254 otherwise.

The command is run when the initial graphics mode is set and when changing
screen resolution with the hotkey sequences. If the program fails at initialization,
the server exits. If it fails during a mode switch, the mode switch is aborted but
the server keeps running. It is assumed that if the command fails, the clock has
not been changed.

Option optionstring This optional entry allows the user to select certain options provided by the
drivers. Multiple Option entries may be given. The supported values for
optionstring are given in the appropriate X server manual pages.

VideoRam mem This optional entry specifies the amount of video RAM that is installed on the
graphics board. This is measured in kilobytes. In most cases, this is not required
because the X server probes the graphics board to determine this quantity.

BIOSBase baseaddress This optional entry specifies the base address of the video BIOS for the VGA
board. This address is usually 0xC0000, which is the default the X servers use.
Some systems, particularly those with on-board VGA hardware, have the BIOS
located at an alternate address, usually 0xE0000. If your video BIOS is at an
address other than 0xC0000, you must specify the base address in the XF86Config
file. Note that some X servers don’t access the BIOS at all and those that do only
use the BIOS when searching for information during the hardware probe phase.

XF86Config

Part V: File Formats1206

MemBase baseaddress This optional entry specifies the memory base address of a graphics board’s linear
frame buffer. This entry is only used by a few X servers, and the interpretation of
this base address may be different for different X servers. Refer to the appropriate
X server manual page for details.

IOBase baseaddress This optional entry specifies the IO base address. This entry is only used for a
few X servers. Refer to the appropriate X server manual page for details.

DACBase baseaddress This optional entry specifies the DAC base address. This entry is only used for a
few X servers. Refer to the appropriate X server manual page for details.

POSBase baseaddress This optional entry specifies the POS base address. This entry is only used for a
few X servers. Refer to the appropriate X server manual page for details.

COPBase baseaddress This optional entry specifies the coprocessor base address. This entry is only used
for a few X servers. Refer to the appropriate X server manual page for details.

VGABase baseaddress This optional entry specifies the VGA memory base address. This entry is only
used for a few X servers. Refer to the appropriate X server manual page for
details.

Instance number This optional entry specifies the instance (which indicates if the chip is
integrated on the motherboard or on an expansion card). This entry is only used
for a few X servers. Refer to the appropriate X server manual page for details.

Speedup selection This optional entry specifies the selection of speedups to be enabled. This entry
is only used for a few X servers. Refer to the appropriate X server manual page for
details.

S3MNAdjust MN This optional entry is specific to the S3 X server. For details, refer to the
XF86_S3(1) manual page.

S3MClk clock This optional entry is specific to the S3 X server. For details, refer to the
XF86_S3(1) manual page.

S3RefClock clock This optional entry is specific to the S3 X server. For details, refer to the
XF86_S3(1) manual page.

The Screen sections are used to specify which graphics boards and monitors are used with a particular X server and the
configuration in which they are to be used. The entries available for this section are

Driver driver-name Each Screen section must begin with a Driver entry, and the driver-name given in
each Screen section must be unique. The driver-name determines which X server
(or driver type within an X server when an X server supports more than one
head) reads and uses a particular Screen section. The driver names available are
Accel

Mono

SVGA

VGA2

VGA16

Accel is used by all the accelerated X servers (see XF86_Accel(1)). Mono is used by
the non-VGA mono drivers in the 2-bit and 4-bit X servers (see XF86_Mono(1) and
XF86_VGA16(1)). VGA2 and VGA16 are used by the VGA drivers in the 2-bit and 4-bit
X servers. SVGA is used by the XF86_SVGA X server.

Device device-id Specifies which graphics device description is to be used.

Monitor monitor-id Specifies which monitor description is to be used.

ScreenNo scrnum This optional entry overrides the default screen numbering in a multi-headed
configuration. The default numbering is determined by the ordering of the
Screen sections in the XF86Config file. To override this, all relevant Screen
sections must have this entry specified.

1207

BlankTime time Sets the inactivity time-out for the blanking phase of the screensaver. time is in
minutes, and the default is 10. This is equivalent to the X server’s -s flag, and the
value can be changed at runtime with xset(1).

SuspendTime time Sets the inactivity time-out for the “suspend” phase of the screensaver. time is in
minutes, the default is 15, and it can be changed at runtime with xvidtune(1). This
is only suitable for VESA DPMS compatible monitors and is only supported
currently by some X servers. The “power_saver” Option must be set for this to be
enabled.

OffTime time Sets the inactivity time-out for the “off” phase of the screensaver. time is in minutes,
the default is 30, and it can be changed at runtime with xvidtune(1). This is only
suitable for VESA DPMS compatible monitors and is only supported currently by
some X servers. The “power_saver” Option must be set for this to be enabled.

SubSection Display This entry is a subsection that is used to specify some display specific parameters.
This subsection is terminated by an EndSubSection entry. For some X servers and
drivers (those requiring a list of video modes), this subsection is mandatory. For X
servers that support multiple display depths, more than one Display subsec-tion can
be present. When multiple Display subsections are present, each must have a unique
Depth entry. The entries available for the Display subsection are

Depth bpp This entry is mandatory when more than one Display subsection is present in a
Screen section. When only one Display subsection is present, it specifies the default
depth where the X server will run. When more than one Display subsection is
present, the depth determines which gets used by the X server. The subsection used
is the one matching the depth at which the X server is run. Not all X servers (or
drivers) support more than one depth. Permitted values for bpp are 8, 15, 16, 24, and
32. Not all X servers (or drivers) support all these values. bpp values of 24 and 32 are
treated equivalently by those X servers that support them.

Weight RGB This optional entry specifies the relative RGB weighting to be used for an X server
running at 16bpp. This may also be specified from the command line (see
XFree86(1)). Values supported by most 16bpp X servers are 555 and 565. For further
details, refer to the appropriate X server manual page.

Virtual xdim ydim This optional entry specifies the virtual screen resolution to be used. xdim must be a
multiple of either 8 or 16 for most color X servers and a multiple of 32 for the
monochrome X server. The given value is rounded down if this is not the case. For
most X servers, video modes that are too large for the specified virtual size are
rejected. If this entry is not present, the virtual screen resolution is set to accommo-
date all the valid video modes given in the Modes entry. Some X servers do not
support this entry. Refer to the appropriate X server manual pages for details.

ViewPort x0 y0 This optional entry sets the upper-left corner of the initial display. This is only
relevant when the virtual screen resolution is different from the resolution of the
initial video mode. If this entry is not given, then the initial display is centered in the
virtual display area.

Modes modename ... This entry is mandatory for most X servers, and it specifies the list of video modes to
use. The video mode names must correspond to those specified in the appropriate
Monitor section. Most X servers delete modes from this list that don’t satisfy various
requirements. The first valid mode in this list is the default display mode for startup.
The list of valid modes is converted internally into a circular list. It is possible to
switch to the next mode with Ctrl+Alt+Keypad Plus and to the previous mode with
Ctrl+Alt+Keypad Minus.

InvertVCLK modename 0|1 This optional entry is specific to the S3 server only. It can be used to change the
default VCLK invert/non-invert state for individual modes. If “modename” is “”, the
setting applies to all modes unless overridden by later entries.

XF86Config

Part V: File Formats1208

EarlySC modename 0|1 This optional entry is specific to the S3 server only. It can be used to change the
default EarlySC setting for individual modes. This setting can affect screen wrapping.
If “modename” is “”, the setting applies to all modes unless overridden by later entries.

BlankDelay modename value1 value2 This optional entry is specific to the S3 server only. It can be used to change the
default blank delay settings for individual modes. This can affect screen wrapping.
value1 and value2 must be integers in the range 0–7. If “modename” is “”, the setting
applies to all modes unless overridden by later entries.

Visual visual-name This optional entry sets the default root visual type. This can also be specified from
the command line (see Xserver(1)). The visual types available for 8bpp X servers are
(default is PseudoColor):
StaticGray

GrayScale

StaticColor

PseudoColor

TrueColor

DirectColor

The visual type available for the 16bpp and 32bpp X servers is TrueColor.

The visual type available for the 1bpp X server is StaticGray.

The visual types available for the 4bpp X server are (default is PseudoColor):
StaticGray

GrayScale

StaticColor

PseudoColor

Option optionstring This optional entry allows the user to select certain options provided by the drivers.
Multiple Option entries can be given. The supported values for option-string are
given in the appropriate X server manual pages.

Black red green blue This optional entry allows the “black” color to be specified. This is only supported
with the VGA2 driver in the XF86_Mono server (for details, see XF86_Mono(1)).

White red green blue This optional entry allows the “white” color to be specified. This is only supported
with the VGA2 driver in the XF86_Mono server (for details, see XF86_Mono(1)).

For an example of an XF86Config file, see the file installed as <XRoot>/lib/X11/XF86Config.eg.

FILES
/etc/XF86Config
<XRoot>/lib/X11/XF86Config. hostname <XRoot>/lib/X11/XF86Config

Note that <XRoot> refers to the root of the X11 install tree.

SEE ALSO
X(1), Xserver(1), XFree86(1), XF86_SVGA(1), XF86_VGA16(1), XF86_Mono(1), XF86_S3(1), XF86_8514(1), XF86_Mach8(1),
XF86_Mach32(1), XF86_P9000(1), XF86_AGX(1), XF86_W32(1)

AUTHORS
Refer to the XFree86(1) manual page.

1209

Games

Part VI:

Part VI: Games1210

intro
intro—Introduction to games.

DESCRIPTION
This chapter describes all the games and funny little programs available on the system.

AUTHORS
Look at the header of the manual page for the authors and copyright conditions. Note that these can be different from page
to page!

Linux, 24 July 1993

banner
banner—Print large banner on printer.

SYNOPSIS
/usr/games/banner [-wn] message ...

DESCRIPTION
banner prints a large, high-quality banner on the standard output. If the message is omitted, it prompts for and reads one line
of its standard input. If -w is given, the output is scrunched down from a width of 132 to n, suitable for a narrow terminal. If
n is omitted, it defaults to 80.

The output should be printed on a hard-copy device, up to 132 columns wide, with no breaks between the pages. The
volume is great enough that you might want a printer or a fast hard-copy terminal, but if you are patient, a decwriter or
other 300 baud terminal will do.

BUGS
Several ASCII characters are not defined, notably <, >, [,], \, ˆ, _, {, }, |, and ˜. Also, the characters “, ‘, and & are funny-
looking (but in a useful way).

The -w option is implemented by skipping some rows and columns. The smaller it gets, the grainier the output. Sometimes it
runs letters together.

AUTHOR
Mark Horton

6 June 1993

ddate
ddate—Converts boring normal dates to fun Discordian dates.

SYNOPSIS
ddate

1211ddate

DESCRIPTION
ddate prints the date in Discordian date format.

AUTHOR
Druel the Chaotic, a.k.a. Jeremy Johnson (mpython@gnu.ai.mit.edu). Modifications for UNIX by Lee Harvey Oswald Smith,
K.S.C. Five tons of flax.

55 Confusion 3160

Part VI: Games1212

1213

Miscellaneous

Part VII:

Part VII: Miscellaneous1214

intro
intro—Introduction to miscellany section.

DESCRIPTION
This chapter describes miscellaneous things such as nroff macro packages, tables, C header files, the file hierarchy, general
concepts, and other things that don’t fit anywhere else.

AUTHORS
Look at the header of the manual page for the authors and copyright conditions. Note that these can be different from page
to page!

Linux, 23 April 1993

ascii
ascii—The ASCII character set encoded in octal, decimal, and hexadecimal

DESCRIPTION
The following table contains the 128 ASCII characters.

C program ‘\X’ escapes are noted.

Oct Dec Hex Char Oct Dec Hex Char

000 0 00 NUL ‘\0’ 100 64 40 @

001 1 01 SOH 101 65 41 A

002 2 02 STX 102 66 42 B

003 3 03 ETX 103 67 43 C

004 4 04 EOT 104 68 44 D

005 5 05 ENQ 105 69 45 E

006 6 06 ACK 106 70 46 F

007 7 07 BEL ‘\a’ 107 71 47 G

010 8 08 BS ‘\b’ 110 72 48 H

011 9 09 HT ‘\t’ 111 73 49 I

012 10 0A LF ‘\n’ 112 74 4A J

013 11 0B VT ‘\v’ 113 75 4B K

014 12 0C FF ‘\f ’ 114 76 4C L

015 13 0D CR ‘\r’ 115 77 4D M

016 14 0E SO 116 78 4E N

017 15 0F SI 117 79 4F O

020 16 10 DLE 120 80 50 P

021 17 11 DC1 121 81 51 Q

022 18 12 DC2 122 82 52 R

023 19 13 DC3 123 83 53 S

024 20 14 DC4 124 84 54 T

025 21 15 NAK 125 85 55 U

026 22 16 SYN 126 86 56 V

1215

027 23 17 ETB 127 87 57 W

030 24 18 CAN 130 88 58 X

031 25 19 EM 131 89 59 Y

032 26 1A SUB 132 90 5A Z

033 27 1B ESC 133 91 5B [

034 28 1C FS 134 92 5C \’\\’

035 29 1D GS 135 93 5D]

036 30 1E RS 136 94 5E ˆ

037 31 1F US 137 95 5F _

040 32 20 SPACE 140 96 60 ‘

041 33 21 ! 141 97 61 a

042 34 22 “ 142 98 62 b

043 35 23 # 143 99 63 c

044 36 24 $ 144 100 64 d

045 37 25 % 145 101 65 e

046 38 26 & 146 102 66 f

047 39 27 ‘ 147 103 67 g

050 40 28 (150 104 68 h

051 41 29) 151 105 69 i

052 42 2A * 152 106 6A j

053 43 2B + 153 107 6B k

054 44 2C , 154 108 6C l

055 45 2D – 155 109 6D m

056 46 2E . 156 110 6E n

057 47 2F / 157 111 6F o

060 48 30 0 160 112 70 p

061 49 31 1 161 113 71 q

062 50 32 2 162 114 72 r

063 51 33 3 163 115 73 s

064 52 34 4 164 116 74 t

065 53 35 5 165 117 75 u

066 54 36 6 166 118 76 v

067 55 37 7 167 119 77 w

070 56 38 8 170 120 78 x

071 57 39 9 171 121 79 y

072 58 3A : 172 122 7A z

073 59 3B ; 173 123 7B {

074 60 3C < 174 124 7C |

075 61 3D = 175 125 7D }

076 62 3E > 176 126 7E ˜

077 63 3F ? 177 127 7F DEL

Oct Dec Hex Char Oct Dec Hex Char

ascii

Part VII: Miscellaneous1216

HISTORY
An ascii manual page appeared in version 7 AT&T UNIX.

SEE ALSO
iso_8859_1(7)

Linux

bootparam
bootparam—Introduction to boot-time parameters of the Linux kernel.

DESCRIPTION
The Linux kernel accepts certain command-line options or boot-time parameters at the moment it is started. In general, this
is used to supply the kernel with information about hardware parameters that the kernel would not be able to determine on
its own, or to avoid or override the values that the kernel would otherwise detect.

When the kernel is booted directly by the BIOS (say, from a floppy to which you copied a kernel using cp zImage /dev/fd0),
you have no opportunity to specify any parameters. To take advantage of this possibility, you have to use software that is able
to pass parameters, such as LILO or loadlin. For a few parameters, one can also modify the kernel image itself, using rdev; see
rdev(8) for further details.

The LILO program (LInux LOader) written by Werner Almesberger is the most commonly used. It has the ability to boot
various kernels and stores the configuration information in a plain text file. (See lilo(8) and lilo.conf(5).) LILO can boot
DOS, OS/2, Linux, FreeBSD, and so on and is quite flexible.

The other commonly used Linux loader is loadlin, which is a DOS program that has the capability to launch a Linux kernel
from the DOS prompt (with boot args) assuming that certain resources are available. This is good for people who want to
launch Linux from DOS.

It is also very useful if you have certain hardware that relies on the supplied DOS driver to put the hardware into a known
state. A common example is SoundBlaster-compatible sound cards that require the DOS driver to twiddle a few mystical
registers to put the card into a SB-compatible mode. Booting DOS with the supplied driver and then loading Linux from the
DOS prompt with loadlin avoids the reset of the card that happens if one reboots instead.

THE ARGUMENT LIST
Most of the boot args take the form of

name[=value_1][,value_2]...[,value_11]

name is a unique keyword that is used to identify what part of the kernel the associated values (if any) are to be given to.
Multiple boot args are just a space-separated list of the preceding format. Note the limit of 11 is real because the present code
handles only 11 comma-separated parameters per keyword. (However, you can reuse the same keyword with up to an
additional 11 parameters in unusually complicated situations, assuming the setup function supports it.)

Most of the sorting occurs in linux/init/main.c. First, the kernel checks to see if the argument is any of the special
arguments root=, ro, rw, or debug. The meaning of these special arguments is described later in the document.

Then, it walks a list of setup functions (contained in the bootsetups array) to see if the specified argument string (such as foo)
is associated with a setup function (foo_setup()) for a particular device or part of the kernel. If you passed the kernel the line
foo=3,4,5,6, then the kernel searches the bootsetups array to see if foo is registered. If it is, it calls the setup function
associated with foo (foo_setup()) and hands it the arguments 3, 4, 5, and 6 as given on the kernel command line.

Anything of the form foo=bar that is not accepted as a setup function as described is then interpreted as an environment
variable to be set. A (useless?) example is to use TERM=vt100 as a boot argument.

1217

Any remaining arguments that were not picked up by the kernel and were not interpreted as environment variables are then
passed onto process one, which is usually the init program. The most common argument that is passed to the init process is
the word single, which instructs init to boot the computer in single-user mode and not launch all the usual daemons. Check
the manual page for the version of init installed on your system to see what arguments it accepts.

GENERAL NON-DEVICE-SPECIFIC BOOT ARGS
no387

Some i387 coprocessor chips have bugs that show up when used in 32-bit protected mode.

For example, some of the early ULSI-387 chips cause solid lockups while performing floating-point calculations. Using the
‘no387’ boot arg causes Linux to ignore the maths coprocessor even if you have one. Of course, you must then have your
kernel compiled with math emulation support!

no-hlt
Some of the early i486DX-100 chips have a problem with the hlt instruction in that they can’t reliably return to operating
mode after this instruction is used. Using the ‘no-hlt’ instruction tells Linux to just run an infinite loop when there is
nothing else to do and to not halt the CPU. This allows people with these broken chips to use Linux.

root=...
This argument tells the kernel what device is to be used as the root filesystem while booting. The default of this setting is
determined at compile time and usually is the value of the root device of the system that the kernel was built on. To override
this value and select the second floppy drive as the root device, one uses ‘root=/dev/fd1’. (The root device can also be set
using rdev(8).)

The root device can be specified symbolically or numerically. A symbolic specification has the form /dev/XXYN, where XX
designates the device type (hd for ST-506-compatible hard disk with Y in a-h; sd for SCSI-compatible disk with Y in a-e; xd
for XT-compatible disk with Y either a or b; fd for floppy disk with Y the floppy drive number—fd0 is the DOS A: drive and
fd1 is B:), Y is the driver letter or number, and N is the number of the partition on this device (absent in the case of floppies).

Note that this has nothing to do with the designation of these devices on your filesystem. The /dev/ part is purely conven-
tional.

The more awkward and less portable numeric specification of the previous possible root devices in major/minor format is
also accepted. (For example, /dev/sda3 is major 8, minor 3, so you can use root=0x803 as an alternative.)

ro and rw

The ro option tells the kernel to mount the root filesystem as readonly so that filesystem consistency check programs (fsck)
can do their work on a quiescent file system. No processes can write to files on the filesystem in question until it is re-
mounted as read/write capable, such as by mount -w -n -o remount /. (See also mount(8).)

The rw option tells the kernel to mount the root filesystem read/write. This is the default.

The choice between read-only and read/write can also be set usingrdev(8).

debug

Kernel messages are handed off to the kernel log daemon klogd so that they can be logged to disk. Messages with a priority
above console_loglevel are also printed on the console. (For these levels, see <linux/kernel.h>.) By default, this variable is set
to log anything more important than debug messages. This boot argument causes the kernel to also print the messages of
DEBUG priority. The console log level can also be set at runtime via an option to klogd. See klogd(8).

reserve=...

This is used to protect I/O port regions from probes. The form of the command is

reserve=iobase,extent[,iobase,extent]...

bootparam

Part VII: Miscellaneous1218

In some machines, it might be necessary to prevent device drivers from checking for devices (auto-probing) in a specific
region. This may be because of hardware that reacts badly to the probing, hardware that would be mistakenly identified, or
hardware you don’t want the kernel to initialize.

The reserve boot-time argument specifies an I/O port region that shouldn’t be probed. A device driver does not probe a
reserved region unless another boot argument explicitly specifies that it do so.

For example, the boot line

reserve=0x300,32 blah=0x300

keeps all device drivers except the driver for blah from probing 0x300-0x31f.

ramdisk=...

This option is obsolete since Linux 1.3.48 or so. It specifies the size in kilobytes of the optional RAM disk device. For
example, if one wants to have a root filesystem on a 1.44MB floppy loaded into the RAM disk device, they use

ramdisk=1440

This option is set at compile time (default is no RAM disk), and can be modified using rdev(8).

mem=...

The BIOS call defined in the PC specification that returns the amount of installed memory was only designed to be able to
report up to 64MB. Linux uses this BIOS call at boot to determine how much memory is installed. If you have more than
64MB of RAM installed, you can use this boot arg to tell Linux how much memory you have. The value is in decimal or
hexadecimal (prefix 0x), and the suffixes K (times 1024) or M (times 1048576) can be used. The following quote from Linus
describes the use of the mem= parameter:

“The kernel will accept any mem=xx parameter you give it, and if it turns out that you lied to it, it will crash horribly sooner or
later. The parameter indicates the highest addressable RAM address, so ‘mem=0x1000000’ means you have 16MB of memory,
for example. For a 96MB machine this would be mem=0x6000000.

NOTE: Some machines might use the top of memory for BIOS caching or whatever, so you might not actually have up to
the full 96MB addressable. The reverse is also true: Some chipsets will map the physical memory that is covered by the BIOS
area into the area just past the top of memory, so the top-of-mem might actually be 96MB + 384KB, for example. If you tell
Linux that it has more memory than it actually does have, bad things will happen: maybe not at once, but surely eventually.”

reboot=warm

Since 2.0.22, a reboot is by default a cold reboot. This command-line option changes back to the old default, a warm reboot.

BOOT ARGUMENTS FOR SCSI DEVICES
General notation for this section:

iobase—the first I/O port that the SCSI host occupies. These are specified in hexadecimal notation and usually lie in the
range from 0x200 to 0x3ff.

irq—the hardware interrupt that the card is configured to use. Valid values are dependent on the card in question but are
usually 5, 7, 9, 10, 11, 12, and 15. The other values are usually used for common peripherals such as IDE hard disks, floppies,
serial ports, and so on.

scsi-id—the ID that the host adapter uses to identify itself on the SCSI bus. Only some host adapters allow you to change
this value because most have it permanently specified internally. The usual default value is 7, but the Seagate and Future
Domain TMC-950 boards use 6.

parity—whether the SCSI host adapter expects the attached devices to supply a parity value with all information exchanges.
Specifying a 1 indicates parity checking is enabled, and a 0 disables parity checking. Again, not all adapters support selection
of parity behavior as a boot argument.

1219

max_scsi_luns=...

A SCSI device can have a number of subdevices contained within itself. The most common example is one of the new SCSI
CD-ROMs that handle more than one disk at a time. Each CD is addressed as a Logical Unit Number (LUN) of that
particular device. Most devices, such as hard disks and tape drives, are only one device and are assigned to LUN 0.

Some poorly designed SCSI devices cannot handle being probed for LUNs not equal to 0. Therefore, if the compile-time flag
CONFIG SCSI MULTI LUN is not set, newer kernels by default only probe LUN 0.

To specify the number of probed LUNs at boot, one enters max scsi luns=n as a boot arg, where n is a number between 1
and 8. To avoid problems as described, one uses n=1 to avoid upsetting such broken devices.

SCSI TAPE CONFIGURATION
Some boot-time configuration of the SCSI tape driver can be achieved with the following:

st=buf_size[,write_threshold[,max_bufs]]

The first two numbers are specified in units of kilobytes. The default buf_size is 32KB, and the maximum size that can be
specified is a ridiculous 16384KB. The write_threshold is the value at which the buffer is committed to tape with a default
value of 30KB. The maximum number of buffers varies with the number of drives detected and has a default of two. A
sample usage is

st=32,30,2

Full details can be found in the README.st file that is in the scsi directory of the kernel source tree.

ADAPTEC AHA151X, AHA152X, AIC6260, AIC6360, SB16-SCSI CONFIGURATION
The aha numbers refer to cards and the aic numbers refer to the actual SCSI chip on these types of cards, including the
SoundBlaster-16 SCSI.

The probe code for these SCSI hosts looks for an installed BIOS, and if none is present, the probe will not find your card.
Then you must use a boot arg of the form:

aha152x=iobase[,irq[,scsi-id[,reconnect[,parity]]]]

If the driver was compiled with debugging enabled, a sixth value can be specified to set the debug level.

All the parameters are as described at the top of this section, and the reconnect value allows device disconnect/reconnect if a
nonzero value is used. A sample usage is as follows:

aha152x=0x340,11,7,1

Note that the parameters must be specified in order, meaning that if you want to specify a parity setting, then you must
specify an iobase, irq, scsi-id, and reconnect value as well.

ADAPTEC AHA154X CONFIGURATION
The aha1542 series cards have an i82077 floppy controller on board, whereas the aha1540 series cards do not. These are bus-
mastering cards and have parameters to set the “fairness” that is used to share the bus with other devices. The boot arg looks
like the following:

aha1542=iobase[,buson,busoff[,dmaspeed]]

Valid iobase values are usually one of 0x130, 0x134, 0x230, 0x234, 0x330, or 0x334. Clone cards may permit other values.

The buson and busoff values refer to the number of microseconds that the card dominates the ISA bus. The defaults are 11us
on and 4us off so that other cards (such as an ISA LANCE Ethernet card) have a chance to get access to the ISA bus.

The dmaspeed value refers to the rate (in MB/s) at which the DMA (Direct Memory Access) transfers proceed. The default is
5MB/s. Newer revision cards allow you to select this value as part of the soft-configuration; older cards use jumpers. You can
use values up to 10MB/s, assuming that your motherboard is capable of handling it. Experiment with caution if using values
over 5MB/s.

bootparam

Part VII: Miscellaneous1220

ADAPTEC AHA274X, AHA284X, AIC7XXX CONFIGURATION
These boards can accept an argument of the form:

aic7xxx=extended,no_reset

The extended value, if nonzero, indicates that extended translation for large disks is enabled. The no_reset value, if nonzero,
tells the driver not to reset the SCSI bus when setting up the host adapter at boot.

BUSLOGIC SCSI HOSTS CONFIGURATION (buslogic=)
At present, the buslogic driver accepts only one parameter, the I/O base. It expects that to be one of the following valid
values: 0x130, 0x134, 0x230, 0x234, 0x330, or 0x334.

FUTURE DOMAIN TMC-8XX, TMC-950 CONFIGURATION
If your card is not detected at boot time, you must use a boot arg of the form

tmc8xx=mem_base,irq

The mem_base value is the value of the memory-mapped I/O region that the card uses. This is usually one of the following
values: 0xc8000, 0xca000, 0xcc000, 0xce000, 0xdc000, or 0xde000.

PRO AUDIO SPECTRUM CONFIGURATION
The PAS16 uses an NC5380 SCSI chip, and newer models support jumperless configuration. The boot arg is of the form

pas16=iobase,irq

The only difference is that you can specify an IRQ value of 255, which tells the driver to work without using interrupts,
albeit at a performance loss. The iobase is usually 0x388.

SEAGATE ST-0X CONFIGURATION
If your card is not detected at boot time, you must use a boot arg of the form

st0x=mem_base,irq

The mem_base value is the value of the memory-mapped I/O region that the card uses. This is usually one of the following
values: 0xc8000, 0xca000, 0xcc000, 0xce000, 0xdc000, or 0xde000.

TRANTOR T128 CONFIGURATION
These cards are also based on the NCR5380 chip and accept the following options:

t128=mem_base,irq

The valid values for mem_base are as follows: 0xcc000, 0xc8000, 0xdc000, and 0xd8000.

CARDS THAT DON’T ACCEPT BOOT ARGS
At present, the following SCSI cards do not make use of any boot-time parameters. In some cases, you can hard-wire values
by directly editing the driver itself, if required.

Always IN2000, Adaptec aha1740, EATA-DMA, EATA-PIO, Future Domain 16xx, NCR5380 (generic), NCR53c7xx to
NCR53c8xx, Qlogic, Ultrastor (including u?4f), and Western Digital wd7000.

HARD DISKS
IDE DISK/CD-ROM DRIVER PARAMETERS

The IDE driver accepts a number of parameters, which range from disk geometry specifications to support for broken
controller chips. Drive specific options are specified by using hdX= with X in a-h.

Non-drive–specific options are specified with the prefix hd=. Note that using a drive-specific prefix for a non-drive–specific
option will still work, and the option will just be applied as expected.

1221

Also note that hd= can be used to refer to the next unspecified drive in the (a, …, h) sequence. For the following discussions,
the hd= option will be cited for brevity. See the file README.ide in linux/drivers/block for more details.

THE hd=cyls,heads,sects[,wpcom[,irq]] OPTIONS
These options are used to specify the physical geometry of the disk. Only the first three values are required. The cylinder,
head, and sectors values are those used by fdisk. The write precompensation value is ignored for IDE disks. The IRQ value
specified is the IRQ used for the interface that the drive resides on and is not really a drive-specific parameter.

THE hd=serialize OPTION
The dual IDE interface CMD-640 chip is broken as designed such that when drives on the secondary interface are used at
the same time as drives on the primary interface, it will corrupt your data. Using this option tells the driver to make sure that
both interfaces are never used at the same time.

THE hd=dtc2278 OPTION
This option tells the driver that you have a DTC-2278D IDE interface. The driver then tries to do DTC-specific operations
to enable the second interface and to enable faster transfer modes.

THE hd=noprobe OPTION
Do not probe for this drive. The following line

hdb=noprobe hdb=1166,7,17

disables the probe but still specifies the drive geometry so that it is registered as a valid block device and hence usable.

THE hd=nowerr OPTION
Some drives apparently have the WRERR STAT bit stuck on permanently. This enables a work-around for these broken devices.

THE hd=cdrom OPTION
This tells the IDE driver that there is an ATAPI compatible CD-ROM attached in place of a normal IDE hard disk. In most
cases, the CD-ROM is identified automatically, but if it isn’t, then this might help.

STANDARD ST-506 DISK DRIVER OPTIONS (hd=)
The standard disk driver can accept geometry arguments for the disks similar to the IDE driver. Note however that it only
expects three values (C/H/S); any more or any less and it will silently ignore you. Also, it only accepts hd= as an argument; hda=
and so on are not valid here. The format is as follows:

hd=cyls,heads,sects

If there are two disks installed, the preceding line is repeated with the geometry parameters of the second disk.

XT DISK DRIVER OPTIONS (xd=)
If you are unfortunate enough to be using one of these old 8-bit cards that move data at a whopping 125KB/s, then here is
the scoop. If the card is not recognized, you must use a boot arg of the form

xd=type,irq,iobase,dma_chan

The type value specifies the particular manufacturer of the card, and you use one of the following: 0=generic, 1=DTC, 2, 3,
4=Western Digital, 5, 6, 7=Seagate, or 8=OMTI. The only difference between multiple types from the same manufacturer is
the BIOS string used for detection, which is not used if the type is specified.

The xd_setup() function does no checking on the values and assumes that you entered all four values. Don’t disappoint it.
Here is a sample usage for a WD1002 controller with the BIOS disabled or removed, using the default XT controller
parameters:

xd=2,5,0x320,3

bootparam

Part VII: Miscellaneous1222

CD-ROMS (NON-SCSI/ATAPI/IDE)
THE AZTECH INTERFACE

The syntax for this type of card is

aztcd=iobase[,magic_number]

If you set the magic_number to 0x79, the driver will run anyway in the event of an unknown firmware version. All other values
are ignored.

THE CDU-31A AND CDU-33A SONY INTERFACE
This CD-ROM interface is found on some of the Pro Audio Spectrum sound cards and other Sony supplied interface cards.
The syntax is as follows:

cdu31a=iobase,[irq[,is_pas_card]]

Specifying an IRQ value of 0 tells the driver that hardware interrupts aren’t supported (as on some PAS cards). If your card
supports interrupts, you should use them because they cut down on the CPU usage of the driver.

The is_pas_card should be entered as PAS if using a Pro Audio Spectrum card; otherwise, it should not be specified at all.

THE CDU-535 SONY INTERFACE
The syntax for this CD-ROM interface is

sonycd535=iobase[,irq]

A 0 can be used for the I/O base as a placeholder if you want to specify an IRQ value.

THE GOLDSTAR INTERFACE
The syntax for this CD-ROM interface is

gscd=iobase

THE MITSUMI STANDARD INTERFACE
The syntax for this CD-ROM interface is

mcd=iobase,[irq[,wait_value]]

The wait_value is used as an internal time-out value for people who are having problems with their drive and may or may
not be implemented depending on a compile-time #define. The Mitsumi FX400 is an IDE/ATAPI CD-ROM player and
does not use the mcd driver.

THE MITSUMI XA/MULTISESSION INTERFACE (mcdx=)
At present, this experimental driver has a setup function, but no parameters are implemented (as of 1.3.15). This is for the
same hardware as previously described, but the driver has extended features.

THE OPTICS STORAGE INTERFACE
The syntax for this type of card is

optcd=iobase

THE PHILLIPS CM206 INTERFACE
The syntax for this type of card is

cm206=[iobase][,irq]

The driver assumes numbers between 3 and 11 are IRQ values and numbers between 0x300 and 0x370 are I/O ports, so you
can specify one, or both numbers, in any order. It also accepts cm206=auto to enable autoprobing.

1223

THE SANYO INTERFACE
The syntax for this type of card is

sjcd=iobase[,irq[,dma_channel]]

THE SOUNDBLASTER PRO INTERFACE
The syntax for this type of card is

sbpcd=iobase,type

type is one of the following (case-sensitive) strings: SoundBlaster, LaserMate, or SPEA. The I/O base is that of the CD-ROM
interface and not that of the sound portion of the card.

ETHERNET DEVICES
Different drivers use different parameters, but they all at least share having an IRQ, an I/O port base value, and a name. In
its most generic form, it looks something like this:

ether=irq,iobase[,param_1[,param_2,...param_8]],name

The first non-numeric argument is taken as the name. The param_n values (if applicable) usually have different meanings for
each different card or driver. Typical param_n values are used to specify things such as shared memory address, interface
selection, DMA channel, and the like.

The most common use of this parameter is to force probing for a second ethercard because the default is to only probe for
one. This can be accomplished with a simple

ether=0,0,eth1

Note that the values of 0 for the IRQ and I/O base in the example tell the drivers to autoprobe.

The Ethernet How To has extensive documentation on using multiple cards and on the card-specific or driver-specific
implementation of the param_n values where used. Interested readers should refer to the section in that document on their
particular card.

THE FLOPPY DISK DRIVER
There are many floppy driver options, and they are all listed in README.fd in linux/drivers/block. This information is taken
directly from that file.

floppy=mask,allowed_drive_mask
Sets the bitmask of allowed drives to mask. By default, only units 0 and 1 of each floppy controller are allowed. This is done
because certain non-standard hardware (ASUS PCI motherboards) mess up the keyboard when accessing units 2 or 3. This
option is somewhat obsolete because of the cmos option.

floppy=all drives
Sets the bitmask of allowed drives to all drives. Use this if you have more than two drives connected to a floppy controller.

floppy=asus_pci
Sets the bitmask to allow only units 0 and 1 (the default).

floppy=daring
Tells the floppy driver that you have a well-behaved floppy controller. This allows more efficient and smoother operation but
may fail on certain controllers. This can speed up certain operations.

floppy=0,daring
Tells the floppy driver that your floppy controller should be used with caution.

bootparam

Part VII: Miscellaneous1224

floppy=one_fdc
Tells the floppy driver that you have only one floppy controller (default).

floppy=two_fdc OR floppy=address,two_fdc
Tells the floppy driver that you have two floppy controllers. The second floppy controller is assumed to be at address. If
address is not given, 0x370 is assumed.

floppy=thinkpad
Tells the floppy driver that you have a Thinkpad. Thinkpads use an inverted convention for the disk change line.

floppy=0,thinkpad
Tells the floppy driver that you don’t have a Thinkpad.

floppy=drive,type,cmos
Sets the cmos type of drive to type. Additionally, this drive is allowed in the bitmask. This is useful if you have more than two
floppy drives (only two can be described in the physical cmos), or if your BIOS uses non-standard cmos types. Setting the cmos
to 0 for the first two drives (default) makes the floppy driver read the physical cmos for those drives.

floppy=unexpected_interrupts
Print a warning message when an unexpected interrupt is received (default behavior)

floppy=no unexpected_interrupts OR floppy=L40SX
Don’t print a message when an unexpected interrupt is received. This is needed on IBM L40SX laptops in certain video
modes. (There seems to be an interaction between video and floppy. The unexpected interrupts only affect performance and
can safely be ignored.)

THE SOUND DRIVER
The sound driver can also accept boot args to override the compiled in values. This is not recommended because it is rather
complex. It is described in the Readme.Linux file in linux/drivers/sound. It accepts a boot arg of the form

sound=device1[,device2[,device3...[,device11]]]

Each deviceN value is of the format 0xTaaaId and the bytes are used as follows:

T—device type: 1=FM, 2=SB, 3=PAS, 4=GUS, 5=MPU401, 6=SB16, and 7=SB16-MPU401

aaa—I/O address in hex

I—interrupt line in hex (10=a, 11=b, …)

d—DMA channel

As you can see, it gets pretty messy, and you are better off to compile in your own personal values as recommended. Using a
boot arg of sound=0 disables the sound driver entirely.

THE BUS MOUSE DRIVER (bmouse=)
The busmouse driver only accepts one parameter, the hardware IRQ value to be used.

AUTHORS
Linus Torvalds (and many others)

SEE ALSO
klogd(8), lilo.conf(5), lilo(8), mount(8), rdev(8)

This man page was derived from the Boot Parameter HOWTO (version 1.0.1) written by Paul Gortmaker. More informa-
tion can be found in this (or a more recent) HOWTO.

Linux 1.3.19, 15 August 1995

1225

groff_me
groff_me—troff macros for formatting papers.

SYNOPSIS
groff_me [options] file ...
troff_me [options] file ...

DESCRIPTION
This manual page describes the GNU version of the _me macros, which is part of the groff document formatting system.
This version can be used with both GNU troff and UNIX troff. This package of troff macro definitions provides a canned
formatting facility for technical papers in various formats.

The macro requests are defined as follows. Many troff requests are unsafe in conjunction with this package; however, these
requests can be used with impunity after the first .pp:

.bp Begin new page

.br Break output line here

.sp n Insert n spacing lines

.ls n Line spacing; n=1 single, n=2 double space

.na No alignment of right margin

.ce n Center next n lines

.ul n Underline next n lines

Output of the pic, eqn, refer, and tbl preprocessors is acceptable as input.

FILES
/usr/lib/groff/tmac/tmac.e

SEE ALSO
groff(1), gtroff(1), _me Reference Manual, Eric P. Allman, Writing Papers with Groff Using _me

REQUESTS
This list is incomplete; see the _me Reference Manual for interesting details.

Request Initial Value Cause Break Explanation

.(c - Yes Begin centered block.

.(d - No Begin delayed text.

.(f - No Begin footnote.

.(l - Yes Begin list.

.(q - Yes Begin major quote.

.(x x - No Begin indexed item in index x.

.(z - No Begin floating keep.

.)c - Yes End centered block.

.)d - Yes End delayed text.

.)f - Yes End footnote.

.)l - Yes End list.

.)q - Yes End major quote.

continues

groff_me

Part VII: Miscellaneous1226

.)x - Yes End index item.

.)z - Yes End floating keep.

.++ m H - No Define paper section.

m defines the part of the paper and can be C
(chapter), A (appendix), P (preliminary, such as
abstract, table of contents, and so on), B (bibliogra-
phy), RC (chapters renumbered from page one each
chapter), or RA (appendix renumbered from page
one).

.+c T - Yes Begin chapter (or appendix and so on as set by .++).
T is the chapter title.

.1c 1 Yes One column format on a new page.

.2c 1 Yes Two column format. Equation number is y.

.EN - Yes Space after equation produced by eqn or neqn.

.EQ x y - Yes Precede equation; break out and add space.

The optional argument x may be I to indent
equation (default), L to left-adjust the equation, or C
to center the equation.

.GE - Yes End gremlin picture.

.GS - Yes Begin gremlin picture.

.PE - Yes End pic picture.

.PS - Yes Begin pic picture.

.TE - Yes End table.

.TH - Yes End heading section of table.

.TS x - Yes Begin table; if x is H, table has repeated heading.

.b x No No Print x in boldface; if no argument switch to
boldface.

.ba +n 0 Yes Augments the base indent by n.

This indent is used to set the indent on regular text
(like paragraphs).

.bc No Yes Begin new column.

.bi x No No Print x in bold italics (no fill only).

.bu - Yes Begin bulleted paragraph.

.bx x No No Print x in a box (no fill only).

.ef ‘x’y’z’ “” No Set even footer to x y z.

.eh ‘x’y’z’ “” No Set even header to x y z.

.fo ‘x’y’z’ “” No Set footer to x y z.

.hx - No Suppress headers and footers on next page.

.he ‘x’y’z’ “” No Set header to x y z.

.hl - Yes Draw a horizontal line.

.i x No No Italicize x; if x is missing, italic text follows.

.ip x y No Yes Start indented paragraph with hanging tag x.
Indentation is y ens (default is 5).

Request Initial Value Cause Break Explanation

1227

.lp Yes Yes Start left-blocked paragraph.

.np 1 Yes Start numbered paragraph.

.of ‘x’y’z’ “” No Set odd footer to x y z.

.oh ‘x’y’z’ “” No Set odd header to x y z.

.pd - Yes Print delayed text.

.pp No Yes Begin paragraph. First line indented.

.r Yes No Roman text follows.

.re - No Reset tabs to default values.

.sh n x - Yes Section head follows; font is automatically bold. n is
level of section. x is title of section.

.sk No No Leave the next page blank. Only one page is
remembered ahead.

.sm x - No Set x in a smaller point size.

.sz +n 10p No Augment the point size by n points.

.tp No Yes Begin title page.

.u x - No Underline argument (even in troff) (nofill only).

.uh - Yes Like .sh but unnumbered.

.xp x - No Print index x.

Groff Version 1.09, 6 August 1992

groff_mm
groff_mm—groff mm macros.

SYNOPSIS
groff_mgm [options...] [files...]

DESCRIPTION
The groff mm macros are intended to be compatible with the DWB mm macros with the following limitations:

No letter macros are implemented (yet).

No Bell Labs localisms are implemented.

The macros OK and PM are not implemented.

groff mm does not support cut marks.

mgm is intended to be international. Therefore, it is possible to write short national macro-files that change all English text to
the preferred language. Use mgmse as an example.

groff mm has several extensions:

1C [1] Begin one column processing. A 1 as argument disables the page break.

APP name text Begin an appendix with the name name. Automatic naming occurs if name is “”. The
appendixes starts with A if auto is used. A new page is ejected, and a header is also
produced if the number variable Aph is non-zero. This is the default. The appendix
always appear in the list of contents with the correct page number. The name
APPENDIX can be changed by setting the string App to the desired text.

Request Initial Value Cause Break Explanation

groff_mm

Part VII: Miscellaneous1228

APPSK name pages text Same as .APP, but the page number is incremented with pages. This is used
when diagrams or other non-formatted documents are included as appen-
dixes.

B1 Begin box (as the ms macro) Draws a box around the text.

B2 End box. Finish the box.

BVL Start of broken variable-item list. Like VL but text begins always at the next
line.

COVER [arg] COVER begins a coversheet definition. It is important that .COVER appears
before any normal text. .COVER uses arg to build the filename /usr/lib/groff/
tmac/mm/arg.cov. Therefore, it is possible to create unlimited types of
coversheets. ms.cov is supposed to look like the ms coversheet. .COVER requires
a .COVEND at the end of the cover definition. Always use this order of the cover
macros:
.COVER

.TL

.AF

.AU

.AT

.AS

.AE

.COVEND

However, only .TL and .AU are required.

COVEND This finishes the cover description and prints the cover page. It is defined in
the cover file.

GETHN refname [varname] Includes the header number where the corresponding SETR refname was
placed. Will be X.X.X. in pass 1. See INITR. If varname is used, GETHN sets the
string variable varname to the header number.

GETPN refname [varname] Includes the page number where the corresponding SETR refname was placed.
Will be 9999 in pass 1. See INITR. If varname is used, GETPN sets the string
variable varname to the page number.

GETR refname Combines GETHN and GETPN with the text ‘chapter’ and ‘, page’. The string
Qrf contains the text for reference: .ds Qrf See chapter *[Qrfh], page
*[Qrfp]. Qrf may be changed to support other languages. Strings Qrfh and
Qrfp are set by GETR and contain the page and header number.

GETST refname [varname] Includes the string saved with the second argument to .SETR. Will be dummy
string in pass 1. If varname is used, GETST sets the string variable varname to the
saved string. See INITR.

INITR filename Initialize the reference macros. References will be written to filename. tmp
and filename.qrf. Requires two passes with groff. The first looks for
references and the second includes them. INITR can be used several times, but
it is only the first occurrence of INITR that is active. See also SETR, GETPN, and
GETHN.

MC column-size [column-separation] Begin multiple columns. Return to normal with 1C.

MT [arg [addressee]] Memorandum type. The arg is part of a filename in /usr/lib/groff/tmac/mm/
*.MT. Memorandum type 0 through 5 are supported, including string.
addressee just sets a variable, used in the AT&T macros.

MOVE y-pos [x-pos[line-length]] Move to a position, page offset set to x-pos. If line-length is not given, the
difference between the current and new page offset is used. Use PGFORM
without arguments to return to normal.

1229

MULB cw1 space1[cw2 space2 [cw3 ...]] Begin a special multi-column mode. Every column’s width must
be specified. Also, the space between the columns must be
specified. The last column does not need any space definition.
MULB starts a diversion and MULE ends the diversion and prints the
columns. The unit for width and space is n, but MULB accepts all
normal unit specifications such as c and i. MULB operates in a
separate environment.

MULN Begin the next column. This is the only way to switch columns.

MULE End the multi-column mode and print the columns.

PGFORM [linelength[pagelength[pageoffset [1]]]] This macro can be used for special formatting, such as PGFORM
linelength, pagelength and/or pageoffset. letterheads. Sets can be used without arguments to reset

everything after a MOVE. A line break is done unless the fourth
argument is given. This can be used to avoid the page number
on the first page while setting new width and length.

PGNH No header is printed on the next page. Used to get rid of the
header in letters or other special texts. This macro must be used
before any text to inhibit the page header on the first page.

SETR refname [string] Remember the current header and page number as refname. Saves
string if string is defined. string is retrieved with .GETST. See
INITR.

TAB Reset tabs to every 5n. Usually used to reset any previous tab
positions.

VERBON [flag [pointsize[font]]] Begin verbatim output using Courier font. Usually for printing
programs. All characters have equal width. The point size can be
changed with the second argument. By specifying the font
argument, it is possible to use another font instead of Courier.
flag controls several special features. It contains the sum of all
wanted features:

Value Description

1 Disable the escape-character (n). This is usually
turned on during verbose output.

2 Add an empty line before the verbose text.

4 Add an empty line after the verbose text.

8 Print the verbose text with numbered lines. This
adds four digit-sized spaces in the beginning of
each line. Finer control is available with the
string-variable Verbnm. It contains all arguments
to the troff-command .nm, usually 1.

16 Indent the verbose text with five ns. This is
controlled by the number-variable Verbin (in
units).

VERBOFF End verbatim output.

New variables in mgm:

App A string containing the word APPENDIX.

Aph Print an appendix page for every new appendix if this number
variable is nonzero. No output will occur if Aph is zero, but there

groff_mm

Part VII: Miscellaneous1230

will always be an appendix entry in the list of contents.

Hps Number variable with the heading pre-space level. If the heading
level is less than or equal to Hps, then two lines precede the section
heading instead of one. Default is first level only. The real amount
of lines is controlled by the variables Hps1 and Hps2.

Hps1 This is the number of lines preceding .H when the heading level is
greater than Hps. Value is in units, usually 0.5v.

Hps2 This is the number of lines preceding .H when the heading level is
less than or equal to Hps. Value is in units, usually 1v.

Lifg String containing figure.

Litb String containing table.

Liex String containing exhibit.

Liec String containing equation.

Licon String containing contents.

Lsp The size of an empty line. Usually 0.5v, but it is 1v if n is set
(.nroff).

MO1 - MO12 Strings containing January to December.

Qrf String containing “See chapter *[Qrfh], page \\n[Qrfp].”.

Pgps Controls whether header and footer point size should follow the
current setting or just change when the header and footer is
defined.

Value Description

0 Point size will only change to the current setting
when .PH, .PF, .OH, .EH, .OF, or .OE is executed.

1 Point size will change after every .S. This is the
default.

Sectf Flag controlling section figures. A nonzero value enables this. See
also register N.

Sectp Flag controlling section page numbers. A nonzero value enables
this. See also register N.

.mgm Always 1.

A file called locale or lang_locale is read after the initiation of the global variables. It is therefore possible to localize the
macros with a company name and so on.

The following standard macros are implemented:

2C Begin two column processing.

AE Abstract end.

AF [name of firm] Author’s firm.

AL [type[text-indent [1]]]] Start autoincrement list.

AS [arg [indent]] Abstract start. Indent is specified in ens, but scaling is allowed.

AST [title] Abstract title. Default is ‘ABSTRACT’.

AT title1 [title2 ...] Author’s title.

AU name [initials [loc [dept

[ext [room [arg [arg

[arg]]]]]]]] Author information.

B [bold-text[prev-font-text [...]]] Begin boldface. No limit on the number of arguments.

1231

BE End bottom block.

BI[bold-text [italic-text [bold-text [...]]] Bold italic. No limit on the number of arguments.

BL [text-indent [1]] Start bullet list.

BR [bold-text [roman-text[bold-text [...]]] Bold roman. No limit on the number of arguments.

BS Bottom block start.

DE Display end.

DF[format [fill [rindent]]] Begin floating display (no nesting allowed).

DL [text-indent [1]] Dash list start.

DS [format[fill [rindent]]] Static display start. Can now have unlimited nesting. Also, right-
adjusted text and block may be used (R or RB as format).

EC [title [override[flag [refname]]]] Equation title. If refname is used, then the equation number is
saved with .SETR and can be retrieved with .GETST refname.

EF [arg] Even page footer.

EH [arg] Even page header.

EN Equation end.

EQ [label] Equation start.

EX [title [override[flag [refname]]]] Exhibit title. If refname is used, then the exhibit number is saved
with .SETR and can be retrieved with .GETST refname.

FD [arg [1]] Footnote default format.

FE Footnote end.

FG [title [override[flag [refname]]]] Figure title. If refname is used, then the figure number is saved
with .SETR and can be retrieved with .GETST refname.

FS Footnote start. Footnotes in displays is now possible.

H level [heading-text[heading-suffix]] Numbered heading.

HC [hyphenation-character] Set hyphenation character.

HM [arg1 [arg2[... [arg7]]]] Heading mark style.

HU heading-text Unnumbered header.

HX dlevel rlevel heading-text User-defined heading exit. Called just before printing the header.

HY dlevel rlevel heading-text User-defined heading exit. Called just before printing the header.

HZ dlevel rlevel heading-text User-defined heading exit. Called just after printing the header.

I [italic-text.

[prev-font-text

[italic-text [...]]] Italic.

IB [italic-text

[bold-text

[italic-text [...]]] Italic bold.

IR [italic-text

[roman-text

[italic-text [...]]] Italic roman.

LB text-indentmark-indent

pad type[mark

[LI-space [LB-space]]] List begin macro.

LC [list level] List status clear.

LE List end.

LI [mark [1]] List item.

ML mark [text-indent] Marked list start.

MT [arg [addressee]] Memorandum type. See above note about MT.

groff_mm

Part VII: Miscellaneous1232

ND new-date New date.

OF [arg] Odd page footer.

OH [arg] Odd page header.

OP Skip to odd page.

P [type] Begin new paragraph.

PE Picture end.

PF [arg] Page footer.

PH [arg] Page header.

PS Picture start (from pic).

PX Page header user-defined exit.

R Roman.

RB [roman-text [bold-text

[roman-text [...]]] Roman-bold.

RD [prompt[diversion [string]]] Read to diversion and/or string.

RF Reference end.

RI [roman-text

[italic-text

[roman-text [...]]] Roman italic.

RL [text-indent [1]] Reference list start.

RP [arg [arg]] Produce reference page.

RS [string-name] Reference start.

S [size [spacing]] Set point size and vertical spacing. If any argument equals P, then the
previous value is used. A C means current value, and D means default
value. If + or – is used before the value, an increment or decrement of
the current value is done.

SA [arg] Set adjustment.

SK [pages] Skip pages.

SM string1[string2 [string3]] Make a string smaller.

SP [lines] Space vertically. lines can have any scaling factor, such as 3i or 8v.

TB [title [override[flag [refname]]]] Table title. If refname is used, then the table number is saved with
.SETR and can be retrieved with .GETST refname.

TC [slevel [spacing

[tlevel [tab [h1 [h2

[h3 [h4 [h5]]]]]]]]]

Table of contents. All texts can be redefined. new string variables
Lifg, Litb, Liex, Liec, and Licon contain “Figure”, “TABLE”, “Exhibit”,
“Equation”, and “CONTENTS”. These can be redefined to other
languages.

TE Table end.

TH [N] Table header.

TL Begin title of memorandum.

TM [num1 [num2 [...]]] Technical memorandum numbers used in .MT. Unlimited number of
arguments may be given.

TP Top of page user-defined macro. Note that header and footer is
printed in a separate environment. Line length is preserved.

TS [H] Table start.

TX User-defined table of contents exit.

TY User-defined table of contents exit (no “CONTENTS”).

1233

VL [text-indent [mark-indent [1]]] Variable-item list start.

VM [top [bottom]] Vertical margin.

WC [format] Footnote and display width control.

Strings used in mgm:

EM Em dash string.

HF Font list for headings, usually “2 2 2 2 2 2 2”. Nonnumeric font
names may also be used.

HP Point size list for headings. Usually “0 0 0 0 0 0 0”, which is the
same as “10 10 10 10 10 10 10”.

Lf Contains “LIST OF FIGURES”.

Lt Contains “LIST OF TABLES”.

Lx Contains “LIST OF EXHIBITS”.

Le Contains “LIST OF EQUATIONS”.

Rp Contains “REFERENCES”.

Tm Contains \(tm, trademark.

Number variables used in mgm:

Cl=2 Contents level [0:7]; contents saved if heading level <=Cl.

Cp=0 Eject page between LIST OF XXXX if Cp == 0.

D=0 Debug flag, values greater than 0 produce varying degree of debug. A
value of 1 gives information about the progress of formatting.

De=0 Eject after floating display is output [0:1].

Df=5 Floating keep output [0:5].

Ds=1 Space before and after display if == 1 [0:1].

Ej=0 Eject page.

Eq=0 Equation label adjust 0=left, 1=right.

Fs=1 Footnote spacing.

H1 - H7 Heading counters.

Hb=2 Heading break level [0:7].

Hc=0 Heading centering level [0:7].

Hi=1 Heading temporary indent [0:2]. 0 is no indent, left margin. 1 is
indent to right, like .P 1. 2 is indent to line up with text part of
preceding heading.

Hs=2 Heading space level [0:7]

Ht=0 Heading numbering type 0 is multiple (1.1.1 …). 1 is single.

Hu=2 Unnumbered heading level.

Hy=1 Hyphenation in body. 0 is no hyphenation. 1 is hyphenation 14 on.

Lf=1, Lt=1, Lx=1, Le=0 Enables (1) or disables (0) the printing of a list of figures, list of tables,
list of exhibits, and list of equations.

Li=6 List indent, used by .AL.

Ls=99 List space, if current list level is greater than Ls, then no spacing
occurs around lists.

N=0 Numbering style [0:5]:
0 == (Default) Normal header for all pages.
1 == Header replaces footer on first page; header is empty.
2 == Page header is removed on the first page.

groff_mm

Part VII: Miscellaneous1234

3 == Section page numbering enabled.
4 == Page header is removed on the first page.
5 == Section page and section figure numbering enabled. See also the
number register Sectf and Sectp.

Np=0 Numbered paragraphs. 0 is not numbered. 1 is numbered in first-level
headings.

Of=0 Format of figure, table, exhibit, and equation titles. 0 is “. “. 1 is “-”.

P Current page number, usually the same as % unless section-page
numbering is enabled.

Pi=5 Paragraph indent.

Ps=1 Paragraph spacing.

Pt=0 Paragraph type. 0 is left-justified. 1 is indented .P. 2 is indented .P
except after .H, .DE, or .LE.

Si=5 Display indent.

AUTHOR
Jorgen Hagg, Lund Institute of Technology, Sweden (jh@efd.lth.se).

FILES
/usr/lib/groff/tmac/tmac.gm
/usr/lib/groff/tmac/mm/*.cov
/usr/lib/groff/tmac/mm/*.MT
/usr/lib/groff/tmac/mm/locale

SEE ALSO
groff(1), gtroff(1), gtbl(1), gpic(1), geqn(1), mm(7), mgmse(7)

Groff Version 1.09, 14 February 1994

groff_ms
groff_ms—groff ms macros.

SYNOPSIS
groff_mgs [options...] [files...]

DESCRIPTION
This manual page describes the GNU version of the ms macros, which is part of the groff document formatting system. The
groff ms macros are intended to be compatible with the documented behavior of the 4.3 BSD UNIX ms macros, subject to
the following limitations:

The internals of groff ms are not similar to the internals of UNIX ms, so documents that depend upon implementation
details of UNIX ms might not work with groff ms.

There is no support for typewriter-like devices.

Berkeley localisms, in particular the TM and CT macros, are not implemented.

groff ms does not provide cut marks.

Multiple line spacing is not allowed. (Use a larger vertical spacing instead.)

groff ms does not work in compatibility mode (such as with the -C option).

1235

The error-handling policy of groff ms is to detect and report errors, rather than silently ignore them.

The groff ms macros use many features of GNU troff and therefore cannot be used with any other troff.

Bell Labs localisms are not implemented in either the BSD ms macros or in the groff ms macros.

Some UNIX ms documentation says that the CW and GW number registers can be used to control the column width and gutter
width. This is not the case. These number registers are not used in groff ms.

Macros that cause a reset set the indent. Macros that change the indent do not increment or decrement the indent, but rather
set it absolutely. This can cause problems for documents that define additional macros of their own. The solution is to not
use the in request but instead to use the RS and RE macros.

The number register GS is set to 1 by the groff ms macros but is not used by the UNIX ms macros. It is intended that
documents that need to determine whether they are being formatted with UNIX ms or groff ms use this number register.

Footnotes are implemented so that they can safely be used within keeps and displays. Automatically numbered footnotes
within floating keeps are not recommended. It is safe to have another ** between a ** and the corresponding .FS; it is
required only that each .FS occur after the corresponding ** and that the occurrences of .FS are in the same order as the
corresponding occurrences of **.

The strings *{ and *} can be used to begin and end a superscript.

Some UNIX V10 ms features are implemented. The B, I, and BI macros can have an optional third argument that is printed
in the current font before the first argument. There is a macro CW like B that changes to a constant-width font.

The following strings can be redefined to adapt the groff ms macros to languages other than English:

String Default Value

REFERENCES References

ABSTRACT ABSTRACT

TOC Table of Contents

MONTH1 January

MONTH2 February

MONTH3 March

MONTH4 April

MONTH5 May

MONTH6 June

MONTH7 July

MONTH8 August

MONTH9 September

MONTH10 October

MONTH11 November

MONTH12 December

The font family is reset from the string FAM; at initialization if this string is undefined, it is set to the current font family. The
point size, vertical spacing, and inter-paragraph spacing for footnotes are taken from the number registers FPS, FVS, and FPD;
at initialization, these are set to \n(PS-2, \n[FPS]+2, and \n(PD/2; however, if any of these registers was defined before
initialization, it is not set. The hyphenation flags (as set by the .hy request) are set from the HY register; if this was not defined
at initialization, it is set to 14.

Right-aligned displays are available with .DS R and .RD.

The following conventions are used for names of macros, strings, and number registers. External names available to
documents that use the groff ms macros contain only uppercase letters and digits. Internally, the macros are divided into

groff_ms

Part VII: Miscellaneous1236

modules. Names used only within one module are of the form module*name. Names used outside the module in which they
are defined are of the form module@name. Names associated with a particular environment are of the form environment:name;
these are used only within the par module, and name does not have a module prefix. Constructed names used to implement
arrays are of the form array!index. Thus, the groff ms macros reserve the following names:

Names containing *

Names containing @

Names containing :

Names containing only uppercase letters and digits

FILES
/usr/lib/groff/tmac/tmac.gs

SEE ALSO
groff(1), gtroff(1), gtbl(1), gpic(1), geqn(1), ms(7)

Groff Version 1.09, 9 January 1994

hier
hier—Description of the filesystem hierarchy.

DESCRIPTION
A typical Linux system has, among others, the following directories:

/ This is the root directory. This is where the whole tree starts.

/bin This directory contains executable programs that are needed in single-user mode and to
bring the system up or repair it.

/boot Contains static files for the boot loader. This directory only holds the files that are
needed during the boot process. The map installer and configuration files should go to /
sbin and /etc.

/dev Special or device files that refer to physical devices. See mknod(1).

/dos If both MS–DOS and Linux are run on one computer, this is a typical place to mount a
DOS filesystem.

/etc Contains configuration files that are local to the machine. Some larger software
packages, such as X11, can have their own subdirectories below /etc. Site-wide
configuration files may be placed here or in /usr/etc. Nevertheless, programs should
always look for these files in /etc and you may have links for these files to /usr/etc.

/etc/skel When a new user account is created, files from this directory are usually copied into the
user’s home directory.

/etc/X11 Configuration files for the X11 window system.

/home On machines with home directories for users, these are usually beneath this directory,
directly or not. The structure of this directory depends on local administration
decisions.

/lib This directory should hold those shared libraries that are necessary to boot the system
and to run the commands in the root filesystem.

/mnt This is a mount point for temporarily mounted filesystems.

/proc This is a mount point for the proc filesystem, which provides information about
running processes and the kernel. This pseudo-filesystem is described in more detail in
proc(5).

1237

/sbin Like /bin, this directory holds commands needed to boot the system but usually not
executed by normal users.

/tmp This directory contains temporary files that may be deleted with no notice, such as by a
regular job or at system bootup.

/usr This directory is usually mounted from a separate partition. It should hold only
sharable, read-only data so that it can be mounted by various machines running Linux.

/usr/X11R6 The X window system, version 11, release 6.

/usr/X11R6/bin Binaries that belong to the X window system; often, there is a symbolic link from the
more traditional /usr/bin/X11 to here.

/usr/X11R6/lib Data files associated with the X window system.

/usr/X11R6/lib/X11 These contain miscellaneous files needed to run X; Often, there is a symbolic link from
/usr/lib/X11 to this directory.

/usr/X11R6/include/X11 Contains include files needed for compiling programs using the X11 window system.
Often, there is a symbolic link from /usr/include/X11 to this directory.

/usr/bin This is the primary directory for executable programs. Most programs executed by
normal users that are not needed for booting or for repairing the system and that are not
installed locally should be placed in this directory.

/usr/bin/X11 This is the traditional place to look for X11 executables; on Linux, it usually is a
symbolic link to /usr/X11R6/bin.

/usr/dict This directory holds files containing word lists for spell-checkers.

/usr/etc Site-wide configuration files to be shared between several machines may be stored in this
directory. However, commands should always reference those files using the /etc
directory. Links from files in /etc should point to the appropriate files in /usr/etc.

/usr/include Include files for the C compiler.

/usr/include/X11 Include files for the C compiler and the X window system. This is usually a symbolic
link to /usr/X11R6/include/X11.

/usr/include/asm Include files that declare some assembler functions. This should be a symbolic link to /
usr/src/linux/include/asm.

/usr/include/linux This contains information that may change from system release to system release and
should be a symbolic link to /usr/src/linux/include/linux to get at operating-system–
specific information.

/usr/include/g++ Include files to use with the GNU C++ compiler.

/usr/lib Object libraries, including dynamic libraries, plus some executables that usually are not
invoked directly. More complicated programs may have whole subdirectories there.

/usr/lib/X11 The usual place for data files associated with X programs and configuration files for the
X system itself. On Linux, it usually is a symbolic link to /usr/X11R6/lib/X11.

/usr/lib/gcc-lib Contains executables and include files for the GNU C compiler, gcc(1).

/usr/lib/groff Files for the GNU groff document formatting system.

/usr/lib/uucp Files for uucp(1).

/usr/lib/zoneinfo Files for time zone information.

/usr/local This is where programs that are local to the site typically go.

/usr/local/bin Binaries for programs local to the site go there.

/usr/local/doc Local documentation.

/usr/local/etc Configuration files associated with locally installed programs go there.

/usr/local/lib Files associated with locally installed programs go there.

/usr/local/info Info pages associated with locally installed programs go there.

/usr/local/man Man pages associated with locally installed programs go there.

/usr/local/sbin Locally installed programs for system administration.

hier

Part VII: Miscellaneous1238

/usr/local/src Source code for locally installed software.

/usr/man Man pages go in there into their subdirectories.

/usr/man/cat[1-9] These directories contain preformatted manual pages according to their man page
section.

/usr/man/locale/man[1-9] These directories contain manual pages that are in source code form. Systems that use a
unique language and code set for all manual pages may omit the locale substring.

/usr/sbin This directory contains program binaries for system administration that are not essential
for the boot process, for mounting /usr, or for system repair.

/usr/src Source files for different parts of the system.

/usr/src/linux This contains the sources for the kernel of the operating system itself.

/usr/tmp An alternative place to store temporary files; This should be a link to /var/tmp.

/var This directory contains files that may change in size, such as spool and log files.

/var/adm This directory is superseded by /var/log and should be a symbolic link to /var/log.

/var/lock Lock files are placed in this directory. The naming convention for device lock files is
LCK..device where device is the device’s name in the filesystem. The format used is that
of HDU UUCP lock files—that is, lock files contain a PID as a 10-byte ASCII decimal
number, followed by a newline character.

/var/log Miscellaneous log files.

/var/preserve This is where vi(1) saves edit sessions so they can be restored later.

/var/run Runtime variable files, such as files holding process identifiers (PIDs) and logged user
information (utmp). Files in this directory are usually cleared when the system boots.

/var/spool Spooled (or queued) files for various programs.

/var/spool/at Spooled jobs for at(1).

/var/spool/cron Spooled jobs for cron(1).

/var/spool/lpd Spooled files for printing.

/var/spool/mail Users’ mailboxes.

/var/spool/smail Spooled files for the smail(1) mail delivery program.

/var/spool/news Spool directory for the news subsystem.

/var/spool/uucp Spooled files for uucp(1).

/var/tmp Like /tmp, this directory holds temporary files stored for an unspecified duration.

CONFORMS TO
The Linux filesystem standard, release 1.2.

BUGS
This list is not exhaustive; different systems may be configured differently.

SEE ALSO
find(1), ln(1), mount(1), proc(5), The Linux Filesystem Standard

Linux, 10 February 1996

hostname
hostname—Hostname resolution description.

1239

DESCRIPTION
Hostnames are domains. A domain is a hierarchical, dot-separated list of subdomains. For example, the machine monet in the
Berkeley subdomain of the EDU subdomain of the Internet Domain Name System is represented as monet.Berkeley.EDU (with
no trailing dot).

Hostnames are often used with network client and server programs, which must generally translate the name to an address
for use. (This task is usually performed by the library routine gethostbyname(3).) The default method for resolving hostnames
by the Internet name resolver is to follow RFC 1535’s security recommendations. Actions can be taken by the administrator
to override these recommendations and to have the resolver behave the same as earlier, non-RFC 1535 resolvers.

The default method (using RFC 1535 guidelines) follows.

If the name consists of a single component (that is, contains no dot) and if the environment variable HOSTALIASES is set to the
name of a file, that file is searched for a string matching the input hostname. The file should consist of lines made up of two
strings separated by whitespace, the first of which is the hostname alias and the second of which is the complete hostname to
be substituted for that alias. If a case-insensitive match is found between the hostname to be resolved and the first field of a
line in the file, the substituted name is looked up with no further processing.

If there is at least one dot in the name, then the name is first tried as is. The number of dots to cause this action is
configurable by setting the threshold using the ndots option in /etc/resolv.conf (default is 1). If the name ends with a dot,
the trailing dot is removed, and the remaining name is looked up (regardless of the setting of the ndots option) and no
further processing is done.

If the input name does not end with a trailing dot, it is looked up by searching through a list of domains until a match is
found. If neither the search option in the /etc/resolv.conf file or the LOCALDOMAIN environment variable is used, then the
search list of domains contains only the full domain specified by the domain option (in /etc/resolv.conf) or the domain
used in the local hostname (see hostname(1) and resolver(5)). For example, if the domain option is set to CS.Berkeley.EDU,
then only CS.Berkeley.EDU is in the search list and is the only domain appended to the partial hostname. For example, a
setting of lithium makes lithium.CS.Berkeley.EDU the only name to be tried using the search list.

If the search option is used in /etc/resolv.conf or the environment variable, LOCALDOMAIN is set by the user, then the search
list includes what is set by these methods. For example, if the search option contained CS.Berkeley.EDU CChem.Berkeley.EDU
Berkeley.EDU, then the partial hostname (such as lithium) is tried with each domain name appended (in the same order
specified). The resulting hostnames that are tried include

lithium.CS.Berkeley.EDU
lithium.CChem.Berkeley.EDU
lithium.Berkeley.EDU

The environment variable LOCALDOMAIN overrides the search and domain options, and if both search and domain options are
present in the resolver configuration file, then only the last one listed is used (see resolver(5)).

If the name was not previously tried “as is” (that is, it fell below the ndots threshold or did not contain a dot), then the name
as originally provided is attempted.

SEE ALSO
gethostbyname(3), resolver(5), mailaddr(7), named(8)

16 February 1994

iso_8859_1
iso_8859_1—The ISO 8859-1 character set encoded in octal, decimal, and hexadecimal.

DESCRIPTION
The ISO 8859 standard includes several 8-bit extensions to the ASCII character set (also known as ISO 646-IRV). Especially
important is ISO 8859-1, the Latin Alphabet No. 1, which has become widely implemented and may already be seen as the

hostname

Part VII: Miscellaneous1240

de facto standard ASCII replacement. ISO 8859-1 supports the following languages: Afrikaans, Basque, Catalan, Danish,
Dutch, English, Faeroes, Finnish, French, Galician, German, Icelandic, Irish, Italian, Norwegian, Portuguese, Scottish,
Spanish, and Swedish. Note that the ISO 8859-1 characters are also the first 256 characters of ISO 10646 (Unicode).

ISO 8859 ALPHABETS
The full set of ISO 8859 alphabets includes

ISO 8859-1 West European languages (Latin-1)

ISO 8859-2 East European languages (Latin-2)

ISO 8859-3 Southeast European and miscellaneous languages (Latin-3)

ISO 8859-4 Scandinavian/Baltic languages (Latin-4)

ISO 8859-5 Latin/Cyrillic

ISO 8859-6 Latin/Arabic

ISO 8859-7 Latin/Greek

ISO 8859-8 Latin/Hebrew

ISO 8859-9 Latin-1 modification for Turkish (Latin-5)

ISO 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)

ISO 8859-1 CHARACTERS
The following table displays the characters in ISO 8859 Latin-1, which are printable and unlisted in the ascii(7) manual
page.

Oct Dec Hex Char Description

240 160 A0 No-break space

241 161 A1 ¡ Inverted exclamation mark

242 162 A2 ¢ Cent sign

243 163 A3 £ Pound sign

244 164 A4 $ Currency sign

245 165 A5 ¥ Yen sign

246 166 A6 | Broken bar

247 167 A7 § Section sign

250 168 A8 ¨ Diaeresis

251 169 A9  Copyright sign

252 170 AA _ª Feminine ordinal indicator

253 171 AB << Left-pointing double angle quotation
mark

254 172 AC ¬ Not sign

255 173 AD - Soft hyphen

256 174 AE  Registered sign

257 175 AF ¯ Macron

260 176 B0 ° Degree sign

261 177 B1 ± Plus-minus sign

262 178 B2 2 Superscript two

263 179 B3 3 Superscript three

1241

264 180 B4 ´ Acute accent

265 181 B5 Micro sign

266 182 B6 ¶ Pilcrow sign

267 183 B7 . Middle dot

270 184 B8 ç Cedilla

271 185 B9 1 Superscript one

272 186 BA _º Masculine ordinal indicator

273 187 BB >> Right-pointing double angle
quotation mark

274 188 BC 1/4 Vulgar fraction one quarter

275 189 BD 1/2 Vulgar fraction one half

276 190 BE 3/4 Vulgar fraction three quarters

277 191 BF ¿ Inverted question mark

300 192 C0 À Latin capital letter A with grave

301 193 C1 Á Latin capital letter A with acute

302 194 C2 Â Latin capital letter A with circumflex

303 195 C3 Ã Latin capital letter A with tilde

304 196 C4 Ä Latin capital letter A with diaeresis

305 197 C5 Å Latin capital letter A with ring above

306 198 C6 Æ Latin capital ligature AE

307 199 C7 Ç Latin capital letter C with cedilla

310 200 C8 È Latin capital letter E with grave

311 201 C9 É Latin capital letter E with acute

312 202 CA ^E Latin capital letter E with circumflex

313 203 CB Ë Latin capital letter E with diaeresis

314 204 CC Ì Latin capital letter I with grave

315 205 CD Í Latin capital letter I with acute

316 206 CE Î Latin capital letter I with circumflex

317 207 CF Ï Latin capital letter I with diaeresis

320 208 D0 D Latin capital letter eth

321 209 D1 Ñ Latin capital letter N with tilde

322 210 D2 O Latin capital letter O with grave

323 211 D3 Ó Latin capital letter O with acute

324 212 D4 Ô Latin capital letter O with circumflex

325 213 D5 Õ Latin capital letter O with tilde

326 214 D6 Ö Latin capital letter O with diaeresis

327 215 D7 × Multiplication sign

330 216 D8 Ø Latin capital letter O with stroke

331 217 D9 Ù Latin capital letter U with grave

332 218 DA Ú Latin capital letter U with acute

333 219 DB ^U Latin capital letter U with circumflex

Oct Dec Hex Char Description

continues

iso_8859_1

Part VII: Miscellaneous1242

334 220 DC Ü Latin capital letter U with diaeresis

335 221 DD Ý Latin capital letter Y with acute

336 222 DE Latin capital letter thorn

337 223 DF ß Latin small letter sharp s

340 224 E0 à Latin small letter a with grave

341 225 E1 á Latin small letter a with acute

342 226 E2 â Latin small letter a with circumflex

343 227 E3 ã Latin small letter a with tilde

344 228 E4 ä Latin small letter a with diaeresis

345 229 E5 å Latin small letter a with ring above

346 230 E6 æ Latin small ligature ae

347 231 E7 ç Latin small letter c with cedilla

350 232 E8 è Latin small letter e with grave

351 233 E9 é Latin small letter e with acute

352 234 EA ê Latin small letter e with circumflex

353 235 EB ë Latin small letter e with diaeresis

354 236 EC ì Latin small letter i with grave

355 237 ED í Latin small letter i with acute

356 238 EE î Latin small letter i with circumflex

357 239 EF ï Latin small letter i with diaeresis

360 240 F0 ∂ Latin small letter eth

361 241 F1 ñ Latin small letter n with tilde

362 242 F2 ò Latin small letter o with grave

363 243 F3 ó Latin small letter o with acute

364 244 F4 ô Latin small letter o with circumflex

365 245 F5 õ Latin small letter o with tilde

366 246 F6 ö Latin small letter o with diaeresis

367 247 F7 ÷ Division sign

370 248 F8 ø Latin small letter o with stroke

371 249 F9 ù Latin small letter u with grave

372 250 FA ú Latin small letter u with acute

373 251 FB û Latin small letter u with circumflex

374 252 FC ü Latin small letter u with diaeresis

375 253 FD ý Latin small letter y with acute

376 254 FE Latin small letter thorn

377 255 FF ÿ Latin small letter y with diaeresis

SEE ALSO
ascii(7)

11 July 1995

Oct Dec Hex Char Description

1243

locale
Locale—Description of multi-language support.

SYNOPSIS
#include <locale.h>

DESCRIPTION
A locale is a set of language and cultural rules. These cover aspects such as language for messages, different character sets,
lexigraphic conventions, and so on. A program needs to be able to determine its locale and act accordingly to be portable to
different cultures.

The header <locale.h> declares data types, functions and macros that are useful in this task.

The functions it declares are setlocale() to set the current locale and localeconv() to get information about number
formatting.

There are different categories for local information a program might need; they are declared as macros. Using them as the
first argument to the setlocale() function, it is possible to set one of these to the desired locale:

LC_COLLATE This is used to change the behavior of the functions strcoll() and strxfrm(), which
are used to compare strings in the local alphabet. For example, the German sharp s is
sorted as “ss.”

LC_TYPE This changes the behavior of the character handling and classification functions,
such as isupper() and toupper() and the multi–byte character functions such as
mblen() or wctomb().

LC_MONETARY Changes the behavior of the information returned by localeconv(), which describes
the way numbers are usually printed, with details such as decimal point versus
decimal comma.

LC_MESSAGES Changes the language messages are displayed in.

LC_TIME Changes the behavior of the strftime() function to display the current time in a
locally acceptable form; for example, most of Europe uses a 24–hour clock versus the
U.S. 12–hour clock.

LC_ALL All of the above.

If the second argument to setlocale() is empty string for the default locale, it is determined using the following steps:

1. If there is a non-null environment variable LC_ALL, the value of LC_ALL is used.
2. If an environment variable with the same name as one of the preceding categories exists and is non-null, its value is used

for that category.
3. If there is a non-null environment variable LANG, the value of LANG is used.

Values about local numeric formatting are made available in a struct lconv returned by the localeconv() function, which has
the following declaration:

struct lconv
{
/* Numeric (non-monetary) information. */
char *decimal_point; /* Decimal point character. */
char *thousands_sep; /* Thousands separator. */
/* Each element is the number of digits in each group;
elements with higher indices are farther left.
An element with value CHAR_MAX means that no further grouping is done.
An element with value 0 means that the previous element is used for all
groups farther left. */
char *grouping;
/* Monetary information. */

locale

Part VII: Miscellaneous1244

/* First three chars are a currency symbol from ISO 4217.
Fourth char is the separator. Fifth char is ‘ ‘. */
char *int_curr_symbol;
char *currency_symbol; /* Local currency symbol. */
char *mon_decimal_point; /* Decimal point character. */
char *mon_thousands_sep; /* Thousands separator. */
char *mon_grouping; /* Like ‘grouping’ element (above). */
char *positive_sign; /* Sign for positive values. */
char *negative_sign; /* Sign for negative values. */
char int_frac_digits; /* Int’l fractional digits. */
char frac_digits; /* Local fractional digits. */
/* 1 if currency_symbol precedes a positive value, 0 if succeeds. */
char_p_cs_precedes;
/* 1 if a space separates currency_symbol from a positive value. */
char_p_sep_by_space;
/* 1 if currency_symbol precedes a negative value, 0 if succeeds. */
char_n_cs_precedes;
/* 1 if a space separates currency_symbol from a negative value. */
char_n_sep_by_space;
/* Positive and negative sign positions:
0 Parentheses surround the quantity and currency_symbol.
1 The sign string precedes the quantity and currency_symbol.
2 The sign string succeeds the quantity and currency_symbol.
3 The sign string immediately precedes the currency_symbol.
4 The sign string immediately succeeds the currency_symbol. */
char_p_sign_posn;
char_n_sign_posn;
};

CONFORMS TO
POSIX.1

At the moment, the only locales supported by Linux are the portable C, POSIX (identical to the C locale), ISO-8859-1
(European Latin-1), and KOI-8 (Russian) locales.

SEE ALSO
setlocale(3), localeconf(3), locale(1), localedef(1)

Linux, 24 April 1993

mailaddr
mailaddr—Mail addressing description.

DESCRIPTION
Mail addresses are based on the ARPANET protocol listed at the end of this manual page. These addresses are in the general
format

user@domain

A domain is a hierarchical dot separated list of subdomains. For example, the address

eric@monet.berkeley.edu

is usually interpreted from right to left. The message should go to the ARPA name tables (which do not correspond exactly
to the physical ARPANET) and then to the Berkeley gateway, after which it should go to the local host monet. When the
message reaches monet, it is delivered to the user eric.

1245

Unlike some other forms of addressing, this does not imply any routing. Thus, although this address is specified as an ARPA
address, it might travel by an alternate route if that were more convenient or efficient. For example, at Berkeley, the
associated message would probably go directly to monet over the Ethernet rather than go via the Berkeley ARPANET
gateway.

ABBREVIATION
Under certain circumstances, it might not be necessary to type the entire domain name. In general, anything following the
first dot may be omitted if it is the same as the domain from which you are sending the message. For example, a user on
calder.berkeley.edu could send to eric@monet without adding the berkeley.edu because it is the same on both sending and
receiving hosts.

Certain other abbreviations may be permitted as special cases. For example, at Berkeley, ARPANET hosts may be referenced
without adding the berkeley.edu as long as their names do not conflict with a local host name.

COMPATIBILITY
Certain old address formats are converted to the new format to provide compatibility with the previous mail system. In
particular,

user@host.ARPA

is allowed and

host:user

is converted to

user@host

to be consistent with the rcp(1) command.

Also, the syntax

host!user

is converted to

user@host.UUCP

This is usually converted back to the host!user form before being sent on for compatibility with older UUCP hosts.

The current implementation is not able to route messages automatically through the UUCP network. Until that time, you
must explicitly tell the mail system which hosts to send your message through to get to your final destination.

CASE DISTINCTIONS
Domain names (anything after the @ sign) may be given in any mixture of uppercase and lowercase with the exception of
UUCP hostnames. Most hosts accept any combination of case in usernames, with the notable exception of MULTICS sites.

ROUTE-ADDRS
Under some circumstances, it might be necessary to route a message through several hosts to get it to the final destination.
Usually, this routing is done automatically, but sometimes it is desirable to route the message manually. Addresses that show
these relays are termed “route-addrs.” These use the syntax

<@hosta,@hostb:user@hostc>

This specifies that the message should be sent to hosta, from there to hostb, and finally to hostc. This path is forced even if
there is a more efficient path to hostc.

Route-addrs occur frequently on return addresses because these are generally augmented by the software at each host. It is
generally possible to ignore all but the user@domain part of the address to determine the actual sender.

mailaddr

Part VII: Miscellaneous1246

POSTMASTER
Every site is required to have a user or user alias designated “postmaster” to which problems with the mail system may be
addressed.

OTHER NETWORKS
Some other networks can be reached by giving the name of the network as the last component of the domain. This is not a
standard feature and might not be supported at all sites. For example, messages to CSNET or BITNET sites can often be
sent to user@host.CSNET or user@host.BITNET.

BUGS
The RFC 822 group syntax (group:user1,user2,user3;) is not supported except in the special case of group:; because of a
conflict with old berknet-style addresses.

Route-Address syntax is grotty.

UUCP- and ARPANET-style addresses do not coexist politely.

SEE ALSO
mail(1), sendmail(8); Crocker, D. H., Standard for the Format of Arpa Internet Text Messages, RFC822.

14 February 1989

man
man—Macros to format man pages.

SYNOPSIS
groff –Tascii –man file ...
groff –Tps –man file ...
man [section] title

DESCRIPTION
This manual page explains the groff tmac.an macro package. This macro package should be used by developers when writing
or porting man pages for Linux. It is fairly compatible with other versions of this macro package, so porting man pages
should not be a major problem (exceptions include the NET-2 BSD release, which uses a totally different macro package).

Note that NET-2 BSD man pages can be used with groff simply by specifying the -mdoc option instead of the -man option.
Using the -mandoc option is, however, recommended because this automatically detects which macro package is in use.

PREAMBLE
The first command in a man page should be

.TH title section date source manual,

title The title of the man page (such as MAN).

section The section number the man page should be placed in (such as 7).

date The date of the last revision; remember to change this every time a change is made
to the man page because this is the most general way of doing version control.

source The source of the command.

For binaries, use something such as GNU, NET-2, SLS Distribution, MCC
Distribution.

For system calls, use the version of the kernel that you are currently looking at:

1247

Linux 0.99.11.

For library calls, use the source of the function: GNU, BSD 4.3, Linux DLL 4.4.1.

manual The title of the manual (such as Linux Programmer’s Manual).

The manual sections are traditionally defined as follows:

1 Commands Those commands that can be executed by the user from within a shell.

2 System calls Those functions that must be performed by the kernel.

3 Library calls Most of the libc functions, such as sort(3).

4 Special files Files found in /dev.

5 File formats and conventions The format for /etc/passwd and other human-readable files.

6 Games

7 Macro packages and conventions A description of the standard file system layout, this man page, and other things.

8 System management commands Commands such as mount(8), which only root can execute.

9 Kernel routines This is a non-standard manual section and is included because the source code to
the Linux kernel is freely available under the GNU Public License and many
people are working on changes to the kernel.

FONTS
Although there are many arbitrary conventions for man pages in the UNIX world, the existence of several hundred Linux-
specific man pages defines the standards:

For functions, the arguments are always specified using italics, even in the SYNOPSIS section, where the rest of the function is
specified in bold:
int myfunction(int argc, char **argv);

Filenames are always in italics (such as /usr/include/stdio.h), except in the SYNOPSIS section, where included files are in bold
(such as #include <stdio.h>).

Special macros, which are usually in uppercase, are in bold (such as MAXINT).

When enumerating a list of error codes, the codes are in bold (this list usually uses the .TP macro).

Any reference to another man page (or to the subject of the current man page) is in bold. If the manual section number is
given, it is given in roman, without any spaces (such as man(7)).

The commands to select the typeface are given below:

.B Bold

.BI Bold alternating with italics

.BR Bold alternating with Roman

.I Italics

.IB Italics alternating with bold

.IR Italics alternating with Roman

.RB Roman alternating with bold

.RI Roman alternating with italics

.SB Small alternating with bold

.SM Small

Traditionally, each command can have up to six arguments, but the GNU version seems to remove this limitation.
Arguments are delimited by spaces. Double quotes can be used to specify an argument that contains spaces. All the
arguments will be printed next to each other without intervening spaces, so that the .BR command can be used to specify a
word in bold followed by a mark of punctuation in Roman.

man

Part VII: Miscellaneous1248

SECTIONS
Sections are started with .SH followed by the heading name. If the name contains spaces and appears on the same line as .SH,
then place the heading in double quotes. Traditional headings include NAME, SYNOPSIS, DESCRIPTION, OPTIONS, FILES, SEE ALSO,
DIAGNOSTICS, BUGS, and AUTHOR. The only required heading is NAME, which should be followed on the next line by a one line
description of the program:

.SH NAME
chess \- the game of chess

It is extremely important that this format is followed and that there is a backslash before the single dash that follows the
command name. This syntax is used by the makewhatis(8) program to create a database of short command descriptions for
the whatis(1) and apropos(1) commands.

OTHER MACROS
Other macros include the following:

.DT Default tabs.

.HP Begin hanging indent.

.IP Begin paragraph with hanging tag. This is the same as .TP, except the tag is given on the
same line, not on the following line.

.LP Same as .PP.

.PD Set interparagraph distance to argument.

.PP Begin a new paragraph.

.RE End relative indent (indented paragraph).

.RS Start relative indent (indented paragraph).

.SS Subheading (like .SH but used for a subsection).

.TP Begin paragraph with hanging tag. The tag is given on the next line. This command is
similar to .IP.

FILES
/usr/local/lib/groff/tmac/tmac.an
/usr/man/whatis

SEE ALSO
groff(1), man(1), whatis(1), apropos(1), makewhatis(8)

Linux, 25 July 1993

signal
signal—List of available signals.

DESCRIPTION
Linux supports the signals listed in this section. Several signal numbers are architecture dependent. First are the signals
described in POSIX.1:

abort(3) alarm(1) Next various other signals.

(Here, – denotes that a signal is absent; there, where three values are given, the first one is usually valid for alpha and sparc,
the middle one for i386 and ppc, the last one for mips. Signal 29 is SIGINFO/SIGPWR on an alpha but SIGLOST on a sparc.)

1249

The letters in the Action column have the following meanings:

A Default action is to terminate the process.

B Default action is to ignore the signal.

C Default action is to dump core.

D Default action is to stop the process.

E Signal cannot be caught.

F Signal cannot be ignored.

G Not a POSIX.1 conformant signal.

CONFORMING TO
POSIX.1

BUGS
SIGIO and SIGLOST have the same value. The latter is commented out in the kernel source, but the build process of some
software still thinks that Signal 29 is SIGLOST.

SEE ALSO
kill(1), kill(2), setitimer(2)

Linux 1.3.88, 14 April 1996

suffixes
suffixes—List of file suffixes.

DESCRIPTION
It is customary to indicate the contents of a file with the file suffix, which consists of a period followed by one or more
letters. Many standard utilities, such as compilers, use this to recognize the type of file they are dealing with. The make(1)
utility is driven by rules based on file suffixes.

Following is a list of suffixes that are likely to be found on a Linux system:

Suffix File Type

,v Files for RCS (Revision Control System)

- Backup file

.C C++ source code

.F FORTRAN source with cpp(1) directives

.S Assembler source with cpp(1) directives

.Z File compressed using compress(1)

.[0-9]+pk TeX font files

.[1-9] Manual page for the corresponding section

.[1-9][a-z] Manual page for section plus subsection

.a Static object code library

.afm PostScript font metrics

.arc ARC archive

.arj ARJ archive

.asc PGP ASCII-armored data

continues

suffixes

Part VII: Miscellaneous1250

.awk AWK language program

.bak Backup file

.bm Bitmap source

.c C source

.cat Message catalog files

.cc C++ source

.cf Configuration file

.conf Configuration file

.config Configuration file

.cweb Donald Knuth’s WEB for C

.dat Data file

.def Modula-2 source for definition modules

.def Other definition files

.diff ASCII File differences

.doc Documentation file

.dvi TeX device independent output

.el EMACS lisp source

.elc Compiled EMACS lisp

.eps Encapsulated PostScript

.f FORTRAN source

.fas Precompiled common lisp

.fi FORTRAN include files

.gif Graphics Interchange Format

.gsf Ghostscript fonts

.gz File compressed using gzip(1)

.h C or C++ header files

.hlp Help file

.htm HTML file imported without renaming from a brain-damaged OS

.html HTML document used with the World Wide Web

.i C source after preprocessing

.idx Reference or datum-index file for hypertext or database system

.icon Bitmap source

.image Bitmap source

.in Configuration template, especially for GNU autoconf

.info Files for the EMACS info browser

.java A Java source file

.jpg JPEG compressed picture format

.l lex(1) or flex(1) files

.lib Common lisp library

.ln Files for use with lint(1)

.lsp Common lisp source

.m4 M4(1) source

.mac Macro files for various programs

Suffix File Type

1251

.man Manual page (usually source rather than formatted)

.me nroff source using the me macro package

.mf Metafont (font generator for TeX) source

.mm Sources for groff(1) in mm format

.mod Modula-2 source for implementation modules

.o Object file

.old Old or backup file

.orig Backup (original) version of a file from patch(1)

.out Output file, often an executable program (a.out)

.p Pascal source

.patch File differences from patch(1)

.pcf X11 font files

.pfa PostScript font definition files, ASCII format

.pfb PostScript font definition files, binary format

.pgp PGP binary data

.pid File to store daemon PID (such as crond.pid)

.png Portable Network Graphics file

.pl Perl script

.pr Bitmap source

.ps PostScript file

.r RATFOR source (obsolete)

.rej Patches that patch(1) couldn’t apply

.rules Rules for something

.s Assembler source

.sa Stub libraries for a.out shared libraries

.sc sc(1) spreadsheet commands

.sh sh(1) scripts

.shar Archive created by the shar(1) utility

.so DLL dynamic library

.sqml SQML schema or query program

.sty LaTeX style files

.sym Modula-2 compiled definition modules

.tar Archive created by the tar(1) utility

.tar.Z tar archive compressed with compress(1)

.tar.gz tar archive compressed with gzip(1)

.taz tar archive compressed with compress(1)

.tex TeX or LaTeX source

.texi Equivalent to .texinfo

.texinfo TeXinfo documentation source

.tfm TeX font metrics

.tgz tar archive compressed with gzip(1)

.tmpl Template files

Suffix File Type

continues

suffixes

Part VII: Miscellaneous1252

.txt Text file

.uue Binary file encoded with uuencode(1)

.web Donald Knuth’s WEB

.y yacc(1) or bison(1) (parser generator) files

.z File compressed using pack(1) (or an old gzip(1))

.zoo ZOO archive

˜ EMACS or patch backup file

rc Startup (run control) file, such as .newsrc

CONFORMS TO
General UNIX conventions.

BUGS
This list is not exhaustive.

SEE ALSO
file(1), make(1)

Linux, 4 April 1996

tr2tex
tr2tex—Convert a document from troff to LaTeX

SYNOPSIS
tr2tex [-m] filename

DESCRIPTION
tr2tex converts a document typeset in troff to a LaTeX format. It is intended to do the first pass of the conversion. The user
should then finish up the rest of the conversion and customize the converted manuscript to his or her liking. It can also serve
as a tutor for those who want to convert from troff to LaTeX.

Most of the converted document will be in LaTeX, but some of it may be in plain TeX. It will also use some macros in
troffms.sty or troffman.sty, which are included in the package and must be available to the document when processed with
LaTeX.

If there is more than one input file, they will all be converted into one LaTeX document.

tr2tex understands most of the -ms and -man macros and eqn preprocessor symbols. It also understands several plain troff
commands. Few tbl preprocessor commands are understood to help convert very simple tables.

When converting manuals, use the -m flag.

If a troff command cannot be converted, the line that contain that command will be commented out.

Note that if you have eqn symbols, you must have the inline mathematics delimiter defined by delim in the file you are
converting. If it is defined in another setup file, that setup file must be concatenated with the file to be converted; otherwise,
tr2tex regards the inline math as ordinary text.

Suffix File Type

1253

BUGS
Many of these bugs are harmless. Most of them cause local errors that can be fixed in the converted manuscript.

■ Some macros and macro arguments are not recognized.
■ Commands that are not separated from their argument by a space are not properly parsed (such as .sp3i).
■ When some operators (notably over, sub, and sup) are renamed (via define) and then they are encountered in the text,

tr2tex treats them as ordinary macros and does not apply their rules.
■ rpile, lpile, and cpile are treated the same as cpile.
■ rcol and lcol are treated the same as ccol.
■ Math-mode size, gsize, fat, and gfont are ignored.
■ lineup and mark are ignored. The rules are so different.
■ Some troff commands are translated to commands that require delimiters that have to be explicitly put. Because they

are sometimes not put in troff, they can create problems. Example: .nf is not closed by .fi.
■ When local motions are converted to nraise or nlower, an nhbox is needed, which must be put manually after the

conversion.
■ a sub i sub j is converted to a_i_j, which TeX parses as a_i{}_j} with a complaint that it is vague. a sub {i subj} is

parsed correctly and converted to a_{i_j}.
■ Line spacing is not changed within a paragraph in TeX (which is a bad practice anyway). TeX uses the last line spacing

in effect in that paragraph.

TO DO
Access registers via the .nr command.

SEE ALSO
texmatch(9), trmatch(9)

AUTHOR
Kamal Al-Yahya, Stanford University

1 January 1987

Unicode
Unicode—The unified 16-bit super character set.

DESCRIPTION
The international standard ISO 10646 defines the Universal Character Set (UCS). UCS contains all the characters of all
other character-set standards. It also guarantees round-trip compatibility; conversion tables can be built such that no
information is lost when a string is converted from any other encoding to UCS and back.

UCS contains the characters required to represent almost all known languages. This includes apart from the many languages
that use extensions of the Latin script also the following scripts and languages: Greek, Cyrillic, Hebrew, Arabic, Armenian,
Gregorian, Japanese, Chinese, Hiragana, Katakana, Korean, Hangul, Devangari, Bengali, Gurmukhi, Gujarati, Oriya, Tamil,
Telugu, Kannada, Malayam, Thai, Lao, Bopomofo, and a number of others. Work is going on to include further scripts such
as Tibetan, Khmer, Runic, Ethiopian, Hieroglyphics, various Indo-European languages, and many others. For most of these
latter scripts, it was not yet clear how they can be encoded best when the standard was published in 1993. In addition to the
characters required by these scripts, also a large number of graphical, typographical, mathematical, and scientific symbols
such as those provided by TeX, PostScript, MS-DOS, Macintosh, Videotext, OCR, and many word processing systems have
been included, as well as special codes that guarantee round-trip compatibility to all other existing character-set standards.

Unicode

Part VII: Miscellaneous1254

The UCS standard (ISO 10646) describes a 31-bit character-set architecture; however, today only the first 65534 code
positions (0x0000 to 0xfffd), which are called the Basic Multilingual Plane (BMP), have been assigned characters, and it is
expected that only very exotic characters (such as Hieroglyphics) for special scientific purposes will ever get a place outside
this 16-bit BMP.

The UCS characters 0x0000 to 0x007f are identical to those of the classic US-ASCII character set and the characters in the
range 0x0000 to 0x00ff are identical to those in the ISO 8859-1 Latin-1 character set.

COMBINING CHARACTERS
Some code points in UCS have been assigned to combining characters. These are similar to the non-spacing accent keys on a
typewriter. A combining character just adds an accent to the previous character. The most important accented characters
have codes of their own in UCS; however, the combining character mechanism allows you to add accents and other
diacritical marks to any character. The combining characters always follow the character that they modify. For example, the
German character Umlaut-A (“Latin capital letter A with diaeresis”) can either be represented by the precomposed UCS code
0x00c4 or alternately as the combination of a normal “Latin capital letter A” followed by a “combining diaeresis”: 0x0041
0x0308.

IMPLEMENTATION LEVELS
As not all systems are expected to support advanced mechanisms such as combining characters, ISO 10646 specifies the
following three implementation levels of UCS:

Level 1 Combining characters and Hangul Jamo characters (a special, more complicated encoding
of the Korean script, where Hangul syllables are coded as two or three subcharacters) are not
supported.

Level 2 Like level 1, except in some scripts, some combining characters are now allowed (such as
Hebrew, Arabic, Devangari, Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugo, Kannada,
Malayalam, Thai, and Lao).

Level 3 All UCS characters are supported.

The Unicode 1.1 standard published by the Unicode Consortium contains exactly the UCS Basic Multilingual Plane at
implementation Level 3, as described in ISO 10646. Unicode 1.1 also adds some semantical definitions for some characters
to the definitions of ISO 10646.

UNICODE UNDER LINUX
Under Linux, only the BMP at implementation Level 1 should be used at the moment to keep the implementation
complexity of combining characters low. The higher implementation levels are more suitable for special word processing
formats but not as a generic system character set. The C type wchar_t is on Linux an unsigned 16-bit integer type and its
values are interpreted as UCS Level 1 BMP codes.

The locale setting specifies whether the system character encoding is UTF-8 or ISO 8859-1, for example. Library functions
such as wctomb, mbtowc, or wprintf can be used to transform the internal wchar_t characters and strings into the system
character encoding and back.

PRIVATE AREA
In the BMP, the range 0xe000 to 0xf8ff will never be assigned any characters by the standard and is reserved for private
usage. For the Linux community, this private area is subdivided further into the range 0xe000 to 0xefff, which can be used
individually by any end user and the Linux zone in the range 0xf000 to 0xf8ff where extensions are coordinated among all
Linux users. The registry of the characters assigned to the Linux zone is currently maintained by H. Peter Anvin
(Peter.Anvin@linux.org), Yggdrasil Computing, Inc. It contains some DEC VT100 graphics characters missing in Unicode,
gives direct access to the characters in the console font buffer, and contains the characters used by a few advanced scripts such
as Klingon.

1255

LITERATURE
Information technology—Universal Multiple-Octet Coded Character Set (UCS). Part 1: Architecture and Basic Multilingual
Plane. International Standard ISO 10646-1, International Organization for Standardization, Geneva, 1993.

This is the official specification of UCS. Pretty official, pretty thick, and pretty expensive. For ordering information, check
www.iso.ch.

The Unicode Standard—Worldwide Character Encoding Version 1.0. The Unicode Consortium, Addison-Wesley, Reading,
MA, 1991.

There is already Unicode 1.1.4 available. The changes to the 1.0 book are available from ftp.unicode.org. Unicode 2.0 will
be published again as a book in 1996.

S. Harbison, G. Steele. C, A Reference Manual. Fourth edition, Prentice Hall, Englewood Cliffs, 1995,
ISBN 0-13-326224-3.

A good reference book about the C programming language. The fourth edition now covers also the 1994 Amendment 1 to
the ISO C standard (ISO/IEC 9899:1990), which adds a large number of new C library functions for handling wide
character sets.

BUGS
At the time when this man page was written, the Linux libc support for UCS was far from complete.

AUTHOR
Markus Kuhn (mskuhn@cip.informatik.uni-erlangen.de)

SEE ALSO
utf-8(7)

Linux, 27 December 1995

UTF-8
UTF-8—An ASCII-compatible multibyte Unicode encoding.

DESCRIPTION
The Unicode character set occupies a 16-bit code space. The most obvious Unicode encoding (known as UCS-2) consists of
a sequence of 16-bit words. Such strings can contain as parts of many 16-bit characters bytes such as \0 or /, which have a
special meaning in filenames and other C library function parameters. In addition, the majority of UNIX tools expects
ASCII files and can’t read 16-bit words as characters without major modifications. For these reasons, UCS-2 is not a suitable
external encoding of Unicode in filenames, text files, environment variables, and so on. The ISO 10646 Universal Character
Set (UCS), a superset of Unicode, occupies even a 31-bit code space, and the obvious UCS-4 encoding for it (a sequence of
32-bit words) has the same problems.

The UTF-8 encoding of Unicode and UCS does not have these problems and is the way to go for using the Unicode
character set under UNIX-style operating systems.

PROPERTIES
The UTF-8 encoding has the following nice properties:

UCS characters 0x00000000 to 0x0000007f (the classical U.S. ASCII characters) are encoded simply as bytes 0x00 to 0x7f
(ASCII compatibility). This means that files and strings that contain only 7-bit ASCII characters have the same encoding
under both ASCII and UTF-8.

All UCS characters greater than 0x7f are encoded as a multibyte sequence consisting only of bytes in the range 0x80 to 0xfd,
so no ASCII byte can appear as part of another character and there are no problems with \0 or /.

UTF-8

Part VII: Miscellaneous1256

The lexicographic sorting order of UCS-4 strings is preserved.

All possible 2ˆ31 UCS codes can be encoded using UTF-8.

The bytes 0xfe and 0xff are never used in the UTF-8 encoding.

The first byte of a multibyte sequence that represents a single non-ASCII UCS character is always in the range 0xc0 to 0xfd
and indicates how long this multibyte sequence is. All further bytes in a multibyte sequence are in the range 0x80 to 0xbf.
This allows easy resynchronization and makes the encoding stateless and robust against missing bytes.

UTF-8–encoded UCS characters may be up to six bytes long; however, Unicode characters can only be up to three bytes
long. Because Linux uses only the 16-bit Unicode subset of UCS, under Linux, UTF-8 multibyte sequences can only be one,
two, or three bytes long.

ENCODING
The following byte sequences are used to represent a character. The sequence to be used depends on the UCS code number
of the character:

0x00000000 - 0x0000007F: 0xxxxxxx
0x00000080 - 0x000007FF: 110xxxxx 10xxxxxx
0x00000800 - 0x0000FFFF: 1110xxxx 10xxxxxx 10xxxxxx
0x00010000 - 0x001FFFFF: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
0x00200000 - 0x03FFFFFF: 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
0x04000000 - 0x7FFFFFFF: 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
10xxxxxx

The xxx-bit positions are filled with the bits of the character code number in binary representation. Only the shortest
possible multibyte sequence that can represent the code number of the character can be used.

EXAMPLES
The Unicode character 0xa9 = 1010 1001 (the copyright sign) is encoded in UTF-8 as

11000010 10101001 = 0xc2 0xa9

and character 0x2260 = 0010 0010 0110 0000 (the “not equal” symbol) is encoded as

11100010 10001001 10100000 = 0xe2 0x89 0xa0

STANDARDS
ISO 10646, Unicode 1.1, XPG4, Plan 9.

AUTHOR
Markus Kuhn (mskuhn@cip.informatik.uni-erlangen.de)

SEE ALSO
unicode(7)

1257

Administration
and Privileged

Commands

Part VIII:

Part VIII: Administration and Privileged Commands1258

intro
intro—Introduction to administration and privileged commands.

DESCRIPTION
This chapter describes commands that either can be or are only used by the superuser, such as daemons and machine or
hardware-related commands.

AUTHORS
Look at the header of the manual page for the authors and copyright conditions. Note that these can be different from page
to page.

Linux, 24 July 1993

adduser, addgroup
adduser, addgroup—Add a user or group to the system.

SYNOPSIS
adduser [--system [--home directory] [--group]] [--quiet]
 [--force-badname] [--help] [--version] [--debug] username
adduser [--quiet] [--force-badname] [--help] [--version]
[--debug] username group
adduser [--group] [--quiet] [--force-badname] [--help]
[--version] [--debug] group

DESCRIPTION
adduser and addgroup add users and groups to the system according to information provided in the configuration file /etc/
adduser.conf. adduser and addgroup automatically determine the UID or GID and place the entity in the password or
group file as appropriate.

If necessary, adduser creates a home directory for the new user, copies “skeletal” user files to it from /etc/skel, and allows
the system administrator to set an initial password and finger information for the user.

Because it needs to be able to write to such files as /etc/passwd, adduser can only be run as root.

Generally, there are two types of users and groups on a system: those users that log into the system and those “non-user”
accounts and groups that exist for various system tasks and projects. Henceforth, user will refer to the login type and system
user or group will refer to the type used for system maintenance and projects.

By default, each user in Debian GNU/Linux is given a corresponding group with the same name and ID, allowing people
easily to give access to their home directories to others. This option can be turned off in the configuration file, in which case
each user is, by default, added to a group called users.

Under Debian GNU/Linux, IDs less than or equal to 100 are allocated by the base system maintainer for various purposes.
IDs from 101 to the value specified in the configuration file (1000, by default) are used for system users and groups. IDs
greater than 1000 are reserved for users and their corresponding groups.

When invoked with a single name, adduser creates a user with that name. When given two names, adduser assumes that the
first name represents an existing user and that the second name represents an existing group. In this case, the user is added to
the group.

1259

OPTIONS
--system Create a system user. This user will be assigned the shell /bin/false and have an

asterisk in the password field. Unless otherwise specified, the user will be placed
in the group nogroup. Skeletal configuration files will not be copied into the
user’s home directory.

--home directory When used with --system, this uses directory as the user’s home directory,
rather than the default specified in the configuration file. If the directory does
not exist, it is created.

--group When combined with —system, a group with the same name and ID as the
system user is created. If not combined with --system, a group with the given
name is created. This is the default action if the program is invoked as addgroup.

--quiet Suppress progress messages.

--force-badname By default, user and group names are required to consist of a lowercase letter
followed by one or more lowercase letters or numbers. This option forces
adduser or addgroup to be more lenient.

--help Display brief instructions.

--version Display version and copyright information.

--debug Display a large quantity of debugging information.

SEE ALSO
adduser.conf(5)

COPYRIGHT
Copyright(c) 1995, Ted Hajek, with a great deal borrowed from the original Debian adduser, copyright(c) 1994, Ian
Murdock. adduser is free software; see the GNU General Public License version two or later for copying conditions. There is
no warranty.

Debian GNU/Linux version 1.94

agetty
agetty—Alternative Linux getty.

SYNOPSIS
agetty [-ihL] [-l login_program] [-m] [-t timeout] port baud_rate,... [term]
agetty [-ihL] [-l login_program] [-m] [-t timeout] baud_rate,... port [term]

DESCRIPTION
agetty opens a tty port, prompts for a login name, and invokes the /bin/login command. It is usually invoked by init(8).

agetty has several non-standard features that are useful for hard-wired and for dial-in lines:

Adapts the tty settings to parity bits and to erase, kill, end-of-line, and uppercase characters when it reads a login name.
The program can handle 7-bit characters with even, odd, none, or space parity and 8-bit characters with no parity. The
following special characters are recognized: @ and Control+U (kill); #, Del and Backspace (erase); carriage return and line
feed (end of line).

Optionally deduces the baud rate from the CONNECT messages produced by Hayes-compatible modems.

Optionally does not hang up when it is given an already opened line (useful for call-back applications).

Optionally does not display the contents of the /etc/issue file (System V only).

agetty

Part VIII: Administration and Privileged Commands1260

Optionally invokes a non-standard login program instead of /bin/login.

Optionally turns on hardware flow control.

Optionally forces the line to be local with no need for carrier detect.

This program does not use the /etc/gettydefs (System V) or /etc/gettytab (SunOS 4) files.

ARGUMENTS
port A path name relative to the /dev directory. If a – is specified, agetty

assumes that its standard input is already connected to a tty port and that
a connection to a remote user has already been established. Under System
V, a – port argument should be preceded by a –.

baud rate,... A comma-separated list of one or more baud rates. Each time agetty
receives a break character, it advances through the list, which is treated as
if it were circular. Baud rates should be specified in descending order, so
that the null character (Ctrl+@) can also be used for baud rate switching.

term The value to be used for the TERM environment variable. This overrides
whatever init(8) may have set and is inherited by login and the shell.

OPTIONS
-h Enable hardware (RTS/CTS) flow control. It is left up to the application

to disable software (XON/XOFF) flow protocol where appropriate.

-i Do not display the contents of /etc/issue before writing the login
prompt. Terminals or communications hardware might become confused
when receiving lots of text at the wrong baud rate; dial-up scripts might
fail if the login prompt is preceded by too much text.

-l login_program Invoke the specified login program instead of /bin/login. This allows
the use of a non-standard login program (for example, one that asks for a
dial-up password or that uses a different password file).

-m Try to extract the baud rate the connect status message produced by some
Hayes-compatible modems. These status messages are of the form:
“<junk><speed><junk>”. agetty assumes that the modem emits its
status message at the same speed as specified with (the first) baud rate
value on the command line.

Because the -m feature might fail on heavily loaded systems, you still
should enable break processing by enumerating all expected baud rates on
the command line.

-t timeout Terminate if no username could be read within timeout seconds. This
option should probably not be used with hard-wired lines.

-L Force the line to be a local line with no need for carrier detect. This can
be useful when you have a locally attached terminal where the serial line
does not set the carrier detect signal.

EXAMPLES
This section shows sample entries for the /etc/inittab file.

For a hard-wired line:

tty1:con80x60:/sbin/agetty 9600 tty1

For a dial-in line with a 9600/2400/1200 baud modem:

ttyS1:dumb:/sbin/agetty -mt60 ttyS1 9600,2400,1200

1261

These examples assume you use the simpleinit(8) init program for Linux. If you use a SysV-like init (does /etc/inittab
mention “respawn”?), refer to the appropriate manual page.

ISSUE ESCAPES
The /etc/issue file might contain certain escape codes to display the system name, date and time, and so on. All escape
codes consist of a backslash (\) immediately followed by one of the following letters:

b Insert the baudrate of the current line.

d Insert the current date.

s Insert the system name, the name of the operating system.

l Insert the name of the current tty line.

m Insert the architecture identifier of the machine, such as i486.

n Insert the nodename of the machine, also known as the hostname.

o Insert the domain name of the machine.

r Insert the release number of the OS, such as 1.1.9.

t Insert the current time.

u Insert the number of current users logged in.

U Insert the string 1 user or n users where n is the number of current users logged in.

v Insert the version of the OS, such as the build date and so on.

For example, on my system, the following /etc/issue file

This is \n.\o (\s\m\r) \t

displays as

This is thingol.orcan.dk (Linux i386 1.1.9) 18:29:30

FILES
/var/run/utmp, the system status file

/etc/issue, printed before the login prompt (System V only)

/dev/console, problem reports (if syslog(3) is not used)

/etc/inittab (Linux simpleinit(8) configuration file)

BUGS
The baud-rate detection feature (the -m option) requires that agetty be scheduled soon enough after completion of a dial-in
call (within 30ms with modems that talk at 2400 baud). For robustness, always use the -m option in combination with a
multiple baud rate command-line argument so that break processing is enabled.

The text in the /etc/issue file and the login prompt are always output with 7-bit characters and space parity.

The baud-rate detection feature (the -m option) requires that the modem emits its status message after raising the DCD line.

DIAGNOSTICS
Depending on how the program was configured, all diagnostics are written to the console device or reported via the
syslog(3) facility. Error messages are produced if the port argument does not specify a terminal device, if there is no utmp
entry for the current process (System V only), and so on.

AUTHORS
W.Z. Venema (wietse@wzv.win.tue.nl) Eindhoven University of Technology, Department of Mathematics and Computer
Science, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

Peter Orbaek (poe@daimi.aau.dk), Linux port.

agetty

Part VIII: Administration and Privileged Commands1262

CREATION DATE
Sat Nov 25 22:51:05 MET 1989

LAST MODIFICATION
91/09/01 23:22:00

VERSION/RELEASE
1.29

archive
archive—Usenet article archiver.

SYNOPSIS
archive [-a archive][-f][-i index][-m][-r][input]

DESCRIPTION
archive makes copies of files specified on its standard input. It is usually run either as a channel feed under innd(8) or by a
script before expire(8) is run.

archive reads the named input file or standard input if no file is given. The input is taken as a set of lines. Blank lines and
lines starting with a number sign (#) are ignored. All other lines should specify the name of a file to archive. If a filename is
not an absolute pathname, it is taken to be relative to /news/spool.

Files are copied to a directory within the archive directory, /news/spool/news.archive. The default is to create a hierarchy
that mimics the input files; intermediate directories are created as needed. For example, the input file comp/sources/unix/
2211 (article 2211 in the newsgroup comp.sources.unix) is copied to /news/spool/news.archive/comp/sources/unix/
2211. If the –f flag is used, then all directory names are flattened out, replacing the slashes with periods. In this case, the file
is copied to /news/spool/news.archive/comp.sources.unix/2211.

If the –i flag is used, then archive appends one line to the specified index file for each article that it copies. This line
contains the destination name and the Message-ID and Subject headers.

For example, a typical newsfeeds(5) entry to archive most source newsgroups is as follows:

source-archive\
:!*,*sources*,!*wanted*,!*.d\
:Tc,Wn\
:/archive –f –i \
/usr/spool/news/news.archive/INDEX

Files are copied by making a link. If that fails, a new file is created. If the –m flag is used, then the file is copied to the
destination, and the input file is replaced with a symbolic link pointing to the new file. The –m flag is ignored.

By default, archive sets its standard error to /var/log/news/errlog. To suppress this redirection, use the –r flag.

If the input is exhausted, archive exits with a zero status. If an I/O error occurs, it tries to spool its input, copying it to a file.
If there was no input filename, the standard input is copied to /news/spool/out.going/archive and the program exits. If
an input filename was given, a temporary file named input.bch (if input is an absolute pathname) or /news/spool/
out.going/input.bch (if the filename does not begin with a slash) is created. Once the input is copied, archive tries to
rename this temporary file to be the name of the input file and then exits.

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

1263

SEE ALSO
newsfeeds(5)

arp
arp—Manipulate the system ARP cache.

SYNOPSIS
arp [-v] [-t type] -a [hostname]
arp [-v] -d hostname ...
arp [-v] [-t type] -s hostname hw_addr
arp [-v] -f filename

DESCRIPTION
arp manipulates the kernel’s ARP cache in various ways. The primary options are clearing an address mapping entry and
manually setting up one. For debugging purposes, the arp program also allows a complete dump of the ARP cache.

OPTIONS
-v Tell the user what is going on by being verbose.

-t type When setting or reading the ARP cache, this optional parameter tells arp which class
of entries it should check for. The default value of this parameter is ether (hardware
code 0x01 for IEEE 802.3 10Mbps Ethernet). Other values might include network
technologies such as ARCnet (arcnet), PROnet (pronet), and AX.25 (ax25).

-a [hostname] Shows the entries of the specified hosts. If the hostname parameter is not used, all
entries are displayed.

-d hostname Remove the entries of the specified host. This can be used if the indicated host is
brought down, for example.

-s hostname hw_addr Manually create an ARP address mapping entry for host hostname with hardware
address set to hw_addr. The format of the hardware address is dependent on the
hardware class, but for most classes, you can assume that the usual presentation can
be used. For the Ethernet class, this is six bytes in hexadecimal, separated by colons.

-f filename Similar to the -s option, only this time the address info is taken from file filename.
This can be used if ARP entries for a lot of hosts have to be set up. The name of the
data file is often /etc/ethers, but this is not official.

The format of the file is simple; it only contains ASCII text lines with a hostname
and a hardware address separated by whitespace.

In all places where a hostname is expected, you can also enter an IP address in dotted-decimal notation.

FILES
/proc/net/arp

/etc/ethers

AUTHOR
Fred N. van Kempen (waltje@uwalt.nl.mugnet.org)

09 June 1994

arp

Part VIII: Administration and Privileged Commands1264

badblocks
badblocks—Search a device for bad blocks.

SYNOPSIS
badblocks [-b block-size] [-o output_file] [-v][-w] device blocks-count

DESCRIPTION
badblocks is used to search for bad blocks on a device (usually a disk partition). device is the special file corresponding to the
device (such as /dev/hdXX). blocks-count is the number of blocks on the device.

OPTIONS
-b block-size Specify the size of blocks in bytes.

-o output_file Write the list of bad blocks to the specified file. Without this option, badblocks
displays the list on its standard output.

-v Verbose mode.

-w Use write-mode test. With this option, badblocks scans for bad blocks by writing
some patterns (0xaa, 0x55, 0xff, and 0x00) on every block of the device, reading
every block and comparing the contents.

WARNING
Never use the -w option on a device containing an existing filesystem. This option erases data!

AUTHOR
badblocks was written by Remy Card (card@masi.ibp.fr), the developer and maintainer of the ext2 fs.

BUGS
I had no chance to make real tests of this program because I use IDE drives, which remap bad blocks. I only made some tests
on floppies.

AVAILABILITY
badblocks is available for anonymous FTP from ftp.ibp.fr and tsx-11.mit.edu in /pub/linux/packages/ext2fs.

SEE ALSO
e2fsck(8), mke2fs(8)

Version 0.5b, November 1994

buffchan
buffchan—Buffered file-writing back end for InterNetNews.

SYNOPSIS
buffchan [-b][-c lines][-C seconds][-d directory]
[-f fields][-m map][-p pidfile][-l lines][-L seconds]
[-r][-s file_format][-u]

DESCRIPTION
buffchan reads lines from standard input and copies certain fields in each line into files named by other fields within the
line. buffchan is intended to be called by innd(8) as an exploder feed.

1265

buffchan input is interpreted as a set of lines. Each line contains a fixed number of initial fields, followed by a variable
number of filename fields. All fields in a line are separated by whitespace. The default number of initial fields is one; the –f
flag may be used to specify a different number of fields. See filechan(8) for an example.

After the initial fields, each remaining field names a file to write. The -s flag may be used to specify a format string that maps
the field to a filename. This is a sprintf(3) format string, which should have a single %s parameter that is given the field.
The default value is /news/spool/out.going/%s. See the description of this flag in filechan(8). The –d flag may be used to
specify a directory the program should change to before starting. If this flag is used, then the default for the –s flag is
changed to be a simple %s.

Once buffchan opens a file, it keeps it open. The input must therefore never specify more files than the number of available
descriptors can keep open. If the –b flag is used, the program will allocate a buffer and attach it to the file using setbuf(3). If
the –u flag is used, the program will request unbuffered output.

If the –l flag is used with a number n, then buffchan will call fflush(3) after every n lines are written to a file. If the –c flag
is used with a number n, then buffchan will close, and reopen, a file after every n lines are written to a file.

If the –L flag is used with a number n, then all files will be flushed every n seconds. Similarly, the –C flag may be used to
specify that all files should be closed and reopened every n seconds.

By default, the program sets its standard error to /var/log/news/errlog. To suppress this redirection, use the –r flag.

If the –p flag is used, the program will write a line containing its process ID (in text) to the specified file.

buffchan can be invoked as an exploder feed (see newsfeeds(5)). As such, if a line starts with an exclamation point, it is
treated as a command. There are three commands:

flush The flush command closes and reopens all open files; flush xxx flushes only the
specified site. These are analogous to the ctlinnd(8) flush command and can be
achieved by doing a send flush xxx command. Applications can tell that the flush
has completed by renaming the file before issuing the command; buffchan has
completed the command when the original filename reappears.

buffchan also changes the access permissions of the file from read-only for everyone
to read-write for owner and group as it flushes or closes each output file. It changes
the modes back to read-only if it reopens the same file.

drop The drop command is similar to the flush command except that any files are not
reopened. If given an argument, then the specified site is dropped; otherwise, all sites
are dropped. (Note that the site will be restarted if the input stream mentions the
site.) When a ctlinnd “drop site” command is sent, innd will automatically forward
the command to buffchan if the site is a funnel that feeds into this exploder. To
drop all sites, use the ctlinnd send buffchan-site drop command.

readmap The map file (specified with the –m flag) is reloaded.

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
ctlinnd(8), filechan(8), innd(8), newsfeeds(5).

cfdisk
cfdisk—Curses-based disk partition table manipulator for Linux.

SYNOPSIS
cfdisk [-avz] [-c cylinders][-h heads][-s sectors-per-track][-P opt]
[device]

cfdisk

Part VIII: Administration and Privileged Commands1266

DESCRIPTION
cfdisk is a curses-based program for partitioning a hard disk drive. The device can be any one of the following:

/dev/hda [default]
/dev/hdb
/dev/sda
/dev/sdb
/dev/sdc
/dev/sdd

cfdisk first tries to read the geometry of the hard disk. If it fails, an error message is displayed and cfdisk exits. This should
only happen when partitioning a SCSI drive on an adapter without a BIOS. To correct this problem, you can set the
cylinders, heads, and sectors-per-track on the command line. Next, cfdisk tries to read the current partition table from the
disk drive. If it is unable to figure out the partition table, an error is displayed and the program exits. This might also be
caused by incorrect geometry information and can be overridden on the command line. Another way around this problem is
with the -z option. This will ignore the partition table on the disk.

The main display is composed of four sections, from top to bottom: the header, the partitions, the command line, and a
warning line. The header contains the program name and version number followed by the disk drive and its geometry. The
partitions section always displays the current partition table. The command line is the place where commands and text are
entered. The available commands are usually displayed in brackets. The warning line is usually empty except when there is
important information to be displayed. The current partition is highlighted with reverse video (or an arrow if the -a option
is given). All partition-specific commands apply to the current partition.

The format of the partition table in the partition’s section is, from left to right: Name, Flags, Partition Type, Filesystem
Type, and Size. The name is the partition device name. The flags can be Boot, which designates a bootable partition or NC,
which stands for “Not Compatible with DOS or OS/2.” DOS, OS/2, and possibly other operating systems require the first
sector of the first partition on the disk and all logical partitions to begin on the second head. This wastes the second through
the last sector of the first track of the first head (the first sector is taken by the partition table itself). cfdisk allows you to
recover these “lost” sectors with the maximize command (m). Note that fdisk(8) and some early versions of DOS create all
partitions with the number of sectors already maximized. For more information, see the maximize command later in this
chapter. The partition type can be Primary or Logical. For unallocated space on the drive, the partition type can also be
Pri/Log or empty (if the space is unusable). The filesystem type section displays the name of the filesystem used on the
partition, if known. If it is unknown, then Unknown and the hex value of the filesystem type are displayed. A special case
occurs when there are sections of the disk drive that cannot be used (because all the primary partitions are used). When this
is detected, the filesystem type is displayed as Unusable. The size field displays the size of the partition in megabytes (by
default). It can also display the size in sectors and cylinders (see the change units command later in this chapter). If an
asterisks (*) appears after the size, this means that the partition is not aligned on cylinder boundaries.

DOS 6.X WARNING
The DOS 6.x FORMAT command looks for some information in the first sector of the data area of the partition and treats this
information as more reliable than the information in the partition table. DOS FORMAT expects DOS FDISK to clear the first 512
bytes of the data area of a partition whenever a size change occurs. DOS FORMAT looks at this extra information even if the /U
flag is given; we consider this a bug in DOS FORMAT and DOS FDISK.

The bottom line is that if you use cfdisk or fdisk to change the size of a DOS partition table entry and then you must also
use dd to zero the first 512 bytes of that partition before using DOS FORMAT to format the partition. For example, if you were
using cfdisk to make a DOS partition table entry for /dev/hda1, then (after exiting fdisk or cfdisk and rebooting Linux
so that the partition table information is valid), you use the command dd if=/dev/zero of=/dev/hda1 bs=512 count=1 to
zero the first 512 bytes of the partition.

Be extremely careful if you use the dd command because a small typo can make all of the data on your disk useless.

For best results, you should always use an OS-specific partition table program. For example, you should make DOS
partitions with the DOS FDISK program and Linux partitions with the Linux fdisk or Linux cfdisk program.

1267

COMMANDS
cfdisk commands can be entered by pressing the desired key (pressing Enter after the command is not necessary). Here is a
list of the available commands:

b Toggle bootable flag of the current partition. This allows you to select which primary partition is
bootable on the drive.

d Delete the current partition. This will convert the current partition into free space and merge it
with any free space immediately surrounding the current partition. A partition already marked as
free space or marked as unusable cannot be deleted.

g Change the disk geometry (cylinders, heads, or sectors-per-track). Warning: This option should
only be used by people who know what they are doing. A command-line option is also available to
change the disk geometry. While at the change disk geometry command line, you can choose to
change cylinders (d), heads (h), and sectors per track (s). The default value will be printed at the
prompt, which you can accept by simply pressing the Enter key or you can exit without changes by
pressing the Esc key. If you want to change the default value, simply enter the desired value and
press Enter. The altered disk parameter values do not take effect until you return to the main menu
(by pressing Enter or Esc at the change disk geometry command line. If you change the geometry
such that the disk appears larger, the extra sectors are added at the end of the disk as free space. If
the disk appears smaller, the partitions that are beyond the new last sector are deleted and the last
partition on the drive (or the free space at the end of the drive) is made to end at the new last
sector.

h Print the help screen.

m Maximize disk usage of the current partition. This command will recover the the unused space
between the partition table and the beginning of the partition, at the cost of making the partition
incompatible with DOS, OS/2, and possibly other operating systems. This option will toggle
between maximal disk usage and DOS, OS/2, and so on compatible disk usage. The default when
creating a partition is to create DOS, OS/2, and so on compatible partitions.

n Create new partitions from free space. If the partition type is Primary or Logical, a partition of
that type will be created, but if the partition type is Pri/Log, you will be prompted for the type you
want to create. Be aware that there are only four slots available for primary partitions and because
there can be only one extended partition that contains all of the logical drives, all of the logical
drives must be contiguous (with no intervening primary partition). cfdisk next prompts you for
the size of the partition you want to create. The default size, equal to the entire free space of the
current partition, is displayed in megabytes. You can either press the Enter key to accept the default
size or enter a different size at the prompt. cfdisk accepts size entries in megabytes (M) (default),
kilobytes (K), cylinders (d), and sectors (S) when you enter the number immediately followed by M,
K, C, or S. If the partition fills the free space available, the partition is created and you are returned
to the main command line. Otherwise, the partition can be created at the beginning or the end of
the free space, and cfdisk will ask you to choose where to place the partition. After the partition is
created, cfdisk automatically adjusts the other partition’s partition types if all of the primary
partitions are used.

p Print the partition table to the screen or to a file. There are several different formats for the
partition that you can choose from:

r Raw data format (exactly what would be written to disk).

s Partition table in sector order format.

t Partition table in raw format. The raw data format will print the sectors that would be written to
disk if a write command is selected. First, the primary partition table is printed, followed by the
partition tables associated with each logical partition. The data is printed in hex byte-by-byte with
16 bytes per line. The partition table in sector order format will print the partition table ordered by
sector number. The fields, from left to right, are the number of the partition, the partition type, the
first sector, the last sector, the offset from the first sector of the partition to the start of the data, the

cfdisk

Part VIII: Administration and Privileged Commands1268

length of the partition, the filesystem type (with the hex value in parentheses), and the flags (with
the hex value in parentheses). In addition to the primary and logical partitions, free and unusable
space is printed and the extended partition is printed before the first logical partition.

If a partition does not start or end on a cylinder boundary or if the partition length is not divisible
by the cylinder size, an asterisk (*) is printed after the non-aligned sector number/count. This
usually indicates that a partition was created by an operating system that either does not align
partitions to cylinder boundaries or that used different disk geometry information. If you know the
disk geometry of the other operating system, you can enter the geometry information with the
change geometry command (g).

For the first partition on the disk and for all logical partitions, if the offset from the beginning of
the partition is not equal to the number of sectors per track (that is, the data does not start on the
first head), a number sign (#) is printed after the offset. For the remaining partitions, if the offset is
not zero, a number sign is printed after the offset. This corresponds to the NC flag in the partitions
section of the main display.

The partition table in raw format will print the partition table ordered by partition number. It will
leave out all free and unusable space. The fields, from left to right, are the number of the partition,
the flags (in hex), the starting head, sector, and cylinder, the filesystem ID (in hex), the ending
head, sector, and cylinder, the starting sector in the partition, and the number of sectors in the
partition. The information in this table can be directly translated to the raw data format. The
partition table entries only have 10 bits available to represent the starting and ending cylinders.
Thus, when the absolute starting (ending) sector number is on a cylinder greater than 1023, the
maximal values for starting (ending) head, sector, and cylinder are printed. This is the method used
by OS/2, and it fixes the problems associated with OS/2’s fdisk rewriting the partition table when
it is not in this format. Because Linux and OS/2 use absolute sector counts, the values in the
starting and ending head, sector, and cylinder are not used.

q Quit program. This will exit the program without writing any data to disk.

t Change the filesystem type. By default, new partitions are created as Linux partitions, but because
cfdisk can create partitions for other operating systems, changing the partition type allows you to
enter the hex value of the filesystem you desire. A list of the known filesystem types is displayed.
You can type the filesystem type at the prompt or accept the default filesystem type (Linux).

u Change units of the partition size display. It will rotate through megabytes, sectors, and cylinders.

W Write partition table to disk (you must enter an uppercase W). Because this might destroy data on
the disk, you must either confirm or deny the write by entering yes or no. If you enter yes, cfdisk
will write the partition table to disk and the tell the kernel to re-read the partition table from the
disk. The re-reading of the partition table works in most cases, but I have seen it fail. Don’t panic.
It will be correct after you reboot the system. In all cases, I still recommend rebooting the system
just to be safe.

Up arrow, Down arrow Move cursor to the previous or next partition. If there are more partitions than can be displayed on
a screen, you can display the next (previous) set of partitions by moving down (up) at the last (first)
partition displayed on the screen.

Ctrl+L Redraws the screen. In case something goes wrong and you cannot read anything, you can refresh
the screen from the main command line.

? Print the help screen.

All the commands can be entered with either uppercase or lowercase letters (except for writes). When in a submenu or at a
prompt to enter a filename, you can hit the Esc key to return to the main command line.

OPTIONS
-a Use an arrow cursor instead of reverse video for highlighting the current partition.

-v Print the version number and copyright.

1269

-z Start with zeroed partition table. This option is useful when you want to repartition
your entire disk. Note that this option does not zero the partition table on the disk;
rather, it simply starts the program without reading the existing partition table.

-c cylinders

-h heads

-s sectors-per-track Override the number of cylinders, heads, and sectors-per-track read from the BIOS. If
your BIOS or adapter does not supply this information or if it supplies incorrect
information, use these options to set the disk geometry values.

-P opt Prints the partition table in specified formats. opt can be one or more of r, s, or t. See
the print command for more information on the print formats.

SEE ALSO
fdisk(8)

BUGS
The current version does not support multiple disks (future addition).

AUTHOR
Kevin E. Martin (martin@cs.unc.edu)

The BOGUS Linux Release, 3 June 1995

chat
chat—Automated conversational script with a modem.

SYNOPSIS
chat [options] script

DESCRIPTION
The chat program defines a conversational exchange between the computer and the modem. Its primary purpose is to
establish the connection between the Point-to-Point protocol daemon (pppd) and the remote’s pppd process.

OPTIONS
-f <chat file> Read the chat script from the chat file. The use of this option is mutually exclusive with

the chat script parameters. The user must have read access to the file. Multiple lines are
permitted in the file. Space or horizontal tab characters should be used to separate the
strings.

-t <timeout> Set the time-out for the expected string to be received. If the string is not received
within the time limit, then the reply string is not sent. An alternate reply may be sent or
the script will fail if there is no alternate reply string. A failed script will cause the chat
program to terminate with a nonzero error code.

-r <report file> Set the file for output of the report strings. If you use the keyword REPORT, the resulting
strings are written to this file. If this option is not used and you still use REPORT
keywords, the stderr file is used for the report strings.

-v Request that the chat script be executed in a verbose mode. The chat program will then
log all text received from the modem and the output strings that it sends to the SYSLOG.

chat

Part VIII: Administration and Privileged Commands1270

-V Request that the chat script be executed in a stderr verbose mode. The chat program
will then log all text received from the modem and the output strings that it sends to the
stderr device. This device is usually the local console at the station running the chat or
pppd program. This option does not work properly if the stderr is redirected to the /
dev/null location because in that case pppd should run in the detached mode. In that
case, use the -v option to record the session on the SYSLOG device.

script If the script is not specified in a file with the -f option, then the script is included as
parameters to the chat program.

CHAT SCRIPT
The chat script defines the communications.

A script consists of one or more “expect-send” pairs of strings, separated by spaces, with an optional “subexpect-subsend”
string pair, separated by a dash as in the following example:

ogin:-BREAK-ogin: ppp ssword: hello2u2

This line indicates that the chat program should expect the string ogin:. If it fails to receive a login prompt within the time
interval allotted, it is to send a break sequence to the remote and then expect the string ogin:. If the first ogin: is received,
then the break sequence is not generated.

Once it receives the login prompt, the chat program will send the string ppp and then expect the prompt ssword:. When it
receives the prompt for the password, it will send the password hello2u2.

A carriage return is usually sent following the reply string. It is not expected in the “expect” string unless it is specifically
requested by using the nr character sequence.

The expect sequence should contain only what is needed to identify the string. Because it is usually stored on a disk file, it
should not contain variable information. It is generally not acceptable to look for time strings, network identification strings,
or other variable pieces of data such as an expect string.

To help correct for characters that may be corrupted during the initial sequence, look for the string ogin: rather than
login:. It is possible that the leading l character might be received in error and you might never find the string even though
it was sent by the system. For this reason, scripts look for ogin: rather than login: and ssword: rather than password:.

A very simple script might look like this:

ogin: ppp ssword: hello2u2

In other words, expectogin:, send ppp, expect ...ssword:, send hello2u2.

In actual practice, simple scripts are rare. At the vary least, you should include subexpect sequences in case the original string
is not received. For example, consider the following script:

ogin:–ogin: ppp ssword: hello2u2

This is a better script than the simple one used earlier. This looks for the same login: prompt; however, if one was not
received, a single return sequence is sent and then it will look for login: again. Should line noise obscure the first login
prompt then sending the empty line will usually generate a login prompt again.

ABORT STRINGS
Many modems will report the status of the call as a string. These strings may be CONNECTED or NO CARRIER or BUSY. It is
often desirable to terminate the script if the modem fails to connect to the remote. The difficulty is that a script does not
know exactly which modem string it might receive. On one attempt, it might receive BUSY, but the next time, it might
receive NO CARRIER.

These “abort” strings can be specified in the script using the ABORT sequence. It is written in the script as in the following
example:

ABORT BUSY ABORT ‘NO CARRIER’ “ ATZ OK ATDT5551212 CONNECT

1271

This sequence will expect nothing and then send the string ATZ. The expected response to this is the string OK. When it
receives OK, the string ATDT5551212 dials the telephone. The expected string is CONNECT. If the string CONNECT is received, the
remainder of the script is executed. However, if the modem finds a busy telephone, it sends the string BUSY. This causes the
string to match the abort character sequence. The script then fails because it found a match to the abort string. If it received
the string NO CARRIER, it aborts for the same reason. Either string may be received. Either string will terminate the chat
script.

REPORT STRINGS
A report string is similar to the ABORT string. The difference is that the strings and all characters to the next control character
such as a carriage return, are written to the report file.

The report strings may be used to isolate the transmission rate of the modem’s connect string and return the value to the chat
user. The analysis of the report string logic occurs in conjunction with the other string processing such as looking for the
expect string. The use of the same string for a report and abort sequence is probably not very useful; however, it is possible.

The report strings do not change the completion code of the program.

These “report” strings may be specified in the script using the REPORT sequence. It is written in the script as in the following
example:

REPORT CONNECT ABORT BUSY “ ATDT5551212 CONNECT “ ogin: account

This sequence expects nothing and then sends the string ATDT5551212 to dial the telephone. The expected string is CONNECT.
If the string CONNECT is received, the remainder of the script is executed. In addition, the program writes to the expect-file the
string CONNECT plus any characters that follow it such as the connection rate.

TIME-OUT
The initial time-out value is 45 seconds. This may be changed using the -t parameter.

To change the time-out value for the next expect string, the following example may be used:

ATZ OK ATDT5551212 CONNECT TIMEOUT 10 ogin:–ogin: TIMEOUT 5 password:: hello2u2

This changes the time-out to 10 seconds when it expects the login: prompt. The time-out is then changed to 5 seconds
when it looks for the password prompt.

The time-out, once changed, remains in effect until it is changed again.

SENDING EOT
The special reply string of EOT indicates that the chat program should send an EOT character to the remote. This is usually the
End-of-file character sequence. A return character is not sent following the EOT. The EOT sequence may be embedded into the
send string using the sequence ^D.

GENERATING BREAK
The special reply string of BREAK causes a break condition to be sent. The break is a special signal on the transmitter. The
normal processing on the receiver is to change the transmission rate. It may be used to cycle through the available transmis-
sion rates on the remote until you are able to receive a valid login prompt. The break sequence may be embedded into the
send string using the \K sequence.

ESCAPE SEQUENCES
The expect and reply strings may contain escape sequences. All the sequences are legal in the reply string. Many are legal in
the expect. Those that are not valid in the expect sequence are so indicated.

‘’ Expects or sends a null string. If you send a null string, it will still send the return
character. This sequence may either be a pair of apostrophe or quote characters.

\\b Represents a backspace character.

chat

Part VIII: Administration and Privileged Commands1272

\\c Suppresses the newline at the end of the reply string. This is the only method to send a
string without a trailing return character. It must be at the end of the send string. For
example, the sequence hello\c will simply send the characters h, e, l, l, o. (Not valid in
expect.)

\\d Delay for one second. The program uses sleep(1), which will delay to a maximum of
one second. (Not valid in expect.)

\\K Insert a BREAK. (Not valid in expect.)

\\n Send a newline or linefeed character.

\\N Send a null character. The same sequence may be represented by \0. (Not valid in
expect.)

\\p Pause for a fraction of a second. The delay is one tenth of a second. (Not valid in
expect.)

\\q Suppress writing the string to the SYSLOG file. The string ?????? is written to the log in
its place. (Not valid in expect.)

\\r Send or expect a carriage return.

\\s Represents a space character in the string. This may be used when it is not desirable to
quote the strings that contains spaces. The sequence HI TIM and HI\sTIM are the same.

\\t Send or expect a tab character.

\\\\ Send or expect a backslash character.

\\ddd Collapse the octal digits (ddd) into a single ASCII character and send that character.
(Some characters are not valid in expect.)

^C Substitute the sequence with the control character represented by C. For example, the
character DC1 (17) is shown as ˆQ. (Some characters are not valid in expect.)

TERMINATION CODES
The chat program will terminate with the following completion codes:

0 The normal termination of the program. This indicates that the script was executed
without error to the normal conclusion.

1 One or more of the parameters are invalid or an expect string was too large for the
internal buffers. This indicates that the program as not properly executed.

2 An error occurred during the execution of the program. This may be due to a read or
write operation failing for some reason or chat receiving a signal such as SIGINT.

3 A time-out event occurred when there was an expect string without having a -subsend
string. This may mean that you did not program the script correctly for the condition or
that some unexpected event occurred and the expected string could not be found.

4 The first string marked as an ABORT condition occurred.

5 The second string marked as an ABORT condition occurred.

6 The third string marked as an ABORT condition occurred.

7 The fourth string marked as an ABORT condition occurred.

... The other termination codes are also strings marked as an ABORT condition.

Using the termination code, it is possible to determine which event terminated the script. It is possible to decide if the string
BUSY was received from the modem as opposed to NO DIAL TONE. Although the first event may be retried, the second will
probably have little chance of succeeding during a retry.

SEE ALSO
Additional information about chat scripts may be found with UUCP documentation. The chat script was taken from the
ideas proposed by the scripts used by the uucico program.

uucico(1), uucp(1)

1273

COPYRIGHT
The chat program is in public domain. This is not the GNU public license. If it breaks, then you get to keep both pieces.

Chat Version 1.9, 5 May 1995

chroot
chroot—Change root directory and execute a program there.

SYNOPSIS
chroot directory program [arg ...]

DESCRIPTION
chroot changes the root directory for a process to a new directory executes a program there.

SEE ALSO
chroot(2)

AUTHOR
Rick Sladkey (jrs@world.std.com)

Linux 0.99, 20 November 1993

clock
clock—Manipulate the CMOS clock.

SYNOPSIS
/sbin/clock [-u] -r
/sbin/clock [-u] -w
/sbin/clock [-u] -s
/sbin/clock [-u] -a

DESCRIPTION
clock manipulates the CMOS clock in various ways, allowing it to be read or written and allowing synchronization between
the CMOS clock and the kernel’s version of the system time.

OPTIONS
-u Indicates that the CMOS clock is set to Universal Time.

-r Read CMOS clock and print the result to stdout.

-w Write the system time into the CMOS clock.

-s Set the system time from the CMOS clock.

-a Set the system time from the CMOS clock, adjusting the time to correct for systematic
error and writing it back into the CMOS clock. This option uses the file /etc/adjtime
to determine how the clock changes. It contains three numbers.

The first number is the correction in seconds per day. (For example, if your clock runs 5
seconds fast each day, the first number should read -5.0.)

The second number tells when clock was last used in seconds since 1/1/1970.

The third number is the remaining part of a second that was leftover after the last
adjustment.

clock

Part VIII: Administration and Privileged Commands1274

The following instructions are from the source code:

1. Create a file /etc/adjtime containing as the first and only line 0.0 0 0.0.
2. Run clock -au or clock -a, depending on whether your CMOS is in Universal or Local Time. This updates the

second number.
3. Set your system time using the date command.
4. Update your CMOS time using clock -wu or clock -w.
5. Replace the first number in /etc/adjtime by your correction.
6. Put the command clock -au or clock -a in your /etc/rc.local or let cron(8) start it regularly.

FILES
/etc/adjtime

/etc/rc.local

AUTHORS
V1.0 Charles Hedrick (hedrick@cs.rutgers.edu) Apr 1992

V1.1 Modified for clock adjustments, Rob Hooft (hooft@chem.ruu.nl) Nov 1992

V1.2 Patches by Harald Koenig (koenig@nova.tat.physik.uni-tuebingen.de) applied by
Rob Hooft (hooft@EMBL-Heidelberg.DE) Oct 1993

Linux 0.99, 24 December 1992

comsat
comsat—Biff server

SYNOPSIS
comsat

DESCRIPTION
comsat is the server process that receives reports of incoming mail and notifies users if they requested this service. comsat
receives messages on a datagram port associated with the biff service specification (see services(5) and inetd(8)). The one-
line messages are of the form

user@mailbox-offset

If the user specified is logged in to the system and the associated terminal has the owner execute bit turned on (by a biff y),
the offset is used as a seek offset into the appropriate mailbox file and the first 7 lines or 560 characters of the message are
printed on the user’s terminal. Lines that appear to be part of the message header other than the From, To, Date, or Subject
lines are not included in the displayed message.

FILES
/var/run/utmp to find out who’s logged on and on what terminals

SEE ALSO
biff(1), inetd(8)

BUGS
The message header filtering is prone to error. The density of the information presented is near the theoretical minimum.

Users should be notified of mail that arrives on other machines than the one to which they are currently logged in.

The notification should appear in a separate window so it does not mess up the screen.

1275

HISTORY
The command appeared in BSD 4.2.

BSD 4.2, 16 March 1991

crond
crond—cron daemon (Dillon’s Cron).

SYNOPSIS
crond [-l#] [-d[#]] [-f] [-b] [-c directory]

OPTIONS
crond is a background daemon that parses individual crontab files and executes commands on behalf of the users in
question.

-lloglevel Set logging level; default is 8.

-d[debuglevel] Set debugging level; default is 0. If no level is specified with the -d option, the default is
1. This option also sets the logging level to 0 and causes crond to run in the foreground.

-f Run crond in the foreground.

-b Run crond in the background (the default unless -d is specified).

-c directory Specify directory containing crontab files.

DESCRIPTION
crond is responsible for scanning the crontab files and running their commands at the appropriate time. The crontab
program communicates with crond through the cron.update file, which resides in the crontabs directory, usually /var/
spool/cron/crontabs. This is accomplished by appending the filename of the modified or deleted crontab file to
cron.update, which crond then picks up to resynchronize or remove its internal representation of the file.

crond has a number of built-in limitations to reduce the chance of it being ill-used. Potentially infinite loops during parsing
are dealt with via a failsafe counter, and user crontabs are generally limited to 256 crontab entries. crontab lines may not
be longer than 1024 characters, including the newline.

Whenever crond must run a job, it first creates a daemon-owned temporary file O_EXCL and O_APPEND to store any output,
and then it fork()s and changes its user and group permissions to match that of the user the job is being run for. Then, it
executes /bin/sh -c to run the job. The temporary file remains under the ownership of the daemon to prevent the user from
tampering with it. Upon job completion, crond verifies the secureness of the mail file and, if it has been appended to, mails
to the file to user. The sendmail program is run under the user’s UID to prevent mail-related security holes. Unlike
crontab, the crond program does not leave an open descriptor to the file for the duration of the job’s execution because this
might cause crond to run out of descriptors. When the crontab program allows a user to edit his crontab, it copies the
crontab to a user-owned file before running the user’s preferred editor. The suid crontab program keeps an open
descriptor to the file, which it later uses to copy the file back, thereby ensuring the user has not tampered with the file type.

crond always synchronizes to the top of the minute, checking the current time against the list of possible jobs. The list is
stored such that the scan goes very quickly, and crond can deal with several thousand entries without taking any noticeable
amount of CPU.

AUTHOR
Matthew Dillon (dillon@apollo.west.oic.com)

1 May 1994

crond

Part VIII: Administration and Privileged Commands1276

ctlinnd
ctlinnd—Control the InterNetNews daemon.

SYNOPSIS
ctlinnd [-h][-s][-t timeout] command [argument...]

DESCRIPTION
ctlinnd sends a message to the control channel of innd(8), the InterNetNews server.

In the normal mode of behavior, the message is sent to the server, which then performs the requested action and sends back a
reply with a text message and the exit code for ctlinnd. If the server successfully performed the command, ctlinnd will exit
with a status of zero and print the reply on standard output. If the server could not perform the command (for example, it
was told to remove a newsgroup that does not exist), it will direct ctlinnd to exit with a status of one. The shutdown,
xabort, and xexec commands do not generate a reply; ctlinnd will always exit silently with a status of zero. If the –s flag is
used, then no message will be printed if the command was successful.

The –t flag can be used to specify how long to wait for the reply from the server. The timeout value specifies the number of
seconds to wait. A value of zero waits forever, and a value less than zero indicates that no reply is needed. When waiting for a
reply, ctlinnd will try every two minutes to see if the server is still running, so it is unlikely that –t0 will hang. The default
is –t0.

To see a command summary, use the –h flag. If a command is included when ctlinnd is invoked with the –h flag, then only
the usage for that command will be given.

If a large number of groups are going to be created or deleted at once, it may be more efficient to pause or throttle the server
and edit the active file directly.

The complete list of commands follows. Note that all commands have a fixed number of arguments. If a parameter can be an
empty string, then it is necessary to specify it as two adjacent quotes (“”).

addhistMessage-IDarr exp post paths Add an entry to the history database. This directs the server to create a
history line for Message-ID. The angle brackets are optional. arr, exp, and
post specify when the article arrived, what its expiration date is, and when it
was posted. All three values are a number indicating the number of seconds
since the epoch. If the article does not have an Expires header, then exp
should be zero. paths is the pathname within the newsspool directory where
the article is filed. If the article is cross-posted, then the names should be
separated by whitespace and the paths argument should be inside double
quotes. If the server is paused or throttled, this command causes it to briefly
open the history database.

allow reason Remote connections are allowed. The reason must be the same text given
with an earlier reject command or an empty string.

begin site Begin feeding site. This will cause the server to rescan the newsfeeds(5) file
to find the specified site and set up a newsfeed for it. If the site already exists,
a “drop” is done first. This command is forwarded; see below.

cancel <Message-ID> Remove the article with the specified Message-ID from the local system. This
does not generate a cancel message. The angle brackets are optional. If the
server is paused or throttled, this command causes it to briefly open the
history database.

changegroup group rest The newsgroup group is changed so that its fourth field in the active file
becomes the value specified by the rest parameter. This may be used to make
an existing group moderated or unmoderated, for example.

checkfile Check the syntax of the newsfeeds file, and display a message if any errors are
found. The details of the errors are reported to syslog(3).

1277

drop site Flush and drop site from the server’s list of active feeds. This command is
forwarded; see below.

flush site Flush the buffer for the specified site. The actions taken depend on the type
of feed the site receives; see newsfeeds(5). This is useful when the site is fed
by a file and batching is going to start. If site is an empty string, then all sites
are flushed and the active file and history databases are also written out. This
command is forwarded; see below.

flushlogs Close the log and error log files and rename them to have a .old extension.
The history database and active file are also written out.

go reason Reopen the history database and start accepting articles after a pause or
throttle command. The reason must either be an empty string or match the
text that was given in the earlier pause or throttle command. If a reject
command was done, this will also do an allow command if the reason
matches the text that was given in the reject. If a reserve command was done,
this will also clear the reservation if the reason matches the text that was given
in the reserve. Note that if only the history database has changed while the
server is paused or throttled, it is not necessary to send it a reload command
before sending it a go command. If the server throttled itself because it
accumulated too many I/O errors, this command will reset the error count. If
the server was not started with the –ny flag, then this command also does a
readers command with yes as the flag and reason as the text.

hangup channel Close the socket on the specified incoming channel. This is useful when an
incoming connection appears to be hung.

help [command] Print a command summary for all commands, or just command if specified.

mode Print the server’s operating mode as a multiline summary of the parameters
and operating state.

name nnn Print the name of channel number nnn or of all channels if it is an empty
string.

newgroup group rest creator Create the specified newsgroup. The rest parameter should be the fourth
field as described in active(5); if it is not an equal sign, only the first letter is
used. The creator should be the name of the person creating the group. If the
newsgroup already exists, this is equivalent to the changegroup command.
This is the only command that has defaults. The creator can be omitted and
will default to the empty string, and the rest parameter can be omitted and
will default to y. This command can be done while the server is paused or
throttled; it will update its internal state when a go command is sent. This
command updates the active.times (see active(5)) file.

param letter value Change the command-line parameters of the server. The combination of
defaults makes it possible to use the text of the Control header directly.
letter is the innd command-line option to set, and value is the new value.
For example, i 5 directs the server to allow only five incoming connections.
To enable or disable the action of the –n flag, use the letter y or n for the
value.

pause reason Pause the server so that no incoming articles are accepted. No existing
connections are closed, but the history database is closed. This command
should be used for short-term locks, such as when replacing the history files.
If the server was not started with the –ny flag, then this command also does a
readers command with no as the flag and reason as the text.

readers flag text Allow or disallow newsreaders. If flag starts with the letter n, then
newsreading is disallowed by causing the server to pass the text as the value of
the nnrpd(8) –r flag. If flag starts with the letter y and text is either an empty

ctlinnd

Part VIII: Administration and Privileged Commands1278

string, or the same string that was used when newsreading was disallowed,
then newsreading will be allowed.

reject reason Remote connections (those that would not be handed off to nnrpd) are
rejected, with reason given as the explanation.

reload what reason The server updates its in-memory copies of various configuration files. what
identifies what should be reloaded. If it is an empty string or the word all,
then everything is reloaded; if it is the word history, then the history
database is closed and opened; if it is the word hosts.nntp, then the
hosts.nntp(5) file is reloaded; if it is the word active or newsfeeds, then
both the active and newsfeeds files are reloaded; if it is the word
overview.fmt, then the overview.fmt(5) file is reloaded. The reason is
reported to syslog. There is no way to reload the data inn.conf(5) file; the
server currently only uses the pathhost parameter, so this restriction should
not be a problem.

renumber group Scan the spool directory for the specified newsgroup and update the low-
water mark in the active file. If group is an empty string, then all newsgroups
are scanned.

reserve reason The next pause or throttle command must use reason as its text. This
reservation is cleared by giving an empty string for the reason. This
command is used by programs such as expire(8) that want to avoid running
into other instances of each other.

rmgroup group Remove the specified newsgroup. This is done by editing the active file. The
spool directory is not touched, and any articles in the group will be expired
using the default expiration parameters. Unlike the newgroup command, this
command does not update the active.times file.

send feed text... The specified text is sent as a control line to the exploder feed.

shutdown reason The server is shut down, with the specified reason recorded in the log and
sent to all open connections. It is a good idea to send a throttle command
first.

signal sig site Signal sig is sent to the specified site, which must be a channel or exploder
feed. sig can be a numeric signal number or the word hup, int, or term; case
is not significant.

throttle reason Input is throttled so that all existing connections are closed and new
connections are rejected. The history database is closed. This should be used
for long-term locks, such as when expire is being run. If the server was not
started with the –ny flag, then this command also does a readers command
with no as the flag and reason as the text.

trace item flag Tracing is turned on or off for the specified item. flag should start with the
letter y or n to turn tracing on or off. If item starts as a number, then tracing
is set for the specified innd channel, which must be for an incoming NNTP
feed. If it starts with the letter I, then general innd tracing is turned on or off.
If it starts with the letter n, then future nnrpd’s will or will not have the –t
flag enabled, as appropriate.

xabort reason The server logs the specified reason and then invokes the abort(3) routine.

xexec path The server gets ready to shut itself down, but instead of exiting, it executes
the specified path with all of its original arguments. If path is innd, then /
news/bin/innd is invoked; if it is inndstart, then /news/bin/inndstart is
invoked; if it is an empty string, it will invoke the appropriate program
depending on whether it was started with the –p flag; any other value is an
error.

1279

In addition to being acted upon within the server, certain commands can be forwarded to the appropriate child process. If
the site receiving the command is an exploder (such as buffchan(8)) or it is a funnel that feeds into an exploder, then the
command can be forwarded. In this case, the server will send a command line to the exploder that consists of the ctlinnd
command name. If the site funnels into an exploder that has an asterisk (*) in its W flag (see newsfeed(5)), then the site name
is appended to the command; otherwise, no argument is appended.

BUGS
ctlinnd uses the inndcomm(3) library and is therefore limited to server replies no larger than 4KB.

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
active(5), expire(8), innd(8), inndcomm(3), inn.conf(5), newsfeeds(5), overview.fmt(5)

ctrlaltdel
ctrlaltdel—Set the function of the Ctrl+Alt+Del combination.

SYNOPSIS
ctrlaltdel hard|soft

DESCRIPTION
Based on examination of the linux/kernel/sys.c code, it is clear that there are two supported functions that the
Ctrl+Alt+Del sequence can perform: a hard reset, which immediately reboots the computer without calling sync(2) and
without any other preparation, and a soft reset, which sends the SIGINT (interrupt) signal to the init process (this is always
the process with PID 1). If this option is used, the init(8) program must support this feature. Because there are now several
init(8) programs in the Linux community, consult the documentation for the version that you are currently using.

ctrlaltdel is usually used in the /etc/rc.local file.

FILES
/etc/rc.local

SEE ALSO
simpleinit(8), init(8)

AUTHOR
Peter Orbaek (poe@daimi.aau.dk)

Linux 0.99, 25 October 1993

cvsbug
cvsbug—Send problem report (PR) about CVS to a central support site.

SYNOPSIS
cvsbug [site][-f problem-report][-t mail-address][-P][-L]
[--request-id][-v]

cvsbug

Part VIII: Administration and Privileged Commands1280

DESCRIPTION
cvsbug is a tool used to submit problem reports (PRs) to a central support site. In most cases, the correct site will be the
default. This argument indicates the support site that is responsible for the category of problem involved. Some sites may use
a local address as a default. Site values are defined by using the aliases(5).

cvsbug invokes an editor on a problem report template (after trying to fill in some fields with reasonable default values).
When you exit the editor, cvsbug sends the completed form to the Problem Report Management System (GNATS) at a
central support site. At the support site, the PR is assigned a unique number and is stored in the GNATS database according
to its category and submitter ID. GNATS automatically replies with an acknowledgment, citing the category and the PR
number.

To ensure that a PR is handled promptly, it should contain your (unique) submitter ID and one of the available categories to
identify the problem area. (Use cvsbug -L to see a list of categories.)

The cvsbug template at your site should already be customized with your submitter ID (running install-sid submitter-id
to accomplish this is part of the installation procedures for cvsbug). If this hasn’t been done, see your system administrator
for your submitter ID, or request one from your support site by invoking cvsbug —-request–id. If your site does not
distinguish between different user sites, or if you are not affiliated with the support site, use net for this field.

The more precise your problem description and the more complete your information, the faster your support team can solve
your problems.

OPTIONS
-f problem-report Specify a file (problem-report) that already contains a complete problem report. cvsbug

sends the contents of the file without invoking the editor. If the value for problem-report
is –, then cvsbug reads from standard input.

-t mail-address Change mail address at the support site for problem reports. The default mail-address is
the address used for the default site. Use the site argument rather than this option in
nearly all cases.

-P Print the form specified by the environment variable PR FORM on standard output. If PR
FORM is not set, print the standard blank PR template. No mail is sent.

-L Print the list of available categories. No mail is sent.

--request-id Sends mail to the default support site, or site if specified, with a request for your
submitter ID. If you are not affiliated with site, use a submitter ID of net.

-v Display the cvsbug version number.

Note: Use cvsbug to submit problem reports rather than mail them directly. Using both the template and cvsbug itself will
help ensure all necessary information will reach the support site.

ENVIRONMENT
The environment variable EDITOR specifies the editor to invoke on the template. The default is vi.

If the environment variable PR FORM is set, then its value is used as the filename of the template for your problem-report
editing session. You can use this to start with a partially completed form (for example, a form with the identification fields
already completed).

HOW TO FILL OUT A PROBLEM REPORT
Problem reports have to be in a particular form so that a program can easily manage them. Please remember the following
guidelines:

Describe only one problem with each problem report.

For follow-up mail, use the same subject line as the one in the automatic acknowledgment. It consists of category, PR
number, and the original synopsis line. This allows the support site to relate several mail messages to a particular PR and
to record them automatically.

1281

Please try to be as accurate as possible in the subject or synopsis line.

The subject and the synopsis line are not confidential. This is because open-bugs lists are compiled from them. Avoid
putting confidential information there.

See the GNU Info file cvsbug.info or the document Reporting Problems With cvsbug for detailed information on reporting
problems

HOW TO SUBMIT TEST CASES, CODE, AND SO ON
Submit small code samples with the PR. Contact the support site for instructions on submitting larger test cases and
problematic source code.

FILES
/tmp/p$$ copy of PR used in editing session

/tmp/pf$$ copy of empty PR form, for testing purposes

/tmp/pbad$$ file for rejected PRs

EMACS USER INTERFACE
An EMACS user interface for cvsbug with completion of field values is part of the cvsbug distribution (invoked with M-x
cvsbug). See the file cvsbug.info or the ASCII file INSTALL in the top-level directory of the distribution for configuration
and installation information. The EMACS LISP template file is cvsbug-el.in and is installed as cvsbug.el.

INSTALLATION AND CONFIGURATION
See cvsbug.info or INSTALL for installation instructions.

SEE ALSO
Reporting Problems Using cvsbug (also installed as the GNU Info file cvsbug.info).

gnats(l), query-pr(1), edit-pr(1), gnats(8), queue-pr(8), at-pr(8), mkcat(8), mkdist(8)

AUTHORS
Jeffrey Osier, Brendan Kehoe, Jason Merrill, Heinz G. Seidl (Cygnus Support).

COPYING
Copyright(c) 1992, 1993 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of
this manual provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions
for modified versions, except that this permission notice may be included in translations approved by the Free Software
Foundation instead of in the original English.

xVERSIONx, February 1993

cvtbatch
cvtbatch—Convert Usenet batch file to INN format.

SYNOPSIS
cvtbatch [-w items]

cvtbatch

Part VIII: Administration and Privileged Commands1282

DESCRIPTION
cvtbatch reads standard input as a series of lines, converts each line, and writes it to standard output. It is used to convert
simple batchfiles that contain just the article name to INN batchfiles that contain additional information about each article.

Each line is taken as the pathname to a Usenet article. If it is not an absolute pathname, it is taken relative to the spool
directory, /news/spool. (Only the first word of each line is parsed; anything following whitespace is ignored.)

The –w flag specifies how each output line should be written. The items for this flag should be chosen from the W flag items
as specified in newsfeeds(5). They may be chosen from the following set:

b Size of article in bytes

f Full pathname of article

m Article Message-ID

n Relative pathname of article

If the input file consists of a series of Message-IDs, then use grephistory(1) with the –s flag piped into cvtbatch.

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
grephistory(1) newsfeeds(5)

cytune
cytune—Tune Cyclades driver parameters.

SYNOPSIS
cytune [-q [-i interval]] ([-s value]|[-S value])
[-g|G] ([-t timeout]|[-T timeout]) tty [tty ...]

DESCRIPTION
cytune queries and modifies the interruption threshold for the Cyclades driver. Each serial line on a Cyclades card has a 12-
byte FIFO for input (and another 12-byte FIFO for output). The “threshold” specifies how many input characters must be
present in the FIFO before an interruption is raised. When a Cyclades tty is opened, this threshold is set to a default value
based on baud rate:

Baud Threshold

50-4800 10

9600 8

19200 4

38400 2

57600-150000 1

If the threshold is set too low, the large number of interruptions can load the machine and decrease overall system through-
put. If the threshold is set too high, the FIFO buffer can overflow, and characters will be lost. Slower machines, however,
may not be able to deal with the interrupt load and will require that the threshold be adjusted upwards.

If the Cyclades driver was compiled with ENABLE MONITORING defined, the cytune command can be used with the -q option
to report interrupts over the monitoring interval and characters transferred over the monitoring interval. It will also report

1283

the state of the FIFO. The maximum number of characters in the FIFO when an interrupt occurred, the instantaneous
count of characters in the FIFO, and how many characters are now in the FIFO are reported. This output might look like
this:

/dev/cubC0: 830 ints, 9130 chars; fifo: 11 threshold, 11 max, 11 now
166.259866 interrupts/second, 1828.858521 characters/second

This output indicates that for this monitoring period, the interrupts were always being handled within one character time
because max never rose above threshold. This is good, and you can probably run this way, provided that a large number of
samples come out this way. You will lose characters if you overrun the FIFO because the Cyclades hardware does not seem to
support the RTS RS-232 signal line for hardware flow control from the DCE to the DTE.

cytune will in query mode produce a summary report when ended with a SIGINT or when the threshold or time-out is
changed.

There may be a responsiveness versus throughput tradeoff. The Cyclades card, at the higher speeds, is capable of putting a
very high interrupt load on the system. This will reduce the amount of CPU time available for other tasks on your system.
However, the time it takes to respond to a single character may be increased if you increase the threshold. This might be
noticed by monitoring ping(8) times on a SLIP link controlled by a Cyclades card. If your SLIP link is generally used for
interactive work such as telnet(1), you might want to leave the threshold low so that characters are responded to as quickly
as possible. If your SLIP link is generally used for file transfer, WWW, and the like, setting the FIFO to a high value is likely
to reduce the load on your system while not significantly affecting throughput. Alternatively, see the -t or -T options to
adjust the time that the Cyclades waits before flushing its buffer. Units are 5ms.

If you are running a mouse on a Cyclades port, it is likely that you want to maintain the threshold and time-out at a low
value.

OPTIONS
-s value Set the current threshold to value characters. Note that if the tty is not being held open

by another process, the threshold will be reset on the next open. Only values between 1
and 12, inclusive, are permitted.

-t value Set the current flush time-out to value units. Note that if the tty is not being held open
by another process, the threshold will be reset on the next open. Only values between 0
and 255, inclusive, are permitted. Setting value to 0 forces the default, currently 0x20
(160ms) but soon to be 0x02 (10ms). Units are 5ms.

-g Get the current threshold and time-out.

-T value Set the default flush time-out to value units. When the tty is next opened, this value is
used instead of the default. If value is 0, then the value defaults to 0x20 (160ms), soon to
be 0x02 (10ms).

-G Get the default threshold and flush time-out values.

-q Gather statistics about the tty. The results are only valid if the Cyclades driver has been
compiled with ENABLE MONITORING defined. This is probably not the default.

-i interval Statistics will be gathered every interval seconds.

BUGS
If you run two copies of cytune at the same time to report statistics about the same port, the ints, chars, and max values will
be reset and not reported correctly. cytune(8) should prevent this but does not.

AUTHOR
Nick Simicich (njs@scifi.emi.net), with modifications by Rik Faith (faith@cs.unc.edu)

cytune

Part VIII: Administration and Privileged Commands1284

FILES
/dev/ttyC[0-8]

/dev/cubC[0-8]

SEE ALSO
setserial(8)

4 March 1995

debugfs
debugfs—ext2 filesystem debugger.

SYNOPSIS
debugfs [[-w]device]

DESCRIPTION
debugfs is a filesystem debugger. It can be used to examine and change the state of an ext2 filesystem. device is the special
file corresponding to the device containing the ext2 filesystem (such as /dev/hdXX).

OPTIONS
-w Specify that the filesystem should be open in read-write mode. Without this option,

the filesystem is open in read-only mode.

COMMANDS
debugfs is an interactive debugger. It understands a number of commands:

cd file

chroot file

close Close the currently open filesystem.

clri file Clear the contents of the inode corresponding to file.

expand_dir, file Expand a directory.

find_free_block [goal] Find the first free block, starting from goal, and allocate it.

find_free_inode [dir [mode]] Find a free inode and allocate it.

freeb block Mark the block as not allocated.

freei file Free the inode corresponding to file.

help

iname inode Print the filename corresponding to inode (currently not implemented).

initialize device blocksize Create an ext2 file system on device.

kill_file file Remove a file and deallocate its blocks.

ln source_file dest_file Create a link.

ls [pathname] Emulate the ls(1) command.

Modify_inode file Modify the contents of the inode corresponding to file.

mkdir file Make a directory.

open [-w] device Open a filesystem.

pwd

quit Quit debugfs.

1285

rm file Remove a file.

rmdir file Remove a directory.

setb block Mark the block as allocated.

seti file Mark in use the inode corresponding to file

show_super_stats List the contents of the super block.

stat file Dump the contents of the inode corresponding to file.

testb block Test if the block is marked as allocated.

testi file Test if the inode corresponding to file is marked as allocated.

unlink file Remove a link.

AUTHOR
debugfs was written by Theodore T’so (tytso@mit.edu).

SEE ALSO
dumpe2fs(8), e2fsck(8), mke2fs(8)

Version 0.5b, November 1994

dip
dip—Dialup IP connection handler.

SYNOPSIS
dip [-t]
dip [-ktv] [-m mtu] scriptfile
dip [-iv] [user_name]

DESCRIPTION
dip handles the connections needed for dialup IP links, such as SLIP or PPP. It can handle both incoming and outgoing
connections, using password security for incoming connections. The outgoing connections use the system’s dial(3) library
if available.

COMMAND MODE
The first possible use of dip is as a stand-alone program to set up an outgoing IP connection. This can be done by invoking
dip with the -t option, which means enter TEST mode and, more precisely, dump you in the COMMAND-MODE of the dip
program. You are reminded of this by the DIP> prompt, or, if you also specified the -v debugging flag, the DIP [NNNN]>
prompt. The latter prompt also displays the current value of the global errlvl variable, which is used mostly when dip runs
in script mode. For the interactive mode, it can be used to determine if the result of the previous command was okay.

The following is a sample taken from a live session:

$dip-t
DIP: Dialup IP Protocol Driver version 3.3.7 (12/13/93)
Written by Fred N. van Kempen, MicroWalt Corporation.

DIP>_

The most helpful command in this mode is, of course, the help command, which should produce an output similar to this:

DIP> help
DIP knows about the following commands:

dip

Part VIII: Administration and Privileged Commands1286

databits default dial echo flush
get goto help if init
mode modem parity print port
reset send sleep speed stopbits
term wait

DIP>_

All commands display how they should be used when invoking them with no or invalid arguments. Just experiment a little to
get the feel of it, and have a look at the sample script files, which also use this command language.

DIALIN MODE
The second possible way of using dip is as a login shell for incoming IP connections, as in dialup SLIP and PPP connections.
To make integration into the existing UNIX system as easy as possible, dip can be installed as simply as using it as a login
shell in the system’s password file. A sample entry looks like

suunet:ij/SMxiTlGVCo:1004:10:UUNET:/tmp:/usr/bin/dip -i

When user suunet logs in, the login(1) program sets the home directory to /tmp and execute the dip program with the -i
option, which means that dip must run in input mode. dip then tries to locate the name of the logged-in user (the name
corresponding to its current user ID, as returned by the getuid(2) system call) in its database file. An optional single
argument to the dip program in this mode can be the username that must be used in this lookup, regardless of the current
user ID.

dip now scans the /etc/net/diphosts file for an entry for the given username. This file contains lines of text (much like the
standard password file). The format looks like

#
diphosts This file describes a number of name to
address mappings for the DIP program. It
is used to determine which IP address to
use for in incoming call of some user.
#
Version: @(#)diphosts 1.00 12/10/92 FvK
#
Author: Fred N. van Kempen,
<waltje@uwalt.nl.mugnet.org>
#
suunet::uunet.uu.net:UUNET SLIP:SLIP,296

End of diphosts.

The first field of a line identifies the username, which you must match. The second field can contain an encrypted password.
If this field is non-null, the dip program asks for an external security password, which must match the password in this field.
The third field contains the name (or raw IP address) of the host that is connecting to the system with this link. If a
hostname is given, the usual address resolving process is started, using either a nameserver or a local hosts file.

The fourth field can contain any text; it is not (yet) used by the dip program. In future releases, this info may be used in the
system log files. Finally, the fifth field of a line contains a mixture of comma-separated flags. Possible flags are

SLIP to indicate you must use the SLIP protocol.

PPP to indicate you must use the PPP protocol.

number, which gives the MTU parameter of this connection.

After finding the correct line, dip puts the terminal line into RAW mode and asks the system networking layer to allocate a
channel of the desired protocol. Finally, if the channel is activated, it adds an entry to the system’s routing table to make the
connection work.

1287

dip now goes into an endless loop of sleeping, which continues until the connection is physically aborted (the line is
dropped). At that time, dip removes the entry it made in the system’s routing table and releases the protocol channel for
reuse. It then exits, making room for another session.

DIALOUT MODE
The last way of using dip is as a program that initiates outgoing connections. To make life easier for the people who have to
manage links of this type, dip uses a chat script to set up a link to a remote system. This gives the user an enormous amount
of flexibility when making the connection, which otherwise could require many command-line options. The pathname of
the script to be run is then given as the single argument to dip; the program will automatically check if the file has a filename
ending in a .dip part. This is not mandatory—just a tool to group scripts together in a single directory. A script should look
something like this:

#
sample.dip Dialup IP connection support program.
This file (should show) shows how to use the DIP
scripting commands to establish a link to a host.
This host runs the 386bsd operating system, and
thus can only be used for the “static” addresses.
#
NOTE: We also need an examnple of a script used to
connect to a “dynamic” SLIP server, like an Annex
terminal server...
#
Version: @(#)sample.dip 1.30 07/05/93
#
Author: Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
#
main:
First of all, set up our name for this connection.
I am called “uwalt.hacktic.nl” (== 193.78.33.238)
get $local uwalt.hacktic.nl
Next, set up the other side’s name and address.
My dialin machine is called ‘xs4all.hacktic.nl’ (== 193.78.33.42)
get $remote xs4all.hacktic.nl
Set the desired serial port and speed.
port cua0
speed 38400
Reset the modem and terminal line.
This seems to cause trouble for some people!
reset
Prepare for dialing.
send ATQ0V1E1X1
wait OK 2
if $errlvl != 0 goto error
dial 555-1234567
if $errlvl != 0 goto error
wait CONNECT 60
if $errlvl != 0 goto error
We are connected. Login to the system.
login:
sleep 3
send \r\n\r\n
wait ogin: 10
if $errlvl != 0 goto error
send NO-WAY\n
wait ord: 5
if $errlvl != 0 goto error
send HA-HA\n

dip

Part VIII: Administration and Privileged Commands1288

wait $ 30
if $errlvl != 0 goto error
loggedin:
We are now logged in. Start the ‘sliplogin’ program,
as this is not automatically done for me.
send sliplogin\n
wait SOME-STRING 15
Set up the SLIP operating parameters.
get $mtu 1500
Set Destination net/address as type ‘default’ (vice an address).
This is used by the ‘route’ command to set the kernel routing table.
Some machines seem to require this be done for SLIP to work properly.
default
Say hello and fire up!
done:
print CONNECTED to $remote with address $rmtip
mode SLIP
goto exit
error:
print SLIP to $remote failed.
exit:

This script causes dip to dial up a host, log in, and get a SLIP interface channel going (in the same manner as with incoming
connections). When all is set up, it simply goes into the background and waits for a hangup (or just a lethal signal), at which
it hangs up and exits.

FILES
/etc/passwd

/etc/diphosts

AUTHORS
Fred N. van Kempen (waltje@uwalt.nl.mugnet.org), Paul Mossip (mossip@vizlab.rutgers.edu), Jeff Uphoff
(juphoff@aoc.nrao.edu), Jim Seagrave (jes@grendel.demon.co.uk), Olaf Kirch (okir@monad.sub.de).

Version 3.3.7, 13 December 1993

dmesg
dmesg—Print or control the kernel ring buffer.

SYNOPSIS
dmesg [-c] [-n level]

DESCRIPTION
dmesg is used to examine or control the kernel ring buffer.

The program helps users to print their bootup messages. Instead of copying the messages by hand, the user need only

dmesg > boot.messages

and mail the boot.messages file to whoever can debug their problem.

1289

OPTIONS
-c Clear the ring buffer contents after printing.

-n level Set the level at which logging of messages is done to the console. For example, -n 1
prevents all messages, except panic messages, from appearing on the console. All
levels of messages are still written to /proc/kmsg, so syslogd(8) can still be used to
control exactly where kernel messages appear. When the -n option is used, dmesg
will not print or clear the kernel ring buffer.

When both options are used, only the last option on the command line will have an effect.

SEE ALSO
syslogd(8)

AUTHOR
Theodore Ts’o (tytso@athena.mit.edu)

Linux 0.99, 28 October 1993

dumpe2fs
dumpe2fs—Dump filesystem information.

SYNOPSIS
dumpe2fs device

DESCRIPTION
dumpe2fs prints the super block and blocks group information for the filesystem present on device.

dumpe2fs is similar to Berkeley’s dumpfs program for the BSD Fast File System.

BUGS
You need to know the physical filesystem structure to understand the output.

AUTHOR
dumpe2fs was written by Remy Card (card@masi.ibp.fr), the developer and maintainer of the ext2 fs.

AVAILABILITY
dumpe2fs is available for anonymous FTP from ftp.ibp.fr and tsx-11.mit.edu in /pub/linux/packages/ext2fs.

SEE ALSO
e2fsck(8), mke2fs(8), tune2fs(8)

Version 0.5b, November 1994

e2fsck
e2fsck—Check a Linux second extended filesystem.

SYNOPSIS
e2fsck [-panyrdfvtFV][-b superblock][-B blocksize]
[-l|-L bad_blocks_file] device

e2fsck

Part VIII: Administration and Privileged Commands1290

DESCRIPTION
e2fsck is used to check a Linux second extended file system.

device The special file corresponding to the device (such as /dev/hdXX).

OPTIONS
-a This option does the same thing as the -p option. It is provided for backwards

compatibility only; it is suggested that people use -p option whenever possible.

-b superblock Instead of using the normal superblock, use the alternative superblock specified by
superblock.

-B blocksize Usually, e2fsck will search for the superblock at various different block sizes in an
attempt to find the appropriate block size. This search can be fooled in some cases.
This option forces e2fsck to only try locating the superblock at a particular
blocksize. If the superblock is not found, e2fsck will terminate with a fatal error.

-d Print debugging output (useless unless you are debugging e2fsck).

-f Force checking even if the filesystem seems clean.

-F Flush the filesystem device’s buffer caches before beginning. Only really useful for
doing e2fsck time trials.

-l filename Add the blocks listed in the file specified by filename to the list of bad blocks.

-L filename Set the bad blocks list to be the list of blocks specified by filename. (This option is
the same as the -l option except the bad blocks list is cleared before the blocks listed
in the file are added to the bad blocks list.)

-n Open the filesystem read-only, and assume an answer of “no” to all questions.
Allows e2fsck to be used non-interactively. (Note: if the -l or -L options are
specified in addition to the -n option, then the filesystem will be opened read-write
to permit the bad-blocks list to be updated. However, no other changes will be made
to the filesystem.)

-p Automatically repair (“preen”) the filesystem without any questions.

-r This option does nothing at all; it is provided only for backwards compatibility.

-t Print timing statistics for e2fsck. If this option is used twice, additional timing
statistics are printed on a pass-by-pass basis.

-v Verbose mode.

-V Print version information and exit.

-y Assume an answer of “yes” to all questions; allows e2fsck to be used non-
interactively.

EXIT CODE
The exit code returned by e2fsck is the sum of the following conditions:

0 No errors

1 Filesystem errors corrected

2 Filesystem errors corrected; system should be rebooted if filesystem was mounted

4 Filesystem errors left uncorrected

8 Operational error

16 Usage or syntax error

128 Shared library error

1291

BUGS
Almost any piece of software will have bugs. If you manage to find a filesystem that causes e2fsck to crash, or that e2fsck is
unable to repair, please report it to the author.

Please include as much information as possible in your bug report. Ideally, include a complete transcript of the e2fsck run,
so I can see exactly what error messages are displayed. If you have a writeable filesystem where the transcript can be stored,
the script(1) program is a handy way to save the output of e2fsck to a file.

It is also useful to send the output of dumpe2fs(8). If a specific inode or inodes seems to be giving e2fsck trouble, try
running the debugfs(8) command and send the output of the stat command run on the relevant inodes. If the inode is a
directory, the debugfs dump command will allow you to extract the contents of the directory inode, which can sent to me
after being first run through uuencode(1).

Always include the full version string that e2fsck displays when it is run so I know which version you are running.

AUTHOR
This version of e2fsck is written by Theodore Ts’o (tytso@mit.edu).

SEE ALSO
mke2fs(8), tune2fs(8), dumpe2fs(8), debugfs(8)

Version 0.5b, November 1994

edquota
edquota—Edit user quotas.

SYNOPSIS
/usr/etc/edquota [-p proto-user][-ug] name...
/usr/etc/edquota [-ug] -t

DESCRIPTION
edquota is a quota editor. One or more users or groups may be specified on the command line. For each user or group, a
temporary file is created with an ASCII representation of the current disk quotas for that user or group and an editor is then
invoked on the file. The quotas may then be modified, new quotas added, and so on. Upon leaving the editor, edquota reads
the temporary file and modifies the binary quota files to reflect the changes made.

The editor invoked is vi(1) unless the environment variable specifies otherwise.

Only the superuser may edit quotas. (For quotas to be established on a filesystem, the root directory of the filesystem must
contain a file, owned by root, called quota.user or quota.group. See quotaon(8) for details.)

OPTIONS
-u Edit the userquota. This is the default.

-g Edit the groupquota.

-p Duplicate the quotas of the prototypical user specified for each user specified. This is
the normal mechanism used to initialize quotas for groups of users.

-t Edit the soft time limits for each filesystem. If the time limits are zero, the default
time limits in <linux/quota.h> are used. Time units of sec(onds), min(utes),
hour(s), day(s), week(s), and month(s) are understood. Time limits are printed in the
greatest possible time unit such that the value is greater than or equal to one.

edquota

Part VIII: Administration and Privileged Commands1292

FILES
quota.user or quota.group Quota file at the filesystem root

/etc/mtab Mounted filesystems

SEE ALSO
quota(1), vi(1), quotactl(2), quotacheck(8), quotaon(8), repquota(8)

BUGS
The format of the temporary file is inscrutable.

8 June 1993

expire
expire—Usenet article and history expiration program.

SYNOPSIS
expire [-d dir][-f file][-g file][-h file]
[-i][-l][-n][-p][-q][-r reason][-s][-t]
[-v level][-w number][-x][-z file][expire.ctl]

DESCRIPTION
expire scans the history(5) text file /news/lib/history and uses the information recorded in it to purge old news articles.
To specify an alternate history file, use the –f flag. To specify an alternate input text history file, use the –h flag. expire uses
the old dbz(3z) database to determine the size of the new one. To ignore the old database, use the –i flag.

expire usually just unlinks each file if it should be expired. If the –l flag is used, then all articles after the first one are treated
as if they could be symbolic links to the first one. In this case, the first article will not be removed as long as any other cross-
posts of the article remain.

expire usually sends a pause command to the local innd(8) daemon when it needs exclusive access to the history file, using
the string Expiring as the reason. To give a different reason, use the –r flag. The process ID will be appended to the reason.
When expire is finished and the new history file is ready, it sends a go command. If innd is not running, use the –n flag and
expire will not send the pause or go commands. (For more details on the commands, see ctlinnd(8).) Note that expire
only needs exclusive access for a very short time—long enough to see if any new articles arrived since it first hit the end of the
file and to rename the new files to the working files.

If the –s flag is used, then expire will print a summary when it exits, showing the approximate number of kilobytes used by
all deleted articles.

If the –t flag is used, then expire will generate a list of the files that should be removed on its standard output, and the new
history file will be left in history.n, history.n.dir, and history.n.pag. This flag is useful for debugging when used with
the –n and –s flags. Note that if the –f flag is used, then the name specified with that flag will be used instead of history.

If the –x flag is used, then expire will not create any new history files. This is most useful when combined with the –n, –s,
and –t flags to see how different expiration policies would change the amount of disk space used.

If the –z flag is used, then articles are not removed, but their names are written to the specified file. See the description of
expirerm in news.daily(8).

expire makes its decisions on the time the article arrived, as found in the history file. This means articles are often kept a
little longer than with other expiration programs that base their decisions on the article’s posting date. To use the article’s
posting date, use the –p flag. Use the –w flag to “warp” time so that expire thinks it is running at some time other then the
current time. The value should be a signed floating-point number of the number of days to use as the offset.

1293

If the –d flag is used, then the new history file and database is created in the specified directory, dir. This is useful when the
filesystem does not have sufficient space to hold both the old and new history files. When this flag is used, expire leaves the
server paused and creates a zero-length file named after the new history file, with an extension of .done to indicate that it has
successfully completed the expiration. The calling script should install the new history file and unpause the server. The –r
flag should be used with this flag.

If a filename is specified, it is taken as the control file and parsed according to the rules in expire.ctl(5). A single dash (–)
may be used to read the file from standard input. If no file is specified, the file /news/lib/expire.ctl is read.

expire usually complains about articles that are posted to newsgroups not mentioned in the active file. To suppress this
action, use the –q flag.

The –v flag is used to increase the verbosity of the program, generating messages to standard output. The level should be a
number, where higher numbers result in more output. Level one will print totals of the various actions done (not valid if a
new history file is not written), level two will print report on each individual file, and level five results in more than one line
of output for every line processed. If the –g flag is given, then a one-line summary equivalent to the output of –v1 and
preceded by the current time will be appended to the specified file.

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
ctlinnd(8), dbz(3z), expire.ctl(5), history(5), innd(8), inndcomm(3)

expireover
expireover—Expire entries from the news overview database.

SYNOPSIS
expireover [-a][-D overviewdir][-f file][-n]
[-O overview.fmt][-s][-v][-z][file...]

DESCRIPTION
expireover expires entries from the news overview database. It reads a list of pathnames (relative to the spool directory, /
news/spool) from the specified files or standard input if none are specified. (A filename of – may be used to specify the
standard input.) It then removes any mention of those articles from the appropriate overview database. If the –z flag is used,
then the input is assumed to be sorted such that all entries for a newsgroup appear together so that it can be purged at once.
This flag can be useful when used with the sorted output of expire(8)’s –z flag.

If the –s flag is used, then expireover will read the spool directory for all groups mentioned in the active(5) file and
remove the overview entries for any articles that do not appear. To specify an alternate file, use the –f flag; a name of – is
taken to mean the standard input.

The –a flag reads the spool directory and adds any missing overview entries. It will create files if necessary. This can be used
to initialize a database or to sync up a overview database that may be lacking articles due to a crash. overchan should be
running, to ensure that any incoming articles get included. Using this flag implies the –s flag; the –f flag may be used to add
only a subset of the newsgroups.

To see a list of the entries that would be added or deleted, use the –v flag. To perform no real updates, use the –n flag.

The –D flag can be used to specify where the databases are stored. The default directory is /news/spool.

The –O flag may be used to specify an alternate location for the overview.fmt(5) file; this is usually only useful for debug-
ging.

expireover

Part VIII: Administration and Privileged Commands1294

HISTORY
Written by Rob Robertson (rob@violet.berkeley.edu) and Rich $alz (rsalz@uunet.uu.net) with help from Dave
Laurence (tale@uunet.uu.net) for InterNetNews.

SEE ALSO
expire(8), overview.fmt(5)

fastrm
fastrm—Quickly remove a set of files.

SYNOPSIS
fastrm [-d][-e][-uN][-sM][-cI] base_directory

DESCRIPTION
fastrm reads a list of files, one per line, from its standard input and removes them. If a file is not an absolute pathname, it is
taken relative to the directory specified on the command line. The base directory parameter must be a simple absolute
pathname—that is, it must not contain any /./ or /../ references.

fastrm is designed to be faster than the typical | xargs rm pipeline. For example, fastrm will usually chdir(2) into a
directory before removing files from it. If the input is sorted, this means that most files to be removed will be simple names.

fastrm assumes that its input is valid and that it is safe to just do an unlink(2) call for each item to be removed. As a safety
measure, if fastrm is run by root, it will first stat(2) the item to make sure that it is not a directory before unlinking it.

If the –d flag is used, then no files are removed. Instead, a list of the files to be removed, in debug form, is printed on the
standard output. Each line contains either the current directory of fastrm at the time it would do the unlink and then the
pathname it would pass to unlink(2) as two fields separated by white space and a / or the absolute pathname (a single field)
of files it would unlink using the absolute pathname.

If the –e flag is used, fastrm will treat an empty input file (stdin) as an error. This is most useful when fastrm is last in a
pipeline after a preceding sort(1) because if the sort fails, there will usually be no output to become input of fastrm.

If the –u flag is used, then fastrm makes further assumptions about its work environment—in particular, that there are no
symbolic links in the target tree. This flag also suggests that it is probably faster to reference the path ../../../ rather than
start from the root and come down (note that this probably isn’t true on systems that have a namei cache, which usually
holds everything except ..). The optional N is an integer that specifies the maximum number of .. segments to use—paths
that would use more than this use the absolute pathname (from the root) instead. If the –u flag is given without a value, –u1
is assumed.

If the –s flag is used, then fastrm will perform the unlinks from one directory—that is, when a group of files in one
directory appear in the input consecutively—in the order that the files appear in the directory from which they are to be
removed. The intent of this flag is that on systems that have a per-process directory cache, finding files in the directory
should be faster. It can have smaller benefits on other systems. The optional M is an integer that specifies the number of files
that must be going to be removed from one directory before the files will be ordered. If the –s flag is given without a value,
–s5 is assumed. When the directory reordering is in use, fastrm will avoid attempting to unlink files that it can’t see in the
directory, which can speed it appreciably when many of the filenames have already been removed.

The –c flag may be given to instruct fastrm when it should chdir(2). If the number of files to be unlinked from a directory
is at least I, then fastrm will chdir and unlink the files from in the directory. Otherwise, it will build a path relative to its
current directory. If –c is given without the optional integer I, then –c1 is assumed, which will cause fastrm to always use
chdir. If –c is not used at all, then –c3 is assumed. Use –c0 to prevent fastrm from ever using chdir(2).

1295

There are also –a and –r options, which do nothing at all except allow you to say fastrm –usa, fastrm –ussr, or fastrm
–user. These happen to often be convenient sets of options to use.

fastrm exits with a status of 0 if there were no problems or 1 if something went wrong. Attempting to remove a file that does
not exist is not considered a problem. If the program exits with a nonzero status, it is probably a good idea to feed the list of
files into an xargs rm pipeline.

fdformat
fdformat—Low-level formats a floppy disk.

SYNOPSIS
fdformat [-n] device

DESCRIPTION
fdformat does a low-level format on a floppy disk. device is usually one of the following (for floppy devices, the major is 2,
and the minor is shown for informational purposes only):

/dev/fd0d360 (minor = 4)

/dev/fd0h1200 (minor = 8)

/dev/fd0D360 (minor = 12)

/dev/fd0H360 (minor = 12)

/dev/fd0D720 (minor = 16)

/dev/fd0H720 (minor = 16)

/dev/fd0h360 (minor = 20)

/dev/fd0h720 (minor = 24)

/dev/fd0H1440 (minor = 28)

/dev/fd1d360 (minor = 5)

/dev/fd1h1200 (minor = 9)

/dev/fd1D360 (minor = 13)

/dev/fd1H360 (minor = 13)

/dev/fd1D720 (minor = 17)

/dev/fd1H720 (minor = 17)

/dev/fd1h360 (minor = 21)

/dev/fd1h720 (minor = 25)

/dev/fd1H1440 (minor = 29)

The generic floppy devices, /dev/fd0 and /dev/fd1, will fail to work with fdformat when a non-standard format is being
used or if the format has not been autodetected earlier. In this case, use setfdprm(8) to load the disk parameters.

OPTIONS
-n No verify. This option will disable the verification that is performed after the format.

SEE ALSO
fd(4), setfdprm(8), mkfs(8), emkfs(8)

fdformat

Part VIII: Administration and Privileged Commands1296

AUTHOR
Werner Almesberger (almesber@nessie.cs.id.ethz.ch)

Linux 0.99, 1 February 1993

fdisk
fdisk—Partition table manipulator for Linux.

SYNOPSIS
fdisk [-l] [-v] [-s partition] [device]

DESCRIPTION
fdisk is a menu-driven program for manipulation of the hard disk partition table. The device is usually one of the following:

/dev/hda
/dev/hdb
/dev/sda
/dev/sdb

The partition is a device name followed by a partition number. For example, /dev/hda1 is the first partition on the first hard
disk in the system.

If possible, fdisk will obtain the disk geometry automatically. This is not necessarily the physical disk geometry but is the
disk geometry that MS-DOS uses for the partition table. If fdisk warns you that you need to set the disk geometry, please
believe this statement and set the geometry. This should only be necessary with certain SCSI host adapters (the drivers for
which are rapidly being modified to provide geometry information automatically).

Whenever a partition table is printed, a consistency check is performed on the partition table entries. This check verifies that
the physical and logical start and end points are identical and that the partition starts and ends on a cylinder boundary
(except for the first partition).

Old versions of fdisk (all versions prior to 1.1r including 0.93) incorrectly mapped the cylinder/head/sector specification
onto absolute sectors. This might result in the first partition on a drive failing the consistency check. If you use LILO to
boot, this situation can be ignored. However, there are reports that the OS/2 boot manager will not boot a partition with
inconsistent data.

Some versions of MS-DOS create a first partition that does not begin on a cylinder boundary but on sector 2 of the first
cylinder. Partitions beginning in cylinder 1 cannot begin on a cylinder boundary, but this is unlikely to cause difficulty
unless you have OS/2 on your machine.

In version 1.1r, a BLKRRPART ioctl() is performed before exiting when the partition table is updated. This is primarily to
ensure that removable SCSI disks have their partition table information updated. If the kernel does not update its partition
table information, fdisk warns you to reboot. If you do not reboot your system after receiving such a warning, you might
lose or corrupt the data on the disk. Sometimes BLKRRPART fails silently; when installing Linux, you should always reboot
after editing the partition table.

DOS 6.X WARNING
The DOS 6.x FORMAT command looks for some information in the first sector of the data area of the partition and treats this
information as more reliable than the information in the partition table. DOS FORMAT expects DOS FDISK to clear the first
512 bytes of the data area of a partition whenever a size change occurs. DOS FORMAT will look at this extra information even if
the /U flag is given

1297

We consider this a bug in DOS FORMAT and DOS FDISK.

The bottom line is that if you use cfdisk or fdisk to change the size of a DOS partition table entry, then you must also use
dd to zero the first 512 bytes of that partition before using DOS FORMAT to format the partition. For example, if you were
using cfdisk to make a DOS partition table entry for /dev/hda1, then (after exiting fdisk or cfdisk and rebooting Linux
so that the partition table information is valid) you would use the command dd if=/dev/zero of=/dev/hda1 bs=512
count=1 to zero the first 512 bytes of the partition.

Be extremely careful if you use the dd command because a small typo can make all of the data on your disk useless.

For best results, you should always use an OS-specific partition table program. For example, you should make DOS
partitions with the DOS FDISK program and Linux partitions with the Linux fdisk or Linux cfdisk program.

OPTIONS
-v Prints version number of fdisk program.

-l Lists the partition tables for /dev/hda, /dev/hdb, /dev/sda, /dev/sdb, /dev/sdc, /
dev/sdd, /dev/sde, /dev/sdf, /dev/sdg, and /dev/sdh and then exits.

-s partition If the partition is not a DOS partition (the partition ID is greater than 10), then the
size of that partition is printed on the standard output. This value is usually used as
an argument to the mkfs(8) program to specify the size of the partition that will be
formatted.

BUGS
Although this man page (written by faith@cs.unc.edu) is poor, there is excellent documentation in the README.fdisk file
(written by LeBlanc@mcc.ac.uk) that should always be with the fdisk distribution. If you cannot find this file in the util-
linux-* directory or with the fdisk.c source file, then you should write to the distributor of your version of fdisk and
complain that you do not have all of the available documentation.

AUTHOR
A.V. LeBlanc (LeBlanc@mcc.ac.uk). v1.0r: SCSI and extfs support added by Rik Faith (faith@cs.unc.edu). v1.1r: Bug
fixes and enhancements by Rik Faith (faith@cs.unc.edu), with special thanks to Michael Bischoff (i1041905@ws.rz.tu-
bs.de or mbi@mo.math.nat.tu-bs.de). v1.3: Latest enhancements and bug fixes by A.V. LeBlanc, including the addition
of the -s option. v2.0: Disks larger than 2GB are now fully supported, thanks to Remy Card’s llseek support.

Linux 1.0, 3 June 1995

filechan
filechan—File-writing back end for InterNetNews.

SYNOPSIS
filechan [-d directory][-f fields][-m mapfile][-p pidfile]

DESCRIPTION
filechan reads lines from standard input and copies certain fields in each line into files named by other fields within the
line. filechan is intended to be called by innd(8) as a channel feed. (It is not a full exploder and does not accept commands;
see newsfeeds(5) for a description of the difference and buffchan(8) for an exploder program.)

filechan input is interpreted as a set of lines. Each line contains a fixed number of initial fields, followed by a variable
number of filename fields. All fields in a line are separated by whitespace. The default number of initial fields is one; the –f
flag may be used to specify a different number of fields.

filechan

Part VIII: Administration and Privileged Commands1298

For each line of input, filechan writes the initial fields, separated by whitespace and followed by a newline, to each of the
files named in the filename fields. When writing to a file, filechan opens it in append mode and tries to lock it and change
the ownership to the user and group who owns the directory where the file is being written.

By default, filechan writes its arguments into the directory /news/spool/out.going. The –d flag may be used to specify a
directory the program should change to before starting.

If the –p flag is used, the program will write a line containing its process ID (in text) to the specified file.

If filechan is invoked with –f 2 and given the following input:

news/software/b/132 <1643@munnari.oz.au>foo uunet
news/software/b/133 <102060@litchi.foo.com> uunet munnari
comp/sources/unix/2002 <999@news.foo.com>foo uunet munnari

Then the file foo will have these lines:

news/software/b/132 <1643@munnari.oz.au>
comp/sources/unix/2002 <999@news.foo.com>

The file munnari will have these lines:

news/software/b/133 <102060@litchi.foo.com>
comp/sources/unix/2002 <999@news.foo.com>

The file uunet will have these lines:

news/software/b/132 <1643@munnari.oz.au>
news/software/b/133 <102060@litchi.foo.com>
comp/sources/unix/2002 <999@news.foo.com>

Because the time window in which a file is open is very small, complicated flushing and locking protocols are not needed; a
mv(1) followed by a sleep(1) for a couple of seconds is sufficient.

A map file may be specified by using the –m flag. Blank lines and lines starting with a number sign (#) are ignored. All other
lines should have two hostnames separated by a colon. The first field is the name that may appear in the input stream; the
second field names the file to be used when the name in the first field appears. For example, the following map file may be
used to map the short names to the full domain names:

This is a comment uunet:news.uu.net foo:foo.com munnari:munnari.oz.au

HISTORY
Written by Robert Elz (kre@munnari.oz.au); flags added by Rich $alz (rsalz@uunet.uu.net).

SEE ALSO
buffchan(8), innd(8), newsfeeds(5)

fsck
fsck—Check and repair a Linux filesystem.

SYNOPSIS
fsck [-AVRTN][-s][-t fstype][fs-options] filesys [...]

1299

DESCRIPTION
fsck is used to check and optionally repair a Linux filesystem. filesys is either the device name (such as /dev/hda1 or /dev/
sdb2) or the mount point (such as /, /usr, or /home) for the filesystem. If this fsck has several filesystems on different
physical disk drives to check, this fsck will try to run them in parallel. This reduces the total amount time it takes to check
all of the filesystems because fsck takes advantage of the parallelism of multiple disk spindles.

The exit code returned by fsck is the sum of the following conditions:

0 No errors

1 Filesystem errors corrected

2 System should be rebooted

4 Filesystem errors left uncorrected

8 Operational error

16 Usage or syntax error

128 Shared library error

The exit code returned when all filesystems are checked using the -A option is the bitwise OR of the exit codes for each file
system that is checked.

In actuality, fsck is simply a front end for the various filesystem checkers (fsck.fstype) available under Linux. The
filesystem-specific checker is searched for in /sbin first, then in /etc/fs and /etc, and finally in the directories listed in the
PATH environment variable. Please see the filesystem-specific checker manual pages for further details.

OPTIONS
-A Walk through the /etc/fstab file and try to check all filesystems in one run. This

option is typically used from the /etc/rc system initialization file, instead of
multiple commands for checking a single file system.

-R When checking all filesystems with the -A flag, skip the root file system (in case it’s
already mounted read-write).

-T Don’t show the title on startup.

-N Don’t execute; just show what would be done.

-s Serialize fsck operations. This is a good idea if you checking multiple filesystems in
and the checkers are in an interactive mode. (Note: e2fsck runs in an interactive
mode by default. To make e2fsck run in a non-interactive mode, you must either
specify the -p or -a option, if you want errors to be corrected automatically, or the -
n option if you do not.)

-V Produce verbose output, including all filesystem-specific commands that are
executed.

-tfstype Specifies the type of filesystem to be checked. When the -A flag is specified, only
filesystems that match fstype are checked. If fstype is prefixed with no, only
filesystems whose filesystem do not match fstype are checked.

Usually, the filesystem type is deduced by searching for filesys in the /etc/fstab
file and using the corresponding entry. If the type can not be deduced, fsck will use
the type specified by the -t option if it specifies a unique filesystem type. If this type
is not available, the the default filesystem type (currently ext2) is used.

fs-options Any options that are not understood by fsck, or that follow the - option are treated
as filesystem-specific options to be passed to the filesystem-specific checker.

fsck

Part VIII: Administration and Privileged Commands1300

Currently, standardized filesystem-specific options are somewhat in flux. Although not guaranteed, the following options are
supported by most filesystem checkers:

-a Automatically repair the filesystem without any questions. (Use this option with caution.) Note
that e2fsck supports -a for backwards compatibility only. This option is mapped to e2fsck’s -p
option, which is safe to use, unlike the -a option that most filesystem checkers support.

-r Interactively repair the filesystem (ask for confirmations). Note: It is generally a bad idea to use
this option if multiple fsck’s are run in parallel. Also note that this is e2fsck default behavior; it
supports this option for backwards compatibility reasons only.

AUTHOR
Theodore Ts’o (tytso@mit.edu)

The manual page was shamelessly adapted from David Engel and Fred van Kempen’s generic fsck front-end program, which
in turn was shamelessly adapted from Remy Card’s version for the ext2 filesystem.

FILES
/etc/fstab

SEE ALSO
fstab(5), mkfs(8), fsck.minix(8), fsck.ext2(8) or e2fsck(8), fsck.xiafs(8)

Version 0.5b, November 1994

fsck.minix
fsck.minix—A filesystem consistency checker for Linux.

SYNOPSIS
fsck.minix [-larvsmf] device

DESCRIPTION
fsck.minix performs a consistency check for the Linux MINIX filesystem. The current version supports the 14 character and
30 character filename options.

The program assumes the filesystem is quiescent. fsck.minix should not be used on a mounted device unless you can be sure
nobody is writing to it (and remember that the kernel can write to it when it searches for files).

The device will usually have the following form:

/dev/hda[1-8]
/dev/hdb[1-8]
/dev/sda[1-8]
/dev/sdb[1-8]

If the filesystem was changed (that is, repaired), then fsck.minix will print File system has changed and will sync(2) three
times before exiting. Because Linux does not currently have raw devices, there is no need to reboot at this time (versus a
system that does have raw devices).

WARNING
fsck.minix should not be used on a mounted filesystem. Using fsck.minix on a mounted filesystem is very dangerous due to
the possibility that deleted files are still in use and can seriously damage a perfectly good filesystem! If you absolutely have to
run fsck.minix on a mounted filesystem (that is, the root filesystem), make sure nothing is writing to the disk and that no
files are “zombies” waiting for deletion.

1301

OPTIONS
-l Lists all filenames.

-r Performs interactive repairs.

-a Performs automatic repairs (this option implies -r) and serves to answer all of the questions asked with the
default. Note that this can be extremely dangerous in the case of extensive filesystem damage.

-v Verbose.

-s Outputs super-block information.

-m Activates MINIX-like “mode not cleared” warnings.

-f Force filesystem check even if the filesystem was marked as valid. (This marking is done by the kernel
when the filesystem is unmounted.)

SEE ALSO
fsck(8), fsck.ext(8), fsck.ext2(8), fsck.xiafs(8), mkfs(8), mkfs.minix(8), mkfs.ext(8), mkfs.ext2(8), mkfs.xiafs(8), reboot(8)

DIAGNOSTICS
There are numerous diagnostic messages. The ones mentioned here are the most commonly seen in normal usage.

If the device does not exist, fsck.minix will print Unable to read super block. If the device exists but is not a MINIX
filesystem, fsck.minix will print Bad magic number in super-block.

EXIT CODES
The exit code returned by fsck.minix is the sum of the following:

0 No errors.

3 Filesystem errors corrected; system should be rebooted if filesystem was mounted.

4 Filesystem errors left uncorrected.

8 Operational error.

16 Usage or syntax error.

In point of fact, only 0, 3, 4, 7, 8, and 16 can ever be returned.

AUTHOR
Linus Torvalds (torvalds@cs.helsinki.fi). Error code values by Rik Faith (faith@cs.unc.edu). Added support for filesystem
valid flag: Dr. Wettstein (greg%wind.uucp@plains.nodak.edu). Check to prevent fsck of mounted filesystem added by Daniel
Quinlan (quinlan@yggdrasil.com).

Linux 0.99, 10 January 1994

ftpd
ftpd—DARPA Internet File Transfer Protocol server.

SYNOPSIS
ftpd [-d] [-l] [-t timeout] [-T maxtimeout]

DESCRIPTION
ftpd is the DARPA Internet File Transfer Protocol server process. The server uses the TCP protocol and listens at the port
specified in the FTP service specification; see services(5).

ftpd

Part VIII: Administration and Privileged Commands1302

Available options:

-d Debugging information is written to the syslog.

-l Each FTP 1 session is logged in the syslog.

-t The inactivity timeout period is set to timeout seconds. (The default is 15 minutes.)

-T A client can also request a different timeout period; the maximum period allowed can be set to timeout
seconds with the -T option. The default limit is 2 hours.

The FTP server currently supports the following FTP requests; case is not distinguished.

Request Description

ABOR Abort previous command

ACCT Specify account (ignored)

ALLO Allocate storage (vacuously)

APPE Append to a file

CDUP Change to parent of current working directory

CWD Change working directory

DELE Delete a file

HELP Give help information

LIST Give list files in a directory (‘’ ls -lgA ‘’)

MKD Make a directory

MDTM Show last modification time of file

MODE Specify data transfer mode

NLST Give name list of files in directory

NOOP Do nothing

PASS Specify password

PASV Prepare for server-to-server transfer

PORT Specify data connection port

PWD Print the current working directory

QUIT Terminate session

REST Restart incomplete transfer

RETR Retrieve a file

RMD Remove a directory

RNFR Specify rename-from filename

RNTO Specify rename-to filename

SITE Nonstandard commands (see next section)

SIZE Return size of file

STAT Return status of server

STOR Store a file

STOU Store a file with a unique name

STRU Specify data transfer structure

SYST show operating system type of server system

TYPE specify data transfer type

USER specify username

XCUP change to parent of current working directory (deprecated)

1303

XCWD change working directory (deprecated)

XMKD make a directory (deprecated)

XPWD print the current working directory (deprecated)

XRMD remove a directory (deprecated)

The following non-standard or UNIX-specific commands are supported by the SITE request:

Request Description Example

UMASK Change umask SITE UMASK 002

IDLE Set idle timer SITE IDLE 60

CHMOD Change mode of a file SITE CHMOD 755

HELP Give help information SITE HELP

The remaining FTP requests specified in Internet RFC 959 are recognized but not implemented. MDTM and SIZE are not
specified in RFC 959 but will appear in the next updated FTP RFC.

The FTP server will abort an active file transfer only when the ABOR command is preceded by a Telnet “Interrupt Process”
(IP) signal and a Telnet “Synch” signal in the command Telnet stream, as described in Internet RFC 959. If a STAT
command is received during a data transfer, preceded by a Telnet IP and Synch, transfer status will be returned.

ftpd interprets filenames according to the globbing conventions used by csh(1). This allows users to utilize the
metacharacters Li &*?[].

ftpd authenticates users according to four rules:

The username must be in the password database and not have a null password. In this case, a password must be provided
by the client before any file operations may be performed.

The username must not appear in the file (see ftpusers(5)).

The user must have a standard shell returned by getusershell(3).

If the username is anonymous or FTP, an anonymous FTP account must be present in the password file (user FTP). In
this case, the user is allowed to log in by specifying any password. (By convention, this is given as the client host’s name.)

In the last case, ftpd takes special measures to restrict the client’s access privileges. The server performs a chroot(2) command
to the home directory of the FTP user. So that system security is not breached, it is recommended that the FTP subtree be
constructed with care; the following rules are recommended:
~ftp Make the home directory owned by root and unwritable by anyone.
~ftp/bin Make this directory owned by root and unwritable by anyone. The program ls(1) must be present to

support the list command. This program should have mode 111.
~ftp/etc Make this directory owned by root and unwritable by anyone. The files passwd(5) and group(5) must be

present for the ls command to be able to produce owner names rather than numbers. The password field
in passwd is not used and should not contain real encrypted passwords. These files should be mode 444 and
owned by root. Don’t use the system’s /etc/passwd file as the password file or the system’s /etc/group file
as the group file in the ~ftp/etc directory.

Pa ~ftp/pub Make this directory mode 755 and owned by root. Create a subdirectory in ~ftp/pub with the appropriate
mode (777 or 733) if you want to allow normal users to upload files.

SEE ALSO
ftp(1), getusershell(3), ftpusers(5), syslogd(8)

BUGS
The anonymous account is inherently dangerous and should avoided when possible.

ftpd

Request Description

Part VIII: Administration and Privileged Commands1304

The server must run as the super-user to create sockets with privileged port numbers. It maintains an effective user ID of the
logged-in user, reverting to the super-user only when binding addresses to sockets. The possible security holes have been
extensively scrutinized but are possibly incomplete.

HISTORY
The command appeared in BSD 4.2.

BSD 4.2, 16 March 1991

ifconfig
ifconfig—Configure a network interface.

SYNOPSIS
ifconfig [interface]
ifconfig interface [aftype] options | address ...

DESCRIPTION
ifconfig is used to set up (and maintain thereafter) the kernel-resident network interfaces. It is used at boot time to configure
most of them to a running state. After that, it is usually only needed when debugging or when system tuning is needed.

If no arguments are given, ifconfig just displays the status of the currently defined interfaces. If the single interface argument
is given, it displays the status of the given interface only. Otherwise, it assumes that things have to be set up.

ADDRESS FAMILIES
If the first argument after the interface name is recognized as the name of a supported address family, that address family is
used for decoding and displaying all protocol addresses. Currently supported address families include inet (TCP/IP, default)
and ax25 (AMPR Packet Radio.)

OPTIONS
interface The name of the NET interface. This usually is a name such as wd0, sl3, or something like that:

a device driver name followed by a unit number.

up This flag causes the interface to be activated. It is implicitly specified if the interface is given a
new address (see below).

down This flag causes the driver for this interface to be shut down and is useful when things start
going wrong.

[-]arp Enable or disable the use of the ARP protocol on this interface. If the minus (–) sign is present,
the flag is turned OFF.

[-]trailers Enable or disable the use of trailers on Ethernet frames. This is not used in the current
implementation of NET.

[-]allmulti Enable or disable the promiscuous mode of the interface. This means that all incoming frames
get sent to the network layer of the system kernel, allowing for networking monitoring.

metric N This parameter sets the interface metric. It is not used at present, but we implement it for the
future.

mtu N This parameter sets the Maximum Transfer Unit (MTU) of an interface. For Ethernet, this is a
number in the range of 1000-2000 (default is 1500). For SLIP, use something between 200 and
4096. Note that the current implementation does not handle IP fragmentation yet, so you’d
better make the MTU large enough!

dstaddr addr Set the “other end’s” IP address in case of a point-to-point link, such as PPP. This keyword is
obsoleted by the new pointopoint keyword.

1305

netmask addr Set the IP network mask for this interface. This value defaults to the usual class A, B, or C
network mask (as deducted from the interface IP address), but it can be set to any value for the
use of subnetting.

[-]broadcast [addr] If the address argument is also given, set the protocol broadcast address for this interface.
Otherwise, it only sets the IFF_BROADCAST flag of the interface. If the keyword was preceded by a
minus (-) sign, then the flag is cleared instead.

[-]pointopoint [addr] This keyword enables the point-to-point mode of an interface, meaning that it is a direct link
between two machines with nobody else listening on it. (At least we hope that this is the case,
grin :-).)

If the address argument is also given, set the protocol address of the other side of the link, just
like the obsolete dstaddr keyword does. Otherwise, it only sets the IFF_POINTOPOINT flag of the
interface. If the keyword was preceded by a minus (-) sign, then the flag is cleared instead.

hw Set the hardware address of this interface if the device driver supports this operation. The
keyword must be followed by the name of the hardware class and the printable ASCII
equivalent of the hardware address. Hardware classes currently supported include ether
(Ethernet), ax25 (AMPR AX.25), and ppp, although the latter is not really supported yet.

address The hostname or IP address (a hostname will be resolved into an IP address) of that interface.
This parameter is required, although the syntax doesn’t currently require it.

FILES
/dev/net/socket

BUGS
None so far, although the syntax checking could be better.

AUTHOR
Fred N. van Kempen (waltje@uwalt.nl.mugnet.org)

6 October 1993

inetd
inetd—Internet superserver.

SYNOPSIS
inetd [-d] [configuration file]

DESCRIPTION
inetd should be run at boot time by /etc/rc.local (see rc(8)). It then listens for connections on certain Internet sockets.
When a connection is found on one of its sockets, it decides what service the socket corresponds to and invokes a program to
service the request. After the program is finished, it continues to listen on the socket (except in some cases, which are
described later). Essentially, inetd allows running one daemon to invoke several others, reducing load on the system.

The option available for inetd:

-d Turns on debugging.

Upon execution, inetd reads its configuration information from a configuration file, which, by default, is /etc/inetd.conf.
There must be an entry for each field of the configuration file, with entries for each field separated by a tab or a space.
Comments are denoted by a # at the beginning of a line. There must be an entry for each field. The fields of the configura-
tion file are as follows:

inetd

Part VIII: Administration and Privileged Commands1306

service name

socket type

protocol

wait/nowait[.max]

user[.group]

server program

server program arguments

To specify an Sun-RPC based service, the entry would contain these fields:

service name/version

socket type

rpc/protocol

wait/nowait[.max]

user[.group]

server program

server program arguments

The service-name entry is the name of a valid service in the file /etc/services . For internal services, the service name must
be the official name of the service (that is, the first entry in /etc/services). When used to specify a Sun-RPC based service,
this field is a valid RPC service name in the file /etc/rpc. The part on the right of the / is the RPC version number. This can
simply be a single numeric argument or a range of versions. A range is bounded by the low version to the high version
- rusers/1-3.

The socket type should be one of stream, dgram, raw, rdm, or seqpacket, depending on whether the socket is a stream,
datagram, raw, reliably delivered message, or sequenced packet socket.

The protocol must be a valid protocol as given in /etc/protocols. Examples might be tcp or udp. Rpc-based services are
specified with the rpc/tcp or rpc/udp service type.

The wait/nowait entry is applicable to datagram sockets only. (Other sockets should have a nowait entry in this space.) If a
datagram server connects to its peer, freeing the socket so inetd can receive further messages on the socket, it is said to be a
multithreaded server and should use the nowait entry. For datagram servers that process all incoming datagrams on a socket
and eventually time out, the server is said to be single-threaded and should use a wait entry. Comsat(8), biff(1), and talkd(8)
are examples of the latter type of datagram server. Tftpd(8) is an exception; it is a datagram server that establishes pseudo-
connections.

It must be listed as wait in order to avoid a race; the server reads the first packet, creates a new socket, and then forks and
exits to allow inetd to check for new service requests to spawn new servers. The optional max suffix (separated from wait or
nowait by a dot) specifies the maximum number of server instances that may be spawned from inetd within an interval of 60
seconds. When omitted, max defaults to 40.

The user entry should contain the username of the user as whom the server should run. This allows for servers to be given
less permission than root. An optional group name can be specified by appending a dot to the username followed by the
group name. This allows for servers to run with a different (primary) group ID than specified in the password file. If a group
is specified and the user is not root, the supplementary groups associated with that user will still be set.

The server-program entry should contain the pathname of the program that is to be executed by inetd when a request is
found on its socket. If inetd provides this service internally, this entry should be internal.

The server program arguments should appear just as arguments normally do, starting with argv[0], which is the name of the
program. If the service is provided internally, the word internal should take the place of this entry.

inetd provides several trivial services internally by use of routines within itself. These services are echo, discard, chargen
(character generator), daytime (human readable time), and time (machine readable time in the form of the number of seconds
since midnight, January 1, 1900). All of these services are TCP based. For details of these services, consult the appropriate
RFC from the Network Information Center.

1307

inetd rereads its configuration file when it receives a hangup signal, SIGHUP. Services may be added, deleted, or modified
when the configuration file is reread. inetd creates a file /etc/inetd.pid that contains its process identifier.

SEE ALSO
comsat(8), fingerd(8), ftpd(8), rexecd(8), rlogind(8), rshd(8), telnetd(8), tftpd(8)

HISTORY
The command appeared in BSD 4.3. Support for Sun-RPC based services is modeled after that provided by Sun-OS 4.1.

BSD 4.3, 16 March 1991

init, telinit
init, telinit—Process control initialization.

SYNOPSIS
/sbin/init [-t sec][0123456SsQq]
/sbin/telinit [-t sec][0123456sSQqabc]

DESCRIPTION
init

init is the father of all processes. Its primary role is to create processes from a script stored in the file /etc/inittab (see
inittab(5)). This file usually has entries that cause init to spawn gettys on each line that users can log in. It also controls
autonomous processes required by any particular system.

A run level is a software configuration of the system that allows only a selected group of processes to exist. The processes
spawned by init for each of these run levels are defined in the /etc/inittab file. init can be in one of eight run levels, 06 and
S or s. The run level is changed by having a privileged user run /sbin/telinit, which sends appropriate signals to init, telling
it which run level to change to.

After init is invoked as the last step of the kernel booting, it looks for the file /etc/inittab to see if there is an entry of the
type initdefault (see inittab(5)). initdefault determines the initial run level of the system. If there is no such entry or no
/etc/inittab at all, a run level must be entered at the system console.

Run level S or s brings the system to single-user mode and does not require an /etc/initttab file. In single-user mode,

/bin/sh is invoked on /dev/console.

/dev/console need not necessarily be the physical system console. When init is told to enter single-user mode or run level 1
(either directly, by init S, or by telling shutdown to enter maintenance mode), it will link the terminal line the command
was executed from to /dev/console. The device /dev/systty is called the physical system console and the device /dev/console
is called the logical system console. If the logical system console is not the physical system console, pressing the combination
Ctrl+Alt+Del on the physical system console will force a relink of /dev/console to /dev/systty. A terminal line can only
become the logical console if it’s listed in the file /etc/securetty. All this is in preparation of the day that the Linux kernel
will support serial consoles.

Beware: If you want to run X or anything else that is aware of Virtual Consoles, the logical system console (/dev/console)
needs to be the same as the physical system console (/dev/systty).

When entering single-user mode, init reads the console’s ioctl(2) states from /etc/ioctl.save. If this file does not exist, init
initializes the line at 9600 baud and with CLOCAL settings. When init leaves single-user mode, it stores the console’s ioctl
settings in this file so it can re-use them for the next single-user session. If the logical system console is changed to another
terminal line, the settings of the line from which the init or telinit command was given are stored in /etc/ioctl.save too,
so that the terminal line will be initialized correctly in single-user mode.

init, telinit

Part VIII: Administration and Privileged Commands1308

When entering a multi-user mode the first time, init performs the boot and bootwait entries to allow filesystems to be
mounted before users can log in. Then all entries matching the run level are processed.

Each time a child terminates, init records the fact and the reason it died in /etc/utmp and /var/adm/wtmp if these files exist.

After it has spawned all the processes specified, init waits for one of its descendant processes to die, a powerfail signal, or a
signal by /sbin/telinit to change the system’s run level. When one of these three conditions occurs, it re-examines the
/etc/inittab file. New entries can be added to this file at any time. However, init still waits for one of the three conditions
to occur. To provide for an instantaneous response, the Q or q command can wake up init to re-examine the /etc/inittab
file.

If init is not in single-user mode and receives a powerfail signal, special powerfail entries are invoked.

When init is requested to change the run level, it sends the warning signal SIGTERM to all processes that are undefined in the
new run level. It then waits 20 seconds before forcibly terminating these processes via the kill signal SIGKILL.

Note that init assumes that all these processes (and their descendants) remain in the same process group that init originally
created for them. If any process changes its process group affiliation, it will not receive these signals. Such processes need to
be terminated separately.

telinit
/sbin/telinit is linked to /sbin/init. It takes a one-character argument and signals init to perform the appropriate action.
The following arguments serve as directives to /sbin/telinit:

0, 1, 2, 3, 4, 5, or 6 Tell /sbin/init to switch to the specified run level.

a, b, c Tell /sbin/init to process only those /etc/inittab file entries having run level a, b, or c.

Q or q Tell /sbin/init to re-examine the /etc/inittab file.

S or s Tell /sbin/init to switch to single-user mode.

/sbin/telinit can also tell init how much time it should wait between sending processes the TERM and the KILL signal; the
default is 20 seconds, but it can be changed by the -t sec option.

/sbin/telinit can be invoked only by users with appropriate privileges.

RUN LEVELS
Run levels 0, 1, and 6 are reserved. Run level 0 is used to halt the system, run level 6 is used to reboot the system, and run
level 1 is used to get the system down into single-user mode. Run level S is not really meant to be used directly but should be
used by scripts that are executed when entering run level 1. For more information on this, see the man pages for shutdown(1)
and inittab(5).

FILES
/etc/inittab
/dev/console
/dev/systty
/etc/ioctl.save
/etc/utmp
/var/adm/wtmp

CONFORMING TO
init is compatible with the System V init. The scripts that are used with it, however, are mostly modeled after the BSD
startup scripts. There are startup scripts available that let Linux boot more like a System V system, but most people find
them too complex.

WARNINGS
init assumes that processes and descendants of processes remain in the same process group that was originally created for
them. If the processes change their group, init can’t kill them and you might end up with two processes reading from one
terminal line.

1309

DIAGNOSTICS
If /sbin/init finds that it is continuously respawning an entry more than ten times in two minutes, it will assume that there
is an error in the command string, generate an error message on the system console, and refuse to respawn this entry until
either five minutes has elapsed or it receives a signal. This prevents it from eating up system resources when someone makes a
typographical error in the /etc/inittab file or the program for the entry is removed.

AUTHOR
Miquel van Smoorenburg (miquels@drinkel.nl.mugnet.org); initial manual page by Michael Haardt
(u31b3hs@pool.informatik.rwth-aachen.de).

SEE ALSO
getty(1), login(1), sh(1), who(1), shutdown(1), kill(2), inittab(5), utmp(5)

19 January 1994

innd, inndstart
innd, inndstart—InterNetNews daemon.

SYNOPSIS
innd [-a][-c days][-d][-f][-i count][-o count][-l size]
[-m mode][-n flag] [-p port][-r][-s][-S host][-t timeout][-u][-x]
inndstart [flags]

DESCRIPTION
innd, the InterNetNews daemon, handles all incoming NNTP feeds. It reads the active(5), newsfeeds(5), and hosts.nntp(5)
files into memory. It then opens the NNTP port to receive articles from remote sites, a UNIX-domain stream socket to
receive articles from local processes such as nnrpd(8) and rnews(1), and a UNIX-domain datagram socket for use by
ctlinnd(8) to direct the server to perform certain actions. It also opens the history(5) database and two log files to replace its
standard output and standard error. If the –p flag is used, then the NNTP port is assumed to be open on the specified
descriptor. (If this flag is used, then innd assumes it is running with the proper permissions and it does not call chown(2) on
any files or directories it creates.)

Once the files and sockets have been opened, innd waits for connections and data to be ready on its ports by using select(2)
and non-blocking I/O. If no data is available, then it flushes its in-core data structures. The default number of seconds to
time out before flushing is 300. This timeout may be changed by using the –t flag.

To limit the number of incoming NNTP connections, use the –i flag. A value of 0 suppresses this check.

To limit the number of files that are kept open for outgoing file feeds, use the –o flag. The default is the number of available
descriptors minus some reserved for internal use.

To limit the size of an article, use the –l flag. If this flag is used, then any article bigger than size bytes is rejected. The
default is no checking, which can also be obtained by using a value of 0.

innd rejects articles that are too old. Although this behavior can be controlled by the history database, occasionally a site
dumps a batch of very old news back onto the network. Use the –c flag to specify a cutoff. For example, –c21 rejects any
articles that were posted more than 21 days ago. A value of 0 suppresses this check.

innd usually puts itself into the background, sets its standard output and error to log files, and disassociates itself from the
terminal. Using the –d flag instructs the server to not do this, whereas using the –f flag just leaves the server running the
foreground. The logs are usually buffered; use the –u flag to have them unbuffered.

To start the server in a paused or throttled state (see ctlinnd(8)) use the –m flag to set the initial running mode. The
argument should start with a single letter g, p, or t to emulate the go, pause, or throttle commands.

innd, inndstart

Part VIII: Administration and Privileged Commands1310

If the –r flag is used, the server renumbers the active file as if a renumber command were sent.

If the –s flag is used, then innd does not do any work but instead just checks the syntax of the news-feeds file. It exits with an
error status if there are any errors; the actual errors are reported in syslog(3).

If innd gets an NOSPC error (see intro(2)) while trying to write the active file, an article file, or the history database, it sends
itself a throttle command. This also happens if it gets too many I/O errors while writing to any files.

Any subprocesses spawned by the server get a nice(2) value of 10.

The –n flag specifies whether pausing or throttling the server should also disable future news-reading processes. A value of y
makes news readers act as the server, a value of n allows news reading even when the server is not running.

If the –S flag is used, then innd runs in slave mode. When running as a slave, the server only accepts articles from the
specified host, which must use the xreplic protocol extension. Note that either the host must appear in the hosts.nntp file or
the server must be started with the –a flag.

By default, if a host is not mentioned in the hosts.nntp file, then the connection is handed off to nnrpd. If the –a flag is used,
then any host can connect and transfer articles.

If the –x flag is used, then a Xref header is added to all articles even if they are not cross-posted.

inndstart is a small front-end program that opens the NNTP port, sets its user ID and group ID to the news maintainer,
and then executes innd with the –p flag and a minimal secure environment. This is a small, easily understood front-end
program that can be used if a site does not want to run innd with root privileges.

CONTROL MESSAGES
Arriving articles that have a Control header or have a Subject header that starts with the five characters cmsg are called control
messages. Except for the cancel message, these messages are implemented by external programs in the /news/bin/control
directory. (Cancel messages update the history database, so they must be handled internally; the cost of synching, locking,
and then unlocking is too high, given the number of cancel messages that are received.)

When a control message arrives, the first word of the text is converted to lowercase and used as the name of the program to
execute; if the named program does not exist, then a program named default is executed.

All control programs are invoked with four parameters. The first is the address of the person who posted the message; this is
taken from the Sender header. If that header is empty, then it is taken from the From header. The second parameter is the
address to send replies to; this is taken from the Reply-To header. If that header is empty, then the poster’s address is used.
The third parameter is a name under which the article is filed, relative to the news spool directory. The fourth parameter is
the host that sent the article, as specified on the Path line.

The distribution of control message is also different from those of standard articles.

Control messages are usually filed in the newsgroup named control. They can be filed in subgroups, however, based on the
control message command. For example, a newgroup message is filed in control.newgroup if that group exists, otherwise it will
be filed in control.

Sites may explicitly have the “control” newsgroup in their subscription list, although it is usually best to exclude it. If a
control message is posted to a group whose name ends with the four characters .ctl, then the suffix is stripped off and what
is left is used as the group name. For example, a cancel message posted to news.admin.ctl will be sent to all sites that
subscribe to control or news.admin. newgroup and rmgroup messages receive additional special treatment. If the message is
approved and posted to the name of the group being created or removed, then the message is sent to all sites whose
subscription patterns would cause them to receive articles posted in that group.

If an article is posted to a newsgroup that starts with the three letters to., it gets special treatment if the newsgroup does not
exist in the active file. The article is filed into the newsgroup to and it is sent to the first site named after the prefix. For
example, a posting to to.uunet is filed in to and sent to the site uunet.

PROTOCOL DIFFERENCES
innd implements the NNTP commands defined in RFC 977 with the following differences:

1311

■ The list may be followed by an optional active, active.times, or newsgroups argument. This common extension is not
fully supported; see nnrpd(8).

■ The authinfo user and authinfo pass commands are implemented. These are based on the reference UNIX implemen-
tation; no other documentation is available.

■ A new command, mode reader, is provided. This command causes the server to pass the connection on to nnrpd. The
command mode query is intended for future use and is currently treated the same way.

■ A new command, xreplic news.group:art[,news.group:art], is provided. This is similar to the ihave command (the
same reply codes are used) except for the data that follows the command word. The data consists of entries separated by
a single comma. Each entry consists of a newsgroup name, a colon, and an article number. Once processed, the article is
filed in the newsgroup and article numbers specified in the command.

■ A new command, xpath messageid, is provided. The server responds with a 223 response and a space-separated list of
filenames where the article was filed.

■ The only other commands implemented are head, help, ihave, quit, and stat.

HEADER MODIFICATIONS
innd modifies as few article headers as possible, although it could be better in this area.

The following headers, if present, are removed:

Date-Received

Posted

Posting-Version

Received

Relay-Version

Empty headers and headers that consist of nothing but whitespace are also dropped.

The local site’s name and an exclamation point are prepended to the Path header.

The Xref header is removed. If the article is cross-posted, a new header is generated.

The Lines header is added if it is missing.

innd does not rewrite incorrect headers. For example, it does not replace an incorrect Lines header but rejects the article.

LOGGING
innd reports all incoming articles in its log file. This is a text file with a variable number of space-separated fields in one of the
following formats:

mon dd hh:mm:ss.mmm + feed <Message-ID>site...
mon dd hh:mm:ss.mmm j feed <Message-ID> site...
mon dd hh:mm:ss.mmm c feed <Message-ID> site...
mon dd hh:mm:ss.mmm - feed <Message-ID> reason...

The first three fields are the date and time to millisecond resolution. The fifth field is the site that sent the article (based on
the Path header), and the sixth field is the article’s Message-ID; they will contain a question mark if the information is not
available.

The fourth field indicates whether the article was accepted. If it is a plus sign, the article was accepted. If it is the letter j, the
article was accepted, but all of newsgroups have a j in their active field, so the article was filed into the “junk” newsgroup. If
the fourth field is the letter c, a cancel message was accepted before the original article arrived. In all three cases, the article
has been accepted and the site... field contains the space-separated list of sites to which the article is sent.

If the fourth field is a minus sign, the article was rejected. The reasons for rejection include

%s header too long

%s wants to cancel <%s> by %s

Article exceeds local limit of %s bytes

Article posted in the future—%s

innd, inndstart

Part VIII: Administration and Privileged Commands1312

Bad %s header

Can’t write history

Duplicate

Duplicate %s header

EOF in headers

Linecount %s != %s +- %s

Missing %s header

No body

No colon-space in %s header

No space

Space before colon in %s header

Too old—%s

Unapproved for %s

Unwanted newsgroup %s

Unwanted distribution %s

Whitespace in “Newsgroups” header—%s

Where %s, above, is replaced by more specific information.

Note that if an article is accepted and none of the newsgroups are valid, it is logged with both two lines, a j line and a minus
sign line.

innd also makes extensive reports through syslog. The first word of the log message is the name of the site if the entry is site-
specific (such as a connected message). The first word is ME if the message relates to the server itself, such as when a read error
occurs.

If the second word is the four letters cant, an error is being reported. In this case, the next two words generally name the
system call or library routine that failed and the object upon which the action was performed. The rest of the line might
contain other information.

In other cases, the second word attempts to summarize what change has been made, and the rest of the line gives more
specific information. The word internal generally indicates an internal logic error.

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
active(5), ctlinnd(8), dbz(3z), history(5), hosts.nntp(5), inn.conf(5), newsfeeds(5), nnrpd(8), rnews(1), syslog(8)

innxmit
innxmit—Send Usenet articles to a remote NNTP server.

SYNOPSIS
innxmit [-A alt_spool][-a][-d][-M][-r][-t timeout]
[-T timeout][-p][-S] host file

DESCRIPTION
innxmit connects to the NNTP server at the specified host and sends it the articles specified in the batchfile named file. It is
usually invoked by a script run out of cron(8) that uses shlock(1) to lock the hostname, followed by actlinnd(8) command to
flush the batchfile.

1313

innxmit usually blocks until the connection is made. To specify a timeout on how long to try to make the connection, use the
–t flag. To specify the total amount of time that should be allowed for article transfers, use the –T flag. The default is to wait
until an I/O error occurs or all the articles have been transferred. If the –T flag is used, the time is checked just before an
article is started; it does not abort a transfer that is in progress. Both values are measured in seconds.

If the file is not an absolute pathname, it is taken relative to the /news/spool/out.going directory. It is usually written by
specifying the Wnm flags in the newsfeeds(5) file. Each line in the batchfile should be in one of the following formats:

filename Message-ID

filename

The filename field names the article to be sent. If it is not an absolute pathname, it is taken relative to the news spool
directory, /news/spool. If the Message-ID field is not specified, it is obtained by scanning the article. The filename and
Message-Id fields are separated by a space.

If a communication error such as a write(2) failure occurs, innxmit stops sending and rewrites the batchfile to contain the
current article and any other unsent articles.

If the remote server sends an unexpected reply code, innxmit requeues the article and proceeds. Use the –r flag if the article
should not be requeued.

Upon exit, innxmit reports transfer and CPU usage statistics via syslog(3). If the –v flag is used, they are also printed on the
standard output. If all articles were sent successfully, innxmit removes the batchfile; otherwise, it rewrites it to contain the list
of unsent articles. If no articles were sent or rejected, the file is left untouched. This can cause the batchfile to grow
excessively large if many articles have been expired and there are communication problems. To always rewrite the batchfile,
use the –a flag. If the –p flag is given, then no connection is made and the batchfile is purged of entries that refer to files that
no longer exist. This implies the –a flag.

If the –S flag is given, then innxmit offers articles to the specified host using the xreplic protocol extension described in
innd(8). To use this flag, the input file must contain the history data (commas are transliterated to spaces by the server). For
this flag to be used, the input must contain the necessary history entries. This is usually done by setting up a WnR entry in the
newsfeeds file.

Use the –d flag to print debugging information on standard error. This shows the protocol transactions between innxmit and
the NNTP server on the remote host.

If the –M flag is used, innxmit scans an article’s headers before sending it. If the article appears to be a MIME article that is not
in seven-bit format, the article is sent in “quoted-printable” form.

The –A flag may be used to specify an alternate spool directory to use if the article is not found; this is usually an NFS-
mounted spool directory of a master server with longer expiration times.

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
ctlinnd(8), innd(8), newsfeeds(5), shlock(1)

ipcrm
ipcrm—Remove ipc facilities.

SYNOPSIS
ipcrm [shm | msg | sem] id

DESCRIPTION
ipcrm removes the resource specified by id.

ipcrm

Part VIII: Administration and Privileged Commands1314

SEE ALSO
ipcs(8)

AUTHOR
Krishna Balasubramanian (balasub@cis.ohio-state.edu)

Linux 0.99, 9 October 1993

ipcs
ipcs—Provide information on ipc facilities.

SYNOPSIS
ipcs [–asmq] [–tclup]
ipcs [-smq] -i id
ipcs –h

DESCRIPTION
ipcs provides information on the ipc facilities for which the calling process has read access.

The -i option allows a specific resource id to be specified. Only information on this id is printed.

Resources may be specified as follows:

-m Shared memory segments

-q Message queues

-s Semaphore arrays

-a All (this is the default)

The output format may be specified as follows:

-t Time

-p PID

-c Creator

-l Limits

-u Summary

SEE ALSO
ipcrm(8)

AUTHOR
Krishna Balasubramanian (balasub@cis.ohio-state.edu)

Linux 0.99, 9 October 1993

kbdrate
kbdrate—Reset the keyboard repeat rate and delay time.

SYNOPSIS
kbdrate [-s] [-r rate][-d delay]

1315

DESCRIPTION
kbdrate is used to change the IBM keyboard repeat rate and delay time. The delay is the amount of time that a key must be
pressed before it starts to repeat. Using kbdrate without any options resets the rate to 10.9 characters per second (cps) and
the delay to 250 milliseconds (ms). These are the IBM defaults.

OPTIONS
-s Silent. No messages are printed.

-r rate Change the keyboard repeat rate to rate cps. The allowable range is from 2.0 to 30.0 cps. Only certain
specific values are possible, and the program selects the nearest possible value to the one specified. The
possible values are given, in characters per second, as follows: 2.0, 2.1, 2.3, 2.5, 2.7, 3.0, 3.3, 3.7, 4.0, 4.3,
4.6, 5.0, 5.5, 6.0, 6.7, 7.5, 8.0, 8.6, 9.2, 10.0, 10.9, 12.0, 13.3, 15.0, 16.0, 17.1, 18.5, 20.0, 21.8, 24.0,
26.7, 30.0.

-d delay Change the delay to delay milliseconds. The allowable range is from 250 to 1000 ms, but the only possible
values (based on hardware restrictions) are 250 ms, 500 ms, 750 ms, and 1000 ms.

BUGS
Not all keyboards support all rates.

Not all keyboards have the rates mapped in the same way.

Setting the repeat rate on the Gateway AnyKey keyboard does not work. If someone with a Gateway figures out how to
program the keyboard, please send mail to faith@cs.unc.edu.

FILES
/etc/rc.local
/dev/port

AUTHOR
Rik Faith (faith@cs.unc.edu)

Linux 1.1.19, 22 June 1994

klogd
klogd—Kernel log daemon.

SYNOPSIS
klogd –c [n] –d –f [fname] –os

DESCRIPTION
klogd is a system daemon that intercepts and logs Linux kernel messages.

OPTIONS
-c Sets the default log level of console messages to [n].

-d Enables debugging mode. This will generate a lot of output to stderr.

-f Logs messages to the specified filename rather than to the syslog facility.

-o Execute in one–shot mode. This causes klogd to read and log all the messages that are found in the kernel
message buffers. After a single read and log cycle, the daemon exits.

-s Force klogd to use the system call interface to the kernel message buffers.

klogd

Part VIII: Administration and Privileged Commands1316

OVERVIEW
The functionality of klogd has been typically incorporated into other versions of syslogd, but this seems to be a poor place
for it. In the modern Linux kernel, a number of kernel messaging issues such as sourcing and prioritization must be
addressed. Incorporating kernel logging into a separate process appears to offer a cleaner separation of services.

In Linux, there are two potential sources of kernel log information: the /proc filesystem and the syscall (sys_syslog)
interface, although ultimately they are one and the same. klogd is designed to choose whichever source of information is the
most appropriate. It does this by first checking for the presence of a mounted /proc filesystem. If this is found, the
/proc/kmsg file is used as the source of kernel log information. If the proc filesystem is not mounted, klogd uses a system call
to obtain kernel messages. The command-line switch (–s) can be used to force klogd to use the system call interface as its
messaging source.

If kernel messages are directed through the syslogd daemon, the klogd daemon, as of version 1.1, has the ability to properly
prioritize kernel messages. Prioritization of the kernel messages was added at approximately the pl13 level of the kernel. The
raw kernel messages are of the form:

<[0–7]>Something said by the kernel.

The priority of the kernel message is encoded as a single numeric digit enclosed inside the <> pair. The definitions of these
values is given in the kernel include file kernel.h. When a message is received from the kernel, the klogd daemon reads this
priority level and assigns the appropriate priority level to the syslog message. If file output (–f) is used, the prioritization
sequence is left prepended to the kernel message.

The klogd daemon also allows the ability to alter the presentation of kernel messages to the system console. Consequent with
the prioritization of kernel messages was the inclusion of default messaging levels for the kernel. In a stock kernel, the default
console log level is set to 7. Any messages with a priority level numerically lower than 7 (higher priority) appear on the
console.

Messages of priority level 7 are considered to be debug messages and do not appear on the console. Many administrators,
particularly in a multi–user environment, prefer that all kernel messages be handled by klogd and either directed to a file or
to the syslogd daemon. This prevents nuisance messages such as line printer out of paper or disk change detected from
cluttering the console.

By default, the klogd daemon executes a system call to inhibit all kernel messages (except for panics) from being displayed on
the console. The –c switch can be used to alter this behavior. The argument given to the –c switch specifies the priority level
of messages that are directed to the console. Note that messages of a priority value lower than the indicated number are
directed to the console.

For example, to have the kernel display all messages with a priority level of 3 (KERN ERR) or more severe, the following
command is executed:

klogd –c 4

The definitions of the numeric values for kernel messages are given in the file kernel.h, which can be found in the
/usr/include/linux directory if the kernel sources are installed. These values parallel the syslog priority values, which are
defined in the file syslog.h, found in the /usr/include/sys subdirectory.

The klogd daemon can also be used in a one–shot mode for reading the kernel message buffers. One-shot mode is selected by
specifying the –o switch on the command line. Output is directed to either the syslogd daemon or to an alternate file
specified by the -f switch.

For example, to read all the kernel messages after a system boot and record them in a file called krnl.msg, the following
command is given:

klogd -o -f ./krnl.msg

SIGNAL HANDLING
The klogd daemon responds to six signals: SIGHUP, SIGINT, SIGKILL, SIGTERM, SIGTSTP, and SIGCONT. The SIGINT, SIGKILL,
SIGTERM, and SIGHUP signals cause the daemon to close its kernel log sources and terminate gracefully.

1317

The SIGTSTP and SIGCONT signals are used to start and stop kernel logging. Upon receipt of a SIGTSTP signal, the daemon closes
its log sources and spins in an idle loop. Subsequent receipt of a SIGCONT signal causes the daemon to go through its
initialization sequence and rechoose an input source. Using SIGSTOP and SIGCONT in combination, the kernel log input can be
rechosen without stopping and restarting the daemon. For example, if the /proc filesystem is to be unmounted, the following
command sequence should be used:

kill -TSTP pid
umount /proc
kill -CONT pid

Notations will be made in the system logs with LOG INFO priority documenting the start/stop of logging.

FILES
/proc/kmsg

BUGS
Probably numerous. Well-formed context diffs appreciated.

AUTHOR
Dr. Greg Wettstein (greg%wind.uucp@plains.nodak.edu), Enjellic Systems Development, Oncology Research Division
Computing Facility, Roger Maris Cancer Center, Fargo, ND 58122.

Version 1.1, 28 January 1994

lpc
lpc—Line printer control program.

SYNOPSIS
lpc [command [argument ...]]

DESCRIPTION
lpc is used by the system administrator to control the operation of the line printer system. For each line printer configured in
/etc/printcap, lpc may be used to

■ Disable or enable a printer
■ Disable or enable a printer’s spooling queue
■ Rearrange the order of jobs in a spooling queue
■ Find the status of printers and their associated spooling queues and printer daemons

Without any arguments, lpc prompts for commands from the standard input. If arguments are supplied, lpc interprets the
first argument as a command and the remaining arguments as parameters to the command. The standard input may be
redirected, causing lpc to read commands from file. Commands may be abbreviated; the following is the list of recognized
commands:

? [command ...]help [command ...] Print a short description of each command specified in the argument
list or, if no arguments are given, a list of the recognized commands.

Ic abort No all - printer Terminate an active spooling daemon on the local host immediately
and then disable printing (preventing new daemons from being
started by lpr) for the specified printers.

clean No all - printer Remove any temporary files, data files, and control files that cannot
be printed (that is, they do not form a complete printer job) from the
specified printer queues on the local machine.

disable No all - printer Turn the specified printer queues off. This prevents new printer jobs
from being entered into the queue by lpr.

lpc

Part VIII: Administration and Privileged Commands1318

Ic down No all - printer message ... Turn the specified printer queue off, disable printing, and put message
in the printer status file. The message doesn’t need to be quoted; the
remaining arguments are treated like echo(1). This is usually used to
take a printer down and let others know why lpq(1) indicates the
printer is down and print the status message.

enable No all -- printer Enable spooling on the local queue for the listed printers. This allows
lpr(1) to put new jobs in the spool queue.

exit, quit Exit from lpc.

restart all - printer Attempt to start a new printer daemon. This is useful when some
abnormal condition causes the daemon to die unexpectedly leaving
jobs in the queue. lpq reports that there is no daemon present when
this condition occurs. If the user is the super-user, try to abort the
current daemon first (that is, kill and restart a stuck daemon).

start all - printer Enable printing and start a spooling daemon for the listed printers.

status No all - printer Display the status of daemons and queues on the local machine.

stop all - printer Stop a spooling daemon after the current job completes and disable
printing.

topq printer [jobnum ...] [user ...] Place the jobs in the order listed at the top of the printer queue.

up all - printer Enable everything and start a new printer daemon. Undoes the effects
of down.

FILES
/etc/printcap printer description file

/var/spool/* spool directories

/var/spool/*/lock lock file for queue control

SEE ALSO
lpd(8), lpr(1), lpq(1), lprm(1), printcap(5)

DIAGNOSTICS
?Ambiguous command Abbreviation matches more than one command.

?Invalid command No match was found.

?Privileged command Command can be executed by root only.

HISTORY
The lpc command appeared in BSD 4.2.

BSD 4.2, 16 March 1991

lpd
lpd—Line printer spooler daemon.

SYNOPSIS
lpd [-l] [port#]

DESCRIPTION
lpd is the line printer daemon (spool area handler) and is usually invoked at boot time from the rc(8) file. It makes a single
pass through the printcap(5) file to find out about the existing printers and prints any files left after a crash. It then uses the
system calls listen(2) and accept(2) to receive requests to print files in the queue, transfer files to the spooling area, display

1319

the queue, or remove jobs from the queue. In each case, it forks a child to handle the request so the parent can continue to
listen for more requests.

Available options:

-l The -l flag causes lpd to log valid requests received from the network. This can be useful for
debugging purposes.

port# The Internet port number used to rendezvous with other processes is usually obtained with
getservbyname(3) but can be changed with the port# argument.

Access control is provided by two means. First, all requests must come from one of the machines listed in the file /etc/
hosts.equiv or /etc/hosts.lpd. Second, if the rs capability is specified in the printcap entry for the printer being accessed,
lpr requests are only honored for those users with accounts on the machine with the printer.

The file minfree in each spool directory contains the number of disk blocks to leave free so that the line printer queue won’t
completely fill the disk. The minfree file can be edited with your favorite text editor.

The daemon begins processing files after it has successfully set the lock for exclusive access (described later) and scans the
spool directory for files beginning with cf. Lines in each cf file specify files to be printed or non-printing actions to be
performed. Each such line begins with a key character to specify what to do with the remainder of the line:

J Job name. String to be used for the job name on the burst page.

C Classification. String to be used for the classification line on the burst page.

L Literal. The line contains identification info from the password file and causes the banner page
to be printed.

T Title. String to be used as the title for pr(1).

H Host name. Name of the machine where lpr was invoked.

P Person. Login name of the person who invoked lpr. This is used to verify ownership by lprm.

M Send mail to the specified user when the current print job completes.

f Formatted file. Name of a file to print which is already formatted.

l Like f but passes control characters and does not make page breaks.

p Name of a file to print using pr(1) as a filter.

t Troff file. The file contains troff(1) output (cat phototypesetter commands).

n Ditroff file. The file contains device independent troff output.

r DVI file. The file contains Tex l output DVI format from Standford.

g Graph file. The file contains data produced by plot(3).

c Cifplot file. The file contains data produced by cifplot.

v The file contains a raster image.

r The file contains text data with FORTRAN carriage control characters.

1 Troff font R. Name of the font file to use instead of the default.

2 Troff font I. Name of the font file to use instead of the default.

3 Troff font B. Name of the font file to use instead of the default.

4 Troff font S. Name of the font file to use instead of the default.

W Width. Changes the page width (in characters) used by pr(1) and the text filters.

I Indent. The number of characters to indent the output by (in ASCII).

U Unlink. Name of file to remove upon completion of printing.

N Filename. The name of the file that is being printed or a blank for the standard input (when lpr
is invoked in a pipeline).

If a file cannot be opened, a message is logged via syslog(3) using the LOG LPR facility. lpd tries up to 20 times to reopen a file
it expects to be there, after which it skips the file to be printed.

lpd

Part VIII: Administration and Privileged Commands1320

lpd uses flock(2) to provide exclusive access to the lock file and to prevent multiple daemons from becoming active
simultaneously. If the daemon should be killed or die unexpectedly, the lock file need not be removed. The lock file is kept
in a readable ASCII form and contains two lines. The first is the process ID of the daemon and the second is the control
filename of the current job being printed. The second line is updated to reflect the current status of lpd for the programs
lpq(1) and lprm(1).

FILES
/etc/printcap Printer description file

/var/spool/* Spool directories

/var/spool/*/minfree Minimum free space to leave

/dev/lp* Line printer devices

/dev/printer Socket for local requests

/etc/hosts.equiv Lists machine names allowed printer access

/etc/hosts.lpd Lists machine names allowed printer access but not under same administrative control

SEE ALSO
lpc(8), pac(1), lpr(1), lpq(1), lprm(1), syslog(3), printcap(5)

4.2 BSD Line Printer Spooler Manual

HISTORY
An lpd daemon appeared in Version 6, AT&T UNIX.

BSD 4.2, 16 March 1991

MAKEDEV
MAKEDEV—Creates and maintains filesystem device entries.

SYNOPSIS
MAKEDEV [-vcdnhV] device or device-group names

DESCRIPTION
MAKEDEV is used to maintain the special filesystem entries found in /dev. It creates, or optionally removes, one or more device
entries. The names and device numbers are defined in the devinfo file (q.v.); site-specific configuration is found in the file
MAKEDEV.cfg. MAKEDEV itself has no knowledge of device information.

OPTIONS
-v Verbose mode; print out exactly what’s being done.

-c Create; create the specified devices (default).

-d Delete; remove the specified devices instead of creating them.

-n Do nothing; only print what would be done. Implies -v as well.

-h Print a usage message.

-V Print the version string.

The following targets are special:

update Run MAKEDEV in update mode. This reads the list of devices currently available from
/proc/devices and updates all entries in /dev to match the device numbers found there.

1321

local Run MAKEDEV to create local devices. This option is obsolete and just prints a warning message.
Use devinfo.local and makedev.cfg to achieve the same results.

FILES
/etc/devinfo Device information

/usr/local/etc/devinfo.local Local device information

/etc/devinfo.local Alternate location for local device information

/etc/makedev.cfg Configuration file

MAKEDEV.cache Cached data for update

/proc/devices The kernel’s list of current devices

AUTHOR
David A. Holland (dholland@husc.harvard.edu). Based on the older MAKEDEV shell script written by Nick Holloway. Addi-
tional ideas were contributed by Rik Faith.

NOTES
The LALR(1) parser generator used to build makedev.c from makedev.syn is a commercial product. You won’t be able to do a
complete rebuild unless you have it.

SEE ALSO
devinfo(5), makedev.cfg(5)

Version 1.5, March 1995

MAKEDEV
MAKEDEV—Creates devices.

SYNOPSIS
cd dev; ./MAKEDEV -V
cd dev; ./MAKEDEV [-n] [-v] update
cd dev; ./MAKEDEV [-n] [-v] [-d] device ...

DESCRIPTION
MAKEDEV is a script that creates the devices in /dev used to interface with drivers in the kernel.

Note that programs giving the error ENOENT: No such file or directory usually means that the device file is missing, whereas
ENODEV: No such device usually means the kernel does not have the driver configured or loaded.

OPTIONS
-V Print out version (actually RCS version information) and exit.

-n Do not actually update the devices; just print the actions that would be performed.

-d Delete the devices. The main use for this flag is by MAKEDEV itself.

-v Be verbose. Print out the actions as they are performed. This is the same output as produced by -n.

CUSTOMIZATION
Because there is currently no standardization in what names are used for system users and groups, it is possible that you
might need to modify MAKEDEV to reflect your site’s settings. Near the top of the file is a mapping from device type to user,
group, and permissions. (For example, all CD-ROM devices are set from the $cdrom variable.) If you want to change the
defaults, this is the section to edit.

MAKEDEV

Part VIII: Administration and Privileged Commands1322

DEVICES

General Options

update This only works on kernels that have /proc/interrupts (introduced during 1.1.x). This file is
scanned to see what devices are currently configured into the kernel, and this is compared with
the previous settings stored in the file called DEVICES. Devices that are new since then or have a
different major number are created, and those that are no longer configured are deleted.

generic Create a generic subset of devices. This is the standard devices, plus floppy drives, various hard
drives, pseudo-terminals, console devices, basic serial devices, busmice, and printer ports.

%std Standard devices. These are mem, access to physical memory; kmem, access to kernel virtual
memory; null, null device (infinite sink); port, access to I/O ports; zero, null byte source
(infinite source); core, symlink to /proc/kcore (for kernel debugging); full, always returns
ENOSPACE on write; ram, ramdisk; tty, to access the controlling tty of a process.

local This simply runs MAKEDEV.local. This is a script that can create any local devices.

Virtual Terminals

console This creates the devices associated with the console. This is the virtual terminals ttyx, where x
can be from 0 though 63. The device tty0 is the currently active vt and is also known as console.
For each vt, there are two devices, vcsx and vcsax, which are used to generate screen-dumps of
the vt (the vcsx is just the text and vcsax includes the attributes).

Serial Devices

ttyS{0..63} Serial ports and corresponding dial-out device. For device ttySx, there is also the device cuax,
which is used to dial out with. This can avoid the need for cooperative locks in simple
situations.

cyclades Dial-in and dial-out devices for the cyclades intelligent I/O serial card. The dial in device is
ttyCx and the corresponding dial-out device is cubx. By default, devices for 7 lines are created,
but this can be changed to 15 by removing the comment.

Pseudo Terminals

pty[p-s] Each possible argument will create a bank of 16 master and slave pairs. The current kernel (1.2)
is limited to 64 such pairs. The master pseudo-terminals are pty[p-s][0-9a-f] and the slaves are
tty[p-s][0-9a-f].

Parallel Ports

lp Standard parallel ports. The devices are created lp0, lp1, and lp2. These correspond to ports at
0x3bc, 0x378, and 0x278. Hence, on some machines, the first printer port may actually be lp1.

par Alternative to lp. Ports are named parx instead of lpx.

Bus Mice

busmice The various bus mice devices. This creates the following devices: logimouse (Logitech bus
mouse), psmouse (PS/2-style mouse), msmouse (Microsoft Inport bus mouse), atimouse (ATI XL
bus mouse) and jmouse (J-mouse).

Joystick Devices

js Joystick. Creates js0 and js1.

Disk Devices

fd[0-7] Floppy disk devices. The device fdx is the device that autodetects the format, and the additional
devices are fixed format (whose size is indicated in the name). The other devices are named as

1323

fdxLn. The single letter L identifies the type of floppy disk (d = 5.25" DD, h = 5.25" HD,
D =3.5" DD, H = 3.5" HD, E = 3.5" ED). The number n represents the capacity of that format
in KB. Thus the standard formats are fdxd360, fdxh1200, fdxD720, fdxH1440, and fdxE2880.

For more information, see Alain Knaff’s fdutils pack-age.

Devices fd0* through fd3* are floppy disks on the first controller, and devices fd4* through fd7*
are floppy disks on the second controller.

hd[a-d] AT hard disks. The device hdx provides access to the whole disk, with the partitions being
hdx[0-20]. The four primary partitions are hdx1 through hdx4, with the logical partitions being
numbered from hdx5 though hdx20. (A primary partition can be made into an extended
partition, which can hold four logical partitions). By default, only the devices for four logical
partitions are made. The others can be made by uncommenting them.

Drives hda and hdb are the two on the first controller. If using the new IDE driver (rather than
the old HD driver), then hdc and hdd are the two drives on the secondary controller. These
devices can also be used to access IDE CD-ROMs if using the new IDE driver.

xd[a-d] XT hard disks. Partitions are the same as IDE disks.

sd[a-h] SCSI hard disks. The partitions are similar to the IDE disks, but there is a limit of 11 logical
partitions (sdx5 through sdx15). This is to allow 8 SCSI disks.

loop Loopback disk devices. These allow you to use a regular file as a block device. This means that
images of filesystems can be mounted and used as normal. This creates 8 devices loop0 through
loop7.

Tape Devices

st[0-7] SCSI tapes. This creates the rewinding tape device stx and the non-rewinding tape device nstx.

qic QIC-80 tapes. The devices created are rmt8, rmt16, tape-d, and tape-reset.

ftape Floppy driver tapes (QIC-117). There are four methods of access depending on the floppy tape
drive. For each of the access methods 0, 1, 2, and 3, the devices rftx (rewinding) and nrftx
(non-rewinding) are created. For compatibility, devices ftape and nftape are symlinks to rft0
and nrft0.

CD-ROM Devices

scd[0-7] SCSI CD players.

sonycd Sony CDU-31A CD player.

mcd Mitsumi CD player.

cdu535 Sony CDU-535 CD player.

lmscd LMS/Philips CD player.

sbpcd{,1,2,3} SoundBlaster CD player. The kernel is capable of supporting 16 CD-ROMs, each of which is
accessed as sbpcd[0-9a-f]. These are assigned in groups of four to each controller. sbpcd is a
symlink to sbpcd0.

Scanner

logiscan Logitech ScanMan32 and ScanMan 256.

m105scan Mustek M105 Handscanner.

ac4096 A4Tek Color Handscanner.

Audio

audio This creates the audio devices used by the sound driver. These include mixer, sequencer, dsp,
and audio.

pcaudio Devices for the PC Speaker sound driver. These are pcmixer, pxsp, and pcaudio.

MAKEDEV

Part VIII: Administration and Privileged Commands1324

Miscellaneous

sg Generic SCSI devices. The devices created aresg0 through sg7. These allow arbitrary commands
to be sent to any SCSI device. This allows for querying information about the device or
controlling SCSI devices that are not one of disk, tape, or CD-ROM (for example, a scanner or
writable CD-ROM).

fd To allow an arbitrary program to be fed input from file descriptor x, use /dev/fd/x as the
filename. This also creates BR/dev/stdin, BR/dev/stdout, and BR/dev/stderr. (Note that these are
just symlinks into /proc/self/fd.)

ibcs2 Devices (and symlinks) needed by the IBCS2 emulation.

apm Devices for power management.

dcf Driver for DCF-77 radio clock.

helloworld Kernel modules demonstration device. See the modules source.

Network devices Linux used to have devices in /dev for controlling network devices, but that is no longer the
case. To see what network devices are known by the kernel, look at /proc/net/dev.

SEE ALSO
Linux Allocated Devices, maintained by H. Peter Anvin (Peter.Anvin@linux.org)

AUTHOR
Nick Holloway

Linux, 14 August 1994

mke2fs
mke2fs—Create a Linux second extended filesystem.

SYNOPSIS
mke2fs [-c | -l filename] [-b block-size] [-f fragment-size]
 [-i bytes-per-inode] [-m reserved-blocks-percentage] [-q][-v][-S]
 device [blocks-count]

DESCRIPTION
mke2fs is used to create a Linux second extended filesystem on a device (usually a disk partition). device is the special file
corresponding to the device (such as /dev/hdXX). blocks-count is the number of blocks on the device. If omitted, mke2fs
automatically figures the filesystem size.

OPTIONS
-b block-size Specify the size of blocks in bytes.

-c Check the device for bad blocks before creating the filesystem using a fast read-only
test.

-f fragment-size Specify the size of fragments in bytes.

-i bytes-per-inode Specify the bytes/inode ratio. mke2fs creates an inode for every bytes-per-inode bytes
of space on the disk. This value defaults to 4096 bytes. bytes-per-inode must be at
least 1024.

-l filename Read the bad blocks list from filename.

-m reserved- blocks-percentage Specify the percentage of reserved blocks for the super-user. This value defaults to 5
percent.

-q Quiet execution. Useful if mke2fs is run in a script.

-v Verbose execution.

1325

-S Write superblock and group descriptors only. This is useful if all the superblock and
backup superblocks are corrupted and a last-ditch recovery method is desired. It
causes mke2fs to reinitialize the superblock and group descriptors while not touching
the inode table and the block and inode bitmaps. The e2fsck program should be run
immediately after this option is used, and there is no guarantee that any data will be
salvageable.

AUTHOR
This version of mke2fs has been written by Theodore T’so (tytso@mit.edu).

BUGS
mke2fs accepts the -f option but currently ignores it because the second extended filesystem does not support fragments yet.
There may be some other bugs. Please report them to the author.

AVAILABILITY
mke2fs is available for anonymous FTP from ftp.ibp.fr and tsx-11.mit.edu in /pub/linux/packages/ext2fs.

SEE ALSO
badblocks(8), dumpe2fs(8), e2fsck(8), tune2fs(8)

Version 0.5b, November 1994

mkfs
mkfs—Build a Linux filesystem.

SYNOPSIS
mkfs [-V][-t fstype][fs-options] filesys [blocks]

DESCRIPTION
mkfs is used to build a Linux filesystem on a device, usually a hard disk partition. filesys is either the device name (such as /
dev/hda1, /dev/sdb2) or the mount point (such as /, /usr, /home) for the filesystem. blocks is the number of blocks to be used
for the filesystem.

The exit code returned by mkfs is 0 on success and 1 on failure.

In actuality, mkfs is simply a front end for the various filesystem builders (mkfs.fstype) available under Linux. The filesystem-
specific builder is searched for in /etc/fs first, then in /etc, and finally in the directories listed in the PATH environment
variable. Please see the filesystem-specific builder manual pages for further details.

OPTIONS
-V Produce verbose output, including all filesystem-specific commands that are executed.

Specifying this option more than once inhibits execution of any filesystem-specific commands.
This is really only useful for testing.

-tfstype Specifies the type of filesystem to be built. If not specified, the type is deduced by searching for
filesys in /etc/fstab and using the corresponding entry. If the type cannot be deduced, the
default filesystem type (currently minix) is used.

fs-options Filesystem-specific options to be passed to the real filesystem builder. Although not guaranteed,
the following options are supported by most filesystem builders.

-c Check the device for bad blocks before building the filesystem.

-lfilename Read the bad blocks list from filename.

-v Produce verbose output.

mkfs

Part VIII: Administration and Privileged Commands1326

BUGS
All generic options must precede and not be combined with filesystem-specific options. Some filesystem-specific programs do
not support the -v (verbose) option nor return meaningful exit codes. Also, some filesystem-specific programs do not
automatically detect the device size and require the blocks parameter to be specified.

AUTHORS
David Engel (david@ods.com), Fred N. van Kempen (waltje@uwalt.nl.mugnet.org), and Ron Sommeling (sommel@sci.kun.nl).
The manual page was shamelessly adapted from Remy Card’s version for the ext2 filesystem.

SEE ALSO
fsck(8), mkfs.minix(8), mkfs.ext(8), mkfs.ext2(8), mkfs.xiafs(8)

Version 1.9, June 1995

mkfs
mkfs—Make a Linux MINIX filesystem.

SYNOPSIS
mkfs [-c] [-nnamelength] [–i inodecount] device size-in-blocks
mkfs [-l filename] device size-in-blocks

DESCRIPTION
mkfs creates a Linux MINIX filesystem on a device (usually a disk partition).

The device is usually of the following form:

/dev/hda[1-8]
/dev/hdb[1-8]
/dev/sda[1-8]
/dev/sdb[1-8]

The size-in-blocks parameter is the desired size of the filesystem in blocks. This information can be determined from the
fdisk(8) program. Only block counts strictly greater than 10 and strictly less than 65,536 are allowed.

OPTIONS
-c Check the device for bad blocks before creating the filesystem. If any are found, the count is

printed.

-nnamelength Specify the maximum length of filenames. No space is allowed between the -n and the
namelength. Currently, the only allowable values are 14 and 30. 30 is the default.

-i inodecount Specify the number of inodes for the filesystem.

-l filename Read the bad blocks list from filename. The file has one bad block number per line. The count
of bad blocks read is printed.

EXIT CODES
The exit code returned by mkfs.minix is one of the following:

0 No errors

8 Operational error

16 Usage or syntax error

SEE ALSO
fsck(8), mkefs(8), efsck(8), reboot(8)

1327

AUTHOR
Linus Torvalds (torvalds@cs.helsinki.fi). Error code values by Rik Faith (faith@cs.unc.edu). Inode request feature by Scott
Heavner (sdh@po.cwru.edu). Support for the filesystem valid flag by Dr. Wettstein (greg%wind.uucp@plains.nodak.edu).

Check to prevent mkfs of mounted filesystem and boot sector clearing by Daniel Quinlan (quinlan@yggdrasil.com).

Linux 0.99, 10 January 1994

mklost+found
mklost+found—Create a lost+found directory on a mounted Linux second extended filesystem.

SYNOPSIS
mklost+found

DESCRIPTION
mklost+found is used to create a lost+found directory in the current working directory on a Linux second extended filesystem.
mklost+found pre-allocates disk blocks to the directory to make it usable by e2fsck.

OPTIONS
There are none.

AUTHOR
mklost+found was written by Remy Card (card@masi.ibp.fr), the developer and maintainer of the ext2 fs.

BUGS
There are none. :-)

AVAILABILITY
mklost+found is available for anonymous FTP from ftp.ibp.fr and tsx-11.mit.edu in /pub/linux/packages/ext2fs.

SEE ALSO
e2fsck(8), mke2fs(8)

Version 0.5b, November 1994

mkswap
mkswap—Set up a Linux swap area.

SYNOPSIS
mkswap [-c] device [size-in-blocks]

DESCRIPTION
mkswap sets up a Linux swap area on a device or in a file.

The device is usually of the following form:

/dev/hda[1-8]
/dev/hdb[1-8]
/dev/sda[1-8]
/dev/sdb[1-8]

mklost+found

Part VIII: Administration and Privileged Commands1328

The size-in-blocks parameter is the desired size of the filesystem in blocks. This information is determined automatically by
mkswap if it is omitted. Block counts are rounded down so that the total size is an integer multiple of the machine’s page size.
Only block counts in the range MINCOUNT..MAXCOUNT are allowed. If the block count exceeds the MAXCOUNT, it is truncated to
that value and a warning message is issued.

The MINCOUNT and MAXCOUNT values for a swap area are

MINCOUNT = 10 * PAGE_SIZE / 1024

MAXCOUNT = (PAGE_SIZE-10)*8 *PAGE_SIZE / 1024

For example, on a machine with 4KB pages (such as x86), we get

MINCOUNT = 10 * 4096 / 1024 = 40

MAXCOUNT = (4096 - 10) * 8 * 4096 / 1024 = 130752

As each block is 1KB, the swap area in this example could have a size that is anywhere in the range from 40KB to
127.6875MB.

If you don’t know the page size that your machine uses, you may be able to look it up with cat /proc/cpuinfo.

The reason for the limit on MAXCOUNT is that a single page is used to hold the swap bitmap at the start of the swap area, where
each bit represents a single page. The reason for the -10, is that the signature is SWAP-SPACE – 10 characters.

To set up a swap file, it is necessary to create that file before running mkswap. A sequence of commands similar to the
following is reasonable for this purpose:

dd if=/dev/zero of=swapfile bs=1024 count=8192
mkswap swapfile 8192
sync
swapon swapfile

Note that a swap file must not contain any holes (so using cp(1) to create the file is not acceptable).

OPTIONS
-c Check the device for bad blocks before creating the filesystem. If any are found, the count

is printed. This option is meant to be used for swap partitions only and should not be
used for regular files! To make sure that regular files do not contain bad blocks, the
partition that contains the regular file should have been created with mkfs -c.

SEE ALSO
fsck(8), mkfs(8), fdisk(8)

AUTHOR
Linus Torvalds (torvalds@cs.helsinki.fi)

Linux 1.0, 8 February 1995

mount, umount
mount, umount—Mount and dismount filesystems.

SYNOPSIS
mount [-afrwuvn] [-t vfstype]
mount [-frwuvn] [-o remount [,...]] special | node
mount [-frwun] [-t vfstype] [-o options] special | node
umount [-an] [-t vfstype]
umount special | node

1329

DESCRIPTION
The mount command calls the mount(2) system call to prepare and graft a special device onto the filesystem tree at the point
node. If either special or node are not provided, the appropriate information is taken from the fstab(5) file. The special
keyword none can be used instead of a path or node specification. This is useful when mounting the proc filesystem.

The system maintains a list of currently mounted filesystems. If no arguments are given to mount, this list is printed.

Options available for the mount command:

-f Causes everything to be done except for the actual system call; if it’s not obvious, this
“fakes” mounting the filesystem. This option is useful in conjunction with the -v flag to
determine what the mount command is trying to do.

-o Options are specified with a -o flag followed by a comma-separated string of options.
Note that many of these options are only useful when they appear in the /etc/fstab file.
The following options apply to any filesystem that is being mounted:

async All I/O to the filesystem should be done asynchronously.

auto Can be mounted with the -a option.

defaults Use default options: rw, suid, dev, exec, auto, nouser, and async.

dev Interpret character or block special devices on the filesystem.

exec Permit execution of binaries.

noauto Can only be mounted explicitly (that is, the -a option does not cause the filesystem to
be mounted).

nodev Do not interpret character or block special devices on the filesystem. This option is
useful for a server that has filesystems containing special devices for architectures other
than its own.

noexec Do not allow execution of any binaries on the mounted filesystem. This option is useful
for a server that has filesystems containing binaries for architectures other than its own.

nosuid Do not allow set-user-identifier or set-group-identifier bits to take effect.

nouser Forbid an ordinary (that is, non-root) user to mount the filesystem.

remount Attempt to remount an already-mounted filesystem. This is commonly used to change
the mount flags for a filesystem, especially to make a read-only filesystem writable.

ro Mount the filesystem read-only.

rw Mount the filesystem read-write.

suid Allow set-user-identifier or set-group-identifier bits to take effect.

sync All I/O to the filesystem should be done synchronously.

user Allow an ordinary user to mount the filesystem. Ordinary users always have the
following options activated: noexec, nosuid, and nodev (unless overridden by the super-
user by using, for example, the following option line: user,exec,dev,suid.

The following options apply only to certain filesystems:

case=value For the hpfs filesystem, specify case as lower or asis.

check=value Tells the ext2 filesystem kernel code to do some more checks while the filesystem is
mounted. Currently (0.99.15), the following values can be specified with this option:

none No extra check is performed by the kernel code.

normal The inodes and blocks bitmaps are checked when the filesystem is mounted (this is the
default).

strict In addition to the normal checks, block deallocation checks that the block to free is in
the data zone.

check=value For the msdos filesystem, three different levels of specificity can be chosen:

mount, unmount

Part VIII: Administration and Privileged Commands1330

relaxed Uppercase and lowercase are accepted and equivalent, long name parts are truncated (for
example, verlongname.foobar becomes verylong.foo), leading and embedded spaces are
accepted in each name part (name and extension).

normal Like relaxed but many special characters (*, ?, <, spaces, and so on) are rejected. This is
the default.

strict Like normal, but names may not contain long parts and special characters that are
sometimes used on Linux but are not accepted by MS-DOS are rejected (+, =, spaces,
and so on).

conv=value For the msdos, hpfs, and iso9660 filesystems, specify file conversion as binary, text, or
auto. The iso9660 filesystem also allows value to be mtext.

The msdos filesystem can perform CRLF<–>NL (MS-DOS text format to UNIX text
format) conversion in the kernel. The following conversion modes are available:

binary No translation is performed. This is the default.

text CRLF<–>NL translation is performed on all files.

auto CRLF<–>NL translation is performed on all files that don’t have a well-known binary
extension. The list of known extensions can be found at the beginning of
fs/msdos/misc.c (as of 09913r, the list is exe, com, bin, app, sys, drv, ovl, ovr, obj, lib,
dll, pif, arc, zip, lha, lzh, zoo, tar, z, arj, tz, taz, tzp, tpz, gif, bmp, tif, gl, jpg, pcx,
tfm, vf, gf, pk, pxl, and dvi).

Programs that do computed lseeks won’t like in-kernel text conversion.

For filesystems mounted in binary mode, a conversion tool (fromdos/todos) is available.

block=value For the iso9660 filesystem, set the block size.

bsdgroups See grpid.

cruft For the iso9660 filesystem, set the cruft flag to y. This option is available because there
are buggy premastering programs out there that leave junk in the top byte of the file
size. This option clears the top byte but restricts files to 16MB maximum in the process.

debug For the msdos filesystem, turn on the debug flag. A version string and a list of filesystem
parameters is printed. (These data are also printed if the parameters appear to be
inconsistent.)

debug For the ext2fs filesystem, cause the kernel code to display the filesystem parameters
when the filesystem is mounted.

errors=value For the ext2fs filesystem, specify the error behavior:

continue No special action is taken on errors (except marking the filesystem as erroneous). This is
the default.

remount, ro The filesystem is remounted read only, and subsequent writes are refused.

panic When an error is detected, the system panics.

fat=value For the msdos filesystem, specify either a 12-bit fat or a 16-bit fat. This overrides the
automatic FAT type detection routine. Use with caution!

gid=value For the msdos and hpfs filesystems, give every file a gid equal to value.

B grpid Causes the ext2fs to use the BSD behavior when creating files: Files are created with the
group ID of their parent directory.

map=value For the iso9660 filesystem, specify mapping as off or normal. In general, non-Rock
Ridge discs have all the filenames in uppercase, and all the filenames have a ;1
appended. The map option strips the ;1 and makes the name lowercase. (See also
norock.)

nocheck For the ext2fs, turns off checking (see check=none).

nogrpid Causes the ext2fs to use the System V behavior when creating files. Files are created
with the group ID of the creating process, unless the setgid bit is set on the parent
directory. This is the default for all Linux filesystems.

1331

norock Normal iso9600 filenames appear in a 8.3 format (that is, DOS-like restrictions on
filename length), and in addition, all characters are in uppercase. Also there is no field
for file ownership, protection, number of links, provision for block/character devices,
and so on.

Rock Ridge is an extension to iso9660 that provides all of these UNIX-like features.
Basically, there are extensions to each directory record that supply all of the additional
information, and when Rock Ridge is in use, the filesystem is indistinguishable from a
normal UNIX filesystem (except that it is read only, of course).

The norock switch disables the use of Rock Ridge extensions, even if available. (See also
map.)

quiet For the msdos filesystem, turn on the quiet flag. Attempts to chown or chmod files do not
yield errors, although they fail. Use with caution!

sb=value For the ext2 filesystem, use an alternate superblock located at block value. value is
numbered in 1024-byte blocks. An ext2 filesystem usually has backups of the superblock
at blocks 1, 8193, 16385, and so on.

sysvgroups See nogrpid.

uid=value For the msdos and hpfs filesystems, give every file a uid equal to value.

umask=value For the msdos and hpfs filesystems, give every file a umask of value. The radix defaults to
octal.

The full set of options applied is determined by first extracting the options for the filesystem from the fstab table, then
applying any options specified by the -o argument, and finally applying the -r or -w option.

If the msdos filesystem detects an inconsistency, it reports an error and sets the filesystem to read only. The filesystem can be
made writable again by remounting it.

-r The filesystem object is to be mounted read only.

-t vfstype The argument following the -t is used to indicate the filesystem type. The filesystem
types that are currently supported are listed in linux/fs/filesystems.c: minux, ext, ext2,
xiafs, msdos, hpfs, proc, nfs, iso9660, sysv, xenix, coherent. Note that that last three are
equivalent and that xenix and coherent will be removed at some point in the future; use
sysv instead.

The type minix is the default. If no -t option is given, or if the auto type is specified, the
superblock is probed for the filesystem type (minix, ext, ext2, and xia are supported). If
this probe fails and /proc/filesystems exists, then all the filesystems listed are tried,
except for those labeled nodev (such as proc and nfs).

Note that the auto type may be useful for user-mounted floppies. For example, the mount
command mounts all filesystems except those of type msdos and ext:

mount -a -t nomsdos,ext

-v Verbose mode.

-w The filesystem object is to be read and write.

-n Mount without writing in /etc/mtab.

umount removes the special device grafted at point node from the filesystem tree.

Options for the umount command:

-a All of the filesystems described in /etc/mtab are unmounted.

-t vfstype Is used to indicate the actions should only be taken on filesystems of the specified type.
More than one type may be specified in a comma-separated list. The list of filesystem
types can be prefixed with no to specify the filesystem types on which no action should
be taken. (See example for the mount command.)

mount, unmount

Part VIII: Administration and Privileged Commands1332

FILES
/etc/fstab Filesystem table

/etc/mtab~ Lock file

/etc/mtab.tmp Temporary file

SEE ALSO
mount(2), umount(2), fstab(5), swapon(8)

BUGS
It is possible for a corrupted filesystem to cause a crash.

Some Linux filesystems don’t support -o synchronous (the ext2fs does support synchronous updates (a la BSD) when
mounted with the sync option).

The -o remount may not be able to change mount parameters (all ext2fs parameters, except sb, are changeable with a
remount, for example, but you can’t change gid or umask for the dosfs).

HISTORY
A mount command appeared in Version 6, AT&T UNIX.

AUTHORS AND CONTRIBUTORS
The Linux mount command has a long and continuing history. The following major releases are noted with the name of the
primary modifier:

0.97.3: Doug Quale (quale@saavik.cs.wisc.edu)

0.98.5: H.J. Lu (hlu@eecs.wsu.edu)

0.99.2: Rick Sladkey (jrs@world.std.com)

0.99.6: Rick Sladkey (jrs@world.std.com)

0.99.10: Stephen Tweedie (sct@dcs.ed.ac.uk)

0.99.14: Rick Sladkey (jrs@world.std.com)

(Filesystem-specific information added to man page on 27 November 1993 by Rik Faith with a lot of information and text
from the following filesystem authors: Werner Almesberger, Eric Youngdale, and Remy Card.)

Linux 1.1, 8 February 1995

mountd
mountd—NFS mount daemon.

SYNOPSIS
/usr/etc/rpc.mountd [\-f\--exports-file\][\-dhnprv\]
[\--debug\][\--exports-file=file\] [\--help\]
[\--allow-non-root\][\--re-export\][\--version\]

DESCRIPTION
The mountd program is an NFS mount daemon.

OPTIONS
-f or --exports-file This option specifies the exports file, listing the clients that this server is prepared to

serve and parameters to apply to each such mount (see exports(5)). By default, exports
are read from /etc/exports.

1333

-d or --debug Log each transaction verbosely to the syslog.

-h or --help Provide a short help summary.

-n or --allow-non-root Allow incoming mount requests to be honored even if they do not originate from
reserved IP ports. Some older NFS client implementations require this. Some newer
NFS client implementations don’t believe in reserved port checking.

-p or --promiscuous Put the server into promiscuous mode where it will serve any host on the network.

-r or --re-export Allow imported NFS filesystems to be exported. This can be used to turn a machine
into an NFS multiplier. Caution should be used when reexporting loopback NFS
mounts because reentering the mount point results in deadlock between the NFS client
and the NFS server.

-v or --version Report the current version number of the program.

SEE ALSO
exports(5), nfsd(8), ugidd(8C)

BUGS
The current implementation (still) does not keep track of remote mounts.

13 October 1993

named-xfer
named-xfer—Ancillary agent for inbound zone transfers.

SYNOPSIS
named-xfer -z zone_to_transfer -f db_file -s serial_no [-d debuglevel]
[-l debug_log_file][-t trace_file][-p port#][-S] nameserver

DESCRIPTION
named-xfer is an ancillary program executed by named(8) to perform an inbound zone transfer. It is rarely executed directly
and only by system administrators who are trying to debug a zone transfer problem. See RFCs 1033, 1034, and 1035 for
more information on the Internet name-domain system.

Options are

-z Specifies the name of the zone to be transferred.

-f Specifies the name of the file into which the zone should be dumped when it is received
from the primary server.

-s Specifies the serial number of the current copy of this zone. If the SOA RR you get from
the primary server does not have a serial number higher than this, the transfer is aborted.

-d Print debugging information. A number after the d determines the level of messages
printed.

-l Specifies a log file for debugging messages. The default is system-dependent but is
usually in /var/tmp or /usr/tmp. Note that this only applies if -d is also specified.

-t Specifies a trace file that contains a protocol trace of the zone transfer. This is probably
only of interest to people debugging the nameserver itself.

-p Use a different port number. The default is the standard port number as returned by
getservbyname(3) for service “domain”.

-S Perform a restricted transfer of only the SOA, NS records, and glue A records for the
zone. The SOA record is not loaded by named but is used to determine when to verify
the NS records. See the stubs directive in named(8) for more information.

named-xfer

Part VIII: Administration and Privileged Commands1334

Additional arguments are taken as nameserver addresses in so-called “dotted-quad” syntax only; no hostnames are allowed
here. At least one address must be specified. Any additional addresses are tried in order if the first one fails to transfer
successfully.

SEE ALSO
named(8), resolver(3), resolver(5), hostname(7), RFC 882, RFC 883, RFC 973, RFC 974, RFC 1033, RFC 1034, RFC
1035, RFC 1123, Name Server Operations Guide for BIND

26 June 1993

named
named—Internet domain nameserver.

SYNOPSIS
named [-d debuglevel][-p port#[/localport#]][{–b} bootfile][-q][-r]

DESCRIPTION
named is the Internet domain nameserver. See RFCs 1033, 1034, and 1035 for more information on the Internet name-
domain system. Without any arguments, named reads the default boot file /etc/named.boot, reads any initial data, and listens
for queries.

Options are

-d Print debugging information. A number after the d determines the level of messages
printed.

-p Use nonstandard port numbers. The default is the standard port number as returned by
getservbyname(3) for service “domain”. The argument can specify two port numbers
separated by a slash (/), in which case the first port is that used when contacting remote
servers and the second one is the service port bound by the local instance of named. This
is used mostly for debugging purposes.

-b Use an alternate boot file. This is optional and allows you to specify a file with a leading
dash.

-q Trace all incoming queries if named has been compiled with QRYLOG defined. Note that
this option is deprecated in favor of the boot file directive options query-log.

-r Turns recursion off in the server. Answers can come only from local (primary or
secondary) zones. This can be used on root servers. Note that this option is deprecated
in favor of the boot file directive options no-recursion.

Any additional argument is taken as the name of the boot file. If multiple boot files are specified, only the last is used.

The boot file contains information about where the nameserver is to get its initial data. Lines in the boot file cannot be
continued on subsequent lines. The following is a small example:

;
; boot file for name server
;
directory /usr/local/adm/named
; type domain source host/file backup file
cache . root.cache
primary Berkeley.EDU berkeley.edu.zone
primary 32.128.IN-ADDR.ARPA ucbhosts.rev
secondary CC.Berkeley.EDU 128.32.137.8 128.32.137.3 cc.zone.bak
secondary 6.32.128.IN-ADDR.ARPA 128.32.137.8 128.32.137.3 cc.rev.bak
primary 0.0.127.IN-ADDR.ARPA localhost.rev

1335

forwarders 10.0.0.78 10.2.0.78
limit transfers-in 10
limit datasize 64M
options forward-only query-log fake-iquery

The directory line causes the server to change its working directory to the directory specified. This can be important for the
correct processing of $INCLUDE files in primary zone files.

The cache line specifies that data in root.cache is to be placed in the backup cache.

Its main use is to specify data such as locations of root domain servers. This cache is not used during normal operation, but is
used as “hints” to find the current root servers. The file root.cache is in the same format as berkeley.edu.zone. There can be
more than one cache file specified. The root.cache file should be retrieved periodically from FTP.RS.INTERNIC.NET because it
contains a list of root servers, and this list changes periodically.

The first sample primary line states that the file berkeley.edu.zone contains authoritative data for the Berkeley.EDU zone. The
file berkeley.edu.zone contains data in the master file format described in RFC 883. All domain names are relative to the
origin, in this case, Berkeley.EDU (see below for a more detailed description). The second primary line states that the file
ucbhosts.rev contains authoritative data for the domain 32.128.IN-ADDR.ARPA, which is used to translate addresses in network
128.32 to hostnames. Each master file should begin with an SOA record for the zone (see below).

The first sample secondary line specifies that all authoritative data under CC.Berkeley.EDU is to be transferred from the
nameserver at 128.32.137.8. If the transfer fails, it tries 128.32.137.3 and continues trying the addresses, up to ten, listed on
this line. The secondary copy is also authoritative for the specified domain. The first non-dotted-quad address on this line is
taken as a filename in which to back up the transferred zone. The nameserver loads the zone from this backup file if it exists
when it boots, providing a complete copy even if the master servers are unreachable. Whenever a new copy of the domain is
received by automatic zone transfer from one of the master servers, this file is updated. If no filename is given, a temporary
file is used and deleted after each successful zone transfer. This is not recommended because it is a needless waste of
bandwidth. The second sample secondary line states that the address-to-hostname mapping for the subnet 128.32.136 should
be obtained from the same list of master servers as the previous zone.

The forwarders line specifies the addresses of sitewide servers that will accept recursive queries from other servers. If the boot
file specifies one or more forwarders, then the server sends all queries for data not in the cache to the forwarders first. Each
forwarder is asked in turn until an answer is returned or the list is exhausted. If no answer is forthcoming from a forwarder,
the server continues as it would have without the forwarders line unless it is in forward-only mode. The forwarding facility is
useful to cause a large sitewide cache to be generated on a master and to reduce traffic over links to outside servers. It can also
be used to allow servers to run that do not have direct access to the Internet but want to look up exterior names anyway.

The slave line (deprecated) is allowed for backward compatibility. Its meaning is identical to options forward-only.

The sortlist line can be used to indicate networks that are to be preferred over other networks. Queries for host addresses
from hosts on the same network as the server receive responses with local network addresses listed first, then addresses on the
sort list, and then other addresses.

The xfrnets directive (not shown) can be used to implement primitive access control. If this directive is given, your
nameserver only answers zone transfer requests from hosts that are on networks listed in your xfrnets directives. This
directive may also be given as tcplist for compatibility with older, interim servers.

The include directive (not shown) can be used to process the contents of some other file as though they appeared in place of
the include directive. This is useful if you have a lot of zones or if you have logical groupings of zones that are maintained by
different people. The include directive takes one argument, the name of the file whose contents are to be included. No
quotes are necessary around the filename.

The bogusns directive (not shown) tells BIND that no queries are to be sent to the specified nameserver addresses (which are
specified as dotted quads, not as domain names). This is useful when you know that some popular server has bad data in a
zone or cache, and you want to avoid contamination while the problem is being fixed.

The limit directive can be used to change BIND’s internal limits, some of which (datasize, for example) are implemented
by the system and others (such as transfers-in) by BIND itself. The number following the limit name can be scaled by

named

Part VIII: Administration and Privileged Commands1336

postfixing a k, m, or g for kilobytes, megabytes, and gigabytes respectively. datasize’s argument sets the process data size
enforced by the kernel. Note that not all systems provide a call to implement this; on such systems, the use of the datasize
parameter of limit results in a warning message. transfers-in’s argument is the number of named-xfer subprocesses that
BIND will spawn at any one time. transfers-per-ns’s argument is the maximum number of zone transfers to be simulta-
neously initiated to any given remote nameserver.

The options directive introduces a Boolean specifier that changes the behavior of BIND. More than one option can be
specified in a single directive. The currently defined options are as follows: no-recursion, which causes BIND to answer with
a referral rather than actual data whenever it receives a query for a name it is not authoritative for. Don’t set this on a server
that is listed in any host’s resolv.conf file. no-fetch-glue keeps BIND from fetching missing glue when constructing the
“additional data” section of a response; this can be used in conjunction with no-recursion to prevent BIND’s cache from ever
growing in size or becoming corrupted. query-log causes all queries to be logged via syslog(3). This is a lot of data; don’t
turn it on lightly. forward-only causes the server to query only its forwarders. This option is usually used on a machine that
wants to run a server but for physical or administrative reasons cannot be given access to the Internet. fake-iquery tells
BIND to send back a useless and bogus reply to “inverse queries” rather than respond with an error. This is helpful if you
have a lot of microcomputers or SunOS hosts or both.

The max-fetch directive (not shown) is allowed for backward compatibility; its meaning is identical to limit transfers-in.

The master file consists of control information and a list of resource records for objects in the zone of the forms:

$INCLUDE <filename><opt_domain>
$ORIGIN <domain>
<domain><opt_ttl> <opt_class><type><resource_record_data>

domain is . for root, @ for the current origin, or a standard domain name. If domain is a standard domain name that does not
end with ., the current origin is appended to the domain. Domain names ending with . are unmodified. The opt_domain
field is used to define an origin for the data in an included file. It is equivalent to placing a $ORIGIN statement before the first
line of the included file. The field is optional. Neither the opt_domain field nor $ORIGIN statements in the included file modify
the current origin for this file. The opt_ttl field is an optional integer number for the time-to-live field. It defaults to 0,
meaning the minimum value specified in the SOA record for the zone. The opt_class field is the object address type;
currently only one type is supported, IN, for objects connected to the DARPA Internet. The type field contains one of the
following tokens; the data expected in the resource_record_data field is in parentheses:

A A host address (dotted quad).

NS An authoritative nameserver (domain).

MX A mail exchanger (domain), preceded by a preference value (0..32767) with lower
numeric values representing higher logical preferences.

CNAME The canonical name for an alias (domain).

SOA Marks the start of a zone of authority (domain of originating host, domain address of
maintainer, a serial number and the following parameters in seconds: refresh, retry,
expire, and minimum TTL (see RFC 883)).

NULL A null resource record (no format or data).

RP A responsible person for some domain name (mailbox, TXT-referral).

PTR A domain name pointer (domain).

HINFO Host information (cpu_type, OS_type).

Resource records usually end at the end of a line but may be continued across lines between opening and closing parentheses.
Comments are introduced by semicolons and continue to the end of the line.

Note that there are other resource record types, not shown here. You should consult the BIND Operations GUIDe (BOG)
for the complete list. Some resource record types may have been standardized in newer RFCs but not yet implemented in
this version of BIND.

Each master zone file should begin with an SOA record for the zone. A sample SOA record follows:

1337

@ IN SOA ucbvax.Berkeley.EDU. rwh.ucbvax.Berkeley.EDU. (
1989020501 ; serial
10800 ; refresh
3600 ; retry
3600000 ; expire
86400) ; minimum

The SOA specifies a serial number, which should be changed each time the master file is changed. Note that the serial
number can be given as a dotted number, but this is a very unwise thing to do because the translation to normal integers is
via concatenation rather than multiplication and addition. You can spell out the year, month, day of month, and 0..99
version number and still fit inside the unsigned 32-bit size of this field. It’s true that we will have to rethink this strategy in
the year 4294, but we’re not worried about it. Secondary servers check the serial number at intervals specified by the refresh
time in seconds; if the serial number changes, a zone transfer is done to load the new data. If a master server cannot be
contacted when a refresh is due, the retry time specifies the interval at which refreshes should be attempted. If a master server
cannot be contacted within the interval given by the expire time, all data from the zone is discarded by secondary servers.
The minimum value is the time-to-live (TTL) used by records in the file with no explicit time-to-live value.

NOTES
The boot file directives domain and suffixes have been obsoleted by a more useful resolver-based implementation of suffixing
for partially qualified domain names. The prior mechanisms could fail under a number of situations, especially when then
local nameserver did not have complete information.

The following signals have the specified effect when sent to the server process using the kill(1) command:

SIGHUP Causes server to read named.boot and reload the database. If the server is built with the
FORCED RELOAD compile-time option, then SIGHUP also causes the server to check the serial
number on all secondary zones. Usually, the serial numbers are only checked at the
SOA-specified intervals.

SIGINT Dumps the current database and cache to /var/tmp/named_dump.db.

SIGIOT Dumps statistics data into /var/tmp/named.stats if the server is compiled with -DSTATS.
Statistics data is appended to the file. Some systems use SIGABRT rather than SIGIOT for
this.

SIGSYS Dumps the profiling data in /var/tmp if the server is compiled with profiling (the server
forks, changes directories, and exits).

SIGTERM Dumps the primary and secondary database files. Used to save modified data on
shutdown if the server is compiled with dynamic updating enabled.

SIGUSR1 Turns on debugging; each SIGUSR1 increments debug level (SIGEMT on older systems
without SIGUSR1).

SIGUSR2 Turns off debugging completely (SIGFPE on older systems without SIGUSR2).

SIGWINCH Toggles logging of all incoming queries via syslog(3) (requires server to have been built
with the QRYLOG option).

FILES
/etc/named.boot Nameserver configuration boot file

/etc/named.pid The process ID (on older systems)

/var/run/named.pid The process ID (on newer systems)

/var/tmp/named_dump.db Dump of the nameserver database

/var/tmp/named.run Debug output

/var/tmp/named.stats Nameserver statistics data

named

Part VIII: Administration and Privileged Commands1338

SEE ALSO
kill(1), gethostbyname(3), signal(2), resolver(3), resolver(5), hostname(7), RFC 882, RFC 883, RFC 973, RFC 974, RFC
1033, RFC 1034, RFC 1035, RFC 1123, Name Server Operations GUIDe for BIND

20 June 1995

named.reload
named.reload—Cause the nameserver to synchronize its database.

DESCRIPTION
This command sends a SIGHUP to the running nameserver. This signal is documented in named(8).

BUGS
It does not check to see if the nameserver is actually running and could use a stale pid cache file, which may result in the
death of an unrelated process.

SEE ALSO
named(8), named.restart(8)

26 June 1993

named.restart
named.restart—Stop and restart the nameserver.

DESCRIPTION
This command sends a SIGKILL to the running nameserver and then starts a new one.

BUGS
It does not check to see if the nameserver is actually running and could use a stale pid cache file, which may result in the
death of an unrelated process.

It does not wait after killing the old server before starting a new one. Because the server could take some time to die and the
new one experiences a fatal error if the old one isn’t gone by the time it starts, you can be left in a situation where you have
no nameserver at all.

SEE ALSO
named(8), named.reload(8)

26 June 1993

ndc
ndc—Name daemon control interface.

SYNOPSIS
ndc directive [...]

1339

DESCRIPTION
This command allows the nameserver administrator to send various signals to the nameserver or to restart it. Zero or more
directives may be given from the following list:

status Displays the current status of named as shown by ps(1).

dumpdb Causes named to dump its database and cache to /var/tmp/named_dump.db (uses the INT
signal.)

reload Causes named to check the serial numbers of all primary and secondary zones and to
reload those that have changed (uses the HUP signal.)

stats Causes named to dump its statistics to /var/tmp/named.stats (uses the IOT or ABRT signal.)

trace Causes named to increment its “tracing level” by one. Whenever the tracing level is
nonzero, trace information is written to /var/tmp/named.run. Higher tracing levels result
in more detailed information (uses the USR1 signal).

notrace Causes named to set its “tracing level” to zero, closing /var/tmp/named.run if it is open
(uses the USR2 signal).

querylog Causes named to toggle the “query logging” feature, which results in a syslog(3) of each
incoming query (uses the WINCH signal). Note that query logging consumes quite a lot of
log file space. This directive may also be given as qrylog.

start Causes named to be started as long as it isn’t already running.

stop Causes named to be stopped if it is running.

restart Causes named to be killed and restarted.

BUGS
Arguments to named are not preserved by restart or known by start. Some mechanism for controlling the parameters and
environment should exist.

Implemented as a sh(1) script.

AUTHOR
Paul Vixie (Internet Software Consortium)

SEE ALSO
named(8), named.reload(8), named.restart(8)

27 November 1994

netstat
netstat—Display active network connections

SYNOPSIS
netstat [[-a | [-t | -u | -w]] [-n | -o] | -x] [-c]
netstat -r [-c] [-n]
netstat -v

DESCRIPTION
netstat displays the status of network connections on either TCP, UDP, or RAW sockets to the system. By default, netstat
only displays status on those TCP sockets that are not in the LISTEN state (that is, connections to active processes). To obtain
information about the kernel routing table, netstat may be invoked with the option -r. A listing of internal UNIX
connections can be obtained by invoking netstat with the option -x.

netstat

Part VIII: Administration and Privileged Commands1340

netstat’s display includes the following information for each socket:

Proto The protocol (either TCP or UDP) used by the socket.

Recv-Q The count of bytes not copied by the user program connected to this socket.

Send-Q The count of bytes not acknowledged by the remote host.

Local Address The local address (local hostname) and port number of the socket. Unless the -n switch
is given, the socket address is resolved to its canonical hostname, and the port number is
translated into the corresponding service name.

Foreign Address The remote address (remote hostname) and port number of the socket. As with the local
address:port, the -n switch turns off hostname and service name resolution.

(State) The state of the socket. Because there are no states in RAW and usually no states used in
UDP, this row may be left blank. Usually, this can be one of several values:

ESTABLISHED The socket has an established connection.

SYN SENT The socket is actively attempting to establish a connection.

SYN RECV The connection is being initialized.

FIN WAIT1 The socket is closed, and the connection is shutting down.

FIN WAIT2 Connection is closed, and the socket is waiting for a shutdown from the remote end.

TIME WAIT The socket is waiting after close for remote shutdown re-transmission.

CLOSED The socket is not being used.

CLOSE WAIT The remote end has shut down, waiting for the socket to close.

LAST ACK The remote end shut down, and the socket is closed. Waiting for acknowledgment.

LISTEN The socket is listening for incoming connections.

UNKNOWN The state of the socket is unknown.

If netstat is invoked with the option -o, additional information is displayed after the state info. This information is shown
like this: keyword (time/backoff) and an optional asterisk. The keyword shows the state of the timer belonging to the socket,
the time displayed (in seconds) is how long it will take the timer to expire, the backoff value indicates the current retry count
for data transmission, and the asterisk indicates that this timer is in the expiration queue. The latter might be removed in
future but is helpful for debugging the TCP-Code for now.

Invoked with the option -x, netstat displays a list of all active UNIX internal communication sockets.

netstat’s display includes the following information for each socket:

Proto The protocol (usually UNIX) used by the socket.

RefCnt The reference count (attached processes via this socket).

Flags The only known flag to me is SO ACCEPTON (displayed as ACC); otherwise, left blank.
SO ACCEPTON is used on unconnected sockets if their corresponding processes are waiting
for a connect request.

Type There are several types of socket access:

SOCK DGRAM The socket is used in Datagram (connectionless) mode.

SOCK STREAM This is a stream (connection) socket.

SOCK RAW The socket is used as a raw socket.

SOCK RDM This one serves reliably delivered messages.

SOCK SEQPACKET This is a sequential packet socket.

SOCK PACKET This socket type is used as a Linux-specific way to get packets at the dev (kernel) level. It
is assumed to be used to write things such as RARP (Reverse Address Resolution
Protocol) and similar things on the user level.

UNKNOWN Who ever knows, what future will bring; just fill in here. :-)

State This field will contain one of the following keywords:

FREE The socket is not allocated.

1341

LISTENING The socket is listening for a connection request.

UNCONNECTED The socket is not connected to another one.

CONNECTING The socket is about to establish a connection.

CONNECTED The socket is connected.

DISCONNECTING The socket is disconnecting.

UNKNOWN This state should never happen.

Path This displays the pathname that the corresponding processes attached to the socket.

The network routing table (invoked with netstat -r) shows up the following information:

Destination net/address The destination address of a resolved host or hand-entered network is displayed. Unless
the option -n is given, the hosts or nets are resolved. An entry named default shows up
the default route for the kernel.

Gateway address If there is no asterisk (*) displayed, any data is routed to the dedicated gateway.

Flags Possible routing flags are

U This route is usable.

G Destination is a gateway.

H Destination is a host entry.

N Destination is a Net entry.

R Route will be reinstated after timeout.

D This one is created dynamically (by redirection).

M This one is modified dynamically (by redirection).

RefCnt Reference count for this route.

Use How many times this route was used yet.

Iface This is the name of the interface where this route belongs.

OPTIONS
-a Display information about all Internet sockets, such as TCP, UDP, and RAW,

including those sockets that are listening only.

-c Generate a continuous listing of network status: network status is displayed every second
until the program is interrupted.

-n Causes netstat not to resolve hostnames and service names when displaying remote and
local address and port information.

-o Display timer states, expiration times, and backoff state.

-r Display kernel routing table.

-t Display information about TCP sockets only, including those that are listening.

-u Display information about UDP sockets only.

-v Print version information.

-w Display information about raw sockets.

-x Display information about UNIX domain sockets.

FILES
/proc/net/tcp TCP socket information

/proc/net/udp UDP socket information

/proc/net/raw RAW socket information

/proc/net/unix UNIX domain socket information

netstat

Part VIII: Administration and Privileged Commands1342

/proc/net/route Kernel routing information

/etc/services The services translation

BUGS
None reported yet (5/20/93).

AUTHORS
The netstat user interface was written by Fred Baumgarten (dc6iq@insu1.etec.uni-karlsruhe.de). The man page is basically
by Matt Welsh (mdw@tc.cornell.edu).

Cohesive Systems, 20 May 1993

makeactive, makehistory, newsrequeue
makeactive, makehistory, newsrequeue—Tools to recover Usenet databases

SYNOPSIS
makeactive [-m][-o]
makehistory [-b][-f filename][-i][-n][-o][-r][-s size]
[-T tmpdir][-u [-v]]
newsrequeue [-a active][-h history][-d days][-l][-n newsfeeds][input]

DESCRIPTION
makeactive invokes find(1) to get a list of all directories in the news spool tree, /news/spool. It discards directories named
lost+found as well as those that have a period in them. It scans all other directories for all-numeric filenames and determines
the highest and lowest number. The program’s output is a set of active(5) file lines. Because there is no way to know if a
group is moderated or disabled, the fourth field of all entries is y. Also, mid-level directories that aren’t newsgroups are also
created as newsgroups with no entries. (For example, there is a comp.sources.unix group, but no comp.sources.)

If the –o flag is used, makeactive reads an existing active file for the list of group names and just renumber all groups. It
preserves the fourth field of the active file if one is present. This is analogous to the ctlinnd(8) renumber command, except
that innd(8) should be throttled or not running. Do not use this flag with output redirected to the standard active file!

If the –m flag is given, then makeactive attempts to adjust the highest and lowest article numbers wherever possible. If articles
are found in a newsgroup, the numbers reflect what was found. If no articles are found in a newsgroup, the high number
from the old file is kept, and the low number is set to one more than the high number. This flag may only be used if the –o
flag is used.

makeactive exits with nonzero status if any problems occur. A typical way to use the program is with the following /bin/sh
commands:

ctlinnd throttle “Rebuilding active file”
TEMP=${TMPDIR-/tmp}/act$$
if [-f /var/lib/news/active] ; then
 if makeactive -o >${TEMP} ; then
 mv ${TEMP} /var/lib/news/active
 fi
else
 if makeactive >${TEMP} ; then
 # Edit to restore moderated
 # and aliased groups.
 ...
 mv ${TEMP} /var/lib/news/active
 fi
fi
ctlinnd reload active “New active file”

1343

makehistory rebuilds the history(5) text file and the associated dbz(3) database. The default name of the text file is
/news/lib/history; to specify a different name, use the –f flag. makehistory scans the active(5) file to determine which
newsgroup directories within the spool directory, /news/spool, should be scanned. (If a group is removed, but its spool
directory still exists, makehistory ignores it.) The program reads each file found and writes a history line for it. If the –b flag
is used, then makehistory removes any articles that do not have valid Message-ID headers in them.

After the text file is written, makehistory builds the dbz database. If the –f flag is used, then the database files are named
file.dir and file.pag. If the –f flag is not used, then a temporary link to the name history.n is made and the database files
are written as history.n.pag and history.n.dir. If the –o flag is used, then the link is not made and any existing history files
are overwritten. If the old database exists, makehistory uses it to determine the size of the new database. To ignore the old
database, use the –i flag. Using the –o flag implies the –i flag. The program also ignores any old database if the –s flag is used
to specify the approximate number of entries in the new database. Accurately specifying the size is an optimization that
creates a more efficient database. (The size should be the estimated eventual size of the file, typically the size of the old file.)
For more information, see the discussion of dbzfresh and dbzsize in dbz(3).

If the –u flag is given, then makehistory assumes that innd is running. It pauses the server while scanning and then sends
addhist commands (see ctlinnd(8)) to the server for any article that is not found in the dbz database. The command
makehistory –bu is useful after a system crash to delete any mangled articles and bring the article database back into a more
consistent state. If the –v flag is used with the –u flag, then makehistory puts a copy of all added lines on its standard output.

To scan the spool directory without rebuilding the dbz files, use the –n flag. If used with -u, the server is not paused while
scanning. To just build the dbz files from an existing text file, use the –r flag. The –i or –s flags can be useful if there are no
valid dbz files to use. A typical way to use this program is with the following /bin/sh commands:

ctlinnd throttle “Rebuilding history file”
cd /news/lib
if makehistory –n –f history.n ; then
:
else
echo Error creating history file!
exit 1
fi
The following line can be used to retain expired history.
It is not necessary for the history file to be sorted.
awk ‘NF==2 { print; }’ <history >>history.n
View history file for mistakes.
if makehistory –r –s ‘wc –l <history’ –f history.n; then
mv history.n history
mv history.n.dir history.dir
mv history.n.pag history.pag
fi
ctlinnd go “

makehistory needs to create a temporary file that contains one line for each article it finds, which can become very large. This
file is created in the /tmp directory. The TMPDIR environment variable may be used to specify a different directory. Alterna-
tively, the –T flag may be used to specify a temporary directory. In addition, the sort(1) that is invoked during the build
writes large temporary files (often to /var/tmp, but see your system man pages). If the –T flag is used, then the flag and its
value are passed to sort. On most systems, this changes the temporary directory that sort uses. If used, this flag and its value
are passed on to the sort(1) command that is invoked during the build.

makehistory does not handle symbolic links. If the news spool area is split across multiple partitions, the following commands
should probably be run before the database is regenerated:

cd /news/spool
find . -type l -name ‘[1-9]*’ -print | xargs -t rm

Make sure to run the command on all the appropriate partitions!

makeactive, makehistory, newsrequeue

Part VIII: Administration and Privileged Commands1344

newsrequeue can be used to rewrite batchfiles after a system crash. It operates in two modes. In the first mode, it first reads
the active and newsfeeds(5) files to determine where the different newsgroups are to be distributed. To specify alternate
locations for these files, use the –a or –n flags. It then opens the history database. To specify a different file, use the –h flag.

Once the files are opened, newsrequeue reads from the specified input file or standard input if no file is specified. Each line
should have a single Message-ID, surrounded in angle brackets; any other text on the line is ignored. For example, the
history file (or a trailing subset of it) is acceptable input to the program operating in this mode. If the –d flag is used, then
only articles that were received within the specified number of days are processed.

newsrequeue uses the first two fields of the newsfeed entry—the sitename and the excludes field and the patterns and
distribs field. It ignores all flags in the third field except for the N field and also ignores the fourth field altogether.

The second mode is used if the –l flag is used. In this mode, it reads from the specified input file or standard input if no file
is specified. Each line should look like an innd log entry. It parses entries for accepted articles, looks up the Message-ID in
the history database to get the filename, and then scans the list of sites.

In either mode, the output of newsrequeue consists of one line for each article that should be forwarded. Each such line
contains the Message-ID, the filename, and the list of sites that should receive the article. The output is suitable for piping
into filechan(8).

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
active(5), ctlinnd(8), dbz(3), filechan(8), history(5), innd(8), newsfeeds(5)

news.daily
news.daily—Do regular Usenet system administration

SYNOPSIS
news.daily [keyword...]
innwatch [-t sleeptime][-f controlfile][-l logfile]
expirerm file
inncheck [-v][-pedantic][-perms [-fix]][-noperms][file...]

DESCRIPTION
news.daily performs a number of important Usenet administrative functions. This includes producing a status report,
removing old news articles, processing log files, rotating the archived log files, renumbering the active file, removing any old
socket files found in the firewall directory, and collecting the output. This program should be run under the news
administrator’s ID, not as root.

By default, news.daily performs all its functions and mails the output to the news administrator, usenet. By specifying
keywords on the command line, it is possible to modify the functions performed, as well as change the arguments given to
expire(8) and expireover(8).

news.daily should be run once a day, typically out of cron(8). It may be run more often, but such invocations should at least
use the norotate keyword to prevent the log files from being processed and rotated too fast.

The shlock(1) program is used to prevent simultaneous executions.

The following keywords may be used:

delayrm This uses the –z flag when invoking expire and expireover. The names of articles to be
removed are written to a temporary file and then removed after expiration by calling
expirerm.

1345

nostat This keyword disables the status report generated by innstat (see newslog(8)). Without
this keyword, the status report is the first function performed, just prior to obtaining the
news.daily lock.

noexpire By default, expire is invoked to remove old news articles. Using this keyword disables
this function.

noexplog expire usually appends information to /var/log/news/expire.log (see newslog(5)). Using
this keyword causes the expire output to be handled as part of news.daily’s output. It
has no effect if the noexpire keyword is used.

flags=’expire\args’ By default, expire is invoked with the an argument of –v1. Using this keyword changes
the arguments to those specified. Be careful to use quotes if multiple arguments are
needed. This keyword has no effect if the noexpire keyword is used.

nologs After expiration, scanlogs(8) is invoked to process the log files. Using this keyword
disables all log processing functions.

norotate By default, log processing includes rotating and cleaning out log files. Using this
keyword disables the rotating and cleaning aspect of the log processing. The log files are
only scanned for information and no contents are altered. This keyword has no effect if
the nologs keyword is used.

norenumber This keyword disables the ctlinnd(8) renumber operation. Usually, the low watermark
for all newsgroups (see active(5)) is reset.

norm By default, any socket ctlinnd socket that has not been modified for two days is
removed. Using this keyword disables this function.

nomail news.daily usually sends a mail message containing the results to the administrator.
Using this keyword causes this message to be sent to stdout and stderr instead. Usually,
all utilities invoked by the script have their stdout and stderr redirected into a file. If the
file is empty, no message is sent.

expireover The expireover program is called after expiration to purge the overview databases.

expireoverflags=’expireovernargs’ If the expireover keyword is used, this keyword may be used to specify the flags to be
passed to expireover. If the delayrm keyword is used, then the default value is –z and the
list of deleted files; otherwise, the default value is –s.

/full/path The program specified by the given path is executed just before any expiration is done.
A typical use is to specify an alternate expiration program and use the noexpire keyword.
Multiple programs may be specified; they are invoked in order.

The norotate keyword is passed on to scanlogs if it is invoked. expirerm is a script that removes a list of files. The specified
file lists the files. It is sorted and then fed into a pipeline responsible for doing the removal, usually fastrm(8). If there seemed
to be a problem removing the files, then mail is sent to the news administrator. If there were no problems, then file is
renamed to /var/log/news/expire.list where it is kept (for safety) until the next day’s expiration.

innwatch is a script that can be started at news boot time. It periodically—every sleeptime seconds— examines the load
average and the number of free blocks and inodes on the spool partition, as described by its control file, innwatch.ctl(5). If
the load gets too high or the disk gets too full, it throttles the server. When the condition restores, it unblocks the server. In
addition, on each pass through the loop, it checks the specified log file to see if it has been modified and sends mail to the
news administrator if so. It is usually a good idea to set this to the syslog(3) file that receives critical news messages. Upon
receipt of an interrupt signal, innwatch reports its status in the file /news/lib/innwatch.status.

inncheck is a perl(1) script that verifies the syntax and permissions of all InterNetNews configuration files. If no files are
specified, it checks all files. A filename may be followed by an equal sign and a path to indicate the pathname to use for the
file. For example, newsfeeds=/tmp/nf checks the syntax of a new newsfeeds(5) without requiring it to be installed. If the –v
flag is used, it prints status information as it checks each file. If the –pedantic flag is used, it checks the files for omissions that
are not strictly errors but might indicate a configuration error.

If any file is specified, only the permissions on those files are checked. The –noperms flag suppresses this check. If the –perms
flag is used, the script verifies the ownership and permissions of all files. The –fix flag can also be used so that the output can
be executed as a shell script.

news.daily

Part VIII: Administration and Privileged Commands1346

HISTORY
news.daily and this manual page were written by Landon Curt Noll (chongo@toad.com) and Rich $alz (rsalz@uunet.uu.net).

inncheck was written by Brendan Kehoe (brendan@cs.widener.edu) and Rich.

innwatch was written by Mike Cooper (mcooper@usc.edu) and (kre@munnari.oz.au).

SEE ALSO
active(5), ctlinnd(8), expire(8), fastrm(8), newslog(5), newslog(8), innwatch.ctl(5), shlock(1)

newslog
newslog—Maintenance of Usenet log files

SYNOPSIS
scanlogs [norotate][nonn]
writelog name text...
innstat
tally.unwanted
tally.control
innlog.awk

DESCRIPTION
scanlogs summarizes the information recorded in the INN log files (see newslog(5)). By default, it also rotates and cleans out
the logs. It is usually invoked by the news.daily(8) script.

The following keywords are accepted:

norotate Using this keyword disables the rotating and cleaning aspect of the log processing:
The logs files are only scanned for information and no contents are altered.

nonn Usually, the nn log file is scanned and rotated. Using this keyword disables this
function.

If scanlogs is invoked more than once a day, the norotate keyword should be used to prevent premature log cleaning.

The writelog script is used to write a log entry or send it as mail. The name parameter specifies the name of the log file where
the entry should be written. If it is the word mail, then the entry is mailed to the news administrator, Usenet. The data that
is written or sent consists of the text given on the command line, followed by standard input indented by four spaces.
shlock(1) is used to avoid simultaneous updates to a single log file.

The innstat script prints a snapshot of the INN system. It displays the operating mode of the server, as well as disk usage and
the status of all log and lock files.

The rest of the scripts described here are usually invoked by scanlogs. They parse log files that are described in newslog(5)
and the server’s article log file described in innd(8).

tally.unwanted script parses the article log file to update the cumulative list of articles posted to unwanted newsgroups,
unwanted.log.

tally.control reads its standard input, which should be the newgroup.log and rmgroup.log log files. It updates the cumulative
list of newsgroup creations and deletions, control.log.

innlog.awk is an awk(1) script that summarizes the activity that innd and nnrpd(8) report to syslog.

HISTORY
Written by Landon Curt Noll (chongo@toad.com) and Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

1347

SEE ALSO
innd(8) newslog(5), news.daily(8), nnrpd(8)

nfsd
nfsd—NFS service daemon.

SYNOPSIS
/usr/etc/rpc.nfsd [\-f\exports-file\][\-dhnprv\]
[\--debug\][\--exports-file=file\] [\--help\]
[\--allow-non-root\][\--re-export\][\--version\]

DESCRIPTION
The nfsd program is an NFS service daemon that handles client filesystem requests. Unlike nfsd on some other systems, nfsd
operates as a normal user-level process. The server also differs from other NFS server implementations in that it mounts an
entire file hierarchy not limited by the boundaries of physical filesystems. The implementation allows the clients read-only or
read-write access to the file hierarchy of the server machine.

The mountd program starts an ancillary user-level mount daemon.

OPTIONS
-f or --exports-file This option specifies the exports file, listing the clients that this server is prepared to

serve and parameters to apply to each such mount (see exports(5)). By default, exports
are read from /etc/exports.

-d or --debug Log each transaction verbosely to the syslog.

-h or --help Provide a short help summary.

-n or --allow-non-root Allow incoming NFS requests to be honored even if they do not originate from reserved
IP ports. Some older NFS client implementations require this. Some newer NFS client
implementations don’t believe in reserved port checking.

-p or --promiscuous Put the server into promiscuous mode where it serves any host on the network.

-r or --re-export Allow imported NFS filesystems to be exported. This can be used to turn a machine
into an NFS multiplier. Caution should be used when re-exporting loopback NFS
mounts because re-entering the mount point results in deadlock between the NFS client
and the NFS server.

-v or --version Report the current version number of the program.

SEE ALSO
exports(5), mountd(8), ugidd(8C)

AUTHORS
Mark Shand wrote the original unfsd. Don Becker extended unfsd to support authentication and allow read-write access and
called it hnfs. Rick Sladkey added host matching, showmount -e support, mountd authentication, inetd support, and all the
portability and configuration code.

13 October 1993

nnrpd
nnrpd—NNTP server for on-campus hosts.

nnrpd

Part VIII: Administration and Privileged Commands1348

SYNOPSIS
nnrpd [-r reason][-s title padding][-S host][-t]

DESCRIPTION
nnrpd is an NNTP server for newsreaders. It accepts commands on its standard input and responds on its standard output.
It is usually invoked by innd(8) with those descriptors attached to a remote client connection.

If the –r flag is used, then nnrpd rejects the incoming connection giving reason as the text. This flag is used by innd when it is
paused or throttled.

Unlike innd, nnrpd supports all NNTP commands for user-oriented reading and posting.

nnrpd uses the nnrp.access(5) file to control who is authorized to access the Usenet database. It also rejects connections if the
load average is greater than 16.

As each command is received, nnrpd tries to change its argv array so that ps(1) prints the command being executed. To get a
full display, the –s flag may be used with a long string as its argument, which is overwritten when the program changes its
title.

On exit, nnrpd reports usage statistics through syslog(3).

If the –t flag is used, all client commands and initial responses are traced by reporting them in syslog. This flag is set by innd
under the control of the ctlinnd(8) trace command and is toggled upon receipt of a SIGHUP; see signal(2).

If the –S flag is used, all postings are forwarded to the specified host, which should be the master NNTP server. This flag is
set by innd if it is started with the –S flag.

nnrpd can accept multimedia postings that follow the MIME standard as long as such postings are also acceptable as SMTP
messages. See the discussion of the MIME headers in inn.conf(5).

PROTOCOL DIFFERENCES
nnrpd implements the NNTP commands defined in RFC 977 with the following differences:

■ The ihave command is not implemented. Users should be using the post command to post articles.
■ The slave command is not implemented. This command has never been fully defined.
■ The list command may be followed by the optional word active.times, distributions, distrib.pats, newsgroups, or

overview.fmt to get a list of when newsgroups where created, a list of valid distributions, a file specifying default
distribution patterns, a one-per-line description of the current set of newsgroups, or a listing of the overview.fmt(5) file.
The command list active is equivalent to the list command. This is a common extension.

■ The xhdr, authinfo user, and authinfo pass commands are implemented. These are based on the reference UNIX
implementation; no other documentation is available.

■ A new command, xpat header range|MessageID pat [morepat...], is provided. The first argument is the case-insensitive
name of the header to be searched. The second argument is either an article range or a single Message-ID as specified in
RFC 977. The third argument is a wildmat(3)-style pattern; if there are additional arguments, they are joined together
separated by a single space to form the complete pattern. This command is similar to the xhdr command. It returns a 221
response code, followed by the text response of all article numbers that match the pattern.

■ The listgroup group command is provided. This is a comment extension. It is equivalent to the group command, except
that the reply is a multi-line response containing the list of all article numbers in the group.

■ The xgtitle [group] command is provided. This extension is used by ANU-News. It returns a 282 reply code, followed
by a one-line description of all newsgroups that match the pattern. The default is the current group.

■ The xover [range] command is provided. It returns a 224 reply code, followed by the overview data for the specified
range; the default is to return the data for the current article.

■ The xpath MessageID command is provided; see innd(8).
■ The date command is provided; this is based on the draft NNTP protocol revision. It returns a one-line response code

of 111 followed by the GMT date and time on the server in the form YYYYMMDDhhmmss.

1349

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews. Overview support added by Rob Robertston
(rob@violet.berkeley.edu) and Rich in January 1993.

SEE ALSO
ctlinnd(8), innd(8), inn.conf(5), nnrp.access(5), signal(2), wildmat(3)

nntpsend
nntpsend—Send Usenet articles to remote site.

SYNOPSIS
nntpsend [-d][-p][-r][-S][-s size][-t timeout]
[-T timelimit][sitename fqdn] ...

DESCRIPTION
nntpsend is a front end that invokes innxmit(1) to send Usenet articles to a remote NNTP site.

The sites to be fed may be specified by giving sitename fqdn pairs on the command line. If no such pairs are given, nntpsend
defaults to the information given in the nntpsend.ctl(5) config file.

The sitename should be the name of the site as specified in the newsfeeds(5) file. The fqdn should be the hostname
or IP address of the remote site. An innxmit is launched for sites with queued news. All innxmit processes are
spawned in the background and the script waits for them all to finish before returning. Output is sent to the file
/var/log/news/nntpsend.log. To avoid overwhelming the local system, nntpsend waits five seconds before spawning
each child. The flag –a is always given as a flag to innxmit.

nntpsend expects that the batchfile for a site is named /news/spool/out.going/sitename. To prevent batchfile corruption,
shlock(1) is used to “lock” these files.

The –p, –r, –S, -t, and -T flags are passed on to the child innxmit program. Note that if the –p flag is used then no connection
is made and no articles are fed to the remote site. It is useful to have cron(8) invoke nntpsend with this flag in case a site
cannot be reached for an extended period of time.

If the –s flag is used, then shrinkfile(1) is invoked to perform a tail truncation on the batchfile and the flag is passed to it.

When sitename fqdn pairs are given on the command line, any flags given on the command completely describe how innxmit
and shrinkfile operate. When no such pairs are given on the command line, then the information found in nntpsend.ctl
becomes the default flags for that site. Any flags given on the command line override the default flags for the site.

For example, with the following control file:

nsavax:erehwon.nsavax.gov::-S -t60
group70:group70.org::
walldrug:walldrug.com:1m:-T1800 -t300

The command

nntpsend

will result in the following:

Sitename Truncation Innxmit flags
nsavax (none) -a -S -t60
group70 (none) -a -t180
walldrug 1m -a -T1800 -t300

nntpsend

Part VIII: Administration and Privileged Commands1350

The command

nntpsend -d -T1200

will result in the following:

Sitename Truncation Innxmit flags
nsavax (none) -a -d -S -T1200 -t60
group70 (none) -a -d -T1200 -t180
walldrug 1m -a -d -T1200 -t300

The command

nntpsend -s 5m -T1200 nsavax erehwon.nsavax.gov group70 group70.org

will result in the following:

Sitename Truncation Innxmit flags
nsavax 5m -a -T1200 -t180
group70 5m -a -T1200 -t180

Remember that –a is always given, and –t defaults to 180.

HISTORY
Written by Landon Curt Noll (chongo@toad.com) and Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
innxmit(1), newsfeeds(5), nntpsend.ctl(5), shrinkfile(1)

nslookup
nslookup—Query Internet nameservers interactively.

SYNOPSIS
nslookup [-option ...] [host-to-find | –[server]]

DESCRIPTION
nslookup is a program to query Internet domain nameservers. nslookup has two modes: interactive and non-interactive.
Interactive mode allows the user to query nameservers for information about various hosts and domains or to print a list of
hosts in a domain. Non-interactive mode is used to print just the name and requested information for a host or domain.

ARGUMENTS
Interactive mode is entered in the following cases:

■ When no arguments are given (the default nameserver is used)
■ When the first argument is a hyphen (–) and the second argument is the hostname or Internet address of a nameserver

Non-interactive mode is used when the name or Internet address of the host to be looked up is given as the first argument.
The optional second argument specifies the host name or address of a nameserver.

The options listed under the set command can be specified in the .nslookuprc file in the user’s home directory if they are
listed one per line. Options can also be specified on the command line if they precede the arguments and are prefixed with a
hyphen. For example, to change the default query type to host information, and the initial timeout to 10 seconds, type:

nslookup –query=hinfo –timeout=10

1351

INTERACTIVE COMMANDS
Commands may be interrupted at any time by typing Ctrl+C. To exit, type Ctrl+D (EOF) or type exit. The command-line
length must be less than 256 characters. To treat a built-in command as a hostname, precede it with an escape character (n).
Note that an unrecognized command is interpreted as a hostname.

host [server] Look up information for host using the current default server or using server if
specified. If host is an Internet address and the query type is A or PTR, the name of the
host is returned. If host is a name and does not have a trailing period, the default
domain name is appended to the name. (This behavior depends on the state of the
set options domain, srchlist, defname, and search). To look up a host not in the current
domain, append a period to the name.

server domain, lserver domain Change the default server to domain. lserver uses the initial server to look up informa-
tion about domain, whereas server uses the current default server. If an authoritative
answer can’t be found, the names of servers that might have the answer are returned.

root Changes the default server to the server for the root of the domain name space.
Currently, the host ns.internic.net is used. (This command is a synonym for lserver
ns.internic.net.) The name of the root server can be changed with the set root
command.

finger [name][> filename], Connects with the finger server on the current host. The current host is defined when
finger [name][>> filename] a previous lookup for a host was successful and returned address information (see the

set query-type= A command). name is optional. > and >> can be used to redirect output
in the usual manner.

ls [option] domain [> filename], List the information available for domain, optionally creating or appending to
ls [option] domain [>> filename] filename. The default output contains hostnames and their Internet addresses. option

can be one of the following:

-t querytype Lists all records of the specified type (see
querytype).

-a Lists aliases of hosts in the domain. Synonym for
-t CNAME.

-d Lists all records for the domain. Synonym for
-t ANY.

-h Lists CPU and operating system information for
the domain. Synonym for -t HINFO.

-s Lists well-known services of hosts in the domain.
Synonym for -t WKS. When output is directed to a
file, hash marks are printed for every 50 records
received from the server.

view filename Sorts and lists the output of previous ls commands
with more(1).

help, ? Prints a brief summary of commands.

exit Exits the program.

set keyword[=value] This command is used to change state information
that affects the lookups. Valid keywords are:

all Prints the current values of the frequently used
options to set. Information about the current
default server and host is also printed.

class=value Change the query class to one of the following:

IN The Internet class.

CHAOS The Chaos class.

nslookup

Part VIII: Administration and Privileged Commands1352

HESIOD The MIT Athena Hesiod class.

ANY Wildcard (any of the above).

The class specifies the protocol group of the information. (Default = IN, abbreviation =
cl.)

[no]debug Turn debugging mode on. A lot more information is printed about the packet sent to
the server and the resulting answer. (Default = nodebug, abbreviation = [no]deb.)

[no]d2 Turn exhaustive debugging mode on. Essentially, all fields of every packet are printed.
(Default = nod2.)

domain=name Change the default domain name to name. The default domain name is appended to a
lookup request depending on the state of the defname and search options. The domain
search list contains the parents of the default domain if it has at least two components in
its name. For example, if the default domain is CC.Berkeley.EDU, the search list is
CC.Berkeley.EDU and Berkeley.EDU. Use the set srchlist command to specify a different
list. Use the set all command to display the list. (Default = value from hostname,
/etc/resolv.conf, or LOCALDO-MAIN, abbreviation = do.)

srchlist=name1/name2/... Change the default domain name to name1 and the domain search list to name1, name2,
and so on. A maximum of six names separated by slashes (/) can be specified. For
example, set srchlist=lcs.MIT.EDU/ai.MIT.EDU/MIT.EDU sets the domain to lcs.MIT.EDU
and the search list to the three names. This command overrides the default domain
name and search list of the set domain command. Use the set all command to display
the list. (Default = value based on hostname, /etc/resolv.conf, or LOCAL-DOMAIN,
abbreviation = srchl.)

[no]defname If set, append the default domain name to a single-component lookup request (that is,
one that does not contain a period). (Default = defname, abbreviation = [no]def.)

[no]search If the lookup request contains at least one period but doesn’t end with a trailing period,
append the domain names in the domain search list to the request until an answer is
received. (Default = search, abbreviation = [no]sea.)

port=value Change the default TCP/UDP nameserver port to value. (Default = 53, abbreviation =
po.)

querytype=value, type=value Change the type of information query to one of the following:

A The host’s Internet address.

CNAME The canonical name for an alias.

HINFO The host CPU and operating system type.

MINFO The mailbox or mail list information.

MX The mail exchanger.

NS The nameserver for the named zone.

PTR The host name if the query is an Internet address; otherwise, the pointer
to other information.

SOA The domain’s “start-of-authority” information.

TXT The text information.

UINFO The user information.

WKS The supported well-known services.

Other types (ANY, AXFR, MB, MD, MF, NULL) are described in the RFC-1035 document.
(Default = A, abbreviations = q, ty.)

[no]recurse Tell the nameserver to query other servers if it does not have the information. (Default =
recurse, abbreviation = [no]rec.)

retry=number Set the number of retries to number. When a reply to a request is not received within a
certain amount of time (changed with set timeout), the timeout period is doubled and
the request is resent. The retry value controls how many times a request is resent before
giving up. (Default = 4, abbreviation = ret.)

1353

root=host Change the name of the root server to host. This affects the root command. (Default =
ns.internic.net, abbreviation = ro.)

timeout=number Change the initial timeout interval for waiting for a reply to number seconds. Each retry
doubles the timeout period. (Default = 5 seconds, abbreviation = ti.)

[no]vc Always use a virtual circuit when sending requests to the server. (Default = novc,
abbreviation = [no]v.)

[no]ignoretc Ignore packet truncation errors. (Default = noignoretc, abbreviation = [no]ig.)

DIAGNOSTICS
If the lookup request was not successful, an error message is printed. Possible errors are

Timed out The server did not respond to a request after a certain amount of time (changed with
set timeout=value) and a certain number of retries (changed with set retry=value).

No response from server No nameserver is running on the server machine.

No records The server does not have resource records of the current query type for the host,
although the hostname is valid. The query type is specified with the set querytype
command.

Non-existent domain The host or domain name does not exist.

Connection refused, The connection to the name or finger server could not be made at the current time.
Network is unreachable This error commonly occurs with ls and finger requests.

Server failure The nameserver found an internal inconsistency in its database and could not return a
valid answer.

Refused The nameserver refused to service the request.

Format error The nameserver found that the request packet was not in the proper format. It may
indicate an error in nslookup.

FILES
/Etc/Resolv.Conf Initial domain name and nameserver addresses.

$HOME/.nslookuprc User’s initial options.

/usr/share/misc/nslookup.help Summary of commands.

ENVIRONMENT
HOSTALIASES File containing host aliases.

LOCALDOMAIN Overrides default domain.

SEE ALSO
resolver(3), resolver(5), named(8), RFC 1034 “Domain Names – Concepts and Facilities,” RFC 1035 “Domain Names –
Implementation and Specification”

AUTHOR
Andrew Cherenson

24 June 1990

overchan
overchan—Update the news overview database.

overchan

Part VIII: Administration and Privileged Commands1354

SYNOPSIS
overchan [-D dir][-c][file...]

DESCRIPTION
overchan reads article data from files or standard input if none are specified. (A single dash in the file list means to read
standard input.) It uses this information to update the news overview database. overchan is designed to be used by
InterNetNews or the C News mkov packages to update the database as the articles come in. The database for each newsgroup
is stored in a file named .overview in a newsgroup directory within the overview database tree.

overchan locks the database file (by locking an auxiliary file) before appending the new data. To purge data after articles have
been expired, see expireover(8).

By default, overchan processes its input as an INN overview stream written as a WO entry in the newsfeeds(5) file:

overview:*:Tc,WO:/news/bin/overchan

This data consists of a line of text separated into two parts by a tab. The first part is a list of all relative pathnames where the
article has been written with a single space between entries. The second part is the data to be written into the overview file,
except that the initial article number is omitted.

To process the output of the mkov(8) program, use the –c flag. This format is described in the nov distribution.

The –D flag can be used to specify where the databases are stored. The default directory is /news/spool.

HISTORY
Written by Rob Robertson (rob@violet.berkeley.edu) and Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
newsfeeds(5), newsoverview(5), newsoverview(8)

pac
pac—Printer/plotter accounting information.

SYNOPSIS
pac [-P printer] [-c] [-m] [-p price] [-s] [-r] [name ...]

DESCRIPTION
pac reads the printer/plotter accounting files, accumulating the number of pages (the usual case) or feet (for raster devices) of
paper consumed by each user and printing how much each user consumed in pages or feet and dollars.

Options and operands available:

-P printer Accounting is done for the named printer. Usually, accounting is done for the default
printer (site dependent), or the value of the environment variable PRINTER is used.

-c Flag causes the output to be sorted by cost; usually, the output is sorted alphabetically
by name.

-m Flag causes the hostname to be ignored in the accounting file. This allows for a user on
multiple machines to have all his printing charges grouped together.

-p price The value price is used for the cost in dollars instead of the default value of 0.02 or the
price specified in /etc/printcap.

-r Reverse the sorting order.

-s Accounting information is summarized on the summary accounting file; this summari-
zation is necessary because on a busy system, the accounting file can grow by several
lines per day.

1355

names Statistics are only printed for users named; usually, statistics are printed for every user
who has used any paper.

FILES
/var/account/?acct Raw accounting files
/var/account/?_sum Summary accounting files
/etc/printcap Printer capability database

SEE ALSO
printcap(5)

BUGS
The relationship between the computed price and reality is as yet unknown.

HISTORY
The pac command appeared in BSD 4.0.

BSD 4.2, 16 March 1991

pcnfsd
pcnfsd—(PC)NFS authentication and print request server

SYNOPSIS
/usr/etc/rpc.pcnfsd

AVAILABILITY
This program is freely redistributable.

DESCRIPTION
pcnfsd is an RPC server that supports ONC clients on PC (DOS, OS/2, Macintosh, and other) systems. This page describes
version 2 of the pcnfsd server.

rpc.pcnfsd may be started from /etc/rc.local or by the inetd(8) superdaemon. It reads the configuration file
/etc/pcnfsd.conf if present and then services RPC requests directed to program number 150001. This release of the pcnfsd
daemon supports both version 1 and version 2 of the pcnfsd protocol. Consult the rpcgen source file pcnfsd.x for details of
the protocols.

The requests serviced by pcnfsd fall into three categories: authentication, printing, and other. Only the authentication and
printing services have administrative significance.

AUTHENTICATION
When pcnfsd receives a PCNFSD AUTH or PCNFSD2 AUTH request, it “logs in” the user by validating the username and password
and returning the corresponding UID, GIDs, home directory, and umask. If pcnfsd was built with the WTMP compile-time
option, it also appends a record to the wtmp(5) database. If you do not want to record PC logins in this way, you should add a
line of the form

wtmp off

to the /etc/pcnfsd.conf file.

By default, pcnfsd only allows authentication or print requests for users with UIDs in the range 101 to 60002. (This
corresponds in SVR4 to the range for non-system accounts.) To override this, you may add a line of the form

pcnfsd

Part VIII: Administration and Privileged Commands1356

uidrange range[,range]...

to the /etc/pcnfsd.conf file. Here, each range is of the form uid or uid-uid, indicating an inclusive range.

PRINTING
pcnfsd supports a printing model based on the use of NFS to transfer the actual print data from the client to the server. The
client system issues a PCNFSD_PR_INIT or PCN-FSD2_PR_INIT request, and the server returns the path to a spool directory that the
client may use and which is exported by NFS. pcnfsd creates a subdirectory for each of its clients: The parent directory is
usually /usr/spool/pcnfs and the subdirectory is the hostname of the client system. If you want to use a different parent
directory, you should add a line of the form

spooldir path

to the /etc/pcnfsd.conf file.

Once a client has mounted the spool directory using NFS and has transferred print data to a file in this directory, it issues a
PCNFSD_PR_START or PCNFSD2_PR_START request. pcnfsd handles this, and most other print-related requests, by constructing a
command based on the printing services of the server operating system and executing the command using the identity of the
PC user. Because this involves set-user-ID privileges, pcnfsd must be run as root.

Every print request from the client includes the name of the printer that is to be used. In Linux, this name corresponds to a
printer definition in the /etc/printcap(5) database. If you want to define a non-standard way of processing print data, you
should define a new printer and arrange for the client to print to this printer. There are two ways of setting up a new printer.
The first involves the addition of an entry to /etc/printcap(5) and the creation of filters to perform the required processing.
This is outside the scope of this discussion. In addition, pcnfsd includes a mechanism by which you can define virtual
printers known only to pcnfsd clients. Each printer is defined by a line in the /etc/pcnfsd.conf file of the following form:

printer name alias-for command

name is the name of the printer you want to define. alias-for is the name of a “real” printer that corresponds to this printer.
For example, a request to display the queue for name is translated into the corresponding request for the printer alias-for. If
you have defined a printer in such a way that there is no “real” printer to which it corresponds, use a single - for this field.
(See the definition of the printer test for an example.) command is a command that will be executed whenever a file is printed
on name. This command is executed by the shell at /bin/sh using the -c option. For complex operations, you should
construct an executable shell program and invoke that in command.

Consider the following sample /etc/pcnfsd.conf file:

printer rotated lw /usr/local/bin/enscript -2r $FILE
printer test - /usr/bin/cp $FILE/usr/tmp/$HOST$USER

If a client system prints a job on the printer rotated, the utility enscript is invoked to pre-process the file $FILE. In this case,
the -2r option causes the file to be printed in two-column rotated format on the default PostScript printer. If the client
requests a list of the print queue for the printer rotated, the pcnfsd daemon translates this into a request for a listing for the
printer lw.

The printer test is used only for testing. Any file sent to this printer is copied into /usr/tmp. Any request to list the queue,
check the status, and so on of printer test is rejected because the alias-for is specified as -.

1357

RECONFIGURATION
pcnfsd detects when printers are added or deleted and rebuilds its list of valid printers. To do this, it checks the modification
time of /etc/printcap. However, it does not monitor the file /etc/pcnfsd.conf for updates; if you change this file, it is still
necessary to kill and restart pcnfsd so the changes can take effect.

FILE
/etc/pcnfsd.conf

SEE ALSO
lpr(1), lprm(1), lpc(8), lpq(1)

25 June 1995

plipconfig
plipconfig—Fine-tune PLIP device parameters.

SYNOPSIS
plipconfig interface
plipconfig interface [nibble NN] [trigger NN] [unit NN]

DESCRIPTION
plipconfig is used to improve PLIP performance by changing the default timing parameters used by the PLIP protocol.
Results are dependent on the parallel port hardware, cable, and the CPU speed of each machine on each end of the PLIP
link.

If the single interface argument is given, plipconfig displays the status of the given interface only. Otherwise, it tries to set
the options.

OPTIONS
nibble NN Sets the nibble wait value in microseconds. Default is 3000.

trigger NN Sets the trigger wait value in microseconds. Default is 500.

unit NN Sets the number of units of delay. Default is 1.

In some cases, PLIP speed can be improved by lowering the default values. Values that are too low might cause excess use of
CPU, poor interrupt response time resulting in serial ports dropping characters, or in dropping PLIP packets. Changing the
plip MTU can also affect PLIP speed.

SEE ALSO
ifconfig(8)

BUGS
None so far.

AUTHOR
John Paul Morrison (jmorriso@bogomips.ee.ubc.ca, ve7jpm@ve7jpm.ampr.org)

1 July 1994

plipconfig

Part VIII: Administration and Privileged Commands1358

ping
ping—Send ICMP ECHO_REQUEST packets to network hosts.

SYNOPSIS
/etc/ping [-r][-v] host [packetsize][count]

DESCRIPTION
The DARPA Internet is a large and complex aggregation of network hardware, connected together by gateways. Tracking a
single-point hardware or software failure can often be difficult. Ping utilizes the ICMP protocol’s mandatory ECHO_REQUEST
datagram to elicit an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams (“pings”) have an IP and ICMP
header, followed by a struct timeval and then an arbitrary number of “pad” bytes used to fill out the packet. Default
datagram length is 64 bytes, but this may be changed using the command-line option. Other options are

-r Bypass the normal routing tables and send directly to a host on an attached network. If
the host is not on a directly attached network, an error is returned. This option can be
used to ping a local host through an interface that has no route through it (for example,
after the interface was dropped by routed(8C)).

-v Verbose output. ICMP packets other than ECHO_RESPONSE that are received are listed.

When using ping for fault isolation, it should first be run on the local host to verify that the local network interface is up and
running. Then, hosts and gateways further away should be pinged. Ping sends one datagram per second and prints one line
of output for every ECHO_RESPONSE returned. No output is produced if there is no response. If an optional count is given, only
that number of requests is sent. Round-trip times and packet-loss statistics are computed. When all responses have been
received or the program times out (with a count specified), or if the program is terminated with a SIGINT, a brief summary is
displayed.

This program is intended for use in network testing, measurement, and management. It should be used primarily for manual
fault isolation. Because of the load it could impose on the network, it is unwise to use ping during normal operations or from
automated scripts.

AUTHOR
Mike Muuss

SEE ALSO
netstat(1), ifconfig(8)

19 September 1988

portmap
portmap—DARPA port to RPC program number mapper.

SYNOPSIS
portmap [-d]

DESCRIPTION
portmap is a server that converts RPC program numbers into DARPA protocol port numbers. It must be running in order to
make RPC calls.

When an RPC server is started, it tells portmap what port number it is listening to and what RPC program numbers it is
prepared to serve. When a client wants to make an RPC call to a given program number, it first contacts portmap on the
server machine to determine the port number where RPC packets should be sent.

1359

portmap must be started before any RPC servers are invoked.

Usually, portmap forks and dissociates itself from the terminal like any other daemon. Portmap then logs errors using
syslog(3).

Option available:

-d (debug) prevents portmap from running as a daemon and causes errors and debugging information to be printed to the
standard error output.

SEE ALSO
inetd.conf(5), rpcinfo(8), inetd(8)

BUGS
If portmap crashes, all servers must be restarted.

HISTORY
The portmap command appeared in BSD 4.3.

BSD 4.3, 16 March 1991

powerd
powerd—Monitor a serial line connected to a UPS.

SYNOPSIS
/etc/powerd serial-device

DESCRIPTION
powerd is a daemon process that sits in the background and monitors the state of the DCD line of the serial device. It is
meant that this line is connected to a UPS (Uninterruptible Power Supply) so that it knows about the state of the UPS. As
soon as powerd senses that the power is failing (it sees that DCD goes low) it notifies init(8) and init executes the powerwait
and powerfail entries. If powerd senses that the power has been restored, it notifies init again and init executes the
powerokwait entries.

ARGUMENTS
serial-device Some serial port that is not being used by some other device and does not

share an interrupt with any other serial port.

DIAGNOSTICS
powerd regularly checks the DSR line to see if it’s high. DSR should be directly connected to DTR and powerd keeps that line
high, so if DSR is low, something is wrong with the connection. powerd notifies you about this fact every two minutes. When
it sees that the connection is restored, it will say so.

IMPLEMENTATION
It’s pretty simple to connect your UPS to the Linux machine. The steps are easy:

1. Make sure you have an UPS with a simple relais output: it should close its connections (make) if the power is gone, and
it should open its connections (break) if the power is good.

2. Buy a serial plug. Connect the DTR line to the DSR line directly. Connect the DTR line and the DCD line with a 10
kilo ohm resistor. Connect the relais-output of the UPS to GROUND and the DCD line. If you don’t know what pins
DSR, DTR, DCD and GROUND are, you can always ask at the store where you bought the plug.

3. You’re all set.

powerd

Part VIII: Administration and Privileged Commands1360

BUGS
Well, it’s not a real bug but powerd should be able to do a broadcast or something on the Ethernet in case more Linux-boxes
are connected to the same UPS and only one of them is connected to the UPS status line.

SEE ALSO
shutdown(8), init(8), inittab(5)

AUTHOR
Miquel van Smoorenburg (miquels@drinkel.nl.mugnet.org)

14 February 1994

pppd
pppd—Point-to-Point Protocol daemon.

SYNOPSIS
pppd [tty_name][speed][options]

DESCRIPTION
The Point-to-Point Protocol (PPP) provides a method for transmitting datagrams over serial point-to-point links. PPP is
composed of three parts: a method for encapsulating datagrams over serial links, an extensible Link Control Protocol (LCP),
and a family of Network Control Protocols (NCP) for establishing and configuring different network-layer protocols.

The encapsulation scheme is provided by driver code in the kernel. pppd provides the basic LCP, authentication support, and
an NCP for establishing and configuring the Internet Protocol (IP) (called the IP Control Protocol, IPCP).

FREQUENTLY USED OPTIONS
tty_name Communicate over the named device. The string /dev/ is prepended if necessary. If no

device name is given, or if the name of the controlling terminal is given, pppd uses the
controlling terminal and does not fork to put itself in the background.

speed Set the baud rate to speed (a decimal number). On systems such as 4.4BSD and
NetBSD, any speed can be specified. Other systems (such as SunOS) allow only a
limited set of speeds.

asyncmap map Set the async character map to map. This map describes which control characters cannot
be successfully received over the serial line. pppd asks the peer to send these characters as
a 2-byte escape sequence. The argument is a 32-bit hex number with each bit represent-
ing a character to escape. Bit 0 (00000001) represents the character 0x00; bit 31 (80000000)
represents the character 0x1f or ˆ. If multiple asyncmap options are given, the values are
ORed together. If no asyncmap option is given, no async character map is negotiated for
the receive direction; the peer should then escape all control characters.

auth Require the peer to authenticate itself before allowing network packets to be sent or
received.

connect p Use the executable or shell command specified by p to set up the serial line. This script
typically uses the chat(8) program to dial the modem and start the remote PPP session.

crtscts Use hardware flow control (that is, RTS/CTS) to control the flow of data on the serial
port. If neither the crtscts nor the -crtscts option is given, the hardware flow control
setting for the serial port is left unchanged.

defaultroute Add a default route to the system routing tables, using the peer as the gateway, when
IPCP negotiation is successfully completed. This entry is removed when the PPP
connection is broken.

1361

disconnect p Run the executable or shell command specified by p after pppd has terminated the link.
This script could, for example, issue commands to the modem to cause it to hang up if
hardware modem control signals were not available.

escape xx,yy,... Specifies that certain characters should be escaped on transmission (regardless of whether
the peer requests them to be escaped with its async control character map). The
characters to be escaped are specified as a list of hex numbers separated by commas.
Note that almost any character can be specified for the escape option, unlike the
asyncmap option, which only allows control characters to be specified. The characters
that cannot be escaped are those with hex values 0x20 - 0x3f or 0x5e.

file f Read options from file f (the format is described later).

lock Specifies that pppd should create a UUCP-style lock file for the serial device to ensure
exclusive access to the device.

mru n Set the MRU (Maximum Receive Unit) value to n for negotiation. pppd asks the peer to
send packets of no more than n bytes. The minimum MRU value is 128. The default
MRU value is 1500. A value of 296 is recommended for slow links (40 bytes for TCP/IP
header plus 256 bytes of data).

mtu n Set the MTU (Maximum Transmit Unit) value to n. Unless the peer requests a smaller
value via MRU negotiation, pppd requests that the kernel networking code send data
packets of no more than n bytes through the PPP network interface.

netmask n Set the interface netmask to n, a 32-bit netmask in decimal dot notation (such as
255.255.255.0). If this option is given, the value specified is ORed with the default
netmask. The default netmask is chosen based on the negotiated remote IP address; it is
the appropriate network mask for the class of the remote IP address ORed with the
netmasks for any non–point-to-point network interfaces in the system that are on the
same network.

passive Enables the passive option in the LCP. With this option, pppd attempts to initiate a
connection; if no reply is received from the peer, pppd then waits passively for a valid
LCP packet from the peer (instead of exiting as it does without this option).

silent With this option, pppd does not transmit LCP packets to initiate a connection until a
valid LCP packet is received from the peer (as for the passive option with ancient
versions of pppd).

OPTIONS
local IP address:remote IP address Set the local and/or remote interface IP addresses. Either one may be

omitted. The IP addresses can be specified with a host name or in decimal
dot notation (such as 150.234.56.78). The default local address is the
(first) IP address of the system (unless the noipdefault option is given).
The remote address is obtained from the peer if not specified in any
option. Thus, in simple cases, this option is not required. If a local and/or
remote IP address is specified with this option, pppd does not accept a
different value from the peer in the IPCP negotiation, unless the
ipcp-accept-local and/or ipcp-accept-remote options are given.

-ac Disable Address/Control compression negotiation (use default, address/
control field compression disabled).

-all Don’t request or allow negotiation of any options for LCP and IPCP (use
default values).

-am Disable asyncmap negotiation (use the default asyncmap; that is, escape all
control characters).

-as n Same as asyncmap n.

pppd

Part VIII: Administration and Privileged Commands1362

bsdcomp nr,nt Request that the peer compress packets that it sends, using the
BSD-Compress scheme, with a maximum code size of nr bits and agree to
compress packets sent to the peer with a maximum code size of nt bits. If
nt is not specified, it defaults to the value given for nr. Values in the range
9 to 15 may be used for nr and nt; larger values give better compression
but consume more kernel memory for compression dictionaries.
Alternatively, a value of 0 for nr or nt disables compression in the
corresponding direction.

-bsdcomp Disables compression; pppd does not request or agree to compress packets
using the BSD-Compress scheme.

+chap Require the peer to authenticate itself using CHAP (Cryptographic
Handshake Authentication Protocol) authentication.

-chap Don’t agree to authenticate using CHAP.

chap-interval n If this option is given, pppd rechallenges the peer every n seconds.

chap-max-challenge n Set the maximum number of CHAP challenge transmissions to u (default
is 10).

chap-restart n Set the CHAP restart interval (retransmission timeout for challenges) to n
seconds (default is 3).

-crtscts Disable hardware flow control (RTS/CTS) on the serial port. If neither
the crtscts nor the -crtscts option is given, the hardware flow control
setting for the serial port is left unchanged.

-d Increase debugging level (same as the debug option).

debug Increase debugging level (same as -d). If this option is given, pppd logs the
contents of all control packets sent or received in a readable form. The
packets are logged through syslog with facility daemon and level debug.
This information can be directed to a file by setting up /etc/syslog.conf
appropriately (see syslog.conf(5)).

-defaultroute Disable the defaultroute option. The system administrator who wants to
prevent users from creating default routes with pppd can do so by placing
this option in the /etc/ppp/options file.

-detach Don’t fork to become a background process (otherwise, pppd will do so if
a serial device other than its controlling terminal is specified).

dns-addr n This option sets the IP address or addresses for the Domain Name Server.
It is used by Microsoft Windows clients. The primary DNS address is
specified by the first instance of the dns-addr option. The secondary is
specified by the second instance.

domain d Append the domain name d to the local hostname for authentication
purposes. For example, if gethost-name() returns the name porsche, but
the fully qualified domain name is porsche.Quotron.COM, you use the
domain option to set the domain name to Quotron.COM.

-ip Disable IP address negotiation. If this option is used, the remote IP
address must be specified with an option on the command line or in an
options file.

+ip-protocol Enable the IPCP and IP protocols. This is the default condition. This
option is only needed if the default setting is -ip-protocol.

-ip-protocol Disable the IPCP and IP protocols. This should only be used if you know
you are using a client that only understands IPX and you don’t want to
confuse the client with the IPCP protocol.

+ipx-protocol Enable the IPXCP and IPX protocols. This is the default condition if
your kernel supports IPX. This option is only needed if the default setting
is -ipx-protocol. If your kernel does not support IPX, this option has no
effect.

1363

-ipx-protocol Disable the IPXCP and IPX protocols. This should only be used if you
know you are using a client that only understands IP and you don’t want
to confuse the client with the IPXCP protocol.

ipcp-accept-local With this option, pppd accepts the peer’s idea of a local IP address, even if
the local IP address was specified in an option.

ipcp-accept-remote With this option, pppd accepts the peer’s idea of its (remote) IP address,
even if the remote IP address was specified in an option.

ipcp-max-configure n Set the maximum number of IPCP configure-request transmissions to n
(default is 10).

ipcp-max-failure n Set the maximum number of IPCP configure-NAKs returned before
starting to send configure-Rejects instead to n (default is 10).

ipcp-max-terminate n Set the maximum number of IPCP terminate-request transmissions to n
(default is 3).

ipcp-restart n Set the IPCP restart interval (retransmission timeout) to n seconds
(default is 3).

ipparam string Provides an extra parameter to the ip-up and ip-down scripts. If this
option is given, the string supplied is given as the sixth parameter to
those scripts.

ipx-network n Set the IPX network number in the IPXCP configure request frame to n.
There is no valid default. If this option is not specified, the network
number is obtained from the peer. If the peer does not have the network
number, the IPX protocol is not started. This is a hexadecimal number
and is entered without any leading sequence such as 0x. It is related to the
ipxcp-accept-network option.

ipx-node n:m Set the IPX node numbers. The two node numbers are separated from
each other with a colon character. The first number n is the local node
number. The second number m is the peer’s node number. Each node
number is a hexadecimal number to the maximum of ten significant
digits. The node numbers on the ipx-network must be unique. There is
no valid default. If this option is not specified, the node number is
obtained from the peer. This option is a related to the ipxcp-accept-local
and ipxcp-accept-remote options.

ipx-router-name string Set the name of the router. This is a string and is sent to the peer as
information data.

ipx-routing n Set the routing protocol to be received by this option. More than one
instance of ipx-routing may be specified. The none option (0) may be
specified as the only instance of ipx-routing. The values are 0 for none, 2
for RIP/SAP, and 4 for NLSP.

ipxcp-accept-local Accept the peer’s NAK for the node number specified in the ipx-node
option. If a node number was specified and it is nonzero, the default is to
insist that the value be used. If you include this option, you permit the
peer to override the entry of the node number.

ipxcp-accept-network Accept the peer’s NAK for the network number specified in the ipx-
network option. If a network number was specified and it is nonzero, the
default is to insist that the value be used. If you include this option, you
permit the peer to override the entry of the node number.

ipxcp-accept-remote Use the peer’s network number specified in the configure request frame.
If a node number was specified for the peer and this option was not
specified, the peer is forced to use the value that you specified.

ipxcp-max-configure n Set the maximum number of IPXCP configure request frames that the
system sends to n. The default is 10.

pppd

Part VIII: Administration and Privileged Commands1364

ipxcp-max-failure n Set the maximum number of IPXCP NAK frames that the local system
sends before it rejects the options. The default value is 3.

ipxcp-max-terminate n Set the maximum number of IPXCP terminate request frames before the
local system considers that the peer is not listening to them. The default
value is 3.

kdebug n Enable debugging code in the kernel-level PPP driver. The argument n is
a number that is the sum of the following values: 1 to enable general
debug messages, 2 to request that the contents of received packets be
printed, and 4 to request that the contents of transmitted packets be
printed.

lcp-echo-failure n If this option is given, pppd presumes the peer is dead if n LCP echo-
requests are sent without receiving a valid LCP echo-reply. If this
happens, pppd terminates the connection. Use of this option requires a
nonzero value for the lcp-echo-interval parameter. This option can be
used to enable pppd to terminate after the physical connection has been
broken (for example, the modem has hung up) in situations where no
hardware modem control lines are available.

lcp-echo-interval n If this option is given, pppd sends an LCP echo-request frame to the peer
every n seconds. Under Linux, the echo-request is sent when no packets
are received from the peer for n seconds. Usually, the peer should respond
to the echo-request by sending an echo-reply. This option can be used
with the lcp-echo-failure option to detect that the peer is no longer
connected.

lcp-max-configure n Set the maximum number of LCP configure-request transmissions to n
(default is 10).

lcp-max-failure n Set the maximum number of LCP configure-NAKs returned before
starting to send configure-Rejects instead to n (default is 10).

lcp-max-terminate n Set the maximum number of LCP terminate-request transmissions to n
(default is 3).

lcp-restart n Set the LCP restart interval (retransmission timeout) to n seconds (default
is 3).

local Don’t use the modem control lines. With this option, pppd ignores the
state of the CD (Carrier Detect) signal from the modem and does not
change the state of the DTR (Data Terminal Ready) signal.

login Use the system password database for authenticating the peer using PAP,
and record the user in the system wtmp file.

modem Use the modem control lines. This option is the default. With this
option, pppd waits for the CD (Carrier Detect) signal from the modem to
be asserted when opening the serial device (unless a connect script is
specified), and it drops the DTR (Data Terminal Ready) signal briefly
when the connection is terminated and before executing the connect
script. On Ultrix, this option implies hardware flow control, as for the
crtscts option.

-mn Disable magic number negotiation. With this option, pppd cannot detect
a looped-back line.

-mru Disable MRU (MaximumReceive Unit) negotiation. With this option,
pppd uses the default MRU value of 1500 bytes.

name n Set the name of the local system for authentication purposes to n.

noipdefault Disables the default behavior when no local IP address is specified, which
is to determine (if possible) the local IP address from the hostname. With
this option, the peer must supply the local IP address during IPCP

1365

negotiation (unless it specified explicitly on the command line or in an
options file).

-p Same as the passive option.

+pap Require the peer to authenticate itself using PAP.

-pap Don’t agree to authenticate using PAP.

papcrypt Indicates that all secrets in the /etc/ppp/pap-secrets file, which are used
for checking the identity of the peer, are encrypted, and thus pppd should
not accept a password (before encryption) that is identical to the secret
from the /etc/ppp/pap-secrets file.

pap-max-authreq n Set the maximum number of PAP authenticate-request transmissions to n
(default is 10).

pap-restart n Set the PAP restart interval (retransmission timeout) to n seconds (default
is 3).

pap-timeout n Set the maximum time that pppd waits for the peer to authenticate itself
with PAP to n seconds (0 means no limit).

-pc Disable protocol field compression negotiation (use default, protocol field
compression disabled).

persist Do not exit after a connection is terminated; instead, try to reopen the
connection.

pred1comp Attempt to request that the peer send the local system frames, which have
been compressed by the Predictor-1 compression. The compression
protocols must be loaded or this option is ignored.

-pred1comp Do not accept Predictor-1 compression, even if the peer wants to send
this type of compression and support has been defined in the kernel.

proxyarp Add an entry to this system’s ARP (Address Resolution Protocol) table
with the IP address of the peer and the Ethernet address of this system.

-proxyarp Disable the proxyarp option. The system administrator who wants to
prevent users from creating proxy ARP entries with pppd can do so by
placing this option in the /etc/ppp/options file.

remotename n Set the assumed name of the remote system for authentication purposes
to n.

+ua p Agree to authenticate using PAP (Password Authentication Protocol) if
requested by the peer and use the data in file p for the user and password
to send to the peer. The file contains the remote username, followed by a
newline, followed by the remote password, followed by a newline. This
option is obsolescent.

usehostname Enforce the use of the hostname as the name of the local system for
authentication purposes (overrides the name option).

user u Set the username to use for authenticating this machine with the peer
using PAP to u.

-vj Disable negotiation of Van Jacobson-style TCP/IP header compression
(use default, no compression).

-vjccomp Disable the connection-ID compression option in Van Jacobson style
TCP/IP header compression. With this option, pppd does not omit the
connection-ID byte from Van Jacobson compressed TCP/IP headers or
ask the peer to do so.

vj-max-slots n Sets the number of connection slots to be used by the Van Jacobson
TCP/IP header compression and decompression code to n, which must be
between 2 and 16 (inclusive).

pppd

Part VIII: Administration and Privileged Commands1366

xonxoff Use software flow control (XON/XOFF) to control the flow of data on
the serial port. This option is only implemented on Linux systems at
present.

OPTIONS FILES
Options can be taken from files as well as the command line. pppd reads options from the files /etc/ppp/options and ~/.ppprc
before looking at the command line. An options file is parsed into a series of words, delimited by whitespace. Whitespace can
be included in a word by enclosing the word in quotes (“). A backslash (\) quotes the following character. A hash (#) starts a
comment, which continues until the end of the line.

AUTHENTICATION
pppd provides system administrators with sufficient access control so that PPP access to a server machine can be provided to
legitimate users without fear of compromising the security of the server or the network it’s on. In part, this is provided by the
/etc/ppp/options file, where the administrator can place options to require authentication whenever pppd is run, and in part
by the PAP and CHAP secrets files, where the administrator can restrict the set of IP addresses that individual users can use.

The default behavior of pppd is to agree to authenticate if requested and to not require authentication from the peer.
However, pppd does not agree to authenticate itself with a particular protocol if it has no secrets that can be used to do so.

Authentication is based on secrets, which are selected from secrets files (/etc/ppp/pap-secrets for PAP,
/etc/ppp/chap-secrets for CHAP). Both secrets files have the same format, and both can store secrets for several combina-
tions of server (authenticating peer) and client (peer being authenticated). Note that pppd can be both a server and client and
that different protocols can be used in the two directions if desired.

A secrets file is parsed into words as for an options file. A secret is specified by a line containing at least three words, in the
order client name, server name, and secret. Any following words on the same line are taken to be a list of acceptable IP
addresses for that client. If there are only three words on the line, it is assumed that any IP address is okay; to disallow all IP
addresses, use -. If the secret starts with an @, what follows is assumed to be the name of a file from which to read the secret.
A * as the client or server name matches any name. When selecting a secret, pppd takes the best match—that is, the match
with the fewest wildcards.

A secrets file contains both secrets for use in authenticating other hosts and secrets that you use for authenticating yourself to
others. Which secret to use is chosen based on the names of the host (the local name) and its peer (the remote name). The
local name is set as follows:

If the usehostname option is given, The local name is the hostname of this machine (with the domain
appended, if given).

If the name option is given Use the argument of the first name option seen.

If the local IP address is specified with a Use that name. Otherwise, use the hostname of this machine (with the
hostname domain appended, if given).

When authenticating yourself using PAP, there is also a username, which is the local name by default, but can be set with the
user option or the +ua option.

The remote name is set as follows:

If the remotename option is given Use the argument of the last remote-name option seen.

If the remote IP address is specified with a Use that host name. Otherwise, the remote name is the null
hostname string “”.

Secrets are selected from the PAP secrets file as follows:

■ For authenticating the peer, look for a secret with client == username specified in the PAP authenticate-request and
server == local name.

■ For authenticating yourself to the peer, look for a secret with client == your username and server == remote name.

1367

When authenticating the peer with PAP, a secret of “” matches any password supplied by the peer. If the password doesn’t
match the secret, the password is encrypted using crypt() and checked against the secret again; thus secrets for authenticat-
ing the peer can be stored in encrypted form. If the papcrypt option is given, the first (unencrypted) comparison is omitted
for better security.

If the login option was specified, the username and password are also checked against the system password database. Thus,
the system administrator can set up the pap-secrets file to allow PPP access only to certain users and to restrict the set of IP
addresses that each user can use. Typically, when using the login option, the secret in /etc/ppp/pap-secrets is “” to avoid the
need to have the same secret in two places.

Secrets are selected from the CHAP secrets file as follows:

■ For authenticating the peer, look for a secret with client == name specified in the CHAP-Response message and server
== local name.

■ For authenticating yourself to the peer, look for a secret with client == local name and server == name specified in the
CHAP-Challenge message.

Authentication must be satisfactorily completed before IPCP (or any other Network Control Protocol) can be started. If
authentication fails, pppd terminates the link (by closing LCP). If IPCP negotiates an unacceptable IP address for the remote
host, IPCP is closed. IP packets can only be sent or received when IPCP is open.

In some cases, it is desirable to allow some hosts that can’t authenticate themselves to connect and use one of a restricted set
of IP addresses, even when the local host generally requires authentication. If the peer refuses to authenticate itself when
requested, pppd takes that as equivalent to authenticating with PAP using the empty string for the username and password.
Thus, by adding a line to the pap-secrets file, which specifies the empty string for the client and password, it is possible to
allow restricted access to hosts that refuse to authenticate themselves.

ROUTING
When IPCP negotiation is completed successfully, pppd informs the kernel of the local and remote IP addresses for the PPP
interface. This is sufficient to create a host route to the remote end of the link, which enables the peers to exchange IP
packets. Communication with other machines generally requires further modification to routing tables and/or ARP (Address
Resolution Protocol) tables. In some cases, this is done automatically through the actions of the routed or gated daemons,
but in most cases, some further intervention is required.

Sometimes it is desirable to add a default route through the remote host, as in the case of a machine whose only connection
to the Internet is through the PPP interface. The defaultroute option causes pppd to create such a default route when IPCP
comes up and delete it when the link is terminated.

In some cases, it is desirable to use proxy ARP—for example, on a server machine connected to a LAN—to allow other hosts
to communicate with the remote host. The proxyarp option causes pppd to look for a network interface on the same subnet as
the remote host (an interface supporting broadcast and ARP, which is up and not a point-to-point or loopback interface). If
found, pppd creates a permanent, published ARP entry with the IP address of the remote host and the hardware address of
the network interface found.

EXAMPLES
In the simplest case, you can connect the serial ports of two machines and issue a command like

pppd /dev/ttya 9600 passive

to each machine, assuming there is no getty running on the serial ports. If one machine has a getty running, you can use
kermit or tip on the other machine to log in to the first machine and issue a command like

pppd passive

Then exit from the communications program (making sure the connection isn’t dropped) and issue a command like

pppd /dev/ttya 9600

pppd

Part VIII: Administration and Privileged Commands1368

The process of logging in to the other machine and starting pppd can be automated by using the connect option to run chat:

pppd /dev/ttya 38400 connect ‘chat “” “” “login:” “username”
 “Password:” “pass-word” “% “ “exec pppd passive”’

(Note, however, that running chat like this leaves the password visible in the parameter list of pppd and chat.)

If your serial connection is any more complicated than a piece of wire, you might need to arrange for some control characters
to be escaped. In particular, it is often useful to escape XON (^Q) and XOFF (^S), using asyncmap a0000. If the path
includes a telnet, you probably should escape ˆ] as well (asyncmap 200a0000). If the path includes an rlogin, you need to use
the escape ff option on the end that is running the rlogin client because many rlogin implementations are not transparent;
they remove the sequence (0xff, 0xff, 0x73, 0x73, followed by any 8 bytes) from the stream.

DIAGNOSTICS
Messages are sent to the syslog daemon using the facility LOG_DAEMON. (This can be overridden by recompiling pppd with the
macro LOG_PPP defined as the desired facility.) To see the error and debug messages, you need to edit your /etc/syslog.conf
file to direct the messages to the desired output device or file.

The debug option causes the contents of all control packets sent or received to be logged—that is, all LCP, PAP, CHAP, or
IPCP packets. This can be useful if the PPP negotiation does not succeed. If debugging is enabled at compile time, the debug
option also causes other debugging messages to be logged.

Debugging can also be enabled or disabled by sending a SIGUSR1 to the pppd process. This signal acts as a toggle.

FILES
/var/run/pppn.pid (BSD or Linux) Process-ID for pppd process on PPP interface unit n.
/etc/ppp/pppn.pid (others)

/etc/ppp/ip-up A program or script that is executed when the link is available for sending and
receiving IP packets (that is, IPCP has come up). It is executed with the
parameters interface-name tty-device speed local-IP-address remote-IP-
and with its standard input, output and error streams redirected to /dev/null.

This program or script is executed with the same real and effective user-ID as
pppd—that is, at least the effective user-ID and possibly the real user-ID will be
root. This is so that it can be used to manipulate routes, run privileged daemons
(such as send-mail), and so on. Be careful that the contents of the /etc/ppp/ip-up
and /etc/ppp/ip-down scripts do not compromise your system’s security.

/etc/ppp/ip-down A program or script that is executed when the link is no longer available for
sending and receiving IP packets. This script can be used for undoing the effects
of the /etc/ppp/ip-up script. It is invoked with the same parameters as the ip-up
script, and the same security considerations apply because it is executed with the
same effective and real user-IDs as pppd.

/etc/ppp/ipx-up A program or script that is executed when the link is available for sending and
receiving IPX packets (that is, IPXCP has come up). It is executed with the
parameters interface-name tty-device speed network-number local-IPX-node-
address remote-IPX-node-address local-IPX-routing-protocol remote-IPX-

routing-protocol local-IPX-router-name remote-IPX-router-name ipparam pppd-

pid and with its standard input, output, and error streams redirected to
/dev/null.

The local-IPX-routing-protocol and remote-IPX-routing-protocol field may be
one of the following:

address

1369

NONE to indicate that there is no routing protocol. RIP to indicate that RIP/SAP
should be used. NLSP to indicate that Novell NLSP should be used. RIP NLSP to
indicate that both RIP/SAP and NLSP should be used.

This program or script is executed with the same real and effective user-ID as
pppd—that is, at least the effective user-ID and possibly the real user-ID will be
root. This is so that it can be used to manipulate routes, run privileged daemons
(such as ripd), and so on. Be careful that the contents of the /etc/ppp/ipx-up and
/etc/ppp/ipx-down scripts do not compromise your system’s security.

/etc/ppp/ipx-down A program or script that is executed when the link is no longer available for
sending and receiving IPX packets. This script can be used for undoing the
effects of the /etc/ppp/ipx-up script. It is invoked with the same parameters as
the ipx-up script, and the same security considerations apply because it is
executed with the same effective and real user-IDs as pppd.

/etc/ppp/pap-secrets Usernames, passwords, and IP addresses for PAP authentication.

/etc/ppp/chap-secrets Names, secrets, and IP addresses for CHAP authentication.

/etc/ppp/options System default options for pppd, read before user default options or command-
line options.

~/.ppprc User default options, read before command-line options.

/etc/ppp/options.ttyname System default options for the serial port being used, read after command-line
options.

SEE ALSO
RFC 1144 Jacobson, V. Compressing TCP/IP headers for low-speed serial links. February

1990.

RFC 1321 Rivest, R. The MD5 Message-Digest Algorithm. April 1992.

RFC 1332 McGregor, G. PPP Internet Protocol Control Protocol (IPCP). May 1992.

RFC 1334 Lloyd, B.; Simpson, W.A. PPP authentication protocols. 1992 October.

RFC 1548 Simpson, W.A. The Point–to–Point Protocol (PPP). December 1993.

RFC 1549 Simpson, W.A. PPP in HDLC Framing. December 1993.

NOTES
The following signals have the specified effect when sent to the pppd process:

SIGINT, SIGTERM These signals cause pppd to terminate the link (by closing LCP), restore the serial
device settings, and exit.

SIGHUP This signal causes pppd to terminate the link, restore the serial device settings, and
close the serial device. If the persist option has been specified, pppd tries to
reopen the serial device and start another connection. Otherwise, pppd exits.

SIGUSR2 This signal causes pppd to renegotiate compression. This can be useful to re-
enable compression after it has been disabled as a result of a fatal decompression
error. With the BSD Compress scheme, fatal decompression errors generally
indicate a bug in one or another implementation.

AUTHORS
Drew Perkins, Brad Clements, Karl Fox, Greg Christy, Brad Parker, and Paul Mackerras (paulus@cs.anu.edu.au)

pppstats
pppstats—Print PPP statistics.

pppstats

Part VIII: Administration and Privileged Commands1370

SYNOPSIS
pppstats [-v][-r][-c][-i secs][unit#]

DESCRIPTION
pppstats prints PPP-related statistics.

The -v flag causes pppstats to display additional statistics, such as the number of packets tossed (that is, which the VJ TCP
header decompression code rejected).

The -r flag causes pppstats to display the overall packet compression rate. The rate value is between 0 and 1, with 0 meaning
that the data is incompressible.

The -c flag is used to specify an alternate display mode that shows packet compression statistics: the number of packets and
bytes uncompressed (that is, before compression or after decompression), compressed, and incompressible (packets that did
not shrink on compression and were transmitted uncompressed), and the recent compression rate. This rate reflects the
recent performance of the compression code rather than the overall rate the code compression was enabled.

The -i flag is used to specify the interval between printouts. The default is 5 seconds.

unit# specifies which interface to use for gathering statistics.

2 May 1995

prunehistory
prunehistory—Remove filenames from Usenet history file.

SYNOPSIS
prunehistory [-f filename][-p][input]

DESCRIPTION
prunehistory modifies the history(5) text file to remove a set of filenames from it. The filenames are removed by overwriting
them with spaces so that the size and position of any following entries do not change.

prunehistory reads the named input file or standard input if no file is given. The input is taken as a set of lines. Blank lines
and lines starting with a number sign (#) are ignored. All other lines should consist of a Message-ID followed by zero or more
filenames. prunehistory usually complains about lines that do not follow this format. If the –p flag is used, then the program
silently prints any invalid lines on its standard output. (Blank lines and comment lines are also passed through.) This can be
useful when prunehistory is used as a filter for other programs such as reap.

The Message-ID is used as the dbz(3) key to get an offset into the text file. If no filenames are mentioned on the input line,
then all filenames in the text are removed. If any filenames are mentioned, they are converted into the history file notation. If
they appear in the line for the specified Message-ID, they are removed.

The default name of the history file is /news/lib/history; to specify a different name, use the –f flag.

Because innd(8) only appends to the text file, prunehistory does not need to have any interaction with it.

It is a good idea to delete purged entries and rebuild the dbz database every so often by using a script such as the following:

ctlinnd throttle “Rebuilding history database”
cd /news/lib
awk ‘NF > 2 {
printf “%s\t%s\t%s”,$1,$2,$3;
for (i = 4; i <= NF; i++)
printf “ %s”, $i;
print “\n”;
}’ <history >history.n
if makehistory –r –f history.n ; then

1371

mv history.n history
mv history.n.pag history.pag
mv history.n.dir history.dir
else
echo ‘Problem rebuilding history; old file not replaced’
fi
ctlinnd go “Rebuilding history database”

Note that this keeps no record of expired articles.

HISTORY
Written by Rich $alz (rsalz@uunet.uu.net) for InterNetNews.

SEE ALSO
dbz(3), history(5), innd(8)

quotacheck
quotacheck—Scan a filesystem for disk usages.

SYNOPSIS
quotacheck [-g] [-u] [-v] -a
quotacheck [-g] [-u] [-v] filesys ...

DESCRIPTION
quotacheck performs a filesystem scan for usage of files and directories, used by either user or group. The output is the quota
file for the corresponding filesystem. By default, the names for these files are

A user scan quota.user

A group scan quota.group

The resulting file consists of a struct dqblk for each possible ID up to the highest existing UID or GID and contains the
values for the disk file and block usage and possibly excess time for these values. (For definitions of struct dqblk, see
linux/quota.h.)

quotacheck should be run each time the system boots and mounts non-valid filesystems. This is most likely to happen after a
system crash.

The speed of the scan decreases with the amount of directories increasing. The time needed doubles when disk usage is
doubled as well. A 100MB partition used for 94 percent is scanned in one minute; the same partition used for 50 percent is
done in 25 seconds.

OPTIONS
-v This way, the program will give some useful information about what it is doing, plus

some fancy stuff.

-d This means debug. It will result in a lot of information that can be used in debugging
the program. The output is very verbose and the scan will not be fast.

-u This flag tells the program to scan the disk and to count the files and directories used by
a certain UID. This is the default action.

-g This flag forces the program to count the files and directories used by a certain GID.

NOTE
checkquota should only be run as superuser. Non-privileged users are presumably not allowed to read all the directories on
the given filesystem.

quotacheck

Part VIII: Administration and Privileged Commands1372

SEE ALSO
quota(1), quotactl(2), fstab(5), quotaon(8), quotaoff(8), edquota(8), repquota(8), fsck(8), efsck(8), e2fsck(8), xfsck(8)

FILES
quota.user

quota.group

/etc/fstab

AUTHOR
Edvard Tuinder (v892231@si.hhs.nl, etuinder@delirium.nl.mugnet.org), Marco van Wieringen (v892273@si.hhs.nl,
mvw@mcs.nl.mugnet.org).

21 August 1993

quotaon, quotaoff
quotaon, quotaoff—Turn filesystem quotas on and off.

SYNOPSIS
/usr/etc/quotaon [-vug] filesystem...
/usr/etc/quotaon [-avug]

/usr/etc/quotaoff [-vug] filesystem...
/usr/etc/quotaoff [-avug]

DESCRIPTION
quotaon announces to the system that disk quotas should be enabled on one or more filesystems. The filesystem quota files
must be present in the root directory of the specified filesystem and be named quota.user for user quota or quota.group for
group quota.

quotaoff announces to the system that filesystems specified should have any disk quotas turned off.

OPTIONS
quotaon

-a All filesystems in /etc/fstab marked read-write with quotas will have their quotas
turned on. This is usually used at boot time to enable quotas.

-v Display a message for each filesystem where quotas are turned on.

-u Manipulate user quotas. This is the default.

-g Manipulate group quotas.

quotaoff
-a Force all filesystems in /etc/fstab to have their quotas disabled.

-v Display a message for each filesystem affected.

-u Manipulate user quotas. This is the default.

-g Manipulate group quotas.

FILES
quota.user User quota file at the filesystem root

quota.group Group quota file at the filesystem root

/etc/fstab Default filesystems

1373

SEE ALSO
quotactl(2), fstab(5)

8 June 1993

rarp
rarp—Manipulate the system RARP table.

SYNOPSIS
rarp [-v] [-t type] -a [hostname]
rarp [-v] -d hostname ...
rarp [-v] [-t type] -s hostname hw_addr

DESCRIPTION
rarp manipulates the kernel’s RARP table in various ways. The primary options are clearing an address mapping entry and
manually setting up one. For debugging purposes, the rarp program also allows a complete dump of the RARP table.

OPTIONS
-v Tell the user what is going on by being verbose.

-t type When setting or reading the RARP table, this optional parameter tells rarp which class
of entries it should check for. The default value of this parameter is ether (hardware
code 0x01 for IEEE 802.3 10Mbps Ethernet). Other values might include network
technologies such as AX.25 (ax25).

-a [hostname] Shows the entries of the specified hosts. If the hostname parameter is not used, all entries
are displayed.

-d hostname Remove the entries of the specified host. This can be used if the indicated host is
brought down, for example.

-s hostname hw_addr Create an RARP address mapping entry for host hostname with hardware address set to
hw_addr class, but for most classes, you can assume that the usual presentation can be
used. For the Ethernet class, this is 6 bytes in hexadecimal, separated by colons.

FILES
/proc/net/rarp

AUTHORS
Ross D. Martin (martin@trcsun3.eas.asu.edu), Fred N. van Kempen (waltje@uwalt.nl.mugnet.org).

11 June 1994

rdev
rdev—Query/set image root device, swap device, RAM disk size, or video mode.

SYNOPSIS
rdev [-rsvh] [-o offset][image [value [offset]]]
rdev [-o offset][image [root_device [offset]]]
swapdev [-o offset][image [swap_device [offset]]]
ramsize [-o offset][image [size [offset]]]
vidmode [-o offset][image [mode [offset]]]
rootflags [-o offset][image [flags [offset]]]

rdev

Part VIII: Administration and Privileged Commands1374

DESCRIPTION
With no arguments, rdev outputs an /etc/mtab line for the current root filesystem. With no arguments, swapdev, ramsize,
vidmode, and rootflags print usage information.

In a bootable image for the Linux kernel, there are several pairs of bytes that specify the root device, the video mode, the size
of the RAM disk, and the swap device. These pairs of bytes, by default, begin at offset 504 (decimal) in the kernel image:

498 Root flags

(500 and 502 Reserved)

504 RAM Disk Size

506 VGA Mode

508 Root Device

(510 Boot Signature)

rdev changes these values.

Typical values for the image parameter, which is a bootable Linux kernel image, are as follows:

/vmlinux
/vmlinux.test
/vmunix
/vmunix.test
/dev/fd0
/dev/fd1

When using the rdev or swapdev commands, the root device or swap device parameter are as follows:

/dev/hda[1-8]
/dev/hdb[1-8]
/dev/sda[1-8]
/dev/sdb[1-8]

For the ramsize command, the size parameter specifies the size of the RAM disk in kilobytes.

For the rootflags command, the flags parameter contains extra information used when mounting root. Currently, the only
effect of these flags is to force the kernel to mount the root filesystem in read-only mode if flags is nonzero.

For the vidmode command, the mode parameter specifies the video mode:

-3 Prompt

-2 Extended VGA

-1 Normal VGA

0 As if 0 was pressed at the prompt

1 As if 1 was pressed at the prompt

2 As if 2 was pressed at the prompt

n As if n was pressed at the prompt

If the value is not specified, the image is examined to determine the current settings.

OPTIONS
-s Causes rdev to act like swapdev.

-r Causes rdev to act like ramsize.

-R Causes rdev to act like rootflags.

-v Causes rdev to act like vidmode.

-h Provides help.

1375

BUGS
For historical reasons, there are two methods for specifying alternative values for the offset.

The user interface is cumbersome, non-intuitive, and should probably be rewritten from scratch, allowing multiple kernel
image parameters to be changed or examined with a single command.

If LILO is used, rdev is no longer needed for setting the root device and the VGA mode because the parameters that rdev
modifies can be set from the LILO prompt during a boot. However, rdev is still needed at this time for setting the RAM disk
size. Users are encouraged to find the LILO documentation for more information and to use LILO when booting their
systems.

AUTHORS
Originally by Werner Almesberger (almesber@nessie.cs.id.ethz.ch). Modified by Peter MacDonald
(pmacdona@sanjuan.UVic.CA). rootflags support added by Stephen Tweedie (sct@dcs.ed.ac.uk).

Linux 0.99, 20 November 1993

renice
renice—Alter priority of running processes.

SYNOPSIS
renice priority [[-p] pid ...] [[-g] pgrp ...] [[-u] user ...]

DESCRIPTION
renice alters the scheduling priority of one or more running processes. The following “who” parameters are interpreted as
process IDs, process group IDs, or user names. reniceing a process group causes all processes in the process group to have
their scheduling priority altered. reniceing a user causes all processes owned by the user to have their scheduling priority
altered. By default, the processes to be affected are specified by their process IDs.

Options supported by renice:

-g Force who parameters to be interpreted as process group IDs.

-u Force the who parameters to be interpreted as usernames.

-p Reset the who interpretation to be (the default) process IDs.

The following example changes the priority of process IDs 987 and 32 and all processes owned by users daemon and root:

renice +1 987 -u daemon root -p 32

Users other than the superuser can only alter the priority of processes they own and can only monotonically increase their
“nice value” within the range 0 to PRIO_MAX (20). (This prevents overriding administrative fiats.) The superuser can alter the
priority of any process and set the priority to any value in the range PRIO_MIN (–20) to PRIO_MAX. Useful priorities are: 20 (the
affected processes run only when nothing else in the system wants to), 0 (the “base” scheduling priority), and anything
negative (to make things go very fast).

FILES
/etc/passwd to map usernames to user IDs

SEE ALSO
getpriority(2), setpriority(2)

BUGS
Non-superusers cannot increase scheduling priorities of their own processes, even if they were the ones that decreased the
priorities in the first place.

renice

Part VIII: Administration and Privileged Commands1376

HISTORY
The renice command appeared in BSD 4.0.

BSD 4, 9 June 1993

repquota
repquota—Summarize quotas for a filesystem.

SYNOPSIS
/usr/etc/repquota [-vug] filesystem...
/usr/etc/repquota [-avug]

DESCRIPTION
repquota prints a summary of the disk usage and quotas for the specified filesystems. For each user, the current number of
files and amount of space (in kilobytes) is printed, along with any quotas created with edquota(8).

OPTIONS
-a Report on all filesystems indicated in /etc/fstab to be read-write with quotas.

-v Report all quotas even if there is no usage.

-g Report quotas for groups.

-u Report quotas for users. This is the default.

Only the superuser can view quotas that are not their own.

FILES
quotas Quota file at the filesystem root

/etc/fstab Default filesystems

SEE ALSO
quota(1), quotactl(2), edquota(8), quotacheck(8), quotaon(8)

8 June 1993

rexecd
rexecd—Remote execution server.

SYNOPSIS
rexecd

DESCRIPTION
rexecd is the server for the rexec(3) routine. The server provides remote execution facilities with authentication based on
usernames and passwords.

rexecd listens for service requests at the port indicated in the exec service specification; see services(5). When a service
request is received, the following protocol is initiated:

1. The server reads characters from the socket up to a null \0 byte. The resultant string is interpreted as an ASCII number,
base 10.

1377

2. If the number received in Step 1 is nonzero, it is interpreted as the port number of a secondary stream to be used for the
stderr. A second connection is then created to the specified port on the client’s machine.

3. A null-terminated username of at most 16 characters is retrieved on the initial socket.
4. A null-terminated, unencrypted password of at most 16 characters is retrieved on the initial socket.
5. A null-terminated command to be passed to a shell is retrieved on the initial socket. The length of the command is

limited by the upper bound on the size of the system’s argument list.
6. rexecd then validates the user as is done at login time and, if the authentication was successful, changes to the user’s

home directory and establishes the user and group protections of the user. If any of these steps fail, the connection is
aborted with a diagnostic message returned.

7. A null byte is returned on the initial socket and the command line is passed to the normal login shell of the user. The
shell inherits the network connections established by rexecd.

DIAGNOSTICS
Except for the last one listed, all diagnostic messages are returned on the initial socket, after which any network connections
are closed. An error is indicated by a leading byte with a value of 1 (0 is returned in Step 7 upon successful completion of all
the steps prior to the command execution).

username too long The name is longer than 16 characters.

password too long The password is longer than 16 characters.

command too long The command line passed exceeds the size of the argument list (as configured into the
system).

Login incorrect. No password file entry for the username existed or the wrong password was supplied.

No remote directory. The chdir command to the home directory failed.

Try again. A fork by the server failed.

<shellname>: ... The user’s login shell could not be started. This message is returned on the connection
associated with the stderr and is not preceded by a flag byte.

SEE ALSO
rexec(3)

BUGS
A facility to allow all data and password exchanges to be encrypted should be present.

HISTORY
The rexecd command appeared in BSD 4.2.

BSD 4.2, 16 March 1991

rlogind
rlogind—Remote login server.

SYNOPSIS
rlogind [-aln]

DESCRIPTION
rlogind is the server for the rlogin(1) program. The server provides a remote login facility with authentication based on
privileged port numbers from trusted hosts.

rlogind

Part VIII: Administration and Privileged Commands1378

Options supported by rlogind:

-a Ask hostname for verification.

-l Prevent any authentication based on the user’s .rhosts file unless the user is logging in
as the superuser.

-n Disable keep-alive messages.

rlogind listens for service requests at the port indicated in the “login” service specification; see services(5). When a service
request is received, the following protocol is initiated:

1. The server checks the client’s source port. If the port is not in the range 512-1023, the server aborts the connection.
2. The server checks the client’s source address and requests the corresponding hostname (see gethostbyaddr(3), hosts(5),

and named(8)). If the hostname cannot be determined, the dot-notation representation of the host address is used. If the
hostname is in the same domain as the server (according to the last two components of the domain name), or if the -a
option is given, the addresses for the hostname are requested, verifying that the name and address correspond. Normal
authentication is bypassed if the address verification fails.

Once the source port and address have been checked, rlogind proceeds with the authentication process described in rshd(8).
It then allocates a pseudo terminal (see pty(4)) and manipulates file descriptors so that the slave half of the pseudo terminal
becomes the stdin, stdout, and stderr for a login process. The login process is an instance of the login(1) program, invoked
with the -f option if authentication has succeeded. If automatic authentication fails, the user is prompted to log in as if on a
standard terminal line.

The parent of the login process manipulates the master side of the pseudo terminal, operating as an intermediary between the
login process and the client instance of the rlogin program. In normal operation, the packet protocol described in pty(4) is
invoked to provide Ŝ/ Q̂ type facilities and propagate interrupt signals to the remote programs. The login process propagates
the client terminal’s baud rate and terminal type, as found in the environment variable, TERM; see environ(7). The screen or
window size of the terminal is requested from the client, and window size changes from the client are propagated to the
pseudo terminal.

Transport-level keep-alive messages are enabled unless the -n option is present. The use of keep-alive messages allows sessions
to be timed out if the client crashes or becomes unreachable.

DIAGNOSTICS
All initial diagnostic messages are indicated by a leading byte with a value of 1, after which any network connections are
closed. If there are no errors before login is invoked, a null byte is returned as in indication of success.

Try again. A fork by the server failed.

SEE ALSO
login(1), ruserok(3), rshd(8)

BUGS
The authentication procedure used here assumes the integrity of each client machine and the connecting medium. This is
insecure but is useful in an “open” environment.

A facility to allow all data exchanges to be encrypted should be present.

A more extensible protocol should be used.

HISTORY
The rlogind command appeared in BSD 4.2.

BSD 4.2, 16 March 1991

1379

route
route—Show/manipulate the IP routing table.

SYNOPSIS
route [-vn]
route [-v] add [-net | -host] XXXX [gw GGGG] [metric MMMM] [netmask NNNN]
[mss NNNN] [window NNNN] [dev DDDD]
route [-v] del XXXX

DESCRIPTION
route manipulates the kernel’s IP routing table. Its primary use is to set up static routes to specific hosts or networks via an
interface after it has been configured with the ifconfig(8) program. This version of route is intended solely for use with
kernel versions 0.99pl14n and newer kernels.

OPTIONS
(none) Prints out the kernel routing table, listing destination address, gateway, netmask for

route (“Genmask”), flags (U = Up, H = Host, G = Gateway, D = dynamic, M = Modified),
Metric (currently not supported), Ref, Use, and Iface (which device the route maps to).

-n Same as previous but shows numerical addresses instead of trying to determine symbolic
host names.

-v A flag for verbose (not actually used).

del XXXX Deletes the route associated with the destination address XXXX.

add[-net | -host] XXXX [gw GGGG] Adds a route to the IP address XXXX. The route is a network route if the -net modifier is
[metric MMMM] [netmask NNNN] used or XXXX is found in /etc/networks by the getnetbyname() library function and no
[dev DDDD] -host modifier is used.

The gw GGGG argument means that any IP packets sent to this address will be routed
through the specified gateway. Note: The specified gateway must be reachable first. This
usually means that you have to set up a static route to the gateway beforehand.

The metric MMMM modifier is not yet implemented (and with the -v option will actually
print a warning).

The netmask NNNN modifier specifies the netmask of the route to be added. This only
makes sense for a network route and when the address XXXX actually makes sense with
the specified netmask. If no netmask is given, route guesses it instead, so for most
normal setups, you won’t need to specify a netmask.

The mss NNNN modifier specifies the TCP mss for the route to be added. This is usually
used only for fine optimization of routing setups.

The window NNNN modifier specifies the TCP window for the route to be added. This is
typically only used on AX.25 networks and with drivers unable to handle back-to-back
frames—such as the 3c501 or DE600.

The dev DDDD modifier forces the route to be associated with the specified device because
the kernel will otherwise try to determine the device on its own (by checking already
existing routes and device specifications and where the route is added to). In most
normal networks, you won’t need this.

If dev DDDD is the last option on the command line, the word dev may be omitted
because it’s the default. Otherwise, the order of the route modifiers (metric, netmask, gw,
and dev) doesn’t matter.

route

Part VIII: Administration and Privileged Commands1380

EXAMPLES
route add -net 127.0.0.0 Adds the normal loopback entry, using netmask 255.0.0.0 (Class A net determined from

the destination address) and associated with the lo device (assuming this device was
previously set up correctly with ifconfig(8)).

route add -net 192.56.76.0 Adds a route to the network 192.56.76.x via eth0. The Class C netmask modifier is not
netmask 255.255.255.0 dev eth0 really necessary here because 192.* is a Class C IP address. The word dev can be omitted

here.

route add default gw mango-gw Adds a default route (which will be used if no other route matches). All packets using
this route will be gatewayed through mango-gw. The device that will actually be used for
that route depends on how you can reach mango-gw; the static route to mango-gw will have
to be set up before.

route add ipx4 sl0 route add -net This command sequence adds the route to the ipx4 host via the SLIP interface
192.57.66.0 netmask 255.255.255.0 (assuming that ipx4 is the SLIP host) and then adds the net 192.57.66.0 to be gatewayed
gw ipx4 through that host.

FILES
/proc/net/route

/etc/networks

/etc/hosts

SEE ALSO
ifconfig(8)

HISTORY
route for Linux was originally written by Fred N. van Kempen (waltje@uwalt.nl.mugnet.org) and then modified by Johannes
Stille and Linus Torvalds for pl15. Alan Cox added the mss and window options for Linux 1.1.22.

14 June 1994

routed
routed—Network routing daemon.

SYNOPSIS
routed [-d] [-g] [-q] [-s] [-t] [logfile]

DESCRIPTION
routed is invoked at boot time to manage the network routing tables. The routing daemon uses a variant of the Xerox NS
Routing Information Protocol in maintaining up-to-date kernel routing table entries. It used a generalized protocol capable
of use with multiple address types but is currently used only for Internet routing within a cluster of networks.

In normal operation, routed listens on the udp(4) socket for the route(8) service (see services(5)) for routing information
packets. If the host is an internetwork router, it periodically supplies copies of its routing tables to any directly connected
hosts and networks.

When routed is started, it uses the SIOCGIFCONF ioctl(2) to find those directly connected interfaces configured into the system
and marked “up” (the software loopback interface is ignored). If multiple interfaces are present, it is assumed that the host
will forward packets between networks. routed then transmits a request packet on each interface (using a broadcast packet if
the interface supports it) and enters a loop, listening for request and response packets from other hosts.

1381

When a request packet is received, routed formulates a reply based on the information maintained in its internal tables. The
response packet generated contains a list of known routes, each marked with a “hop count” metric (a count of 16, or greater,
is considered “infinite”). The metric associated with each route returned provides a metric relative to the sender.

Response packets received by routed are used to update the routing tables if one of the following conditions is satisfied:

No routing table entry exists for the destination network or host, and the metric indicates the destination is “reachable”
(the hop count is not infinite).

The source host of the packet is the same as the router in the existing routing table entry. That is, updated information is
being received from the very internetwork router through which packets for the destination are being routed.

The existing entry in the routing table has not been updated for some time (defined to be 90 seconds) and the route is at
least as cost effective as the current route.

The new route describes a shorter route to the destination than the one currently stored in the routing tables; the metric
of the new route is compared against the one stored in the table to decide this.

When an update is applied, routed records the change in its internal tables and updates the kernel routing table. The change
is reflected in the next response packet sent.

In addition to processing incoming packets, routed also periodically checks the routing table entries. If an entry has not been
updated for three minutes, the entry’s metric is set to infinity and marked for deletion. Deletions are delayed an additional
60 seconds to ensure the invalidation is propagated throughout the local Internet.

Hosts acting as internetwork routers gratuitously supply their routing tables every 30 seconds to all directly connected hosts
and networks. The response is sent to the broadcast address on nets capable of that function, to the destination address on
point-to-point links, and to the router’s own address on other networks. The normal routing tables are bypassed when
sending gratuitous responses. The reception of responses on each network is used to determine that the network and
interface are functioning correctly. If no response is received on an interface, another route may be chosen to route around
the interface, or the route may be dropped if no alternative is available.

Options supported by routed:

-d Enable additional debugging information to be logged, such as bad packets received.

-g This flag is used on internetwork routers to offer a route to the “default” destination.
This is typically used on a gateway to the Internet or on a gateway that uses another
routing protocol whose routes are not reported to other local routers.

-s Supplying this option forces routed to supply routing information whether it is acting as
an internetwork router or not. This is the default if multiple network interfaces are
present or if a point-to-point link is in use.

-q This is the opposite of the -s option.

-t If the -t option is specified, all packets sent or received are printed on the standard
output. In addition, routed will not divorce itself from the controlling terminal so that
interrupts from the keyboard will kill the process.

Any other argument supplied is interpreted as the name of file in which routed’s actions should be logged. This log contains
information about any changes to the routing tables and, if not tracing all packets, a history of recent messages sent and
received that are related to the changed route.

In addition to the facilities described previously, routed supports the notion of “distant” passive and active gateways. When
routed is started, it reads the file to find gateways that might not be located using only information from the SIOGIFCONFioctl
(2). Gateways specified in this manner should be marked passive if they are not expected to exchange routing information,
whereas gateways marked active should be willing to exchange routing information (that is, they should have a routed process
running on the machine). Routes through passive gateways are installed in the kernel’s routing tables once upon startup.
Such routes are not included in any routing information transmitted. Active gateways are treated equally to network
interfaces. Routing information is distributed to the gateway, and if no routing information is received for a period of the
time, the associated route is deleted. Gateways marked external are also passive but are not placed in the kernel routing table

routed

Part VIII: Administration and Privileged Commands1382

nor are they included in routing updates. The function of external entries is to inform routed that another routing process
will install such a route and that alternate routes to that destination should not be installed. Such entries are only required
when both routers might learn of routes to the same destination.

The /etc/gateways is comprised of a series of lines, each in the following format:

<net|host> name1 gateway name2 metric value <passive|active|external>

The net or host keyword indicates if the route is to a network or specific host.

name1 is the name of the destination network or host. This can be a symbolic name located in or known to the name server if
started after named(8) or an Internet address specified in “dot” notation; see inet(3).

name2 is the name or address of the gateway to which messages should be forwarded.

value is a metric indicating the hop count to the destination host or network.

One of the keywords passive, active, or external indicates if the gateway should be treated as passive or active (as described
previously) or whether the gateway is external to the scope of the routed protocol.

Internetwork routers that are directly attached to the ARPAnet or Milnet should use the Exterior Gateway Protocol (EGP) to
gather routing information rather than use a static routing table of passive gateways. EGP is required in order to provide
routes for local networks to the rest of the Internet system. Sites needing assistance with such configurations should contact
the Computer Systems Research Group at Berkeley.

FILES
/etc/gateways for distant gateways

SEE ALSO
udp(4), icmp(4), XNSrouted(8), htable(8)

Internet Transport Protocols, XSIS 028112, Xerox System Integration Standard

BUGS
The kernel’s routing tables may not correspond to those of routed when redirects change or add routes. routed should note
any redirects received by reading the ICMP packets received via a raw socket.

routed should incorporate other routing protocols, such as Xerox NS, XNSrouted(8), and EGP . Using separate processes for
each requires configuration options to avoid redundant or competing routes.

routed should listen to intelligent interfaces, such as an IMP, to gather more information. It does not always detect
unidirectional failures in network interfaces (such as when the output side fails).

HISTORY
The routed command appeared in BSD 4.2.

BSD 4.2, 16 March 1991

rpc.rusersd
rpc.rusersd—Logged-in users server.

SYNOPSIS
/usr/libexec/rpc.rusersd

DESCRIPTION
rpc.rusersd is a server that returns information about users currently logged in to the system.

1383

The currently logged-in users are queried using the rusers(1) command. The rpc.rusersd daemon is usually invoked by
inetd(8).

rpc.rusersd uses an RPC protocol defined in /usr/include/rpcsvc.

SEE ALSO
rusers(1), who(1), w(1), inetd(8)

BSD 4.3, 7 June 1993

rpc.rwalld
rpc.rwalld—Write messages to users currently logged in to the server.

SYNOPSIS
/usr/libexec/rpc.rwalld

DESCRIPTION
rpc.rwalld is a server that will send a message to users currently logged in to the system. This server invokes the wall(1)
command to actually write the messages to the system.

Messages are sent to this server by the rwall(1) command. The rpc.rwalld daemon is usually invoked by inetd(8).

rpc.rwalld uses an RPC protocol defined in /usr/include/rpcsvc/rwall.x.

SEE ALSO
rwall(1), wall(1), inetd(8)

BSD 4.3, 7 June 1993

rpcinfo
rpcinfo—Report RPC information.

SYNOPSIS
rpcinfo -p [host]
rpcinfo [-n portnum] -u host program [version]
rpcinfo [-n portnum] -t host program [version]
rpcinfo -b program version
rpcinfo -d program version

DESCRIPTION
rpcinfo makes an RPC call to an RPC server and reports what it finds.

OPTIONS
-p Probe the port mapper on host and print a list of all registered RPC programs. If host is

not specified, it defaults to the value returned by hostname(1).

-u Make an RPC call to procedure 0 of program on the specified host using UDP and
report whether a response was received.

-t Make an RPC call to procedure 0 of program on the specified host using TCP and report
whether a response was received.

-n Use portnum as the port number for the -t and -u options instead of the port number
given by the port mapper.

rpcinfo

Part VIII: Administration and Privileged Commands1384

-b Make an RPC broadcast to procedure 0 of the specified program and version using UDP
and report all hosts that respond.

-d Delete registration for the RPC service of the specified program and version. This option
can be exercised only by the superuser.

The program argument can be either a name or a number. If a version is specified, rpcinfo attempts to call that version of the
specified program. Otherwise, rpcinfo attempts to find all the registered version numbers for the specified program by calling
version 0 (which is presumed not to exist; if it does exist, rpcinfo attempts to obtain this information by calling an extremely
high version number instead) and attempts to call each registered version. Note that the version number is required for -b
and -d options.

EXAMPLES
To show all the RPC services registered on the local machine, use

rpcinfo -p

To show all of the RPC services registered on the machine named klaxon, use

rpcinfo -p klaxon

To show all machines on the local net that are running the Yellow Pages service, use

rpcinfo -b ypserv ‘version’ -- uniq

‘version’ is the current Yellow Pages version obtained from the results of the -p switch above.

To delete the registration for version 1 of the walld service, use

rpcinfo -d walld 1

SEE ALSO
rpc(5), portmap(8), RPC Programming Guide

BUGS
In releases prior to SunOS 3.0, the Network File System (NFS) did not register itself with the port mapper; rpcinfo cannot
be used to make RPC calls to the NFS server on hosts running such releases.

17 December 1987

rquotad, rpc.rquotad
rquotad, rpc.rquotad—Remote quota server.

SYNOPSIS
/usr/etc/rpc.rquotad

DESCRIPTION
rquotad is an rpc(3N) server that returns quotas for a user of a local filesystem that is mounted by a remote machine over the
NFS. The results are used by quota(1) to display user quotas for remote filesystems. The rquotad daemon is usually started at
boot time from the rc.net script.

FILES
quotas Quota file at the filesystem root

SEE ALSO
quota(1), rpc(3N), nfs(4P), services(5) inetd(8C)

17 December 1987

1385

rshd
rshd—Remote shell server.

SYNOPSIS
rshd [-alnL]

DESCRIPTION
The rshd server is the server for the rcmd(3) routine and, consequently, for the rsh(1) program. The server provides remote
execution facilities with authentication based on privileged port numbers from trusted hosts.

The rshd server listens for service requests at the port indicated in the cmd service specification; see services(5). When a
service request is received, the following protocol is initiated:

1. The server checks the client’s source port. If the port is not in the range 512-1023, the server aborts the connection.
2. The server reads characters from the socket up to a null (\0) byte. The resultant string is interpreted as an ASCII

number, base 10.
3. If the number received in Step 2 is nonzero, it is interpreted as the port number of a secondary stream to be used for the

stderr. A second connection is then created to the specified port on the client’s machine. The source port of this second
connection is also in the range 512-1023.

4. The server checks the client’s source address and requests the corresponding hostname (see gethostbyaddr(3), hosts(5),
and named(8)). If the hostname cannot be determined, the dot-notation representation of the host address is used. If the
hostname is in the same domain as the server (according to the last two components of the domain name), or if the -a
option is given, the addresses for the hostname are requested, verifying that the name and address correspond. If address
verification fails, the connection is aborted with the message, Host address mismatch.

5. A null-terminated username of at most 16 characters is retrieved on the initial socket. This username is interpreted as
the user identity on the client’s machine.

6. A null-terminated username of at most 16 characters is retrieved on the initial socket. This username is interpreted as a
user identity to use on the server’s machine.

7. A null-terminated command to be passed to a shell is retrieved on the initial socket. The length of the command is
limited by the upper bound on the size of the system’s argument list.

8. rshd then validates the user using ruserok(3), which uses the file and the file found in the user’s home directory. The -l
option prevents ruserok(3) from doing any validation based on the user’s .rhosts file, unless the user is the superuser.

9. A null byte is returned on the initial socket and the command line is passed to the normal login shell of the user. The
shell inherits the network connections established by rshd.

Transport-level keep-alive messages are enabled unless the -n option is present. The use of keep-alive messages allows sessions
to be timed out if the client crashes or becomes unreachable.

The -L option causes all successful accesses to be logged to syslogd(8) as auth.info messages and all failed accesses to be
logged as auth.notice.

DIAGNOSTICS
Except for the last one listed, all diagnostic messages are returned on the initial socket, after which any network connections
are closed. An error is indicated by a leading byte with a value of 1 (0 is returned in Step 9 upon successful completion of all
the steps prior to the execution of the login shell).

Locuser too long. The name of the user on the client’s machine is longer than 16 characters.

Ruser too long. The name of the user on the remote machine is longer than 16 characters.

Command too long. The command line passed exceeds the size of the argument list (as configured into the
system).

Login incorrect. No password file entry for the username existed.

Remote directory. The chdir command to the home directory failed.

rshd

Part VIII: Administration and Privileged Commands1386

Permission denied. The authentication procedure described previously failed.

Can’t make pipe. The pipe needed for the stderr wasn’t created.

Can’t fork; try again. A fork by the server failed.

<shellname>: ... The user’s login shell could not be started. This message is returned on the connection
associated with the stderr and is not preceded by a flag byte.

SEE ALSO
rsh(1), rcmd(3), ruserok(3)

BUGS
The authentication procedure used here assumes the integrity of each client machine and the connecting medium. This is
insecure but is useful in an “open” environment.

A facility to allow all data exchanges to be encrypted should be present.

A more extensible protocol (such as Telnet) should be used.

BSD 4.2, 30 April 1991

rwhod
rwhod—System status server.

SYNOPSIS
rwhod

DESCRIPTION
rwhod is the server that maintains the database used by the rwho(1) and ruptime(1) programs. Its operation is predicated on
the ability to broadcast messages on a network.

rwhod operates as both a producer and consumer of status information. As a producer of information, it periodically queries
the state of the system and constructs status messages that are broadcast on a network. As a consumer of information, it
listens for other rwhod servers’ status messages, validating them and then recording them in a collection of files located in the
directory.

The server transmits and receives messages at the port indicated in the rwho service specification; see services(5). The
messages sent and received are of the form:

struct outmp {
char out_line[8]; /* tty name */
char out_name[8]; /* user id */
long out_time; /* time on */
};

struct whod {
 char wd_vers;
 char wd_type;
 char wd_fill[2];
 int wd_sendtime;
 int wd_recvtime;
 char wd_hostname[32];
 int wd_loadav[3];
 int wd_boottime;
 struct whoent {
 struct outmp we_utmp;

1387

 int we_idle;
 } wd_we[1024 / sizeof (struct whoent)];
};

All fields are converted to network byte order prior to transmission. The load averages are as calculated by the w(1) program
and represent load averages over the 5-, 10-, and 15-minute intervals prior to a server’s transmission; they are multiplied by
100 for representation in an integer. The hostname included is that returned by the gethostname(2) system call, with any
trailing domain name omitted. The array at the end of the message contains information about the users logged in to the
sending machine. This information includes the contents of the utmp(5) entry for each non-idle terminal line and a value
indicating the time in seconds since a character was last received on the terminal line.

Messages received by the rwho server are discarded unless they originated at an rwho server’s port. In addition, if the host’s
name, as specified in the message, contains any unprintable ASCII characters, the message is discarded. Valid messages
received by rwhod are placed in files named in the directory. These files contain only the most recent message, in the format
described previously.

Status messages are generated approximately once every three minutes. rwhod performs an nlist(3) every 30 minutes to guard
against the possibility that this file is not the system image currently operating.

SEE ALSO
rwho(1), ruptime(1)

BUGS
There should be a way to relay status information between networks. Status information should be sent only upon request
rather than continuously. People often interpret the server dying or network communication failures as a machine going
down.

HISTORY
The rwhod command appeared in BSD 4.2.

BSD 4.2, 16 March 1991

sendmail
sendmail—Send mail over the Internet.

SYNOPSIS
sendmail [flags] [address ...]
newaliases
mailq [-v]
smtpd
bsmtp
runq

DESCRIPTION
sendmail sends a message to one or more recipients, routing the message over whatever networks are necessary. sendmail does
internetwork forwarding as necessary to deliver the message to the correct place.

sendmail is not intended as a user interface routine. Other programs provide user-friendly front ends. sendmail is used only to
deliver preformatted messages.

With no flags, sendmail reads its standard input up to an end-of-file or a line consisting only of a single dot and sends a copy
of the message found there to all the addresses listed. It determines the networks to use based on the syntax and contents of
the addresses.

sendmail

Part VIII: Administration and Privileged Commands1388

Local addresses are looked up in a file and aliased appropriately. Aliasing can be prevented by preceding the address with a
backslash. Usually, the sender is not included in any alias expansions; for example, if john sends to group and group includes
john in the expansion, then the letter will not be delivered to john.

Flags are

-ba Go into ARPANET mode. All input lines must end with a CR-LF, and all messages will
be generated with a CR-LF at the end. Also, the From: and Sender: fields are examined
for the name of the sender.

-bd Run as a daemon. This requires Berkeley IPC. sendmail will fork and run in the
background, listening on socket 25 for incoming SMTP connections. This is usually run
from /etc/rc.

-bi Initialize the alias database.

-bm Deliver mail in the usual way (default).

-bp Print a listing of the queue.

-bs Use the SMTP protocol as described in RFC 821 on standard input and output. This
flag implies all the operations of the -ba flag that are compatible with SMTP.

-bb Read batched SMTP (BSMTP) commands from standard input.

-bt Run in address test mode. This mode reads addresses and shows the steps in parsing; it is
used for debugging configuration tables.

-bv Verify names only; do not try to collect or deliver a message. Verify mode is usually used
for validating users or mailing lists.

-bz Create the configuration freeze file.

-C file Use alternate configuration file. sendmail refuses to run as root if an alternate configura-
tion file is specified. The frozen configuration file is bypassed.

-d X Set debugging value to X.

-F fullname Set the full name of the sender.

-f name Sets the name of the “from” person (the sender of the mail). -f can only be used by
trusted users (usually root, daemon, and network) or if the person you are trying to
become is the same as the person you are.

-h N Set the hop count to N. The hop count is incremented every time the mail is processed.
When it reaches a limit, the mail is returned with an error message, the victim of an
aliasing loop. If not specified, Received: lines in the message are counted.

-n Don’t do aliasing.

-o x value Set option x to the specified value. Options are described later in this section.

-q time Processed saved messages in the queue at given intervals. If time is omitted, process the
queue once. time is given as a tagged number, with s being seconds, m being minutes, h
being hours, d being days, and w being weeks. For example, -q1h30m or -q90m both set the
time-out to 1 hour, 30 minutes. If time is specified, sendmail runs in background. This
option can be used safely with -bd.

-M ident Process the queued message with the queue ID ident.

-R addr Process the queued messages that have the string addr in one of the recipient addresses.

-S addr Process the queued messages that have the string addr in the sender address.

-r name An alternate and obsolete form of the -f flag.

-t Read message for recipients. To:, Cc:, and Bcc: lines are scanned for recipient addresses.
The Bcc: line is deleted before transmission. Any addresses in the argument list are
suppressed; that is, they do not receive copies even if listed in the message header.

-v Go into verbose mode. Alias expansions are announced and so on.

1389

There are also a number of processing options that can be set. Usually, these will only be used by a system administrator.
Options can be set either on the command line using the -o flag or in the configuration file. These are described in detail in
the Sendmail Installation and Operation Guide. The options are

A file Use alternate alias file.

c On mailers that are considered “expensive” to connect to, don’t initiate immediate
connection. This requires queuing.

d x Set the delivery mode to x. Delivery modes are i for interactive (synchronous) delivery,
b for background (asynchronous) delivery, and q for queue only (actual delivery is done
the next time the queue is run).

D Try to automatically rebuild the alias database if necessary.

e x Set error processing to mode x. Valid modes are m to mail back the error message, w to
“write” back the error message (or mail it back if the sender is not logged in), p to print
the errors on the terminal (default), q to throw away error messages (only exit status is
returned), and e to do special processing for the BerkNet. If the text of the message is
not mailed back by modes m or w and if the sender is local to this machine, a copy of the
message is appended to the file in the sender’s home directory.

F mode The mode to use when creating temporary files.

f Save UNIX–style From: lines at the front of messages.

g N The default group ID to use when calling mailers.

H file The SMTP help file.

i Do not take dots on a line by themselves as a message terminator.

k N Checkpoint the queue file after every N successful deliveries (default is 10). This avoids
excessive duplicate deliveries when sending to long mailing lists interrupted by system
crashes.

L n The log level.

m Send also to “me” (the sender) if I am in an alias expansion.

o If set, this message may have old style headers. If not set, this message is guaranteed to
have new style headers (commas instead of spaces between addresses). If set, an adaptive
algorithm is used that will correctly determine the header format in most cases.

Q queuedir Select the directory in which to queue messages.

r timeout The time-out on reads; if none is set, sendmail will wait forever for a mailer. This option
violates the word (if not the intent) of the SMTP specification, so the timeout should
probably be fairly large.

S file Save statistics in the named file.

s Always instantiate the queue file, even under circumstances where it is not strictly
necessary. This provides safety against system crashes during delivery.

T time Set the time-out on undelivered messages in the queue to the specified time. After
delivery has failed (for example, because of a host being down) for this amount of time,
failed messages will be returned to the sender. The default is three days.

t stz, dtz Set the name of the time zone.

U userdatabase If set, a user database is consulted to get forwarding information. You can consider this
an adjunct to the aliasing mechanism, except that the database is intended to be
distributed; aliases are local to a particular host. This might not be available if your
sendmail does not have the USERDB option compiled in.

u N Set the default user ID for mailers.

w If not set, name server lookups will use a query type of ANY to find types CNAME, A, and MX
and will cause all existing records to be cached by the local server. If there is (or might
be) a wildcard MX in the local domain or its parents that are searched, you must set this

sendmail

Part VIII: Administration and Privileged Commands1390

option, which uses a query type of CNAME only; otherwise, it causes all fully qualified
names to match as names in the local domain.

In aliases, the first character of a name can be a vertical bar to cause interpretation of the rest of the name as a command to
pipe the mail to. It might be necessary to quote the name to keep sendmail from suppressing the blanks between arguments.
For example, a common alias is

msgs: “|/usr/bin/msgs -s”

Aliases can also have the syntax to ask sendmail to read the named file for a list of recipients. For example, an alias such as

poets: “:include:/usr/local/lib/poets.list”

would read for the list of addresses making up the group.

sendmail returns an exit status describing what it did. The codes are defined in sysexits.h:

EX_OK Successful completion on all addresses.

EX_NOUSER Username not recognized.

EX_UNAVAILABLE Catchall meaning necessary resources were not available.

EX_SYNTAX Syntax error in address.

EX_SOFTWARE Internal software error, including bad arguments.

EX_OSERR Temporary operating system error, such as cannot fork.

EX_NOHOST Hostname not recognized.

EX_TEMPFAIL Message could not be sent immediately but was queued.

If invoked as newaliases, sendmail rebuilds the alias database. If invoked as mailq, sendmail prints the contents of the mail
queue. If invoked as smtpd, sendmail forks and runs as a daemon. If invoked as bsmtp, sendmail processes batched SMTP on
standard input. If invoked as runq, sendmail runs through the mail queue and makes what deliveries are possible.

FILES
Except for the file /etc/sendmail.cf itself, the following pathnames are all specified in /etc/sendmail.cf. Thus, these values
are only approximations.

/etc/aliases raw data for alias names

/etc/aliases.pag

/etc/aliases.dir database of alias names

/etc/sendmail.cf configuration file

/etc/sendmail.fc frozen configuration

/etc/sendmail.hf help file

/var/log/sendmail.st collected statistics

/var/spool/mqueue/* temp files

SEE ALSO
binmail(1), mail(1), rmail(1), syslog(3), aliases(5), mailaddr(7), rc(8); DARPA Internet Request for Comments RFC 819,
RFC 821, RFC 822; “Sendmail: An Internetwork Mail Router,” SMM and No.16, “Sendmail Installation and Operation
Guide,” SMM and No.7.

HISTORY
The sendmail command appeared in BSD 4.2.

BSD 4, 5 August 1991

1391

setfdprm
setfdprm—Sets user-provided floppy disk parameters.

SYNOPSIS
setfdprm [-p] device name
setfdprm [-p] device size sectors heads tracks stretch gap rate spec1 fmt_gap
setfdprm [-c] device
setfdprm [-y] device
setfdprm [-n] device

DESCRIPTION
setfdprm is a utility that can be used to load disk parameters into the auto-detecting floppy devices, to clear old parameter
sets, and to disable or enable diagnostic messages.

Without any options, setfdprm loads the device (usually /dev/fd0 or /dev/fd1) with a new parameter set with the name entry
found in /etc/fdprm (usually named 360/360 and so on). These parameters stay in effect until the media is changed.

OPTIONS
-p device name Permanently loads a new parameter set for the specified auto-configuring floppy device

for the configuration with name in /etc/fdprm. Alternatively, the parameters can be given
directly from the command line.

-c device Clears the parameter set of the specified auto-configuring floppy device.

-y device Enables format detection messages for the specified auto-configuring floppy device.

-n device Disables format detection messages for the specified auto-configuring floppy device.

BUGS
This documentation is grossly incomplete.

FILES
/etc/fdprm

AUTHOR
Werner Almesberger (almesber@nessie.cs.id.ethz.ch)

Linux 0.99, 20 November 1993

setserial
setserial—Get/set Linux serial port information.

SYNOPSIS
setserial [-abqvVW] device [parameter1 [arg]] ...
setserial -g [-abv] device1 ...

DESCRIPTION
setserial is a program designed to set or report the configuration information associated with a serial port. This information
includes what I/O port and IRQ a particular serial port is using, whether the break key should be interpreted as the Secure
Attention Key, and so on.

During the normal bootup process, only COM ports 1-4 are initialized, using the default I/O ports and IRQ values, as
listed. To initialize any additional serial ports, or to change the COM 1-4 ports to a nonstandard configuration, the
setserial program should be used. Typically, it is called from an rc.serial script, which is usually run out of /etc/rc.local.

setserial

Part VIII: Administration and Privileged Commands1392

The device argument or arguments specify the serial device that should be configured or interrogated. It will usually have the
following form: /dev/cua[0-3].

If no parameters are specified, setserial prints the port type (such as 8250, 16450, 16550, 16550A), the hardware I/O port,
the hardware IRQ line, its “baud base,” and some of its operational flags.

If the -g option is given, the arguments to setserial are interpreted as a list of devices for which the characteristics of those
devices should be printed.

Without the -g option, the first argument to setserial is interpreted as the device to be modified or characteristics to be
printed, and any additional arguments are interpreted as parameters that should be assigned to that serial device.

For the most part, superuser privilege is required to set the configuration parameters of a serial port. A few serial port
parameters can be set by normal users, however, and these are noted as exceptions in this manual page.

OPTIONS
setserial accepts the following options:

-a When reporting the configuration of a serial device, print all available information.

-b When reporting the configuration of a serial device, print a summary of the device’s
configuration, which might be suitable for printing during the bootup process during
the /etc/rc script.

-q Be quiet. setserial will print fewer lines of output.

-v Be verbose. setserial will print additional status output.

-V Display version and exit.

-W Do wild interrupt initialization and exit.

PARAMETERS
The following parameters can be assigned to a serial port.

All argument values are assumed to be in decimal unless preceded by 0x.

port port_number The port option sets the I/O port as described previously.

irq irq_number The irq option sets the hardware IRQ as described previously.

uart uart_type This option is used to set the UART type. The permitted types are none, 8250, 16450,
16550, and 16550A. Because the 8250 and 16450 UARTs do not have FIFOs, and
because the original 16550 have bugs that make the FIFOs unusable, the FIFO will only
be used on chips identified as 16550A UARTs. Setting the UART type to 8250, 16450,
or 16550 will enable the serial port without trying to use the FIFO. Using the UART
type none will disable the port. Some internal modems are billed as having a “16550A
UART with a 1KB buffer.” This is a lie. They do not really have a 16550A-compatible
UART; instead, what they have is a 16450-compatible UART with a 1KB receive buffer
to prevent receiver overruns. This is important because they do not have a transmit
FIFO. Hence, they are not compatible with a 16550A UART, and the autocon-
figuration process will correctly identify them as 16450s. If you attempt to override this
using the uart parameter, you see dropped characters during file transmissions. These
UARTs usually have other problems: The skip test parameter also often must be
specified.

autoconfig When this parameter is given, setserial asks the kernel to attempt to automatically
configure the serial port. The I/O port must be correctly set; the kernel will attempt to
determine the UART type, and if the auto_irq parameter is set, Linux will attempt to
automatically determine the IRQ. The autoconfigure parameter should be given after
the port, auto_irq, and skip_test parameters have been specified.

1393

auto_irq During autoconfiguration, try to determine the IRQ. This feature is not guaranteed to
always produce the correct result; some hardware configurations will fool the Linux
kernel. It is generally safer not to use the auto_irq feature but rather to specify the IRQ
to be used explicitly, using the irq parameter.

^auto_irq During autoconfiguration, do not try to determine the IRQ.

skip_test During autoconfiguration, skip the UART test. Some internal modems do not have
National Semiconductor compatible UARTs but have cheap imitations instead. Some of
these cheesy imitation UARTs do not fully support the loopback detection mode, which
is used by the kernel to make sure there really is a UART at a particular address before
attempting to configure it. For certain internal modems, you will need to specify this
parameter so Linux can initialize the UART correctly.

^skip_test During autoconfiguration, do not skip the UART test.

baud_base baud_base This option sets the base baud rate, which is the clock frequency divided by 16. Usually,
this value is 115200, which is also the fastest baud rate, which the UART can support.

spd_hi Use 57.6KB when the application requests 38.4KB. This parameter can be specified by
a non-privileged user.

spd_vhi Use 115KB when the application requests 38.4KB. This parameter can be specified by a
non-privileged user.

spd_cust Use the custom divisor to set the speed when the application requests 38.4KB. In this
case, the baud rate is the baud_base divided by the divisor. This parameter can be
specified by a non-privileged user.

spd_normal Use 38.4KB when the application requests 38.4KB. This parameter can be specified by
a non-privileged user.

divisor divisor This option sets the custom divisor. This divisor will be used when the spd_cust option
is selected and the serial port is set to 38.4KB by the application. This parameter can be
specified by a non-privileged user.

sak Set the break key at the Secure Attention Key.

^sak Disable the Secure Attention Key.

fourport Configure the port as an AST Fourport card.

^fourport Disable AST Fourport configuration.

close_delay delay Specify the amount of time, in hundredths of a second, that DTR should remain low on
a serial line after the callout device is closed before the blocked dial-in device raises DTR
again. The default value of this option is 50, or a half-second delay.

Session_lockout Lock out callout port (/dev/cuaXX) accesses across different sessions. That is, once a
process has opened a port, do not allow a process with a different session ID to open
that port until the first process has closed it.

^session_lockout Do not lock out callout port accesses across different sessions.

pgrp_lockout Lock out callout port (/dev/cuaXX) accesses across different process groups. That is, once
a process has opened a port, do not allow a process in a different process group to open
that port until the first process has closed it.

^pgrp_lockout Do not lock out callout port accesses across different process groups.

hup_notify Notify a process blocked on opening a dial-in line when a process has finished using a
callout line (either by closing it or by the serial line being hung up) by returning EAGAIN
to the open.

The application of this parameter is for gettys that are blocked on a serial port’s dial-in
line. This allows the getty to reset the modem (which may have had its configuration
modified by the application using the callout device) before blocking on the open again.

^hup_notify Do not notify a process blocked on opening a dial-in line when the callout device is
hung up.

setserial

Part VIII: Administration and Privileged Commands1394

split_termios Treat the termios settings used by the callout device and the termios settings used by the
dial-in devices as separate.

^split_termios Use the same termios structure to store both the dial-in and callout ports. This is the
default option.

callout_nohup If this particular serial port is opened as a callout device, do not hang up the tty when
carrier detect is dropped.

^callout_nohup Do not skip hanging up the tty when a serial port is opened as a callout device. Of
course, the HUPCL termios flag must be enabled if the hangup is to occur.

CONSIDERATIONS OF CONFIGURING SERIAL PORTS
It is important to note that setserial merely tells the Linux kernel where it should expect to find the I/O port and IRQ lines
of a particular serial port. It does not configure the hardware, the actual serial board, to use a particular I/O port. To do that,
you need to physically program the serial board, usually by setting some jumpers or by switching some DIP switches.

This section provides some pointers in helping you decide how you want to configure your serial ports.

The “standard MS-DOS” port associations are

/dev/ttyS0 (COM1), port 0x3f8 IRQ 4

/dev/ttyS1 (COM2), port 0x2f8 IRQ 3

/dev/ttyS2 (COM3), port 0x3e8 IRQ 4

/dev/ttyS3 (COM4), port 0x2e8 IRQ 3

Due to the limitations in the design of the AT/ISA bus architecture, an IRQ line usually cannot be shared between two or
more serial ports. If you attempt to do this, one or both serial ports will become unreliable if you try to use both simulta-
neously. This limitation can be overcome by special multiport serial port boards, which are designed to share multiple serial
ports over a single IRQ line. Multiport serial cards supported by Linux include the AST FourPort, the Accent Async board,
the Usenet Serial II board, the Bocaboard BB-1004, BB-1008, and BB-2016 boards, and the HUB-6 serial board.

The selection of an alternative IRQ line is difficult because most of them are already used. The following table lists the
“standard MS-DOS” assignments of available IRQ lines:

IRQ 3 COM2

IRQ 4 COM1

IRQ 5 LPT2

IRQ 7 LPT1

Most people find that IRQ 5 is a good choice, assuming that there is only one parallel port active in the computer. Another
good choice is IRQ 2 (a.k.a. IRQ 9), although this IRQ is sometimes used by network cards, and very rarely will VGA cards
be configured to use IRQ 2 as a vertical retrace interrupt. If your VGA card is configured this way, try to disable it so you
can reclaim that IRQ line for some other card. It’s not necessary for Linux and most other operating systems.

The only other available IRQ lines are 3, 4, and 7, and these are probably used by the other serial and parallel ports. (If your
serial card has a 16-bit card edge connector and supports higher interrupt numbers, then IRQ 10, 11, 12, and 15 are also
available.)

On AT class machines, IRQ 2 is seen as IRQ 9, and Linux will interpret it in this manner.

IRQs other than 2 (9), 3, 4, 5, 7, 10, 11, 12, and 15 should not be used because they are assigned to other hardware and
cannot, in general, be changed. Here are the “standard” assignments:

IRQ 0 Timer channel 0

IRQ 1 Keyboard

IRQ 2 Cascade for controller 2

IRQ 3 Serial port 2

IRQ 4 Serial port 1

1395

IRQ 5 Parallel port 2 (Reserved in PS/2)

IRQ 6 Floppy diskette

IRQ 7 Parallel port 1

IRQ 8 Real-time clock

IRQ 9 Redirected to IRQ2

IRQ 10 Reserved

IRQ 11 Reserved

IRQ 12 Reserved (Auxiliary device in PS/2)

IRQ 13 Math coprocessor

IRQ 14 Hard disk controller

IRQ 15 Reserved

CAUTION
Using an invalid port can lock up your machine.

FILES
/etc/rc.local

/etc/rc.serial

SEE ALSO
tty(4), ttys(4), kernel/chr_drv/serial.c

AUTHOR
The original version of setserial was written by Rick Sladkey (jrs@world.std.com) and was modified by Michael K. Johnson
(johnsonm@stolaf.edu).

This version has since been rewritten from scratch by Theodore Ts’o (tytso@mit.edu) on 1/1/93. Any bugs or problems are
solely his responsibility.

setserial 2.10, 27 August 1994

setsid
setsid—Run a program in a new session.

SYNOPSIS
setsid program [arg ...]

DESCRIPTION
setsid runs a program in a new session.

SEE ALSO
setsid(2)

AUTHOR
Rick Sladkey (jrs@world.std.com)

Linux 0.99, 20 November 1993

setsid

Part VIII: Administration and Privileged Commands1396

showmount
showmount—Show mount information for an NFS server.

SYNOPSIS
/usr/etc/showmount [\-adehv\][\--all\][\--directories\]
[\--exports\][\--help\] [\--version\][\host\]

DESCRIPTION
showmount queries the mount daemon on a remote host for information about the state of the NFS server on that machine.
With no options, showmount lists the set of clients who are mounting from that host. The output from showmount is designed
to appear as though it were processed through sort -u.

OPTIONS
-a or --all List both the client hostname and mounted directory in host:dir format.

-d or --directories List only the directories mounted by some client.

-e or --exports Show the NFS server’s export list.

-h or --help Provide a short help summary.

-v or --version Report the current version number of the program.

--no-headers Suppress the descriptive headings from the output.

SEE ALSO
rpc.mountd(8), rpc.nfsd(8)

BUGS
The completeness and accuracy of the information that showmount displays varies according to the NFS server’s implementa-
tion. Because showmount sorts and uniques the output, it is impossible to determine from the output whether a client is
mounting the same directory more than once.

AUTHOR
Rick Sladkey (jrs@world.std.com)

6 October 1993

shutdown
shutdown—Close down the system.

SYNOPSIS
shutdown [-h | -r] [-fqs] [now | hh:ss | +mins]
reboot [-h | -r] [-fqs] [now | hh:ss | +mins]
fastboot [-h | -r] [-fqs] [now | hh:ss | +mins]
halt [-h | -r] [-fqs] [now | hh:ss | +mins]
fasthalt [-h | -r] [-fqs] [now | hh:ss | +mins]

DESCRIPTION
In general, shutdown prepares the system for a power down or reboot. An absolute or delta time can be given, and periodic
messages will be sent to all users warning of the shutdown.

halt is the same as shutdown -h -q now.

fasthalt is the same as shutdown -h -q -f now.

1397

reboot is the same as shutdown -r -q now.

fastboot is the same as shutdown -r -q -f now.

The default delta time, if none is specified, is two minutes.

Five minutes before shutdown (or immediately, if shutdown is less than five minutes away), the /etc/nologin file is created
with a message stating that the system is going down and that logins are no longer permitted. The login(1) program will not
allow non-superusers to log in during this period. A message will be sent to all users at this time.

When the shutdown time arrives, shutdown notifies all users, tells init(8) not to spawn more getty(8)s, writes the shutdown
time into the /var/log/wtmp file, kills all other processes on the system, sync(2)s, unmounts all the disks, sync(2)s again, waits
for a second, and then either terminates or reboots the system.

OPTIONS
-h Halt the system. Do not reboot. This option is used when powering down the system.

-r Reboot the system.

-f Fast. When the system is rebooted, the filesystems will not be checked. This is arranged
by creating /fastboot, which /etc/rc must detect (and delete).

-q Quiet. This uses a default broadcast message and does not prompt the user for one.

-s Reboot in single-user mode. This is arranged by creating /etc/singleboot, which
simpleinit(8) detects (and deletes).

FILES
/etc/rc

/fastboot

/etc/singleboot

/etc/nologin

/var/log/wtmp

SEE ALSO
umount(8), login(1), reboot(2), simpleinit(8), init(8)

BUGS
Unlike the BSD shutdown, users are notified of shutdown only once or twice, instead of many times, and at shorter and
shorter intervals as “apocalypse approaches.”

AUTHOR
poe@daimi.aau.dk. Modified by jrs@world.std.com.

Linux 0.99, 20 November 1993

simpleinit
simpleinit—Process control initialization.

SYNOPSIS
init [single]

simpleinit

Part VIII: Administration and Privileged Commands1398

DESCRIPTION
init is invoked as the last step in the Linux boot sequence. If the single option is used, or if the file /etc/singleboot exists,
then single-user mode will be entered, by starting /bin/sh. If the file /etc/securesingle exists, then the root password will be
required to start single-user mode. If the root password does not exist, or if /etc/passwd does not exist, the checking of the
password will be skipped.

If the file /etc/TZ exists, then the contents of that file will be read and used to set the TZ environment variable for each
process started by simpleinit. This “feature” is only available if it’s configured at compile time. It’s not usually needed.

After single-user mode is terminated, the /etc/rc file is executed, and the information in /etc/inittab will be used to start
processes.

While init is running, several signals are trapped with special action taken. Because init has PID 1, sending signals to the
init process is easy with the kill(1) command.

If init catches a SIGHUP (hangup) signal, the /etc/inittab will be read again. If init catches a SIGTSTP (terminal stop) signal,
no more processes will be spawned. This is a toggle, which is reset if init catches another SIGTSTP signal.

If init catches a SIGINT (interrupt) signal, init will sync a few times and try to start reboot. Failing this, init will execute the
system reboot(2) call. Under Linux, it is possible to configure the Ctrl+Alt+Del sequence to send a signal to init instead of
rebooting the system.

THE inittab FILE
Because of the number of init programs that are appearing in the Linux community, the documentation for the
/etc/inittab file, which is usually found with the inittab(5) man page, is presented here:

The format is

ttyline:termcap-entry:getty-command

An example follows:

tty1:console:/sbin/getty 9600 tty1
tty2:console:/sbin/getty 9600 tty2
tty3:console:/sbin/getty 9600 tty3
tty4:console:/sbin/getty 9600 tty4
tty5:console:/sbin/getty 9600 tty5
ttyS1:dumb:/sbin/getty 9600 ttyS1
ttyS2:dumb:/sbin/getty -m -t60 2400 ttyS2

Lines beginning with the # character are treated as comments. Please see documentation for the getty(8) command that you
are using because there are several of these in the Linux community at this time.

FILES
/etc/inittab

/etc/singleboot

/etc/securesingle

/etc/TZ

/etc/passwd

/etc/rc

SEE ALSO
inittab(5), ctrlaltdel(8) reboot(8), termcap(5), getty(8), agetty(8), shutdown(8)

1399

BUGS
This program is called simpleinit to distinguish it from the System V compatible versions of init that are starting to appear
in the Linux community. simpleinit should be linked to, or made identical with, init for correct functionality.

AUTHOR
Peter Orbaek (poe@daimi.aau.dk), version 1.20, with patches for single-user mode by Werner Almesberger.

Linux 0.99, 20 November 1993

slattach
slattach—Attach a network interface to a serial line.

SYNOPSIS
slattach [-v] [-p proto] [-s speed] [tty]

DESCRIPTION
slattach is a little program that can be used to put a normal terminal (“serial”) line into one of several “network” modes,
thus allowing you to use it for point-to-point links to other computers.

OPTIONS
[-v] Enable debugging output. Useful when determining why a given setup doesn’t work.

[-p proto] Set a specific kind of protocol to use on the line. The default is set to cslip, compressed
SLIP. Other possible values are slip (normal SLIP), ppp (Point-to-Point Protocol), and
kiss (AX.25 TNC protocol).

[-s speed] Set a specific line speed other than the default.

If no arguments are given, the current terminal line (usually the login device) is used.
Otherwise, an attempt is made to claim the indicated terminal port, lock it, and open it.

FILES
/dev/cua*

BUGS
None so far.

AUTHOR
Fred N. van Kempen (waltje@uwalt.nl.mugnet.org)

20 September 1993

sliplogin
sliplogin—Attach a serial line network interface.

SYNOPSIS
sliplogin [loginname]

DESCRIPTION
sliplogin is used to turn the terminal line on standard input into a serial line IP SLIP link to a remote host. To do this, the
program searches the file for an entry matching loginname (which defaults to the current login name if omitted). If a

sliplogin

Part VIII: Administration and Privileged Commands1400

matching entry is found, the line is configured appropriately for slip (8-bit transparent I/O) and converted to slip line
discipline. Then a shell script is invoked to initialize the slip interface with the appropriate local and remote IP address,
netmask, and so on.

The usual initialization script is /etc/slip/slip.lgin, but if particular hosts need special initialization, the file
/etc/slip/slip.login.loginname will be executed instead if it exists. The script is invoked with the parameters

slipunit The unit number of the slip interface assigned to this line, such as 0 for sl0.

speed The speed of the line.

args The arguments from the entry, in order starting with loginname.

Only the superuser can attach a network interface. The interface is automatically detached when the other end hangs up or
the sliplogin process dies. If the kernel slip module has been configured for it, all routes through that interface will also
disappear at the same time. If there is other processing a site wants done upon hangup, the file /etc/slip/slip.logout or
/etc/slip/slip.logout.loginname is executed if it exists. It is given the same arguments as the login script.

FORMAT OF /etc/slip.hosts
Comments (lines starting with a #) and blank lines are ignored. Other lines must start with a loginname, but the remaining
arguments can be whatever is appropriate for the file that will be executed for that name. Arguments are separated by
whitespace and follow normal sh(1) quoting conventions (however, loginname cannot be quoted). Usually, lines have the
form loginname local-address remote-address netmask opt-args. local-address and remote-address are the IP hostnames or
addresses of the local and remote ends of the slip line, and netmask is the appropriate IP netmask. These arguments are passed
directly to ifconfig(8). opt-args are optional arguments used to configure the line.

EXAMPLE
The normal use of sliplogin is to create a entry for each legal, remote slip site with sliplogin as the shell for that entry,
such as

Sfoo:ikhuy6:2010:1:slip line to foo:/tmp:/usr/sbin/sliplogin.

(Our convention is to name the account used by remote host hostname as Shostname.) Then an entry is added that looks like

Sfoo ‘hostname’ foo netmask

‘hostname’ will be evaluated by sh to the local hostname and netmask is the local host IP netmask.

Note that sliplogin must be setuid to root, and although it’s not a security hole, moral defectives can use it to place terminal
lines in an unusable state or deny access to legitimate users of a remote slip line. To prevent this, a site can create a group, say
slip, that only the slip login accounts are put in and then make sure that /sbin/sliplogin is in group slip and mode 4550
(setuid root, only group slip can execute binary).

DIAGNOSTICS
sliplogin logs various information to the system log daemon, syslogd(8), with a facility code of daemon. The messages are
listed here, grouped by severity level.

Error Severity

ioctl (TCGETS): reason A TCGETS ioctl to get the line parameters failed.

ioctl (TCSETS): reason A TCSETS ioctl to set the line parameters failed.

/etc/slip.hosts: reason The file could not be opened.

access denied for user No entry for user was found in /etc/slip/slip.hosts

Notice Severity

“attaching slip unit” unit for Unit was successfully attached.
loginname SLIP unit

1401

SEE ALSO
slattach(8), syslogd(8)

HISTORY
The sliplogin command is currently in beta test.

5 August 1991

swapon, swapoff
swapon, swapoff—Enable/disable devices and files for paging and swapping.

SYNOPSIS
/sbin/swapon –a
/sbin/swapon specialfile ...
/sbin/swapoff –a
/sbin/swapoff specialfile ...

DESCRIPTION
swapon is used to specify devices on which paging and swapping are to take place. Calls to swapon usually occur in the system
multiuser initialization file /etc/rc making all swap devices available, so that the paging and swapping activity is interleaved
across several devices and files.

Usually, the first form is used:

-a All devices marked as sw swap devices in /etc/fstab are made available.

swapoff disables swapping on the specified devices and files or on all swap entries in /etc/fstab when the -a flag is given.

SEE ALSO
swapon(2), swapoff(2), fstab(5), init(8), mkswap(8), rc(8), mount(8)

FILES
/dev/hd[ab]? Standard paging devices

/dev/sd[ab]? Standard (SCSI) paging devices

/etc/fstab ASCII filesystem description table

HISTORY
The swapon command appeared in 4.0 BSD.

AUTHORS
See the Linux mount(8) man page for a complete author list. Primary contributors include Doug Quale, H.J. Lu, Rick
Sladkey, and Stephen Tweedie.

Linux 0.99, 27 November 1993

sync
sync—Flush Linux filesystem buffers.

SYNOPSIS
sync

sync

Part VIII: Administration and Privileged Commands1402

DESCRIPTION
sync executes sync(2), which flushes the filesystem buffers to disk. sync should be called before the processor is halted in an
unusual manner (before causing a kernel panic when debugging new kernel code). In general, the processor should be halted
using the reboot(8) or halt(8) commands, which attempt to put the system in a quiescent state before calling sync(2).

From Linus: “Note that sync is only guaranteed to schedule the dirty blocks for writing: It can actually take a short time
before all the blocks are finally written. If you are doing the sync with the expectation of killing the machine soon after,
please take this into account and sleep for a few seconds. (The reboot(8) command takes these precautions.)”

SEE ALSO
sync(2), update(8), reboot(8), halt(8)

AUTHOR
Linus Torvalds (torvalds@cs.helsinki.fi)

Linux 0.99, 20 November 1993

sysklogd
sysklogd—Linux system logging utilities.

DESCRIPTION
sysklogd provides two system utilities, which provide support for system logging and kernel message trapping. Support of
both inetd and UNIX domain sockets enables this utility package to support both local and remote logging.

System logging is provided by a version of syslogd derived from the stock BSD sources. Support for kernel logging is
provided by the klogd utility, which allows kernel logging to be conducted in either a stand-alone fashion or as a client of
syslogd.

Although the syslogd sources have been heavily modified, a couple of notes are in order. First of all, there has been a
systematic attempt to ensure that syslogd follows standard BSD behavior as its default. The second important concept to
note is that this version of syslogd interacts transparently with the version of syslog found in the standard libraries. If a
binary linked to the standard shared libraries fails to function correctly, we want an example of the anomalous behavior.

CONFIGURATION FILE SYNTAX DIFFERENCES
syslogd uses a slightly different syntax for its configuration file from that of the original BSD sources. Originally, all messages
of a specific priority and above were forwarded to the log file.

For example, the following line caused all output from the daemon facilities to go into /usr/adm/daemons:

Sample syslog.conf
daemon.debug /usr/adm/daemons

Under the new scheme, this behavior remains the same. The difference is the addition of two new wildcard specifiers:
the asterisk (*) and the equals sign (=). The * specifies that all messages for the indicated facility are to be directed to the
destination. Note that this behavior is degenerate with specifying a priority level of debug. Users have indicated that the
asterisk notation is more intuitive.

The = wildcard is used to restrict logging to the specified priority class. This allows, for example, routing only debug messages
to a particular logging source.

For example, the following line in syslog.conf directs debug messages from all sources to the /usr/adm/debug file:

Sample syslog.conf
daemon.=debug /usr/adm/debug

1403

This may take some acclimatization for those individuals used to the pure BSD behavior, but testers have indicated that this
syntax is somewhat more flexible than the BSD behavior. Note that these changes should not affect standard syslog.conf
files. You must specifically modify the configuration files to obtain the enhanced behavior.

SUPPORT FOR REMOTE LOGGING
These modifications provide network support to the syslogd facility. Network support means that messages can be forwarded
from one node running syslogd to another node running syslogd where they will be actually logged to a disk file.

The strategy is to have syslogd listen on a UNIX domain socket for locally generated log messages. This behavior will allow
syslogd to interoperate with the syslog found in the standard C library. At the same time, syslogd listens on the standard
syslog port for messages forwarded from other hosts. To have this work correctly, the services files (typically found in
/usr/etc/inet) must have the following entry:

syslog 514/udp

To cause messages to be forwarded to another host, replace the normal file line in the syslog.conf file with the name of the
host to which the messages is to be sent prepended with an @.

For example, to forward all messages to a remote host, use the following syslog.conf entry:

Sample syslogd configuration file to
messages to a remote host forward all.
.* @hostname

To forward all kernel messages to a remote host, the configuration file is

Sample configuration file to forward all kernel
messages to a remote host.
kern.* @hostname

OUTPUT TO NAMED PIPES (FIFOS)
This version of syslogd has support for logging output to named pipes (FIFOs). A FIFO or named pipe can be used as a
destination for log messages by prepending a | to the name of the file. This is handy for debugging. Note that the FIFO must
be created with the mkfifo command before syslogd is started.

The following configuration file routes debug messages from the kernel to a FIFO:

Sample configuration to route kernel debugging
messages ONLY to /usr/adm/debug which is a
named pipe.
kern.=debug |/usr/adm/debug

INSTALLATION CONCERNS
There is probably one important consideration when installing this version of syslogd. This version of syslogd is dependent
on proper formatting of messages by the syslog function. The functioning of the syslog function in the shared libraries
changed somewhere in the region of libc.so.4.[2-4].n. The specific change was to null-terminate the message before
transmitting it to the /dev/log socket. Proper functioning of this version of syslogd is dependent on null-termination of the
message.

This problem will typically manifest itself if old statically linked binaries are being used on the system. Binaries using old
versions of the syslog function will cause empty lines to be logged, followed by the message with the first character in the
message removed. Relinking these binaries to newer versions of the shared libraries will correct this problem.

SECURITY THREATS
There is the potential for the syslogd daemon to be used as a conduit for a denial of service attack. Thanks go to John
Morrison (jmorriso@rflab.ee.ubc.ca) for alerting me to this potential. A rogue programmer could very easily flood the
syslogd daemon with syslog messages resulting in the log files consuming all the remaining space on the filesystem.

sysklogd

Part VIII: Administration and Privileged Commands1404

Activating logging over the inet domain sockets will of course expose a system to risks outside of programs or individuals on
the local machine.

Version 1.2 of the utility set will address this problem. In the meantime, there are a number of methods for protecting a
machine:

1. Logging can be directed to an isolated or non-root filesystem, which, if filled, will not impair the machine.
2. The ext2 filesystem can be used, which can be configured to limit a certain percentage of a filesystem to usage by root

only. Note that this will require syslogd to be run as a non-root process. Also note that this will prevent usage of remote
logging because syslogd will be unable to bind to the 514/UDP socket.

3. Disabling inet domain sockets will limit risk to the local machine.
4. Use Step 3 and if the problem persists and is not secondary to a rogue program or daemon, get a 3.5 foot (approximately

1 meter) length of sucker rod and have a chat with the user in question. A sucker rod is 3/4-, 7/8-, or 1-inch hardened
steel rod, male threaded on each end. Its primary use in the oil industry in Western North Dakota and other locations is
to pump-suck oil from oil wells. Secondary uses are for the construction of cattle feed lots and for dealing with the
occasional recalcitrant or belligerent individual.

FILES
/etc/syslog.conf

BUGS
Primarily, security concerns will be addressed in version 1.2.

SEE ALSO
klogd(1)

COLLABORATORS
Dr. Greg Wettstein (greg%wind.uucp@plains.nodak.edu)
Enjellic Systems Development
Oncology Research Division Computing Facility
Roger Maris Cancer Center
Fargo, ND

Stephen Tweedie
Department of Computer Science
Edinburgh University, Scotland

Juha Virtanen
(jiivee@hut.fi)

Shane Alderton
(shane@scs.apana.org.au)

Version 1.1, 28 January 1994

syslogd
syslogd—Log systems messages.

SYNOPSIS
syslogd [-f config_file] [-m mark_interval] [-p log_socket]

DESCRIPTION
syslogd reads and logs messages to the system console, log files, and other machines or users as specified by its configuration
file. The options are as follows:

1405

-f Specify the pathname of an alternate configuration file; the default is /etc/syslog.conf.

-m Select the number of minutes between “mark” messages; the default is 20 minutes.

-p Specify the pathname of an alternate log socket; the default is /dev/log.

syslogd reads its configuration file when it starts up and whenever it receives a hangup signal. For information on the format
of the configuration file, see syslog.conf(5).

syslogd reads messages from the UNIX domain socket /dev/log, from an Internet domain socket specified in /etc/services,
and from the special device /dev/klog (to read kernel messages).

syslogd creates the file /var/run/syslog.pid and stores its process ID there. This can be used to kill or reconfigure syslogd.

The message sent to syslogd should consist of a single line. The message can contain a priority code, which should be a
preceding decimal number in angle braces, such as <5>. This priority code should map into the priorities defined in the
include file <sys/syslog.h>.

FILES
/etc/syslog.conf The configuration file

/var/run/syslog.pid The process ID of current syslogd

/dev/log Name of the UNIX domain datagram log socket

/dev/klog The kernel log device

SEE ALSO
logger(1), syslog(3), services(5), syslog.conf(5)

HISTORY
The syslogd command appeared in BSD 4.3.

BSD 4.2, 16 March 1991

talkd
talkd—Remote user communication server.

SYNOPSIS
talkd

DESCRIPTION
talkd is the server that notifies a user that someone else wants to initiate a conversation. It acts a repository of invitations,
responding to requests by clients who want to rendezvous to hold a conversation. In normal operation, a client, the caller,
initiates a rendezvous by sending a CTL MSG to the server of type LOOK UP (see protocols/talkd.h). This causes the server to
search its invitation tables to check if an invitation currently exists for the caller (to speak to the callee specified in the
message). If the lookup fails, the caller then sends an ANNOUNCE message, causing the server to broadcast an announcement on
the callee’s login ports requesting contact. When the callee responds, the local server uses the recorded invitation to respond
with the appropriate rendezvous address and the caller and callee client programs establish a stream connection through
which the conversation takes place.

SEE ALSO
talk(1), write(1)

talkd

Part VIII: Administration and Privileged Commands1406

HISTORY
The talkd command appeared in BSD 4.3.

BSD 4.3, 16 March 1991

telnetd
telnetd—DARPA Telnet protocol server.

SYNOPSIS
/etc/telnetd [-debug [port]] [-l][-D options][-D report]
[-D exercise][-D netdata] [-D ptydata]

DESCRIPTION
telnetd is a server that supports the DARPA standard Telnet virtual terminal protocol. telnetd is invoked by the Internet
server (see inetd(8)), usually for requests to connect to the Telnet port as indicated by the /etc/services file (see
services(5)). If desired the -debug can be used, to start up telnetd manually, instead of through inetd(8). If started up this
way, port may be specified to run telnetd on an alternate TCP port number.

The -D option can be used for debugging purposes. This allows Telnet to print debugging information to the connection,
allowing the user to see what telnetd is doing. There are several modifiers: options prints information about the negotiation
of Telnet options, report prints the options information, plus some additional information about what processing is going
on, netdata displays the data stream received by telnetd, ptydata displays data written to the pty, and exercise has not been
implemented yet.

telnetd operates by allocating a pseudo-terminal device (see pty(4)) for a client) and then creating a login process that has the
slave side of the pseudo-terminal as stdin, stdout, and stderr. telnetd manipulates the master side of the pseudo-terminal,
implementing the Telnet protocol and passing characters between the remote client and the login process.

When a Telnet session is started, telnetd sends Telnet options to the client side, indicating a willingness to do a remote echo
of characters, to suppress go ahead, to do remote flow control, and to receive terminal type information, terminal speed
information, and window size information from the remote client. If the remote client is willing, the remote terminal type is
propagated in the environment of the created login process. The pseudo-terminal allocated to the client is configured to
operate in cooked mode and with XTABS and CRMOD enabled (see tty(4)).

telnetd is willing to do echo, binary, suppress go ahead, and timing mark. telnetd is willing to have the remote client
do linemode, binary, terminal type, terminal speed, window size, toggle flow control, environment, X display location, and
suppress go ahead.

If the file /etc/issue.net is present, telnetd will show its contents before the login prompt of a Telnet session (see
issue.net(5)).

SEE ALSO
telnet(1), issue.net(5)

BUGS
Some Telnet commands are only partially implemented.

Because of bugs in the original 4.2 BSD telnet(1), telnetd performs some dubious protocol exchanges to try to discover if
the remote client is, in fact, a 4.2 BSD telnet(1).

Binary mode has no common interpretation except between similar operating systems (UNIX, in this case).

1407

The terminal type name received from the remote client is converted to lowercase. telnetd never sends Telnet go ahead
commands.

20 April 1991

tftpd
tftpd—DARPA Trivial File Transfer Protocol server.

SYNOPSIS
tftpd [directory ...]

DESCRIPTION
tftpd is a server that supports the DARPA Trivial File Transfer Protocol. The TFTP server operates at the port indicated in
the tftp service description; see services(5). The server is usually started by inetd(8).

The use of tftp(1) does not require an account or password on the remote system. Due to the lack of authentication
information, tftpd will allow only publicly readable files to be accessed. Files may be written only if they already exist and are
publicly writable. Note that this extends the concept of public to include all users on all hosts that can be reached through
the network; this may not be appropriate on all systems, and its implications should be considered before enabling the tftp
service. The server should have the user ID with the lowest possible privilege.

SEE ALSO
tftp(1), inetd(8)

HISTORY
The tftpd command appeared in BSD 4.2.

BSD 4.2, 13 May 1991

timed
timed—Time server daemon.

SYNOPSIS
timed [-M] [-t] [-d] [-i network] [-n network] [-F host1 host2 ...]

DESCRIPTION
timed is a time server daemon and is usually invoked at boot time from the rc(8) file. It synchronizes the host’s time with the
time of other machines in a local area network running timed(8). These time servers will slow down the clocks of some
machines and speed up the clocks of others to bring them to the average network time. The average network time is
computed from measurements of clock differences using the ICMP timestamp request message.

The service provided by timed is based on a master-slave scheme. When timed(8) is started on a machine, it asks the master
for the network time and sets the host’s clock to that time. After that, it accepts synchronization messages periodically sent by
the master and calls adjtime(2) to perform the needed corrections on the host’s clock.

It also communicates with date(1) to set the date globally and with timedc(8), a timed control program. If the machine
running the master crashes, then the slaves elect a new master from among slaves running with the -M flag. A timed running
without the -M or -F flags remains a slave. The -t flag enables timed to trace the messages it receives in the file
/var/log/timed.log. Tracing can be turned on or off by the program timedc(8). The -d flag is for debugging the daemon.
It causes the program to not put itself into the background. Usually, timed checks for a master time server on each network

timed

Part VIII: Administration and Privileged Commands1408

to which it is connected, except as modified by the options. It requests synchronization service from the first master server
located. If permitted by the -M flag, it provides synchronization service on any attached networks on which no current master
server is detected. Such a server propagates the time computed by the top-level master. The -n flag, followed by the name of
a network that the host is connected to (see networks(5)), overrides the default choice of the network addresses made by the
program. Each time the -n flag appears, that network name is added to a list of valid networks. All other networks are
ignored. The -i flag, followed by the name of a network to which the host is connected (see networks(5)), overrides the
default choice of the network addresses made by the program. Each time the -i flag appears, that network name is added to a
list of networks to ignore. All other networks are used by the time daemon. The -n and -i flags are meaningless if used
together.

timed checks for a master time server on each network to which it is connected, except as modified by the -n and -i options.
If it finds masters on more than one network, it chooses one network on which to be a “slave” and then periodically checks
the other networks to see if the masters there have disappeared.

One way to synchronize a group of machines is to use an NTP daemon to synchronize the clock of one machine to a distant
standard or a radio receiver and -F hostname to tell its timed daemon to trust only itself.

Messages printed by the kernel on the system console occur with interrupts disabled. This means that the clock stops while
they are printing. A machine with many disk or network hardware problems and consequent messages cannot keep good
time by itself. Each message typically causes the clock to lose a dozen milliseconds. A time daemon can correct the result.

Messages in the system log about machines that failed to respond usually indicate machines that crashed or were turned off.
Complaints about machines that failed to respond to initial time settings are often associated with “multi-homed” machines
that looked for time masters on more than one network and eventually chose to become a slave on the other network.

WARNING
If two or more time daemons, whether timed, NTP, try to adjust the same clock, temporal chaos will result. If both this and
another time daemon are run on the same machine, ensure that the -F flag is used, so that timed never attempts to adjust the
local clock.

The protocol is based on UDP/IP broadcasts. All machines within the range of a broadcast that are using the TSP protocol
must cooperate. There cannot be more than a single administrative domain using the -F flag among all machines reached by
a broadcast packet. Failure to follow this rule is usually indicated by complaints concerning “untrusted” machines in the
system log.

FILES
/var/log/timed.log tracing file for timed

/var/log/timed.masterlog log file for master timed

SEE ALSO
date(1), adjtime(2), gettimeofday(2), icmp(4), timedc(8), “TSP: The Time Synchronization Protocol for UNIX 4.3 BSD,”
R. Gusella, S. Zatti.

HISTORY
The timed daemon appeared in BSD 4.3.

BSD 4.3, 11 May 1993

timedc
timedc—Timed control program.

SYNOPSIS
timedc [command] [argument ...]

1409

DESCRIPTION
timedc is used to control the operation of the timed(8) program. It may be used to

Measure the differences between machines’ clocks

Find the location where the master time server is running

Enable or disable tracing of messages received by timed

Perform various debugging actions

Without any arguments, timedc will prompt for commands from the standard input. If arguments are supplied, timedc
interprets the first argument as a command and the remaining arguments as parameters to the command. The standard input
may be redirected, causing timedc to read commands from a file. Commands may be abbreviated; recognized commands are

? [command ...]

help [command ...] Print a short description of each command specified in the argument list or, if no
arguments are given, a list of the recognized commands.

clockdiff host ... Compute the differences between the clock of the host machine and the clocks of the
machines given as arguments.

msite [host ...] Show the master time server for specified hosts.

trace {on | off} Enable or disable the tracing of incoming messages to timed in the file.

election host Asks the daemon on the target host to reset its “election” timers and to ensure that a
time master has been elected.

quit Exit from timedc

Other commands may be included for use in testing and debugging timed; the help command and the program source may
be consulted for details.

FILES
/var/log/timed.log tracing file for timed

/var/log/timed.masterlog log file for master timed

SEE ALSO
date(1), adjtime(2), icmp(4), timed(8), “TSP: The Time Synchronization Protocol for UNIX 4.3 BSD,” R. Gusella, S. Zatti.

DIAGNOSTICS
?Ambiguous command Abbreviation matches more than one command

?Invalid command No match found

?Privileged command Command can be executed by root only

HISTORY
The timedc command appeared in BSD 4.3.

BSD 4.3, 11 May 1993

traceroute
traceroute—Print the route that packets take to the network host.

SYNOPSIS
traceroute [-m max_ttl] [-n] [-p port] [-q nqueries]
[-r] [-s src_addr] [-t tos] [-w waittime] host [packetsize]

traceroute

Part VIII: Administration and Privileged Commands1410

DESCRIPTION
The Internet is a large and complex aggregation of network hardware, connected together by gateways. Tracking the route
one’s packets follow (or finding the miscreant gateway that’s discarding your packets) can be difficult. traceroute utilizes the
IP protocol time-to-live field and attempts to elicit an ICMP TIME_EXCEEDED response from each gateway along the path to
some host.

The only mandatory parameter is the destination hostname or IP number. The default probe datagram length is 38 bytes,
but this can be increased by specifying a packet size (in bytes) after the destination hostname.

Other options are

-m maxttl Set the max time-to-live (max number of hops) used in outgoing probe packets. The
default is 30 hops (the same default used for TCP connections).

-n Print hop addresses numerically rather than symbolically and numerically (saves a
nameserver address-to-name lookup for each gateway found on the path).

-p port Set the base UDP port number used in probes (default is 33434). traceroute hopes that
nothing is listening on UDP ports base to base + nhops -1 at the destination host (so an
ICMP PORT_UNREACHABLE message will be returned to terminate the route tracing). If
something is listening on a port in the default range, this option can be used to pick an
unused port range.

-q nqueries Set the number of probes per ttl to nqueries (default is three probes).

-r Bypass the normal routing tables and send directly to a host on an attached network. If
the host is not on a directly attached network, an error is returned. This option can be
used to ping a local host through an interface that has no route through it (for example,
after the interface was dropped by routed(8)).

-s src_addr Use the following IP address (which must be given as an IP number, not a hostname) as
the source address in outgoing probe packets. On hosts with more than one IP address,
this option can be used to force the source address to be something other than the IP
address of the interface the probe packet is sent on. If the IP address is not one of this
machine’s interface addresses, an error is returned and nothing is sent.

-t tos Set the type-of-service in probe packets to the following value (default zero). The value
must be a decimal integer in the range 0 to 255. This option can be used to see if
different types of service result in different paths. (If you are not running a BSD 4.3
tahoe or later system, this may be academic because the normal network services such as
Telnet and FTP don’t let you control the TOS). Not all values of TOS are legal or
meaningful; see the IP spec for definitions. Useful values are probably (low delay) and
(high throughput).

-v Verbose output. Received ICMP packets other than TIME_EXCEEDED and UNREACHABLEs are
listed.

-w Set the time (in seconds) to wait for a response to a probe (default is 3 seconds).

This program attempts to trace the route an IP packet would follow to some Internet host by launching UDP probe packets
with a small ttl (time to live) and then listening for an ICMP “time exceeded” reply from a gateway. We start our probes
with a ttl of one and increase by one until we get an ICMP “port unreachable” (which means we got to “host”) or hit a max
(which defaults to 30 hops and can be changed with the -m flag). Three probes (changed with the -q flag) are sent at each ttl
setting and a line is printed showing the ttl, address of the gateway, and round-trip time of each probe. If the probe answers
come from different gateways, the address of each responding system will be printed. If there is no response within a three
second time-out interval (changed with the -w flag), a * is printed for that probe.

We don’t want the destination host to process the UDP probe packets, so the destination port is set to an unlikely value (if
some clod on the destination is using that value, it can be changed with the -p flag).

1411

A sample use and output might be

[yak 71]% traceroute nis.nsf.net.
traceroute to nis.nsf.net (35.1.1.48), 30 hops max,
 56 byte packet
1 helios.ee.lbl.gov (128.3.112.1) 19 ms 19 ms 0 ms
2 lilac-dmc.Berkeley.EDU (128.32.216.1) 39 ms 39 ms 19 ms
3 lilac-dmc.Berkeley.EDU (128.32.216.1) 39 ms 39 ms 19 ms
4 ccngw-ner-cc.Berkeley.EDU (128.32.136.23) 39 ms 40 ms 39 ms
5 ccn-nerif22.Berkeley.EDU (128.32.168.22) 39 ms 39 ms 39 ms
6 128.32.197.4 (128.32.197.4) 40 ms 59 ms 59 ms
7 131.119.2.5 (131.119.2.5) 59 ms 59 ms 59 ms
8 129.140.70.13 (129.140.70.13) 99 ms 99 ms 80 ms
9 129.140.71.6 (129.140.71.6) 139 ms 239 ms 319 ms
10 129.140.81.7 (129.140.81.7) 220 ms 199 ms 199 ms
11 nic.merit.edu (35.1.1.48) 239 ms 239 ms 239 ms

Note that Lines 2 and 3 are the same. This is due to a buggy kernel on the second hop system—lbl-csam.arpa—that
forwards packets with a zero ttl (a bug in the distributed version of 4.3 BSD). Note that you have to guess what path the
packets are taking cross-country because the NSFNet (129.140) doesn’t supply address-to-name translations for its NSSs.

A more interesting example is

[yak 72]% traceroute allspice.lcs.mit.edu.
traceroute to allspice.lcs.mit.edu (18.26.0.115), 30 hops max
1 helios.ee.lbl.gov (128.3.112.1) 0 ms 0 ms 0 ms
2 lilac-dmc.Berkeley.EDU (128.32.216.1) 19 ms 19 ms 19 ms
3 lilac-dmc.Berkeley.EDU (128.32.216.1) 39 ms 19 ms 19 ms
4 ccngw-ner-cc.Berkeley.EDU (128.32.136.23) 19 ms 39 ms 39 ms
5 ccn-nerif22.Berkeley.EDU (128.32.168.22) 20 ms 39 ms 39 ms
6 128.32.197.4 (128.32.197.4) 59 ms 119 ms 39 ms
7 131.119.2.5 (131.119.2.5) 59 ms 59 ms 39 ms
8 129.140.70.13 (129.140.70.13) 80 ms 79 ms 99 ms
9 129.140.71.6 (129.140.71.6) 139 ms 139 ms 159 ms
10 129.140.81.7 (129.140.81.7) 199 ms 180 ms 300 ms
11 129.140.72.17 (129.140.72.17) 300 ms 239 ms 239 ms
12 * * *
13 128.121.54.72 (128.121.54.72) 259 ms 499 ms 279 ms
14 * * *
15 * * *
16 * * *
17 * * *
18 ALLSPICE.LCS.MIT.EDU (18.26.0.115) 339 ms 279 ms 279 ms

Note that the gateways 12, 14, 15, 16, and 17 hop away. Either don’t send ICMP “time exceeded” messages or send them
with a ttl too small to reach us. Lines 14–17 are running the MIT C Gateway code that doesn’t send “time exceeded”s. God
only knows what’s going on with 12.

The silent gateway 12 may be the result of a bug in the 4.[23] BSD network code (and its derivatives): 4.x (x <= 3) sends an
unreachable message using whatever ttl remains in the original datagram. Because for gateways the remaining ttl is zero, the
ICMP “time exceeded” is guaranteed to not make it back to us. The behavior of this bug is slightly more interesting when it
appears on the destination system:

1 helios.ee.lbl.gov (128.3.112.1) 0 ms 0 ms 0 ms
2 lilac-dmc.Berkeley.EDU (128.32.216.1) 39 ms 19 ms 39 ms
3 lilac-dmc.Berkeley.EDU (128.32.216.1) 19 ms 39 ms 19 ms
4 ccngw-ner-cc.Berkeley.EDU (128.32.136.23) 39 ms 40 ms 19 ms
5 ccn-nerif35.Berkeley.EDU (128.32.168.35) 39 ms 39 ms 39 ms
6 csgw.Berkeley.EDU (128.32.133.254) 39 ms 59 ms 39 ms
7 ***
8 ***

traceroute

Part VIII: Administration and Privileged Commands1412

9 ***
10 * * *
11 * * *
12 * * *
13 rip.Berkeley.EDU (128.32.131.22) 59 ms ! 39 ms ! 39 ms
!

Notice that there are 12 “gateways” (13 is the final destination) and exactly the last half of them are “missing.” What’s really
happening is that rip (a Sun-3 running Sun OS3.5) is using the ttl from our arriving datagram as the ttl in its ICMP reply.
The reply will time out on the return path (with no notice sent to anyone because ICMPs aren’t sent for ICMPs) until we
probe with a ttl that’s at least twice the path length. That is, rip is really only seven hops away. A reply that returns with a
ttl of 1 is a clue this problem exists. traceroute prints a ! after the time if the ttl is less than or equal to 1. Because vendors
ship a lot of obsolete (DEC Ultrix, Sun 3.x) or non-standard HPUX software, expect to see this problem frequently or take
care picking the target host of your probes. Other possible annotations after the time are !H, !N, !P (got a host, network, or
protocol unreachable), !S, or !F (source route failed or fragmentation needed—neither of these should ever occur and the
associated gateway is busted if you see one). If almost all the probes result in some kind of unreachable, traceroute will give
up and exit.

This program is intended for use in network testing, measurement, and management. It should be used primarily for manual
fault isolation. Because of the load it could impose on the network, it is unwise to use traceroute during normal operations
or from automated scripts.

AUTHOR
Implemented by Van Jacobson from a suggestion by Steve Deering. Debugged by a cast of thousands with particularly
cogent suggestions or fixes from C. Philip Wood, Tim Seaver, and Ken Adelman.

SEE ALSO
netstat(1), ping(8)

BSD 4.3, 6 June 1993

tune2fs
tune2fs—Adjust tunable filesystem parameters on second extended filesystems.

SYNOPSIS
tune2fs [-l][-c max-mount-counts][-e errors-behavior]
[-i interval-between-checks][-m reserved-blocks-percentage]
[-r reserved-blocks-count][-u user][-g group]device

DESCRIPTION
tune2fs adjusts tunable filesystem parameters on a Linux second extended filesystem.

Never use tune2fs on a read/write mounted filesystem to change parameters!

OPTIONS
-c max-mount-counts Adjust the maximal mounts count between two filesystem checks.

-e errors-behavior Change the behavior of the kernel code when errors are detected. errors-behavior can
be one of the following:

continue Continue normal execution.

remount-ro Remount the filesystem read-only.

panic Causes a kernel panic.

1413

-g group Set the user group that can benefit from the reserved blocks. group can be a numerical
GID or a group name.

-i interval-between-checks[d|m|w] Adjust the maximal time between two filesystem checks. No postfix or d results in days,
m in months, and w in weeks. A value of 0 will disable the time-dependent checking.

-l List the contents of the filesystem superblock.

-m reserved-blocks-percentage Adjust the reserved blocks percentage on the given device.

-r reserved-blocks-count Adjust the reserved blocks count on the given device.

-u user Set the user who can benefit from the reserved blocks. user can be a numerical UID or a
username.

BUGS
We didn’t find any bugs. Perhaps there are bugs, but it’s unlikely.

WARNING
Use this utility at your own risk. You’re modifying filesystems.

AUTHOR
tune2fs was written by Remy Card (card@masi.ibp.fr), the developer and maintainer of the ext2 filesystem. tune2fs
uses the ext2fs library written by Theodore T’so (tytso@mit.edu). This manual page was written by Christian Kuhtz
(chk@data-hh.Hanse.DE). Time-dependent checking was added by Uwe Ohse (uwe@tirka.gun.de).

AVAILABILITY
tune2fs is available for anonymous FTP from ftp.ibp.fr and tsx-11.mit.edu in /pub/linux/packages/ext2fs.

SEE ALSO
dumpe2fs(8), e2fsck(8), mke2fs(8)

Version 0.5b, November 1994

tunelp
tunelp—Set various parameters for the lp device.

SYNOPSIS
tunelp device [-i IRQ | -t TIME | -c CHARS
| -w WAIT | -a [on|off] | -o [on|off] | -C [on|off]
| -r | -s | -q [on|off]]

DESCRIPTION
tunelp sets several parameters for the /dev/lp? devices, for better performance (or for any performance at all, if your printer
won’t work without it…). Without parameters, tunelp tells whether the device is using interrupts, and if so, which one.
With parameters, tunelp sets the device characteristics accordingly. The parameters are as follows:

-i <IRQ> The IRQ to use for the parallel port in question. If this is set to something nonzero, -t
and -c have no effect. If your port does not use interrupts, this option will make
printing stop. tunelp -i 0 restores non-interrupt driven (polling) action, and your
printer should work again. If your parallel port does support interrupts, interrupt-driven
printing should be somewhat faster and efficient and will probably be desirable.

-t <TIME> The amount of time in jiffies that the driver waits if the printer doesn’t take a character
for the number of tries dictated by the -c parameter. 10 is the default value. If you want
the fastest possible printing and don’t care about system load, you can set this to 0. If

tunelp

Part VIII: Administration and Privileged Commands1414

you don’t care how fast your printer goes or are printing text on a slow printer with a
buffer, then 500 (5 seconds) should be fine and will give you very low system load. This
value generally should be lower for printing graphics than text, by a factor of approxi-
mately 10, for best performance.

-c <CHARS> The number of times to try to output a character to the printer before sleeping for
-t <TIME>. It is the number of times around a loop that tries to send a character to the
printer. 120 appears to be a good value for most printers. 250 is the default because there
are some printers that require a wait this long, but feel free to change this. If you have a
very fast printer like an HP Laserjet 4, a value of 10 might make more sense. If you have
a really old printer, you can increase this.

Setting -t <TIME> to 0 is equivalent to setting -c <CHARS> to infinity.

-w <WAIT> The busy loop counter for the strobe signal. Although most printers appear to be able to
deal with an extremely short strobe, some printers demand a longer one. Increasing this
from the default 0 might make it possible to print with those printers. This can also
make it possible to use longer cables.

-a [on|off] This is whether to abort on printer error; the default is not to. If you are sitting at your
computer, you probably want to be able to see an error and fix it and have the printer go
on printing. On the other hand, if you aren’t, you might rather that your printer spooler
find out that the printer isn’t ready, quit trying, and send you mail about it. The choice
is yours.

-o [on|off] This option is much like -a. It makes any open() of this device check to see that the
device is online and not reporting any out-of-paper or other errors. This is the correct
setting for most versions of lpd.

-C [on|off] This option adds extra (“careful”) error checking. When this option is on, the printer
driver will ensure that the printer is online and not reporting any out-of-paper or other
errors before sending data. This is particularly useful for printers that usually appear to
accept data when turned off.

-s This option returns the current printer status, both as a decimal number from 0 to 255
and as a list of active flags. When this option is specified, -q off, turning off the display
of the current IRQ, is implied.

-o, -C, and -s all require a Linux kernel version of 1.1.76 or later.

-r This option resets the port. It requires a Linux kernel version of 1.1.80 or later.

-q [on|off] This option sets printing the display of the current IRQ setting.

Cohesive Systems, 26 August 1992

update_state
update_state—Update system state.

SYNOPSIS
update_state

DESCRIPTION
update_state updates a bunch of system states. It takes a long time to execute and would be suitable for execution in a cron
job.

Currently, update_state performs the following functions: updates the locate database (in /usr/lib/locate), updates the
whatis database(in /usr/man, /usr/local/man, /usr/X386/man, and /usr/interviews/man), and updates the TeX ls-R cache file
(in /usr/lib/texmf).

1415

BUGS
The script expects things to be where the FSSTND says they are. For example, if you have makewhatis(8) in /usr/lib, where
it is traditionally, then you lose, because it should be in /usr/bin.

SEE ALSO
cron(8), find(1), locate(1)

AUTHOR
Rik Faith (faith@cs.unc.edu)

Linux 1.0 8, July 1994

uucico
uucico—UUCP file transfer daemon.

SYNOPSIS
uucico [options]

DESCRIPTION
The uucico daemon processes file transfer requests queued by uucp(1) and uux(1). It is started when uucp or uux is run (unless
they are given the -r option). It is also typically started periodically using entries in the crontab tables.

When invoked with -r1, --master, -s, --system, or -S, the daemon will place a call to a remote system, running in master
mode. Otherwise, the daemon will start in slave mode, accepting a call from a remote system. Typically, a special login name
will be set up for UUCP, which automatically invokes uucico when a call is made.

When uucico terminates, it invokes the uuxqt(8) daemon, unless the -q or --nouuxqt option is given; uuxqt(8) executes any
work orders created by uux(1) on a remote system and any work orders created locally that have received remote files for
which they were waiting.

If a call fails, uucico will usually refuse to retry the call until a certain (configurable) amount of time has passed. This may be
overridden by the -f, -force, or -S option.

The -l, --prompt, -e, or --loop options may be used to force uucico to produce its own prompts of login: and Password:.
When another daemon calls in, it will see these prompts and log in as usual. The login name and password are usually
checked against a separate list kept specially for uucico rather than the /etc/passwd file; it is possible on some systems to
direct uucico to use the /etc/passwd file. The -l or -prompt option will prompt once and then exit; in this mode, the UUCP
administrator or the superuser may use the -u or -login option to force a login name, in which case uucico will not prompt
for one. The -e or -loop option will prompt again after the first session is over; in this mode, uucico will permanently control
a port.

If uucico receives a SIGQUIT, SIGTERM, or SIGPIPE signal, it will cleanly abort any current conversation with a remote system
and exit. If it receives a SIGHUP signal, it will abort any current conversation, but will continue to place calls to (if invoked
with -r1 or --master) and accept calls from (if invoked with -e or --loop) other systems. If it receives a SIGINT signal, it will
finish the current conversation but will not place or accept any more calls.

OPTIONS
The following options may be given to uucico:

-r1, ---master Start in master mode (call out to a system); implied by -s, --system, or -S. If no system
is specified, call any system for which work is waiting to be done.

-r0, ---slave Start in slave mode. This is the default.

-s system, ---system system Call the named system.

uucico

Part VIII: Administration and Privileged Commands1416

-S system Call the named system, ignoring any required wait. This is equivalent to -s system –f.

-f, ---force Ignore any required wait for any systems to be called.

-l, ---prompt Prompt for login name and password using login: and Password:. This allows uucico to
be easily run from inetd(8). The login name and password are checked against the
UUCP password file, which probably has no connection to the file /etc/passwd. The
--login option may be used to force a login name, in which case uucico will only
prompt for a password.

-p port, ---port port Specify a port to call out on or to listen to.

-e, ---loop Enter endless loop of login/password prompts and slave mode daemon execution. The
program will not stop by itself; you must use kill(1) to shut it down.

-w, ---wait After calling out (to a particular system when -s, --system, or -S is specified or to all
systems that have work when just -r1 or --master is specified), begin an endless loop as
with --loop.

-q, ---nouuxqt Do not start the uuxqt(8) daemon when finished.

-c, ---quiet If no calls are permitted at this time, then don’t make the call, but also do not put an
error message in the log file and do not update the system status (as reported by
uustat(1)). This can be convenient for automated polling scripts, which may want to
simply attempt to call every system rather than worry about which particular systems
may be called at the moment. This option also suppresses the log message indicating
that there is no work to be done.

-C, ---ifwork Only call the system named by -s, --system, or -S if there is work for that system.

-D, ---nodetach Do not detach from the controlling terminal. Normally, uucico detaches from the
terminal before each call out to another system and before invoking uuxqt. This option
prevents this.

-u name, ---login name Set the login name to use instead of that of the invoking user. This option may only be
used by the UUCP administrator or the superuser. If used with --prompt, this will cause
uucico to prompt only for the password, not the login name.

-z, ---try-next If a call fails after the remote system is reached, try the next alternate rather than simply
exiting.

-i type, ---stdin type Set the type of port to use when using standard input. The only support port type is
TLI, and this is only available on machines that support the TLI networking interface.
Specifying -iTLI causes uucico to use TLI calls to perform I/O.

-x type, –X type, ---debug type Turn on particular debugging types. The following types are recognized: abnormal, chat,
handshake, uucp-proto, proto, port, config, spooldir, execute, incoming, outgoing.

Multiple types may be given, separated by commas, and the --debug option may appear
multiple times. A number may also be given, which will turn on that many types from
the foregoing list; for example, --debug 2 is equivalent to --debug abnormal,chat.

The debugging output is sent to the debugging file, usually one of /usr/spool/uucp/
/usr/spool/uucp/DEBUG, or /usr/spool/uucp/.Admin/audit.local.

-I file, ---config file Set configuration file to use. This option may not be available, depending on how
uucico was compiled.

-v, ---version Report version information and exit.

--help Print a help message and exit.

-u login This option is ignored. It is only included because some versions of uucpd invoke uucico
with it.

FILES
The filenames may be changed at compilation time or by the configuration file, so these are only approximations:

/usr/lib/uucp/config Configuration file.

/usr/lib/uucp/passwd Default UUCP password file.

Debug,

1417

/usr/spool/uucp UUCP spool directory.

/usr/spool/uucp/Log UUCP log file.

/usr/spool/uucppublic Default UUCP public directory.

/usr/spool/uucp/Debug Debugging file.

SEE ALSO
kill(1), uucp(1), uux(1), uustat(1), uuxqt(8)

AUTHOR
Ian Lance Taylor (ian@airs.com)

Taylor UUCP 1.05

vmstat
vmstat—Report virtual memory statistics.

SYNOPSIS
vmstat [-n] [delay [count]]

DESCRIPTION
vmstat reports information about processes, memory, paging, block IO, traps, and CPU activity.

The first report produced gives averages since the last reboot. Additional reports give information on a sampling period of
length delay. The process and memory reports are instantaneous in either case.

OPTIONS
The -n switch causes the header to be displayed only once rather than periodically.

delay is the delay between updates in seconds. If no delay is specified, only one report is printed with the average values since
boot.

count is the number of updates. If no count is specified and delay is defined, count defaults to infinity.

FIELD DESCRIPTIONS

Procs

r The number of processes waiting for runtime.

b The number of processes in uninterruptible sleep.

w The number of processes swapped out but otherwise runnable.
This field is calculated, but Linux never desperation swaps.

Memory

swpd The amount of virtual memory used (KB).

free The amount of idle memory (KB).

buff The amount of memory used as buffers (KB).

Swap

si Amount of memory swapped in from disk (KB/s).

so Amount of memory swapped to disk (KB/s).

vmstat

Part VIII: Administration and Privileged Commands1418

IO

bi Blocks sent to a block device (blocks/s).

bo Blocks received from a block device (blocks/s).

System

in The number of interrupts per second, including the clock.

cs The number of context switches per second.

CPU (These are percentages of total CPU time.)

us User time.

sy System time.

id Idle time.

NOTES
vmstat does not require special permissions.

These reports are intended to help identify system bottlenecks. Linux vmstat does not count itself as a running process.

All Linux blocks are currently 1KB, except for CD-ROM blocks, which are 2KB.

FILES
/proc/meminfo
/proc/stat
/proc/*/stat

SEE ALSO
ps(1), top(1), free(1)

BUGS
vmstat does not tabulate the block IO per device or count the number of system calls.

AUTHOR
Written by Henry Ware (al172@yfn.ysu.edu)

Throatwobbler Ginkgo Labs, 27 July 1994

vipw
vipw—Edit the password file.

SYNOPSIS
vipw

DESCRIPTION
vipw edits the password file after setting the appropriate locks and does any necessary processing after the password file is
unlocked. If the password file is already locked for editing by another user, vipw will ask you to try again later. The default
editor for vipw is vi(1).

1419

ENVIRONMENT
If the following environment variable exists, it will be utilized by vipw:

EDITOR The editor specified by the string. EDITOR will be invoked instead of the default editor
vi(1).

SEE ALSO
passwd(1), vi(1), passwd(5)

HISTORY
The vipw command appeared in BSD 4.0.

BSD 4, 16 March 1991

zdump
zdump—Time zone dumper.

SYNOPSIS
zdump [-v][-c cutoffyear] [zonename ...]

DESCRIPTION
zdump prints the current time in each zonename named on the command line.

These options are available:

-v For each zonename on the command line, print the current time, the time at the lowest
possible time value, the time one day after the lowest possible time value, the times both
one second before and exactly at each detected time discontinuity, the time at one day
less than the highest possible time value, and the time at the highest possible time value.
Each line ends with isdst=1 if the given time is Daylight Saving Time or isdst=0
otherwise.

-c cutoffyear Cut off the verbose output near the start of the given year.

SEE ALSO
newctime(3), tzfile(5), zic(8)

zic
zic—Time zone compiler.

SYNOPSIS
zic [-v][-d directory][-l localtime][-p posixrules]
[-L leapsecondfilename][-s] [-y command][filename ...]

DESCRIPTION
zic reads text from the files named on the command line and creates the time conversion information files specified in this
input. If a filename is –, the standard input is read.

These options are available:

-d directory Create time conversion information files in the named directory rather than in the
standard directory named below.

zic

Part VIII: Administration and Privileged Commands1420

-l timezone Use the given time zone as local time. zic will act as if the input contained a link line of
the form.

Link timezone localtime.

-p timezone Use the given time zone’s rules when handling POSIX-format time zone environment
variables. zic will act as if the input contained a link line of the form.

Link timezone posixrules.

-L leapsecondfilename Read leap second information from the file with the given name. If this option is not
used, no leap second information appears in output files.

-v Complain if a year that appears in a data file is outside the range of years representable
by time(2) values.

-s Limit time values stored in output files to values that are the same whether they’re taken
to be signed or unsigned. You can use this option to generate SVVS-compatible files.

-y command Use the given command rather than yearistype when checking year types.

Input lines are made up of fields. Fields are separated from one another by any number of whitespace characters. Leading
and trailing whitespace on input lines is ignored. An unquoted sharp character (#) in the input introduces a comment that
extends to the end of the line the sharp character appears on. Whitespace characters and sharp characters may be enclosed in
double quotes (“) if they’re to be used as part of a field. Any line that is blank (after comment stripping) is ignored. Non-
blank lines are expected to be of one of three types: rule lines, zone lines, and link lines.

A rule line has the form

Rule NAME FROM TO TYPE IN ON AT SAVE LETTER/S

For example:

Rule US 1967 1973 – Apr lastSun 2:00 1:00 D

The fields that make up a rule line are

NAME Gives the (arbitrary) name of the set of rules this rule is part of.

FROM Gives the first year in which the rule applies. Any integer year can be supplied; the
Gregorian calendar is assumed. The word minimum (or an abbreviation) means the
minimum year representable as an integer. The word maximum (or an abbreviation) means
the maximum year representable as an integer. Rules can describe times that are not
representable as time values, with the unrepresentable times ignored; this allows rules to
be portable among hosts with differing time value types.

TO Gives the final year in which the rule applies. In addition to minimum and maximum,
the word only (or an abbreviation) may be used to repeat the value of the FROM field.

TYPE Gives the type of year in which the rule applies. If TYPE is –, the rule applies in all years
between FROM and TO inclusive. If TYPE is something else, then zic executes the command

yearistype year type

to check the type of a year. An exit status of zero is taken to mean that the year is of the
given type; an exit status of one is taken to mean that the year is not of the given type.

IN Names the month in which the rule takes effect. Month names may be abbreviated.

ON Gives the day on which the rule takes effect. Recognized forms include

5 The fifth of the month

lastSun The last Sunday in the month

lastMon The last Monday in the month

Sun>=8 First Sunday on or after the eighth

Sun<=25 Last Sunday on or before the 25th

Names of days of the week may be abbreviated or spelled out in full.
Note that there must be no spaces within the ON field.

1421

AT Gives the time of day at which the rule takes effect. Recognized forms include

2 Time in hours

2:00 Time in hours and minutes

15:00 24-hour format time (for times after noon)

1:28:14 Time in hours, minutes, and seconds

Any of these forms may be followed by the letter w if the given time is local wall clock
time, s if the given time is local standard time, or u (or g or z) if the given time is
universal time; in the absence of an indicator, wall clock time is assumed.

SAVE Gives the amount of time to be added to local standard time when the rule is in effect.
This field has the same format as the AT field (although, of course, the w and s suffixes
are not used).

LETTER/S Gives the variable part (for example, the S or D in EST or EDT) of time-zone abbrevia-
tions to be used when this rule is in effect. If this field is –, the variable part is null.

A zone line has the form

Zone NAME GMTOFF RULES/SAVE FORMAT [UNTIL]

For example:

Zone Australia/Adelaide 9:30 Aus CST 1971 Oct 31 2:00

The fields that make up a zone line are

NAME The name of the time zone. This is the name used in creating the time conversion
information file for the zone.

GMTOFF The amount of time to add to GMT to get standard time in this zone. This field has the
same format as the AT and SAVE fields of rule lines; begin the field with a minus sign if
time must be subtracted from GMT.

RULES/SAVE The name of the rules that apply in the time zone or, alternately, an amount of time to
add to local standard time. If this field is –, standard time always applies in the time
zone.

FORMAT The format for time zone abbreviations in this time zone. The pair of characters %s is
used to show where the variable part of the time-zone abbreviation goes. Alternately, a
slash (/) separates standard and daylight abbreviations.

UNTIL The time at which the GMT offset or the rules change for a location. It is specified as a
year, a month, a day, and a time of day. If this is specified, the time-zone information is
generated from the given GMT offset and rule change until the time specified.

The next line must be a continuation line; this has the same form as a zone line except
that the string Zone and the name are omitted because the continuation line will place
information starting at the time specified as the UNTIL field in the previous line in the file
used by the previous line. Continuation lines may contain an UNTIL field, just as zone
lines do, indicating that the next line is a further continuation.

A link line has the form

Link LINK-FROM LINK-TO

For example:

Link US/Eastern EST5EDT

The LINK-FROM field should appear as the NAME field in some zone line; the LINK-TO field is used as an alternate name for that
zone.

Except for continuation lines, lines may appear in any order in the input.

Lines in the file that describe leap seconds have the following form:

zic

Part VIII: Administration and Privileged Commands1422

Leap YEAR MONTH DAY HH:MM:SS CORR R/S

For example:

Leap 1974 Dec 31 23:59:60 + S

The YEAR, MONTH, DAY, and HH:MM:SS fields tell when the leap second happened. The CORR field should be + if a second was
added or – if a second was skipped. The R/S field should be (an abbreviation of) Stationary if the leap second time given by
the other fields should be interpreted as GMT or (an abbreviation of) Rolling if the leap second time given by the other
fields should be interpreted as local wall clock time.

NOTE
For areas with more than two types of local time, you may need to use local standard time in the AT field of the earliest
transition time’s rule to ensure that the earliest transition time recorded in the compiled file is correct.

FILE
/usr/local/etc/zoneinfo standard directory used for created files.

SEE ALSO
newctime(3), tzfile(5), zdump(8)

1423

Kernel Reference
Guide

Part IX:

Part IX: Kernel Reference Guide1424

add_timer, del_timer, init_timer
add_timer, del_timer, init_timer—Manage event timers.

SYNOPSIS
#include <asm/param.h>
#include <linux/timer.h>
extern void add_timer(struct timer_list * timer);
extern int del_timer(struct timer_list * timer);
extern inline void init_timer(struct timer_list * timer);

DESCRIPTION
add_timer schedules an event, adding it to a linked list of events maintained by the kernel. del_timer deletes a scheduled
event. timer points to a

struct timer_list {
struct timer_list *next;
struct timer_list *prev;
unsigned long expires;
unsigned long data;
void (*function)(unsigned long);
};

init_timer sets next and prev to NULL. This is required for the argument of add_timer. expires is the desired duration of the
timer in jiffies, where there are HZ (typically 100) jiffies per second. When the timer expires, function is called with data as
its argument. It is the responsibility of function to delete the event. If the same function is managing several timers, the
argument can be used to distinguish which one expired.

RETURN VALUE
del_timer returns zero on error—if next or prev are not NULL, but the timer was not found. del_timer also sets expires to the
time remaining before the timer expires and sets next and prev to NULL. Thus, calling del_timer followed immediately by
add_timer is a no-op provided a kernel tick does not occur between the two calls.

AUTHOR
Linus Torvalds

Linux 1.2.8, 31 May 1995

adjust_clock
adjust_clock—Adjusts startup time counter to tick in GMT.

SYNOPSIS
linux/kernel/sys.c
void adjust_clock();

DESCRIPTION
This routine adjusts the startup time by adding the time zone information to it. The goal is to get the startup time ticking in
GMT time.

NOTES
This routine is called from settimeofday(2) when the time-zone information is first set.

1425

AUTHOR
Theodore T’so (tytso@mit.edu)

SEE ALSO
settimeofday(2)

Linux 0.99.10, 7 July 1993

ctrl_alt_del
ctrl_alt_del—Routes the keyboard interrupt Ctrl+Alt+Del key sequence.

SYNOPSIS
linux/kernel/sys.c
void ctrl_alt_del(void);

DESCRIPTION
This simple routine tests the variable C_A_D for a true/false condition. If it is true, a hard reset is done by the system.
Otherwise, a signal SIGINT is sent to the process with the process ID 1, usually a program called init.

WARNINGS
This routine is in interrupt mode. It cannot sync() your system. Data loss may occur. It is recommended that you configure
your system to send a signal to init, where you can control the shutdown.

NOTES
The default of this function is to do hard resets immediately.

AUTHOR
Linus Torvalds

SEE ALSO
reboot(2), reset_hard_now(9), sync(2)

Linux 0.99.10, 6 July 1993

file_table
file_table—Detailed description of the table and table entry.

SYNOPSIS
From #include <linux/fs.h>

struct file {
mode_t f_mode;
dev_t f_rdev; /* needed for /dev/tty */
off_t f_pos;
unsigned short f_flags;
unsigned short f_count;
unsigned short f_reada;
struct file *f_next, *f_prev;
struct inode *f_inode;

file_table

Part IX: Kernel Reference Guide1426

struct file_operations *f_op;
};

From linux/fs/file_table.c

struct file *first_file;
int nr_files = 0;

DESCRIPTION
The file table is fundamentally important to any UNIX system. It is where all open files (Linux includes closed files as well)
are stored and managed by the kernel. For Linux, you can hardly do anything without referencing it in some way.

Linux stores its file table as a double circular linked list. The root pointer to the “head” of this list is first_file. Also, a count
of how many entries are in the file table is maintained, called nr_files. Under this scheme, the file table for Linux could be
as large as memory could hold. Unfortunately, this would be unmanageable in most cases. Your computer would be in the
kernel most of the time when processes are more important. To keep this from happening, nr_files is tested against NR_FILE
to limit the number of file table entries.

UNDERSTANDING THE STRUCTURE OF THE FILE TABLE
The file table is organized as a double circular linked list. Imagine a circle of people with everyone facing the same direction.
Each person is facing so that one arm is in the circle and the other arm is outside the circle. Now, if each person put his or
her right hand on the shoulder of the person in front of him or her and if each person touched the person behind him or her
with his or her left hand. You have formed two circles of arms, one inside and the other outside. The right arms represent
pointers to the next entry (or person). The left arms represent pointers to the previous entry (or person).

THE FILE STRUCTURE, A FILE TABLE ENTRY
At first glance, a table entry looks quite simple. An entry contains how a file was opened, what tty device, a reference count,
pointers to other entries, pointer to v-node (the vfs i-node) filesystem-specific i-node information, and so on.

f_mode After ANDing with O ACCMODE, this is what bits 0 and 1 mean:
00 No permissions needed

01 Read-permission

10 Write-permission

11 Read-write

f_rdev It is used only with tty lines. It contains the major and minor numbers of the tty device.

f_pos The current position in a file, if meaningful.

f_flags Storage for the flags from open() and fcntl()

f_count Reference counter

f_reada This is a Boolean variable where True means that an actual read is needed.

f_next, f_prev Pointers to other entries

f_inode Pointer to v-node and filesystem-specific i-node information

f_op Pointer to a file’s operations

AUTHOR
Linus Torvalds

SEE ALSO
insert_file_free(9), remove_file_free(9), put_last_free(9) grow_files(9), file_table_init(9), get_empty_filp(9)

Linux 0.99.10, 11 July 1993

1427

file_table_init
file_table_init—Initializes the file table in the kernel.

SYNOPSIS
linux/fs/file_table.c unsigned long file_table_init(
unsigned long start, unsigned long end);

DESCRIPTION
This routine is called from kernel_start() in linux/init/main.c. It sets first_file, a struct file pointer, to NULL. This is the
head of the linked list of open files maintained in the kernel, the infamous file table in all UNIXs.

RETURN VALUE
Returns start.

NOTES
Because this is part of the kernel’s startup routine, it has the option to allocate memory, in kernel space, for itself. It does not
need to do this and returns the new start of memory for the next initializing section. In this case, start is returned unmodi-
fied.

AUTHOR
Linus Torvalds

Linux 0.99.10, 9 July 1993

filesystems
filesystems—Details the table of configured filesystems.

SYNOPSIS
linux/fs/filesystems.c

From #include <linux/fs.h>

struct file system type {
struct super_block *(*read_super) (struct super_block *, void *, int);
char *name;
int requires dev;
};

DESCRIPTION
This source code makes a data structure call file_systems[], which contains all the configured filesystems for the kernel. It is
used primarily in linux/fs/super.c for many of the mounting of filesystems functions.

THE MEANINGS
This first member, in struct file_system_type, is a function pointer to a routine that will read in the super_block. A
super_block generically means an i-node or special place on the device where information about the overall filesystem is
stored.

The name is just the string representation of the name of a specific filesystem, such as ext2 or minix.

The final member, int_requires_dev, is a Boolean value. If it is True, then the filesystem requires a block device. For False, it
is unclear what happens, but an unnamed device is used, such as proc and nfs.

filesystems

Part IX: Kernel Reference Guide1428

AUTHOR
Linus Torvalds

Linux 0.99.10, 12 July 1993

get_empty_filp
get_empty_filp—Fetches an unreferenced entry from the file table.

SYNOPSIS
linux/fs/file table.c
struct file *get_empty_filp(void);

DESCRIPTION
This routine will seek out an entry that is not being referenced by any processes. If none are found, then it will add new
entries to the file table, minimum of NR_FILE entries.

NOTES
Due to grow_files(), a whole page of entries is created at one time. This may make more than NR_FILE entries. Also when an
unreferenced entry is found, it is moved to the “end” of the file table. This heuristic is used to speed up finding unreferenced
entries.

RETURN VALUE
NULL—No entries were found and the file table is full.

Returns a pointer to the entry in the file table.

AUTHOR
Linus Torvalds

SEE ALSO
grow_files(9)

Linux 0.99.10, 12 July 1993

grow_files
grow_files—Adds entries to the file table.

SYNOPSIS
linux/fs/file table.c
void grow_files(void);

DESCRIPTION
This function adds entries to the file table. First, it allocates a page of memory. It fills the entire page with entries, adding
each to the file table.

AUTHOR
Linus Torvalds

1429

SEE ALSO
insert_file_free(9), remove_file_free(9), put_last_free(9)

Linux 0.99.10, 12 July 1993

in_group_p
in_group_p—Searches group IDs for a match.

SYNOPSIS
linux/kernel/sys.c
int in_group_p(gid_t grp);

DESCRIPTION
Searches supplementary group IDs and the effective group ID for a match with grp.

RETURN VALUE
Returns True (1) if found; otherwise, false (0).

AUTHOR
Linus Torvalds

SEE ALSO
getgroups(2), getgid(2), getregid(2), setgid(2), setregid(2), setgroups(2)

Linux 0.99.10, 7 July 1993

insert_file_free
insert_file_free—Adds a file entry into the file table.

SYNOPSIS
linux/fs/file_table.c
static void insert_file_free(struct file *file);

DESCRIPTION
This nightmare of pointers adds file into the file table with the root pointer at file. This is a building block of the file table
management.

AUTHOR
Linus Torvalds

SEE ALSO
file_table_init(9), remove_file_free(9), put_last_free(9)

See file_table(9) for details on the file table structure.

Linux 0.99.10

insert_ file_ free

Part IX: Kernel Reference Guide1430

kernel_mktime
kernel_mktime—Convert startup struct mktime into the number of seconds since 00:00:00 January 1, 1970.

SYNOPSIS
linux/kernel/mktime.c
long kernel_mktime(struct mktime * time);

DESCRIPTION
This routine is called from time_init(void), linux/init/main.c. kernel_mktime() converts struct mktime (initialized from
CMOS) into an encoded long.

CONVERSION METHOD
First an array, month[12], is created, holding how many seconds have passed to reach a peculiar month for a leap year. Next,
it subtracts 70 from the current year, making 1970 the beginning year. It is math magic after this point; please look yourself.
If you know why it does this, then send e-mail (see nroff source).

RETURN VALUE
Returns the encoded time in a long.

FILES
linux/kernel/mktime.c home of routine

NOTES
This routine is called only during startup of the kernel.

Historically, the value (encoded long) counts the number of seconds since the Epoch, which occurred at 00:00:00 January 1,
1970, and is called Coordinated Universal Time (UTC). In older manuals, this event is called Greenwich Mean Time
(GMT).

WARNINGS
kernel_mktime() doesn’t check to see if the year is greater than 1969. Be sure your CMOS is set correctly. It is customary to
set on-board clocks to GMT and let processes who ask for the time to convert it to local time, if necessary.

RESTRICTIONS
For kernel use only.

AUTHOR
Linus Torvalds

Linux 0.99.10, 5 July 1993

proc_sel
proc_sel—Select a process by a criterion.

SYNOPSIS
linux/kernel/sys.c
#include <linux/resource.h>
static int proc_sel(struct task_struct *p, int which, int who);

1431

DESCRIPTION
Compares a task p to supplied information or the current task in some aspect of priority. If who is zero, the comparison is task
p and the current task. Otherwise, who and *p are the supplied information for the comparison.

OPTIONS
Valid values of which:

PRIO_PROCESS Compares process ID numbers. There is an exception here. If who is not zero and task p is
the current task, then True is always returned.

PRIO_PGRP Compares process group leader numbers.

PRIO_USER Compares user ID numbers.

RETURN VALUE
Returns truth values (0, 1).

AUTHOR
Linus Torvalds

SEE ALSO
sys_setpriority(2), sys_getpriority(2)

Linux 0.99.10, 7 July 1993

put_file_last
put_file_last—Moves a file to the “end” of the file table.

SYNOPSIS
linux/fs/file table.c
static void put_last_free(struct file *file);

DESCRIPTION
This function will remove file from the file table and insert it again at the end. You can access by

first_file->prev

AUTHOR
Linus Torvalds

SEE ALSO
insert_file_free(9), remove_file_free(9)

Linux 0.99.10, 11 July 1993

remove_file_free
remove_file_free—Remove a file table entry from the linked list.

SYNOPSIS
linux/fs/file table.c
static void remove_file_free(struct file *file);

remove_ file_ free

Part IX: Kernel Reference Guide1432

DESCRIPTION
This routine removes the file from the table. This is used mostly for moving a file to the “end” of the list.

AUTHOR
Linus Torvalds

SEE ALSO
insert_file_free(9), put_file_last(9)

1433

Index

1434

Symbols

* (asterisk), bash special
parameters, 15

@ (at sign), bash special
parameters, 15

\ (backslash), bash escape
character, 14

$ (dollar sign)
bash special parameters, 15
expansion, 19
ftp command, 148

! (exclamation point)
bash special parameters, 15
ftp command, 148

! command (telnet), 512
> (greater than sign),

redirection operator, 21
- (hyphen), bash special

parameters, 15
< (less than sign), redirection

operator, 21
| (pipeline), bash, 12
(pound sign)

bash comments, 14
bash special parameters, 15

? (question mark)
bash special parameters, 15
ftp command, 152

? command
telnet, 512
xauth, 591

_ (underscore), bash special
parameters, 15

/ directory, 1236
0, bash special parameter, 15
8859-1 character set, 1064
8859-2 character set, 1064
8859-3 character set, 1064
8859-4 character set, 1064
8859-5 character set, 1065
8859-6 character set, 1065
8859-7 character set, 1065
8859-8 character set, 1065
8859-9 character set, 1065
8859-10 character set, 1065

A

Abekas YUV bytes, converting
to portable pixmaps, 731

abort() function, 892
abs() function, 892-893
absolute values, 892-893

floating-point numbers, 919
long integers, 960-961

accept, 740-741
access, 741-742

errors, 741
restrictions, 741
return value, 741

access control
files, changing permissions,

61-62
hosts_access, 1133-1136

diagnostics, 1136
files, 1133, 1136
operators, 1134
patterns, 1133-1134
remote username lookup,

1134-1135
rules, 1133
shell commands, 1134
wildcards, 1134

language extensions,
1137-1139

memory, 804-805
NNTP sites, 1167-1168

account (ftp command), 148
acct, 742
acos() function, 893
acosh() function, 893-894
active, 1104-1105
active.times, 1104-1105
add (cvs command), 96
ADD_ADDRESS environ-

ment variable, 529
add_timer, 1424
addftinfo, 2
addgroup, 1258-1259
addmntent() function,

935-936

addresses
Internet, manipulating,

953-954
mail addressing, 1244-1246

abbreviations, 1245
case sensitivity, 1245
compatibility, 1245
postmasters, 1246
routing, 1245

physical, accessing, 818
sed, 476
virtual memory, remapping,

805-806
adduser, 1258-1259
adduser.conf, 1105
adjtimex, 742-743
adjust_clock, 1424-1425
admin (cvs command), 96
advisory locks, open files

(applying/removing), 757
afmtodit, 2-4

files, 3
options, 3
running, 3

agetty, 1259-1262
arguments, 1260
bugs, 1261
diagnostics, 1261
files, 1261
issue escapes, 1261
options, 1260

alarm, 744
alarm clock, setting, 744
alias (shell command), 35
aliases, 23-24, 1106

bugs, 1106
printing, 35
removing names, 45

alloca function, 894
bugs, 894
return values, 894

allocating memory, 894, 976
allow-null_glob_expansion

variable (bash), 17
allow-send-events() action

(xterm), 714

■ * (asterisk), bash special parameters

1435

alphasort() function,
1012-1013

American Standard Code for
Information, see ASCII

Andrew Toolkit raster objects,
converting to portable
bitmaps, 10

ANSI C, converting to
Kernighan & Ritchie, 4

ansi2knr, 4
antialiasing portable anymaps,

381-382
anytopnm, 4
append (ftp command), 148
application resources,

printing, 5
applications (client), listing,

669-670
appres, 5
ar, 5-7

copying, 7
modifiers, 7
options, 6-7

arc cosines, 893
arc sines, 894-895
arc tangents, 896

two variables, 896-897
arch, 8
archive, 1262-1263
archives

creating, 5-7
extracting from, 5-7
indexes (generating),

437-438
modifying, 5-7
shell, creating, 484-487

arguments
concatenating, 37
outputting, 36-37
reading from standard input,

586-587
arithmetic

evaluation
bash, 34
let command, 39

expansion, bash, 20

functions
awk, 168-169
sin(), 1020-1021
sinh(), 1021
sqrt(), 1023
tan(), 1047-1048
tanh(), 1048

performing on portable
anymaps, 382-383

arp, 1263
ARP cache, manipulating,

1263
arrays

awk, 164
linear searches, 975-976
searching sorted, 900-901
sorting, 1000

articles (news), see tin
as, 8-9
ASCII (American Standard

Code for Information), 1064
character set, 1214-1216
graphics, converting to

portable graymap, 10
ascii (ftp command), 148
ascii manual page, 1214-1216
asciitopgm, 10
asctime, 984-986
asctime() function, 910
asin() function, 894-895

errors, 895
return value, 895

asinh() function, 895
assemblers, as, 8-9
assert() function, 895-896
asterisk (*), bash special

parameters, 15
at sign (@), bash special

parameters, 15
atan() function, 896
atan2() function, 896-897
atanh() function, 897
Atari compressed Spectrum

files, converting to portable
pixmaps, 494

Atari Degas PI1 files,
converting to portable
pixmaps, 378

Atari Degas PI3 files,
converting to portable
bitmaps, 379

Atari uncompressed Spectrum
files, converting to portable
pixmaps, 495-496

atexit() function, 897-898
errors, 898
return value, 898

atktopbm, 10
atobm, 49-57

options, 50
atof() function, 898
atoi() function, 898-899
atol() function, 899
attributes, file, 59
authentication

cidentd, 69-70
Kerberos authentication,

461
pcnfsd, 1355-1356
pppd, 1366-1367

authority files (X), xauth
utility, 587-592

auto_resume variable (bash),
18

AutoCAD slide files, convert-
ing to portable pixmaps,
490-491

AUTOSUBSCRIBE environ-
ment variable, 529

AUTOUNSUBSCRIBE
environment variable, 530

awk
actions, 165-166
arithmetic functions,

168-169
control statements, 167
fields, 163
functions, 170
GNU extensions, 171
historical features supported

by gawk, 172
I/O statements, 167
operators, 166-167
patterns, 165-166
printf statement, 167-168

awk ■

1436

program execution, 162-163
regular expressions, 166
sprintf() function, 167-168
string constants, 169-170
string functions, 169
time functions, 169
variables, 163-165

arrays, 164
built-in, 163-164
typing and conversion,

164-165

B

backslashes (\), bash escape
character, 14

badblocks, 1264
banner, 1210
bash

aliases, 23-24
arguments, 11
arithmetic evaluation, 34
blanks, 12
bugs, 46
command execution, 25
comments, 14
compound commands, 13

case, 13
list, 13
while, 13

control operators, 12
environments, 25-26
escape character, 14
exit status, 26
expansion, 18-21

arithmetic, 20
brace, 19
command substitution, 20
history, 33-34
parameter, 19-20
pathname, 21
process substitution, 20
quote removal, 21
tilde, 19
word splitting, 21

files, 46
functions, 23

history list, 32-33
invocation, 45-46
job control, 24-25
lists, 12-13
meta characters, 12
names, 12
options, 11
parameters, 14-15

positional, 14
special, 14-15

pipelines (|), 12
prompting, 26
quoting, 14
readline, 27-32

commands, 29-32
controlling key bindings,

27
customizing, 27
denoting keystrokes, 27
macro definitions, 28
parser directives, 28-29
variables, 28

redirection, 21-23
duplicating file descriptors,

23
here-documents, 22-23
input, 22
opening file descriptors, 23
operators, 21
output, 22
standard error output, 22
standard output, 22

reserved words, 12
shell variables, 15-18

allow-
null_glob_expansion, 17

auto_resume, 18
BASH, 15
BASH_VERSION, 15
cdable_vars, 18
CDPATH, 16
command_oriented_history,

17
ENV, 16
EUID, 15
FCEDIT, 17
FIGNORE, 17

glob_dot_filenames, 17
histchars, 17-18
HISTCMD, 16
HISTFILE, 17
HISTFILESIZE, 17
history control, 17
HISTSIZE, 17
HOME, 16
hostname_completion_file,

18
HOSTTYPE, 16
IFS, 16
IGNOREEOF, 17
INPUTRC, 17
LINENO, 15
MAIL, 16
MAIL_WARNING, 16
MAILCHECK, 16
MAILPATH, 16
no_exit_on_failed_exec,

18
noclobber, 18
nolinks, 18
notify, 17
OLDPWD, 15
OPTARG, 16
OPTERR, 17
OPTIND, 16
OSTYPE, 16
PATH, 16
PPID, 15
PROMPT_COMMAND,

17
PS1, 16
PS2, 16
PS3, 17
PS4, 17
PWD, 15
RANDOM, 15
REPLY, 15
SECONDS, 15
SHLVL, 15
TMOUT, 17
UID, 15

signals, 25
simple commands, 12
words, 12

■ awk

1437

BASH variable (bash), 15
BASH_VERSION variable

(bash), 15
bcmp() function, 899-901
bcopy() function, 900-901
BDF fonts, generating,

146-147
bdflush, 744-745

errors, 745
return value, 745

bdftopcf, 47
beforelight, 47-48
bell (ftp command), 148
bell() action (xterm), 713
bell-style variable (readline),

28
Bennet Yee face files, see face

files
Bentleyizing portable

graymaps, 369
Bessel functions, 959-960

j0(), 959
j1(), 959
jn(), 959
y0(), 959
y1(), 959
yn(), 959

bg (shell command), 35
bibliographic databases, 219

fields, 219
inverted indexes, 209-210
searching, 210, 292-293

biff, 48
biff server, 1274-1275
/bin directory, 1236
binary (ftp command), 148
binary dates/times, converting

to ASCII, 909-911
binary files, encoding/

decoding, 565-566
binary streams, input/output

(getting), 926-927
binary trees

deleting items, 1056
searching, 1056
traversing, 1056

bind, 35, 745-746
errors, 745-746
return value, 745

binding names to sockets,
745-746

bioradtopgm, 48-49
bugs, 49
options, 49

bit sets, finding first in words,
921

Bitmap Distribution Format
fonts, converting to Portable
Complied Format, 47

bitmap widget, 56-57
bitmaps, 49-57

CMU, converting to
portable, 71

color, 56
conversion, 49
cutting and pasting, 54
display, 50
drawing commands, 51-53
Edit menu commands,

53-54
editing images, 50-51
File menu commands, 53
options, 49-50
Universal Product Code,

creating, 368
widgets, 54-56

blanks (bash), 12
block buffered streams, 1016
block special files, creating,

325
BMP files, converting to

portable pixmaps, 57
bmptoppm, 57
bmtoa, 49-57
/boot directory, 1236
boot-time parameters

(kernel), see bootparam
bootparam, 1216-1224

Adaptec configurations,
1219-1220

argument list, 1216-1217
BusLogic configuration,

1220

busmouse driver parameters,
1224

CD-ROM parameters,
1222-1223

debug argument, 1217
Ethernet device parameters,

1223
floppy disk driver param-

eters, 1223-1224
future domain configura-

tion, 1220
hard disk parameters,

1220-1221
mem= argument, 1218
no-hlt argument, 1217
no387 argument, 1217
Pro Audio configuration,

1220
ramdisk= argument, 1218
reboot=warm argument,

1218
reserve= argument,

1217-1218
ro argument, 1217
root= argument, 1217
rw argument, 1217
SCSI device arguments,

1218-1219
SCSI tape configuration,

1219
Seagate ST-0x configuration,

1220
sound driver parameters,

1224
Trantor T128 configuration,

1220
Bourne shell, see sh
Bourne-again shell, see bash
brace expansion, 19
break (shell command), 35
brk, 746
browsers, lynx, 306-309

commands, 308-309
options, 306-308

brushtopbm, 57
bsearch() function, 900-901

bsearch() function ■

1438

buffchan, 1264-1265
drop command, 1265
flush command, 1265
readmap command, 1265

buffer-dirty-flush daemon,
744-745

buffering streams, 1016-1017
buffers

cache, committing to disk,
869

filesystem, flushing,
1401-1402

flushing from files to disk,
756-757

kernel log, 873
kernel message ring, reading/

clearing, 872-874
multiple, reading/writing

data, 1003-1004
BUG_ADDRESS environ-

ment variable, 529
buildhash, 274, 279

files, 281
builtin (shell command), 35
busmouse drivers, boot-time

parameters, 1224
bye (ftp command), 148
byte strings

comparing, 899-900
copying, 900
operations, 901
writing zeros to, 902

bytes
counting (in files), 70
swapping adjacent, 1043

bzero() function, 901-902

C

C
converting ANSI to

Kernighan & Ritchie, 4
functions, displaying

headers, 455-456
preprocessors, 81-84

imake, 264-267
options, 82-84

string table source files/
headers, 314-315

see also gcc
C++ compiler, see g++
cacheflush, 746-747

bugs, 747
errors, 747
return value, 747

caches (ARP), manipulating,
1263

CAclose routine, 964
cal, 58
calendar sheets, see gcal
CAlistopen routine, 964
calling up systems, 88-90
calloc() function, 976
canonicalized absolute

pathnames, 1004-1005
CAopen routine, 964
case

bash command, 13
ftp command, 148

cat, 58-59
catclose() function, 903-904
catgets() function, 902-903
catopen() function, 903-904
cccp, 81-84

copying, 84
options, 82-84

cd
ftp command, 148
shell command, 35-36

CD-ROMs, boot-time
parameters, 1222-1223

cdable_vars variable (bash),
18

CDPATH variable (bash), 16
cdtin, 516

see also tin
cdup (ftp command), 148
ceil() function, 904
cfdisk, 1265-1269

bugs, 1269
commands, 1267-1268
options, 1268-1269

cfgetispeed() function, 877,
1053

cfgetospeed() function, 877,
1052

cfingerd, 1106-1109
bugs, 1108
error messages, 1108
features, 1107-1108
options, 1106-1107
SYSLOG messages, 1108
text commands, 1115

cfingerd.conf, 1109-1115
display files section,

1109-1110
finger display configure

section, 1110-1111
finger fake users files section,

1114
finger programs files section,

1114
finger strings configure

section, 1113
forwarded host section,

1112
internal config configure

section, 1111-1112
internal strings configure

section, 1113
rejected host section, 1112
services header configure

section, 1114
services positions configure

section, 1114-1115
signal strings configure

section, 1113-1114
system list sites configure

section, 1112
trusted host section, 1112

cfmakeraw() function, 1052
cfsetispeed() function, 877,

1053
cfsetospeed() function, 877,

1052-1053
character sets, 1064-1066

ASCII, 1064, 1214-1216
ISO 2022, 1066
ISO 4873, 1066
ISO 8859, 1064-1065
ISO 8859-1, 1239-1242

alphabets, 1240
characters, 1240-1242

■ buffchan

1439

KOI8-R, 1065
Unicode, 1065, 1253-1255

combining characters,
1254

implementation levels,
1254

character special files,
creating, 325

characters
classifying, 957-958
converting

to ASCII, 1055
wide to multibyte,

1061-1062
locating in strings, 953,

1029
multibyte, converting to

wide characters, 978
outputting, 997-999
returning number of bytes

in, 977
searching strings for sets,

1035-1039
translating/deleting,

536-539
chat, 727-730, 1269-1273

abort strings, 1270-1271
Boolean options, 729
daemons, 727
escape menu, 728
escape sequences,

1271-1272
options, 1269-1270
readdressing, 729
report strings, 1271
runtime options, 728-729
script, 1270
startup file, 729
termination codes, 1272
time-out value, 1271
username field, 727
X11 interface, 730

chattr, 59-60
chdir, 747-748
checkout (cvs command),

96-97
checksums, computing on

files, 501

chfn, 60
chgrp, 61
child processes, creating, 751,

758
chkdupexe, 61
chmod, 61-62, 148, 748-749

errors, 749
operators, 62
options, 62
return value, 748
specifying mode, 748

chooser (xdm), 607
chown, 62-63, 749-750

errors, 749-750
options, 63

chroot, 750-751, 1273
errors, 750-751
return value, 750

chsh, 63
ci, 64-69

controlling file access, 67
diagnostics, 68
environment, 68
file modes, 67
options, 65-66
setuid privileges, 67-68
specifying files, 66-67
temporary files, 67

cidentd, 69-70
cksum, 70
clear, 70-71
clear-saved-lines() action

(xterm), 715
clearerr function, 919-920
clearing terminal screen,

70-71
clientlib, 904-905
clients

listing running applications,
669-670

Remote Start, see rstart
X, killing, 666-667

clipboards, X client, 595-597
buttons, 596
sending/retrieving contents,

596-597

clock, 344, 1273-1274
colors, 344
options, 1273
xclock, 593-595

clock() function, 905
clocks

alarm, setting, 744
CMOS, 1273-1274
kernel, adjusting, 742-743

clone, 751
close, 752

ftp command, 148
telnet command, 508

closedir() function, 905-906
closelog() function,

1045-1046
CloseOnExec routine, 965
CMOS clock, 1273-1274
CMU bitmaps, converting to

portable, 71
cmuwmtopbm, 71
co, 71-75

diagnostics, 75
environment, 75
file modes, 75
keyword substitution, 74-75
limitations, 75
options, 72-74

col, 76
colcrt, 77
color, bitmap application, 56
colrm, 77-78
column, 78
columns

formatting lists into, 78
removing from files, 77-78

comm, 78-79
options, 79

command (shell command),
36

command-line options,
parsing, 937-940

command_oriented_history
variable (bash), 17

commands
bitmap application

drawing, 51-53
Edit menu, 53-54
File menu, 53

commands ■

1440

building/executing from
standard input, 586-587

cu, 88-89
cvs, 91-104
editres, 121-122
execution, bash, 25
exit status, 26
ftp, 148-152
gpic, 212-213
history lists, displaying, 39
info, 269-270
ispell, 274-275
locating source/binary and

manuals files, 575-576
lpc, 1317-1318
lynx, 308-309
more, 328
nslookup, 1351-1353
options, parsing, 207-208
RCS, 447-449
readline library, 29-32
redirection, 21-23

duplicating file descriptors,
23

here-documents, 22-23
input, 22
opening file descriptors, 23
operators, 21
output, 22
standard error output, 22
standard output, 22

remote execution, 569-571
sed, 478-479

grouping, 478
syntax, 476

shell (built-in), 35-45
enabling/disabling, 37
help information, 38

telnet, 508-512
tftp, 514
timedc, 1409
tin

article viewer, 522-524
editing, 519
global options menu, 524-

525
group index, 521-522

newsgroup selection,
519-520

spool directory selection,
520

thread listing, 522
top, 534-535
xauth, 588, 591
zmore, 733-734

comment-begin variable
(readline), 28

comments
bash, 14
sed, 477

commit (cvs command),
96-98

comparing
files, 78-79

compressed, 731-732
strings, 1029-1030

ignoring case, 1028
using current locale, 1030

compilers
g++, 155-160, 174-201

bugs, 160
copying, 160, 201
filename suffixes, 174-175
files, 159-160, 200
options, 155-159,

175-178
pragmas, 159, 200

gcc, 174-201
assembling output, 8-9
bugs, 201
copying, 201
filename suffixes, 174-175
files, 200
options, 175-178
pragmas, 200

rpcgen, 464-466
compiling, make utility

(recompiling programs),
310-312

completion-query-items
variable (readline), 28

compound commands (bash),
13

compressed files
comparing, 731-732
compressing/expanding,

248-252
executable files, 252-253

searching for regular
expressions, 733

viewing text, 733-734
comsat, 1274-1275
concatenating

files, 58-59
compressed, 251

portable anymaps, 383
strings, 1028-1029

Concurrent Versions System,
see cvs

conditional expressions,
evaluating, 43

configurable finger daemon,
1106-1109

configuration file,
1109-1115

display files section,
1109-1110

finger display configure
section, 1110-1111

finger fake users files
section, 1114

finger programs files
section, 1114

finger strings configure
section, 1113

forwarded host section,
1112

internal config configure
section, 1111-1112

internal strings configure
section, 1113

rejected host section, 1112
services header configure

section, 1114
services positions configure

section, 1114-1115
signal strings configure

section, 1113-1114
system list sites configure

section, 1112
trusted host section, 1112

■ commands

1441

error messages, 1108
features, 1107-1108
SYSLOG messages, 1108

configuration information,
getting at runtime,
1043-1045

configuring
network interfaces,

1304-1305
rstartd, 469

keywords, 470
serial ports, 1394-1395
SF86_SVGA servers,

627-628
SF86_VGA16 servers, 631
system logging file,

1402-1403
tinrc, 525-526
XF86_Accel servers,

615-616
XF86_Mono servers, 624
XFree86, 636
xfs, 642
xinetd, 656-660

confstr() function, 906-907
connect, 752-753
connections

dialup IP, handler,
1285-1288

displaying active, 1339-1342
routing information, 1341
socket information,

1340-1341
displaying active routing

information, 1341
full-duplex, shutting down,

855
socket

accepting, 740-741
initiating, 752-753
listening for, 792-793

console, 1066-1067
console_codes, 1067-1074

character sets, 1072
control characters, 1068
CSI sequences, 1069-1070,

1074

display attributes,
1070-1071

ESC sequences, 1068-1069,
1073-1074

mode switches, 1071
mouse tracking, 1072-1073
private CSI sequences, 1072
Set/Reset Mode sequences,

1071
status report commands,

1071
console_ioctls, 1074-1080
consoles

control-character handling,
1073

properties, 1067
sequences, 1067-1074

character sets, 1072
control characters, 1068
CSI, 1069-1070, 1074
display attributes,

1070-1071
ESC, 1068-1069,

1073-1074
mode switches, 1071
mouse tracking,

1072-1073
private CSI, 1072
Set/Reset Mode, 1071
status report commands,

1071
starting processes on, 1066
switching, 1067
virtual, 1066

memory, 1101-1102
continue (shell command), 36
control messages, 1310
control operators (bash), 12
control statements, awk, 167
control.ctl, 1115-1116
controlling terminal, getting

name, 909
convdate, 79
conversational exchanges,

1269-1273
abort strings, 1270-1271
chat script, 1270
escape sequences,

1271-1272

report strings, 1271
termination codes, 1272
time-out value, 1271

convert-meta variable
(readline), 28

converting
Abekas YUV bytes to

portable pixmaps, 731
Andrew Toolkit raster

objects to portable
bitmaps, 10

ANSI C to Kernighan &
Ritchie C, 4

ASCII graphics to portable
graymap, 10

Atari files
compressed Spectrum files

to portable pixmaps, 494
Degas PI1 files to portable

pixmaps, 378
Degas PI3 files to portable

bitmaps, 379
uncompressed Spectrum

files to portable pixmaps,
495-496

AutoCAD slide files to
portable pixmaps, 490-491

Bennet Yee face files to
portable bitmaps, 726

Biorad confocal files to
portable graymaps, 48-49

bitmap files, 49
CMU to portable, 71
to portable pixmaps, 57

characters
to ASCII, 1055
wide to multibyte,

1061-1062
dates/times, 79

to ASCII, 984-986
to Discordian format,

1210-1211
documents, troff to LaTeX,

1252-1253
doodle brush files to

portable bitmaps, 57
FITS files to portable

anymaps, 142-143

converting ■

1442

fonts
Bitmap Distribution

Format to Portable
Compiled Format, 47

packed format to portable
bitmaps, 381

GEM IMG files to portable
bitmaps, 201

GIF files to portable
anymaps, 208-209

Gould scanner files to
portable pixmaps, 211

groff output to TeX dvi
format, 227-228

Group 3 fax files to portable
bitmaps, 160-161

HIPS files to portable
graymaps, 256

HP PaintJet files to portable
pixmaps, 381

ILBM files to portable
pixmaps, 263-264

image file to portable
anymap, 4

Img-whatnot files to
portable pixmaps, 267

letters
to lowercase, 1055-1056
to uppercase, 1055-1056

Lisp machine bitmap files to
portable graymaps, 292

Macintosh PICT files to
portable pixmaps, 379-380

MacPaint files to portable
bitmaps, 309-310

MGR bitmaps to portable
bitmaps, 322-323

multibyte characters to wide
characters, 978

multibyte strings to wide
character, 977-978

object code into NLM
outfiles, 338-339

PCX files to portable
pixmaps, 368-369

Photo-CD files to portable
pixmaps, 260-261

portable anymaps
to DDIF format, 396
to FITS format, 396-397
to PostScript, 397
to SGI image file,

398-399
to Solitaire format, 399
to Sun raster files, 398
to TIFF files, 399-400
into X11 window dumps,

400
portable bitmaps

to Andrew Toolkit raster
objects, 358

to ASCII graphics, 357
to Atari Degas PI3 files,

364
to Bennet Yee “face” files,

367
to BitGraph graphics, 358
to CMU window manager

bitmaps, 358-359
to compressed GraphOn

graphics, 360-361
to DEC LN03+ Sixel

output, 362
to encapsulated PostScript-

style bitmaps, 359
to Epson printer graphics,

359
to GEM IMG files, 360
to Gemini 10x graphics,

356
to Group 3 fax files, 360
to HP LaserJet format,

361-362
to MacPaint files, 363
to MGR bitmap, 363
to packed format fonts,

364-365
to portable graymaps, 364
to PostScript, 362
to Printronix printer

graphics, 366
to Sun icons, 361
to UNIX plot files,

365-366

to X10 bitmaps, 366
to X11 bitmaps, 367
to Zinc bitmaps, 367-368

portable graymaps
to Lisp machine format,

376-377
to portable bitmaps, 377
to portable pixmaps, 378
to Usenix FaceSaver

format, 376
portable pixmaps

to Abekas YUV files, 428
to Atari Degas PI1 files,

422
to AutoCAD, 414-416
to BMP files, 416
to DEC sixel format,

425-426
to GIF files, 416-417
to HP PaintJet files, 423
to HP PaintJet XL PCL

files, 424
to ILBM files, 418-419
to Macintosh PICT files,

422-423
to Mitsubishi S340-10

files, 420-421
to MotifUIL icon files,

427
to NCSA ICR format,

417-418
to PCX files, 421
to portable graymaps,

421-422
to red/blue 3D glasses,

400-401
to three portable graymaps,

425
to three raw YUV files,

428-429
to TrueVision Targa files,

426
to X11 pixmaps, 427-428
to X11 puzzle files,

424-425
PostScript files to portable

anymaps, 434-435

■ converting

1443

PostScript image data to
portable graymap,
433-434

QRT ray tracer output to
portable pixmaps, 436-437

raw grayscale bytes to
portable graymaps, 439

raw RGB bytes to portable
pixmaps, 439-440

ray tracer output to portable
pixmaps, 333

SGI image files to portable
anymaps, 483-484

Solitaire files to portable
anymaps, 488-489

spaces to tabs, 559
SPOT satellite images to

portable graymaps, 495
strings

ASCII to double,
1039-1040

to long integers, 1041
to unsigned long integers,

1041-1042
wide character to

multibyte character,
1061

Sun icons to portable
bitmaps, 262

Sun raster files to portable
anymaps, 438

tabs to spaces, 137
TIFF files to portable

anymaps, 515-516
times

initializing information,
1058-1060

to ASCII, 984-986
to tm structure, 1036-

1037
TrueVision Targa files to

portable pixmaps, 515
Usenet batch files to INN

format, 1281-1282
Usenix FaceSaver files to

portable graymaps, 147

X11 or X10 bitmaps to
portable, 592

X11 pixmaps to portable,
677

X11/X10 window dump
files to portable anymaps,
722

Xconfig file format to
XF86Config, 454

XIM files to portable
pixmaps, 654

XV thumbnail pictures to
portable pixmaps, 720

YUV files to portable
pixmaps, 730-731

convolution kernels, generat-
ing, 372-373

cookies, generating, 317
copying

ar utility, 7
as, 9
byte strings, 900
files, 80-81

converting while, 108-109
install, 272-273
MS-DOS to/from UNIX,

317-318
UNIX-to-UNIX,

563-565
MS-DOS files to UNIX,

329
number signs, 907
strings, 1030-1031

stpcpy() function,
1027-1028

copysign() function, 907
cos() function, 907
cosh() function, 908
cosines, 907
cp, 80-81
cpp, 81-84

copying, 84
options, 82-84

CPU, listing most intensive
processes, 533-535

cr (ftp command), 148
creat, 815-816

create_module, 800-802
crond, 1275
crontab, 84-85
crypt function, 908-909
csplit, 85-86
ctags, 87-88, 135-137

bugs, 88
copying, 136-137
files, 87
options, 87, 136

ctermid() function, 909
ctime, 909-910, 984-986
ctlinnd, 1276-1279

bugs, 1279
commands, 1276-1278

Ctrl+Alt+Del combination,
setting function, 1279

ctrl_alt_del, 1425
ctrlaltdel, 1279
cu, 88-90

bugs, 90
commands, 88-89
options, 89-90

cuserid() function, 934-935
bugs, 935
errors, 934
files, 935

cut, 90-91
cut buffers, copying selections

into, 598-599
cvs, 91-106, 1116-1120

commands, 91-104
add, 96
admin, 96
checkout, 96-97
commit, 96-98
diff, 98
export, 98
history, 99
import, 100
log, 100
rdiff, 101
release, 101
remove, 101-102
rtag, 102
status, 102
tag, 102-103
update, 103-104

cvs ■

1444

environment variables,
105-106

CVS_IGNORE_REMOTE
_ROOT, 105

CVS_RSH, 106
CVS_SERVER, 106
CVSEDITOR, 105
CVSREAD, 105
CVSROOT, 105
CVSWRAPPERS, 106
RCSBIN, 105

files, 104-105, 1117-1119
options, 92-104

checkout command, 97
commit command, 97
history command, 99
import command, 100
rdiff command, 101

sending problem reports,
1279-1281

filling out reports,
1280-1281

startup file, 93
support files, 1116-1120

CVS_IGNORE_REMOTE
_ROOT environment
variable, 105

CVS_RSH environment
variable, 106

CVS_SERVER environment
variable, 106

cvsbug, 1279-1281
EMACS interface, 1281
environment, 1280
files, 1281
filling out reports,

1280-1281
options, 1280

CVSEDITOR environment
variable, 105

CVSREAD environment
variable, 105

CVSROOT environment
variable, 105

CVSWRAPPERS environment
variable, 106

cvtbatch, 1281-1282
Cyclades drivers, tuning,

1282-1284
cytune, 1282-1284

bugs, 1283
options, 1283

D

daemons
buffer-dirty-flush, 744-745
configurable finger daemon,

1106-1109
configuration file,

1109-1115
error messages, 1108
features, 1107-1108
SYSLOG messages, 1108

cron, 1275
InterNetNews, 1309-1312

control messages, 1310
controling, 1276-1279

kernel log, 1315-1317
line printer spooler,

1318-1320
network routing, 1380-1382
NFS mount, 1332-1333
NFS service, 1347
powerd, 1359-1360
pppd, 1360-1369
time server, 1407-1408
UUCP file transfer,

1415-1417
DARPA

FTP server, 1301-1304
requests supported,

1302-1303
port numbers, converting

PRC program numbers to,
1358-1359

Telnet server, 1406-1407
TFTP server, 1407

data buffers, flushing from
files to disk, 756-757

data cache, flushing contents,
746-747

data segments, changing, 746

databases
bibliographic, 219

fields, 219
inverted indexes, 209-210
searching, 210, 292-293

filename, updating, 561-562
files, searching for patterns,

295
news overview

expiring entries,
1293-1294

format, 1168-1169
updating, 1353-1354

ps, updating, 436
rebuilding for mail aliases

file, 336
RGB colorname,

uncompiling, 488
terminal capability,

1188-1197
boolean capabilities, 1189
numeric capabilities,

1189-1190
string capabilities,

1190-1197
Usenet, recovering, 1342-

1344
date, 106-108

arguments, 106-107
files, 108
options, 108

dates/times
converting, 79

to ASCII, 909-911,
984-986

to Discordian format,
1210-1211

strings to numbers,
989-990

formatting, strftime()
function, 1032-1034

returning current, 928-929
setting, 107-108
showing, 106-107

dd, 108-109
ddate, 1210-1211
DDcheck routine, 965

■ cvs

1445

DDend routine, 965
DDstart routine, 965
debug (ftp command), 149
debugfs, 1284-1285

commands, 1284-1285
options, 1284

declare (shell command), 36
del_timer, 1424
delete_module, 800-802
delete (ftp command), 148
deleting

binary tree items, 1056
directories, 829-830
MS-DOS directory trees,

319
MS-DOS files, 318-319

depmod, 109-112
configuration, 110-111
files, 111
strategy, 111

descriptor tables, size
(getting), 760-761

descriptors, testing, 958-959
/dev directory, 1236
devices

bad blocks (searching for),
1264

controlling, 774-788
ioctl calls (list of),

775-786
creating, 815-816,

1321-1324
describing all, 1120-1121
disk, ram, 1094-1095
DOS (table of), 1152-1158
Ethernet, boot-time

parameters, 1223
floppy disk, 1080-1083

configuration, 1080-1082
hard disk, 1083
line printer (ioctl() calls),

1090-1091
lp, parameters (setting),

1413-1414
opening, 815-816
PLIP, tuning parameters,

1357

SCSI tape, drivers,
1096-1100

setup, 849
swapping

enabling/disabling, 1401
starting/stopping, 866-867

terminal (list of), 1197
DEVINFO, 1120-1121
df, 112-113
dialup IP connection handler,

1285-1288
dialin mode, 1286-1287
dialout mode, 1287-1288

dictionaries, compressing/
uncompressing, 496

diff (cvs command), 98
difftime, 911, 984-986
dig, 113-117

bugs, 117
environment, 117
files, 117
options, 114-115

dip, 1285-1288
command mode, 1285-1286
dialin mode, 1286-1287
dialout mode, 1287-1288
files, 1288

dir, 303-304
bugs, 304
ftp command, 149
options, 303-304

directories
/, 1236
adding to stack, 40
alphabetizing entries,

1012-1013
/bin, 1236
/boot, 1236
changing, 35-36, 747-748
closing, 905-906
creating, 323

mkdir, 794-795
mknod, 795-796

deleting, 829-830
/dev, 1236
displaying list of, 36
/dos, 1236

/etc, 1236
/etc/skel, 1236
/etc/X11, 1236
files (searching for), 137-142
getting current, 931
getting entries, 759

filesystem-independent
format, 931-932

hierarchies, creating, 323
/home, 1236
/lib, 1236
listing contents, 303-304
/mnt, 1236
MS-DOS

changing, 316-317
displaying, 319

opening, opendir, 989
printing pathnames, 40
/proc, 1236
promoting, 39-40
RCS, creating, 447-449
reading

entries, 823
readdir() function,

1002-1003
removing, 462
root, changing, 750-751,

1273
/sbin, 1237
scanning for matching

entries, 1012-1013
stream, resetting, 1011
/tmp, 1237
trees, walking through, 930
/usr, 1237
/usr/X11R6, 1237
/usr/X11R6/bin, 1237
/usr/X11R6/lib, 1237
/usr/X11R6/lib/X11, 1237
/usrX11R6/include/X11,

1237
directory stream, current

location (returning), 1048
directory trees

MS-DOS, deleting, 319
shadow directories

(creating), 294

directory trees ■

1446

dirs (shell command), 36
disconnect (ftp command),

149
Discordian dates (converting

to), 1210-1211
disks

adding MS-DOS filesystems
to, 321-322

devices, ram, 1094-1095
displaying usage/limits, 437
floppy

formatting, 1295-1296
marking bad blocks, 316
setting parameters, 1391

MS-DOS, mounting,
326-327

quotas, manipulating,
821-822

SCSI, drivers, 1095-1096
summarizing free space,

112-113
summarizing usage, 120-121
Xdf, 332

display argument command
(telnet), 508

DISTRIBUTION environ-
ment variable, 529

div() function, 911
dividing integers, 911

floating-point remainders,
913, 923

returning quotient and
remainder, 961

dmesg, 1288-1289
dn_comp, 1008-1011
dn_expand, 1008-1011
dnsdomainname, 259-260
dnsquery, 117-119

bugs, 119
diagnostics, 118
files, 118
options, 117-118

documents
converting, troff to LaTeX,

1252-1253
formatting, gtroff, 237-248

dollar signs ($)
bash special parameters, 15
expansion, 19
ftp command, 148

domain names
current host, 119
displaying, 259-260
getting/setting, 760
querying servers, 117-119
sending query packets to

servers, 113-117
servers, resolver routines,

1008-1011
domain servers, looking up

hostnames with, 257-258
domainname, 119
domains, nameserver,

1334-1338
querying, 1350-1353

doodle brush files, converting
to portable bitmaps, 57

DOS devices, table of,
1152-1158

/dos directory, 1236
drand48() functions, 912
drawing bitmaps (commands),

51-53
drem() function, 913
drivers

busmouse, boot-time
parameters, 1224

Cyclades, tuning,
1282-1284

floppy disk, boot-time
parameters, 1223-1224

SCSI disks, 1095-1096
SCSI tape devices,

1096-1100
ioctl() calls, 1097-1100

sound, boot-time param-
eters, 1224

dsplit, 119-120
du, 120-121
dumpe2fs, 1289
dumping files, 345-346
dup, 753-754

dup2, 753-754
duplicate executables, finding,

61
duplicating strings, 1031

E

e-mail
notification, 48
sending, 1387-1390

aliases, 1390
e2fsck, 1289-1291

bugs, 1291
exit code, 1290
options, 1290

echo (shell command), 36-37
ECHO_REQUEST packets,

sending, 1358
ecvt() function, 913-914
Edit menu commands, bitmap

application, 53-54
editing bitmaps, 49-51
editing-mode variable

(readline), 28
editors

emacs, 130-133
bugs, 133
distributing, 133
files, 132-133
manuals, 132
mouse button bindings,

132
options, 130
X Window System,

131-132
stream-oriented, see sed

editres, 121-126
beginning sessions, 121
blocking requests, 124
commands, 121-122
environment, 126
files, 126
options, 121
resource box, 123-124
resources, 124-125
widgets, 125-126
window, 121

■ dirs (shell command)

1447

edquota, 1291-1292
egrep, 224-226

bugs, 226
diagnostics, 226
options, 224-225
regular expressions, 225-226

$else parser directive
(readline), 29

elvis, 126-128
bugs, 128
environment, 127-128
files, 127
options, 127
ref interaction, 455
tag files, 135-137

elvprsv, 128-129
elvrec, 129-130
emacs, 130-133

bugs, 133
distributing, 133
files, 132-133
function key/mouse support,

134-135
manuals, 132
mouse button bindings, 132
options, 130
tag files, 135-137
using emacstool with, 135
X Window System, 131-132

EMACS user interface,
cvsbug, 1281

emacstool, 134-135
bugs, 135
environment variables, 135
files, 135
options, 134
using with emacs, 135

enable (shell command), 37
encoded files, uuencode

format, 1200
encryption

crypt function, 908-909
memory areas, 980-981

endgrent() function, 932-933
$endif parser directive

(readline), 29

endmntent() function,
935-936

endnetent subroutine,
936-937

endprotoent() function,
941-942

endpwent() function, 943
endservent() function, 946
endusershell() function,

946-947
endutent() function, 947
ENV variable (bash), 16
environ, 1121
environ command (telnet),

511
environment variables

adding/changing, 996-997,
1017

bash, 25-26
ci, 68
co, 75
cvs, 105-106

CVS_IGNORE
_REMOTE_ROOT,
105

CVS_RSH, 106
CVS_SERVER, 106
CVSEDITOR, 105
CVSREAD, 105
CVSROOT, 105
CVSWRAPPERS, 106
RCSBIN, 105

cvsbug, 1280
dig, 117
editres, 126
elvis, 127-128
emacstool, 135
fsinfo, 145
fslsfonts, 146
fstobdf, 146
ftp, 154
gawk, 172
getopt() function, 939
getting, 932
groff, 229
gtroff, 248
gzip, 251

imake, 267
info, 270
ld, 291
lkbib, 293
locate, 295
lpq, 299
lpr, 300
lprm, 302
more, 328
nslookup, 1353
rcs, 443
rcsclean, 444
rcsdiff, 445
rcsmerge, 450
ref, 455
rlog, 459
rlogin, 461
script, 475
startx, 497
tcal, 506
telnet, 512
tin, 528-530

ADD_ADDRESS, 529
AUTOSUBSCRIBE, 529
AUTOUNSUBSCRIBE,

530
BUG_ADDRESS, 529
DISTRIBUTION, 529
MAILER, 529
NNTPSERVER, 529
ORGANIZATION, 529
REPLYTO, 529
TI_ACTIVEFILE, 529
TI_NOVROOTDIR, 529
TIN_HOMEDIR, 528
TIN_INDEXDIR, 529
TIN_LIBDIR, 529
TIN_SPOOLDIR, 529
TINRC, 528
VISUAL, 529

tset, 541
twm, 557
TZ, 987
ul, 559
xauth, 589, 592
xclipboard, 597
xclock, 595
xcmsdb, 593

environment variables ■

1448

xconsole, 598
xdm, 608
XFree86, 637
xhost, 644
xinit, 666
xlogo, 668
xlsatoms, 669
xlsclients, 669
xlsfonts, 671
xmodmap, 675
xprop, 680
xrdb, 684
xrefresh, 685
xstdcmap, 700
xterm, 717
xwd, 722
xwininfo, 724
xwud, 726

eqn, see geqn
equation formatting, 202-206
erand48() functions, 912
erf() function, 914
erfc() function, 914
errno, 916-917
error functions, 914
errors

access, 741
adjtimex, 743
bdflush, 745
bind, 745-746
cacheflush, 747
chdir/fchdir, 747-748
chmod, 749
chown, 749-750
chroot, 750-751
clone, 751
close, 752
codes, describing (returning

strings), 1032
creat, 816
dup/dup2, 753
execve, 754
fchmod, 749
fchown, 749-750
fcntl, 756
fdatasync, 757
fork/vfork, 758

fsync, 759
getdents, 759
getdomainname, 760
getgroups, 762
gethostname, 763
getitimer, 764
getpeername, 765
getpriority, 766-767
getrlimit, 768
getsid, 768
getsockname, 769
getsockopt, 771
gettimeofday, 773
idle, 774
ioctl, 774
iopl, 789
kill, 790
killpg, 791
link, 791-792
listen, 792
llseek, 793
lseek, 794
mkdir, 795
mknod, 796
mlockall, 798
mmap, 799
modify_ldt, 800
mount, 803
mprotect, 804
mremap, 806
msgctl, 807
msgget, 808
msgop, 810
munlock, 812
munmap, 799
mysnc, 811
nanosleep, 813
nice, 814
open, 816
pause, 817
personality, 818
return value, 797
returning number, 916-917
setdomainname, 760
setgroups, 762
sethostname, 763
setitimer, 764

setpriority, 766-767
setrlimit, 768
setsockopt, 771
settimeofday, 773
symbolic error names,

916-917
unmount, 803

escape character, bash, 14
etags, 135-137

copying, 136-137
options, 136

/etc directory, 1236
/etc/modules file, 1152
/etc/skel directory, 1236
/etc/X11 directory, 1236
Ethernet devices, boot-time

parameters, 1223
Euclidean distance (finding),

953
EUID variable (bash), 15
eval (shell command), 37
event timers, managing, 1424
ex, see elvis
exclamation points (!)

bash special parameters, 15
ftp command, 148

exec (shell command), 37
execl function, 914-916
execle function, 914-916
execlp function, 914-916
exect function, 914-916
executable files, compressing/

expanding, 252-253
executables, duplicate

(finding), 61
executing programs, 754-755

pausing, 813-814
suspending, 1061

execv function, 914-916
execve, 754-755
execvp function, 914-916
exit, 739-740, 917

shell command, 37
xauth, 591

exit status (commands), 26
exp() function, 918

■ environment variables

1449

expand, 137
expand-tilde variable

(readline), 28
expanding files, see compress-

ing/expanding files
expansion, 18-21

arithmetic, 20
brace, 19
command substitution, 20
history, 33-34

event designators, 33
modifiers, 34
word designators, 33

parameter, 19-20
pathname, 21
process substitution, 20
quote removal, 21
tilde, 19
word splitting, 21

expire, 1292-1293
expire.ctl, 1121-1123
expireover, 1293-1294
expm1() function, 918
exponents, 918
export

cvs command, 98
shell command, 37

exported kernel symbols,
displaying, 284-285

exports, 1123-1125
files, 1124
options, 1123
user ID mapping,

1123-1124
expressions

conditional, evaluating, 43
find, 138
gawk, 166
gpic, 213-214
grep, 225-226
label, grefer, 223-224
numeric, gtroff, 239
regular, sed, 476-477

ext filesystem, 1125
ext2 filesystem, 1125
extracting from archives, 5-7

F

fabs() function, 919
face files, converting to

portable bitmaps, 726
fastrm, 1294-1295
fc (shell command), 37-38
FCEDIT variable (bash), 17
fchdir, 747-748
fchmod, 748-749
fchown, 749-750
fclose function, 919
fcntl, 755-756
fcvt() function, 913-914
fd, 1080-1083

configuration, 1080-1082
ioctl() calls supported, 1082

FD_CLR macro, 836
FD_ISSET macro, 836
FD_SET macro, 836
FD_ZERO macro, 836
fdatasync, 756-757
fdformat, 1295-1296
fdisk, 1296-1297
fdopen function, 924-925
feof function, 919-920
ferror function, 919-920
fflush function, 920-921
ffs() function, 921
fg (shell command), 38
fgetc() function, 945
fgetgrent() function, 921-922
fgetpos function, 927-928
fgetpwent() function,

922-923
fgets() function, 945
fgrep, 224-226

bugs, 226
diagnostics, 226
options, 224-225
regular expressions, 225-226

fields, awk, 163
FIFOs (named pipes), 1403

creating, 323-325, 982-983
system logging, 1403

FIGNORE variable (bash), 17

file descriptors
duplicating, 23
manipulating sets, 836
opening, 23
reading from, 822
writing to, 889-890

File menu commands, bitmap
application, 53

file table
adding entries, 1428-1429
description, 1425-1426
initializing, 1427
moving files to end, 1431
removing files, 1431-1432
structure, 1426
table entries, 1426
unreferenced entries,

fetching, 1428
file-creation mask, setting, 45
file_table, 1425-1426

table entries, 1426
table structure, 1426

file_table_init, 1427
filechan, 1297-1298
filename databases, updating,

561-562
filenames

matching, 924
temporary, creating,

983-984
fileno function, 919-920
files

aborting transfer, 152
access permissions,

changing, 61-62
agetty, 1261
Atari

compressed Spectrum,
converting to portable
pixmaps, 494

Degas PI1, converting to
portable pixmaps, 378

Degas PI3, converting to
portable bitmaps, 379

uncompressed Spectrum,
converting to portable
pixmaps, 495-496

files ■

1450

attributes, 59
changing (second extended

file system), 59-60
authority (X), xauth file

utility, 587-592
AutoCAD slide, converting

to portable pixmaps,
490-491

bash, 46
binary

encoding/decoding,
565-566

locating for commands,
575-576

Biorad confocal, converting
to portable graymaps,
48-49

bitmap, converting, 49
to portable pixmaps, 57

block special, creating, 325
character special, creating,

325
comparing, 78-79
compressed

comparing, 731-732
searching for regular

expressions, 733
viewing text, 733-734

compressing/expanding,
248-252

concatenation, 251
executable files, 252-253

computing checksums, 501
concatenating, 58-59
configuration values, getting,

925-926
copying, 80-81

between machines,
440-441

converting while, 108-109
install, 272-273

counting bytes/words/lines,
70, 574

creating, 815-816
masks, 880

cuserid() function, 935
cutting sections from, 90-91

cvs, 104-105, 1117-1119
startup, 93

cvsbug, 1281
database, searching for

patterns, 295
date, 108
descriptors

closing, 752
duplicating, 753-754
manipulating, 755-756

domainname, 119
doodle brush, converting to

portable bitmaps, 57
dumping, 345-346
/etc/modules, 1152
executing, 914-916
exports, 1124
face, converting to portable

bitmaps, 726
filesystem description,

accessing, 935-936
filters, hexdump, 254-256
FITS, converting to portable

anymaps, 142-143
font, 1128

adding font-metric
information, 2

creating, 3
groff (creating for), 513

formats, converting Xconfig
to XF86Config, 454

free, 144
gcc/g++, 159-160, 200
GEM IMG, converting to

portable bitmaps, 201
GIF, converting to portable

anymaps, 208-209
Gould scanner, converting

to portable pixmaps, 211
group, getting entries,

921-922, 932-934
group ownership, changing,

61
gtroff, 248
gzip, forcing .gz extension,

732-733

HIPS, converting to
portable graymaps, 256

HP PaintJet, converting to
portable pixmaps, 381

httpd, 261
identifying processes, 154-

155
identifying RCS keyword

strings in, 262-263
ifconfig, 1305
ILBM, converting to

portable pixmaps, 263-264
image, converting to

portable anymap, 4
imake, 266
Img-whatnot, converting to

portable pixmaps, 267
joining fields, 282-283
linking, 293-294, 791-792
Lisp machine bitmap,

converting to portable
graymaps, 292

listing attributes, 304-305
location, changing, 828-829
lock, creating for shell

scripts, 487
login, 297
login record, 1198-1200
Macintosh PICT, convert-

ing to portable pixmaps,
379-380

MacPaint, converting to
portable bitmaps, 309-310

MAKEDEV, 1321
makefiles, creating

dependencies in, 312-314
man, 1248
manual page, locating for

commands, 575-576
mapping/unmapping,

799-800
merging

lines, 347
three-way, 320

mesg, 321
modprobe, 111
mount, 1332

■ files

1451

MS-DOS
changing attribute flags,

315-316
copying to/from UNIX,

317-318, 329
deleting, 318-319
displaying contents,

333-334
manipulating (mtools),

330-333
moving, 327
renaming, 329-330

mtools, testing, 330
named, 1337
names

changing, 828-829
displaying from Usenet

history file, 226-227
naming conventions, 153

.netrc, 153-154
NLM outfiles, converting

object code into, 338-339
nontext, printing strings

from, 498
numbering lines, 337-338
object

copying/translating,
341-342

discarding symbols from,
499

displaying information
from, 342-343

listing section and total
sizes, 489-490

listing symbols from,
339-340

offsets, repositioning,
793-794

opening, 815-816
advisory locks (applying/

removing), 757
outputting

ends of, 504
headers, 253-254

ownership, changing, 62-63,
749-750

password, editing,
1418-1419

PCX, converting to portable
pixmaps, 368-369

permissions
changing, 748-749
checking, 741-742
setting modes, 272-273

Photo-CD, converting to
portable pixmaps, 260-261

portable anymap
format, 1173
reading, 971
writing, 971-972

portable bitmap
format, 1170-1171
reading, 968
writing, 968-969

portable graymap
format, 1171-1172
reading, 970
writing, 970

portable pixmap
format, 1173-1174
reading, 974
writing, 974

PostScript, converting to
portable anymaps, 434-
435

preserving after crashes,
128-129

printer/plotter accounting,
reading, 1354-1355

printing, in reverse, 503-504
protocol definition, 1180-

1181
RCS

changing attributes,
441-443

cleaning, 443-445
comparing revisions,

445-446
controlling access, 67
format, 1181-1183
freezing configuration,

446-447
modes, 67

organization (diagram),
1182

printing log messages,
458-460

retrieving revisions, 71-75
specifying, 66-67
storing revisions, 64-69
temporary files, 67

recovering after crashes,
129-130

refs, generating, 87-88
remote distribution,

451-454
removing, 461-462

columns, 77-78
sets of, 1294-1295

renaming, 334-335
resolver configuration,

1183-1184
reversing lines, 457
searching for (in directories),

137-142
SF86Config, generating,

633
SGI image, converting to

portable anymaps,
483-484

shar, unpacking, 560-561
shrinking, 488
Solitaire, converting to

portable anymaps,
488-489

sorted, removing duplicate
lines, 560

source, locating for
commands, 575-576

spell-checking utilities, 281
splitting, 85-86, 119-120,

494-495
status, getting, 863-864
string table C source files/

headers, 314-315
substituting definitions into,

500-501
suffixes, list of, 1249-1252
Sun raster, converting to

portable anymaps, 438

files ■

1452

swapping
enabling/disabling, 1401
starting/stopping, 866-867

symbolic links, 867-869
synchronizing

in-core data, 756-757
in-core state, 758-759
with memory maps, 811

tag
emacs, 135-137
vi, 135-137

tags, generating, 87-88
temporary

creating, 983, 1053-1054
naming, 1049, 1054

text
converting for printing,

429-430
creating gcal resource files

from, 558
sorting, 492-493

TIFF, converting to portable
anymaps, 515-516

time zone information,
1197-1198

timestamps (changing), 536
transfer parameters, 153
TrueVision Targa, convert-

ing to portable pixmaps,
515

truncating, 879-880
UNIX

copying between systems,
563-565

copying to MS-DOS, 335
restoring filenames, 324-

325
Usenix FaceSaver, convert-

ing to portable graymaps,
147

user group, 1131
UUCP transfer requests,

processing, 1415-1417
uuencode, format, 1200
XFree86, 638-639,

1201-1208
Device sections,

1204-1206

Files section, 1201
Keyboard section, 1202
Monitor sections,

1203-1204
Pointer section,

1202-1203
Screen sections,

1206-1208
ServerFlags section, 1201

XIM, converting to portable
pixmaps, 654

YUV, converting to portable
pixmaps, 730-731

Z, recompressing to GZ,
734-735

Zeiss confocal, converting to
portable anymaps, 732

filesystem checks
group identity (setting),

843-844
user identity (setting), 844

filesystem description file,
accessing, 935-936

filesystems, 1125-1126
buffers, flushing, 1401-1402
building, 1325-1326
checking, 1298-1300
debugger, 1284-1285

commands, 1284-1285
options, 1284

deleting names from, 1008
device entries, maintaining,

1320-1321
dumping information, 1289
ext, 1125
ext2, 1125
hierarchy, description of,

1236-1238
High Sierra, 1125
hpfs, 1125
iso9660, 1125
MINIX, 1125

consistency checker,
1300-1301

creating, 1326-1327
mounting/dismounting,

802-804, 1328-1332

msdos, 1125
names, deleting, 882
ncpfs, 1126
nfs, 1125

export list, 1123-1125
proc, 1125
quotas

summarizing, 1376
turning on/off,

1372-1373
repairing, 1298-1299
Rock Ridge, 1125
root, mounting, 849
scanning, 1371-1372
second extended

checking, 1289-1291
creating, 1324-1325
lost+found directory, 1327
tunable parameters

(adjusting), 1412-1413
setup, 849
smb, 1126
static information,

1126-1127
statistics, getting, 883-884,

865-866
sysv, 1125
table of, 1427-1428
type information, getting,

871
umsdos, 1125
vfat, 1125
xiafs, 1125

filesystems command,
1427-1428

filters
Laplacian relief, running on

portable pixmaps, 413
more, 327-328

commands, 328
environment, 328
options, 327-328

nonlinear (pnmnlfilt),
390-391

nroff output, 77
reverse line feeds, 76

■ files

1453

find, 137-142
actions, 140-142
expressions, 138
numeric arguments,

138-140
operators, 142
options, 138

findaffix, 274, 280
bugs, 282
files, 281
see also ispell

finger daemons, configurable,
1106-1109

configuration file,
1109-1115

error messages, 1108
features, 1107-1108
SYSLOG messages, 1108

finger information, changing,
60

finite() function, 959
first in - first out scheduling,

833-834
FITS files, converting to

portable anymaps, 142-143
fitstopnm, 142-143
floating-point numbers

absolute value, 919
converting

to fractional/integral
components, 927

to strings, 913-914,
930-931

extracting integral and
fractional values, 984

multiplying, by integral
powers of 2, 961

flock, 757
floor() function, 923
floppy disks

devices, 1080-1083
configuration, 1080-1082

drivers, boot-time
parameters, 1223-1224

formatting, 1295-1296
marking bad blocks, 316
parameters, setting, 1391

fmod() function, 923

fmt, 143
fnmatch() function, 924
fold, 143-144
font files

adding font-metric
information, 2

creating, 3
font formats

converting
Bitmap Distribution to

Portable Compiled, 47
packed format to portable

bitmaps, 381
PostScript PFB format to

ASCII, 369
groff_font, 1127-1129

DESC file, 1127-1128
font servers (X)

displaying information
about, 145

generating BDF fonts,
146-147

listing fonts, 145-146
fonts

files, 1128
creating for groff, 513

grops styles, 231-232
man pages, 1247
X

displaying all characters
in, 633-636

listing, 670-671
X font server, 641-643, 689

configuration, 642
naming, 643

fopen function, 924-925
errors, 925
mode argument sequences,

924-925
return values, 925

fork, 758
form (ftp command), 149
formatting

dates, strftime() function,
1032-1034

documents, gtroff, 237-248
equations, 202-206
floppy disks, 1295-1296

input, 1013-1015
conversions, 1014-1015
flags, 1014

line lengths, 143
man pages, 1246-1248

fonts, 1247
macros, 1248
preamble, 1246-1247
sections, 1247-1248

output, 992-996,
1022-1023

conversion specifiers, 994
examples, 995
flags, 993-994

technical papers
groff_me macros,

1225-1227
groff_mm macros,

1227-1234
groff_ms macros,

1234-1236
times, strftime() function,

1032-1034
troff tables, 236-237

fpathconf() function,
925-926

fprintf function, 992-996
fpurge function, 920-921
fputc() function, 997-999
fputs() function, 997-999
fractal forgeries, 404-407
fread function, 926-927
free, 144
free() function, 976
freopen function, 924-925
frexp() function, 927
fscanf function, 1013-1015
fsck, 1298-1300
fsck.minix, 1300-1301
fseek function, 927-928
fsetpos function, 927-928
fsinfo, 145
fslsfonts, 145-146
fstab, 1126-1127

file format/options,
1165-1167

fstab ■

1454

fstat, 863-864
fstatfs, 865-866
fstobdf, 146-147
fstopgm, 147
fsync, 758-759
ftell function, 927-928
ftime function, 928-929
ftok function, 929-930

FTP (File Transfer
Protocol), DARPA server,
1301-1304

ftp, 147-154
aborting transfer, 152
bugs, 154
commands, 148-152

!, 148
$, 148
?, 152
account, 148
append, 148
ascii, 148
bell, 148
binary, 148
bye, 148
case, 148
cd, 148
cdup, 148
chmod, 148
close, 148
cr, 148
debug, 149
delete, 148
dir, 149
disconnect, 149
form, 149
get, 149
glob, 149
hash, 149
help, 149
idle, 149
lcd, 149
ls, 149
macdef, 149
mdelete, 149
mdir, 150
mget, 150
mkdir, 150

mls, 150
mode, 150
modtime, 150
mput, 150
newer, 150
nlist, 150
nmap, 150
ntrans, 150-151
open, 151
prompt, 151
proxy ftp, 151
put, 151
pwd, 151
quit, 151
quote, 151
recv, 151
reget, 151
remotehelp, 151
remotestatus, 151
rename, 151
reset, 151
restart, 151
rmdir, 152
runique, 152
send, 152
sendport, 152
site, 152
size, 152
status, 152
struct, 152
system, 152
trace, 152
type, 152
umask, 152
user, 152
verbose, 152

environment variables, 154
file naming conventions,

153
file transfer parameters, 153
.netrc file, 153-154
options, 147-148
tenex, sendport, 152

ftpd, 1301-1304
bugs, 1303
FTP requests supported,

1302-1303
options, 1302

ftruncate, 879-880
ftw() function, 930
full-duplex connections,

shutting down, 855
function bindings, displaying,

35
functions

calling at termination,
897-898, 988

headers, displaying, 455-456
library, undocumented,

1060
portable pixmap programs,

973-974
color names, 974
memory management, 973
reading files, 974
writing files, 974

fuser, 154-155
fwrite function, 926-927

G

g++, 155-160, 174-201
bugs, 160
copying, 160, 201
filename suffixes, 174-175
files, 159-160, 200
options, 155-159, 175-178

assembler, 181
code generation, 198-199
debugging, 186-187
directory, 182-183
language, 178-180
linker, 181-182
machine-dependent,

191-198
optimization, 188-190
preprocessor, 180-181
target, 190-191
warning, 183-186

pragmas, 159, 200
g3topbm, 160-161
games, 1210
gawk, 161-173

actions, 165-166
arithmetic functions,

168-169

■ fstat

1455

bugs, 172
reporting, 172-173

control statements, 167
environment variables, 172
fields, 163
functions, 170
GNU extensions, 171
historical awk features

supported, 172
I/O statements, 167
operators, 166-167
options, 161-162
patterns, 165-166
POSIX compatibility, 171
printf statement, 167-168
program execution, 162-163
regular expressions, 166
special filenames, 168
sprintf() function, 167-168
string constants, 169-170
string functions, 169
time functions, 169
variables, 163-165

arrays, 164
built-in, 163-164
typing and conversion,

164-165
version information, 172

gcal, 173-174
running one day ahead, 506
resource files, creating from

text files, 558
gcc, 174-201

assembling output, 8-9
bugs, 201
copying, 201
filename suffixes, 174-175
files, 200
options, 175-178

assembler, 181
code generation, 198-199
debugging, 186-187
directory, 182-183
language, 178-180
linker, 181-182
machine-dependent,

191-198

optimization, 188-190
preprocessor, 180-181
target, 190-191
warning, 183-186

pragmas, 200
gcvt() function, 930-931
GEM IMG files, converting to

portable bitmaps, 201
gemtopbm, 201
GenerateMessageID routine,

964
geqn, 202-206

automatic spacing, 203
bugs, 206
customization, 204-205
equation components,

202-203
files, 206
fonts, 206
macros, 206
new primitives, 203-204
options, 202

get (ftp command), 149
get_current_dir_name()

function, 931
get_empty_filp, 1428
get_kernel_syms, 800-802
getc() function, 945
getchar() function, 945
GetConfigValue routine, 965
getcwd() function, 931
getdents, 759
getdirentries function,

931-932
getdomainname, 760
getdtablesize, 760-761
getegid, 761
getenv() function, 932
geteuid, 773
GetFileConfigValue routine,

965
GetFQDN routine, 965
getgid, 761
getgrent() function, 932-933
getgrgid() function, 933-934
getgrnam() function, 933-934
getgroups, 761-762

gethostid, 762-763
gethostname, 763
getitimer, 763-764
getlist, 206-207
getlogin() function, 934-935
getmntent() function,

935-936
GetModeratorAddress

routine, 965
getnetbyaddr subroutine,

936-937
getnetbyname subroutine,

936-937
getnetent subroutine, 936-937
getopt, 207-208
getopt() function, 937-940

environment variables, 939
getopt_long() example,

939-940
return value, 939

getopt_long() function,
938-940

getopt_long_only() function,
938

getopts (shell command), 38
getpagesize, 765
getpass function, 940-941
getpeername, 765
getpgid, 845-846
getpgrp, 845-846
getpid, 766
getppid, 766
getpriority, 766-767
getprotobyname() function,

941-942
getprotobynumber()

function, 941-942
getprotoent() function,

941-942
getpw() function, 942-943
getpwent() function, 943
getpwnam() function, 944
getpwuid() function, 944
GetResourceUsage routine,

965
getrlimit, 767-768
getrusage, 767-768

getrusage ■

1456

gets() function, 945
getservbyname() function,

946
getservbyport() function, 946
getservent() function, 946
getsid, 768
getsockname, 769
getsockopt, 769-772

bugs, 772
errors, 771
options recognized, 770-771

SO_BROADCAST, 771
SO_DEBUG, 770
SO_DONTROUTE, 770
SO_ERROR, 771
SO_KEEPALIVE, 770
SO_LINGER, 770
SO_RCVBUF, 771
SO_RCVLOWAT, 771
SO_RCVTIMEO, 771
SO_REUSEADDR, 770
SO_SNDBUF, 771
SO_SNDLOWAT, 771
SO_SNDTIMEO, 771
SO_TYPE, 771

return value, 771
GetTimeInfo routine, 965
gettimeofday, 772-773
getuid, 773
getusershell() function,

946-947
getutent() function, 947
getutid() function, 947
getutline() function, 948
getw function, 948
getwd() function, 931
GIF files, converting to

portable anymaps, 208-209
giftopnm, 208-209
giles, gpic, 215
gindxbib, 209-210
glob (ftp command), 149
glob() function, 949-950
glob_dot_filenames variable

(bash), 17
globfree() function, 949-950

glookbib, 210
gmtime, 984-986
gmtime() function, 909-910
gnroff, 210-211
GNU linker, 287-291

copying, 291
environment, 291
options, 288-291

GNU ar, see ar
GNU as, see as
GNU Bourne-again shell, see

bash
Gould scanner files, convert-

ing to portable pixmaps, 211
gouldtoppm, 211
gpic, 211-215

bugs, 215
commands, 212-213
expressions, 213-214
file, 215
mode, 212
options, 211-212
versus pic, 212-215

gprof, 216-217
graph profile data, displaying,

216-217
graphics (ASCII), converting

to portable graymap, 10
graphs

system load average, 533
topological sorts, 542

grayscale ramps, generating,
374-375

greater than signs (>),
redirection operator, 21

grefer, 217-224
bibliographic databases, 219
bugs, 224
citations, 219-220
commands, 220-222
files, 224
label expressions, 223-224
macro interface, 224
options, 218-219

grep, 224-226
bugs, 226
diagnostics, 226
options, 224-225
regular expressions, 225-226

grodvi, 227-228
groff, 228-230

availability, 230
bugs, 230
creating font files for, 513
environment, 229
files, 229
guessing options, 230
interpreting .so requests,

236
options, 229
output, converting to TeX

dvi format, 227-228
PostScript driver, 230-235
preprocessing references,

217-224
typewriter device driver, 235

groff_font format, 1127-1129
DESC file, 1127-1128

groff_me, 1225-1227
groff_mm, 1227-1234

extensions, 1227-1229
number variables,

1233-1234
strings, 1233
variables, 1229-1230

groff_ms, 1234-1236
groff_out, 1129-1131
grog, 230
grops, 230-235

files, 234
font styles, 231-232
options, 231
X commands, 232-233

grotty, 235-236
group, 1131
Group 3 fax files, converting

to portable bitmaps,
160-161

group access lists
getting/setting, 761-762
initializing, 955

■ gets() function

1457

group file entries, getting,
921-922, 932-934

group identity, setting, 845
group IDs

getting/setting, 761,
845-846

real and effective, setting,
846-847

group ownership (files),
changing, 61

groups
adding to system,

1258-1259
logging into, 336-337
process, sending signals to,

960
grow_files, 1428-1429
grttoppm, 436-437
gsoelim, 236
gtbl, 236-237
gtroff, 237-248

environment, 248
escape sequences, 239-240
files, 248
fractional point sizes, 238-

239
incompatibilities, 247-248
long names, 238
numeric expressions, 239
options, 238
requests, 241-244

extended, 244
number registers, 245-246

warnings, 246-247
gunzip, 248-249

see also gzip
gzexe, 252-253
gzip, 248-252

bugs, 252
diagnostics, 251-252
environment, 251
options, 249-250

gzip files, forcing .gz exten-
sion, 732-733

H

handling signals, 857-858
hard disks

boot-time parameters,
1220-1221

devices, 1083
partition tables, manipulat-

ing, 1296-1297
hard drives, partitioning,

1265-1269
hard-reset() action (xterm),

715
hardware, video (identifying),

501-503
hash

ftp command, 149
shell command, 38

hash tables
creating, 951
freeing memory, 951
searching, 951

hasmntopt() function,
935-936

hcreate() function, 951-952
hd, 1083
hdestroy() function, 951
head, 253-254
HeaderCleanFrom routine,

964
HeaderFind routine, 964
headers function, displaying,

455-456
help

ftp command, 149
shell command, 38
xauth command, 591

here-documents, 22-23
hexdump, 254-256
hier, 1236-1238

directories, 1236-1238
/, 1236
/bin, 1236
/boot, 1236
/dev, 1236
/dos, 1236
/etc, 1236

/etc/skel, 1236
/etc/X11, 1236
/home, 1236
/lib, 1236
/mnt, 1236
/proc, 1236
/sbin, 1237
/tmp, 1237
/usr, 1237
/usr/X11R6, 1237
/usr/X11R6/bin, 1237
/usr/X11R6/lib, 1237
/usr/X11R6/lib/X11, 1237
/usrX11R6/include/X11,

1237
hierarchies

directory (creating), 323
filesystem, description of,

1236-1238
High Sierra filesystem, 1125
HIPS files, converting to

portable graymaps, 256
hipstopgm, 256
histchars variable (bash),

17-18
HISTCMD variable (bash),

16
HISTFILE variable (bash), 17
HISTFILESIZE variable

(bash), 17
histograms

drawing for PGM or PPM
files, 388

portable pixmaps, printing,
408

history, 1131-1132
control variable (bash), 17
cvs command, 99
shell command, 39

history expansion (bash),
33-34

event designators, 33
modifiers, 34
word designators, 33

history lists (bash), 32-33
displaying, 39

HISTSIZE variable (bash), 17

HISTSIZE variable (bash) ■

1458

HOME variable (bash), 16
/home directory, 1236
horizontal-scroll-mode

variable (readline), 28
host, 257-258

bugs, 258
customizing, 258
options, 257-258

host byte order, converting
between network byte order,
901-902

host IDs, printing, 258-259
hostid, 258-259
hostname, 259-260,

1238-1239
hostname_completion_file

variable (bash), 18
hostnames

displaying, 259-260
looking up, 257-258
resolving, 1238-1239

hosts
identifiers, getting/setting,

762-763
names, getting/setting, 763
sending messages to users

on, 473
hosts.nntp, 1132-1133
hosts.nntp.nolimit,

1132-1133
hosts_access, 1133-1136

access control files, 1133
access control rules, 1133
bugs, 1136
diagnostics, 1136
files, 1136
operators, 1134
patterns, 1133-1134
remote username lookup,

1134-1135
shell commands, 1134
wildcards, 1134

hosts_access() function,
950-951

hosts_ctl() function, 950-951
hosts_options, 1137-1139

diagnostics, 1139
options, 1137

HOSTTYPE variable (bash),
16

HP PaintJet files, converting
to portable pixmaps, 381

hpcdtoppm, 260-261
hpfs filesystem, 1125
hsearch() function, 951-952
htonl() function, 901-902
htons() function, 901-902
httpd, 261
hyperbolic cosines, 908
hyphens (-), bash special

parameters, 15
hypot() function, 953

I

I/O
awk statement, 167
port permissions, setting,

788
ports, functions, 816
privilege level, changing,

788-789
standard I/O library,

1025-1027
ICCcancel routine, 956
ICCclose routine, 956
ICCcommand routine, 956
ICCopen routine, 956
ICCpause routine, 956
ICCreserve routine, 956
ICCsettimeout routine, 956
icombine, 274, 281

files, 281
see also ispell

icontopbm, 262
ident, 262-263
idle, 774

errors, 774
ftp command, 149
return value, 774

IDs (group), searching for
matches, 1429

$if parser directive (readline),
28-29

ifconfig, 1304-1305

IFS variable (bash), 16
ignore() action (xterm), 713
IGNOREEOF variable (bash),

17
ijoin, 274, 281

files, 281
see also ispell

ILBM files, converting to
portable pixmaps, 263-264

ilbmtoppm, 263-264
image files, converting to

portable anymap, 4
image parameter, values, 1374
imake, 264-267

environment variables, 267
files, 266

input, 266
options, 265
X Window System, 266

Imakefiles, creating Makefiles
from, 672

Img-whatnot file, converting
to portable pixmaps, 267

imgtoppm, 267
import (cvs command), 100
in_group_p, 1429
inb, 816
inb_p, 816
inbound zone transfers,

1333-1334
index() function, 953
indexes, archives (generating

for), 437-438
inet_addr() function, 954
inet_aton() function, 954
inet_lnaof() function, 954
inet_makeaddr() function,

954
inet_netof() function, 954
inet_network() function, 954
inet_ntoa() function, 954
inetd, 1305-1307
inews, 267-269
infinite results

returning value for, 954-955
testing for, 959

infnan() function, 954-955

■ HOME variable (bash)

1459

info, 269-270
commands, 269-270
environment, 270
options, 269

info command (xauth), 591
init, 1307-1309

diagnostics, 1309
files, 1308
run levels, 1308

init_module, 800-802
init_timer, 1424
initgroups() function, 955
initializing

terminals, 539-542
X sessions, 496-497

initstate() function,
1001-1002

inittab, 1139-1141
inittab file, 1398
inl, 816
inl_p, 816
inn.conf, 1141-1142
innconfval, 270-271
innd, 1309-1312

control messages, 1310
header modifications, 1311
logging, 1311-1312
protocol differences,

1310-1311
inndcomm routines, 956
inndstart, 1309-1312
INNVersion routine, 966
innwatch.ctl, 1142-1144
innxmit, 1312-1313
input

formatting, 1013-1015
conversions, 1014-1015
flags, 1014

reading, 27-32
controlling key bindings,

27
denoting keystrokes, 27
macro definitions, 28
readline commands,

29-32
redirecting, 22

input lines, wrapping, 143-
144

input, see elvis
INPUTRC variable (bash), 17
insb, 816
insert() action (xterm), 713
insert-eight-bit() action

(xterm), 713
insert-selection() action

(xterm), 713
insert-seven-bit() action

(xterm), 713
insert_file_free, 1429
insl, 816
insmod, 271-272
insque() function, 957
install, 272-273
installing

loadable modules, 271-272
rstartd, 469
spottopgm, 495
sysklogd, 1403

installit, 273-274
insw, 816
integers

absolute values, 892-893
converting, between host

and network byte order,
901-902

dividing, 911
floating-point remainders,

913, 923
returning quotient and

remainder, 961
long, labs, 960-961
rounding, 904

downward, 923
to, 1011-1012

interactive shells, 45
interfaces

name daemon control,
1338-1339

network
attaching to serial line,

1399
configuring, 1304-1305

serial mouse, 1092-1094
Microsoft protocol, 1093
MM protocol, 1094
MouseSystems protocol,

1093
Sun protocol, 1093

interned atoms, listing,
668-669

Internet
addresses, manipulating,

953-954
extended Internet services

daemon, 655-664
inetd superserver,

1305-1307
services, listing, 1184-1186

InterNetNews
buffered file-writing, 1264-

1265
configuration data,

1141-1142
daemon, 1309-1312

control messages, 1310
controlling, 1276-1279

file-writing, 1297-1298
InterNetNews library

clientlib, 904-905
INND communication

routines, 956
libinn routines, 962-966

CAclose, 964
CAlistopen, 964
CAopen, 964
CloseOnExec, 965
DDcheck, 965
DDend, 965
DDstart, 965
GetConfigValue, 965
GetFileConfigValue, 965
GetFQDN, 965
GetModeratorAddress,

965
GetResourceUsage, 965
GetTimeInfo, 965
HeaderFind, 964
INNVersion, 966

InterNetNews library ■

1460

LockFile, 965
NNTPcheckarticle, 965
NNTPconnect, 965
NNTPlocalopen, 965
NNTPremoteopen, 965
NNTPsendarticle, 966
NNTPsendpassword, 966
Radix32, 966
ReadInDescriptor, 966
ReadInFile, 966
SetNonBlocking, 965

Quick I/O, 998
interrupt key sequence,

routing, 1425
interval timers

getting/setting value,
763-764

ITIMER_PROF, 764
ITIMER_REAL, 764
ITIMER_VIRTUAL, 764
value definitions, 764

inverse hyperbolic cosines,
893-894

inverse hyperbolic sines, 895
inverse hyperbolic tangents,

897
inverted indexes, biblio-

graphic databases, 209-210
invocation, bash, 45-46
inw, 816
inw_p, 816
ioctl, 774-788

arguments, 787-788
calls

consoles, 1074-1080
fd device support, 1082
list of, 775-786
lp, 1090-1091
sd, 1095-1096
st, 1097-1100

duplicates, 788
errors, 774
return value, 774

ioperm, 788
iopl, 788-789

errors, 789
return value, 789

IP
dialup connections, handler,

1285-1288
routing table (manipulat-

ing), 1379-1380
ipc, 789, 1144-1146

message queues, 1145
resource access permissions,

1144-1145
semaphore sets, 1145-1146
shared memory segments,

1146
ipc facilities

getting information on,
1314

removing, 1313-1314
IPC system calls, 789
ipcrm, 1313-1314
ipcrs, 1314
isalnum() function, 958
isalpha() function, 958
isascii() function, 958
isatty function, 958-959
isblank() function, 958
iscntrl() function, 958
isdigit() function, 958
isgraph() function, 958
isinf() function, 959
islower() function, 958
isnan() function, 959
ISO character sets

2022, 1066
4873, 1066
8859, 1064-1065
8859-1, 1239-1242

alphabets, 1240
characters, 1240-1242

iso9660 filesystem, 1125
ispell, 274-279, 1084-1090

affix file, 1084-1085
alternate string characters,

1087
bugs, 282
capitalization rules, 279
character-set section, 1086
commands, 274-275
flags, 1088

headers, 1085
options, 275-279
options statements,

1085-1086
prefix/suffix tables, 1088
root words

case, 1084
extending, 1085
modifying, 1088-1089

isprint() function, 958
ispunct() function, 958
isspace() function, 958
issue, 1146-1147
isupper() function, 958
isxdigit() function, 958
ITIMER_PROF interval

timer, 764
ITIMER_REAL interval

timer, 764
ITIMER_VIRTUAL interval

timer, 764

J

j0() function, 959
j1() function, 959
jn() function, 959
job control, 24-25
jobs, displaying, 39
jobs (shell command), 39
join, 282-283
jrand48() functions, 912

K

kbdrate, 1314-1315
Kerberos authentication, 461
kernel

boot-time parameters,
1216-1224

Adaptec configurations,
1219-1220

argument list, 1216-1217
BusLogic configuration,

1220
busmouse drivers, 1224
cards not accepting, 1220

■ InterNetNews library

1461

CD-ROMs, 1222-1223
debug argument, 1217
Ethernet devices, 1223
floppy disk drivers,

1223-1224
future domain configura-

tion, 1220
hard disks, 1220-1221
mem= argument, 1218
no-hlt argument, 1217
no387 argument, 1217
Pro Audio configuration,

1220
ramdisk= argument, 1218
reboot=warm argument,

1218
reserve= argument,

1217-1218
ro argument, 1217
root= argument, 1217
rw argument, 1217
SCSI device arguments,

1218-1219
SCSI tape configuration,

1219
Seagate ST-0x

configuration, 1220
sound drivers, 1224
Trantor T128

configuration, 1220
exported symbols, display-

ing, 284-285
log buffer, 873
message ring buffer, reading/

clearing, 872-874
modules, loading at boot

time, 1152
name, getting, 880-881
ring buffer, controlling,

1288-1289
kernel clock, adjusting,

742-743
kernel log daemon,

1315-1317
kernel logging, 1402
kernel_mktime, 1430
key bindings, displaying, 35

key combinations,
Ctrl+Alt+Del (setting
function), 1279

key sequences (interrupt),
routing, 1425

keyboard repeat rate,
resetting, 1314-1315

keymap variable (readline), 28
keymap() action (xterm), 713
keymaps (X), modifying,

672-676
keywords, RCS, identifying in

files, 262-263
kill, 283-284, 790

bugs, 790
errors, 790
options, 283
return value, 790
shell command, 39

killall, 284
killing client connections (X

servers), 666-667
killpg, 790-791, 960
klogd, 1315-1317

files, 1317
options, 1315
signal handling, 1316-1317

kmem, 1091-1092
KOI8-R character set, 1065
ksyms, 284-285

L

labs() function, 960-961
Laplacian relief filters,

running on portable
pixmaps, 413

last, 285-286
Latin-1 character set, 1064
Latin-2 character set, 1064
Latin-3 character set, 1064
Latin-4 character set, 1064
Latin-5 character set, 1065
Latin-6 character set, 1065
lbxproxy, 286-287

network connections, 286
options, 286

lcd (ftp command), 149
lcong48() functions, 912
ld, 287-291

copying, 291
environment, 291
options, 288-291

ldexp() function, 961
ldiv() function, 961
less than signs (<), redirection

operator, 21
let (shell command), 39
letters, converting

to lowercase, 1055-1056
to uppercase, 1055-1056

lfind() function, 975-976
lgamma() function, 962
/lib directory, 1236
libinn routines, 962-966

CAclose, 964
CAlistopen, 964
CAopen, 964
CloseOnExec, 965
DDcheck, 965
DDend, 965
DDstart, 965
GetConfigValue, 965
GetFileConfigValue, 965
GetFQDN, 965
GetModeratorAddress, 965
GetResourceUsage, 965
GetTimeInfo, 965
HeaderFind, 964
INNVersion, 966
LockFile, 965
NNTPcheckarticle, 965
NNTPconnect, 965
NNTPlocalopen, 965
NNTPremoteopen, 965
NNTPsendarticle, 966
NNTPsendpassword, 966
Radix32, 966
ReadInDescriptor, 966
ReadInFile, 966
SetNonBlocking, 965

libpbm routines, 966-969
constants, 968
endian i/o, 967
errors, 967

libpbm routines ■

1462

file management, 967
initialization, 968
keyword matching, 967
memory management, 968
messages, 967
reading files, 968
types, 968
writing files, 968-969

libpgm routines, 969-970
constants, 969
initialization, 969
memory management, 969
reading files, 970
types, 969
writing files, 970

libpnm routines, 970-972
constants, 970
format promotion, 972
initialization, 971
memory management, 971
reading files, 971
types, 970
writing files, 971-972
XEL manipulation, 972
XEL manipulations, 971

libppm, 973-974
color names, 974
memory management, 973
reading files, 974
writing files, 974

libraries
shared, selecting, 883
standard I/O, 1025-1027

library functions, undocu-
mented, 1060

LILO, 1216
configuration file,

1147-1151
global options, 1148-1149
kernel options, 1150-1151
per-image section,

1149-1150
line buffered streams, 1016
line printer

control program, 1317-1318
devices, 1090-1091

ioctl() calls, 1090-1091
spooler daemon, 1318-1320

linear searches, arrays,
975-976

LINENO variable (bash), 15
link, 791-792
linkers, ld (GNU linker),

287-291
copying, 291
environment, 291
options, 288-291

linking files, 293-294, 791-
792

Lisp Machine bitmap files,
converting to portable
graymaps, 292

lispmtopgm, 292
list

bash command, 13
xauth command, 591

listen, 792-793
lists

bash, 12-13
columnating, 78
variable argument (declar-

ing), 1023-1024
lkbib, 292-293
llseek, 793
ln, 293-294
lndir, 294
loadable modules

installing, 271-272
support, 800-802
unloading, 462-463
viewing, 305

loadlin program, 1216
local (shell command), 39
local descriptor table, reading/

writing, 800
local variables, creating, 39
locale, 1243-1244

setting, 1018-1019
localeconv, 974-975
localtime, 909-910, 984-986
locate, 295
lock files, creating for shell

scripts, 487
LockFile routine, 965

locking memory
mlock, 796-797
mlockall, 797-798

locks (advisory), applying/
removing open files, 757

log (cvs command), 100
log() function, 918
log10() function, 918
log1p() function, 918
logarithms, 918

1 plus argument, 918
base-10, 918

logger, 295-296
logging

innd, 1311-1312
kernel, 1402
system, 1402-1404

configuration file,
1402-1403

FIFOs, 1403
messages, 1404-1405
remote, 1403

Usenet, log file
maintenance, 1346-1347

login, 296-297
login shells, 45

changing, 63
exiting, 39

logins
changing groups, 336-337
displaying last, 285-286
login command, 296-297
login record files,

1198-1200
preventing, 1168
remote, 460-461

Kerberos authentication,
461

root, tty lines (listing), 1184
shells, pathnames, 1186

logout (shell command), 39
logs

system
making entries, 295-296
sending messages to,

1045-1046
xinetd, 661-663

■ libpbm routines

1463

long integers, absolute values,
960-961

longjmp() function, 975
look, 297-298
loops

exiting, 35
resuming, 36

lowercase, converting letters
to, 1055-1056

lp, 1090-1091
lp devices, setting parameters,

1413-1414
lpc, 1317-1318

commands, 1317-1318
diagnostics, 1318

lpd, 1318-1320
key characters, 1319
options, 1319

lpq, 298-299
bugs, 299
diagnostics, 299
environment, 299
options, 298-299

lpr, 299-301
bugs, 301
diagnostics, 301
environment, 300
options, 299-300

lprm, 301-302
bugs, 302
diagnostics, 302
environment, 302
options, 301

lptest, 302
lrand48() functions, 912
ls, 303-304
ls (ftp command), 149
lsattr, 304-305
lsearch() function, 975-976
lseek, 793-794
lsmod, 305
lstat, 863-864
lynx, 306-309

commands, 308-309
options, 306-308

M

macdef (ftp command), 149
Macintosh PICT files,

converting to portable
pixmaps, 379-380

MacPaint files, converting to
portable bitmaps, 309-310

macptopbm, 309-310
magic cookies, generating,

317
mail addressing, 1244-1246

abbreviations, 1245
case sensitivity, 1245
compatibility, 1245
postmasters, 1246
routing, 1245

mail, see e-mail
MAIL variable (bash), 16
MAIL_WARNING variable

(bash), 16
mailaddr, 1244-1246

abbreviations, 1245
bugs, 1246
case sensitivity, 1245
compatibility, 1245
postmasters, 1246
routing, 1245

MAILCHECK variable (bash),
16

MAILER environment
variable, 529

MAILPATH variable (bash),
16

make, 310-312
imake preprocessor, 264-267
options, 311

makeactive, 1342-1344
makedepend, 312-314

algorithm, 313
bugs, 314
options, 312-313

MAKEDEV, 1320-1324
files, 1321
options, 1321-1324

MAKEDEV.cfg, 1151

makefiles
creating dependencies in,

312-314
creating from Imakefiles,

672
makehistory, 1342-1344
makestrs, 314-315

bugs, 315
directives, 315
options, 314
syntax, 314-315

malloc() function, 976
man, 1246-1248
man pages, formatting,

1246-1248
fonts, 1247
macros, 1248
preamble, 1246-1247
sections, 1247-1248

mapping files to memory,
799-800

mark-modified-lines variable
(readline), 28

mask bitmaps, creating from
regular, 353-354

masks, file-creation, 880
setting, 45

mattrib, 315-316, 330
mbadblocks, 316, 330
mblen, 977
mbstowcs() function,

977-978
mbtowc() function, 978
mcd, 316-317, 330
mcookie, 317
mcopy, 317-318, 330
MD5 message digests,

generating/checking, 318
md5sum, 318
mdel, 318-319, 330
mdelete (ftp command), 149
mdeltree, 319
mdir, 150, 319, 330
mem, 1091-1092
memccpy() function, 901,

978-979
memchr() function, 901, 979

memchr() function ■

1464

memcmp() function, 901,
979-980

memcpy() function, 901, 980
memfrob() function, 901,

980-981
memmem() function, 901,

981
memmove() function, 901,

981
memory

access, controlling, 804-805
allocating, 894, 976
displaying amount, 144
freeing, 976
kernel, 1091-1092
locking

mlock, 796-797
mlockall, 797-798

mapping/unmapping files
to, 799-800

reallocating, 976
scanning for characters, 979
shared

allocating, 851-853
controlling, 849-851
operations, 853-854

system, 1091-1092
unlocking

munlock, 811-812
munlockall, 812-813

virtual
remapping addresses,

805-806
reports, 1417-1418

virtual console, 1101-1102
memory areas

comparing, 979-980
copying, 978-981
encrypting, 980-981
filling with constant bytes,

982
locating substrings in, 981

memset() function, 901, 982
merge, 320
merge command (xauth), 591
merging files, three-way, 320
mesg, 321

message catalogs
getting messages from,

902-903
opening/closing, 903-904

message queue identifier,
retrieving, 807-808

messages
control, 1310
control operations, 806-807
displaying, 321
log (RCS files), printing,

458-460
message of the day file, 1152
receiving, from sockets,

826-828
sending/receiving, 808-811
sending

from sockets, 842-843
to system logger,

1045-1046
to users, 473, 576-577

signal, printing, 996
system console, monitoring

with X, 597-598
system error, printing,

990-991
systems, logging, 1404-1405
Usenet control, handling,

1115-1116
writing to users, 574, 1383

meta characters (bash), 12
meta-flag variable (readline),

28
mformat, 321-322, 330

bugs, 322
options, 321-322

mget (ftp command), 150
MGR bitmaps, converting to

portable bitmaps, 322-323
mgrtopbm, 322-323
MINIX filesystems, 1125

consistency checker,
1300-1301

creating, 1326-1327
mkdir, 150, 323, 794-795

bugs, 795
errors, 795

options, 323
return value, 795

mkdirhier, 323
mke2fs, 1324-1325
mkfifo, 323-324, 982-983

errors, 982-983
options, 324

mkfs, 1325-1327
mklost+found, 1327
mkmanifest, 324-325
mknod, 325, 795-796

bugs, 796
errors, 796
options, 325
return value, 796

mkstemp() function, 983
mkswap, 1327-1328
mktemp() function, 983-984
mktime, 910, 984-986
mlabel, 325-326, 330
mlock, 796-797
mlockall, 797-798
mls (ftp command), 150
mmap, 799-800
mmd, 326, 330
mmount, 326-327, 330
mmove, 327, 330
/mnt directory, 1236
mode (ftp command), 150
mode command (telnet), 508
mode parameter, values, 1374
modems, conversational

exchanges, 1269-1273
abort strings, 1270-1271
chat script, 1270
escape sequences,

1271-1272
report strings, 1271
termination codes, 1272
time-out value, 1271

moderators, 1151-1152
modf() function, 984
modify_ldt, 800
modprobe, 109-112

configuration, 110-111
files, 111
strategy, 111

■ memcmp() function

1465

modtime (ftp command), 150
modules

kernel, loading at boot time,
1152

loadable
support, 800-802
unloading, 462-463
viewing, 305

more, 327-328
motd, 1152
mount, 802-804, 1328-1332

bugs, 1332
errors, 803
files, 1332
options, 1329-1331
return value, 803

mountd, 1332-1333
mounting MS-DOS disks,

326-327
mouse, 1092-1094

Microsoft protocol, 1093
MM protocol, 1094
MouseSystems protocol,

1093
Sun protocol, 1093

mprotect, 804-805
mput (ftp command), 150
mrand48() functions, 912
mrd, 329-330
mread, 329
mremap, 805-806
mren, 329-330
MS-DOS

directories
changing, 316-317
displaying, 319
trees, deleting, 319

disks, mounting, 326-327
files

changing attribute flags,
315-316

copying to/from UNIX,
317-318, 329

deleting, 318-319
displaying contents,

333-334
manipulating (mtools),

330-333

moving, 327
renaming, 329-330

filesystems, adding to disks,
321-322

floppies, marking bad
blocks, 316

subdirectories
creating, 326
moving, 327
removing, 329
renaming, 329-330

volume labels, creating,
325-326

msdos filesystem, 1125
msgctl, 806-807
msgget, 807-808
msgop, 808-811
msync, 811
mtest, 330
mtools, 330-333, 1152-1158

bugs, 333
case sensitivity of VFAT,

332
character translation tables,

1155-1157
configuration files, testing,

330
default values, 1153
drive geometry

configuration, 1154-1155
exit codes, 333
general purpose drive

variables, 1153-1154
global variables, 1153
long filenames, 331
mattrib, 330
mbadblocks, 330
mcd, 330
mcopy, 330
mdel, 330
mdir, 330
mformat, 330
mlabel, 330
mmd, 330
mmount, 330
mmove, 330
mrd, 330

mren, 330
mtest, 330
mtype, 330
multiple descriptions, 1155
name clashes, 332
open flags, 1155
parsing order of files,

1157-1158
per-drive flags/variables,

1153
working directory, 331
Xdf disks, 332

MTV ray tracers, converting
output to portable pixmaps,
333

mtvtoppm, 333
mtype, 330, 333-334
multilanguage support

(description), 1243-1244
multibyte characters,

converting to wide
characters, 978

multibyte strings, converting
to wide character, 977-978

multiple buffers, reading/
writing data, 1003-1004

multiuser chat program,
727-730

Boolean options, 729
daemons, 727
escape menu, 728
readdressing, 729
runtime options, 728-729
startup file, 729
username field, 727
X11 interface, 730

munchlist, 274, 279
bugs, 282
files, 281
options, 279-280
see also ispell

munlock, 811-812
munlockall, 812-813
munmap, 799-800
mv, 334-335
mwrite, 335
mysnc, 811

mysnc ■

1466

N

named, 1334-1338
boot file, 1334-1336
files, 1337
master file, 1336
options, 1334
signals, 1337
SOA record, 1336-1337

named pipes, see FIFOs
named-xfer, 1333-1334
named.reload, 1338
named.restart, 1338
namei, 335-336

options, 336
output, 335

names
bash, 12
peer, getting, 765
socket, getting, 769

nameserver (Internet
domains), 1334-1338

boot file, 1334-1336
control interface, 1338-1339
master file, 1336
querying, 1350-1353
signals, 1337
SOA record, 1336-1337
stopping/restarting, 1338
synchronizing database,

1338
naming

font servers, 643
temporary files, 1049, 1054
xhost, 644

NaN (not-a-number) results
returning value for, 954-955
testing for, 959

nanosleep, 813-814
ncpfs filesystem, 1126
ndc, 1338-1339
Netnews reader, see tin
.netrc file, 153-154
netstat, 1339-1342

files, 1341
routing information, 1341
socket information,

1340-1341

network byte order, convert-
ing between host byte order,
901-902

network entries, getting,
936-937

networking
displaying active

connections, 1339-1342
routing information, 1341
socket information,

1340-1341
interfaces

attaching to serial line,
1399

configuring, 1304-1305
routing daemon, 1380-1382

newaliases, 336
newer (ftp command), 150
newgrp, 336-337
news

Netnews, see tin
news software information

newsgroups, 530
overview database

expiring entries,
1293-1294

format, 1168-1169
updating, 1353-1354

receiving from UUCP
connections, 463-464

news.daily, 1344-1346
keywords, 1344-1345

newsfeeds, 1158-1163
Distribution headers, 1159
entries, 1158-1159
examples, 1162-1163
feed types, 1161-1162
flags, 1159-1161
ME entry, 1161

newsgroups
news software information,

530
Usenet, listing active, 1104-

1105
newslog, 1163-1165,

1346-1347
files, 1164
keywords, 1346
message/action fields,

1163-1164
newsrequeue, 1342-1344
NFS

mount daemon, 1332-1333
servers, authentication/print

request, 1355-1357
service daemon, 1347

nfs, 1165-1167
nfs filesystem, 1125

export list, 1123-1125
NFS servers, mount

information, 1396
nfsd, 1347
nice, 814
nl, 337-338
nlist (ftp command), 150
NLM outfiles, converting

object code into, 338-339
nlmconv, 338-339
nm, 339-340
nmap (ftp command), 150
nnrp.access, 1167-1168
nnrpd, 1347-1349
NNTP

news, host list, 1132-1133
servers, 1347-1349

getting lists from, 206-207
passwords, 1170
retrieving Usenet articles

from, 340-341
sites, access control,

1167-1168
NNTPcheckarticle routine,

965
NNTPconnect routine, 965
nntpget, 340-341
NNTPlocalopen routine, 965
NNTPremoteopen routine,

965
nntpsend, 1349-1350
nntpsend.ctl, 1168
NNTPsendarticle routine, 966
NNTPsendpassword routine,

966
NNTPSERVER environment

variable, 529

■ named

1467

no_exit_on_failed_exec
variable (bash), 18

noclobber variable (bash), 18
nolinks variable (bash), 18
nologin, 1168
none, 881
none (undocumented library

functions), 1060
not-a-number (NaN) results

returning value for, 954-955
testing for, 959

notify variable (bash), 17
nrand48() functions, 912
nroff

emulating, 210-211
output, filtering, 77

nslookup, 1350-1353
arguments, 1350
commands, 1351-1353
diagnostics, 1353
environment, 1353
files, 1353

ntohl() function, 901-902
ntohs() function, 901-902
ntrans (ftp command),

150-151
null, 1094
numbers

floating-point
absolute value, 919
converting to fractional/

integral components,
927

converting to strings,
913-914, 930-931

pseudo-random, generating,
912-913

random, generating,
1001-1002

rounding, 1011-1012
signs, copying, 907
square roots, 1023

numeric expressions, gtroff,
239

O

objcopy, 341-342
objdump, 342-343
object files

copying/translating,
341-342

discarding symbols from,
499

displaying information from,
342-343

listing section and total sizes,
489-490

listing symbols from,
339-340

oclock, 344
od, 345-346
offline printing, 299-301
oldfstat, 814
oldlstat, 814
oldolduname, 814
OLDPWD variable (bash), 15
oldstat, 814
olduname, 814
on_exit() function, 988
open, 815-816

bugs, 816
errors, 816
flags, 815
ftp command, 151
modes, 815
return value, 816

open host command (telnet),
508

opendir, 989
openlog() function,

1045-1046
facility argument, 1046
option argument, 1046

operators
awk, 166-167
find, 142
redirection, 21

OPTARG variable (bash), 16
OPTERR variable (bash), 17
OPTIND variable (bash), 16

ORGANIZATION environ-
ment variable, 529

OSTYPE variable (bash), 16
outb, 816
outb_p, 816
outl, 816
outl_p, 816
output

formatting, 992-996,
1022-1023

conversion specifiers, 994
examples, 995
flags, 993-994

redirecting, 22
output-meta variable

(readline), 28
outsb, 816
outsl, 816
outsw, 816
outw, 816
outw_p, 816
overchan, 1353-1354
overview.fmt, 1168-1169
ownership (file), changing,

62-63, 749-750

P

pac, 1354-1355
packed format fonts, convert-

ing to portable bitmaps, 381
packets

ECHO_REQUEST,
sending, 1358

route, printing, 1409-1412
page size, system (getting),

765
paging

disabling, 796-797
calling process, 797-798

reenabling, 811-813
papers, formatting

groff_me macros,
1225-1227

groff_mm macros,
1227-1234

groff_ms macros,
1234-1236

papers, formatting ■

1468

paragraphs, formatting line
length, 143

parameter command substitu-
tion (bash), 20

parameter expansion (bash),
19-20

parameters
bash, 14-15

positional, 14
special, 14-15

boot-time (kernel),
1216-1224

Adaptec configurations,
1219-1220

argument list, 1216-1217
BusLogic configuration,

1220
busmouse drivers, 1224
cards not accepting, 1220
CD-ROMs, 1222-1223
debug argument, 1217
Ethernet devices, 1223
floppy disk drives,

1223-1224
future domain

configuration, 1220
hard disks, 1220-1221
mem= argument, 1218
no-hlt argument, 1217
no387 argument, 1217
Pro Audio configuration,

1220
ramdisk= argument, 1218
reboot=warm argument,

1218
reserve= argument,

1217-1218
ro argument, 1217
root= argument, 1217
rw argument, 1217
SCSI device arguments,

1218-1219
SCSI tape configuration,

1219
Seagate ST-0x

configuration, 1220

sound drivers, 1224
Trantor T128

configuration, 1220
floppy disk, setting, 1391
positional

parsing, 38
renaming, 42

serial ports, 1392-1394
parsedate, 989-990
parser directives, readline,

28-29
$else, 29
$endif, 29
$if, 28-29

parsing
command options, 207-208
command-line options,

937-940
positional parameters, 38

partition tables, manipulat-
ing, 1296-1297

DOS 6.x, 1296-1297
partitioning disk drives,

1265-1269
passwd, 346-347, 1169-1170

bugs, 347
files, 347

passwd.nntp, 1170
password files, editing,

1418-1419
passwords

changing, 346-347
encryption, 908-909
file entries, writing, 997
getting, 940-941
getting file entry, 943-944
password file, 1169-1170
reconstructing line entry,

942-943
paste, 347
PATH variable (bash), 16
pathconf() function, 925-926

options returned, 926
return value, 926

pathname expansion (bash),
21

pathnames
canonicalized absolute,

1004-1005
following to terminal point,

335-336
matching, 924, 949-950

patterns
printing lines matching,

224-226
searching database files for,

295
pause, 817
pausing execution, 813-814
pbm, 1170-1171
PBM images, displaying on

4425 terminals, 357
pbmclean, 348
pbmfilters, 348-352
pbmlife, 352-353
pbmmake, 353
pbmmask, 353-354
PBMPlus package, programs,

348-352
pbmpscale, 354
pbmreduce, 355
pbmtext, 355-356
pbmto10x, 356
pbmto4425, 357
pbmtoascii, 357
pbmtoatk, 358
pbmtobg, 358
pbmtocmuwm, 358-359
pbmtoepsi, 359
pbmtoepson, 359
pbmtog3, 360
pbmtogem, 360
pbmtogo, 360-361
pbmtoicon, 361
pbmtolj, 361-362
pbmtoln03, 362
pbmtolps, 362
pbmtomacp, 363
pbmtomgr, 363
pbmtopgm, 364
pbmtopi3, 364
pbmtopk, 364-365

■ paragraphs, formatting line length

1469

pbmtoplot, 365-366
pbmtoptx, 366
pbmtox10bm, 366
pbmtoxbm, 367
pbmtoybm, 367
pbmtozinc, 367-368
pbmupc, 368
pclose(), 991-992
pcnfsd, 1355-1357

authentication, 1355-1356
file, 1357
printing, 1356
reconfiguration, 1357

PCX files, converting to
portable pixmaps, 368-369

pcxtoppm, 368-369
peers, getting names, 765
permissions

file
changing, 748-749
setting, 272-273

port input/output, setting,
788

perror, 990-991
personality, 817-818
pfbtops, 369
pgm, 1171-1172
pgmbentley, 369
pgmcrater, 370-371
pgmedge, 371
pgmenhance, 371-372
pgmhist, 372
pgmkernel, 372-373
pgmnoise, 373
pgmnorm, 373-374
pgmoil, 374
pgmramp, 374-375
pgmtexture, 375-376
pgmtofs, 376
pgmtolispm, 376-377
pgmtopbm, 377
pgmtoppm, 378
Photo-CD files, converting to

portable pixmaps, 260-261
phys, 818
physical addresses, accessing,

818

pi3topbm, 379
pic, versus gpic, 212-215

commands, 212-213
expressions, 213-214
mode, 212

picttoppm, 379-380
bugs, 379
fontdir file format, 380

ping, 1358
pipe, 818-819
pipelines (|), bash, 12
pipes, creating, 818-819
pjtoppm, 381
pktopbm, 381
PLIP devices, tuning

parameters, 1357
plipconfig, 1357
pnm, 1173
pnmalias, 381-382
pnmarith, 382-383
pnmcat, 383
pnmcomp, 383-384
pnmconvol, 384
pnmcrop, 385
pnmcut, 385
pnmdepth, 385-386
pnmenlarge, 386
pnmfile, 386-387
pnmflip, 387
pnmgamma, 387
pnmhistmap, 388
pnmindex, 388-389
pnminvert, 389
pnmmargin, 389-390
pnmnlfilt, 390-391

alpha-trimmed mean filter,
390

bugs, 391
combining modes, 391
edge enhancement, 391
optimal estimation

smoothing, 390
pnmnoraw, 391-392
pnmpad, 392
pnmpaste, 392-393
pnmrotate, 393

pnmscale, 393-394
pnmshear, 394-395
pnmsmooth, 395
pnmtile, 395
pnmtoddif, 396
pnmtofits, 396-397
pnmtoiff, 399-400
pnmtops, 397
pnmtorast, 398
pnmtosgi, 398-399
pnmtosir, 399
pnmtoxwd, 400
popd (shell command), 39-40
popen() function, 991-992
popup-menu() action

(xterm), 713
port, 1091-1092
portable anymaps

antialiasing, 381-382
bordering, 389-392
changing maxval, 385-386
compositing, 383-384
concatenating, 383
converting

to DDIF format, 396
to FITS format, 396-397
to PostScript, 397
to red/blue 3D glasses,

400-401
to SGI image file,

398-399
to Solitaire format, 399
to Sun raster files, 398
to TIFF files, 399, 400
to X11 window dumps,

400
convolving, 384
creating index of, 388, 389
cropping, 385
cutting rectangles from, 385
describing, 386, 387
drawing histograms from,

388
enlarging, 386
file format, 1173
flipping, 387
gamma correction, 387

portable anymaps ■

1470

inverting, 389
pasting rectangles into, 392,

393
performing arithmetic on,

382, 383
plain format, 391, 392
programs

constants, 970
format promotion, 972
functions supporting, 970,

971, 972
initialization, 971
memory management, 971
reading files, 971
types, 970
writing files, 971, 972
XEL manipulations,

971-972
replicating into specified

size, 395
rotating, 393
scaling, 393, 394
shearing, 394, 395
smoothing, 395

portable bitmaps
applying Rules of Life to,

352, 353
converting

to Andrew Toolkit raster
objects, 358

to ASCII graphics, 357
to Atari Degas PI3 files,

364
to Bennet Yee “face” files,

367
to BitGraph graphics, 358
to CMU window manager

bitmaps, 358-359
to compressed GraphOn

graphics, 360-361
to DEC LN03+ Sixel

output, 362
to encapsulated PostScript-

style bitmaps, 359
to Epson printer graphics,

359

to GEM IMG files, 360
to Gemini 10x graphics,

356
to Group 3 fax files, 360
to HP LaserJet format,

361-362
to MacPaint files, 363
to MGR bitmap, 363
to packed format fonts,

364-365
to portable graymaps, 364
to PostScript, 362
to Printronix printer

graphics, 366
to Sun icons, 361
to UNIX plot files,

365-366
to X10 bitmaps, 366
to X11 bitmaps, 367
to Zinc bitmaps, 367-368

creating with specified size,
353

enlarging, 354
file format, 1170-1171
flipping pixels in, 348
programs

constants, 968
endian i/o, 967
errors, 967
file management, 967
functions supporting,

966-969
initialization, 968
keyword matching, 967
memory management, 968
messages, 967
reading files, 968
types, 968
writing files, 968-969

reducing, 355
portable graymaps

Bentleyizing, 369
calculating textural features

on, 375-376
combining three into a

portable pixmap, 457-458

converting
to Lisp machine format,

376-377
to portable bitmaps, 377
to portable pixmaps, 378
to Usenix FaceSaver

format, 376
creating from white noise,

373
enhancing edges, 371-372
file format, 1171-1172
mimicking cratered terrain,

370-371
normalizing contrast,

373-374
outlining edges, 371
performing oil transfers on,

374
printing histogram of values,

372
programs

constants, 969
functions supporting,

969-970
initialization, 969
memory management, 969
reading files, 970
types, 969
writing files, 970

portable pixmaps
blending together, 408-409
brightening, 404
changing pixel color,

401-402
changing saturation and

value, 401
converting

to Abekas YUV files, 428
to Atari Degas PI1 files,

422
to AutoCAD, 414-416
to BMP files, 416
to DEC sixel format,

425-426
to GIF files, 416-417
to HP PaintJet files, 423

■ portable anymaps

1471

to HP PaintJet XL PCL
files, 424

to ILBM files, 418-419
to Macintosh PICT files,

422-423
to Mitsubishi S340-10

files, 420-421
to MotifUIL icon files,

427
to NCSA ICR format,

417-418
to PCX files, 421
to portable graymaps,

421-422
to three portable graymaps,

425
to three raw YUV files,

428-429
to TrueVision Targa files,

426
to X11 pixmaps, 427-428
to X11 puzzle files,

424-425
creating, 408

patterns, 410-411
specifying color, 408

creating from three portable
graymaps, 457-458

dimming
to black, 402
every other row, 409-410

displacing pixels, 414
dithering, 403
extracting color from,

419-420
file format, 1173-1174
files

reading, 974
writing, 974

fractal forgeries, 404-407
grayscale assignments

(performing), 402-403
histograms (printing), 408
Laplacian relief filters

(running on), 413
normalizing contrast, 409

programs, functions
supporting, 973-974

quantizing colors, 411
8-plane quantization,

412-413
multiple files, 412

shifting lines, 413-414
portmap, 1358-1359
ports

input/output functions, 816
input/output permissions,

setting, 788
serial

configuring, 1394-1395
parameters, 1392-1394
setting/getting informa-

tion, 1391-1395
system, 1091-1092

positional parameters
bash, 14
parsing, 38
renaming, 42

POSIX
gawk compatibility, 171
regex functions, 1005-1007

compiling, 1005-1006
error reporting, 1006
matching, 1006
pattern buffer freeing,

1007
signal set operations,

1019-1020
PostScript

bounding box, extracting,
433

files, converting to portable
anymaps, 434-435

fonts
translating from PFB

format to ASCII, 369
translating fromPFB

format to ASCII, 369
image data, converting into

portable graymap,
433-434

pound sign (#)
bash comments, 14
bash special parameters, 15

pow() function, 918
powerd, 1359-1360
powers (raising numbers to),

918
PPID variable (bash), 15
ppm, 1173-1174
ppm3d, 400-401
ppmbrighten, 401
ppmchange, 401-402
ppmdim, 402
ppmdist, 402-403
ppmdither, 403
ppmflash, 404
ppmforge, 404-407

bugs, 407
options, 405-407

ppmhist, 408
ppmmake, 408
ppmmix, 408-409
ppmnorm, 409
ppmntsc, 409-410
ppmpat, 410-411
ppmquant, 411-412
ppmquantall, 412
ppmqvga, 412-413
ppmrelief, 413
ppmshift, 413-414
ppmspread, 414
ppmtoacad, 414-416
ppmtobmp, 416
ppmtogif, 416-417
ppmtoicr, 417-418
ppmtoilbm, 418-419
ppmtomap, 419-420
ppmtomitsu, 420-421
ppmtopcx, 421
ppmtopgm, 421-422
ppmtopi1, 422
ppmtopict, 422-423
ppmtopj, 423
ppmtopjxl, 424
ppmtopuzz, 424-425
ppmtorgb3, 425
ppmtosixel, 425-426
ppmtotga, 426
ppmtouil, 427
ppmtoxpm, 427-428

ppmtoxpm ■

1472

ppmtoyuv, 428
ppmtoyuvsplit, 428-429
PPP

daemon, 1360-1369
statistics, printing,

1369-1370
pppd, 1360-1369

authentication, 1366-1367
diagnostics, 1368
examples, 1367-1368
files, 1366-1369
options, 1360-1366
routing, 1367
signals, 1369

pppstats, 1369-1370
pr, 429-430
preprocessor, 81-84
preprocessors, imake, 264-267
printf function, 992-996

bugs, 995-996
printf statement, awk,

167-168
printing

aliases, 35
application resources, 5
banners, 1210
converting text files for,

429-430
files, in reverse, 503-504
histograms of portable

pixmaps, 408
host IDs, 258-259
lines matching a pattern,

224-226
log messages (RCS files),

458-460
machine architecture, 8
offline, 299-301
packet route, 1409-1412
pcnfsd, 1356
PPP statistics, 1369-1370
printer/plotter accounting

files (reading), 1354-1355
removing jobs from queue,

301-302
ripple test pattern, 302
signal messages, 996

spool queue examination,
298-299

system activity summary,
573

system error messages,
990-991

time zones, 1419
user/system times, 43
see also line printer

priority values, getting range,
830-831

privileges
I/O, changing level,

788-789
setuid (RCS files), 67-68

/proc, 1174-1180, 1236
bugs, 1180
hierarchy outline, 1174-

1180
proc filesystem, 1125
proc_sel, 1430-1431
process control, initialization,

1307-1309, 1397-1399
process groups, sending

signals to, 790-791, 960
process substitution (bash),

20
processes

0, making idle, 774
accounting, switching on/

off, 742
child, creating, 751, 758
closing, pclose() function,

991-992
displaying tree of, 435-436
execution, suspending, 1061
execution domain, setting,

817-818
group identity, setting, 845
group IDs

getting/setting, 845-846
real and effective (setting),

846-847
groups

access lists (getting/setting),
761-762

IDs (getting), 761

identifying, 154-155
IDs, getting, 766
listing most CPU-intensive,

533-535
opening, popen() function,

991-992
parents, IDs (getting), 766
priorities, altering,

1375-1376
priority, changing, 814
reporting status, 430-433
SCHED_RR interval,

getting, 831
scheduling priorities,

getting/setting, 766-767
selecting, by criteria,

1430-1431
sending signals to, 790

raise function, 1000
starting, on consoles, 1066
terminating, 283-284,

739-740
by name, 284

times, getting, 878-879
tracing, 820
user IDs

getting, 773
real and effective (setting),

847-848
setting, 848-849

waiting for termination,
886-889

yielding processor, 835
processor, time used (deter-

mining), 905
profil, 819
profiling, 819
programs

executing, 754-755
portable anymap

constants, 970
format promotion, 972
functions supporting,

970-972
initialization, 971
memory management, 971
reading files, 971

■ ppmtoyuv

1473

types, 970
writing files, 971-972
XEL manipulations,

971-972
portable bitmap, functions

supporting, 966-969
portable graymap

constants, 969
functions supporting,

969-970
initialization, 969
memory management, 969
reading files, 970
types, 969
writing files, 970

recompiling, make utility,
310-312

running, in new session,
1395

terminating
abort() function, 892
assert() function,

895-896
exit() function, 917

promoting directories, 39-40
prompt (ftp command), 151
PROMPT_COMMAND

variable (bash), 17
prompting (bash), 26
properties, consoles, 1067
protocols

protocols definition file,
1180-1181

RPC, rpcgen compiler,
464-466

Telnet, interface, 507-512
XIE, testing, 645-654

proxy ftp (ftp command), 151
proxy servers, LBX, 286-287
PRT ray tracers, converting

output to portable pixmaps,
333

prunehistory, 1370-1371
ps, 430-433

bugs, 433
field descriptions, 432
options, 430-431

sort keys, 431-432
updating, 432, 436

PS1 variable (bash), 16
PS2 variable (bash), 16
PS3 variable (bash), 17
PS4 variable (bash), 17
psbb, 433
pseudo-filesystems, /proc,

1174-1180
bugs, 1180
hierarchy outline,

1174-1180
pseudo-random numbers,

generating, 912-913
psidtopgm, 433-434
pstopnm, 434-435
pstree, 435-436
psupdate, 436
ptrace, 820
pushd (shell command), 40
put (ftp command), 151
put_file_last, 1431
putc() function, 997-999
putchar() function, 997-999
putenv, 996-997

errors, 996
putpwent() function, 997

errors, 997
puts() function, 997-999
pututline() function, 948
putw function, 948
pwd (ftp command), 151
pwd (shell command), 40
PWD variable (bash), 15

Q

qio, 998
QRT ray tracer, converting

output to portable pixmaps,
436-437

qsort, 1000
quantizing colors (pixmaps),

411
8-plane quantization,

412-413
multiple files, 412

question marks (?)
bash special parameters, 15
ftp command, 152

queues, inserting/removing
items, 957

quit command
ftp command, 151
telnet, 508
xauth, 591

quit() action (xterm), 714
quota, 437
quotacheck, 1371-1372
quotactl, 821-822
quotaoff, 1372-1373
quotaon, 1372-1373
quotas

disk, manipulating, 821-822
remote machines, 1012

quote (ftp command), 151
quoting (bash), 14

R

Radix32 routine, 966
raise function, 1000
ram, 1094-1095
rand() function, 1001
random numbers, generating,

1001-1002
RANDOM variable (bash), 15
random() function,

1001-1002
randomizing strings, 1032
ranlib, 437-438
rarp, 1373
RARP table, manipulating,

1373
rasttopnm, 438
raw grayscale bytes, convert-

ing to portable graymaps,
439

raw RGB bytes, converting to
portable pixmaps, 439-440

rawtopgm, 439
rawtoppm, 439-440

rawtoppm ■

1474

ray tracers
converting output to

portable pixmaps, 333
QRT, converting output to

portable pixmaps, 436-437
rcp, 440-441
RCS (Revision Control

System), 447-449
automatic identification,

449
commands, 447-449
directories, creating,

447-449
files

changing attributes,
441-443

cleaning, 443-445
comparing revisions,

445-446
freezing configuration,

446-447
functions, 447
revisions, merging, 449-451

rcs, 441-443
bugs, 443
compatibility, 443
diagnostics, 443
environment, 443
files, 443
options, 441-443

RCS files
controlling access, 67
format, 1181-1183
modes, 67
organization (diagram),

1182
printing log messages,

458-460
retrieving revisions, 71-75
specifying, 66-67
storing revisions, 64-69

setuid privileges, 67-68
temporary files, 67

RCS keyword strings,
identifying, 262-263

RCSBIN environment
variable, 105

rcsclean, 443-445
rcsdiff, 445-446
rcsfile, 1181-1183

organization (diagram),
1182

rcsfreeze, 446-447
rcsintro, 447-449

automatic identification,
449

RCS functions, 447
rcsmerge, 449-451
rdev, 1373-1375
rdiff (cvs command), 101
rdist, 451-454

bugs, 454
diagnostics, 454
files, 453
options, 451-452

re_comp function, 1005
re_exec function, 1005
read (shell command), 40
read(), file descriptors, 822
readdir, 823
readdir() calls, setting

position, 1015-1016
readdir() function,

1002-1003
ReadInDescriptor routine,

966
ReadInFile routine, 966
readline library, 27-32

commands, 29-32
controlling key bindings, 27
customizing, 27
denoting keystrokes, 27
macro definitions, 28
parser directives, 28-29

$else, 29
$endif, 29
$if, 28-29

variables, 28
bell-style, 28
comment-begin, 28
completion-query-items,

28
convert-meta, 28
editing-mode, 28
expand-tilde, 28

horizontal-scroll-mode, 28
keymap, 28
mark-modified-lines, 28
meta-flag, 28
output-meta, 28
show-all-if-ambiguous, 28

readlink, 823-824
readonly (shell command), 40
readv, 824-825
readv() function, 1003-1004
realloc() function, 976-977
realpath, 1004-1005
reboot, 825-826
recompiling programs, make

utility, 310-312
recompressing Z files,

734-735
reconfig, 454
recv, 151, 826-828
recvfrom, 826-828
recvmsg, 826-828
redirection, 21-23

duplicating file descriptors,
23

here-documents, 22-23
input, 22
opening file descriptors, 23
operators, 21
output, 22

redraw() action (xterm), 714
ref, 455-456

elvis interaction, 455
environment, 455
files, 455
options, 455
search method, 455

refreshing screen (X), 684-685
refs files, generating, 87-88
regcomp function, 1005-1007
regerror function, 1005-1007
reget (ftp command), 151
regex functions, 1005

POSIX, 1005-1007
compiling, 1005-1006
error reporting, 1006
matching, 1006
pattern buffer freeing,

1007

■ ray tracers

1475

regexec function, 1005-1007
regfree function, 1005-1007
regular expressions

grep, 225-226
sed, 476-477

release (cvs command), 101
remote execution server,

1376-1377
remote file copying, 440-441
remote logging, 1403
remote login server,

1377-1378
remote logins, 460-461

Kerberos authentication,
461

remote machines, starting X
programs on, 676

remote quota server, 1384
remote shell, 466-467
remote shell server,

1385-1386
Remote Start client, see rstart
Remote Start rsh helper, see

rstartd
remote status, displaying, 472
remote systems, command

execution, 569-571
remote user communication

server, 1405-1406
remotehelp (ftp command),

151
remotestatus (ftp command),

151
remove, 1008

cvs command, 101-102
xauth command, 591

remove_file_free, 1431-1432
remque() function, 957
rename, 828-829
rename (ftp command), 151
renice, 1375-1376
REPLY variable (bash), 15
REPLYTO environment

variable, 529
repquota, 1376
res_init, 1008-1011

res_mkquery, 1008-1011
res_query, 1008-1011
res_search, 1008-1011
res_send, 1008-1011
reserved words (bash), 12
reset, 456, 539-542

compatibility, 542
options, 540
setting environment, 540
terminal type mapping,

540-541
reset (ftp command), 151
resize, 456-457
resolver, 1183-1184
resolver routines, 1008-1011
resolving hostnames,

1238-1239
resource editor, see editres
resources

limits, getting/setting,
767-768

usage, getting, 767-768
restart (ftp command), 151
return (shell command), 40
return value, errors, 797
rev, 457
reverse line feeds, filtering, 76
Revision Control System, see

RCS
rewind function, 927-928
rewinddir() function, 1011
rexecd, 1376-1377

bugs, 1377
diagnostics, 1377
protocol, 1376-1377

RGB colorname databases,
uncompiling, 488

rgb3toppm, 457-458
rindex() function, 953
rint() function, 1011-1012
ripple test pattern (printing),

302
rlog, 458-460
rlogin, 460-461
rlogind, 1377-1378
rm, 461-462

rmdir, 462, 829-830
bugs, 830
errors, 829
options, 462

rmdir (ftp command), 152
rmmod, 462-463
rnews, 463-464
Rock Ridge filesystem, 1125
root logins, tty lines (listing),

1184
root directories

changing, 750-751, 1273
root filesystem, mounting,

849
root window (X), setting

parameters, 693-694
round-robin scheduling, 834
rounding integers, 904
rounding numbers,

1011-1012
route, 1379-1380
routed, 1380-1382

bugs, 1382
files, 1382
gateways, 1381-1382
options, 1381
request packets, 1381
response packets, 1381
starting, 1380

routines
ICCcancel, 956
ICCclose, 956
ICCcommand, 956
ICCgo, 956
ICCopen, 956
ICCpause, 956
ICCreserve, 956
ICCsettimeout, 956
libinn library, 962-966

CAclose, 964
CAlistopen, 964
CAopen, 964
CloseOnExec, 965
DDcheck, 965
DDend, 965
DDstart, 965
GetConfigValue, 965

routines ■

1476

GetFileConfigValue, 965
GetFQDN, 965
GetModeratorAddress,

965
GetResourceUsage, 965
GetTimeInfo, 965
HeaderFind, 964
INNVersion, 966
LockFile, 965
NNTPcheckarticle, 965
NNTPconnect, 965
NNTPlocalopen, 965
NNTPremoteopen, 965
NNTPsendarticle, 966
NNTPsendpassword, 966
Radix32, 966
ReadInDescriptor, 966
ReadInFile, 966
SetNonBlocking, 965

libpbm, 966-969
constants, 968
endian i/o, 967
errors, 967
file management, 967
initialization, 968
keyword matching, 967
memory management, 968
messages, 967
reading files, 968
types, 968
writing files, 968-969

libpgm, 969-970
constants, 969
initialization, 969
memory management, 969
reading files, 970
types, 969
writing files, 970

libpnm, 970-972
constants, 970
format promotion, 972
initialization, 971
memory management, 971
reading files, 971
types, 970
writing files, 971-972
XEL manipulation, 972
XEL manipulations, 971

routing, pppd, 1367
RPC

program numbers,
converting to DARPA port
numbers, 1358-1359

protocol compiler, see rpcgen
services, reporting informa-

tion, 1383-1384
rpc.rquotad, 1384
rpc.rusersd, 1382-1383
rpc.rwalld, 1383
rpcgen, 464-466

options, 465-466
preprocessor symbols, 465

rpcinfo, 1383-1384
rquota() protocol, 1012
rquotad, 1384
rsh, 466-467
rshd, 1385-1386
rstart, 467-468
rstartd, 468-471

configuring, 469
keywords, 470

installing, 469
options, 469

rtag (cvs command), 102
runique (ftp command), 152
rup, 472
rusers, 472-473
rwall, 473
rwho, 474
rwhod, 1386-1387

S

saving stack context, 1018
/sbin directory, 1237
sbrk, 746
scandir() function,

1012-1013
scanf functions, 1013-1015

bugs, 1015
conversions, 1014-1015
flags, 1014
return values, 1015

sched_get_priority_max,
830-831

sched_get_priority_min,
830-831

sched_getparam, 832
sched_getscheduler, 833-835

errors, 834
policies, 833

SCHED_FIFO, 833-834
SCHED_OTHER, 834
SCHED_RR, 834

response time, 834
sched_rr_get_interval, 831
sched_setparam, 832
sched_setscheduler, 833-835

errors, 834
policies, 833

SCHED_FIFO, 833-834
SCHED_OTHER, 834
SCHED_RR, 834

response time, 834
sched_yield, 835
scheduling

algorithm, getting/setting,
833-835

parameters, getting/setting,
832

policies, 833
first in - first out,

833-834
round-robin, 834
time-sharing, 834

priorities
getting/setting, 766-767
value ranges, 830-831

yielding processor, 835
screen, clearing, 70-71
screen savers, beforelight,

47-48
script, 474-475
scripts, chat, 1270
scroll-back() action (xterm),

714
scroll-forw() action (xterm),

714
SCSI drivers

disk drives, 1095-1096
tape devices, 1096-1100

sd, 1095-1096

■ routines

1477

searching
binary trees, 1056
strings, for character sets,

1035-1039
second extended filesystems

creating, 1324-1325
lost+found directory, 1327
tunable parameters

(adjusting), 1412-1413
SECONDS variable (bash), 15
secure() action (xterm), 713
securetty, 1184
security

sysklogd, 1403-1404
X server, 688-689
xterm, 712

sed, 475-480
addresses, 476
bugs, 480
commands, 478-479

grouping, 478
syntax, 476

comments, 477
diagnostics, 479-480
options, 475
regular expressions, 476-477
replacement pattern

symbols, 477
search pattern symbols,

476-477
seed48() functions, 912
seekdir() function,

1015-1016
select, 835-837
select-cursor-end action

(xterm), 714
select-cursor-start() action

(xterm), 714
select-end() action (xterm),

714
select-extend() action

(xterm), 714
select-start() action (xterm),

714
selections, copying into cut

buffers, 598-599

semaphore sets
control operations, 837-839

GETALL, 838
GETNCNT, 838
GETPID, 838
GETVAL, 838
GETZCNT, 838
IPC_RMID, 838
IPC_SET, 838
IPC_STAT, 837
SETALL, 838
SETVAL, 838

identifiers (getting),
839-840

operations, 840-842
semctl, 837-839

errors, 838-839
operations, 837-838

GETALL, 838
GETNCNT, 838
GETPID, 838
GETVAL, 838
GETZCNT, 838
IPC_RMID, 838
IPC_SET, 838
IPC_STAT, 837
SETALL, 838
SETVAL, 838

semget, 839-840
semop, 840-842
send, 842-843

ftp command, 152
send arguments command

(telnet), 508-509
send-signal() action (xterm),

714
sendmail, 1387-1390

aliases, 1390
exit status codes, 1390
files, 1390
flags, 1388
options, 1389-1390

sendmsg, 842-843
sendport (ftp command), 152
sendto, 842-843
serial lines

monitoring, 1359-1360
network interfaces,

attaching, 1399-1401

serial mouse interface,
1092-1094

Microsoft protocol, 1093
MM protocol, 1094
MouseSystems protocol,

1093
Sun protocol, 1093

serial ports
configuring, 1394-1395
parameters, 1392-1394
setting/getting information,

1391-1395
serial terminal lines, 1101
servers

biff, 1274-1275
controlling with xdm,

612-613
DARPA FTP, 1301-1304

requests supported,
1302-1303

DARPA Telnet protocol,
1406-1407

DARPA TFTP, 1407
domain

looking up hostnames
with, 257-258

resolver routines,
1008-1011

font (X)
displaying information

about, 145
generating BDF fonts,

146-147
listing fonts, 145-146

interned atoms, listing,
668-669

Internet, xinetd (starting
with), 655-664

Internet domain nameserver,
1334-1338

boot file, 1334-1336
control interface,

1338-1339
master file, 1336
querying, 1350-1353
signals, 1337

servers ■

1478

SOA record, 1336-1337
stopping/restarting, 1338
synchronizing database,

1338
Internet superserver,

1305-1307
LBX proxy server, 286-287
logged-in users, 1382-1383
news, sending Usenet

articles to, 267-269
NFS

authentication/print
request, 1355-1357

mount information, 1396
NNTP, 1347-1349

getting lists from, 206-207
passwords, 1170
retrieving Usenet articles

from, 340-341
portmap, 1358-1359
remote execution,

1376-1377
remote login, 1377-1378
remote quota, 1384
remote shell, 1385-1386
remote user communication,

1405-1406
specifying, xdm, 607-608
system status, 1386-1387

message format,
1386-1387

X Window System
access control program,

643-645
display server, 685-690
file utility, 587-592
font server, 641-643
information utility, 614
killing clients, 666-667
starting, 664-666
virtual framebuffer,

717-718
X11

performance comparison
program, 585-586

performance test program,
577-585

XF86_8514, 615
XF86_Accel, 614-623

configuration, 615-616
files, 622
options, 616
setup, 616-622

XF86_AGX, 615
XF86_Mach32, 615
XF86_Mach64, 615
XF86_Mach8, 615
XF86_Mono, 624-627

configuration, 624
files, 626
setup, 624-626

XF86_P9000, 615
XF86_S3, 615
XF86_SVGA, 627-631

configuration, 627-628
files, 630-631
options, 628
setup, 628-630

XF86_VGA16, 631-633
configuration, 631
files, 633
options, 632
setup, 632

XF86_W32, 615
XFree86, 636-641

configuration, 636
environment variables,

637
files, 638-639
key combinations, 638
network connections,

636-637
options, 637-638
setup, 638

services, 1184-1186
bugs, 1186
files, 1186
Internet, listing, 1184-1186
NFS, daemon, 1347
RPC, reporting information,

1383-1384
Session Manager Proxy, see

smproxy

sessions
creating, setsid, 848
IDs, getting, 768
typescripts, creating,

474-475
X Session Manager, 694-698

default startup applica-
tions, 695

options, 695-698
proxy, 698
remote applications, 698
Session menu, 695-696
SM_SAVE_DIR

environment variable,
695

starting, 695
tester, 698-699
.xsession file, 695

xdm, 600
sessreg, 480-481
set

shell command, 40-42
telnet command, 509-510

set-allow132() action (xterm),
715

set-altscreen() action (xterm),
715

set-appcursor() action
(xterm), 715

set-appkeypad() action
(xterm), 715

set-autolinefeed() action
(xterm), 715

set-autowrap() action
(xterm), 715

set-cursesemul() action
(xterm), 715

set-jumpscroll() action
(xterm), 715

set-marginbell() action
(xterm), 715

set-reverse-video() action
(xterm), 715

set-reversewrap() action
(xterm), 715

set-scroll-on-key() action
(xterm), 715

■ servers

1479

set-scroll-on-tty-output()
action (xterm), 715

set-scrollbar() action (xterm),
715

set-tek-text() action (xterm),
715

set-terminal-type() action
(xterm), 715

set-visibility() action (xterm),
715

set-visual-bell() action
(xterm), 715

set-vt-font() action (xterm),
714

setbuf function, 1016-1017
setbuffer function, 1016-1017
setdomainname, 760
setegid, 846-847
setenv() function, 1017
seteuid, 847-848
setfdprm, 1391
setfsgid, 843-844
setfsuid, 844
setgid, 845
setgrent() function, 932-933
setgroups, 761-762
sethostid, 762-763
sethostname, 763
setitimer, 763-764

bugs, 764
defining values, 764
errors, 764
return value, 764
timer types, 764

setjmp() function, 1018
setlinebuf function,

1016-1017
setlocale() function,

1018-1019
setmntent() function,

935-936
SetNonBlocking routine, 965
setpgid, 845-846
setpgrp, 845-846
setpriority, 766-767
setprotoent() function,

941-942

setpwent() function, 943
setregid, 846-847
setreuid, 847-848
setrlimit, 767-768
setserial, 1391-1395

configuration consider-
ations, 1394-1395

files, 1395
options, 1392
parameters, 1392-1394

setservent() function, 946
setsid, 848, 1395

errors, 848
setsockopt, 769-772

bugs, 772
errors, 771
options recognized, 770-771

SO_BROADCAST, 771
SO_DEBUG, 770
SO_DONTROUTE, 770
SO_ERROR, 771
SO_KEEPALIVE, 770
SO_LINGER, 770
SO_RCVBUF, 771
SO_RCVLOWAT, 771
SO_RCVTIMEO, 771
SO_REUSEADDR, 770
SO_SNDBUF, 771
SO_SNDLOWAT, 771
SO_SNDTIMEO, 771
SO_TYPE, 771

return value, 771
setstate() function,

1001-1002
setterm, 482-483
settimeofday, 772-773
setuid, 848-849
setup, 849
setusershell() function,

946-947
setutent() function, 947
setvbuf function, 1016-1017
SGI image files, converting to

portable anymaps, 483-484
sgitopnm, 483-484
sh, expansion, 19

shadow directories (creating),
294

shar, 484-487
files, unpacking, 560-561
options, 484-486

shared libraries, selecting, 883
shared memory

allocating, 851-853
controlling, 849-851

commands, 850
system calls, 851

operations, 853-854
shell variables (bash), 15-18

allow-null_glob_expansion,
17

auto_resume, 18
BASH, 15
BASH_VERSION, 15
cdable_vars, 18
CDPATH, 16
command_oriented_history,

17
ENV, 16
EUID, 15
FCEDIT, 17
FIGNORE, 17
glob_dot_filenames, 17
histchars, 17-18
HISTCMD, 16
HISTFILE, 17
HISTFILESIZE, 17
history control, 17
HISTSIZE, 17
HOME, 16
hostname_completion_file,

18
HOSTTYPE, 16
IFS, 16
IGNOREEOF, 17
INPUTRC, 17
LINENO, 15
MAIL, 16
MAIL_WARNING, 16
MAILCHECK, 16
MAILPATH, 16
no_exit_on_failed_exec, 18
noclobber, 18

shell variables (bash) ■

1480

nolinks, 18
notify, 17
OLDPWD, 15
OPTARG, 16
OPTERR, 17
OPTIND, 16
OSTYPE, 16
PATH, 16
PPID, 15
PROMPT_COMMAND,

17
PS1, 16
PS2, 16
PS3, 17
PS4, 17
PWD, 15
RANDOM, 15
REPLY, 15
SECONDS, 15
SHLVL, 15
TMOUT, 17
UID, 15

shells
archives, creating, 484-487
Bourne-again, 11-46

aliases, 23-24
arguments, 11
arithmetic evaluation, 34
blanks, 12
bugs, 46
command execution, 25
comments, 14
compound commands, 13
control operators, 12
environments, 25-26
escape character, 14
exit status, 26
expansion, 18-21
files, 46
functions, 23
history list, 32-33
invocation, 45-46
job control, 24-25
lists, 12-13
meta characters, 12
names, 12
options, 11

parameters, 14-15
pipelines (|), 12
prompting, 26
quoting, 14
readline, 27-32
redirection, 21-23
reserved words, 12
shell variables, 15-18
signals, 25
simple commands, 12
words, 12

built-in commands, 35-45
alias, 35
bg, 35
bind, 35
break, 35
builtin, 35
cd, 35-36
command, 36
continue, 36
declare, 36
dirs, 36
echo, 36-37
enabling/disabling, 37
eval, 37
exec, 37
exit, 37
export, 37
fc, 37-38
fg, 38
getopts, 38
hash, 38
help, 38
history, 39
jobs, 39
kill, 39
let, 39
local, 39
logout, 39
popd, 39-40
pushd, 40
pwd, 40
read, 40
readonly, 40
return, 40
set, 40-42
shift, 42

suspend, 42-43
test expr, 43
times, 43
trap, 43-44
type, 44
ulimit, 44-45
umask, 45
unalias, 45
unset, 45
wait, 45

commands, executing, 1047
exiting, 37
interactive, 45
login, 45

changing, 63
exiting, 39
pathnames, 1186

remote, 466-467
server, 1385-1386

suspending execution, 42-43
user, getting, 946-947

shells file, 1186
shift (shell command), 42
shlock, 487
SHLVL variable (bash), 15
shmctl, 849-851

commands, 850
errors, 851
system calls, 851

shmget, 851-853
bugs, 853
errors, 852
system calls, 852

shmop, 853-854
show-all-if-ambiguous

variable (readline), 28
showmount, 1396
showrgb, 488
shrinkfile, 488
shutdown, 855, 1396-1397

bugs, 1397
errors, 855
files, 1397
options, 1397

sigaction, 855-857
sigaddset, 1019-1020
sigblock, 858

■ shell variables (bash)

1481

sigdelset, 1019-1020
sigemptyset, 1019-1020
sigfillset, 1019-1020
siggetmask, 858
siginterrupt() function, 1019
sigismember, 1019-1020
sigmask, 858
signal, 857-858, 1248-1249

bugs, 1249
signal messages, printing,

996
signals

available (list of), 1248-1249
bash, 25
blocked

changing list of, 856
releasing, 858-859

changing process action,
855-856

describing with strings, 1038
handling, 857-858
interrupting system calls,

1019
masks

manipulating, 858
replacing, 856

pending, examining, 856
POSIX signal set operations,

1019-1020
sending to processes, raise

function, 1000
waiting for, 817

signatures, tin, 528
sigpause, 858-859
sigpending, 855-857
sigprocmask, 855-857
sigreturn, 859
sigsetmask, 858
sigsuspend, 855-857
sigvec, 860
simple commands (bash), 12
simpleinit, 1397-1399

bugs, 1399
files, 1398

sin() function, 1020-1021
sinh() function, 1021
sirtopnm, 488-489

site (ftp command), 152
size, 489-490

copying, 489-490
ftp command, 152
options, 489

slattach, 1399
slc command (telnet), 510
sldtoppm, 490-491
sleep() function, 1021
sliplogin, 1399-1401

diagnostics, 1400
/etc/slip.hosts format, 1400
example, 1400
parameters, 1400

smb filesystem, 1126
smproxy, 491-492
snprintf function, 992-996
SOCK_DGRAM sockets,

860-861
SOCK_RAW sockets, 861
SOCK_RDM sockets, 861
SOCK_SEQPACKET sockets,

860-861
SOCK_STREAM sockets,

860-861
socket, 860-861

errors, 861
socket types, 860

SOCK_DGRAM,
860-861

SOCK_RAW, 861
SOCK_RDM, 861
SOCK_SEQPACKET,

860-861
SOCK_STREAM,

860-861
socketcall, 862
socketpair, 862-863
sockets

connections
accepting, 740-741
initiating, 752-753
listening for, 792-793

creating, 860-861
names

binding, 745-746
getting, 769

options, 770-771
getting/setting, 769-772
SO_BROADCAST, 771
SO_DEBUG, 770
SO_DONTROUTE, 770
SO_ERROR, 771
SO_KEEPALIVE, 770
SO_LINGER, 770
SO_RCVBUF, 771
SO_RCVLOWAT, 771
SO_RCVTIMEO, 771
SO_REUSEADDR, 770
SO_SNDBUF, 771
SO_SNDLOWAT, 771
SO_SNDTIMEO, 771
SO_TYPE, 771

pairs, creating, 862-863
peers, getting names, 765
receiving messages from,

826-828
sending messages from,

842-843
system calls, 862
types, 860

SOCK_DGRAM,
860-861

SOCK_RAW, 861
SOCK_RDM, 861
SOCK_SEQPACKET,

860-861
SOCK_STREAM,

860-861
soft-reset() action (xterm),

715
Solitaire files, converting to

portable anymaps, 488-489
sort, 492-493
sorted arrays, searching,

900-901
sorted files, removing

duplicate lines, 560
sorted word lists, compress-

ing/uncompressing, 496
sorting arrays, 1000
sound drivers, boot-time

parameters, 1224
source command (xauth), 591

source command (xauth) ■

1482

spaces, converting to tabs, 559
spctoppm, 494
special parameters, bash,

14-15
! (exclamation points), 15
(pound signs), 15
$ (dollar signs), 15
* (asterisks), 15
- (hyphens), 15
? (question marks), 15
@ (at signs), 15
_ (underscores), 15
0, 15

spell-checking, 274, 280
buildhash, 279
findaffix, 280
icombine, 281
ijoin, 281
ispell, 274-279
ispell dictionaries,

1084-1090
affix file, 1084-1085
alternate string characters,

1087
character-set section, 1086
flags, 1088
headers, 1085
options statements,

1085-1086
prefix/suffix tables, 1088
root words, 1084-1085

munchlist, 279-280
tryaffix, 281

split, 494-495
splitting files, 85-86, 119-120
spool queue

examining, 298-299
removing jobs from,

301-302
SPOT satellite images,

converting to portable
graymaps, 495

spottopgm, 495
sprintf function, 992-996
sprintf() function, awk,

167-168
sputoppm, 495-496

sq, 496
sqrt() function, 1023
square roots (returning), 1023
srand() function, 1001
srand48() functions, 912
srandom() function,

1001-1002
sscanf function, 1013-1015
st, 1096-1100

ioctl() calls, 1097-1100
return values, 1100

stack, saving context, 1018
standard colormap utility (X),

699-700
standard error output,

redirecting, 22
standard output, redirecting,

22
start-cursor-extend() action

(xterm), 714
start-extend() action (xterm),

714
startup time

adjusting to GMT, 1424-
1425

converting, 1430
startx, 496-497
stat, 863-864
statements, awk, 167-168
states (system), updating,

1414-1415
statfs, 865-866
status

cvs, 102
ftp, 152
telnet command, 512

stdarg, 1023-1024
stdio library, 1025-1027

bugs, 1026
functions, 1026-1027

stime, 866
stpcpy() function, 1027-1028
strcasecmp(), 1028
strcat() function, 1028-1029
strchr() function, 1029
strcmp() function, 1029-1030
strcoll() function, 1030
strcpy() function, 1030-1031

strcspn() function,
1038-1039

strdup() function, 1031
stream-oriented editor, see sed
streams

binary, input/output
(getting), 926-927

block buffered, 1016
buffering operations,

1016-1017
checking/resetting status,

919-920
closing, 919
directory

current location (return-
ing), 1048

resetting, 1011
flushing, 920-921
line buffered, 1016
opening, 924-925
repositioning, 927-928
unbuffered, 1016

strerror() function, 1032
strfry(), 1032
strftime() function,

1032-1034
conversion specifiers, 1033
tm structure members, 1034

string constants, awk,
169-170

string functions, awk, 169
string variables, configura-

tion-dependent, 906-907
string() action (xterm), 714
strings, 498

byte
copying, 900
operations, 901
writing zeros to, 902

comparing, 1029-1030
byte, 899-900
ignoring case, 1028
using current locale, 1030

concatenating, 1028-1029
converting

to doubles, 898,
1039-1040

to integers, 898-899

■ spaces, converting to tabs

1483

to long integers, 899,
1041

to multibyte character
(from wide character),
1061

to tm structure,
1036-1037

to unsigned long integers,
1041-1042

to wide character (from
multibyte), 977-978

copying, 498, 1030-1031
stpcpy() function,

1027-1028
describing signals with, 1038
duplicating, 1031
extracting tokens from,

1037-1040
length (calculating), 1035
locating characters in, 953,

1029
options, 498
outputting, 997-999
randomizing, 1032
searching, for character sets,

1035-1039
string operation functions,

1034-1035
transformation, 1042-1043
see also substrings

strip, 499
strlen() function, 1035
strncasecmp(), 1028
strncat() function, 1028-1029
strncmp() function,

1029-1030
strncpy() function,

1030-1031
strpbrk() function,

1035-1036
strptime() function,

1036-1037
bugs, 1037
field descriptors, 1036-1037

strrchr() function, 1029
strsep() function, 1037-1038
strsignal() function, 1038
strspn() function, 1038-1039

strstr() function, 1039
strtod() function, 1039-1040
strtok() function, 1040
strtol() function, 1041
strtoul() function, 1041-1042
struct (ftp command), 152
strxfrm() function,

1042-1043
subdirectories, MS-DOS

creating, 326
moving, 327
removing, 329
renaming, 329-330

subroutines
endnetent, 936-937
getnetbyaddr, 936-937
getnetbyname, 936-937
getnetent, 936-937

subst, 500-501
substrings

locating, 1039
locating in memory areas,

981
see also strings

suffixes, 1249-1252
sum, 501
Sun icons, converting to

portable bitmaps, 262
Sun raster files, converting to

portable anymaps, 438
SuperProbe, 501-503

bugs, 503
options, 502
running, 502-503

suspend (shell command),
42-43

suspending execution, 1061
swab() function, 1043
swap area, setting up,

1327-1328
swap device parameter, values,

1374
swapoff, 866-867, 1401

errors, 867
files, 1401
priority, 867

swapon, 866-867, 1401
errors, 867
files, 1401
priority, 867

swapping
enabling/disabling, 1401
starting/stopping, 866-867

priority, 867
swapping bytes, 1043
symbolic links, 867-869

reading values, 823-824
symlink, 867-869
sync, 869, 1401-1402
synchronizing files with

memory maps, 811
synchronous I/O,

multiplexing, 835-837
syscall macros, 738
syscall() macros, 738
sysconf() function,

1043-1045
sysctl, 869-871
sysfs, 871
sysinfo, 871-872
sysklogd, 1402-1404

configuration file, 1402-
1403

FIFOs, 1403
files, 1404
installing, 1403
remote logging, 1403
security, 1403-1404

syslog, 872-874
syslog() function, 1045-1046
syslog.conf, 1186-1188

action field, 1186-1187
examples, 1187-1188
facility keyword, 1187
level keyword, 1187
selector field, 1186-1187

syslogd, 1404-1405
configuration file, 1186-

1188
action field, 1186-1187
examples, 1187-1188
facility keyword, 1187
level keyword, 1187
selector field, 1186-1187

syslogd ■

1484

files, 1405
options, 1405

system
configuration, getting

information at runtime,
1043-1045

displaying information
about, 562

load average, graphing, 533
page size, getting, 765
parameters, reading/writing,

869-871
printing activity summary,

573
shutting down, 1396-1397
state, updating, 1414-1415
status server, 1386-1387

message format,
1386-1387

system (ftp command), 152
system calls, 738-739

calling directly, 738
interrupting with signals,

1019
IPC, 789
obsolete, 814
prototypes, 738
socket, 862
syscall macros, 738
undocumented, 881
unimplemented, 881-882

system logging, 1402-1404
configuration file,

1402-1403
FIFOs, 1403
making log entries, 295-296
messages, 1404-1405
remote, 1403
sending messages to,

1045-1046
System V interprocess

communication, 1144-1146
message queues, 1145
resource access permissions,

1144-1145
semaphore sets, 1145-1146
shared memory segments,

1146

System V IPC keys, convert-
ing pathnames/project
identifiers to, 929-930

system() function, 1047
sysv filesystem, 1125

T

Tab Window Manager, see
twm

tables
descriptor, size (getting),

760-761
file

adding entries,
1428-1429

description, 1425-1426
initializing, 1427
moving files to end, 1431
removing files, 1431-1432
structure, 1426
table entries, 1426
unreferenced entries

(fetching), 1428
hash

creating, 951
freeing memory, 951
searching, 951

IP routing (manipulating),
1379-1380

local descriptor, reading/
writing, 800

RARP, manipulating, 1373
troff, formatting, 236-237

tabs, converting to spaces, 137
tac, 503-504
tag (cvs command), 102-103
tag files

emacs, 135-137
generating, 87-88
vi, 135-137

tail, 504
talk, 505
talkd, 1405-1406
tan() function, 1047-1048
tanh() function, 1048
tcal, 506

tcdrain(), 876, 1052
tcflow(), 876, 1052
tcflush(), 876, 1052
tcgetattr(), 876, 1051
tcgetpgrp(), 877, 1053
tcsendbreak(), 876, 1052
tcsetattr(), 876, 1052
tcsetpgrp(), 877, 1053
tdelete, 1056-1058
tek-copy() action (xterm),

716
tek-page() action (xterm),

715
tek-reset() action (xterm),

716
telinit, 1307-1309

diagnostics, 1309
files, 1308
run levels, 1308

telldir() function, 1048
telnet, 507-512

commands, 508-512
!, 512
?, 512
close, 508
display argument, 508
environ, 511
mode, 508
open host, 508
quit, 508
send arguments, 508-509
set, 509-510
slc, 510
status, 512
toggle, 511-512
unset, 509-510
z, 512

environment, 512
files, 512
options, 507

Telnet protocol
DARPA server, 1406-1407
interface, see telnet

telnetd, 1406-1407
tempnam() function, 1049
temporary filenames, creating,

983-984

■ syslogd

1485

temporary files
creating, 983, 1053-1054
naming, 1049, 1054

tenex (ftp command), 152
termcap, 1188-1197

Boolean capabilities, 1189
numeric capabilities,

1189-1190
string capabilities,

1190-1197
control codes, 1195-1196

terminals
attributes, 1049-1053

getting, 876
setting, 482-483, 876

baud rate, 1049-1053
capability database,

1188-1197
Boolean capabilities, 1189
numeric capabilities,

1189-1190
string capabilities,

1190-1197
controlling terminal,

1100-1101
creating typescript of

sessions, 474-475
displaying last login,

285-286
foreground processes, group

ID, 1049-1053
initializing, 539-542
line control, 1049-1053
name and device list, 1197
names (returning), 1058
resetting, 456
serial lines, 1101
termios functions, 874-878
type mapping, 540-541
type, setting in shell

environment, 540
virtual hangups, 885
window size, setting,

456-457
terminating processes,

283-284

terminating programs
abort() function, 892
assert() function, 895-896

termios functions, 874
flag constants, 874-876

termios structure
c_cflag flag constants, 1051
c_iflag flag constants, 1050
c_lflag flag constants, 1051
c_oflag flag constants,

1050-1051
test expr (shell command), 43
text

compressed, viewing,
733-734

filters, more, 327-328
formatting line lengths, 143
rendering to bitmaps,

355-356
sorting, 492-493
editors, elvis, 126-128
files

converting for printing,
429-430

creating gcal resource files
from, 558

tfind, 1056-1058
tfmtodit, 513
TFTP (Trivial File Transfer

Protocol), 1407
DARPA server, 1407

tftp, 514-515
TFTP (Trivial File Transfer

Protocol), 514
tftpd, 1407
tgatoppm, 515
TI_ACTIVEFILE environ-

ment variable, 529
TI_NOVROOTDIR environ-

ment variable, 529
TIFF files, converting to

portable anymaps, 515-516
tifftopnm, 515-516
tilde expansion (bash), 19
time

calculating differences, 911
getting/setting, 772-773

in seconds, 878

returning current, 928-929
setting, 866
startup

adjusting to GMT,
1424-1425

converting, 1430
time functions, 878

awk, 169
time server daemon,

1407-1408
time zones

compiling, 1419-1422
printing, 1419

time-sharing scheduling, 834
timed, 1407-1409

control program, 1408-1409
files, 1408

timedc, 1408-1409
timers (event), managing,

1424
times

binary, converting to ASCII,
909-911

converting
to ASCII, 984-986
initializing conversion

information, 986-988,
1058-1060

strings to numbers,
989-990

to tm structure,
1036-1037

formatting, strftime()
function, 1032-1034

process, getting, 878-879
time zone information files,

1197-1198
user/system, printing, 43

times (shell command), 43
times function, 878-879
timestamps, changing, 536
tin, 516-533

articles
automatic mailing, 528
autoselect/autokill,

526-527
crossposting, 527

tin ■

1486

customizing quote string,
527

mailing, 527
piping, 527
posting, 527
printing, 527
saving, 527-528
tagging/untagging, 528

bugs, 531
commands

article viewer, 522-524
editing, 519
global options menu, 524-

525
group index, 521-522
newsgroup selection,

519-520
spool directory selection,

520
thread listing, 522

environment variables,
528-530

ADD_ADDRESS, 529
AUTOSUBSCRIBE, 529
AUTOUNSUBSCRIBE,

530
BUG_ADDRESS, 529
DISTRIBUTION, 529
MAILER, 529
NNTPSERVER, 529
ORGANIZATION, 529
REPLYTO, 529
TI_ACTIVEFILE, 529
TI_NOVROOTDIR, 529
TIN_HOMEDIR, 528
TIN_INDEXDIR, 529
TIN_LIBDIR, 529
TIN_SPOOLDIR, 529
TINRC, 528
VISUAL, 529

files, 531
group attributes, 526
index files, 517-518
moving between levels, 519
news administration, 518
options, 516-517
screen format, 518-519

signatures, 528
starting, 518
tinrc configurable variables,

525-526
xterm buttons, 530-531

TIN_HOMEDIR
environment variable, 528

TIN_INDEXDIR
environment variable, 529

TIN_LIBDIR environment
variable, 529

TIN_SPOOLDIR
environment variable, 529

tinrc configurable variables,
525-526

see also tin
TINRC environment variable,

528
tload, 533
TMOUT variable (bash), 17
/tmp directory, 1237
tmpfile() function,

1053-1054
tmpnam() function, 1054
toascii() function, 1055
toggle command (telnet),

511-512
tokens, extracting from

strings, 1037-1040
tolower() function,

1055-1056
top, 533-535

bugs, 535
commands, 534-535
field descriptions, 534
options, 534

topological sorting (graphs),
542

touch, 536
toupper() function,

1055-1056
tr, 536-539

character classes, 537-538
escape characters, 537
ranges, 537
repeated characters, 537
specifying character sets, 537

squeezing/deleting, 538-539
translating, 538
warning messages, 539

tr2tex, 1252-1253
trace (ftp command), 152
traceroute, 1409-1412

examples, 1411
options, 1410

transforming strings,
1042-1043

translating/deleting charac-
ters, 536-539

trap (shell command), 43-44
Trivial File Transfer Protocol,

see TFTP
troff

compiling pictures for,
211-215

converting to LaTeX,
1252-1253

formatting tables, 236-237
output format, 1129-1131

TrueVision Targa files,
converting to portable
pixmaps, 515

truncate, 879-880
tryaffix, 274, 281

files, 281
see also ispell

tsearch, 1056-1058
tset, 539-542

compatibility, 542
environment, 541
files, 541
options, 540
setting environment, 540
terminal type mapping,

540-541
tsort, 542
tty, 1100-1101
ttyname, 1058
ttys, 1101
ttytype, 1197
tune2fs, 1412-1413
tunelp, 1413-1414
twalk, 1056-1058

■ tin

1487

twm, 542-557
bindings, 552-553
bugs, 557
customizing, 543-544
environment, 557
files, 557
functions, 554-556

!, 554
f.autoraise, 554
f.backiconmgr, 554
f.beep, 554
f.bottomzoom, 554
f.circledown, 554
f.circleup, 554
f.colormap, 554
f.deiconify, 554
f.delete, 554
f.deltastop, 554
f.destroy, 554
f.downiconmgr, 554
f.exec, 554
f.focus, 554
f.forcemove, 555
f.forwiconmgr, 555
f.fullzoom, 555
f.function, 555
f.hbzoom, 555
f.hideiconmgr, 555
f.horizoom, 555
f.htzoom, 555
f.hzoom, 555
f.iconify, 555
f.identify, 555
f.lefticonmgr, 555
f.leftzoom, 555
f.lower, 555
f.menu, 555
f.move, 555
f.nexticonmgr, 555
f.nop, 555
f.previconmgr, 555
f.priority, 555
f.quit, 555
f.raise, 555
f.raiselower, 555
f.refresh, 555
f.resize, 555

f.restart, 555
f.righticonmgr, 555
f.rightzoom, 556
f.saveyourself, 556
f.showiconmgr, 556
f.sorticonmgr, 556
f.title, 556
f.topzoom, 556
f.unfocus, 556
f.upiconmgr, 556
f.vlzoom, 556
f.vrzoom, 556
f.warpring, 556
f.warpto, 556
f.warptoiconmgr, 556
f.warptoscreen, 556
f.winrefresh, 556
f.zoom, 556

icons, 557
menus, 556-557
options, 543
starting, 543
startup files, 543-544
variables, 544-552

AutoRaise, 544
AutoRelativeResize,

544-545
BorderColor, 545
BorderTileBackground,

545
BorderTileForeground,

545
BorderWidth, 545
ButtonIndent, 545
ClientBorderWidth, 545
Color, 545-546
ConstrainedMoveTime,

546
Cursors, 546
DecorateTransients, 546
DefaultBackground, 546
DefaultForeground, 547
DefaultFunction, 552
DontIconifyByUnmapping,

547
DontMoveOff, 547
DontSqueezeTitle, 547

ForceIcons, 547
FramePadding, 547
Grayscale, 547
IconBackground, 547
IconBorderColor, 547
IconBorderWidth, 547
IconDirectory, 547
IconFont, 547
IconForeground, 547
IconifyByUnmapping,

547
IconManagerBackground,

547
IconManagerDontShow,

547
IconManagerFont, 548
IconManagerForeground,

548
IconManagerGeometry,

548
IconManagerHighlight,

548
IconManagers, 548
IconManagerShow, 548
IconRegion, 548
Icons, 548-549
InterpolateMenuColors,

549
MakeTitle, 549
MaxWindowSize, 549
MenuBackground, 549
MenuFont, 549
MenuForeground, 549
MenuShadowColor, 549
MenuTitleBackground,

549
MenuTitleForeground,

549
Monochrome, 549
MoveDelta, 549
NoBackingStore, 549
NoCaseSensitive, 549
NoDefaults, 549
NoGrabServer, 549
NoHighlight, 550
NoIconManagers, 550
NoMenuShadows, 550

twm ■

1488

NoRaiseOnDeiconify, 550
NoRaiseOnMove, 550
NoRaiseOnResize, 550
NoRaiseOnWarp, 550
NoSaveUnders, 550
NoStackMode, 550
NoTitle, 550
NoTitleFocus, 550
NoTitleHighlight, 550
OpaqueMove, 550
Pixmaps, 550
Priority, 550
RandomPlacement, 550
ResizeFont, 551
RestartPreviousState, 551
SaveColor, 551
ShowIconManager, 551
SortIconManager, 551
SqueezeTitle, 551
StartIconified, 551
TitleBackground, 551
TitleButtonBorderWidth,

551
TitleFont, 552
TitleForeground, 552
TitlePadding, 552
UnknownIcon, 552
UsePPosition, 552
WarpCursor, 552
WarpUnmapped, 552
WindowFunction, 552
WindowRing, 552
XorValue, 552
Zoom, 552

windows, 543
creating, 543
resizing, 543

txt2gcal, 558
type

ftp command, 152
shell command, 44

TZ environment variable, 987
tzfile, 1197-1198
tzset, 986-988

files, 988
TZ environment variable,

987
tzset() function, 1058-1060

U

UID variable (bash), 15
ul, 558-559
ulimit (shell command),

44-45
umask, 880

ftp command, 152
shell command, 45

umsdos filesystem, 1125
unalias (shell command), 45
uname, 880-881
unbuffered streams, 1016
underlining, 558-559
underscores (_), bash special

parameters, 15
undocumented system calls,

881
unexpand, 559
ungetc() function, 945
Unicode, 1065, 1253-1255

ASCII-compatible encoding,
1255-1256

combining characters, 1254
implementation levels, 1254
Web site, 1065

unimplemented system calls,
881-882

uniq, 560
Universal Product Code

bitmaps, creating, 368
UNIX

copying MS-DOS files to/
from, 317-318

filenames, restoring,
324-325

files, copying
between systems, 563-565
to MS-DOS, 335

unlink, 882
unlocking memory

munlock, 811-812
munlockall, 812-813

unmapping files to memory,
799-800

unmount, 802-804,
1328-1332

bugs, 1332
errors, 803
files, 1332
options, 1331
return value, 803

unset
shell command, 45
telnet command, 509-510

unshar, 560-561
unsq, 496
update (cvs command),

103-104
update_state, 1414-1415
updatedb, 561-562
uppercase, converting letters

to, 1055-1056
uptime, 562
uselib, 883
Usenet

administration, 1344-1346
archiver, 1262-1263
articles

expiring, 1121-1123
libinn routines, 962-966
purging, 1292-1293
record of, 1131-1132
retrieving fro NNTP

server, 340-341
sending to remote NNTP

server, 1312-1313
sending to remote site,

1349-1350
specifying distribution,

1158-1163
batch files, converting to

INN, 1281-1282
control messages, handling,

1115-1116
databases, recovering,

1342-1344
history file

displaying filenames from,
226-227

removing filenames,
1370-1371

■ twm

1489

innwatch supervision,
1142-1144

log files, 1163-1165
list of, 1164
maintenance, 1346-1347
message/action fields,

1163-1164
moderated newsgroups, mail

addresses, 1151-1152
newsgroups, listing active,

1104-1105
sending articles to servers,

267-269
Usenix FaceSaver files,

converting to portable
graymaps, 147

user (ftp command), 152
user group file, 1131
user IDs (processes), setting,

848-849
real and effective, 847-848

userlist, 563
usernames

getting, 934-935
remote lookup, 1134-1135

users
adding to system,

1258-1259
displaying last login,

285-286
file permissions, checking,

741-742
IDs, getting, 773
listing, 563
logins, preventing, 1168
outputting logged in

on local machines, 474
on networks, 472-473

preference utility (X),
690-693

printing activity summary
(w), 573

quotas, editing, 1291-1292
sending messages to, 473,

576-577
shells, getting, 946-947
switching between, 296

talking to online, 505
writing messages to, 574,

1383
usleep() function, 1061
/usr directory, 1237
/usr/X11R6 directory, 1237
/usr/X11R6/bin directory,

1237
/usr/X11R6/lib directory,

1237
/usr/X11R6/lib/X11 directory,

1237
/usrX11R6/include/X11

directory, 1237
ustat, 883-884
UTF-8, 1255-1256

examples, 1256
properties, 1255-1256

utime, 884-885
utimes, 884-885
utmp, 1198-1200
utmp file entries, accessing,

947-948
utmp/wtmp entries, manag-

ing, 480-481
utmpname() function, 947
uucico, 1415-1417

files, 1416-1417
options, 1415-1416

uucp, 563-565
bugs, 565
execution daemon, 572
files, 564-565
options, 564
remote command execution,

569-571
status inquiry, 566-569

UUCP
connections, receiving news,

463-464
file transfer requests,

processing, 1415-1417
uudecode, 565-566
uuencode, 565-566, 1200
uustat, 566-569

examples, 568-569
files, 569
options, 567-568

uux, 569-571
bugs, 571
examples, 571
files, 571
options, 570-571
restrictions, 571

uuxqt, 572

V

variable argument lists
(declaring), 1023-1024

variables
awk, 163-165

arrays, 164
built-in, 163-164
typing and conversion,

164-165
bash, 15-18

allow-null_glob
_expansion, 17

auto_resume, 18
BASH, 15
BASH_VERSION, 15
cdable_vars, 18
CDPATH, 16
command_oriented_history,

17
ENV, 16
EUID, 15
FCEDIT, 17
FIGNORE, 17
glob_dot_filenames, 17
histchars, 17-18
HISTCMD, 16
HISTFILE, 17
HISTFILESIZE, 17
HISTSIZE, 17
HOME, 16
hostname_completion_file,

18
HOSTTYPE, 16
IFS, 16
IGNOREEOF, 17
INPUTRC, 17
LINENO, 15
MAIL, 16

variables ■

1490

MAIL_WARNING, 16
MAILCHECK, 16
MAILPATH, 16
no_exit_on_failed_exec,

18
noclobber, 18
nolinks, 18
notify, 17
OLDPWD, 15
OPTARG, 16
OPTERR, 17
OPTIND, 16
OSTYPE, 16
PATH, 16
PPID, 15-17
PROMPT_COMMAND,

17
PS1, 16
PS2, 16
PS3, 17
PS4, 17
PWD, 15
RANDOM, 15
REPLY, 15
SECONDS, 15
SHLVL, 15
TMOUT, 17
UID, 15

declaring, 36
local, creating, 39
readline, 28

bell-style, 28
comment-begin, 28
completion-query-items,

28
convert-meta, 28
editing-mode, 28
expand-tilde, 28
horizontal-scroll-mode, 28
keymap, 28
mark-modified-lines, 28
meta-flag, 28
output-meta, 28
show-all-if-ambiguous, 28

string, configuration-
dependent, 906-907

vcs, 1101-1102
vcsa, 1101-1102
vectors, reading/writing,

824-825
verbose (ftp command), 152
vfat filesystem, 1125

case sensitivity (mtools and),
332

vfork, 758
vfprintf function, 992-996
vfscanf function, 1013-1015
vhangup, 885
vi, see elvis
video hardware, identifying,

501-503
video mode tuner (XFree86),

719-720
buttons, 719
moving display, 719
options, 720

vidr, 303-304
view, see elvis
vipw, 1418-1419
virtual 8086 mode, entering,

885-886
virtual consoles, 1066

memory, 1101-1102
virtual framebuffer X server,

717-718
virtual memory

addresses, remapping,
805-806

reports, 1417-1418
VISUAL environment

variable, 529
visual-bell() action (xterm),

716
vm86, 885-886
vmstat, 1417-1418
volume labels (MS-DOS),

creating, 325-326
vprintf function, 992-996
vscanf function, 1013-1015
vsnprintf function, 992-996
vsprintf function, 992-996
vsscanf function, 1013-1015

W

w, 573
wait, 886-888

errors, 887
shell command, 45
status macros, 887

wait3, 888-889
wait4, 888-889
waitpid, 886-888
wall, 574
wc, 574
wcstomb() function,

1061-1062
wcstombs() function, 1061
Web sites, Unicode, 1065
whereis, 575-576
while (bash command), 13
wide character strings,

converting to multibyte
character strings, 1061

wide characters, converting to
multibyte characters,
1061-1062

widgets
bitmap application, 54-57
editres, 125-126
xclipboard, 596
xclock, 595
xconsole, 598
xcutsel, 599
xdm authentication widget,

609-610
actions supported, 610
resources, 609-610

xfd, 634-635
xlogo, 668
xmag, 671

windows, X
dumping utility, 721-722
information utility, 722-724

word splitting (bash), 21
words

bash, 12
finding first bit set, 921
input/output, 948

■ variables

1491

wrapping input lines, 143-144
write, 576-577, 889-890

errors, 889-890
writev, 824-825, 1003-1004

bugs, 1004
errors, 825, 1004

wtmp, 1198-1200

X

X Color Management System,
Device Color Characteriza-
tion utility, 592-593

X commands, grops, 232-233
X font servers

displaying information
about, 145

generating BDF fonts,
146-147

listing fonts, 145-146
X sessions, initializing,

496-497
X Window System

clients
clipboard client, 595-597
listing applications,

669-670
clock, 593-595
Display Manager, 599-614

authentication widget,
609-610

chooser, 607
configuration file, 606
controlling, 613
environment variables,

608
files, 613
limitations, 613
local server specification,

607-608
options, 600-601
reset program, 612
resources, 601-606
resources file, 608
server control, 612-613
session program, 611-612
sessions, 600

setup program, 608-609
startup program, 610-611
XDMCP service access

control, 606-607
emacs, 131-132
fonts

displaying all characters
in, 633-636

listing, 670-671
image displayer, 725-726

environment, 726
options, 725-726

imake, 266
initializer, 664-666
keymaps, modifying,

672-676
LBX proxy server, 286-287
logo, 667-668
magnifying screen, 671-672
monitoring system console

messages, 597-598
property displayer, 677-681

constructing formats, 679
examples, 680
format characters, 679
selecting windows, 678

remote program starts, 676
resource database utility,

681-684
file symbols, 681-682
options, 682-684

root window parameters
(setting), 693-694

screen, refreshing, 684-685
server information utility,

614
servers

access control program,
643-645

display server, 685-690
font server, 641-643
killing clients, 666-667
virtual framebuffer,

717-718
XFree86, 636-641

Session Manager, 694-698
default startup applica-

tions, 695
options, 695-698
proxy, 698
remote applications, 698
Session menu, 695-696
SM_SAVE_DIR

environment variable,
695

starting sessions, 695
tester, 698-699
.xsession file, 695

standard colormap utility,
699-700

Tab Window Manager,
542-557

bindings, 552-553
bugs, 557
customizing, 543-544
functions, 554-556
icons, 557
menus, 556-557
options, 543
starting, 543
startup files, 543-544
variables, 544-552
windows, 543

terminal emulator, 700-717
actions, 713-716
character classes, 712-713
emulations, 700
environment, 717
features, 700-701
menus, 711-712
options, 701-705
pointer usage, 710-711
resources, 705-710
security, 712

user preference utility,
690-693

window dumping utility,
721-722

window information utility,
722-724

X10 bitmaps, converting to
portable, 592

X11 bitmaps, converting to
portable, 592

X11 bitmaps, converting to portable ■

1492

X11 pixmaps, converting to
portable, 677

X11 server
performance comparison

program, 585-586
performance test program,

577-585
X11/X10 window dump files,

converting to portable
anymaps, 722

x11perf, 577-585
options, 578-585

x11perfcomp, 585-586
xargs, 586-587
xauth, 587-592

bugs, 592
commands, 588, 591

?, 591
exit, 591
help, 591
info, 591
list, 591
merge, 591
quit, 591
remove, 591
source, 591

display names, 591
environment, 589
environment variables, 592
example, 591
files, 589, 592
generating magic cookies

for, 317
options, 587-588

xbmtopbm, 592
xclipboard, 595-597

buttons, 596
environment, 597
files, 597
options, 596
sending/retrieving contents,

596-597
widgets, 596

xclock, 593-595
bugs, 595
defaults, 594-595
environment, 595

files, 595
options, 594
widgets, 595

xcmsdb, 592-593
xconsole, 597-598
xcutsel, 598-599
Xdf disks, 332
xdm, 599-614

authentication widget,
609-610

actions supported, 610
resources, 609-610

chooser, 607
configuration file, 606
controlling, 613
environment variables, 608
files, 613
limitations, 613
local server specification,

607-608
options, 600-601
reset program, 612
resources, 601-606

DisplayManager., 604
DisplayManager.accessFile,

603
DisplayManager.authDir,

602
DisplayManager.autoRescan,

602
DisplayManager.choiceTimeout,

603
DisplayManager.daemonMode,

602
DisplayManager.debugLevel,

602
DisplayManager.DISPLAY.

authComplain, 605
DisplayManager.DISPLAY.

authFile, 605
DisplayManager.DISPLAY.

authName, 605
DisplayManager.DISPLAY.

authorize, 605
DisplayManager.DISPLAY.

chooser, 603

DisplayManager.DISPLAY.
cpp, 603

DisplayManager.DISPLAY.
failsafeClient, 605

DisplayManager.DISPLAY.
grabServer, 605

DisplayManager.DISPLAY.
grabTimeout, 605

DisplayManager.DISPLAY.
openDelay, 604

DisplayManager.DISPLAY.
openRepeat, 604

DisplayManager.DISPLAY.
openTimeout, 604

DisplayManager.DISPLAY.
pingInterval, 604

DisplayManager.DISPLAY.
pingTimeout, 604

DisplayManager.DISPLAY.
reset, 604

DisplayManager.DISPLAY.
resetForAuth, 606

DisplayManager.DISPLAY.
resetSignal, 605

DisplayManager.DISPLAY.
resources, 603

DisplayManager.DISPLAY.
session, 603

DisplayManager.DISPLAY.
setup, 603

DisplayManager.DISPLAY.
startup, 603

DisplayManager.DISPLAY.
systemPath, 604-605

DisplayManager.DISPLAY.
systemShell, 605

DisplayManager.DISPLAY.
terminateServer, 604

DisplayManager.DISPLAY.
termSignal, 605

DisplayManager.DISPLAY.
userAuthDir, 606

DisplayManager.DISPLAY.
userPath, 604

DisplayManager.DISPLAY.
xrdb, 603

■ X11 pixmaps, converting to portable

1493

DisplayManager.errorLogFile,
602

DisplayManager.exportList,
603

DisplayManager.greeterLib,
603

DisplayManager.keyFile,
602

DisplayManager.lockPidFile,
602

DisplayManager.pidFile,
602

DisplayManager.randomFile,
603

DisplayManager.remove
Domainname, 602

DisplayManager.requestPort,
601

DisplayManager.servers,
601

resources file, 608
server control, 612-613
session program, 611-612
sessions, 600
setup program, 608-609
startup program, 610-611
XDMCP service access

control, 606-607
XDMCP service, access

control, 606-607
xdpyinfo, 614
XF86_8514 server, 615
XF86_Accel, 614-623

bugs, 623
configuration, 615-616
files, 622
options, 616
setup, 616-622

XF86_AGX server, 615
XF86_Mach32 server, 615
XF86_Mach64 server, 615
XF86_Mach8 server, 615
XF86_Mono, 624-627

configuration, 624
files, 626
options, 624
setup, 624-626

XF86_P9000 server, 615
XF86_S3 server, 615
XF86_SVGA, 627-631

configuration, 627-628
files, 630-631
options, 628
setup, 628-630

XF86_VGA16, 631-633
configuration, 631
files, 633
options, 632
setup, 632

XF86_W32 server, 615
XF86Config, 1201-1208

Device sections, 1204-1206
Files section, 1201
Keyboard section, 1202
Monitor sections,

1203-1204
Pointer section, 1202-1203
Screen sections, 1206-1208
ServerFlags section, 1201

xf86config, 633
xfd, 633-636

application-specific
resources, 635

bugs, 636
fontgrid resources, 635
options, 634
widgets, 634-635

XFree86, 636-641
configuration, 636
configuration file,

1201-1208
Device sections, 1204-

1206
Files section, 1201
Keyboard section, 1202
Monitor sections,

1203-1204
Pointer section,

1202-1203
Screen sections,

1206-1208
ServerFlags section, 1201

environment variables, 637
key combinations, 638

network connections,
636-637

options, 637-638
setup, 638
video mode tuner, 719-720

buttons, 719
moving display, 719
options, 720

xfs, 641-643
bugs, 643
configuration, 642
naming, 643
options, 641
signals, 641

xhost, 643-645
bugs, 644
diagnostics, 644
environment, 644
files, 644
names, 644
options, 643-644

xiafs filesystem, 1125
XIE protocol, testing,

645-654
xieperf, 645-654

bugs, 654
options, 646-654

XIM files, converting to
portable pixmaps, 654

ximtoppm, 654
xinetd, 655-664

bugs, 664
configuration file, 656-660
editing signal responses,

660-661
files, 663
internal services, 660
log format, 661-663
options, 655-656

xinit, 664-666
environment variables, 666
examples, 665-666
files, 666

xkill, 666-667
xlogo, 667-668

environment variables, 668
resources, 668
widgets, 668

xlogo ■

1494

xlsatoms, 668-669
xlsclients, 669-670
xlsfonts, 670-671
xmag, 671-672
xmkmf, 672
xmodmap, 672-676

bugs, 675
environment, 675
examples, 674-675
expression grammar,

673-674
options, 673

xon, 676
xpmtoppm, 677
xprop, 677-681

constructing formats, 679
environment, 680
examples, 680
format characters, 679
options, 677-678
selecting windows, 678

xrdb, 681-684
bugs, 684
environment, 684
file symbols, 681-682
options, 682-684

xrefresh, 684-685
arguments, 684-685
bugs, 685
defaults, 685
environment, 685

Xresources file, 608
Xserver, 685-690

file utility, 587-592
files, 690
fonts, 689
options, 686-687

network connections, 688
server-dependent,

687-688
XDMCP, 688
XKEYBOARD, 688

security, 688-689
signals, 689
starting, 685

xset, 690-693
xsetroot, 693-694
xsm, 694-698

default startup applications,
695

options, 695-698
proxy, 698
remote applications, 698
Session menu, 695-696
SM_SAVE_DIR environ-

ment variable, 695
starting sessions, 695
tester, 698-699
.xsession file, 695

xsmclient, 698-699
xstdcmap, 699-700
xterm, 700-717

actions, 713-716
allow-send-events(), 714
bell(), 713
clear-saved-lines(), 715
hard-reset(), 715
ignore(), 713
insert(), 713
insert-eight-bit(), 713
insert-selection(), 713
insert-seven-bit(), 713
keymap(), 713
popup-menu(), 713
quit(), 714
redraw(), 714
scroll-back(), 714
scroll-forw(), 714
secure(), 713
select-cursor-end, 714
select-cursor-start(), 714
select-end(), 714
select-extend(), 714
select-start(), 714
send-signal(), 714
set-allow132(), 715
set-altscreen(), 715
set-appcursor(), 715
set-appkeypad(), 715

set-autolinefeed(), 715
set-autowrap(), 715
set-cursesemul(), 715
set-jumpscroll(), 715
set-marginbell(), 715
set-reverse-video(), 715
set-reversewrap(), 715
set-scroll-on-key(), 715
set-scroll-on-tty-output(),

715
set-scrollbar(), 715
set-tek-text(), 715
set-terminal-type(), 715
set-visibility(), 715
set-visual-bell(), 715
set-vt-font(), 714
soft-reset(), 715
start-cursor-extend(), 714
start-extend(), 714
string(), 714
tek-copy(), 716
tek-page(), 715
tek-reset(), 716
visual-bell(), 716

bugs, 717
character classes, 712-713
emulations, 700
environment, 717
features, 700-701
menus, 711-712
options, 701-705
pointer usage, 710-711
resources, 705-710

fontMenu entries, 710
mainMenu entries, 709
tekMenu entries, 710
vtMenu entries, 709-710

security, 712
XV thumbnail pictures,

converting to portable
pixmaps, 720

Xvfb, 717-718
xvidtune, 719-720
xvminitoppm, 720

■ xlsatoms

1495

xwd, 721-722
xwdtopnm, 722
xwininfo, 722-724
xwud, 725-726

Y

y0() function, 959
y1() function, 959
ybmtopbm, 726
yn() function, 959
ytalk, 727-730

Boolean options, 729
daemons, 727
escape menu, 728
files, 730
readdressing, 729
runtime options, 728-729
startup file, 729
username field, 727
X11 interface, 730

YUV bytes, converting to
portable pixmaps, 731

YUV files, converting to
portable pixmaps, 730-731

yuvplittoppm, 730-731
yuvtoppm, 731

Z

z command (telnet), 512
Z files, recompressing to GZ,

734-735
zcat, 248-249

see also gzip
zcatgzip, 248-249

see also gzip
zcmp, 731-732
zdiff, 731-732
zdump, 1419
Zeiss confocal files, converting

to portable anymaps, 732
zeisstopnm, 732
zero, 1094
zforce, 732-733
zgrep, 733

zic, 1419-1422
files, 1422
link lines, 1421-1422
options, 1419-1420
rule lines, 1420-1421
zone lines, 1421

zmore, 733-734
znew, 734-735

znew ■

	Overview
	Command TOC
	User Commands
	System Calls
	Library Functions
	Special Files
	File Formats
	Games
	Miscellaneous
	Administration and Privileged Commands
	Kernel Reference Guide
	Index
	important.pdf
	Local Disk
	articlopedia.gigcities.com

	1.pdf
	Local Disk
	file:///C|/Documents and Settings/me/デスクトップ/desktop/pictures/getpedia.html

