

http://getpedia.com/teethwhitening/default.htm

LINUX COMPLETE

Command Reference

Compiled by J. Purcell
Red Hat Software, Inc.

201 West 103rd Street
Indianapolis, Indiana 46290

For more information on the Linux operating system and
Red Hat Software, Inc., check http://www.redhat.com.

COPYRIGHT © 1997 BY RED HAT SOFTWARE, INC.
FIRST EDITION

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission from the publisher. No
patent liability is assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the preparation of this
book, the publisher and author assume no responsibility for errors or omissions.
Neither is any liability assumed for damages resulting from the use of the
information contained herein. For information, address Sams Publishing, 201
W. 103rd St., Indianapolis, IN 46290.

International Standard Book Number: 0-672-31104-6
Library of Congress Catalog Card Number: 97-66202
2000 99 98 97 4321

Interpretation of the printing code: the rightmost double-digit number is the
year of the book’s printing; the rightmost single-digit, the number of the book’s
printing. For example, a printing code of 97-1 shows that the first printing of the
book occurred in 1997.

Composed in AGaramond and MCPdigital by Macmillan Computer Publishing
Printed in the United States of America

TRADEMARKS

All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to the
accuracy of this information. Use of a term in this book should not be regarded
as affecting the validity of any trademark or service mark.

President Richard K. Swadley
Publisher and Director of Acquisitions Jordan Gold
Director of Product Development Dean Miller

Managing Editor ~ Kitty Wilson Jarrett
Indexing Manager Johnna L. VanHoose
Director of Marketing ~ Kelli S. Spencer
Associate Product Marketing Manager ~ Jennifer Pock
Marketing Coordinator Linda Beckwith

Acquisitions Editor
Grace M. Buechlein

Development Editor
Brian Proffitt

Software Development Specialist
Jack Belbot

Production Editor
Kitty Wilson Jarrett
Kate Shoup Welsh

Copy Editors
Kimberly K. Hannel
Carolyn Linn
Kristine Simmons

Indexer
Christine L. Nelsen

Technical Reviewer
Bill Ball

Editorial Coordinators
Mandie Rowell
Katie Wise

Technical Edit Coordinator
Lynette Quinn

Editorial Assistants
Carol Ackerman
Andi Richter
Rhonda Tinch-Mize
Karen Williams

Cover Designer
Karen Ruggles

Book Designer
Ann Jones

Copy Writer
David Reichwein

Production Team Supervisor
Beth Lewis

Production Team
Erin Danielson, Bryan Flores,
DiMonique Ford, Julie Geeting,
Kay Hoskin, Christy M. Lemasters,
Tony McDonald, Darlena Murray,
Julie Searls, Sossity Smith

Overview

Part |

User Commands 2
Part Il

System Calls 738
Part 1l

Library Functions 892
Part IV

Special Files 1064
Part V

File Formats 1104
Part VI

Games 1210
Part VII

Miscellaneous 1214
Part VI

Administration and Privileged Commands 1258
Part IX

Kernel Reference Guide 1424

[ndex

Part

User Commands
g 0T [8Tex (o] o ISR 2
Y0 (01 T {0 TP 2
{141 (0 [2
V124 43 T T 4
10 Y10] 0101 1 1 TP P TP PR PSPPSR 4
21010 £ TP P TP PR PR 5
. S OTSOPRRN 5
V(o [T 8
GINU 85 1ttt ettt et e et e et e e e be e s ab e st e e be e beeebeesbaeaareenbeenras 8
F o 11 (0] oo 3 4 TR 10
AEKEOPIM o 10
0T RS 11
DATLOPCT .t 47
DETOIEIGNT ... s 47
011 PR 48
0] T0T 1o L (0] o0 o PRSP 48
bitmap, bmtoa, atODM ..o 49
DMPLOPPM e s 57
DrUSHEOPDM . e 57
(07| PRSP OUE TR ORI 58
(07| OO OTPRTRPP 58
(010 (SR TOORPRRORN 59
(0101 TSRS 60
[0 10 o OSSOSO PSRRI 61
CRKAUPEXE ..ttt bbb bbbttt nae s 61
(0101010 o [OOSR 61
(010101117 o RSP TOORRPRROT 62
(010 o SRR UOTPPRRN 63
(oL [OOSR 64
(o110 <1 | (o [P STPRTRUORTPRROT 69
(011U] 1 SR TOORPRPRR 70
ClBAN et 70
CIMUWMEOPDIM oot 71
(010 OO OTRTPPP 71
(010] TR URTOURT 76
(070 (] o SRR 77
(070 0 SRR 77
(0701 [0 0 0] SRRSO 78

Linux Complete Command Reference

GCAI et 173
GCC, G ceeieentete ettt ettt R e r e r e 174
GEMTOPDIM .ot 201
GEOM 1ttt 202
GELIST . s 206
GETOPT ..o 207
GITEOPNIM L. b 208
GINAXDID ..o 209
GIOOKDID ... s 210
ONTOTT L s 210
QOUITEOPPIM .ttt sttt 211
OPIC ottt ettt b bbbt b e bbb nenes 211
(0] 01 (0] SO U SRS URP PRSP 216
OFBTOE et ettt s 217
OreP, EArEP, FOIED .ouviiiiiieee e s 224
OFEPNISTONY .ttt et 226
OFOUVI 1ttt ettt bbb bbb bbbttt 227
OFOTT et 228
(0] (o] TP T PRSPPI PR PSPPI 230
(0] (0] oS T PP TP PR PP PRPRO 230
OFOTEY oottt bbbt bt e e bt enes 235
OS0BIIM L.ttt et 236
O e 236
OO s 237
gzip, guUNZip, ZCAtgzip, QUNZIP, ZCAL ...ovviierieieisie et 248
GZEXE ottt etttk ettt bR E e b e R Rt b e b bt e e bt ne bt enes 252
NEAA ... s 253
NEXAUMP 1t 254
PIPSEOPGIM . bbbttt 256
PIOSE .t 257
POSEIT ... s 258
NOSENAIME ...ttt 259
NPCALOPPIM V0.3 .. e 260
NEEDA . 261
ICONTOPIIM Lo e sre 262
FABNT .t 262
HDMEOPPIM 1 263
TMIAKE ...ttt ettt 264
1 g0 0] o] o] 1 OSSR 267
TNMBWUS .ttt bbbt bbb bbb bbbt 267
IO bbb 269
INNCONTVAL ...t 270
TNSIMOM ..ttt b bbb bbbt e b 271
TNSEALL ..t 272

Introduction

ispell, buildhash, munchlist, findaffix, tryaffix, icombine, ijoincccc.cccee 274
JOIM s 282
KITT ettt ea e 283
L SRS 284
KSYIMIS s 284
T USSR 285
TDXPIOXY .ottt 286
o OSSO 287
TISPIMEOPGM 1.ttt 292
TKDID <ottt 292
] ST ST TP PSP OO PSPPI 293
INAIE e 294
JOCALE ...ttt 295
JOGOET ettt bbb 295
JOGIN Lt bbb ens 296
TOOK ...t 297
1o [SO PO PP SRPTPSUPPR 298
o] TSSOSO 299
IDIITY L bbbttt et 301
IDEESE .ttt ettt ens 302
S, DI, VAN oo 303
ISAEEE ...t 304
ISINIOO .. 305
IYTIX ettt bbb bt ts 306
MACPTOPDM Lt bbbt 309
INAKE ..ottt 310
MAKEAEPENT ...ttt bbb et a e s 312
IMAKESEES .otttk 314
MALEFTD L. 315
MDAADIOCKS ... 316
INICO .ttt bbbt b b 316
IMCOOKIE ..ttt bbbttt eb s 317
[14070] o)A PP P PRSP 317
IMABSUM L.ttt bbbttt b ettt bt en bt ebens 318
INAEL ..ttt 318
MABITIEE ...ttt 319
L1110 T PO TTO T O TP U PT PP TO PSSO UTRTPRPPPR 319
L4 (OO PR PP PR PR 320
L4 PSPPSR 321
MFOIMAL ...t et 321
MGIEOPDIM L.t ers 322
IMKAIE bbbttt 323
MKAITNIET <ot 323
MKFITO 1 e 323

viii Linux Complete Command Reference

MKNOdc.oovvveiiiriiecieee
O 325
R 325
I 326
S 326
R 327
R 327
T 329
i .. 329
R 329
S 330
o 330
g 333
R 333
T 334
e 335
S 335
P 336
O 336
R 337
o .. 338
e 339
L 340
iy 341
ODJUITI 342
00100K 344
. 345
paste ... 346
o .. 347
it 348
Bl 348
o 352
P mmask ... 353
o 353
T 354
Do 355
DL 355
Dot 356
e 357
e 357
ooy 358
D 358
i 358
P ormioepeon ... 359
.. 359

pbmtog3cooeieeeeeee
.. 360

Introduction

POIMEOGEIM ...t 360
POIMEOGO .ot 360
1810] 001 (6] [01o] o PSPPSR 361
POIMEOL] .o 361
POMEOINOS ... s 362
POIMEOIPS .. 362
POIMEOMEAC ...ttt 363
POIMEOMIQE <.ttt 363
POIMEOPYIM .ot et 364
POIMEOPIB ... 364
POMTOPK .ttt 364
POMTOPIOL ... s 365
8]0 1 110] o] 1 QOSSPSR 366
POMEOXLODM Lot 366
POMEOXDIM .o s 367
POMEOYDIM .ottt bbbttt et 367
POMTOZING ...ttt bbbt 367
8]0 1410 oSSR 368
103 (0] o] o111 TP PSP UPR PP 368
PIDTOPS 1. 369
POMBENTIEY ...ttt 369
POMCIALET ...ttt b e bbbt bbbt e bbb enes 370
POMEAGE vttt b bbb bbbt b et ne et 371
POMENNANCE ..ottt bbbt bbbt e e ens 371
810001 0T) SO ST PO PR RSORRPRP 372
POMKEINIEL L.ttt bbbttt 372
POIMINOISE vvvivietiiteieseete st steseese st ste e e se st sb et e abe st b s e s be st b sesbesbesbeneebesbenteneeneatas 373
18101001016 1 0 R PP P PSR P TP UPRPR PR 373
POMOIL 1.ttt nes 374
POMEIAMIP ettt sttt b ettt s b e e s e et e sbees e e besbeseeenes 374
POMEEXEUIE ...ttt bt sb bbb b e bt e 375
POMIEOTS ottt nr s 376
POMEOISPIM .ttt ens 376
810 001 00] o] o] o OSSO 377
8101 010] o] o] 1 1 HE PP T PRSP PRPRT 378
[T (0] o] o] . OSSOSO 378
PISTOPIOIM . s 379
1011 (0] o] o] 1 ¢ OSSO RSP TPSRPR 379
ST 10]] o] 1 OSSPSR 381
[812000] o] o] o 0 OSSR 381
PIMAIIAS 1.1ttt bbbt ans 381
PIMANTEN L.t 382
PIIMICAL ...ttt bbb et e b e s et b e b e et b n e e e e 383
18] 1 01600] 111 o PRSPPI 383

PIMCONVOL 1.eviiiiitiieeese et se et st e e ens 384

Linux Complete Command Reference

PRMCIOP oot 385
PRMCUL L 385
PMUAEPEN . 385
PIIMENTAIGE ..t e 386
PIMTIIE oo 386
PIMTTID oo s 387
PNMGAMMEA ... 387
PIMAISTMAD ..t 388
PIIMINGEX ..ottt en e 388
PIIMINVEIT ... 389
PIMIMETGIN ©vtitititeseieee e sb e bbb b e bbb et sesbeates 389
PMNITIT o 390
PIMNOTAW <.ttt b bbbt be e bt be et eeseenr b nns 391
PIIMPAG .ottt bbb bbb 392
PMPASTE .ttt sb bbb b nre e nne e 392
PMEOTALE ..ottt sb e sre s 393
PIIMSCRIR ..ttt bbb bbb ns 393
PIIMSNEAL ...ttt ettt bbb sb e e s bt ns 394
PIMSIMOOLN ..t bbbt et 395
PIIMEIIE <ottt sttt 395
PMEOAIT .. 396
PIMEOTILS Lot e 396
PIIMIEOPS ..ttt bbbt b e bt b e bbb 397
PIIMEOTAST .ttt b et sb et b e b e e nnas 398
PIIMIEOST 11ttt bbbttt e et bbbttt et a e ns 398
PIIMIEOSIT .ttt ettt et sb e bbb bbbt e e ens 399
PMEOLITT .o s 399
PIMEOXWO ..ottt b bbb st nteneas 400
0] 0] 1.4 o PSSRSO 400
PPMBIIGNTEN .o s 401
PPIMCNANGE ©.vvivietieiisteieie ettt bbb bbbt nenreanas 401
8]0 1010 1124 OSSPSR 402
8]0 1010 11 APPSR 402
8]0 1010 111 -1 SO PTT PSSO RRRTRN 403
PPMFIASH .t 404
PPIMTOIGE ©ooviiiieiectee ettt nr s 404
PPIMRIST .ottt ns 408
PPIMIMAKE 1.ttt sttt b st ere bbb te bt e e ese et e bennenes 408
9]0 101441 SO SRUSPSRR 408
801401 010] 1o ISP S TR PP 409
8] 01401 41 oSSR PR 409
8] 01401 01U OSSPSR 410
PPMQUANT ..ottt ettt ie e e e bt e sbe e st e e snnesnbeanreen 411
PPMQUANTAIL. ... e 412

PPMIOVOA -.vtteettentesieeiieie sttt ettt e st s et sb e b e ae st e b et e sbeebeeneesbesbeentenbesreenee e 412

Introduction

ppmrelief ...
D 413
D] 413
D 414
Doy 414
B 416
e 416
e 417
o mtomap ... 418
Do 419
e 420
S 421
T 421
e 422
T 422
B 423
Doy 424
e 424
Doy 425
Dot 425
e . 426
B oy 427
opmtoyy ... 427
ppmtoyuvsplit...........__,,,,,,,__,,_,:::: .. 428
PRIMIOYUEPIL v 428
D 429
o ... 430
D 433
T 433
Dstree ... 434
D 435
Dy 436
P 436
R 437
oy, 437
R 438
g 439
o OPPIIL 439
R 440
O 441
O 443
(OO vvvmvmnssss 445
FOSEOZE 446
g 447
... 449

[0 11 AR
... 451

Xii

Linux Complete Command Reference

TECONTIQ ottt 454
T e et re e 455
-] PR ST O PP PPPUPRN 456
TESIZE ©vuveveesteeteetee et et e e ste s ae e et e s re e e et e e ae e Rt et enRe et e tenRe e e et e Rt e e e tenre e e e re et enen 456
- O PO OO T PP PPPRTPPPPPPN 457
FDBEOPPM s 457
FlOG et 458
FLOGIN ot 460
10 P TSP PP PPPPRPPIN 461
0.0 LT USRS 462
ITIMIOO ..ttt bbb b bbbt ene et 462
TIIBWS .ottt ettt bbbt bt e bt bt e bRt R e e bt bt e bt eene e n b enee 463
L oTo0 T o I T PSPPSR P PP UPRPP PR 464
TP bbb a e ens 466
TSTANT ettt et 467
TSEAMTA L.ttt sttt 468
U]« T PO PTOR PP PRPPPRTPPRT 472
TUSEI'S .ttt ettt ettt ettt b bbbtk h e e bt bt e e bt s bt e b e bt bt e e e bt et e e e b e enes 472
TWAIL ..ttt e 473
TWHIO ottt bbbttt nen 474
LIl] o] OO ST PRPPP 474
LT ST U ST 475
SBSSTBY veuvereettententeete et e ettt et bt E e et b bt R e E Rt h bRt Rt b bt eRe e b e b ehe e e e b nreenren 480
SBEERIII L.ttt nr e 482
R0 T10] o101 0 0 TSSOSO 483
SIAE ittt nes 484
SNIOCK 1.ttt 487
SPOWEGD oo e 488
SPFINKFIIE 1. 488
Y[0] o]0 1 1 OSSOSO 488
L2 PP PO TPV UPUPPRPRRPRN 489
[0 (0] o] o] 11 I SO RSSO 490
SIMIPIOXY eivteutetesteeseeste st et e bt s bt e b e s besbe e b e sbe bt eseesbe bt e se e besb e ene e benbeene e benbesnee b ns 491
0] 1 PP PO TP UPUPTPRPRRP 492
L] [0 0]] o] 0 1 RO OO PP PR OPRPPTPROPRPR 494
ST 1ttt e r b nrenes 494
L L0 LE0] o0 14 IO OO PRR PP PTPRRRP PPN 495
L 1U10] o] o] 1 PO PO TP UPPRPRRP 495
L [PPSR USRI 496
L1 L 0 OSSPSR PSRRI 496
R (4] 10T 498
1 | I USRS 499
0] o) OO 500
L o PSPPSR 501

Introduction xiii

L7 O UUUU RN 503
- R 504
LT 505
(07 | TR 506
1<)] U 507
L1001 (0o [513
L1 RS SR 514
TYALOPPIM .ot 515
TIFEOPNM e 515
TN, rtin, CAtiN, TN ..ooviiic e e 516
11 [0 To [PPSR 533
L(6] o T TP PP PP PP URPPTPRPRPPO 533
(0101 PR RROSRR 536
L SRR SUOTRRT 536
L= OO £ P OURROTPN 539
1510 o U UPRN 542
107770 1 PO URORSRT 542
EXE2QCAI .t et 558
Ul e b e a et b e b e br e e aabeaars 558
[0 L o= o OSSOSO 559
(3] Lo OSSOSO 560
(U1 T TR 560
UPALEAD ..t 561
UPLIME ettt bbb bbb bbbt r et nees 562
U [TSR 563
(318 o o TP T PP P PSP PRPRRT 563
LU= g 1ol Lo (TSRO 565
[T L] - L PRSPPSO 566
UUX 1ttt ittt e etrteeetreeestreesebse s sbaeessbeeesabeeesbbeeeabeesbaeesabaeeaabeeesrbeeeaabeeeabbeenbaeeaabeeenrreas 569
(011 (o | ST P PRSP PR PP 572
WV ettt ee e et h oL be b e b e e eha s At e et e e be e beeah e e b b e e be e b e e be e beeabaeaabeeraeanes 573
WAIL ©e e b st e e ebaearae e 574
WG ittt ittt et ettt e et e e ebt e e ae e et e e bt e b e e b b e ehe e ea b e be e bt e e b e e ehe e ehbeeRbe e beeebeeaheeebeeeabeebeeabeeareens 574
AT LT PR 575
1T (ORI 576
XLLPIT ottt nes 577
XLLPEITCOMP 1.ttt bbbt st e s 585
XAIGS ¢ttt ettt ettt et e sttt e e b e bt e bbbt s e bRt h e bRt Rt b bt ebe e bRt nhe e bt nreenrens 586
D10 1| IR 587
XOMEOPDIM Lo e 592
D01 110 |« TR 592
Do (01! PR 593
XCHPDOAI ... s 595
D010 10 [T 597

D010 1] IR 598

Xiv

Linux Complete Command Reference

(o |1 0 R 599
XAPYINTO 1ot 614
XEBB_ACCEI ..ttt 614
XFBB_ IMONO ..ottt sttt en et st eneans 624
XFBB _SVGA ..ottt et ns 627
XFBB VGALB ..ottt sttt b ettt ens 631
XEBBCONTIG ... 633
Do PR 633
D (=Tt TSR 636
DT R 641
D0 SO P RO 643
D11 o] o SO S O SOURPRPTRPRP 645
DAL 110] o] o]0 1 SOOI 654
D (111 (o IO OO 655
D (1 1L PSRRI 664
DU RO URORRT 666
XIOGO 1.ttt bbbttt bttt 667
DL (0] .1 TSROSO 668
XISCIIBNTS ottt b e sb e st b e e sbe e ebeeares 669
D11 (0] 11 <SOSR 670
D01 T TS U PP RO PP UPTPRRPPRTPRO 671
XINKIMT e bbb e e e e ae e beers 672
XIMOUMAP 1.ttt sttt sttt bbb bbb b nse et b e e 672
D (o] OO TP SRR 676
Do) £ 110] o] o] 1 1 [T TP TP TSP PP PP PRRPT 677
D0 (0] ¢ TP PSSP P PP PR PPRPPRTPPO 677
D |« PSR RTRT 681
D= (] TP 684
KOBIVEE 1vieittee ettt e ettt e e et e e e st e e e b e e s b e e s abe e e sabeeesabee s ebbe e s bbeesabaeesabeeesabeeeaabeeebreenabeas 685
D] PSPPSR 690
DL 10 0] A OSSPSR ORI 693
D] 1 L PP PPTR 694
D 1 101 LT=1 L PR O 698
D] (0 011 T« TSSOSO 699
D<) 1 TSRO OUROPRN 700
D11 TR 717
D TA Lo |10 =TS 719
DAY 00 TT a1 0] o] o] 14 OSSR 720
D[IR 721
D 110] o]0 o OSSR SRSP 722
XWINTNTO ottt b e b b s ba e st e e e b e e sbe e ebeeares 722
D LT[0 Lo T 725
YOMEOPDM Lo e 726
7L L OSSOSO 727

Part

Introduction

YUVEOPPIM vttt s 731
ZOMP, ZOITT Lo e 731
ZEISSTOPINITL .ottt 732
4 (0] (o= SRS 732
ZOTEP 1ottt 733
b4 1010 £ T TSP P RSP PP R PPPPPPPTRPPRTN 733
A 1= USSP PP PR UPRTOPPRTN 734
Il System Calls

1011 (0 T PO PO U PP PR PPRPPIN 738
L2 L PP PP P PPPTOUPROPPPTTN 739
ACCEPT ..ot 740
AICCESS +euvteeensteeasteeessteeesat e e stb e e ab e e e b e e e e b b e e e b e e e e R b e e e aR b e e e Rr e e e b b e e e be e e nbe e e e beeennree et 741
00! S TP O PRSP RTOUPROPPPTN 742
AOJEIMEX et 742
L g 0 SO 744
DAFIUSH <. 744
DING ettt 745
0] T o PRSP ROTRRT 746
CACNETIUSI ..o 746
CAIF, FCNDIE L. 747
ChmOd, FCNMOU ..o 748
CROWN, FCROWN ..o 749
CRIFOOT <.t 750
ClOME . 751
ClOSE . 752
COMMECT .ttt 752
AUP, JUPZ .ottt 753
BXECVE ..ttt sttt b et et 754
FONEL e 755
FARLASYNC ..o 756
FIOCK . 757
FOK, VEOTK ..o 758
FOYIIC ettt 758
GELABNES vttt bbb 759
getdomainname, SEtdOMAINNAIMEcccoviiiiiieieise e e 760
QELALADIESIZEvviveie s 760
QELGId, GELEGIT .o.vivviiiie e e 761
QELYrOUPS, SELGIOUPDS ..evvetireieitertesteette sttt bttt bbb bbb e sresne e 761
QEthostid, SELNOSLIAevveeiriiieccc e s 762
gethostname, SEtNOSENAMEo.veveviiirieiec s 763
QELItIMEr, SELILIMET ..ot e 763
GELPAGESIZE ©vvevviviiveierieie ettt bbb a e 765
GELPBEINAITIE ...ttt bbbt e e e b e bt et b sbe e e b 765
QELPIT, GEEPPIU 1.eiiiicecieee e 766

QELPrIONitY, SELPIIOTILY 1oviveieeiii e e 766

XVi

Linux Complete Command Reference

getrlimit, getrusage, SEtrlimitccoveoirieiic e 767
GBS .o 768
GELSOCKNAME ...ttt 769
0etSOCKOPT, SETSOCKOPTc.vviieeeeieiecsreie e 769
gettimeofday, SEttiMEOTdaYcecvvrriirei s 772
QEtUId, GELEUITveveeee s 773
BAIE <ttt sttt nean 774
1o o] o USSP 774
[o] o =T 4 4 OSSPSR PE PSP TSPV PPN 788
TOPI o 788
] LSS P TP TR USSR 789
KITT e 790
KITIPG vt 790
TINK e 791
JISTRIN s 792
JISEEK ..t 793
ISBEK s 793
MK o 794
IMKNO .t 795
IMIOCK .t 796
MIOCKAIL ... 797
MIMAP, MUNMEP ettt et sr e bbbt besbesbe e b sbeene e reneennes 799
MOGITY AL . s 800
get_kernel_syms, create_module, init_module, delete_moduleccccervrnnee. 800
MOUNT, UMOUNT ..ot 802
(00101 (0] (01 A PP P PSPPI PRTPPRT 804
IMITEIMIAD .eeitetienee ettt ettt et b ettt b e b e bbbt e bbbt e b e bt e bt e b e nb e et e e e nbeebe e e 805
INSGCEL 1ttt bttt 806
A0 0 L= PSP O PP UP PR 807
L0010 o R PSP P PP UP PP 808
IVISYINIC evtteente et ettt ettt be et s ae ettt s b e e bt nb bbbt e b e b bt et e bt ne et et enes 811
IMUNTOCK ...ttt 811
MUNIOCKAIL ... 812
NANOSIEED ..ttt sttt b ettt e et t e ens 813
TUICE .ttt bbb R et 814
oldfstat, oldIstat, oldstat, oldolduname, oldunameccccccoveireenieicninnenn, 814
(0] 1<) (0 £ SO O PSP URRP TP 815
outh, outw, outl, OUtsh, QUESW, OUTSIcerreiirieiiniecreee e 816
PAUSE ...ttt sttt bbb bbb bbbt R b bR bt e e b e enes 817
PEISONANTY ©.vvevietiiteieiei ettt bbb esrenns 817
9]0 OO RRRN 818
O] oSSR 818
PIOTIl ot 819
PETACE ..ttt ettt sttt bbb bbbt b e bbb b et enes 820

[0 18T - 1o 4 OSSO 821

Introduction Vi

L7 Lo ISR 822
7 Lo [0 | USSR 823
710|110 GO 823
FEACV, WETEBY .eeivviiree ittt ettt ettt ettt e be et e e s br e s ta e e be e sbeeebeesbeesaeeenbeebeesaeas 824
000 SR 825
FECV, FECVITOM, TECVIMISY .viiviteieiietiste ettt 826
TEINAIMIE ..ttt ettt ettt ettt st e st e bt e e bt e e et e e e sab et e esb e e bt e e e bt e e e beeenrbeeeanbeeenrreeans 828
10T 1T ST PR 829
sched_get_priority_max, sched_get_priority_Mminccccocecvrniinnernccnnnnnns 830
SChed_rr_get_INTErVal ..o e 831
sched_setparam, sChed_getparamcoccoierereinieneneiese e 832
sched_setscheduler, sched_getscheduler ... 833
SCHEA_YIEIA ..o 835
select, FD_CLR, FD_ISSET, FD_SET, FD_ZEROcccccoviinniiincerrreeens 835
SEIMCEL ... 837
SBIMIGET ..ttt ettt e b e b e nr e ne e 839
LT 0116 o TP PRSP PR PP PRPPT 840
SeNd, SENALO, SENAMISYvevverirtirieieieiirie et 842
SEEFSGI L.ttt et 843
SEEFSUI ...t 844
SEEGIT vttt bbbt 845
setpgid, getpgid, SEtPGrP, GELPOID «.vvverrerreieiierieriee st 845
SELregid, SELEYIT .oveviiiiitiieeee e e 846
SELreUId, SELEUITveveeeeeiceee e 847
SBESTA .ttt 848
SEEUID ottt 848
L] (U o PSP PR U TP PP P PPRRP 849
SAMCEL e 849
SAIMIGEL .ottt nes 851
SPIMIOP ettt b nre s 853
SAULAOWN ..t 855
sigaction, sigprocmask, sigpending, SIgSUSPENTccovvrverireneiereeesenieseeieeens 855
SIGNAL vttt et na e 857
sigblock, siggetmask, sigsetmask, SIgMasKccoervvivrierineiinieneseese e 858
[0 oL U - OSSOSO 858
[0 =1 (0 o OSSOSO 859
SIGVEC 1vvtiitetesiertate sttt ettt e st st a ettt bR b bR b bbbt et bt ns 860
SOCKEL ...ttt 860
SOCKELCAIL ...t 862
SOCKEEPAIT 1.ttt ettt et 862
SEAL, TSEAL, ISTAL ...vvveieeeeirie ettt e s e e st e e stb e e esseeessaeeesbeeesreeesreesanes 863
Rt L TR) ¥ L TR 865
SEIMIE ettt e a et na e 866
SWAPON, SWAPOTT L. viviiiiiiic e s 866

SYMIINK .ottt e et s 867

Xviii

Linux Complete Command Reference

Part

SYINIC ettt 869
SYSCE s 869
TS ettt 871
SYSINTO 1. 871
SYSIOY vt 872
termios, tcgetattr, tesetattr, tcsendbreak, tedrain, tcflush, tcflow, cfgetospeed,
cfgetispeed, cfsetispeed, cfsetospeed, tcgetpgrp, tCSELPGIP .oovevrvevevrreerviieennas 874
LSRR 878
LSS 878
TrUNCALE, FITUNCALEcviiiie ettt 879
UMASK et 880
UNBIMIE 1.ttt et r e bbb b sn e 880
L010] TP T TSP PRP 881
afs_syscall, break, gtty, lock, mpx, prof, quotactl, stty, ustatcccceevrcirennnne. 881
UNTINK <o 882
USEIID o 883
USTAL L.t 883
ULIME, UTIMIES ...ttt 884
VIBNGUP ettt bbbt bbb 885
VIMIBB ..ttt 885
WAIE, WAILPIA 1.vvveviicicieieee bbbt 886
WAIES, WAITA ..ot 888
WETER .t b bbb bbb 889
Il Library Functions
111 (0 TSP SUR 892
2010] o ST 892
0SSP 892
1010 OO PP PP PPPPRP 893
100 PSS 893
1] o USSR 894
] [OO PPPPR PPN 894
1] o OSSPSR 895
ASSEIL L.ttt 895
ATAN L. s 896
ATANZ ..o 896
AEANN s 897
AEEXIT ... 897
AEOT s 898
ALOT .t 898
AEOL .. 899
DOIMIP s 899
DCOPY e 900
DSEAICH ... s 900

bcmp, beopy, bzero, memccpy, memchr, memcmp, memcpy, memfrob, memmem,
MEMMOVE, MEMSEL ...ttt bbb 901

Introduction

htonl, htons, NTONI, NEONSeeveeeiiicee e 901
DZEIO ..o 902
CALPELS v 902
CALOPEN, CALCIOSEvvveeeeeieeee et 903
(0TSSR 904
CHENTHD . e 904
CIOCK et 905
(01 (01T PSR 905
(07001] 1 OSSR 906
COPYSION ottt ettt ettt ettt r et 907
€O ettt ettt et 907
COSP e 908
(61570 S OO P TP PRTOPPRTPRORN 908
CEBIMID . 909
asctime, ctime, gmtime, localtime, MKEIME ..o 909
AITFLIME Lo s 911
IV s 911
drand48, erand48, Irand48, nrand48, mrand48, jrand48, srand48,

SEEAA8, ICONGAB ... e 912
AFBIM bbb 913
BOVE, FOVE ettt 913
BT, BITC e 914
execl, execlp, execle, EXeCt, EXECV, EXECVP ..oviivrerreriiirierieisesiesieesiesie s see e s 914
BITIIO ettt 916
BXIT ettt 917
EXP, 109, 10010, POW ..ovviviiiiiiieeiese e 917
EXPIML, TOGLP oottt bbbt 918
FADS e 919
FCLOSE .t 919
clearerr, feof, ferror, fillen0 ... 919
FIIUSH, FPUIGE . s 920
BES ettt 921
FBEGIENT e 921
FRBLPWENT .t e 922
FlOOT e 923
FIMNO <. 923
FAMALCN .o 924
fopen, TAOPEN, FrEOPENo.vcveiieee e 924
fpathconf, PathCONT ..o 925
Fread, TWILE ..o 926
1 (52O OSSPSR 927
fgetpos, fseek, fsetpos, ftell, FeWINdccceviiiieiiici e 927
EIMIE et 928
FEOK bt 929

Linux Complete Command Reference

GOV 1 930
getcwd, get_current_dir_Nname, getWdcccoevrrreiinniineennecsree s 931
QELAITENTIIES ..t 931
GELENV 1ot 932
getgrent, Setgrent, ENAGIENTcovvrriireereere e s 932
QetgrNam, getgrgidcovoviererreireereereee s 933
QELIOGIN, CUSEIIA ..ottt e 934
getmntent, setmntent, addmntent, endmntent, hasmntoptcccccceeverennne. 935
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetentccoceeevvneee. 936
GELIOPT .. 937
GOEIASS 1ttt ettt bbb n e r e n s 940
getprotoent, getprotobyname, getprotobynumber, setprotoent, endprotoent 941
GOEPW ettt bbbt r et n e bt nr et nes 942
getpwent, SetpWent, ENAPWENTc.viviiriiiii s 943
QEtPWNAM, GEEPWUIT ...ttt 944
fgetc, fgets, getc, getchar, gets, UNGELC ...oovevvvieieiiiiie e 944
getservent, getservbyname, getservbyport, setservent, endservent...........ccccoeee... 945
getusershell, setusershell, endusershell ..o 946
getutent, getutid, getutline, pututline, setutent, endutent, utmpname.............. 947
GETW, PULW .ttt bbbttt bbb s 948
Q10D GIODTTEE ... s 949
NOSES_aCCESS, NOSES_CLl ...vivivieiiiiiie e 950
hcreate, NAeStroy, NSEAICNcviiiirieieese e s 951
NYPOL <o bt 953
INAEX, FINGEX 1.ttt bbb 953
inet_aton, inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_Inaof,

INEE NELOT Lo 953
INTNAN Lo e 954
ITEGTOUDS ¢ttt ettt bbb bt eneebesbenneneas 955
INNACOIMIM L.ttt ettt 956
INSQUE, TEMQUE ...vevvertreiteterierestesteseesesseseesaesessesbessesseseabesbesbesessesbeseeneesessesaenensens 957
isalnum, isalpha, isascii, isblank, iscntrl, isdigit, isgraph, islower, isprint,

ispunct, isspace, iISUPPEr, ISXAIGIt........covirerriiiireiccse s 957
57 LSOO PRSPRPRN 958
ISINF, 1SNAN, FINTTE ..o 959
JO, JL, TN, Y0, YL, YN et e 959
KIIDG vttt nen 960
JADS et 960
JUBXP ottt e renns 961
TV bbbt eb b 961
[QAMIMA ...t ns 962
TIDININ Lo s 962
JIDPBIM o 966
JIDPGM e 969

Introduction

TOPPIM e 973
L0071 <1070 0 1Y 974
JONGIMP e 975
NG, ISBAICH ..o e 975
calloc, malloc, free, reallOC.........coviiie i 976
0] o] - ST 977
L8] 01 (0o SO SRTS 977
L1010 1o SRR R 978
MEMCCPY vttt e 978
41T 0 T OSSPSR 979
IMEIMICITIP .ttt sttt a e bt bt e b bt e e e b b e e e e b bt e e b e nbeenes 979
IMBIMICPY .vevtenteeteetee et sttt et sttt st e bbb e e bbbt e b s bt e bt e b e bt ese e bt eeneenenbeenes 980
MEMTIOD ..o 980
IMEMIMIEIN L.ttt eb e sr e ens 981
IMEMIMIOVE ..ottt b e sr s 981
IMEIMISEL ...t 982
MKFITO Lo 982
IMKSTEIMIP vttt ettt bbb bbbt nbeatas 983
IMKEEIMIP ettt b e bbbt nreatas 983
INOGT L. 984
asctime, ctime, difftime, gmtime, localtime, MKEMEecc.ccoceveinciniinirciienn, 984
TZSBE o 986
o] (> (L OSSOSO 988
o] 11010 | OSSOSO 989
PAISEAALE ...ttt bbbttt nn 989
LT (0] ST TOPO PP PP PP PRTPPT 990
POPEN, PCIOSE ..ttt 991
printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf, vsnprintf 992
PSIGNAL .ottt et 996
PULBNV .ttt ettt b et e bt sb e b et b e bbb ne e 996
PUEPWENT .ottt b et bbb b enes 997
fputc, fputs, putc, PULCNEAr, PULScviveieicicees s 997
(01 TSSO USRS 998
(010 TS ORP OO PP RPPRP 1000
TAISE . .vsvese ettt ettt n e 1000
FANG, STAN ...ttt bbbttt 1001
random, srandom, initstate, SELStAteccoevireerieiireee e 1001
FEAAGIT .ttt ettt 1002
FEATV, WITEBY ...ttt bbbt 1003
TRAIPALN ... 1004
RE_COMP, TB_EXEC ..ottt sttt bbbt a et nbe s 1005
regcomp, regexec, regerror, regfrEe ..ot 1005
L1010V TSRO PRRTRRORN 1007

res_query, res_search, res_mkquery, res_send, res_init, dn_comp,
AN_BXPANG ..t 1008

wxii Linux Complete Command Reference

02377 To o 1 SR 1011
0L O OO PPP P PP OTPPTRPPRPPPTORE 1011
FOUOTA .t 1012
SCANMIr, AIPNASONT ... 1012
scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf..........c.ccccoviiiiiiiiicc e 1013
L] (o 1 PR 1015
setbuf, setbuffer, setlinebuf, SEtvbUF............cooiiiiiiii e 1016
1] 1Y R PP POV PP OPPTPUPRRPPPOE 1017
SELJIMID 1ot e 1018
SEHIOCAIE ...ttt 1018
SIGINEEITUDT .ottt bbbttt 1019
sigemptyset, sigfillset, sigaddset, sigdelset, sigismemberccccvvvvienernnnn. 1019
I ettt b et n e 1020
SINN s 1021
SIBEID ettt bbbt b ettt 1021
SNPFNEE, VSNPIINTE oo s 1022
o | PSP TP PR P PRTPRRPRPRTPR 1023
SEOAIG +.vevevietieie et bbb bbbt 1023
SEAIO 1.t 1025
1101610 OSSO TO PP PRR PR PRRT 1027
SErCASECMP, SEINCASECIIP .vivieiiitieiee ettt ettt 1028
SEICAL, SEIMCALeviiiiitie e 1028
SEICNF, SEITCRIE Lo 1029
SEICMP, SEIMCIMIP Lttt bbbt 1029
SEFCOI .. 1030
SEICPY, SEIMCPY ettt bbb e 1030
R0 U] OO 1031
SEFBITON ittt 1032
ST Y ettt ettt 1032
SEFTEIMIE et 1032

strcasecmp, strcat, strchr, stremp, strcoll, strcpy, strespn, strdup, strfry,
strlen, strncat, strncmp, strncpy, strncasecmp, strpbrk, strrchr, strsep,

strspn, strstr, strtok, strxfrm, index, fNAeXcovivieierninie e 1034
SEFTEN bbb 1035
SEIPDIK Lo s 1035
SEIPTIME eiteieiie e bbb et 1036
L] ¢ PO P SOPTUP TP TROP 1037
SEISIGNAL L.ttt ens 1038
] o] TR (0] o] PSPPSR 1038
111 SO TSSO T TP SO U P TP R PR PPPPPRPRTON 1039
SEFEOU ..ttt bbbt bbb 1039
SEFEOK ettt bbb bbb 1040
1 (0] SO 1041
SEIEOUL oottt ens 1041

104114 PR 1042

Part

Part

Introduction

1172 o SRS 1043
SYSCONT et 1043
Closelog, OPenlog, SYSIOQcvrveriireiriecire e 1045
SYSEEIM L 1047
L7210 TR PP P PSP PP OPPTRUPPRPPPONE 1047
TANN s 1048
L0210 PSS 1048
TEMPNAM e 1049
termios, tcgetattr, tcsetattr, tcsendbreak, tedrain, tcflush, tcflow, cfmakeraw,
cfgetospeed, cfgetispeed, cfsetispeed, cfsetospeed, tcgetpgrp, tesetpgrp.......... 1049
EMPFIIE Lo 1053
EMPNAM Lo 1054
EOBSCIT vttt 1055
TOUPPET, TOIOWET ..ottt bbbt 1055
tsearch, tfind, tdelete, tWalk ..o 1056
TEYNAMIE . 1058
TZSBE s 1058
00] ISP P TP PP PP TRORURPRPITON 1060
USIBEP .ttt bbb bbbttt nns 1061
WESEOMIDS ..ttt 1061
WEEOMID L.t 1061
IV Special Files
[0 0 V1) SRS 1064
(070 1 PSS 1066
CONSOIE_COUBS ...ttt bbbt 1067
(070 1] T o 1 S 1074
o SR ESSRS 1080
o P STSRRRN 1083
ISPEID e 1084
] o TSRS 1090
MEM, KMEIM, POIT ...ttt bbbt 1091
IMIOUSE .ttt bbb e nr e 1092
NUILL ZEFO o 1094
L0 0 T TR PP PO PR PP TSRUR VRPN 1094
S et b b 1095
T TSRS T TSP TP PE PRSPPI 1096
Y et s 1100
S vttt 1101
VCS, WESB vttt sre sttt r et n et b bbbt e 1101
V File Formats
1011 (o OO P P TTPPP TP PPPPN 1104
ACTIVE, ACTIVE.LIMES ©.evviiieiii ettt ae e s b e s eb e e e s ba e s sbe s s sreeeea 1104
Y0 [0 [V ESL-T oo o | SRS 1105

LTS 1106

XXili

. Lin mpl mmand Referen
xXiV inux Complete Command Reference

CEINGEIT .. 1106
CRINGEIT.CONT ... s 1109
CTINGEIT TEXE FUIBS ... s 1115
(070 0 1o o 1 OSSR 1115
[0 PO P TSP PPP T OUPPRPPRROPPTORE 1116
DEVINFO ..ottt et 1120
L]0V o PSSP 1121
BXPITE.CEL 1. 1121
BXPOITS . 1123
THESYSTEIMS ... 1125
FSTAD <. 1126
OFOFT_FONE..iuiiiici e 1127
OFOFT _OUL vt e 1129
OFOUD ettt eteee ettt ettt b ekt b bt st b bt Rt bkt R e b e bRt n b nne e n b nne s 1131
PESTOTY .t bbb 1131
hosts.nntp, hosts.NNEP.NOHMITccovviieiiee 1132
LT N o0 PSP 1133
NOSES_OPTIONS ...t e e 1137
TNIEEAD L. 1139
TNNLCONT L. 1141
INNWAECNLCEL .. 1142
LIIC ettt b e bt b et e b r e re e 1144
ISSUB .ttt et 1146
THHO.CONT .. 1147
MAKEDEV.CEQ .vevtiitiisieerceen et 1151
IMOTETALOIS ...ttt sb ettt bbbt 1151
JEECIMOTUIES ... 1152
IMOTA L.t b et bbb 1152
IMEOONS ..ttt 1152
NBWSTERAS ...ttt bbbt 1158
NIBWSIOU ©vvtveteteiee ettt bbb a et b e b s ettt e b et b nene s 1163
DIES e bbbt 1165
TINEPLACCESS v veteeiee sttt ettt sttt e bt sbe e et sbe st e st sbe e e e bt sbees b ebenbeebeennenbesbeen 1167
NINEPSENA.CLL .t se e nre s 1168
NOIOGIN ettt et nne e 1168
OVEIVIEBW.FM .o 1168
PASSWE ...ttt bbb b ettt na e ere s 1169
PASSWH.NNED .t b ettt sne e ene s 1170
0] 0] . OSSPSR 1170
POM etttk b bbbt b bbbt bbb 1171
0] 010 TSRS PRSPPI 1173
0] 0110 OSSR URTRRORN 1173
0] (0o SRS RSSSPR 1174
PIOLOCOIS ...ttt 1180

Lo {1 1181

Introduction

=110 <] 1183
SECUTELEY .. 1184
SBIVICES 1uvvreivreeeieteesesees sttt s sbesssreeessbteesbesessbeesaabesebaessabeesssbesesbbessbeessrbeessabenesnes 1184
1] R 1186
SYSIOQ.CONT .o 1186
TEIMCAP .o 1188
TEYEYPE o 1197
174 {1 (3R 1197
UEMP, WEMP e 1198
LU 1=T 070 o [T 1200
XEBBCONTIG vttt bbbt 1201
Part VI Games
1L (0 TR 1210
T 0 0 RO 1210
[0 [F L (<R 1210
Part VIl Miscellaneous
[(0 IO PPPPPP 1214
o] AU UUUUR RN 1214
DOOTPATAM ... e 1216
OFOTT_IMIE Lo 1225
OPOTT_IMIM o 1227
OFOTT_IMIS o s 1234
L= TR 1236
10y T 1< 1238
1S0. 8859 1 ..o et e e aenre s 1239
[T TR 1243
a1 F= o Lo | GO ST RTUSRT 1244
0= o PRSP 1246
SIGNAL ettt 1248
SUTFIXES vttt ittt et e et b e e be e et b e eab e e be e nbeesraearaean 1249
L1 74 (= SO PRPRPPR 1252
LT 1ol oo ISP RPP 1253
L TSRO 1255
Part VIII Administration and Privileged Commands
[({0 IO PPPPPPP 1258
A0AUSEN, A0AGIOUD -..vveeereereee s 1258
AGETEY .o 1259
(0] 11T 1262
AP e 1263
T 1o o] [0 C TR 1264
L0110 o TR 1264
(010 1 G 1265

. Lin mpl mmand Referen
v inux Complete Command Reference

(01210) TR 1273
(0110 TR 1273
[000] 1 1571 SRR U R PR U RRPRPPRRPON 1274
(o1 (0] o [P 1275
(011 [T Lo R 1276
(o101 (o =1 R 1279
CVSIUG o 1279
(011 7 (] o 1R 1281
CYEUNE L. 1282
AEDUGTS .o 1284
01T o OSSO U ST PO PRV PRSPPI 1285
AIMIESG .ttt b bbbttt re s 1288
AUMPE2TS .ttt sttt 1289
LY 1 PP URROURRT 1289
BUGQUOTA ...ttt bbb bttt 1291
BXPITE 1ttt sttt ettt bbbttt b bbb bbbt ettt re s 1292
BXPITEOVET ..vitesteiieteste sttt st sttt sttt b e bbb s b ettt s bt e e b e benbe e ebe st 1293
L2151 1110 TSRO OURTRO 1294
FATOIMAL .o b 1295
FAISK vt n 1296
FIBCNAN e 1297
Lo USRS 1298
FSCKLMINIX oviiiiiiti e e b e e sbe e saaesrae s 1300
FED et rn 1301
TFCONTIG vttt 1304
1413 (o PO 1305
INEE, TRIINIT e e arae s 1307
INN, INNASTATT L. bbb sbe e eanes 1309
(10108211 TP URRRP 1312
] 1601 USSR 1313
] 105 OO 1314
L0 [(TR 1314
KIOGU ..ttt 1315
LD e nre e 1317
DO ettt 1318
MAKEDEY ..ottt ettt st 1320
MAKEDEY ..ottt ettt 1321
001GV OSSP 1324
001 1325
001 1326
MKIOSTHOUNG ...t 1327
INKSWED +v vttt bbbt be st b s e e besbesae e eseeteseennenens 1327
MOUNT, UMOUNTeeiiiieiceiee ettt sttt e e e et e e e s e eaba e e e e s sabte e e s ssbbaneeeaans 1328
001010101 (o [P OR 1332

Introduction

T PSP 1334
NAMEA.TEI0AAccvveeeeiece e e 1338
NAMEA.TESTAITveieeee et e et et e sre e e e aesreaneens 1338
o SRS PRS 1338
1]] £ | T PO PSP PPPPOPPPTPP 1339
makeactive, Makehistory, NEWSIEQUELEc..eveiiirerieiei s 1342
NEWS.AAIY ..t 1344
NEWSIOY ..ttt 1346
0157 SR SPRS 1347
NINEP L.ttt r e 1347
0] 0110110 Vo [STTOU PP POTS TR TRPSURIN 1349
NSIOOKUP vttt ettt b e bbbt e nbe s 1350
OVETCNAN .ottt 1353
PAC ittt r bbbt r bt r b 1354
PONTSU Lttt bbb ettt 1355
PHPCONTIG ..ot 1357
PING oottt b bbb sttt e 1358
POITMAPD ittt bbbt bbb 1358
POWENT .ttt b e bbb bbb et b et et neebe b 1359
0] 0] 0o PP USO PRSPPI 1360
PIPPSTALS ...ttt bbbt nr s 1369
PrUNERISTONY L.ttt 1370
QUOTACKECK ..ottt bt bbbttt neas 1371
QUOLAON, QUOTAOTTveveeiiiiiciee e 1372
T8 T PSP PP URU PP PROPN 1373
FOBY .ttt bbbt 1373
TEICE .otttk b e bbb bbbkt 1375
2701018 o] - TP PR U TR PPRPRTRORN 1376
TEXECA vttt ettt b bbb bbb bbbt 1376
FIOGING oot 1377
TOUTE .ottt bbbttt bt e 1379
FOULRA ..ttt bbbttt eb et enen 1380
TPC.TUSEIS vevvirterieieetieteie sttt sttt st ettt et bbb e e senbestennenens 1382
TPC.FWAITL L. et eene s 1383
TPCINTO ettt 1383
FQUOLA, FPC.IQUOLAA ...ttt 1384
FSN . bbb 1385
FWRIOD L.t bbb 1386
SENAMAIL ...ttt 1387
SEEFUPIII .. 1391
SEESEITAL ...ttt 1391
SBESTA .ttt bbbt 1395
SPOWIMOUNE ..o bbbt st ens 1396
SPULAOWN ..o bbbt st ens 1396

SIMPIBINIT ..ot nr e ens 1397

Xxvii

Xxviii

Linux Complete Command Reference

Part

SIALEACKH ... 1399
SHPIOGIN .ot 1399
SWAPON, SWAPOTT ...ecvieeieee e 1401
SYNIC ettt 1401
SYSKIOGA . 1402
SYSIOPA s 1404
17110 SRS 1405
TEINELO .o 1406
110 OSSPSR 1407
TIMEA et 1407
TIMBAC .. 1408
TFACEIOUTE ...t 1409
TUNB2ES ..t 1412
TUNBID e ettt 1413
UPOAEE_STALE ...vevieiiceeieetcse sttt bbb 1414
UUCKCO vttt se et nn et b e n et nn e 1415
VIMSTAL .ot 1417
VIDW ottt bbb bbb bRt st e et ntn 1418
P40 (]34 OO SO USOT TS SSPRPRISON 1419
ZIC ettt et 1419
IX Kernel Reference Guide

add_timer, del_timer, iINIT_tIMErccccveriiiiiinec e 1424
AQJUSE_CIOCK ...t 1424
CUFL_AIE el .o 1425
Tl _TADIR Lo e 1425
file_table NIt . ..o 1427
THESYSTEIMS ... s 1427
GEt_EMPLY_ Tl o 1428
OPOW_FIIBS .o 1428
IN_GPOUP_ ottt 1429
INSEIT_FIlE_TrEE oo 1429
KErNEl _MKLIME ..ot ae e 1430
PIOC_SEI ettt ettt 1430
PUL_TIIE TAST . 1431

reMOVE_File fre8 .o 1431

Tell Us What You Think!

As a reader, you are the most important critic of and commentator on our books. We value your opinion and
want to know what we’re doing right, what we could do better, what areas you'd like to see us publish in, and
any other words of wisdom you’re willing to pass our way. You can help us make strong books that meet your
needs and give you the computer guidance you require.

Do you have access to the World Wide Web? Then check out our site at http: //www.mcp. com.

If you have a technical question about this book, call the technical support line at 317-581-3833 or e-mail
support@mcp.com.

As the team leader of the group that created this book, | welcome your comments. You can fax, e-mail, or
write me directly to let me know what you did or didn’t like about this book—as well as what we can do to
make our books stronger. Here's the information:

Fax: 317-581-4669
E-mail: opsys_mgresams.mcp.com

Mail: Dean Miller
Comments Department
Sams Publishing
201 W. 103rd Street
Indianapolis, IN 46290

Linux Complete Command Reference

exit(2), access(2), alarm(2), close(2), dup(2), fentl(2), 1ink(2), mkdir(2), mknod(2), open(2), read(2), rename(2),
rmdir(2), symlink(2), write(2) copyright © 1992 Drew Eckhardt; 1993 Michael Haardt, lan Jackson.

unlink(2), remove(3) copyright © 1992 Drew Eckhardt; 1993 lan Jackson.

chdir(2), chmod(2), chown(2), chroot(2), clone(2), execve(2), fork(2), getrlimit(2), gettimeofday(2), kill(2),
nice(2), pause(2), pipe(2), reboot(2), setup(2), stime(2), swapon(2), sync(2), time(2), times(2), umask(2),
uname(2), uselib(2), utime(2) copyright © 1992 Drew Eckhardt (drewecs.colorado.edu), March 28, 1992.

mprotect(2) copyright © 1995 Michael Shields (shieldsetembel.org).
select(2) copyright © 1992 Drew Eckhardt, copyright © 1995 Michael Shields.

acct(2), brk(2), intro(2), ioperm(2), phys(2), ptrace(2), setsid(2), termios(2), ascii(7), crypt(3), environ(5),
ftime(3), ftw(3), group(5), hd(4), intro(1), intro(3), intro(4), intro(5), intro(6), intro(7), intro(8), isatty(3),
issue(5), longjmp(3), mem(4), motd(5), nologin(5), null(4), passwd(5), ram(4), securetty(5), setijmp(3), shells(5),
termcap(7), tty(4), ttys(4), ttytype(5), utmp(5), 1p(4), perror(3) copyright © 1993, 1994, 1995 Michael
Haardt.

bind(2), connect(2), flock(2), fsync(2), getdomainname(2), getdtablesize(2), getgid(2), getgroups(2),
gethostid(2), gethostname(2), getpagesize(2), getpid(2), getuid(2), idle(2), iopl(2), profil(2), recv(2),
sigvec(2), undocumented(2), vhangup(2), vmes(2), acosh(3), getdiren-tries(3), ctrlaltdel(8), dmesg(8),
fdformat(8), fdisk(8), fsck.minix(8), ipcrm(8), ipcs(8), sync(8), sd(4), clear(l), clock(8), domainname(1),
mkfs.minix(8), mkswap(8), passwd(1), rdev(8), reset(1), setfdprm(8), setserial(8), shutdown(8), kbdrate(8),
update state(8), chkdupexe(1), cytune(8) copyright 1992, 1993, 1994, 1995 Rickard E. Faith
(faith@cs.unc.edu).

getdents(2), 11seek(2), readdir(2), syslog(2), console.4 copyright 1994, 1995 Andries Brouwer (aebécwi.nl).

mount(2) copyright 1993 Rickard E. Faith (faithecs.unc.edu), copyright 1994 Andries E. Brouwer
(aeb@cwi.nl).

adjtimex(2), bdflush(2), ipc(2), modify 1dt(2), obsolete(2), socketcall(2), unimplemented(2) copyright © 1995
Michael Chastain (mec@shell.portal.com).

accept(2), getpeername(2), listen(2), 1seek(2), getpriority(2), getsockname(2), getsockopt(2), ioct1(2),
killpg(2), mmap(2), readlink(2), send(2), setpgid(2), setregid(2), setreuid(2), shut-down(2), sigblock(2),
sigpause(2), socket(2), socketpair(2), statfs(2),truncate(2), alloca(3), fclose(3), ferror(3), fflush(3),
fread(3), fseek(3), getpass(3), mailaddr(7), popen(3), printf(3), scanf(3), setbuf(3), stdarg(3), stdio(3),
banner(6), cal(1), col(1), colert(1), colrm(1), column(1), fstab(5), getoptprog(1l), logger(1), Look(1), 1pc(8),
1pd(8), 1pa(1), 1pr(1), 1prm(1), 1ptest(1), mesg(1), mount(8), pac(8), ping(8), syslog.conf(5), syslogd(8),
tsort(8), vipw(1), write(1), vi(1), rev(1), biff(1), tset(1), w(1), aliases(5), ftp(1), ftpd(8), inetd(8),
newaliases(1), rcp(1), resolver(5), rexecd(8), rlogin(1), routed(8), rpc.rusersd(8), rpc.rwalld(8), rsh(1),
rshd(8), rup(1), rusers(1), rwall(1), rwho(1), rwhod(8), sendmail(8), sliplogin(8), talk(1), talkd(8), telnet(1),
telnetd(8), tftp(1), tftpd(8), timed(8), timedc(8), traceroute(8) copyright © 1980, 1983, 1985, 1989, 1990,
1991, 1992 The Regents of the University of California. All rights reserved.

getitimer(2) copyright 1993 by Darren Senn (sinster@scintilla.santa-clara.ca.us).
modules(2), ksyms(1), insmod(1), 1smod(1), rmmod(1) copyright © 1994, 1995 Bjorn Ekwall (bjorneblox.se).

msgctl(2), msgget(2), msgop(2), semctl(2), semget(2), semop(2), ftok(3), ipc(5) copyright 1993 Giorgio Ciucci
(giorgio@crec.it).

setgid(2), setuid(2), realpath(3) copyright © 1994, Graeme W. Wilford.

Introduction

shmct1(2), shmget(2), shmop(2) copyright © 1993 Luigi P. Bai (1pbesoftint.com) July 28, 1993.
sigaction(2), signal(2), sigsetops(3) copyright © 1994 Mike Battersby (mike@starbug.apana.org.au).

stat(2) copyright © 1992 Drew Eckhardt (drewecs.colorado.edu), March 28, 1992. Parts copyright © 1995
Nicolai Langfeldt (janleifi.uio.no), January 1, 1995.

sysinfo(2), adjustclock(9), ctrl-alt-del(9), filesystems(9), file table(9), file table init(9), get empty
£i1p(9), grow files(9), in group p(9), insert file free(9), kernel mktime(9), proc sel(9), put file last(9),
remove file free(9) copyright © 1993 by Dan Miner (dminer@nyx.cs.du.edu).

wait(2), wait4(2), confstr(3), ctermid(3), fnmatch(3), fpathconf(3), getcwd(3), getopt(3), gets(3), isalpha(3),
malloc(3), signal(7), sleep(3), suffixes(7), sysconf(3), system(3), hier(7), assert(3), glob(3), killpg(3),
locale(7), localeconv(3), puts(3), raise(3), readv(3), setlocale(3) copyright © 1993 by Thomas Koenig
(ig25@rz.uni-karlsruhe.de).

abort(3), abs(3), acos(3),asin(3), asinn(3),atan(3), atan2(3), atanh(3), atexit(3), atof(3), atoi(3), atol(3),
bemp(3), beopy(3), bstring(3), byteorder(3), bzero(3), ceil(3), closedir(3), confstr(3), copysign(3), cos(3),
cosh(3), ctime(3), difftime(3), div(3), drand48(3), drem(3), ecvt(3), erf(3), exec(3), exit(3), exp(3), fabs(3),
f£s(3), fgetgrent(3), fgetpwent(3), fmod(3), fopen(3), frexp(3), gevt(3), getenv(3), getgrent(3), getgrnam(3),
gethostbyname(3), getm-ntent(3), getnetent(3), getprotoent(3), getpw(3), getpwent(3), getpwnam(3),
getservent(3), getusershell(3), hypot(3), index(3), inet(3), infnan(3), initgroups(3), isinf(3), jo(3), labs(3),
1dexp(3), 1div(3), 1gamma(3), mblen(3), mbstowcs(3), mbtowc(3), memccpy(3), mem-chr(3), mememp(3), memcpy(3),
memfrob(3), memmem(3), memmove(3), memset(3), mkstemp(3), mktemp(3), modf(3), on exit(3), opendir(3),
psignal(3), putenv(3), putpwent(3), gsort(3), rand(3), random(3), readdir(3), resolver(3), rewinddir(3), rint(3),
scandir(3), seekdir(3), setenv(3), siginterrupt(3), sin(3), sinh(3), sqrt(3), stremp(3), strcat(3), strehr(3),
stremp(3), strcoll(3), strepy(3), strdup(3), strerror(3), strfry(3), strftime(3), string(3), strilen(3), strp-
break(3), strptime(3), strsep(3), strsignal(3), strspn(3), strstr(3), strtod(3), strtok(3), str-tol(3),
strtoul(3), strxfrm(3), swab(3), tan(3), tanh(3), telldir(3), tempnam(3), tmpfile(3), tmpnam(3), toupper(3),
tzset(3), usleep(3), westombs(3), wetomb(3) copyright 1993 David Metcalfe (davideprism.demon.co.uk).

add timer(9), console ioctl(4), ttyname(3), vcs(4) copyright © 1995 Jim Van Zandt (jrvevanzandt.mv.com).

catgets(3), catopen(3), hostid(1) copyright 1993 Mitchum DSouza (m.dsouza@nrc-applied-
psychology.cambridge.ac.uk).

fd(4) copyright © 1993 Michael Haardt (michael@cantor.informatik.rwth-aachen.de) and 1994, 1995 Alain
Knaff (Alain.Knaff@imag.fr).

getutent(3) copyright 1995 Mark D. Roth (rotheuiuc. edu).

hsearch(3) copyright 1993 Ulrich Drepper (drepper@karlsruhe.gmd.de).

15088591(7), proc(5), sed(1) copyright 1993[nd]1995 Daniel Quinlan (quinlaneyggdrasil.com).
st(4) copyright 1995 Robert K. Nichols (Robert.K.Nichols@att.com).

agetty(8) copyright © by W.Z. Venema (wietse@wzv.win.tue.nl), Peter Orbaek (poe@daimi.aau.dk).
cfdisk(8) copyright 1994 Kevin E. Martin (martinecs.unc.edu).

chfn(1), chsh.1 copyright © 1994 by Salvatore Valente (svalente@athena.mit.edu).

crond(8), crontab(1) copyright 1994 Matthew Dillon (dilloneapollo.west.oic.com).

kil1(1) copyright 1994 Salvatore Valente (svalente@nit.edu), copyright 1992 Rickard E. Faith
(faith@cs.unc.edu).

klogd(8), sysklogd(8) copyright 1994 Greg Wettstein, Enjellic Systems Development.

XXXI

XXXii

Linux Complete Command Reference

setterm(1) copyright 1990 Gordon Irlam (gordoni@cs.ua.oz.au). Copyright 1992 Rickard E. Faith
(faith@cs.unc.edu).

tunelp(8), ps(1), psupdate(8) copyright © 1992 Michael K. Johnson (johnsonménigel.vnet.net).
xinetd(1) copyright © 1992 by Panagiotis Tsirigotis.

bash(1) copyright 1995 Chet Ramey (chet@ins.cwru.edu).

adduser(8) copyright 1995 by Ted Hajek, 1994 by lan Murdock.

e2fsck(8) copyright 1993, 1994 by Theodore Ts'0.

free(1), tload(1) copyright © 1993 Matt Welsh (ndwesunsite.unc.edu).

top(1) copyright 1992 Robert J. Nation.

vmstat(8) copyright © 1994 Henry Ware (al172@yfn.ysu.edu).

bdftopcf(1X), beforelight(1x), bitmap(1x), editres(1X), fsinfo(1X), flsfonts(1x),fstobdf(1x), iceauth(1x),
imake(1X), 1bxproxy(1x), 1ndir(1x), makedepend(1X), makestrs(1x), mkdirhier(1X), mkfontdir(1X), oclock(1X),
resize(1x), sessreg(1X), showrgb(1x), smproxy(1x), startx(1x), x11perf(1X), x11perfcomp(1X), xauth(1X),
xclipboard(1X), xclock(1X), xcmsdb(1X), xcon-sole(1X), xcutsel(1X), xam(1x), xdpyinfo(1X), xf86config(1X),
xfd(1x), xfs(1x), xhost(1x), xinit(1X), xkil1(1X), xlogo(1X), x1satoms(1x), xLsclients(1X), x1sfonts(1X),
xmag(1x), xmkmf(1x), xmodmap(1X), xon(1X), xprop(1x), xrdb(1x), xrefresh(1x), xset(1x), xsetroot(1x), xsm(1x),
xsmelient(1X), xstdemap(1X), xterm(1X), xwd(1x), xwininfo(1X), xwud(1x) copyright © 1993, 1994 X Consor-
tium.

portmap(8) copyright © 1987 Sun Microsystems, copyright © 1990, 1991 The Regents of the University of
California.

rpcgen.new(1) copyright © 1988, 1990 Sun Microsystems, Inc.
rstart(1x), rstartd(1x) copyright © 1993 Quarterdeck Office Systems.
showmount(8) copyright 1993 Rick Sladkey (jrseworld.std.com).

twm(1x) copyright © 1993, 1994 X Consortium. Portions copyright 1988 Evans & Sutherland Computer
Corporation. Portions copyright 1989 Hewlett-Packard Company.

xieperf.1x copyright 1993, 1994 by AGE Logic, Inc.

Many thanks to all these contributors for providing excellent-quality man pages and also to the Free Software
Foundation for providing the rest.

User Commands

Part I: User Commands

Introduction

This section introduces and describes user commands.

AUTHORS

Look at the header of the manual page for the author(s) and copyright conditions. Note that these can be different from page
to page.

addftinfo

addftinfo—Add information to troff font files for use with groff

SYNOPSIS

addftinfo [-paramvalue...] res unitwidth font

DESCRIPTION

addftinfo reads a troff font file and adds some additional font-metric information that is used by the groff system. The font
file with the information added is written on the standard output. The information added is guessed using some parametric
information about the font and assumptions about the traditional troff names for characters. The main information added
is the heights and depths of characters. The res and unitwidth arguments should be the same as the corresponding param-
eters in the pesc file; font is the name of the file describing the font; if font ends with I, the font will be assumed to be italic.

OPTIONS

Each of the £ options changes one of the parameters that is used to derive the heights and depths. Like the existing quantities
in the font file, each value is in inches/res for a font whose point size is unitwidth. param must be one of the following:

x-height The height of lowercase letters without ascenders such as x
fig-height The height of figures (digits)

asc-height The height of characters with ascenders, such as b, d, or |
body -height The height of characters such as parentheses

cap-height The height of uppercase letters such as A

comma-depth The depth of acomma

desc-depth The depth of characters with descenders, such as p, g, ory
body -depth The depth of characters such as parentheses

addftinfo makes no attempt to use the specified parameters to guess the unspecified parameters. If a parameter is not
specified, the default will be used. The defaults are chosen to have the reasonable values for a Times font.

SEE ALSO
font(5) groff_font(5), groff(1), groff_char(7)
Groff Version 1.09, 6 August 1992

afmtodit

afmtodit — Create font files for use with groff -Tps

SYNOPSIS

afmtodit [-ns][-ddesc_file][-eenc_file][-in][-an] afm_file map_file font

afmtodit
DESCRIPTION

afmtodit creates a font file for use with groff and grops. afmtodit is written in Perl; you must have Perl version 3 installed in
order to run afmtodit. afm_file is the AFM (Adobe Font Metric) file for the font. map_file is a file that says which groff
character names map onto each PostScript character name; this file should contain a sequence of lines of the form:

ps_char groff_char

where ps_char is the PostScript name of the character and groff_char is the groff name of the character (as used in the groff
font file.) The same ps_char can occur multiple times in the file; each groff_char must occur, at most, once. font is the groff
name of the font. If a PostScript character is in the encoding to be used for the font but is not mentioned in map_file, then
afmtodit will put it in the groff font file as an unnamed character, which can be accessed by the \N escape sequence in troff.
The groff_font file will be output to a file called font.

If there is a downloadable font file for the font, it may be listed in the file /usr/1ib/groff/font/devps/download; see grops(l).

If the -i option is used, afmtodit will automatically generate an italic correction, a left italic correction, and a subscript
correction for each character (the significance of these parameters is explained in groff_font(5)); these parameters may be
specified for individual characters by adding to the afm_file lines of the form:

italicCorrectionps charn

leftItalicCorrectionps charn
subscriptCorrectionps charn

where ps_char is the PostScript name of the character, and n is the desired value of the corresponding parameter in thou-
sandths of an em. These parameters are normally needed only for italic (or oblique) fonts.

OPTIONS
-n Don't output a ligatures command for this font. Use this with constant-width fonts.
-s The font is special. The effect of this option is to add the special command to the font file.
-ddesc_file The device description file is desc_file rather than the default pesc.
-eenc_file The PostScript font should be reencoded to use the encoding described in enc_fite. The format of
enc_file is described in grops(1).
-an Use n as the slant parameter in the font file; this is used by groff in the positioning of accents. By

default, afmtodit uses the negative of the 1talicAngle specified in the afm_file; with true italic
fonts, it is sometimes desirable to use a slant that is less than this. If you find that characters from
an italic font have accents placed too far to the right over them, then use the -a option to give the
font a smaller slant.

-in Generate an italic correction for each character so that the character’s width plus the character’s
italic correction is equal to n thousandths of an em plus the amount by which the right edge of the
character’s bounding is to the right of the character’s origin. If this would result in a negative italic
correction, use a zero italic correction instead.

Also generate a subscript correction equal to the product of the tangent of the slant of the font and
four-fifths of the x-height of the font. If this would result in a subscript correction greater than the
italic correction, use a subscript correction equal to the italic correction instead.

Also generate a left italic correction for each character equal to n thousandths of an em plus the
amount by which the left edge of the character’s bounding box is to the left of the character’s
origin. The left italic correction may be negative.

This option is normally needed only with italic (or oblique) fonts. The font files distributed with
groff were created using an option of -ise for italic fonts.

FILES
fusr/1lib/groff/font/devps/DESC Device description file
fusr/1lib/groff/font/devps/F Font description file for font F

/usr/1lib/groff/font/devps/download List of downloadable fonts

E Part I: User Commands

/usr/1lib/groff/font/devps/text.enc Encoding used for text fonts
/usr/1lib/groff/font/devps/generate/textmap Standard mapping
SEE ALSO

groff(1), grops(1), groff_font(5), per1(1)
Groff Version 1.09, 14 February 1994

ansi2knr

ansizknr—Convert ANSI C to Kernighan & Ritchie C

SYNOPSIS

ansi2knr input_file output_file

DESCRIPTION
If no output_file is supplied, output goes to stdout. There are no error messages.

ansi2knr recognizes functions by seeing a nonkeyword identifier at the left margin, followed by a left parenthesis, with a right
parenthesis as the last character on the line. It will recognize a multiline header if the last character on each line but the last is
a left parenthesis or comma. These algorithms ignore whitespace and comments, except that the function name must be the
first thing on the line.

The following constructs will confuse it:

= Any other construct that starts at the left margin and follows the above syntax (such as a macro or function call)
m Macros that tinker with the syntax of the function header

31 December 1990

anytopnm
anytopnm—Attempt to convert an unknown type of image file to a portable anymap

SYNOPSIS

anytopnm file

DESCRIPTION

anytopnm uses the file program, possibly augmented by the magic numbers file included with peupLUS, to try to figure out
what type of image file it is. If that fails (very few image formats have magic numbers), looks at the filename extension. If
that fails, punt.

The type of the output file depends on the input file.

SEE ALSO
pnmfile(1), pnm(5), file(1)

BUGS

It’s a script. Scripts are not portable to non-UNIX environments.

AUTHOR
Copyright O 1991 by Jef Poskanzer
27 July 1990

ar

appres

appres—Llist x application resource database

SYNOPSIS

appres [[class [instance]] [-1] [toolkitoptions]

DESCRIPTION

The appres program prints the resources seen by an application (or subhierarchy of an application) with the specified class
and instance names. It can be used to determine which resources a particular program will load. For example,

% appres XTerm
will list the resources that any xterm program will load. If no application class is specified, the class -AppResTest- is used.

To match a particular instance name, specify an instance name explicitly after the class name, or use the normal xt toolkit
option. For example,

% appres XTerm myxterm

or

% appres XTerm -name myxterm

To list resources that match a subhierarchy of an application, specify hierarchical class and instance names. The number of
class and instance components must be equal, and the instance name should not be specified with a toolkit option. For
example,

% appres Xman.TopLevelShell.Form xman.topBox.form

will list the resources of widgets of xman topBox hierarchy. To list just the resources matching a specific level in the hierarchy,
use the -1 option. For example,

% appres XTerm.VT100 xterm.vti100 -1

will list the resources matching the xterm vt100 widget.

SEE ALSO
X(1), xrdb(1), 1istres(1)

AUTHOR

Jim Fulton (MIT X Consortium)
X Version 11 Release 6

ar—Create, modify, and extract from archives

SYNOPSIS

ar [-] dmpgrtx[abcilosuvV] [membername] archive files ...

DESCRIPTION

The GNU ar program creates, modifies, and extracts from archives. An archive is a single file holding a collection of other
files in a structure that makes it possible to retrieve the original individual files (called members of the archive).

The original files’ contents, mode (permissions), timestamp, owner, and group are preserved in the archive, and may be
reconstituted on extraction.

E Part I: User Commands

GNU ar can maintain archives whose members have names of any length; however, depending on how ar is configured on
your system, a limit on member-name length may be imposed (for compatibility with archive formats maintained with other
tools). If it exists, the limit is often 15 characters (typical of formats related to a.out) or 16 characters (typical of formats
related to coff).

ar is considered a binary utility because archives of this sort are most often used as libraries holding commonly needed
subroutines.

ar will create an index to the symbols defined in relocatable object modules in the archive when you specify the modifier s.
Once created, this index is updated in the archive whenever ar makes a change to its contents (save for the q update
operation). An archive with such an index speeds up linking to the library, and allows routines in the library to call each
other without regard to their placement in the archive.

You may use nm -s Or nm —print-armap to list this index table. If an archive lacks the table, another form of ar called ran1ib
can be used to add just the table.

ar insists on at least two arguments to execute: one keyletter specifying the operation (optionally accompanied by other
keyletters specifying modifiers), and the archive name to act on.

Most operations can also accept further files arguments, specifying particular files to operate on.

OPTIONS

GNU ar allows you to mix the operation code p and modifier flags mod in any order, within the first command-line
argument.

If you wish, you may begin the first command-line argument with a dash.
The p keyletter specifies what operation to execute; it may be any of the following, but you must specify only one of them:
d Delete modules from the archive. Specify the names of modules to be deleted as files ; the archive is
untouched if you specify no files to delete.
If you specify the v modifier, ar will list each module as it is deleted.
m Use this operation to move members in an archive.

The ordering of members in an archive can make a difference in how programs are linked using the
library if a symbol is defined in more than one member.

If no modifiers are used with m, any members you name in the files arguments are moved to the end of
the archive; you can use the a, b, or i modifiers to move them to a specified place instead.

p Print the specified members of the archive to the standard output file. If the v modifier is specified,
show the membername before copying its contents to standard output.

If you specify no files, all the files in the archive are printed.
q Quick append; add files to the end of archive without checking for replacement.

The modifiers a, b, and i do not affect this operation; new members are always placed at the end of the
archive.

The modifier v makes ar list each file as it is appended.
Since the point of this operation is speed, the archive’s symbol table index is not updated, even if it
already existed; you can use ar s or ranlib explicitly to update the symbol table index.

r Insert files into archive (with replacement). This operation differs from g in that any previously existing
members are deleted if their names match those being added.
If one of the files named in files doesn’t exist, ar displays an error message and leaves undisturbed any
existing members of the archive matching that name.
By default, new members are added at the end of the file, but you may use one of the modifiers a, b, or
i to request placement relative to some existing member.
The modifier v used with this operation elicits a line of output for each file inserted, along with one of
the letters a or r to indicate whether the file was appended (no old member deleted) or replaced.

ar

t Display a table listing the contents of archive, or those of the files listed in files that are present in the
archive. Normally, only the membername is shown; if you also want to see the modes (permissions),
timestamp, owner, group, and size, you can request that by also specifying the v modifier.

If you do not specify any files, all files in the archive are listed.

If there is more than one file with the same name (say, fie) in an archive (say, b.a), ar t b.a fie will
list only the first instance; to see them all, you must ask for a complete listing—in our example, ar t
b.a.

X Extract members (named files) from the archive. You can use the v modifier with this operation to
request that ar list each name as it extracts it.

If you do not specify any files, all files in the archive are extracted.

A number of modifiers (mod) may immediately follow the p keyletter, to specify variations on an operation’s behavior, as
follows:

a Add new files after an existing member of the archive. If you use the modifier a, the name of an
existing archive member must be present as the membername argument, before the archive specifica-
tion.

b Add new files before an existing member of the archive. If you use the modifier b, the name of an

existing archive member must be present as the membername argument, before the archive specifica-
tion (same as i).

c Create the archive. The specified archive is always created if it didn’t exist when you request an update.
But a warning is issued unless you specify in advance that you expect to create it by using this modifier.
i Insert new files before an existing member of the archive. If you use the modifier i, the name of an

existing archive member must be present as the membername argument, before the archive specifica-
tion. (same as b).

1 This modifier is accepted but not used.

0 Preserve the original dates of members when extracting them. If you do not specify this modifier, files
extracted from the archive will be stamped with the time of extraction.

s Write an object-file index into the archive, or update an existing one, even if no other change is made

to the archive. You may use this modifier flag either with any operation, or alone. Running ar s on an
archive is equivalent to running ranlib on it.

u Normally, ar r... inserts all files listed into the archive. If you would like to insert only those of the
files you list that are newer than existing members of the same names, use this modifier. The u modifier
is allowed only for the operation r (replace). In particular, the combination qu is not allowed, since
checking the timestamps would lose any speed advantage from the operation q.

v This modifier requests the verbose version of an operation. Many operations display additional
information, such as filenames processed, when the modifier v is appended.
v This modifier shows the version number of ar.
SEE ALSO
binutils entry in info; The GNU Binary Utilities, Roland H. Pesch (October 1991); nm(1), anlib(1)
COPYING

Copyright O 1991 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy
and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions
for modified versions, except that this permission notice may be included in translations approved by the Free Software
Foundation instead of in the original English.

Cygnus Support, 5 November 1991

Part I: User Commands

arch

arch—Print architecture

SYNOPSIS

arch

DESCRIPTION

arch displays machine architecture type.

SEE ALSO
uname(1), uname(2)

Debian GNU/Linux, 15 January 1994

GNU as

GNU as—The portable GNU assembler
SYNOPSIS

as [-a ; -al | -as][-D][-f][-TI path][-K][-L][-0 objfile J[-R][-v][-w J[--\}\
files ...]

1960-only options:

[-ACA| -ACA A | -ACB | -ACC| -AKA| -AKB | -AKC| -AMC][-b][-no-relax]

m680x0-only options:
[-1][-mc68000, -mc68010) -mc68020]

DESCRIPTION

GNU as is really a family of assemblers. If you use (or have used) the GNU assembler on one architecture, you should find a
fairly similar environment when you use it on another architecture. Each version has much in common with the others,
including object file formats, most assembler directives (often called pseudo-ops) and assembler syntax.

For information on the syntax and pseudo-ops used by GNU as, see as entry in info (or the manual Using as: The GNU
Assembler).

as is primarily intended to assemble the output of the GNU C compiler gec for use by the linker 1d. Nevertheless, we’ve tried
to make as assemble correctly everything that the native assembler would. This doesn’t mean as always uses the same syntax
as another assembler for the same architecture; for example, we know of several incompatible versions of 680x0 assembly
language syntax.

Each time you run as, it assembles exactly one source program. The source program is made up of one or more files. (The
standard input is also a file.)

If as is given no filenames, it attempts to read one input file from the as standard input, which is normally your terminal.
You may have to type Ctrl-D to tell as there is no more program to assemble. Use -- if you need to explicitly name the
standard input file in your command line.

as may write warnings and error messages to the standard error file (usually your terminal). This should not happen when as
is run automatically by a compiler. Warnings report an assumption made so that as could keep assembling a flawed program;
errors report a grave problem that stops the assembly.

GNU as E

OPTIONS

-al-al|-as Turn on assembly listings; -aL, listing only, -as, symbols only, -a, everything.

-D This option is accepted only for script compatibility with calls to other assemblers; it
has no effect on as.

-f “Fast”—skip preprocessing (assume source is compiler output).

-I\path Add path to the search list for .include directives.

-K Issue warnings when difference tables altered for long displacements.

-L Keep (in symbol table) local symbols, starting with L.

-o\objfile Name the object-file output from as.

-R Fold data section into text section.

-v Announce as version.

-w Suppress warning messages.

--\I\Files... Source files to assemble, or standard input (--).

-Avar (When configured for Intel 960.) Specify which variant of the 960 architecture is the
target.

-b (When configured for Intel 960.) Add code to collect statistics about branches taken.

-no-relax (When configured for Intel 960.) Do not alter compare-and-branch instructions for
long displacements; error if necessary.

-1 (When configured for Motorola 68000.) Shorten references to undefined symbols to
one word instead of two.

-mc68000 ! -mc68010 ! -nc68020 (When configured for Motorola 68000.) Specify which processor in the 68000

family is the target (default 68020).

Options may be in any order, and may be before, after, or between filenames. The order of filenames is significant.
The double hyphens command () by itself names the standard input file explicitly, as one of the files for as to assemble.

Except for --, any command line argument that begins with a hyphen (-) is an option. Each option changes the behavior of
as. N option changes the way another option works. An option is a hyphen followed by one or more letters; the case of the
letter is important. All options are optional.

The -o option expects exactly one filename to follow. The filename may either immediately follow the option’s letter
(compatible with older assemblers) or it may be the next command argument (GNU standard).

These two command lines are equivalent:

as -0 my-object-file.o mumble.s

as -omy-object-file.o mumble.s

SEE ALSO
as entry in info; Using as: The GNU Assembler; gcc(1), 1d(1).

COPYING

Copyright O 1991, 1992 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of
this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to
copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire
resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions
for modified versions, except that this permission notice may be included in translations approved by the Free Software
Foundation instead of in the original English.

Cygnus Support, 21 January 1992

Part I: User Commands

asciitopgm
asciitopgn—Convert ASCII graphics into a portable graymap

SYNOPSIS

asciitopgm [-d divisor] height width [asciifile]

DESCRIPTION

Reads ASCII data as input. Produces a portable graymap with pixel values that are an approximation of the brightness of the
ASCII characters, assuming black-on-white printing. In other words, a capital M is very dark, a period is very light, and a
space is white. Input lines that are fewer than width characters are automatically padded with spaces.

The divisor argument is a floating-point number by which the output pixels are divided; the default value is 1.0. This can be
used to adjust the brightness of the graymap; for example, if the image is too dim, reduce the divisor.

In keeping with (I believe) FORTRAN line-printer conventions, input lines beginning with a + (plus) character are assumed
to overstrike the previous line, allowing a larger range of gray values.

This tool contradicts the message in the pbmtoascii manual: “Note that there is no asciitopbm tool—this transformation is
one-way.”

BUGS

The table of ASCII-to-gray values is subject to interpretation, and, of course, depends on the typeface intended for the input.

SEE ALSO
pbmtoascii(l), pgm(5)

AUTHOR
Wilson H. Bent, Jr. (whbeusc . edu)
26 December 1994

atktopbm

atktopom—Convert Andrew Toolkit raster object to portable bitmap

SYNOPSIS

atktopbm [atkFile]

DESCRIPTION

atktopbm reads an Andrew Toolkit raster object as input and produces a portable bitmap as output.

SEE ALSO
pbmtoatk(1), pbm(5)

AUTHOR
Copyright O 1991 by Bill Janssen
26 September 1991

bash
bash

bash—GNU Bourne—again shell

SYNOPSIS

bash [options] [file]

DESCRIPTION

bash is an sh—compatible command language interpreter that executes commands read from the standard input or from a file.
bash also incorporates useful features from the Korn and C shells (ksh and csh).

bash is ultimately intended to be a conformant implementation of the IEEE POSIX Shell and Tools specification (IEEE
Working Group 10032).

OPTIONS

In addition to the single—character shell options documented in the description of the set built-in command, bash interprets
the following flags when it is invoked:

-c string If the -c flag is present, then commands are read from string. If there are arguments after the
string, they are assigned to the positional parameters, starting with $e.

-i If the -i flag is present, the shell is interactive.

-s If the -s flag is present, or if no arguments remain after option processing, then commands are

read from the standard input. This option allows the positional parameters to be set when
invoking an interactive shell.

- A single - signals the end of options and disables further option processing. Any arguments after
the - are treated as filenames and arguments. An argument of — is equivalent to an argument
of -.

bash also interprets a number of multicharacter options. To be recognized, these options must appear on the command line
before the single—character options.

-norc Do not read and execute the personal initialization file “/.bashrc if the shell is interactive. This
option is on by default if the shell is invoked as sh.
-noprofile Do not read either the system—wide startup file /etc/profile or any of the personal initializa-

tion files “/.bash_profile, "/.bash_login, Of “/.profile. By default, bash normally reads these
files when it is invoked as a login shell. (See the “Invocation” section, later in this manual page.)

-rcfile file Execute commands from file instead of the standard personal initialization file ~/.bashrec, if the
shell is interactive. (See “Invocation.”)

-version Show the version number of this instance of bash when starting.

-quiet Do not be verbose when starting up (do not show the shell version or any other information).
This is the default.

-login Make bash act as if it had been invoked as a login shell.

-nobraceexpansion Do not perform curly brace expansion. (See “Brace Expansion,” later in this manual page.)

-nolineediting Do not use the GNU readline library to read command lines if interactive.

-posix Change the behavior of bash where the default operation differs from the POSIX 1003.2

standard to match the standard.

ARGUMENTS

If arguments remain after option processing, and neither the -c nor the -s option has been supplied, the first argument is
assumed to be the name of a file containing shell commands. If bash is invoked in this fashion, is set to the name of the file,
and the positional parameters are set to the remaining arguments. bash reads and executes commands from this file, then
exits. bash’s exit status is the exit status of the last command executed in the script.

Part I: User Commands

DEFINITIONS
blank A space or tab.
word A sequence of characters considered as a single unit by the shell. Also known as a token.
name A word consisting only of alphanumeric characters and underscores and beginning with an
alphabetic character or an underscore. Also referred to as an identifier.
meta character A character that, when unquoted, separates words. One of the following:
|, &, (,), <, >, space, tab
control operator A token that performs a control function. It is one of the following symbols:
||, &, &&,;, i, (), |, <newline>
RESERVED WORDS

Reserved words are words that have a special meaning to the shell. The following words are recognized as reserved when
unquoted and either the first word of a simple command (see “Shell Grammar,” next) or the third word of a case or for
command:

! case do done elif else esac fi for function if in select then until while { }

SHELL GRAMMAR

SIMPLE COMMANDS

A simple command is a sequence of optional variable assignments followed by words and redirections separated by blank and
terminated by a control operator. The first word specifies the command to be executed. The remaining words are passed as
arguments to the invoked command.

The return value of a simple command is its exit status, or 128+n if the command is terminated by signal n.
PIPELINES

A pipeline is a sequence of one or more commands separated by the character |. The format for a pipeline is

[!]command [| command2 ...]

The standard output of command is connected to the standard input of command2. This connection is performed before any
redirections specified by the command. (See the “Redirection” section, later in this manual page.)

If the reserved word ! precedes a pipeline, the exit status of that pipeline is the logical NoT of the exit status of the last
command. Otherwise, the status of the pipeline is the exit status of the last command. The shell waits for all commands in
the pipeline to terminate before returning a value.

Each command in a pipeline is executed as a separate process (that is, in a subshell).

LISTS

A list is a sequence of one or more pipelines separated by one of these operators: ;, &, &, or | !, and terminated by one of
these: ;, &, Or <newline>.

Of these list operators, && and ! | have equal precedence, followed by ; and &, which have equal precedence.

If a command is terminated by the control operator &, the shell executes the command in the background in a subshell. The
shell does not wait for the command to finish, and the return status is e. Commands separated by a ; are executed sequen-
tially; the shell waits for each command to terminate in turn. The return status is the exit status of the last command
executed.

The control operators && and || denote AnD lists and or lists, respectively. An Anp list has the form:

command && command2

command2 is executed if, and only if, command returns an exit status of zero.

bash

An or list has the form

command command2

command2 is executed if, and only if, command returns a non—zero exit status. The return status of Anp and or lists is the exit
status of the last command executed in the list.

COMPOUND COMMANDS
A compound command is one of the following:
(list)

list is executed in a subshell. Variable assignments and built-in commands that affect the shell’s environment do not remain
in effect after the command completes. The return status is the exit status of list.
{ list; }

list is simply executed in the current shell environment. This is known as a group command. The return status is the exit
status of tist.
for name [in word;] do list ; done

The list of words following in is expanded, generating a list of items. The variable name is set to each element of this list in
turn, and rist is executed each time. If the in word is omitted, the for command executes 1ist once for each positional
parameter that is set. (See “Parameters,” later in this manual page.)

select name [in word;] do list ; done

The list of words following in is expanded, generating a list of items. The set of expanded words is printed on the standard
error, each preceded by a number. If the in word is omitted, the positional parameters are printed. (See “Parameters.”) The
PS3 prompt is then displayed and a line read from the standard input. If the line consists of the number corresponding to
one of the displayed words, then the value of name is set to that word. If the line is empty, the words and prompt are
displayed again. If EoF is read, the command completes. Any other value read causes name to be set to null. The line read is
saved in the variable repLy. The list is executed after each selection until a break or return command is executed. The exit
status of select is the exit status of the last command executed in 1ist, or zero if No commands were executed.

case word in [pattern [| pattern]

A case command first expands word, and tries to match it against each pattern in turn, using the same matching rules as for
pathname expansion. (See “Pathname Expansion,” later in this manual page.) When a match is found, the corresponding list
is executed. After the first match, no subsequent matches are attempted. The exit status is zero if no patterns are matches.
Otherwise, it is the exit status of the last command executed in list.

if list then list [elif list then list | ... [else list] fi

The if list is executed. If its exit status is zero, the then list is executed. Otherwise, each elif list is executed in turn, and if its
exit status is zero, the corresponding then list is executed and the command completes. Otherwise, the else list is executed, if
present. The exit status is the exit status of the last command executed, or zero if no condition tested True.

while list do list done

until list do list done

The while command continuously executes the do list as long as the last command in rist returns an exit status of zero. The
until command is identical to the while command, except that the test is negated; the do list is executed as long as the last
command in tist returns a non-zero exit status. The exit status of the while and until commands is the exit status of the last
do list command executed, or zero if none was executed.

[function] name () { list; }
This defines a function named name. The body of the function is the list of commands between { and }. This list is executed

whenever name is specified as the name of a simple command. The exit status of a function is the exit status of the last
command executed in the body. (See “Functions,” later in this manual page.)

Part I: User Commands

COMMENTS

In a noninteractive shell, or an interactive shell in which the -o interactive-comments option to the set builtin is enabled, a
word beginning with # causes that word and all remaining characters on that line to be ignored. An interactive shell without
the -0 interactive-comments option enabled does not allow comments.

QUOTING

Quoting is used to remove the special meaning of certain characters or words to the shell. Quoting can be used to disable
special treatment for special characters, to prevent reserved words from being recognized as such, and to prevent parameter
expansion.

Each of the meta characters listed earlier under “Definitions” has special meaning to the shell and must be quoted if it is to
represent itself. There are three quoting mechanisms: the escape character, single quotes, and double quotes.

A nonquoted backslash (\) is the escape character. It preserves the literal value of the next character that follows, with the
exception of <newline>.If a \<newline> pair appears, and the backslash is not quoted, the \<newline> is treated as a line
continuation; that is, it is effectively ignored.

Enclosing characters in single quotes preserves the literal value of each character within the quotes. A single quote may not
occur between single quotes, even when preceded by a backslash.

Enclosing characters in double quotes preserves the literal value of all characters within the quotes, with the exception of s, ',
and \. The characters $ and ' retain their special meaning within double quotes. The backslash retains its special meaning
only when followed by one of the following characters: $, ', *, \, or <newline>. A double quote may be quoted within double
quotes by preceding it with a backslash.

The special parameters * and e have special meaning when in double quotes. (See “Parameters,” next.)

PARAMETERS

A parameter is an entity that stores values, somewhat like a variable in a conventional programming language. It can be a
name, a number, or one of the special characters listed under “Special Parameters,” following. For the shell’s purposes, a
variable is a parameter denoted by a name.

A parameter is set if it has been assigned a value. The null string is a valid value. Once a variable is set, it may be unset only
by using the unset built-in command. (See “Shell Built-in Commands,” later in this manual page.)

A variable may be assigned to by a statement of the form:

name=[value]

If value is not given, the variable is assigned the null string. All values undergo tilde expansion, parameter and variable
expansion, command substitution, arithmetic expansion, and quote removal. If the variable has its -i attribute set (see
declare in “Shell Built-in Commands”) then value is subject to arithmetic expansion even if the $[...] syntax does not

appear. Word splitting is not performed, with the exception of *se", as explained under “Special Parameters.” Pathname
expansion is not performed.

POSITIONAL PARAMETERS

A positional parameter is a parameter denoted by one or more digits, other than the single digit 0. Positional parameters are
assigned from the shell’s arguments when it is invoked, and may be reassigned using the set built-in command. Positional
parameters may not be assigned to with assignment statements. The positional parameters are temporarily replaced when a
shell function is executed. (See “Functions,” later in this manual page.)

When a positional parameter consisting of more than a single digit is expanded, it must be enclosed in braces. (See
“Expansion,” later in this manual page.)

SPECIAL PARAMETERS
The shell treats several parameters specially. These parameters may only be referenced; assignment to them is not allowed.

bash

* Expands to the positional parameters, starting from one. When the expansion occurs within double
quotes, it expands to a single word with the value of each parameter separated by the first character
of the 1Fs special variable. That is, "$*" is equivalent to "$1c$2c. .. ", where c is the first character of
the value of the 1Fs variable. If 1Fs is null or unset, the parameters are separated by spaces.

@ Expands to the positional parameters, starting from one. When the expansion occurs within double
quotes, each parameter expands as a separate word. That is, *$e" is equivalent to "$1""s$2"
When there are no positional parameters, "s$e" and $e expand to nothing (in other words, they are

removed).
Expands to the number of positional parameters in decimal.
? Expands to the status of the most recently executed foreground pipeline.

- Expands to the current option flags as specified upon invocation, by the set built-in command, or
those set by the shell itself (such as the -i flag).

$ Expands to the process ID of the shell. In a () subshell, it expands to the process ID of the current
shell, not the subshell.

! Expands to the process ID of the most recently executed background (asynchronous) command.

0 Expands to the name of the shell or shell script. This is set at shell initialization. If bash is invoked

with a file of commands, is set to the name of that file. If bash is started with the -c option, then is

set to the first argument after the string to be executed, if one is present. Otherwise, it is set to the

pathname used to invoke bash, as given by argument zero.

Expands to the last argument to the previous command, after expansion. Also set to the full

pathname of each command executed and placed in the environment exported to that command.

SHELL VARIABLES
The following variables are set by the shell:
PPID The process ID of the shell’s parent.
PWD The current working directory as set by the cd command.
OLDPWD The previous working directory as set by the cd command.
REPLY Set to the line of input read by the read built-in command when no arguments are
supplied.
uID Expands to the user ID of the current user, initialized at shell startup.
EUID Expands to the effective user ID of the current user, initialized at shell startup.
BASH Expands to the full pathname used to invoke this instance of bash.
BASH_VERSION Expands to the version number of this instance of bash.
SHLVL Incremented by one each time an instance of bash is started.
RANDOM Each time this parameter is referenced, a random integer is generated. The sequence

of random numbers may be initialized by assigning a value to RaNDoM. If RANDOM iS
unset, it loses its special properties, even if it is subsequently reset.

SECONDS Each time this parameter is referenced, the number of seconds since shell invocation
is returned. If a value is assigned to Seconps, the value returned upon subsequent
references is the number of seconds since the assignment plus the value assigned. If
SECONDS is unset, it loses its special properties, even if it is subsequently reset.

LINENO Each time this parameter is referenced, the shell substitutes a decimal number
representing the current sequential line number (starting with 1) within a script or
function. When not in a script or function, the value substituted is not guaranteed to
be meaningful. When in a function, the value is not the number of the source line
that the command appears on (that information has been lost by the time the
function is executed), but is an approximation of the number of simple commands
executed in the current function. If LINENO is unset, it loses its special properties, even
if it is subsequently reset.

Part I: User Commands

HISTCMD
OPTARG
OPTIND
HOSTTYPE

OSTYPE

The history number, or index in the history list, of the current command. If HzSTCMD
is unset, it loses its special properties, even if it is subsequently reset.

The value of the last option argument processed by the getopts built-in command.
(See “Shell Built-in Commands,” later in this manual page).

The index of the next argument to be processed by the getopts built-in command.
(See “Shell Built-in Commands.”)

Automatically set to a string that uniquely describes the type of machine on which
bash is executing. The default is system-dependent.

Automatically set to a string that describes the operating system on which bash is
executing. The default is system-dependent.

The following variables are used by the shell. In some cases, bash assigns a default value to a variable; these cases are noted in

the following list:
IFS

PATH

HOME

CDPATH

ENV

MAIL

MAILCHECK

MAILPATH

MAIL_WARNING
PS1

PS2

The internal field separator that is used for word splitting after expansion and to split
lines into words with the read built-in command. The default value is
<space><tab><newline>

The search path for commands. It is a colon-separated list of directories in which the
shell looks for commands. (See “Command Execution,” later in this manual page).
The default path is system—dependent, and is set by the administrator who installs
bash. A common value is /usr/gnu/bin: /usr/local/bin: /usr/ucb:/bin:/usr/bin:.
The home directory of the current user; the default argument for the cd built-in
command.

The search path for the cd command. This is a colon-separated list of directories in
which the shell looks for destination directories specified by the cd command. A
sample value is .:": /usr.

If this parameter is set when bash is executing a shell script, its value is interpreted as
a filename containing commands to initialize the shell, as in .bashrc. The value of
ENV is subjected to parameter expansion, command substitution, and arithmetic
expansion before being interpreted as a pathname. PATH is not used to search for the
resultant pathname.

If this parameter is set to a filename and the MAILPATH variable is not set, bash informs
the user of the arrival of mail in the specified file.

Specifies how often (in seconds) bash checks for mail. The default is 60 seconds.
When it is time to check for mail, the shell does so before prompting. If this variable
is unset, the shell disables mail checking.
A colon-separated list of pathnames to be checked for mail. The message to be
printed may be specified by separating the pathname from the message with a
question mark (?). s_ stands for the name of the current mailfile.

Example:

MAILPATH\
='/usr/spool/mail/bfox?"You have
mail":"/shell-mail?"$_has maill"'

bash supplies a default value for this variable, but the location of the user mail files
that it uses is system-dependent (for example, /usr/spool/mail/$USER).

If set, and a file that bash is checking for mail has been accessed since the last time it
was checked, the message “The mail in mail-file has been read” is printed.

The value of this parameter is expanded (see “Prompting,” later in this manual page)
and used as the primary prompt string. The default value is bash\$.

The value of this parameter is expanded and used as the secondary prompt string.
The default is >.

PS3

PS4

HISTSIZE

HISTFILE

HISTFILESIZE

OPTERR

PROMPT_COMMAND

IGNOREEOF

TMOUT

FCEDIT
FIGNORE

INPUTRC

notify

history_control HISTCONTROL

command_oriented_history

glob_dot_filenames

allow-null_glob_expansion

histchars

bash

The value of this parameter is used as the prompt for the select command. (See
“Shell Grammar,” earlier in this manual page.)

The value of this parameter is expanded and the value is printed before each
command bash displays during an execution trace. The first character of ps4 is
replicated multiple times, as necessary, to indicate multiple levels of indirection. The
default is +.

The number of commands to remember in the command history, (See “History,”
later in this manual page.) The default value is 500.

The name of the file in which command history is saved. (See “History.”) The
default value is /.bash_history. If unset, the command history is not saved when an
interactive shell exits.

The maximum number of lines contained in the history file. When this variable is
assigned a value, the history file is truncated, if necessary, to contain no more than
that number of lines. The default value is 500.

If set to the value 1, bash displays error messages generated by the getopts built-in
command. (See “Shell Built-in Commands.”). oPTERR is initialized to 1 each time the
shell is invoked or a shell script is executed.

If set, the value is executed as a command prior to issuing each primary prompt.
Controls the action of the shell on receipt of an Eor character as the sole input. If set,
the value is the number of consecutive EoF characters typed as the first characters on
an input line before bash exits. If the variable exists but does not have a numeric
value, or has no value, the default value is 10. If it does not exist, EoF signifies the end
of input to the shell. This is only in effect for interactive shells.

If set to a value greater than zero, the value is interpreted as the number of seconds
to wait for input after issuing the primary prompt. bash terminates after waiting for
that number of seconds if input does not arrive.

The default editor for the fc built-in command.

A colon-separated list of suffixes to ignore when performing filename completion.
(See “Readline,” later in this manual page.) A filename whose suffix matches one of
the entries in FIGNORE is excluded from the list of matched filenames. A sample value
is.o:".

The filename for the readline startup file, overriding the default of “/.inputrc. (See
“Readline.”)

If set, bash reports terminated background jobs immediately, rather than waiting
until before printing the next primary prompt. (See also the -b option to the set
built-in command.)

If set to a value of ignorespace, lines that begin with a space character are not entered
on the history list. If set to a value of ignoredups, lines matching the last history line
are not entered. A value of ignoreboth combines the two options. If unset, or if set to
any other value than the preceding, all lines read by the parser are saved on the
history list.

If set, bash attempts to save all lines of a multiple—line command in the same history
entry. This allows easy reediting of multiline commands.

If set, bash includes filenames beginning with a period (.) in the results of pathname
expansion.

If set, bash allows pathname patterns which match no files (see “Pathname
Expansion”) to expand to a null string, rather than themselves.

The two or three characters that control history expansion and tokenization. (See
“History Expansion,” later in this manual page.) The first character is the history
expansion character; that is, the character that signals the start of a history expansion,

Part I: User Commands

nolinks

hostname_completion_file HOSTFILE
noclobber

auto_resume

no_exit_on_failed_exec

cdable_vars

EXPANSION

normally 1. The second character is the quick substitution character, which is used as
shorthand for rerunning the previous command entered, substituting one string for
another in the command. The default is ~. The optional third character is the
character that signifies that the remainder of the line is a comment, when found as
the first character of a word, normally #. The history comment character causes
history substitution to be skipped for the remaining words on the line. It does not
necessarily cause the shell parser to treat the rest of the line as a comment.

If set, the shell does not follow symbolic links when executing commands that
change the current working directory. It uses the physical directory structure instead.
By default, bash follows the logical chain of directories when performing commands
that change the current directory, such as cd. See also the description of the -p
option to the set builtin (“Shell Built-in Commands”).

Contains the name of a file in the same format as /etc/hosts that should be read
when the shell needs to complete a hostname. The file may be changed interactively;
the next time hostname completion is attempted bash adds the contents of the new
file to the already existing database.

If set, bash does not overwrite an existing file with the >, >&, and <> redirection
operators. This variable may be overridden when creating output files by using the
redirection operator >} instead of >. (See also the -c option to the set built-in
command.)

This variable controls how the shell interacts with the user and job control. If this
variable is set, single word simple commands without redirections are treated as
candidates for resumption of an existing stopped job. There is no ambiguity allowed;
if there is more than one job beginning with the string typed, the job most recently
accessed is selected. The name of a stopped job, in this context, is the command line
used to start it. If set to the value exact, the string supplied must match the name of
a stopped job exactly; if set to substring, the string supplied needs to match a
substring of the name of a stopped job. The substring value provides functionality
analogous to the %2 job ID. (See “Job Control,” later in this manual page.) If set to
any other value, the supplied string must be a prefix of a stopped job’s name; this
provides functionality analogous to the % job id.

If this variable exists, a noninteractive shell will not exit if it cannot execute the file
specified in the exec built-in command. An interactive shell does not exit if exec
fails.

If this is set, an argument to the cd built-in command that is not a directory is
assumed to be the name of a variable whose value is the directory to change to.

Expansion is performed on the command line after it has been split into words. There are seven kinds of expansion
performed: brace expansion, tilde expansion, parameter and variable expansion, command substitution, arithmetic expan-
sion, word splitting, and pathname expansion.

The order of expansions is as follows: brace expansion, tilde expansion, parameter, variable, command, and arithmetic
substitution (done in a left—to-right fashion), word splitting, and pathname expansion.

On systems that can support it, there is an additional expansion available: process substitution.

Only brace expansion, word splitting, and pathname expansion can change the number of words of the expansion; other
expansions expand a single word to a single word. The single exception to this is the expansion of "se", as explained earlier.

(See “Parameters.”)

bash
BRACE EXPANSION

Brace expansion is a mechanism by which arbitrary strings may be generated. This mechanism is similar to pathname
expansion, but the filenames generated need not exist. Patterns to be brace expanded take the form of an optional preamble,
followed by a series of comma-separated strings between a pair of braces, followed by an optional postamble. The preamble is
prepended to each string contained within the braces, and the postamble is then appended to each resulting string,
expanding left to right.

Brace expansions may be nested. The results of each expanded string are not sorted; left to right order is preserved. For
example, a{d,c,b}e expands into ade ace abe.

Brace expansion is performed before any other expansions, and any characters special to other expansions are preserved in the
result. It is strictly textual. bash does not apply any syntactic interpretation to the context of the expansion or the text
between the braces.

A correctly formed brace expansion must contain unquoted opening and closing braces, and at least one unquoted comma.
Any incorrectly formed brace expansion is left unchanged.

This construct is typically used as shorthand when the common prefix of the strings to be generated is longer than in the
preceding example, such as

mkdir /usr/local/src/bash/{old,new,dist,bugs}

or

chown root /usr/{ucb/{ex,edit},lib/{ex?.?* ,how_ex}}

Brace expansion introduces a slight incompatibility with traditional versions of sh, the Bourne shell. sh does not treat
opening or closing braces specially when they appear as part of a word, and preserves them in the output. bash removes
braces from words as a consequence of brace expansion. For example, a word entered to sh as file{1,2} appears identically in
the output. The same word is output as file1 file2 after expansion by bash. If strict compatibility with sh is desired, start
bash with the -nobraceexpansion flag (see “Options,” earlier in this manual page) or disable brace expansion with the +o
braceexpand option to the set command. (See “Shell Built-in Commands.”)

TILDE EXPANSION

If a word begins with a tilde character (), all of the characters preceding the first slash (or all characters, if there is no slash)
are treated as a possible login name. If this login name is the null string, the tilde is replaced with the value of the parameter
HoME. If HOME is unset, the home directory of the user executing the shell is substituted instead.

If a + follows the tilde, the value of pwp replaces the tilde and + If a - follows, the value of oLopwp is substituted. If the value
following the tilde is a valid login name, the tilde and login name are replaced with the home directory associated with that
name. If the name is invalid, or the tilde expansion fails, the word is unchanged.

Each variable assignment is checked for unquoted instances of tildes following a : or =. In these cases, tilde substitution is
also performed. Consequently, one may use pathnames with tildes in assignments to PATH, MAILPATH, and cDPATH, and the shell
assigns the expanded value.

PARAMETER EXPANSION

The $ character introduces parameter expansion, command substitution, or arithmetic expansion. The parameter name or
symbol to be expanded may be enclosed in braces, which are optional but serve to protect the variable to be expanded from
characters immediately following it which could be interpreted as part of the name.

${parameter} The value of parameter is substituted. The braces are required when parameter is a positional parameter
with more than one digit, or when parameter is followed by a character that is not to be interpreted as part
of its name.

In each of the following cases, word is subject to tilde expansion, parameter expansion, command substitution, and arithmetic
expansion. bash tests for a parameter that is unset or null; omitting the colon results in a test only for a parameter that is
unset.

Part I: User Commands

${parameter :-word} Use default values. If parameter is unset or null, the expansion of word is substituted. Otherwise, the
value of parameter is substituted.
${parameter :=word} Assign default values. If parameter is unset or null, the expansion of word is assigned to parameter.

The value of parameter is then substituted. Positional parameters and special parameters may not be
assigned to in this way.

${parameter : 2word} Display Error if null or unset. If parameter is null or unset, the expansion of word (or a message to
that effect if word is not present) is written to the standard error and the shell, if it is not interactive,
exits. Otherwise, the value of parameter is substituted.

${parameter :+word} Use Alternate Value. If parameter is null or unset, nothing is substituted; otherwise, the expansion
of word is substituted.

${#parameter} The length in characters of the value of parameter is substituted. If parameter is * or e, the length
substituted is the length of * expanded within double quotes.

${parameter#word} The word is expanded to produce a pattern just as in pathname expansion. If the pattern matches

${parameter##word} the beginning of the value of parameter, then the expansion is the value of parameter with the
shortest matching pattern deleted (the # case) or the longest matching pattern deleted (the ## case).

${parametersword} The word is expanded to produce a pattern just as in pathname expansion. If the pattern matches a

${parameterssword} trailing portion of the value of parameter, then the expansion is the value of parameter with the

shortest matching pattern deleted (the % case) or the longest matching pattern deleted (the %% case).

COMMAND SUBSTITUTION
Command substitution allows the output of a command to replace the command name.
There are two forms:
$ (command)
or

“command”

performs the expansion by executing command and replacing the command substitution with the standard output of the
command, with any trailing newlines deleted.

When the old-style backquote form of substitution is used, backslash retains its literal meaning except when followed by §, ',
or \. When using the $(command) form, all characters between the parentheses make up the command; none are treated
specially.

Command substitutions may be nested. To nest when using the old form, escape the inner backquotes with backslashes.

If the substitution appears within double quotes, word splitting and pathname expansion are not performed on the results.

ARITHMETIC EXPANSION
Arithmetic expansion allows the evaluation of an arithmetic expression and the substitution of the result. There are two
formats for arithmetic expansion:
$[expression]
$((expression))
The expression is treated as if it were within double quotes, but a double quote inside the braces or parentheses is not treated

specially. All tokens in the expression undergo parameter expansion, command substitution, and quote removal. Arithmetic
substitutions may be nested.

The evaluation is performed according to the rules listed under “Arithmetic Evaluation,” later in this section. If expression is
invalid, bash prints a message indicating failure and no substitution occurs.
PROCESS SUBSTITUTION

Process substitution is supported on systems that support named pipes (FIFOs) or the /dev/fd method of naming open files.
It takes the form of <(1ist) or >(1ist). The process list is run with its input or output connected to a FIFO or some file in /

bash

dev/fd. The name of this file is passed as an argument to the current command as the result of the expansion. If the >(list)
form is used, writing to the file will provide input for list. If the <(1ist) form is used, the file passed as an argument should
be read to obtain the output of list.

On systems that support it, process substitution is performed simultaneously with parameter and variable expansion,
command substitution, and arithmetic expansion.

WORD SPLITTING

The shell scans the results of parameter expansion, command substitution, and arithmetic expansion that did not occur
within double quotes for word splitting.

The shell treats each character of 1Fs as a delimiter, and splits the results of the other expansions into words on these
characters. If the value of 1Fs is exactly <space><tab><newline>, the default, then any sequence of 1Fs characters serves to
delimit words. If 1Fs has a value other than the default, then sequences of the whitespace characters space and tab are ignored
at the beginning and end of the word, as long as the whitespace character is in the value of 1Fs (an 1Fs whitespace character).
Any character in IFs that is not 1Fs whitespace, along with any adjacent 1Fs whitespace characters, delimits a field. A
sequence of 1Fs whitespace characters is also treated as a delimiter. If the value of 1Fs is null, no word splitting occurs. 1Fs
cannot be unset.

Explicit null arguments (** or ' ') are retained. Implicit null arguments, resulting from the expansion of parameters that have
no values, are removed.

Note that if no expansion occurs, no splitting is performed.

PATHNAME EXPANSION

After word splitting, unless the -f option has been set, bash scans each word for the characters *, 2, and [. If one of these
characters appears, then the word is regarded as a pattern and replaced with an alphabetically sorted list of pathnames
matching the pattern. If no matching pathnames are found, and the shell variable allow_null_glob_expansion is unset, the
word is left unchanged. If the variable is set, and no matches are found, the word is removed. When a pattern is used for
pathname generation, the character (.) at the start of a name or immediately following a slash must be matched explicitly,
unless the shell variable glob_dot_filenames is set. The slash character must always be matched explicitly. In other cases, the
(.) character is not treated specially.

The special pattern characters have the following meanings:

* Matches any string, including the null string.
? Matches any single character.
[...] Matches any one of the enclosed characters. A pair of characters separated by a minus sign denotes a range;

any character lexically between those two characters, inclusive, is matched. If the first character following
the [isa ! ora ~, then any character not enclosed is matched. A - or | may be matched by including it as
the first or last character in the set.

QUOTE REMOVAL
After the preceding expansions, all unquoted occurrences of the characters \, ', and " are removed.

REDIRECTION

Before a command is executed, its input and output may be redirected using a special notation interpreted by the shell.
Redirection may also be used to open and close files for the current shell execution environment. The following redirection
operators may precede or appear anywhere within a simple command or may follow a command. Redirections are processed
in the order they appear, from left to right.

In the following descriptions, if the file descriptor number is omitted, and the first character of the redirection operator is <,
the redirection refers to the standard input (file descriptor @). If the first character of the redirection operator is >, the
redirection refers to the standard output (file descriptor 1).

Part I: User Commands

The word that follows the redirection operator in the following descriptions is subjected to brace expansion, tilde expansion,
parameter expansion, command substitution, arithmetic expansion, quote removal, and pathname expansion. If it expands to
more than one word, bash reports an error.

Note that the order of redirections is significant. For example, the command:

1s > dirlist 2>&1

directs both standard output and standard error to the file dirtist, while the command

1s 2>&1 > dirlist

directs only the standard output to file dirtist, because the standard error was duplicated as standard output before the
standard output was redirected to dirlist.

REDIRECTING INPUT

Redirection of input causes the file whose name results from the expansion of word to be opened for reading on file
descriptor n, or the standard input (file descriptor o) if n is not specified.

The general format for redirecting input is

[n]<word

REDIRECTING OUTPUT

Redirection of output causes the file whose name results from the expansion of word to be opened for writing on file
descriptor n, or the standard output (file descriptor 1) if n is not specified. If the file does not exist, it is created; if it does
exist it is truncated to zero size.

The general format for redirecting output is

[n]>word

If the redirection operator is >!, then the value of the -c option to the set built-in command is not tested, and file creation is
attempted. (See also the description of noclobber under “Shell Variables,” earlier in this manual page.)

APPENDING REDIRECTED OUTPUT

Redirection of output in this fashion causes the file whose name results from the expansion of word to be opened for
appending on file descriptor n, or the standard output (file descriptor 1) if n is not specified. If the file does not exist, it is
created.

The general format for appending output is

[n]>>word

REDIRECTING STANDARD OUTPUT AND STANDARD ERROR

bash allows both the standard output (file descriptor 1) and the standard error output (file descriptor 2) to be redirected to
the file whose name is the expansion of word with this construct.

There are two formats for redirecting standard output and standard error:
&>word

and

>&word

Of the two forms, the first is preferred. This is semantically equivalent to
>word 2>&1

HERE-DOCUMENTS

This type of redirection instructs the shell to read input from the current source until a line containing only word (with no
trailing blanks) is seen. All of the lines read up to that point are then used as the standard input for a command.

bash

The format of here-documents is as follows:

<<[-]word here-document delimiter

No parameter expansion, command substitution, pathname expansion, or arithmetic expansion is performed on word. If any
characters in word are quoted, the delimiter is the result of quote removal on word, and the lines in the here-document are not

expanded. Otherwise, all lines of the here-document are subjected to parameter expansion, command substitution, and
arithmetic expansion. In the latter case, the pair \<newline> is ignored, and \ must be used to quote the characters \, $, and '.

If the redirection operator is <<-, then all leading tab characters are stripped from input lines and the line containing
delimiter. This allows here-documents within shell scripts to be indented in a natural fashion.
DUPLICATING FILE DESCRIPTORS
The redirection operator:
[n]<&word
is used to duplicate input file descriptors. If word expands to one or more digits, the file descriptor denoted by n is made to be

a copy of that file descriptor. If word evaluates to -, file descriptor n is closed. If n is not specified, the standard input (file
descriptor o) is used.

The operator:
[n]>&word
is used similarly to duplicate output file descriptors. If n is not specified, the standard output (file descriptor 1) is used. As a
special case, if n is omitted, and word does not expand to one or more digits, the standard output and standard error are
redirected as described previously.
OPENING FILE DESCRIPTORS FOR READING AND WRITING
The redirection operator:
[n]<>word

causes the file whose name is the expansion of word to be opened for both reading and writing on file descriptor n, or as the
standard input and standard output if n is not specified. If the file does not exist, it is created.

FUNCTIONS

A shell function, defined as described above under “Shell Grammar,” stores a series of commands for later execution.
Functions are executed in the context of the current shell; no new process is created to interpret them (contrast this with the
execution of a shell script). When a function is executed, the arguments to the function become the positional parameters
during its execution. The special parameter # is updated to reflect the change. Positional parameter o is unchanged.

Variables local to the function may be declared with the 1ocal built-in command. Ordinarily, variables and their values are
shared between the function and its caller.

If the built-in command return is executed in a function, the function completes and execution resumes with the next
command after the function call. When a function completes, the values of the positional parameters and the special
parameter # are restored to the values they had prior to function execution.

Function names may be listed with the -f option to the declare or typeset built-in commands. Functions may be exported
so that subshells automatically have them defined with the -f option to the export builtin.

Functions may be recursive. No limit is imposed on the number of recursive calls.

ALIASES

The shell maintains a list of aliases that may be set and unset with the alias and unalias built-in commands. (See “Shell
Built-in Commands.”). The first word of each command, if unquoted, is checked to see if it has an alias. If so, that word is
replaced by the text of the alias. The alias name and the replacement text may contain any valid shell input, including the
meta characters listed above, with the exception that the alias name may not contain =. The first word of the replacement text

Part I: User Commands

is tested for aliases, but a word that is identical to an alias being expanded is not expanded a second time. This means that
one may alias 1s to 1s -F, for instance, and bash does not try to recursively expand the replacement text. If the last character
of the alias value is a blank, then the next command word following the alias is also checked for alias expansion.

Aliases are created and listed with the alias command, and removed with the unalias command.

There is no mechanism for using arguments in the replacement text, as in csh. If arguments are needed, a shell function
should be used.

Aliases are not expanded when the shell is not interactive.

The rules concerning the definition and use of aliases are somewhat confusing. bash always reads at least one complete line of
input before executing any of the commands on that line. Aliases are expanded when a command is read, not when it is
executed. Therefore, an alias definition appearing on the same line as another command does not take effect until the next
line of input is read. This means that the commands following the alias definition on that line are not affected by the new
alias. This behavior is also an issue when functions are executed. Aliases are expanded when the function definition is read,
not when the function is executed, because a function definition is itself a compound command. As a consequence, aliases
defined in a function are not available until after that function is executed. To be safe, always put alias definitions on a
separate line, and do not use alias in compound commands.

Note that for almost every purpose, aliases are superseded by shell functions.

JOB CONTROL

Job control refers to the ability to selectively stop (suspend) the execution of processes and continue (resume) their execution
at a later point. A user typically employs this facility via an interactive interface supplied jointly by the system’s terminal
driver and bash.

The shell associates a job with each pipeline. It keeps a table of currently executing jobs, which may be listed with the jobs
command. When bash starts a job asynchronously (in the background), it prints a line that looks like this:

[1] 25647

indicating that this job is job number 1 and that the process ID of the last process in the pipeline associated with this job is
25647. All of the processes in a single pipeline are members of the same job. bash uses the job abstraction as the basis for job
control.

To facilitate the implementation of the user interface to job control, the system maintains the notion of a current terminal
process group 1D. Members of this process group (processes whose process group ID is equal to the current terminal process
group ID) receive keyboard-generated signals such as s1GINT. These processes are said to be in the foreground. Background
processes are those whose process group 1D differs from the terminal’s; such processes are immune to keyboard-generated
signals. Only foreground processes are allowed to read from or write to the terminal. Background processes that attempt to
read from (write to) the terminal are sent a SIGTTIN (S16TTOU) signal by the terminal driver, which, unless caught, suspends
the process.

If the operating system on which bash is running supports job control, bash allows you to use it. Typing the suspend
character (typically "z, control-z) while a process is running causes that process to be stopped and returns you to bash.
Typing the delayed suspend character (typically "y, Control-Y) causes the process to be stopped when it attempts to read
input from the terminal, and control to be returned to bash. You may then manipulate the state of this job, using the bg
command to continue it in the background, the fg command to continue it in the foreground, or the ki11 command to kill
it. A Ctrl+Z takes effect immediately, and has the additional side effect of causing pending output and typeahead to be
discarded.

There are a number of ways to refer to a job in the shell. The character % introduces a job name. Job number n may be
referred to as %n. A job may also be referred to using a prefix of the name used to start it, or using a substring that appears in
its command line. For example, %sce refers to a stopped ce job. If a prefix matches more than one job, bash reports an error.
Using %?ce, on the other hand, refers to any job containing the string ce in its command line. If the substring matches more
than one job, bash reports an error. The symbols %% and s+ refer to the shell’s notion of the current job, which is the last job

bash

stopped while it was in the foreground. The previous job may be referenced using %-.In output pertaining to jobs (for
example, the output of the jobs command), the current job is always flagged with a +, and the previous job with a -.

Simply naming a job can be used to bring it into the foreground: %1 is a synonym for fg %1, bringing job 1 from the
background into the foreground. Similarly, %1 & resumes job 1 in the background, equivalent to bg %1.

The shell learns immediately whenever a job changes state. Normally, bash waits until it is about to print a prompt before
reporting changes in a job’s status so as to not interrupt any other output. If the -b option to the set built-in command is set,
bash reports such changes immediately. (See also the description of the notify variable in “Shell Variables,” earlier in this
manual page.)

If you attempt to exit bash while jobs are stopped, the shell prints a message warning you. You may then use the jobs
command to inspect their status. If you do this, or try to exit again immediately, you are not warned again, and the stopped
jobs are terminated.

SIGNALS

When bash is interactive, it ignores SIGTERM (S0 that kill e does not kill an interactive shell), and s16INT is caught and
handled (so that the wait built-in is interruptible). In all cases, bash ignores s16uIT. If job control is in effect, bash ignores
SIGTTIN, SIGTTOU, and SIGTSTP.

Synchronous jobs started by bash have signals set to the values inherited by the shell from its parent. When job control is not
in effect, background jobs (jobs started with &) ignore s1GINT and s16auiT. Commands run as a result of command substitu-
tion ignore the keyboard-generated job control signals SIGTTIN, SIGTTOU, and SIGTSTP.

COMMAND EXECUTION

After a command has been split into words, if it results in a simple command and an optional list of arguments, the
following actions are taken.

If the command name contains no slashes, the shell attempts to locate it. If there exists a shell function by that name, that
function is invoked as described earlier in “Functions.” If the name does not match a function, the shell searches for it in the
list of shell builtins. If a match is found, that builtin is invoked.

If the name is neither a shell function nor a builtin, and contains no slashes, bash searches each element of the paTH for a
directory containing an executable file by that name. If the search is unsuccessful, the shell prints an error message and
returns a nonzero exit status.

If the search is successful, or if the command name contains one or more slashes, the shell executes the named program.
Argument o is set to the name given, and the remaining arguments to the command are set to the arguments given, if any.

If this execution fails because the file is not in executable format, and the file is not a directory, it is assumed to be a shell
script, a file containing shell commands. A subshell is spawned to execute it. This subshell reinitializes itself, so that the effect
is as if a new shell had been invoked to handle the script, with the exception that the locations of commands remembered by
the parent (see hash under “Shell Built-in Commands”) are retained by the child.

If the program is a file beginning with #!, the remainder of the first line specifies an interpreter for the program. The shell
executes the specified interpreter on operating systems that do not handle this executable format themselves. The arguments
to the interpreter consist of a single optional argument following the interpreter name on the first line of the program,
followed by the name of the program, followed by the command arguments, if any.

ENVIRONMENT

When a program is invoked, it is given an array of strings called the environment. This is a list of name/value pairs, of the
form name=value.

The shell allows you to manipulate the environment in several ways. On invocation, the shell scans its own environment and
creates a parameter for each name found, automatically marking it for export to child processes. Executed commands inherit
the environment. The export and declare -x commands allow parameters and functions to be added to and deleted from the
environment. If the value of a parameter in the environment is modified, the new value becomes part of the environment,

Part I: User Commands

replacing the old. The environment inherited by any executed command consists of the shell’s initial environment, whose
values may be modified in the shell, less any pairs removed by the unset command, plus any additions via the export and
declare -x commands.

The environment for any simple command or function may be augmented temporarily by prefixing it with parameter
assignments, as described earlier in “Parameters.” These assignment statements affect only the environment seen by that
command.

If the -k flag is set (see the set built-in command), then all parameter assignments are placed in the environment for a
command, not just those that precede the command name.

When bash invokes an external command, the variable is set to the full path name of the command and passed to that
command in its environment.

EXIT STATUS

For the purposes of the shell, a command which exits with a zero exit status has succeeded. An exit status of zero indicates
success. A non-zero exit status indicates failure. When a command terminates on a fatal signal, bash uses the value of
128+signal as the exit status.

If a command is not found, the child process created to execute it returns a status of 127. If a command is found but is not
executable, the return status is 126.

bash itself returns the exit status of the last command executed, unless a syntax error occurs, in which case it exits with a non—
zero value. (See also the exit built-in command.)
PROMPTING

When executing interactively, bash displays the primary prompt ps1 when it is ready to read a command, and the secondary
prompt ps2 when it needs more input to complete a command. bash allows these prompt strings to be customized by
inserting a number of backslash-escaped special characters that are decoded as follows:

\t The current time in HH:mm:ss format

\d The date in “Weekday Month Date” format (for example, “Tue May 26”)

\n Newline

\s The name of the shell, the basename of $o (the portion following the final slash)

\w The current working directory

\W The basename of the current working directory

\u The username of the current user

\h The hostname

\# The command number of this command

\! The history number of this command

\$ If the effective UID is o, a #, otherwise a $

\nnn The character corresponding to the octal number nnn

\ A backslash

\[Begin a sequence of nonprinting characters, which could be used to embed a terminal control sequence
into the prompt

\1 End a sequence of nonprinting characters

The command number and the history number are usually different: the history number of a command is its position in the
history list, which may include commands restored from the history file (see “History,” later in this manual page), while the
command number is the position in the sequence of commands executed during the current shell session. After the string is
decoded, it is expanded via parameter expansion, command substitution, arithmetic expansion, and word splitting.

bash
READLINE

This is the library that handles reading input when using an interactive shell, unless the -nolineediting option is given. By
default, the line editing commands are similar to those of emacs. A vi-style line editing interface is also available.

In this section, the emacs-style notation is used to denote keystrokes. Control keys are denoted by c-key; for example, ¢-n
means Ctrl-N. Similarly, meta keys are denoted by M-key, S0 M-x means Meta-X. (On keyboards without a meta key, n-x
means Esc-X; that is, press the Escape key, then the X key. This makes ESC the meta prefix. The combination m-c-x means
Esc—Control—x, or press the Escape key then hold the Control key while pressing the X key.)

The default key-bindings may be changed with a /. inputre file. The value of the shell variable INPUTRC, if set, is used instead
of “/.inputrc. Other programs that use this library may add their own commands and bindings.

For example, placing

M-Control-u: universal-argument

or

C-Meta-u: universal-argument

into the /.inputrc would make M-C-u execute the readline command universal-argument.The following symbolic character
names are recognized: RUBOUT, DEL, ESC, LFD, NEWLINE, RET, RETURN, SPC, SPACE, and TAB. In addition to command names,
readline allows keys to be bound to a string that is inserted when the key is pressed (a macro).

Readline is customized by putting commands in an initialization file. The name of this file is taken from the value of the
INPUTRC variable. If that variable is unset, the default is “/. inputrc. When a program that uses the readline library starts up,
the init file is read, and the key bindings and variables are set. There are only a few basic constructs allowed in the readline
init file. Blank lines are ignored. Lines beginning with a # are comments. Lines beginning with a $ indicate conditional
constructs. Other lines denote key bindings and variable settings.

The syntax for controlling key bindings in the /. inputrc file is simple. All that is required is the name of the command or
the text of a macro and a key sequence to which it should be bound. The name may be specified in one of two ways: as a
symbolic key name, possibly with Meta- or Control- prefixes, or as a key sequence. When using the form keyname: function-
name OF macro, keyname is the name of a key spelled out in English. For example,

Control-u: universal-argument
Meta-Rubout: backward-kill-word
Control-o: ">&output"

In the preceding example, ¢-u is bound to the function universal-argument, M-DEL is bound to the function backward-kill-
word,and ¢-o is bound to run the macro expressed on the righthand side (that is, to insert the text >&output into the line).

In the second form, “keyseq”: function-name OF macro, keyseq differs from keyname in that strings denoting an entire key
sequence may be specified by placing the sequence within double quotes. Some GNU emacs-style key escapes can be used, as
in the following example:

"\C-u": universal-argument
"\C-x\C-r": re-read-init-file
"\e[117": "Function Key 1"

In this example, ¢-u is again bound to the function universal-argument. C-x C-r is bound to the function re-read-init-file,
and esc[117 is bound to insert the text Function Key 1. The full set of escape sequences is

\C- Control prefix

\M- Meta prefix

\e An escape character
W\ Backslash

\" Literal “

\ Literal *

Part I: User Commands

When entering the text of a macro, single or double quotes should be used to indicate a macro definition. Unquoted text is
assumed to be a function name. Backslash will quote any character in the macro text, including * and '.

bash allows the current readline key bindings to be displayed or modified with the bind built-in command. The editing
mode may be switched during interactive use by using the -o option to the set built-in command. (See “Shell Built-in

Commands.”)

Readline has variables that can be used to further customize its behavior. A variable may be set in the inputrc file with a

statement of the form:

set variable-name value

Except where noted, readline variables can take the values on or off. The variables and their default values are as follows:

horizontal-scroll-mode (0ff)

editing-mode (emacs)
mark-modified-lines (0ff)
bell-style (audible)
comment-begin ("#"
meta-flag (0ff)

convert-meta (On)

output-meta (0Ff)

completion-query-items (100)

keymap (emacs)

show-all-if-ambiguous (0ff)

expand-tilde (0ff)

When set to on, makes readline use a single line for display, scrolling the input
horizontally on a single screen line when it becomes longer than the screen width
rather than wrapping to a new line.

Controls whether read1ine begins with a set of key bindings similar to emacs or vi.
editing-mode can be set to either emacs or vi.

If set to on, history lines that have been modified are displayed with a preceding
asterisk (*).

Controls what happens when readline wants to ring the terminal bell. If set to none,
readline never rings the bell. If set to visible, readline uses a visible bell if one is
available. If set to audible, readline attempts to ring the terminal’s bell.

The string that is inserted in vi mode when the vi-comment command is executed.
If set to on, readline Will enable eight-bit input (that is, it will not strip the high bit
from the characters it reads), regardless of what the terminal claims it can support.
If set to on, readline will convert characters with the eighth bit set to an ASCII key
sequence by stripping the eighth bit and prepending an escape character (in effect,
using escape as the meta prefix).

If set to on, readline Will display characters with the eighth bit set directly rather
than as a meta-prefixed escape sequence.

This determines when the user is queried about viewing the number of possible
completions generated by the possible-completions command. It may be set to any
integer value greater than or equal to zero. If the number of possible completions is
greater than or equal to the value of this variable, the user is asked whether or not he
wishes to view them; otherwise, they are simply listed on the terminal.

Set the current readline keymap. The set of legal keymap names is emacs, emacs -
standard, emacs-meta, emacs-ctlx, vi, vi-move, vi-command, and vi-insert. vi is
equivalent to vi-command; emacs is equivalent to emacs-standard. The default value is
emacs; the value of editing-mode also affects the default keymap.

This alters the default behavior of the completion functions. If set to on, words
which have more than one possible completion cause the matches to be listed
immediately instead of ringing the bell.

If set to on, tilde expansion is performed when readline attempts word completion.

Readline implements a facility similar in spirit to the conditional compilation features of the C preprocessor that allows key
bindings and variable settings to be performed as the result of tests. There are three parser directives used.

$if

The $if construct allows bindings to be made based on the editing mode, the
terminal being used, or the application using readline. The text of the test extends
to the end of the line; no characters are required to isolate it.

bash

mode The mode= form of the $if directive is used to test whether
readline is in emacs or vi mode. This may be used in conjunction
with the set keymap command, for instance, to set bindings in the
emacs -standard and emacs-ctlx keymaps only if readline is starting
out in emacs mode.

term The term= form may be used to include terminal-specific key
bindings, perhaps to bind the key sequences output by the
terminal’s function keys. The word on the right side of the = is
tested against the full name of the terminal and the portion of the
terminal name before the first -. This allows sun to match both
sun and sun-cnd, for instance.

application The application construct is used to include application-specific
settings. Each program using the readline library sets the
application name, and an initialization file can test for a particular
value. This could be used to bind key sequences to functions
useful for a specific program. For instance, the following
command adds a key sequence that quotes the current or previous
word in bash:

$if Bash
Quote the current or previous word
"\C-xq": "\eb\"\ef\""

$endif
$endif This command, as shown in the preceding example, terminates an $if command.
$else Commands in this branch of the sif directive are executed if the test fails.

readline commands may be given numeric arguments, which normally act as a repeat count. Sometimes, however, it is the
sign of the argument that is significant. Passing a negative argument to a command that acts in the forward direction (such as
kill-line) causes that command to act in a backward direction. Commands whose behavior with arguments deviates from
this are noted.

When a command is described as killing text, the text deleted is saved for possible future retrieval (yanking). The killed text
is saved in a kill-ring. Consecutive kills cause the text to be accumulated into one unit, which can be yanked all at once.
Commands that do not kill text separate the chunks of text on the kill-ring.

The following is a list of the names of the commands and the default key sequences to which they are bound.

Commands for Moving

beginning-of-1line (C-a) Move to the start of the current line.

end-of-line (C-e) Move to the end of the line.

forward-char (C-f) Move forward a character.

backward-char (C-b) Move back a character.

forward-word (M-f) Move forward to the end of the next word. Words are composed of alphanu-
meric characters (letters and digits).

backward-word (M-b) Move back to the start of this, or the previous, word. Words are composed of
alphanumeric characters (letters and digits).

clear-screen (C-1) Clear the screen leaving the current line at the top of the screen. With an

argument, refresh the current line without clearing the screen.
redraw-current-line Refresh the current line. By default, this is unbound.

Part I: User Commands

Commands for Manipulating the History

accept-line (Newline, Return)

previous-history (C-p)
next-history (C-n)
beginning-of-history (M-<)
end-of-history (M->)

reverse-search-history (C-r)
forward-search-history (C-s)
non-incremental-reverse-

search-history (M-p)

non-incremental-forward-
search-history (M-n)

history-search-forward

history-search-backward

yank-nth-arg (M-C-y)

yank-last-arg (M-., M-_)

shell-expand-line (M-C-g)

history-expand-line (M-")
insert-last-argument (M-., M-_)
operate-and-get -next (C-0)

Commands for Changing Text

Accept the line regardless of where the cursor is. If this line is non—empty, add it
to the history list according to the state of the HIST-conTROL variable. If the line is
a modified history line, then restore the history line to its original state.

Fetch the previous command from the history list, moving back in the list.
Fetch the next command from the history list, moving forward in the list.

Move to the first line in the history.

Move to the end of the input history, that is, the line currently being entered.

Search backward starting at the current line and moving “up” through the
history as necessary. This is an incremental search.

Search forward starting at the current line and moving “down” through the
history as necessary. This is an incremental search.

Search backward through the history, starting at the current line using a non—
incremental search for a string supplied by the user.

Search forward through the history using a nonincremental search for a string
supplied by the user.

Search forward through the history for the string of characters between the start
of the current line and the current point. This is a nonincremental search. By
default, this command is unbound.

Search backward through the history for the string of characters between the start
of the current line and the current point. This is a nonincremental search. By
default, this command is unbound.

Insert the first argument to the previous command (usually the second word on
the previous line) at point (the current cursor position). With an argument n,
insert the nth word from the previous command (the words in the previous
command begin with word e). A negative argument inserts the nth word from
the end of the previous command.

Insert the last argument to the previous command (the last word on the previous
line). With an argument, behave exactly like ecodefyank-nth-argg.

Expand the line the way the shell does when it reads it. This performs alias and
history expansion as well as all of the shell word expansions. See “History
Expansion,” later in this manual page, for a description of history expansion.

Perform history expansion on the current line. See “History Expansion.”
A synonym for yank-last-arg.

Accept the current line for execution and fetch the next line relative to the
current line from the history for editing. Any argument is ignored.

delete-char (C-d)

backward-delete-char (Rubout)
quoted-insert (C-q, C-v)

tab-insert (C-v Tab)
self-insert (a, b, A, 1, !, ...)

Delete the character under the cursor. If point is at the beginning of the line,
there are no characters in the line, and the last character typed was not c-d, then
return EoF.

Delete the character behind the cursor. When given a numeric argument, save
the deleted text on the kill-ring.

Add the next character that you type to the line verbatim. This is how to insert
characters like c-q, for example.

Insert a tab character.
Insert the character typed.

bash

transpose-chars (C-t) Drag the character before point forward over the character at point. Point moves
forward as well. If point is at the end of the line, then transpose the two
characters before point. Negative arguments don’t work.

transpose-words (M-t) Drag the word behind the cursor past the word in front of the cursor, moving
the cursor over that word as well.

upcase-word (M-u) Uppercase the current (or following) word. With a negative argument, do the
previous word, but do not move point.

downcase-word (M-1) Lowercase the current (or following) word. With a negative argument, do the
previous word, but do not move point.

capitalize-word (M-c) Capitalize the current (or following) word. With a negative argument, do the

previous word, but do not move point.

Killing and Yanking

kill-line (C-k) Kill the text from the current cursor position to the end of the line.

backward-kill-line (C-x C-Rubout) Kill backward to the beginning of the line.

UNIX-line-discard (C-u) Kill backward from point to the beginning of the line.

kill-whole-line Kill all characters on the current line, no matter where the cursor is. By default,
this is unbound.

kill-word (M—d) Kill from the cursor to the end of the current word, or if between words, to the
end of the next word. Word boundaries are the same as those used by forward-
word.

backward-kill-word (M-Rubout) Kill the word behind the cursor. Word boundaries are the same as those used by
backward-word.

UNIX-word-rubout (C-w) Kill the word behind the cursor, using whitespace as a word boundary. The word
boundaries are different from backward-kill-word.

delete-horizontal-space Delete all spaces and tabs around point. By default, this is unbound.

yank (C-y) Yank the top of the kill ring into the buffer at the cursor.

yank-pop (M-y) Rotate the kill-ring, and yank the new top. Only works following yank or yank-
pop.

Numeric Arguments

digit-argument (M-0, M-1, ..., M—) Add this digit to the argument already accumulating, or start a new argument.
M— starts a negative argument.
universal-argument Each time this is executed, the argument count is multiplied by four. The

argument count is initially one, so executing this function the first time makes
the argument count four. By default, this is not bound to a key.

Completing

complete (TAB) Attempt to perform completion on the text before point. Bash attempts
completion treating the text as a variable (if the text begins with $), username (if
the text begins with -), hostname (if the text begins with e), or command
(including aliases and functions) in turn. If none of these produces a match,
filename completion is attempted.

possible-completions (M-?) List the possible completions of the text before point.

insert-completions Insert all completions of the text before point that would have been generated by
possible-completions. By default, this is not bound to a key.

complete-filename (M-/) Attempt filename completion on the text before point.

continues

Part I: User Commands

Completing

possible-filename-completions (C-x /)
complete-username (M-")
possible-username-completions (C-x)
complete-variable (M-$)

possible-variable-completions (C-x $)

complete-hostname (M-@)
possible-hostname-completions (C-x @)
complete-command (M-!)
possible-command-completions (C-x !)

dynamic-complete-history (M-TAB)

complete-into-braces (M-{)

Keyboard Macros

List the possible completions of the text before point, treating it as a filename.
Attempt completion on the text before point, treating it as a username.

List the possible completions of the text before point, treating it as a username.
Attempt completion on the text before point, treating it as a shell variable.

List the possible completions of the text before point, treating it as a shell
variable.

Attempt completion on the text before point, treating it as a hostname.

List the possible completions of the text before point, treating it as a hostname.
Attempt completion on the text before point, treating it as a command name.
Command completion attempts to match the text against aliases, reserved words,
shell functions, builtins, and finally executable filenames, in that order.

List the possible completions of the text before point, treating it as a command
name.

Attempt completion on the text before point, comparing the text against lines
from the history list for possible completion matches.

Perform filename completion and return the list of possible completions enclosed
within braces so the list is available to the shell. (See “Brace Expansion,” earlier in
this manual page.)

start-kbd-macro (C-x ()
end-kbd-macro (C-x))

call-last-kbd-macro (C-x e)

Miscellaneous

Begin saving the characters typed into the current keyboard macro.

Stop saving the characters typed into the current keyboard macro and save the
definition.

Re-execute the last keyboard macro defined, by making the characters in the
macro appear as if typed at the keyboard.

re-read-init-file (C-x C-r)
abort (C-g)

do-uppercase-version (M-a, M-b, ...)
prefix-meta (ESC)

undo (C-_, C-x C-u)

revert-line (M-r)

tilde-expand (M-")

dump-functions

display-shell-version (C-x C-v)
emacs-editing-mode (C-e)

HISTORY

Read in the contents of your init file, and incorporate any bindings or variable
assignments found there.

Abort the current editing command and ring the terminal’s bell (subject to the
setting of bell-style).

Run the command that is bound to the corresponding uppercase character.
Metafy the next character typed. ESC-f is equivalent to Meta—f.
Incremental undo, separately remembered for each line.

Undo all changes made to this line. This is like typing the undo command
enough times to return the line to its initial state.

Perform tilde expansion on the current word.

Print all of the functions and their key bindings to the read1ine output stream. If
a numeric argument is supplied, the output is formatted in such a way that it can
be made part of an inputrc file.

Display version information about the current instance of bash.
When in vi editing mode, this causes a switch to emacs editing mode.

When interactive, the shell provides access to the command history, the list of commands previously typed. The text of the
last HISTSIZE commands (default 500) is saved in a history list. The shell stores each command in the history list prior to

bash

parameter and variable expansion (see “Expansion,” earlier in this manual page) but after history expansion is performed,
subject to the values of the shell variables command_oriented_history and HISTCONTROL. On startup, the history is initialized
from the file named by the variable H1STFILE (default “/.bash_history). HISTFILE is truncated, if necessary, to contain no
more than HISTFILESIZE lines. The built-in command fc (see Shell Built-in Commands, later in this manual page) may be
used to list or edit and re-execute a portion of the history list. The history builtin can be used to display the history list and
manipulate the history file. When using the command-line editing, search commands are available in each editing mode that
provide access to the history list. When an interactive shell exits, the last H1sTSIZE lines are copied from the history list to
HISTFILE. If HISTFILE is unset, or if the history file is unwritable, the history is not saved.

HISTORY EXPANSION

The shell supports a history expansion feature that is similar to the history expansion in csh. This section describes what
syntax features are available. This feature is enabled by default for interactive shells, and can be disabled using the H option to
the set built-in command. (See “Shell Built-in Commands,” later in this manual page.) Noninteractive shells do not perform
history expansion.

History expansion is performed immediately after a complete line is read, before the shell breaks it into words. It takes place
in two parts. The first is to determine which line from the previous history to use during substitution. The second is to select
portions of that line for inclusion into the current one. The line selected from the previous history is the event, and the
portions of that line that are acted upon are words. The line is broken into words in the same fashion as when reading input,
so that several meta character—separated words surrounded by quotes are considered as one word. Only the backslash (1) and
single quotes can quote the history escape character, which is ! by default.

The shell allows control of the various characters used by the history expansion mechanism. (See the description of histchars
under “Shell Variables,” earlier in this manual page.)

EVENT DESIGNATORS
An event designator is a reference to a command line entry in the history list.

! Start a history substitution, except when followed by a blank, newline, =, or (.
1 Refer to the previous command. This is a synonym for 1-1.

In Refer to command line n.
1-n Refer to the current command line minus n.
Istring Refer to the most recent command starting with string.
12string[?] Refer to the most recent command containing string.
*stringl“string2” Quick substitution. Repeat the last command, replacing string1 with string2. Equivalent to !!:s/
stringl/string2/. (See “Modifiers,” later in this manual page.)
1# The entire command line typed so far.
WORD DESIGNATORS

A colon (:) separates the event specification from the word designator. It can be omitted if the word designator begins with a
*, 8, *, or %. \Words are numbered from the beginning of the line, with the first word being denoted by a o (zero).

0 (zero) The zeroth word. For the shell, this is the command word.

n The nth word.

g The first argument. That is, word 1.

$ The last argument.

% The word matched by the most recent ?string? search.

X-y A range of words; -y abbreviates o-y.

* All of the words but the zeroth. This is a synonym for 1-s. It is not an error to use * if there is just
one word in the event; the empty string is returned in that case.

x* Abbreviates x-$.

X- Abbreviates x-$ like x*, but omits the last word.

Part I: User Commands

MODIFIERS
After the optional word designator, you can add a sequence of one or more of the following modifiers, each preceded by a :

h Remove a trailing pathname component, leaving only the head.

r Remove a trailing suffix of the form .xxx, leaving the basename.

Remove all but the trailing suffix.

Remove all leading pathname components, leaving the tail.

Print the new command but do not execute it.

Quote the substituted words, escaping further substitutions.

Quote the substituted words as with g, but break into words at blanks and newlines.

s/old/new/ Substitute new for the first occurrence of old in the event line. Any delimiter can be used in place of
/. The final delimiter is optional if it is the last character of the event line. The delimiter may be
quoted in old and new with a single backslash. If & appears in new, it is replaced by old. A single
backslash will quote the s.

& Repeat the previous substitution.

g Cause changes to be applied over the entire event line. This is used in conjunction with :s (for
example, :gs/old/new/) or :&. If used with :s, any delimiter can be used in place of /, and the final
delimiter is optional if it is the last character of the event line.

ARITHMETIC EVALUATION

The shell allows arithmetic expressions to be evaluated, under certain circumstances. (See the 1et built-in command and
“Arithmetic Expansion.”) Evaluation is done in long integers with no check for overflow, though division by 0O is trapped and
flagged as an error. The following list of operators is grouped into levels of equal-precedence operators. The levels are listed
in order of decreasing precedence.

X o ©T ~+ o

- Unary minus and plus

Lo Logical and bitwise negation
* % Multiplication, division, remainder
+ - Addition, subtraction

<< >> Left and right bitwise shifts
<= >= <> Comparison

== |= Equality and inequality

& Bitwise AND

" Bitwise exclusive or

! Bitwise or

8& Logical AND

H Logical or

= %= [= %= 4= -= <<= >>=§="=!= Assignment

Shell variables are allowed as operands; parameter expansion is performed before the expression is evaluated. The value of a
parameter is coerced to a long integer within an expression. A shell variable need not have its integer attribute turned on to
be used in an expression.

Constants with a leading o are interpreted as octal numbers. A leading ox or ox denotes hexadecimal. Otherwise, numbers
take the form [base#]n, where base is a decimal number between 2 and 36 representing the arithmetic base, and n is a
number in that base. If base is omitted, then base 10 is used.

Operators are evaluated in order of precedence. Subexpressions in parentheses are evaluated first and may override the
precedence rules.

bash

SHELL BUILT-IN COMMANDS

: [arguments] No effect; the command does nothing beyond expanding arguments and performing
any specified redirections. A zero exit code is returned.

. filename [arguments] Read and execute commands from filename in the current shell environment and

source filename [arguments] return the exit status of the last command executed from filename. If filename does

not contain a slash, pathnames in PATH are used to find the directory containing
filename. The file searched for in PATH need not be executable. The current directory
is searched if no file is found in PATH. If any arguments are supplied, they become the
positional parameters when file is executed. Otherwise, the positional parameters
are unchanged. The return status is the status of the last command exited within the
script (e if no commands are executed), and False if filename is not found.

alias [name[=value] ...] alias With no arguments prints the list of aliases in the form name=value on standard
output. When arguments are supplied, an alias is defined for each name whose value
is given. A trailing space in value causes the next word to be checked for alias
substitution when the alias is expanded. For each name in the argument list for
which no value is supplied, the name and value of the alias is printed. alias returns
True unless a name is given for which no alias has been defined.

bg [jobspec] Place jobspec in the background, as if it had been started with &. If jobspec is not
present, the shell’s notion of the current job is used. bg jobspec returns o unless run
when job control is disabled or, when run with job control enabled, if jobspec was
not found or started without job control.

bind [-m keymap][-1lvd][-q name] Display current readline key and function bindings, or bind a key sequence to a
bind [-m keymap] -f filename readline function or macro. The binding syntax accepted is identical to that of
bind [-m keymap] .inputre, but each binding must be passed as a separate argument; for example,
keyseq: function-name "\C-x\C-r": re-read-init-file. Options, if supplied, have the following meanings:
-m keymap Use keymap as the keymap to be affected by the subsequent

bindings. Acceptable keymap names are emacs, emacs -standard,
emacs-meta, emacs-ctlx, vi, vi-move, vi-command, and vi-insert.
vi is equivalent to vi-command; emacs is equivalent to emacs-

standard.

-1 List the names of all read1ine functions.

-v List current function names and bindings.

-d Dump function names and bindings in such a way that they
can be reread.

-f filename Read key bindings from filename.

-q function Query about which keys invoke the named function.

The return value is @ unless an unrecognized option is given or an error occurred.

break [n] Exit from within a for, while, or until loop. If n is specified, break n levels. n must
be 1. If n is greater than the number of enclosing loops, all enclosing loops are
exited. The return value is o unless the shell is not executing a loop when break is
executed.

builtin shell-builtin [arguments] Execute the specified shell builtin, passing it arguments, and return its exit status.
This is useful when you wish to define a function whose name is the same as a shell
builtin, but need the functionality of the builtin within the function itself. The cd
builtin is commonly redefined this way. The return status is False if shell1-builtin is
not a shell builtin command.

cd [dir] Change the current directory to dir. The variable Houe is the default dir. The
variable copaTH defines the search path for the directory containing dir. Alternative
directory names are separated by a colon (:). A null directory name in copATH is the
same as the current directory, that is, (.). If dir begins with a slash (/), then copATH is

Part I: User Commands

not used. An argument of - is equivalent to soLbpwp. The return value is True if the
directory was successfully changed; False otherwise.

command [-pVv] command [arg ...] Run command with args suppressing the normal shell function lookup. Only built-
in commands or commands found in the pATH are executed. If the -p option is given,
the search for command is performed using a default value for pATH that is guaranteed
to find all of the standard utilities. If either the -v or -v option is supplied, a
description of command is printed. The -v option causes a single word indicating the
command or pathname used to invoke command to be printed; the -v option
produces a more verbose description. An argument of —disables option checking for
the rest of the arguments. If the -v or -v option is supplied, the exit status is o if
command Was found, and 1 if not. If neither option is supplied and an error occurred
or command cannot be found, the exit status is 127. Otherwise, the exit status of the
command builtin is the exit status of command.

continue [n] Resume the next iteration of the enclosing for, while, or until loop. If n is specified,
resume at the nth enclosing loop. n must be 1. If n is greater than the number of
enclosing loops, the last enclosing loop (the top-level loop) is resumed. The return
value is @ unless the shell is not executing a loop when continue is executed.

declare [-frxi][name[=value]] Declare variables and/or give them attributes. If no names are given, then display the
typeset [-frxi][name[=value]] values of variables instead. The options can be used to restrict output to variables
with the specified attribute.
-f Use function names only.
-r Make names read-only. These names cannot then be assigned
values by subsequent assignment statements.
-Xx Mark names for export to subsequent commands via the
environment.
-i The variable is treated as an integer; arithmetic evaluation (see

“Arithmetic Evaluation™) is performed when the variable is
assigned a value.

Using + instead of - turns off the attribute instead. When used in a function, makes
names local, as with the 1ocal command. The return value is @ unless an illegal
option is encountered, an attempt is made to define a function using " -f foo=bar",
one of the names is not a legal shell variable name, an attempt is made to turn off
read-only status for a read-only variable, or an attempt is made to display a
nonexistent function with -f.

dirs [-1][+/-n] Display the list of currently remembered directories. Directories are added to the list
with the pushd command; the popd command moves back up through the list.

+n Displays the nth entry counting from the left of the list shown
by dirs when invoked without options, starting with zero.

-n Displays the nth entry counting from the right of the list
shown by dirs when invoked without options, starting with
zero.

-1 Produces a longer listing; the default listing format uses a tilde

to denote the home directory.

The return value is @ unless an illegal option is supplied or n indexes beyond the end
of the directory stack.

echo [-neE][arg ...] Output the args, separated by spaces. The return status is always o. If -n is specified,
the trailing newline is suppressed. If the -e option is given, interpretation of the
following backslash-escaped characters is enabled. The - option disables the
interpretation of these escape characters, even on systems where they are interpreted
by default.

enable [-n][-all][name ...]

eval [arg ...]

exec [[-] command [arguments]]

exit [n]

export [-nf][name[=word]] ...
export -p

fc [-e ename][-nlr][first][last]
fc -s [pat=rep][cmd]

bash

\a Alert (bell)

\b Backspace

\c Suppress trailing newline

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\ Backslash

\nnn The character whose ASCII code is nnn (octal)

Enable and disable builtin shell commands. This allows the execution of a disk
command that has the same name as a shell builtin without specifying a full
pathname. If -n is used, each name is disabled; otherwise, names are enabled. For
example, to use the test binary found via the PATH instead of the shell builtin version,
type enable -n test. If no arguments are given, a list of all enabled shell builtins is
printed. If only -n is supplied, a list of all disabled builtins is printed. If only -a11 is
supplied, the list printed includes all builtins, with an indication of whether or not
each is enabled. enable accepts -a as a synonym for -a11. The return value is e unless
a name is not a shell builtin.

The args are read and concatenated together into a single command. This command
is then read and executed by the shell, and its exit status is returned as the value of
the eval command. If there are no args, or only null arguments, eval returns True.

If command is specified, it replaces the shell. No new process is created. The arguments
become the arguments to command. If the first argument is -, the shell places a dash in
the zeroth arg passed to command. This is what 10gin does. If the file cannot be
executed for some reason, a noninteractive shell exits, unless the shell variable
no_exit_on_failed_exec exists, in which case it returns failure. An interactive shell
returns failure if the file cannot be executed. If command is not specified, any
redirections take effect in the current shell, and the return status is o.

Cause the shell to exit with a status of n. If n is omitted, the exit status is that of the
last command executed. A trap on exit is executed before the shell terminates.

The supplied names are marked for automatic export to the environment of
subsequently executed commands. If the -f option is given, the names refer to
functions. If no names are given, or if the -p option is supplied, a list of all names
that are exported in this shell is printed. The -n option causes the export property to
be removed from the named variables. An argument of — disables option checking
for the rest of the arguments. export returns an exit status of e unless an illegal
option is encountered, one of the names is not a legal shell variable name, or -f is
supplied with a name that is not a function.

Fix command. In the first form, a range of commands from first to last is selected
from the history list. first and 1ast may be specified as a string (to locate the last
command beginning with that string) or as a number (an index into the history list,
where a negative number is used as an offset from the current command number). If
last is not specified, it is set to the current command for listing (so that fc -1

-10 prints the last 10 commands) and to first otherwise. If first is not specified, it
is set to the previous command for editing and -16 for listing.

The -n flag suppresses the command numbers when listing. The -r flag reverses the
order of the commands. If the -1 flag is given, the commands are listed on standard
output. Otherwise, the editor given by ename is invoked on a file containing those
commands. If ename is not given, the value of the Fcep1T variable is used, and the

Part I: User Commands

fg [Jjobspec]

getopts optstring name [args]

hash [-r][name]

help [pattern]

value of Ep1ToR if FCEDIT is not set. If neither variable is set, vi is used. When editing
is complete, the edited commands are echoed and executed.

In the second form, command is reexecuted after each instance of pat is replaced by
rep. A useful alias to use with this is r=fc -s, so that typing r cc runs the last
command beginning with cc and typing r reexecutes the last command.

If the first form is used, the return value is o unless an illegal option is encountered
or first or last specify history lines out of range. If the -e option is supplied, the
return value is the value of the last command executed or failure if an error occurs
with the temporary file of commands. If the second form is used, the return status is
that of the command reexecuted, unless cmd does not specify a valid history line, in
which case fc returns failure.

Place jobspec in the foreground, and make it the current job. If jobspec is not
present, the shell’s notion of the current job is used. The return value is that of the
command placed into the foreground, or failure if run when job control is disabled
or, when run with job control enabled, if jobspec does not specify a valid job or
jobspec specifies a job that was started without job control.

getopts is used by shell procedures to parse positional parameters. optstring contains
the option letters to be recognized; if a letter is followed by a colon, the option is
expected to have an argument, which should be separated from it by whitespace.
Each time it is invoked, getopts places the next option in the shell variable name,
initializing name if it does not exist, and the index of the next argument to be
processed into the variable oPTIND. OPTIND is initialized to 1 each time the shell or a
shell script is invoked. When an option requires an argument, getopts places that
argument into the variable opTArG. The shell does not reset opTIND automatically; it
must be manually reset between multiple calls to getopts within the same shell
invocation if a new set of parameters is to be used.

getopts can report errors in two ways. If the first character of optstring is a colon,
silent error reporting is used. In normal operation, diagnostic messages are printed
when illegal options or missing option arguments are encountered. If the variable
OPTERR i$ set to @, no error message will be displayed, even if the first character of
optstring is not a colon.

If an illegal option is seen, getopts places a question mark (?) into name and, if not
silent, prints an error message and unsets oPTARG. If getopts is silent, the option
character found is placed in op-TARG and no diagnostic message is printed.

If a required argument is not found, and getopts is not silent, a question mark (?) is
placed in name, OPTARG is unset, and a diagnostic message is printed. If getopts is
silent, then a colon (:) is placed in name and OPTARG is set to the option character
found.

getopts normally parses the positional parameters, but if more arguments are given
in args, getopts parses those instead. getopts returns True if an option, specified or
unspecified, is found. It returns False if the end of options is encountered or an error
occurs.

For each name, the full pathname of the command is determined and remembered.
The -r option causes the shell to forget all remembered locations. If no arguments
are given, information about remembered commands is printed. An argument of —
disables option checking for the rest of the arguments. The return status is True
unless a name is not found or an illegal option is supplied.

Display helpful information about built-in commands. If pattern is specified, help
gives detailed help on all commands matching pattern; otherwise, a list of the
builtins is printed. The return status is @ unless no command matches pattern.

bash

history [n] With no options, display the command history list with line numbers. Lines listed

history -rwan [filename] with a * have been modified. An argument of n lists only the last n lines. If a
nonoption argument is supplied, it is used as the name of the history file; if not, the
value of HISTFILE is used. Options, if supplied, have the following meanings:

-a Append the “new” history lines (history lines entered since the
beginning of the current bash session) to the history file.
-n Read the history lines not already read from the history file

into the current history list. These are lines appended to the
history file since the beginning of the current bash session.

-r Read the contents of the history file and use them as the
current history.

w- Write the current history to the history file, overwriting the
history file’s contents.

The return value is @ unless an illegal option is encountered or an error occurs while
reading or writing the history file.
jobs [-1np][jobspec ...] The first form lists the active jobs. The -1 option lists process IDs in addition to
jobs -x command [args ... | the normal information; the -p option lists only the process ID of the job’s process
group leader. The -n option displays only jobs that have changed status since last
notified. If jobspec is given, output is restricted to information about that job. The
return status is @ unless an illegal option is encountered or an illegal jobspec is
supplied.
If the -x option is supplied, jobs replaces any jobspec found in command Or args with
the corresponding process group 1D, and executes command, passing it args, returning
its exit status.

kill [-s sigspec | -sigspec] Send the signal named by sigspec to the processes named by pid or jobspec. sigspec
[pid | jobspec] ... is either a signal name such as s16kILL or a signal number. If sigspec is a signal
kill -1 [signum] name, the name is not case sensitive and may be given with or without the s16

prefix. If sigspec is not present, then s16TERM is assumed. An argument of -1 lists the
signal names. If any arguments are supplied when -1 is given, the names of the
specified signals are listed, and the return status is . An argument of — disables
option checking for the rest of the arguments. ki1l returns True if at least one signal
was successfully sent, or False if an error occurs or an illegal option is encountered.

let arg [arg ...] Each arg is an arithmetic expression to be evaluated. (See “Arithmetic Evaluation.”)
If the last arg evaluates to o, let returns 1; o is returned otherwise.
local [name[=value] ...] For each argument, create a local variable named name, and assign it value. When

local is used within a function, it causes the variable name to have a visible scope
restricted to that function and its children. With no operands, local writes a list of
local variables to the standard output. It is an error to use local when not within a
function. The return status is @ unless local is used outside a function, or an illegal
name is supplied.

logout Exit a login shell.
popd [+/-n] Removes entries from the directory stack. With no arguments, removes the top
directory from the stack, and performs a cd to the new top directory.
+n Removes the nth entry counting from the left of the list shown

by dirs, starting with zero. For example, popd +0 removes the
first directory, popd +1 the second.

-n Removes the nth entry counting from the right of the list
shown by dirs, starting with zero. For example, popd -0
removes the last directory, popd -1 the next to last.

Part I: User Commands

pushd [dir] pushd +/-n

pwd

read [-r][name ...]

readonly [-f][name ...]
readonly -p

return [n]

set [—abefhkmnptuvx1dCHP]
[-0 option][arg ...]

If the popd command is successful, a dirs is performed as well, and the return status
is 0. popd returns False if an illegal option is encountered, the directory stack is
empty, a nonexistent directory stack entry is specified, or the directory change fails.
Adds a directory to the top of the directory stack, or rotates the stack, making the
new top of the stack the current working directory. With no arguments, exchanges
the top two directories and returns o, unless the directory stack is empty.

+n Rotates the stack so that the nth directory (counting from the
left of the list shown by dirs) is at the top.

-n Rotates the stack so that the nth directory (counting from the
right) is at the top.

dir Adds dir to the directory stack at the top, making it the new

current working directory.

If the pushd command is successful, a dirs is performed as well. If the first form is
used, pushd returns o unless the cd to dir fails. With the second form, pushd returns o
unless the directory stack is empty, a nonexistent directory stack element is specified,
or the directory change to the specified new current directory fails.

Print the absolute pathname of the current working directory. The path printed
contains no symbolic links if the -p option to the set builtin command is set. (See
also the description of nolinks under “Shell Variables,” earlier in this manual page.)
The return status is e unless an error occurs while reading the pathname of the
current directory.

One line is read from the standard input, and the first word is assigned to the first
name, the second word to the second name, and so on, with leftover words assigned
to the last name. Only the characters in 1Fs are recognized as word delimiters. If no
names are supplied, the line read is assigned to the variable RepLY. The return code is
zero, unless end-of-file is encountered. If the -r option is given, a backslash-newline
pair is not ignored, and the backslash is considered to be part of the line.

The given names are marked readonly and the values of these names may not be
changed by subsequent assignment. If the -f option is supplied, the functions
corresponding to the names are so marked. If no arguments are given, or if the

-p option is supplied, a list of all readonly names is printed. An argument of —
disables option checking for the rest of the arguments. The return status is @ unless
an illegal option is encountered, one of the names is not a legal shell variable name,
or -f is supplied with a name that is not a function.

Causes a function to exit with the return value specified by n. If n is omitted, the
return status is that of the last command executed in the function body. If used
outside a function, but during execution of a script by the . (source) command, it
causes the shell to stop executing that script and return either n or the exit status of
the last command executed within the script as the exit status of the script. If used
outside a function and not during execution of a script by (. , the return status is
False.

-a Automatically mark variables that are modified or created for
export to the environment of subsequent commands.
-b Cause the status of terminated background jobs to be reported

immediately, rather than before the next primary prompt.
(Also see notify under “Shell Variables.”)

-e Exit immediately if a simple command (see “Shell Grammar,”
earlier in this manual page) exits with a non—zero status. The
shell does not exit if the command that fails is part of an until

bash

orwhile loop, part of an if statement, part of a && or | list, or
if the command’s return value is being inverted via !.

-f Disable pathname expansion.

-h Locate and remember function commands as functions are
defined. Function commands are normally looked up when
the function is executed.

-k All keyword arguments are placed in the environment for a
command, not just those that precede the command name.
-m Monitor mode. Job control is enabled. This flag is on by

default for interactive shells on systems that support it. (See
“Job Control,” earlier in this manual page.) Background
processes run in a separate process group and a line containing
their exit status is printed upon their completion.

-n Read commands but do not execute them. This may be used
to check a shell script for syntax errors. This is ignored for
interactive shells.

-0 option-name The option-name can be one of the following:
allexport—Same as -a.

braceexpand— T he shell performs brace expansion. (See “Brace
Expansion,” earlier in this manual page.) This is on by default.

emacs—Use an emacs-style command line editing interface.
This is enabled by default when the shell is interactive, unless
the shell is started with the -nolineediting option.

errexit—Same as -e.
histexpand—Same as -H.

ignoreeof—The effect is as if the shell command
'IGNOREEOF=10" had been executed. (See “Shell Variables.”)

interactive-comments—Allow a word beginning with # to
cause that word and all remaining characters on that line to be
ignored in an interactive shell. (See “Comments,” earlier in
this manual page.)

monitor—Same as -m.

noclobber—Same as -C.

noexec—Same as -n.

noglob—Same as -f.

nohash—Same as -d.

notify—Same as -b.

nounset—Same as -u.

physical—Same as -P.

posix—Change the behavior of bash where the default

operation differs from the POSIX 1003.2 standard to match
the standard.

privileged—Same as -p.

verbose—Same as -v.

vi—Use a vi-style command line editing interface.
xtrace—Same as -x.

If no option-name is supplied, the values of the current options
are printed.

Part I: User Commands

shift [n]

suspend [-f]

-p Turn on privileged mode. In this mode, the senv file is not
processed, and shell functions are not inherited from the
environment. This is enabled automatically on startup if the
effective user (group) ID is not equal to the real user (group)
ID. Turning this option off causes the effective user and group
I1Ds to be set to the real user and group IDs.

-t Exit after reading and executing one command.

-u Treat unset variables as an error when performing parameter
expansion. If expansion is attempted on an unset variable, the
shell prints an error message, and, if not interactive, exits with
a non-zero status.

-v Print shell input lines as they are read.

-Xx After expanding each simple command, bash displays the
expanded value of ps4, followed by the command and its
expanded arguments.

-1 Save and restore the binding of name in a for name [in word]
command. (See “Shell Grammar,” earlier in this manual page.)
-d Disable the hashing of commands that are looked up for

execution. Normally, commands are remembered in a hash
table, and once found, do not have to be looked up again.

-C The effect is as if the shell command noclobber= had been
executed. (See “Shell Variables.”)

-H Enable ! style history substitution. This flag is on by default
when the shell is interactive.

-P If set, do not follow symbolic links when performing

commands such as cd that change the current directory. The
physical directory is used instead.

- If no arguments follow this flag, then the positional parameters
are unset. Otherwise, the positional parameters are set to the
args, even if some of them begin with a -.

- Signal the end of options, cause all remaining args to be
assigned to the positional parameters. The -x and -v options
are turned off. If there are no args, the positional parameters
remain unchanged.

The flags are off by default unless otherwise noted. Using +
rather than - causes these flags to be turned off. The flags can
also be specified as options to an invocation of the shell. The
current set of flags may be found in $-. After the option
arguments are processed, the remaining n args are treated as
values for the positional parameters and are assigned, in order,
to $1, $2, ... $n. If no options or args are supplied, all shell
variables are printed. The return status is always True unless an
illegal option is encountered.

The positional parameters from n+1 ... are renamed to Parameters represented
by the numbers $# down to $#-n+1 are unset. If n is 0, no parameters are changed. If
n is not given, it is assumed to be 1. n must be a non-negative number less than or
equal to $#. If n is greater than $#, the positional parameters are not changed. The
return status is greater than o if n is greater than or less than e; otherwise o.

Suspend the execution of this shell until it receives a s16-CONT signal. The -f option
says not to complain if this is a 1ogin shell; just suspend anyway. The return status is

bash

0 unless the shell is a 1ogin shell and -f is not supplied, or if job control is not
enabled.

test expr[expr] Return a status of @ (True) or 1 (False) depending on the evaluation of the
conditional expression expr. Expressions may be unary or binary. Unary expressions
are often used to examine the status of a file. There are string operators and humeric
comparison operators as well. Each operator and operand must be a separate
argument. If file is of the form /dev/fd/n, then file descriptor n is checked.

-b file—True if file exists and is block special.

-c file—True if file exists and is character special.

-d file—True if file exists and is a directory.

-e file—True if file exists.

-f file—True if file exists and is a regular file.

-g file—True if file exists and is set-group-id.

-k file—True if file has its “sticky” bit set.

-L file—True if file exists and is a symbolic link.

-p file—True if file exists and is a named pipe.

-r file—True if file exists and is readable.

-s file—True if file exists and has a size greater than zero.

- file—True if file exists and is a socket.

-t fd—True if fd is opened on a terminal.

-u file—True if file exists and its set-user-id bit is set.

-w file—True if file exists and is writable.

-x file—True if file exists and is executable.

-0 file—True if file exists and is owned by the effective user ID.
-6 file—True if file exists and is owned by the effective group ID.

filel -nt file2—True if file1 is newer (according to modification date) than
file2.

filel -ot file2—True if file1 is older than file2.

filel -ef file—True if file1 and file2 have the same device and inode
numbers.

-z string—True if the length of string is zero.

-n string—True if the length of string is non-zero.
stringl = string2—True if the strings are equal.

stringl != string2—True if the strings are not equal.

| expr—True if expr iS False.

exprl -a expr2—True if both expri AND expr2 are True.
exprl -o expr2—True if either expri OR expr2 is True.

argl OP arg2 OP is one of -eq, -ne, -1t, -le, -gt, Or -ge. These arithmetic binary
operators return True if argl is equal, not-equal, less-than, less-than-or-equal,
greater-than, or greater-than-or-equal than arg2, respectively. Arg1 and arg2 may
be positive integers, negative integers, or the special expression -1 string, which
evaluates to the length of string.

times Print the accumulated user and system times for the shell and for processes run from
the shell. The return status is o.
trap [-1][arg][sigspec] The command arg is to be read and executed when the shell receives signal(s)

sigspec. If arg is absent or -, all specified signals are reset to their original values (the

Part I: User Commands

type [-all][-type | -path]
name [name ...]

ulimit [-SHacdfmstpnuv [limit]]

values they had upon entrance to the shell). If arg is the null string, this signal is
ignored by the shell and by the commands it invokes. sigspec is either a signal name
defined in <signal.h>, or a signal number. If sigspec is EXIT (@), the command arg
is executed on exit from the shell. With no arguments, trap prints the list of
commands associated with each signal number. The -1 option causes the shell to
print a list of signal names and their corresponding numbers. An argument of —
disables option checking for the rest of the arguments. Signals ignored upon entry to
the shell cannot be trapped or reset. Trapped signals are reset to their original values
in a child process when it is created. The return status is False if either the trap name
or number is invalid; otherwise, trap returns True.

With no options, indicate how each name would be interpreted if used as a
command name. If the -type flag is used, type prints a phrase that is one of alias,
keyword, function, builtin, Or file if name is an alias, shell reserved word, function,
builtin, or disk file, respectively. If the name is not found, then nothing is printed,
and an exit status of False is returned. If the -path flag is used, type either returns
the name of the disk file that would be executed if name were specified as a command
name, or nothing if -type would not return file. If a command is hashed, -path
prints the hashed value, not necessarily the file that appears first in PATH. If the -a11
flag is used, type prints all of the places that contain an executable named name. This
includes aliases and functions, if and only if the -path flag is not also used. The table
of hashed commands is not consulted when using -all. type accepts -a, -t, and -p in
place of -all, -type, and -path, respectively. An argument of — disables option
checking for the rest of the arguments. type returns True if any of the arguments are
found, False if none are found.

ulimit provides control over the resources available to the shell and to processes
started by it, on systems that allow such control. The value of 1imit can be a number
in the unit specified for the resource, or the value unlinited. The Hand s options
specify that the hard or soft limit is set for the given resource. A hard limit cannot be
increased once it is set; a soft limit may be increased up to the value of the hard
limit. If neither H nor s is specified, the command applies to the soft limit. If 1imit is
omitted, the current value of the soft limit of the resource is printed, unless the H
option is given. When more than one resource is specified, the 1imit name and unit
is printed before the value. Other options are interpreted as follows:

-a All current limits are reported.

-c The maximum size of core files created.

-d The maximum size of a process’s data segment.

-f The maximum size of files created by the shell.

-m The maximum resident set size.

-s The maximum stack size.

-t The maximum amount of cpu time in seconds.

-p The pipe size in 512-byte blocks. (This may not be set.)

-n The maximum number of open file descriptors. (Most systems
do not allow this value to be set, only displayed.)

-u The maximum number of processes available to a single user.

-v The maximum amount of virtual memory available to the
shell.

An argument of — disables option checking for the rest of the arguments. If Limit is
given, it is the new value of the specified resource (the -a option is display only). If
no option is given, then -f is assumed. Values are in 1024-byte increments, except
for -t, which is in seconds; -p, which is in units of 512-byte blocks; and -n and -u,

bash

which are unscaled values. The return status is @ unless an illegal option is encoun-
tered, a non-numeric argument other than unlimited is supplied as 1imit, or an error
occurs while setting a new limit.

umask [-S][mode] The user file-creation mask is set to mode. If mode begins with a digit, it is interpreted
as an octal number; otherwise, it is interpreted as a symbolic mode mask similar to
that accepted by chmod(1). If mode is omitted, or if the -s option is supplied, the
current value of the mask is printed. The -s option causes the mask to be printed in
symbolic form; the default output is an octal number. An argument of — disables
option checking for the rest of the arguments. The return status is o if the mode was
successfully changed or if no mode argument was supplied, and False otherwise.

unalias [-a][name ...] Remove names from the list of defined aliases. If -a is supplied, all alias definitions
are removed. The return value is True unless a supplied name is not a defined alias.
unset [-fv][name ...] For each name, remove the corresponding variable or, given the -f option, function.

An argument of — disables option checking for the rest of the arguments. Note that
PATH, IFS, PPID, PS1, PS2, UID, and EUID cannot be unset. If any of RANDOM, SECONDS,
LINENO, OF HISTCMD are unset, they lose their special properties, even if they are
subsequently reset. The exit status is True unless a name does not exist or is non-
unsettable.

wait [n] Wait for the specified process and return its termination status. n may be a process
ID or a job specification; if a job spec is given, all processes in that job’s pipeline are
waited for. If n is not given, all currently active child processes are waited for, and the
return status is zero. If n specifies a nonexistent process or job, the return status is
127. Otherwise, the return status is the exit status of the last process or job waited
for.

INVOCATION
A login shell is one whose first character of argument zero is a -, or one started with the -1ogin flag.

An interactive shell is one whose standard input and output are both connected to terminals (as determined by isatty(3)), or
one started with the -1 option. ps1 is set and includes i if bash is interactive, allowing a shell script or a startup file to test this
state.

Login shells:

On login (subject to the -noprofile option):

if /etc/profile exists, source it.

if “/.bash_profile exists, source it,

else if "/.bash_login exists, source it,

else if "/.profile exists, source it.

On exit:

if “/.bash_logout exists, source it.

Non-login interactive shells:

On startup (subject to the -norc and -rcfile options):
if "/.bashrc exists, source it.

Non-interactive shells:

On startup:

if the environment variable ENV is non-null, expand

it and source the file it names, as if the command

if ["$ENV"]; then . $ENV; fi

had been executed, but do not use PATH to search

for the pathname. When not started in Posix mode, bash
looks for BASH_ENV before ENV.

If Bash is invoked as sh, it tries to mimic the behavior of sh as closely as possible. For a login shell, it attempts to source only /
etc/profile and ~/.profile, in that order. The -noprofile option may still be used to disable this behavior. A shell invoked
as sh does not attempt to source any other startup files.

Part I: User Commands

When bash is started in posix mode, as with the -posix command line option, it follows the POSIX standard for startup files.
In this mode, the env variable is expanded and that file sourced; no other startup files are read.

SEE ALSO

Bash Features, Brian Fox and Chet Ramey

The Gnu Readline Library, Brian Fox and Chet Ramey

The Gnu History Library, Brian Fox and Chet Ramey

A System V Compatible Implementation of 4.2BSD Job Control, David Lennert
Portable Operating System Interface (POSIX) Part 2: Shell and Utilities, IEEE
sh(1), ksh(1), csh(1), emacs(1), vi(1) readline(3)

FILES
/bin/bash The bash executable
/etc/profile The systemwide initialization file, executed for login shells
/.bash_profile The personal initialization file, executed for login shells
/ .bashrc The individual per-interactive-shell startup file
/.inputrc Individual readline initialization file
AUTHORS

Brian Fox (Free Software Foundation; primary author; bfoxeai.mMIT.Edu), Chet Ramey (Case Western Reserve University;
chet@ins.CWRU.Edu)

COPYRIGHT
Copyright O 1989, 1991 by the Free Software Foundation, Inc.

BUG REPORTS

If you find a bug in bash, you should report it. But first, you should make sure that it really is a bug, and that it appears in
the latest version of bash that you have.

Once you have determined that a bug actually exists, mail a bug report to bash-maintainers@prep.ai.MIT.Edu. If you have a
fix, you are welcome to mail that as well! Suggestions and “philosophical” bug reports may be mailed to bug-
bash@prep.ai.MIT.Edu Or posted to the Usenet newsgroup gnu.bash.bug.

ALL bug reports should include the following:

The version number of bash

The hardware and operating system

The compiler used to compile

A description of the bug behavior

A short script or “recipe” that exercises the bug

Comments and bug reports concerning this manual page should be directed to cheteins.cwru.edu.
BUGS
It’s too big and too slow.
There are some subtle differences between bash and traditional versions of sh, mostly because of the posIx specification.
Aliases are confusing in some uses.
GNU, 9 March 1995

beforelight
bdftopcf

bdftopcf—Convert X font from Bitmap Distribution Format to Portable Compiled Format

SYNOPSIS

bdftopcf [-pn J[-un]J[-m][-1]J[-M J[-L][-t][-1i][-0 outputfile] fontfile.bdf

DESCRIPTION

bdftopcf is a font compiler for the x server and font server. Fonts in Portable Compiled Format can be read by any
architecture, although the file is structured to allow one particular architecture to read them directly without reformatting.
This allows fast reading on the appropriate machine, but the files are still portable (but read more slowly) on other machines.

OPTIONS

-pn Sets the font glyph padding. Each glyph in the font will have each scanline padded in to a multiple
of n bytes, where n is 1, 2, 4, or 8.

-un Sets the font scanline unit. When the font bit order is different from the font byte order, the
scanline unit n describes what unit of data (in bytes) are to be swapped; the unit i can be 1, 2, or 4
bytes.

-m Sets the font bit order to uss (most significant bit) first. Bits for each glyph will be placed in this
order; that is, the leftmost bit on the screen will be in the highest valued bit in each unit.

-1 Sets the font bit order to LsB (least significant bit) first. The leftmost bit on the screen will be in the
lowest valued bit in each unit.

-M Sets the font byte order to mss first. All multibyte data in the file (metrics, bitmaps, and everything
else) will be written most significant byte first.

-L Sets the font byte order to LsB first. All multibyte data in the file (metrics, bitmaps, and everything
else) will be written least significant byte first.

-t When this option is specified, bdftopcf will convert fonts into terminal fonts when possible. A

terminal font has each glyph image padded to the same size; the x server can usually render these
types of fonts more quickly.

-i This option inhibits the normal computation of ink metrics. When a font has glyph images that do
not fill the bitmap image (that is, the “on” pixels don’t extend to the edges of the metrics), bdftopcf
computes the actual ink metrics and places them in the pcr file; the -t option inhibits this behavior.

-0 output-file-name By default bdftopcf writes the pcr file to standard output; this option gives the name of a file to be
used instead.

SEE ALSO
x(1)
AUTHOR
Keith Packard, MIT X Consortium
X Version 11 Release 6

beforelight

beforelight—Screen saver

SYNOPSIS

beforelight [-toolkitoption ...]

Part I: User Commands

DESCRIPTION

The beforelight program is a sample implementation of a screen saver for x servers supporting the MIT-SCREEN-SAVER
extension.

AUTHORS

Keith Packard (MIT X Consortium)
X Version 11 Release 6

biff
biff—Be notified if mail arrives and who it is from

SYNOPSIS

biff [ny]

DESCRIPTION
biff informs the system whether you want to be notified when mail arrives during the current terminal session.
Options supported by biff:

n Disables notification
y Enables notification

When mail notification is enabled, the header and first few lines of the message will be printed on your screen whenever mail
arrives. A

biff y
command is often included in the file .10gin Or .profile to be executed at each login.
Biff operates asynchronously. For synchronous notification use the mAIL variable of sh(1) or the mail variable of csh(1).

SEE ALSO
csh(1), mail(1), sh(1), comsat(8)

HISTORY
The biff command appeared in BSD 4.0.

BSD 4, 14 March 1991

bioradtopgm

bioradtopgn—Convert a Biorad confocal file into a portable graymap

SYNOPSIS

bioradtopgm [-image#][imagedata]

DESCRIPTION

Reads a Biorad confocal file as input. Produces a portable graymap as output. If the resulting image is upside down, run it
through pnmflip -tb.

bitmap, bmtoa, atobm
OPTIONS

-image# A Biorad image file may contain more than one image. With this flag, you can specify which image to
extract (only one at a time). The first image in the file has number zero. If no image number is supplied,
only information about the image size and the number of images in the input is printed out. No output is
produced.

BUGS

A Biorad image may be in word format. If PomP1us is not compiled with the B1GaraYs flag, word files cannot be converted. See
the makefile.

SEE ALSO
pgn(5), pnmflip(1)

AUTHORS
Copyright O 1993 by Oliver Trepte
28 June 1993

bitmap, bmtoa, atobm

bitmap, bmtoa, atobm—Bitmap editor and converter utilities for the X Window System

SYNOPSIS

bitmap [-options ...][filename][basename]
bmtoa [-chars ...][filename]

atobm [-chars cc][-name variable][-xhot number][-yhot number][filename]

DESCRIPTION

The bitmap program is a rudimentary tool for creating or editing rectangular images made up of 1s and Os. Bitmaps are used
in x for defining clipping regions, cursor shapes, icon shapes, and tile and stipple patterns.

The bmtoa and atobm filters convert bitmap files (FILE ForRmMAT) to and from ASCII strings. They are most commonly used to
quickly print out bitmaps and to generate versions for including in text.

COMMAND-LINE OPTIONS

Bitmap supports the standard X Toolkit command-line arguments; see x(1). The following additional arguments are
supported as well:

-size WIDTHXHEIGHT Specifies size of the grid in squares.

-sw dimension Specifies the width of squares in pixels.

-sh dimension Specifies the height of squares in pixels.

-gt dimension Grid tolerance. If the square dimensions fall below the specified value, grid will be
automatically turned off.

-grid, +grid Turns on or off the grid lines.

-axes, +axes Turns on or off the major axes.

-dashed, +dashed Turns on or off dashing for the frame and grid lines.

-stippled, +stippled Turns on or off stippling of highlighted squares.

Part I: User Commands

-proportional, +proportional Turns proportional mode on or off. If proportional mode is on, square width is
equal to square height. If proportional mode is off, bitmap will use the smaller square
dimension, if they were initially different.

-dashes filename Specifies the bitmap to be used as a stipple for dashing.

-stipple filename Specifies the bitmap to be used as a stipple for highlighting.

-hl color Specifies the color used for highlighting.

-fr color Specifies the color used for the frame and grid lines.

filename Specifies the bitmap to be initially loaded into the program. If the file does not exist,
bitmap will assume it is a new file.

basename Specifies the basename to be used in the C code output file. If it is different than the

basename in the working file, bitmap will change it when saving the file.

bmtoa accepts the following option:

-chars cc This option specifies the pair of characters to use in the string version of the bitmap.
The first character is used for 0 bits and the second character is used for 1 bits. The
default is to use dashes (-) for Os and number signs (#) for 1s.

atobm accepts the following options:

-chars cc This option specifies the pair of characters to use when converting string bitmaps
into arrays of numbers. The first character represents a 0 bit and the second
character represents a 1 bit. The default is to use dashes (-) for 0s and number signs
(#) for 1s.

-name variable This option specifies the variable name to be used when writing out the bitmap file.
The default is to use the basename of the filename command-line argument or leave
it blank if the standard input is read.

-xhot number This option specifies the X coordinate of the hot spot. Only positive values are
allowed. By default, no hot spot information is included.
-yhot number This option specifies the Y coordinate of the hot spot. Only positive values are

allowed. By default, no hot spot information is included.

USAGE

bitmap displays grid in which each square represents a single bit in the picture being edited. Actual size of the bitmap image,
as it would appear normally and inverted, can be obtained by pressing Meta-1. You are free to move the image pop-up out of
the way to continue editing. Pressing the left mouse button in the pop-up window or Meta-1 again will remove the real size
bitmap image.

If the bitmap is to be used for defining a cursor, one of the squares in the images may be designated as the hot spot. This
determines where the cursor is actually pointing. For cursors with sharp tips (such as arrows or fingers), this is usually at the
end of the tip; for symmetric cursors (such as crosses or bulls-eyes), this is usually at the center.

Bitmaps are stored as small C code fragments suitable for including in applications. They provide an array of bits as well as
symbolic constants giving the width, height, and hot spot (if specified) that may be used in creating cursors, icons, and tiles.

EDITING

To edit a bitmap image, simply click on one of the buttons with drawing commands (Point, Curve, Line, Rectangle, and so
on) and move the pointer into the bitmap grid window. Press one of the buttons on your mouse and the appropriate action
will take place. You can either set, clear, or invert the grid squares. Setting a grid square corresponds to setting a bit in the
bitmap image to 1. Clearing a grid square corresponds to setting a bit in the bitmap image to 0. Inverting a grid square
corresponds to changing a bit in the bitmap image from o to 1 or 1 to o, depending what its previous state was. The default
behavior of mouse buttons is as follows:

bitmap, bmtoa, atobm

MouseButton1 Set

MouseButton2 Invert
MouseButton3 Clear
MouseButton4 Clear
MouseButton5 Clear

This default behavior can be changed by setting the button function resources. Here is an example:

bitmap*buttoniFunction: Set
bitmap*button2Function: Clear
bitmap*button3Function: Invert
etc.

The button function applies to all drawing commands, including copying, moving and pasting, flood filling, and setting the
hot spot.

DRAWING COMMANDS

Here is the list of drawing commands accessible through the buttons at the left side of the application’s window. Some
commands can be aborted by pressing A inside the bitmap window, allowing the user to select different guiding points where
applicable.

Clear This command clears all bits in the bitmap image. The grid squares will be set to the
background color. Pressing C inside the bitmap window has the same effect.

Set This command sets all bits in the bitmap image. The grid squares will be set to the
foreground color. Pressing S inside the bitmap window has the same effect.

Invert This command inverts all bits in the bitmap image. The grid squares will be inverted
appropriately. Pressing | inside the bitmap window has the same effect.

Mark This command is used to mark an area of the grid by dragging out a rectangular

shape in the highlighting color. After the area is marked, it can be operated on by a
number of commands (see Up, Down, Left, Right, Rotate, Flip, Cut, and so on).
Only one marked area can be present at any time. If you attempt to mark another
area, the old mark will vanish. The same effect can be achieved by pressing Shift-
MouseButtonl and dragging out a rectangle in the grid window. Pressing Shift-
MouseButton2 will mark the entire grid area.

Unmark This command will cause the marked area to vanish. The same effect can be
achieved by pressing Shift-MouseButton3.
Copy This command is used to copy an area of the grid from one location to another. If

there is no marked grid area displayed, Copy behaves just like Mark. Once there is a
marked grid area displayed in the highlighting color, this command has two
alternative behaviors. If you click a mouse button inside the marked area, you will be
able to drag the rectangle that represents the marked area to the desired location.
After you release the mouse button, the area will be copied. If you click outside the
marked area, Copy will assume that you wish to mark a different region of the
bitmap image, thus it will behave like Mark again.

Move This command is used to move an area of the grid from one location to another. Its
behavior resembles the behavior of Copy command, except that the marked area will
be moved instead of copied.

Flip Horizontally This command will flip the bitmap image with respect to the horizontal axes. If a
marked area of the grid is highlighted, it will operate only inside the marked area.
Pressing H inside the bitmap window has the same effect.

Up This command moves the bitmap image one pixel up. If a marked area of the grid is
highlighted, it will operate only inside the marked area. Pressing UpArrow inside the
bitmap window has the same effect.

Part I: User Commands

Flip Vertically

Left

Fold

Right

Rotate Left

Down

Rotate Right

Point

Curve

Line

Rectangle

Filled Rectangle

Circle

Filled Circle

Flood Fill

This command will flip the bitmap image with respect to the vertical axes. If a
marked area of the grid is highlighted, it will operate only inside the marked area.
Pressing V inside the bitmap window has the same effect.

This command moves the bitmap image one pixel to the left. If a marked area of the
grid is highlighted, it will operate only inside the marked area. Pressing LeftArrow
inside the bitmap window has the same effect.

This command will fold the bitmap image so that the opposite corners become
adjacent. This is useful when creating bitmap images for tiling. Pressing F inside the
bitmap window has the same effect.

This command moves the bitmap image one pixel to the right. If a marked area of
the grid is highlighted, it will operate only inside the marked area. Pressing the right
arrow inside the bitmap window has the same effect.

This command rotates the bitmap image 90 degrees to the left (counter clockwise.)
If a marked area of the grid is highlighted, it will operate only inside the marked
area. Pressing L inside the bitmap window has the same effect.

This command moves the bitmap image one pixel down. If a marked area of the grid
is highlighted, it will operate only inside the marked area. Pressing the down arrow
inside the bitmap window has the same effect.

This command rotates the bitmap image 90 degrees to the right (clockwise.) If a
marked area of the grid is highlighted, it will operate only inside the marked area.
Pressing R inside the bitmap window has the same effect.

This command will change the grid squares underneath the mouse pointer if a
mouse button is being pressed down. If you drag the mouse button continuously,
the line may not be continuous, depending on the speed of your system and
frequency of mouse motion events.

This command will change the grid squares underneath the mouse pointer if a
mouse button is being pressed down. If you drag the mouse button continuously, it
will make sure that the line is continuous. If your system is slow or bitmap receives
very few mouse motion events, it might behave quite strangely.

This command will change the grid squares in a line between two squares. Once you
press @ mouse button in the grid window, bitmap will highlight the line from the
square where the mouse button was initially pressed to the square where the mouse
pointer is located. By releasing the mouse button, you will cause the change to take
effect, and the highlighted line will disappear.

This command will change the grid squares in a rectangle between two squares.
Once you press a mouse button in the grid window, bitmap will highlight the
rectangle from the square where the mouse button was initially pressed to the square
where the mouse pointer is located. By releasing the mouse button you will cause the
change to take effect, and the highlighted rectangle will disappear.

This command is identical to Rectangle, except at the end the rectangle will be filled
rather than outlined.

This command will change the grid squares in a circle between two squares. Once
you press a mouse button in the grid window, bitmap will highlight the circle from
the square where the mouse button was initially pressed to the square where the
mouse pointer is located. By releasing the mouse button you will cause the change to
take effect, and the highlighted circle will disappear.

This command is identical to Circle, except at the end the circle will be filled rather
than outlined.

This command will flood fill the connected area underneath the mouse pointer
when you click on the desired square. Diagonally adjacent squares are not considered
to be connected.

bitmap, bmtoa, atobm

Set Hot Spot This command designates one square in the grid as the hot spot if this bitmap image
is to be used for defining a cursor. Pressing a mouse button in the desired square will
cause a diamond shape to be displayed.

Clear Hot Spot This command removes any designated hot spot from the bitmap image.

Undo This command will undo the last executed command. It has depth one, that is,
pressing Undo after Undo will undo itself.

FILE MENU

The File menu commands can be accessed by pressing the File button and selecting the appropriate menu entry, or by
pressing the Ctrl key with another key. These commands deal with files and global bitmap parameters, such as size,
basename, filename, and so forth.

New This command will clear the editing area and prompt for the name of the new file to
be edited. It will not load in the new file.
Load This command is used to load a new bitmap file into the bitmap editor. If the

current image has not been saved, user will be asked whether to save or ignore the

changes. The editor can edit only one file at a time. If you need interactive editing,
run a number of editors and use the cut and paste mechanism as described later in
this section. (See “Cut and Paste.”)

Insert This command is used to insert a bitmap file into the image being currently edited.
After being prompted for the filename, click inside the grid window and drag the
outlined rectangle to the location where you want to insert the new file.

Save This command will save the bitmap image. It will not prompt for the filename
unless it is said to be <none>. If you leave the filename undesignated or —, the output
will be piped to stdout.

Save As This command will save the bitmap image after prompting for a new filename. It
should be used if you want to change the filename.
Resize This command is used to resize the editing area to the new number of pixels. The

size should be entered in the widthcheight format. The information in the image
being edited will not be lost unless the new size is smaller that the current image size.
The editor was not designed to edit huge files.

Rescale This command is used to rescale the editing area to the new width and height. The
size should be entered in the widthcheight format. It will not do antialiasing and
information will be lost if you rescale to the smaller sizes. Feel free to add you own
algorithms for better rescaling.

Filename This command is used to change the filename without changing the basename nor
saving the file. If you specify — for a filename, the output will be piped to stdout.

Basename This command is used to change the basename, if a different one from the specified
filename is desired.

Quit This command will terminate the bitmap application. If the file was not saved, user

will be prompted and asked whether to save the image or not. Quit is preferred over
killing the process.

EDIT MENU

The Edit menu commands can be accessed by pressing the Edit button and selecting the appropriate menu entry, or by
pressing Meta key with another key. These commands deal with editing facilities such as grid, axes, zooming, cut and paste,
and so on.

Image This command will display the image being edited and its inverse in its actual size in
a separate window. The window can be moved away to continue with editing.
Pressing the left mouse button in the image window will cause it to disappear from
the screen.

Part I: User Commands

Grid This command controls the grid in the editing area. If the grid spacing is below the
value specified by gridTolerance resource (8 by default), the grid will be automati-
cally turned off. It can be enforced by explicitly activating this command.

Dashed This command controls the stipple for drawing the grid lines. The stipple specified
by dashes resource can be turned on or off by activating this command.
Axes This command controls the highlighting of the main axes of the image being edited.

The actual lines are not part of the image. They are provided to aid user when
constructing symmetrical images, or whenever having the main axes highlighted
helps your editing.

Stippled This command controls the stippling of the highlighted areas of the bitmap image.
The stipple specified by stipple resource can be turned on or off by activating this
command.

Proportional This command controls the proportional mode. If the proportional mode is on,

width and height of all image squares are forced to be equal, regardless of the
proportions of the bitmap window.

Zoom This command controls the zoom mode. If there is a marked area of the image
already displayed, bitmap will automatically zoom into it. Otherwise, the user will
have to highlight an area to be edited in the zoom mode and bitmap will automati-
cally switch into it. You can use all the editing commands and other utilities in the
zoom mode. When you zoom out, undo command will undo the whole zoom

session.

Cut This commands cuts the contents of the highlighted image area into the internal cut
and paste buffer.

Copy This command copies the contents of the highlighted image area into the internal
cut and paste buffer.

Paste This command will check if there are any other bitmap applications with a

highlighted image area, or if there is something in the internal cut and paste buffer
and copy it to the image. To place the copied image, click in the editing window and
drag the outlined image to the position where you want to place i, and then release
the button.

CUT AND PASTE

Bitmap supports two cut and paste mechanisms; the internal cut and paste and the global X selection cut and paste. The
internal cut and paste is used when executing copy and move drawing commands and also cut and copy commands from the
Edit menu. The global X selection cut and paste is used whenever there is a highlighted area of a bitmap image displayed
anywhere on the screen. To copy a part of image from another bitmap editor, simply highlight the desired area by using the
Mark command or pressing the shift key and dragging the area with the left mouse button. When the selected area becomes
highlighted, any other applications (such as xterm) that use primary selection will discard their selection values and
unhighlight the appropriate information. Now, use the Paste command from the Edit menu or control mouse button to
copy the selected part of image into another (or the same) bitmap application. If you attempt to do this without a visible
highlighted image area, the bitmap will fall back to the internal cut and paste buffer and paste whatever was stored there at
the moment.

WIDGETS

Following is the widget structure of the bitmap application. The widget class name is given first, followed by the widget
instance name. All widgets except the bitmap widget are from the standard Athena widget set.

Bitmap bitmap
TransientShell image
Box box

Label normalImage
Label invertedImage
TransientShell input

Dialog dialog
Command okay
Command cancel
TransientShell error
Dialog dialog
Command abort
Command retry
TransientShell gsave
Dialog dialog
Command yes

Command no

Command cancel
Paned parent

Form formy
MenuButton fileButton
SimpleMenu fileMenu
SmeBSB new

SmeBSB load

SmeBSB insert
SmeBSB save

SmeBSB saveAs
SmeBSB resize
SmeBSB rescale
SmeBSB filename
SmeBSB basename
SmeLine line

SmeBSB quit
MenuButton editButton
SimpleMenu editMenu
SmeBSB image

SmeBSB grid

SmeBSB dashed
SmeBSB axes

SmeBSB stippled
SmeBSB proportional
SmeBSB zoom

SmeLine line

SmeBSB cut

SmeBSB copy

SmeBSB paste

Label status

Pane pane

Bitmap bitmap

Form form

Command clear
Command set

Command invert
Toggle mark

Command unmark
Toggle copy

Toggle move

Command flipHoriz
Command up

Command flipVert
Command left
Command fold
Command right
Command rotateLeft
Command down
Command rotateRight

bitmap, bmtoa, atobm

Part I: User Commands

Toggle point

Toggle curve

Toggle line

Toggle rectangle
Toggle filledRectangle
Toggle circle

Toggle filledCircle
Toggle floodFill
Toggle setHotSpot
Command clearHotSpot
Command undo

COLORS

If you would like bitmap to be viewable in color, include the following in the #ifdef coLOR section of the file you read with
xrdb:

*customization: -color

This will cause bitmap to pick up the colors in the app-defaults color customization file:
<XRoot>/1ib/X11/app-defaults/Bitmap-color

where <xRoot> refers to the root of the X11 install tree.

BITMAP WIDGET

Bitmap widget is a standalone widget for editing raster images. It is not designed to edit large images, although it may be
used in that purpose as well. It can be freely incorporated with other applications and used as a standard editing tool. The

following are the resources provided by the bitmap widget:

Header file Bitmap.h

Class bitmapWidgetClass
Class Name Bitmap

Superclass Bitmap

All the Simple Widget resources plus...

Name Class Type Default Value
foreground Foreground Pixel XtDefaultForeground
highlight Highlight Pixel XtDefaultForeground
framing Framing Pixel XtDefaultForeground
gridTolerance GridTolerance Dimension 8

size Size String 32x32

dashed Dashed Boolean True

grid Grid Boolean True

stippled Stippled Boolean True

proportional Proportional Boolean True

axes Axes Boolean False

squareWidth SquareWidth Dimension 16

squareHeight SquareHeight Dimension 16

margin Margin Dimension 16

xHot XHot Position NotSet (-1)

yHot YHot Position NotSet (-1)
button1Function Button1Function DrawingFunction Set

brushtopbm

Name Class Type Default Value
button2Function Button2Function DrawingFunction Invert
button3Function Button3Function DrawingFunction Clear
button4Function Button4Function DrawingFunction Invert
button5Function Button5Function DrawingFunction Invert
filename Filename String None (“)
basename Basename String None (“)
AUTHOR
Davor Matic (MIT X Consortium)
X Version 11 Release 6
bmptoppm—Convert a BMP file into a portable pixmap
SYNOPSIS
bmptoppm [bmpfile]
DESCRIPTION
bmptoppm reads a Microsoft Windows or OS/2 BMP file as input and produces a portable pixmap as output.
SEE ALSO
ppmtobmp(1), ppm(5)
AUTHOR

Copyright O 1992 by David W. Sanderson
26 October 1992

brushtopbm

brushtopbm—Convert a doodle brush file into a portable bitmap

SYNOPSIS

brushtopbm [brushfile]

DESCRIPTION
brushtopbm reads a Xerox doodle brush file as input and produces a portable bitmap as output.
Note that there is currently no pbmtobrush tool.

SEE ALSO
pbm(5)
AUTHOR
Copyright O 1988 by Jef Poskanzer
28 August 1988

Part I: User Commands

cal

cal—Displays a calendar

SYNOPSIS
cal [-jy] [month [year]]
DESCRIPTION
cal displays a simple calendar. If arguments are not specified, the current month is displayed. The options are as follows:
- Display Julian dates (days one-based, numbered from January 1)
-y Display a calendar for the current year

A single parameter specifies the year (1-9999) to be displayed; note the year must be fully specified:
cal 89

will not display a calendar for 1989. Two parameters denote the month (1-12) and year. If no parameters are specified, the
current month’s calendar is displayed.

A year starts on Jan 1.

The Gregorian Reformation is assumed to have occurred in 1752 on the 3rd of September. By this time, most countries had
recognized the reformation (although a few did not recognize it until the early 1900s.) Ten days following that date were
eliminated by the reformation, so the calendar for that month is a bit unusual.

HISTORY
A cal command appeared in version 6 AT&T UNIX
6 June 1993

cat

cat—Concatenate files and print on the standard output

SYNOPSIS

cat [-benstuvAET] [—number] [—number-nonblank] [—squeeze-blank]
[—show-nonprinting] [—show-ends] [—show-tabs] [—show-all]

[—help] [—version] [file...]

DESCRIPTION

This manual page documents the GNU version of cat. cat writes the contents of each given file, or the standard input if
none are given or when a file named - is given, to the standard output.

OPTIONS
-b, —number-nonblank Number all nonblank output lines, starting with 1.
-e Equivalent to —vE.
-n, —number Number all output lines, starting with 1.
-s, —squeeze-blank Replace multiple adjacent blank lines with a single blank line.
-t Equivalent to -vT.

-u Ignored; for UNIX compatibility.

chattr

-v, —show-nonprinting Display control characters except for LFD and TAs using * notation and precede characters that
have the high bit set with u-.

-A, —show-all Equivalent to -veT.

-E, —show-ends Display a s after the end of each line.

-T, —show-tabs Display tab characters as "I.

—help Print a usage message and exit with a nonzero status.

—version Print version information on standard output then exit.

GNU Text Utilities

chattr

chattr—Change file attributes on a Linux second extended file system

SYNOPSIS
chattr [-RV][-v version] [mode] files...
DESCRIPTION

chattr changes the files attributes on an second extended file system. The format of a symbolic mode is +-=[Sacdisu].

The operator + causes the selected attributes to be added to the existing attributes of the files; - causes them to be removed;
and = causes them to be the only attributes that the files have. The letters sacdisu select the new attributes for the files:
synchronous updates (s), append only (a), compressed (c), immutable(i), nodump (d), securedeletion (s), and undeletable

(u).

OPTIONS
-R Recursively change attributes of directories and their contents.
-V Verbosely describe changed attributes.
-v version Set the file’s version.

ATTRIBUTES

A file with the a attribute set can only be open in append mode for writing.

A file with the ¢ attribute set is automatically compressed on the disk by the kernel. A read from this file returns
uncompressed data. A write to this file compresses data before storing them on the disk.

A file with the d attribute set is not candidate for backup when the dump(8) program is run.

A file with the i attribute cannot be modified: it cannot be deleted or renamed, no link can be created to this file and no data
can be written to the file. Only the superuser can set or clear this attribute.

When a file with the s attribute set is deleted, its blocks are zeroed and written back to the disk.

When a file with the u attribute set is modified, the changes are written synchronously on the disk; this is equivalent to the
syn' mount option applied to a subset of the files.

When a file with the u attribute set is deleted, its contents is saved. This allows the user to ask for its undeletion.

AUTHOR

chattr has been written by Remy Card, <cardemasi.ibp.fr>, the developer and maintainer of the ext2 fs.

BUGS AND LIMITATIONS

As of ext2 fs 0.5a, the ¢ and u attributes are not honored by the kernel code.

These attributes will be implemented in a future ext2 fs version.

Part I: User Commands

AVAILABILITY

chattr is available for anonymous ftp from ftp.ibp.fr and tsx-11.mit.edu in /pub/linux/packages/ext2fs.
SEE ALSO
1sattr(l)
Version 0.5b, November 1994

chfn

chfn—Change your finger information

SYNOPSIS

chfn [-f full-name][-o office][-p office-phone] [-h home-phone] [-u] [-v]
[username]

DESCRIPTION

chfn is used to change your finger information. This information is stored in the /etc/passwd file, and is displayed by the
finger program. The Linux finger command will display four pieces of information that can be changed by chfn: your real
name, your work room and phone, and your home phone.

COMMAND LINE

Any of the four pieces of information can be specified on the command line. If no information is given on the command
line, chfn enters interactive mode.

INTERACTIVE MODE

In interactive mode, chfn will prompt for each field. At a prompt, you can enter the new information, or just press return to
leave the field unchanged. Enter the keyword none to make the field blank.

OPTIONS
-f, —full-name Specify your real name.
-0, —office Specify your office room number.
-p, —office-phone Specify your office phone number.
-h, —home-phone Specify your home phone number.
-u, —help Print a usage message and exit.
-v, —version Print version information and exit.
SEE ALSO
finger(1), passwd(5)
AUTHOR

Salvatore Valente (<svalente@nit.edu>)
chfn, October 13 1994

chmod
chgrp

chgrp—Change the group ownership of files

SYNOPSIS
chgrp [-Rcfv] [—recursive] [—changes] [—silent] [—quiet] [—verbose] [—help]
[—version] group file...

DESCRIPTION

This manual page documents the GNU version of chgrp. chgrp changes the group ownership of each given file to the named
group, which can be either a group name or a numeric group ID.

OPTIONS
-c, —changes Verbosely describe only files whose ownership actually changes.
-f, —silent, —quiet Do not print error messages about files whose ownership cannot be changed.
-v, —verbose Verbosely describe ownership changes.
-R, —recursive Recursively change ownership of directories and their contents.
—help Print a usage message on standard output and exit successfully.
—version Print version information on standard output, then exit successfully.

GNU File Utilities

chkdupexe

chkdupexe—Find duplicate executables

SYNOPSIS

chkdupexe

DESCRIPTION

chkdupexe will scan many standard directories that hold executable, and report duplicates.

AUTHOR
Nicolai Langfeldt

BUGS
Requires GNU 1s(1).

Search paths that point to the same directory will cause many bogus duplicates to be found. You might want to edit the
script to eliminate some paths that are equivalent on your machine.

11 March 1995

chmod

chmod—Change the access permissions of files

SYNOPSIS

chmod [-Rcfv] [—recursive] [—changes] [—silent] [—quiet] [—verbose] [—help]
[—version] mode file...

Part I: User Commands

DESCRIPTION

This manual page documents the GNU version of chmod. chmod changes the permissions of each given file according to mode,
which can be either a symbolic representation of changes to make, or an octal number representing the bit pattern for the
new permissions.

The format of a symbolic mode is [ugoa...][[+-=][rwxXstugo...]...][,...]. Multiple symbolic operations can be given,
separated by commas.

A combination of the letters ugoa controls which users’ access to the file will be changed: the user who owns it (u), other users
in the file’s group (g), other users not in the file’s group (o), or all users (a). If none of these are given, the effect is as if a were
given, but bits that are set in the umask are not affected.

The operator + causes the permissions selected to be added to the existing permissions of each file; - causes them to be
removed; and = causes them to be the only permissions that the file has.

The letters rwxxstugo select the new permissions for the affected users: read (r), write (w), execute (or access for directories)
(x), execute only if the file is a directory or already has execute permission for some user (x), set user or group 1D on
execution (s), save program text on swap device (t), the permissions that the user who owns the file currently has for it (u),
the permissions that other users in the file’s group have for it (g), and the permissions that other users not in the file’s group
have for it (o).

A numeric mode is from one to four octal digits (0-7), derived by adding up the bits with values 4, 2, and 1. Any omitted
digits are assumed to be leading zeros. The first digit selects the set user ID (4) and set group ID (2) and save text image (1)
attributes. The second digit selects permissions for the user who owns the file: read (4), write (2), and execute (1); the third
selects permissions for other users in the file’s group, with the same values; and the fourth for other users not in the file’s
group, with the same values.

chmod never changes the permissions of symbolic links; the chmod System call cannot change their permissions. This is not a
problem since the permissions of symbolic links are never used. However, for each symbolic link listed on the command line,
chmod changes the permissions of the pointed-to file. In contrast, chmod ignores symbolic links encountered during recursive
directory traversals.

OPTIONS
-c, —changes Verbosely describe only files whose permissions actually change.
-f, —silent, —quiet Do not print error messages about files whose permissions cannot be changed.
-v, —verbose Verbosely describe changed permissions.
-R, —recursive Recursively change permissions of directories and their contents.
—help Print a usage message on standard output and exit successfully.
—version Print version information on standard output, then exit successfully.

GNU File Utilities

chown

chown—Change the user and group ownership of files

SYNOPSIS

chown [-Rcfv] [—recursive] [—changes] [—help] [—version] [—silent] [—quiet]
[—verbose] [user][:.][group] file...

chsh
DESCRIPTION

This manual page documents the GNU version of chown. chown changes the user and/or group ownership of each given file,
according to its first nonoption argument, which is interpreted as follows. If only a username (or numeric user 1D) is given,
that user is made the owner of each given file, and the files’ group is not changed. If the username is followed by a colon or
dot and a group name (or numeric group 1D), with no spaces between them, the group ownership of the files is changed as
well. If a colon or dot but no group name follows the username, that user is made the owner of the files and the group of the
files is changed to that user’s login group. If the colon or dot and group are given, but the username is omitted, only the
group of the files is changed; in this case, chown performs the same function as chgrp.

OPTIONS
-c, —changes Verbosely describe only files whose ownership actually changes.
-f, —silent, —quiet Do not print error messages about files whose ownership cannot be changed.
-v, —verbose Verbosely describe ownership changes.
-R, —recursive Recursively change ownership of directories and their contents.
—help Print a usage message on standard output and exit successfully.
—version Print version information on standard output then exit successfully.

GNU File Utilities

chsh

chsh—Change your login shell

SYNOPSIS

chsh [-sshell 1 [-1][-ul [-v] [username]
DESCRIPTION

chsh is used to change your login shell. If a shell is not given on the command line, chsh prompts for one.
VALID SHELLS

chsh will accept the full pathname of any executable file on the system. However, it will issue a warning if the shell is not
listed in the /etc/shells file.

OPTIONS
-s, —shell Specify your login shell.
-1, —list-shells Print the list of shells listed in /etc/shells and exit.
-u, —help Print a usage message and exit.
-v, —version Print version information and exit.
SEE ALSO
login(1), passwd(5), shells(5)
AUTHOR

Salvatore Valente (<svalente@mit.edu>)
chsh, 13 October 1994

Part I: User Commands

Cl
ci—Check in RCS revisions

SYNOPSIS

ci [options] file ...

DESCRIPTION

ci stores new revisions into RCS files. Each pathname matching an RCS suffix is taken to be an RCS file. All others are
assumed to be working files containing new revisions. ci deposits the contents of each working file into the corresponding
RCS file. If only a working file is given, ci tries to find the corresponding RCS file in an RCS subdirectory and then in the
working file’s directory. (For more details, see “File Naming,” later in this manual page.)

For ci to work, the caller’s login must be on the access list, unless the access list is empty or the caller is the superuser or the
owner of the file. To append a new revision to an existing branch, the tip revision on that branch must be locked by the
caller. Otherwise, only a new branch can be created. This restriction is not enforced for the owner of the file if non-strict
locking is used; see res(1). A lock held by someone else can be broken with the rcs command.

Unless the -f option is given, ci checks whether the revision to be deposited differs from the preceding one. If not, instead of
creating a new revision ci reverts to the preceding one. To revert, ordinary ci removes the working file and any lock; ci —|
keeps and ci -u removes any lock, and then they both generate a new working file much as if co -1 or co -u had been applied
to the preceding revision. When reverting, any -n and -s options apply to the preceding revision.

For each revision deposited, ci prompts for a log message. The log message should summarize the change and must be
terminated by end-of-file or by a line containing . by itself. If several files are checked in, ci asks whether to reuse the
previous log message. If the standard input is not a terminal, ci suppresses the prompt and uses the same log message for all
files. (See also -m.)

If the RCS file does not exist, ci creates it and deposits the contents of the working file as the initial revision (default
number: 1.1). The access list is initialized to empty. Instead of the log message, ci requests descriptive text (See -t.)

The number rev of the deposited revision can be given by any of the options -f, -i, -1, -3, -k, -1, -M, -q, -r, OF -u. rev can be
symbolic, numeric, or mixed. Symbolic names in rev must already be defined; see the -n and -N options for assigning names
during checkin. If rev is $, ci determines the revision number from keyword values in the working file.

If rev begins with a period, then the default branch (normally the trunk) is prepended to it. If rev is a branch number
followed by a period, then the latest revision on that branch is used.

If rev is a revision number, it must be higher than the latest one on the branch to which rev belongs, or must start a new
branch.

If rev is a branch rather than a revision number, the new revision is appended to that branch. The level number is obtained
by incrementing the tip revision number of that branch. If rev indicates a nonexistent branch, that branch is created with the
initial revision numbered rev.1.

If rev is omitted, ci tries to derive the new revision number from the caller’s last lock. If the caller has locked the tip revision
of a branch, the new revision is appended to that branch. The new revision number is obtained by incrementing the tip
revision number. If the caller locked a nontip revision, a new branch is started at that revision by incrementing the highest
branch number at that revision. The default initial branch and level numbers are 1.

If rev is omitted and the caller has no lock, but owns the file and locking is not set to strict, then the revision is appended to
the default branch. (Normally the trunk; see the -b option of rcs(1).)

Exception: On the trunk, revisions can be appended to the end, but not inserted.

- [E

OPTIONS
-rrev Check in revision rev.
-r The bare -r option (without any revision) has an unusual meaning in ci. With other RCS

commands, a bare -r option specifies the most recent revision on the default branch, but with ci, a
bare -r option reestablishes the default behavior of releasing a lock and removing the working file,
and is used to override any default -1 or -u options established by shell aliases or scripts.

-1[rev] Works like -r, except it performs an additional co -1 for the deposited revision. Thus, the
deposited revision is immediately checked out again and locked. This is useful for saving a revision
although one wants to continue editing it after the checkin.

~ufrev] Works like -1, except that the deposited revision is not locked. This lets one read the working file
immediately after checkin.

The -1, bare -r, and -u options are mutually exclusive and silently override each other. For example, ci -u -ris equivalent
to ci -r because bare -r overrides -u.

~f[rev] Forces a deposit; the new revision is deposited even it is not different from the preceding one.

-k[rev] Searches the working file for keyword values to determine its revision number, creation date, state,
and author—see co(1)—and assigns these values to the deposited revision, rather than computing
them locally. It also generates a default login message noting the login of the caller and the actual
checkin date. This option is useful for software distribution. A revision that is sent to several sites
should be checked in with the -k option at these sites to preserve the original number, date, author,
and state. The extracted keyword values and the default log message can be overridden with the
options -d, -m, -s, -w, and any option that carries a revision number.

-q[rev] Quiet mode; diagnostic output is not printed. A revision that is not different from the preceding
one is not deposited, unless -f is given.

-ifrev] Initial checkin; report an error if the RCS file already exists. This avoids race conditions in certain
applications.

-jlrev] Just check in and do not initialize; report an error if the RCS file does not already exist.

~I[rev] Interactive mode; the user is prompted and questioned even if the standard input is not a terminal.

-d[date] Uses date for the checkin date and time. The date is specified in free format as explained in co(1).

This is useful for lying about the checkin date, and for -k if no date is available. If date is empty,
the working file’s time of last modification is used.

-M[rev] Set the modification time on any new working file to be the date of the retrieved revision. For
example, ci -d -M -u f does not alter 's modification time, even if £'s contents change due to
keyword substitution. Use this option with care; it can confuse make(1).

—mmsg Uses the string msg as the log message for all revisions checked in. By convention, log messages that
start with # are comments and are ignored by programs like GNU emacs’s vc package. Also, log
messages that start with c1umpname (followed by whitespace) are meant to be clumped together if
possible, even if they are associated with different files; the clumpname label is used only for
clumping, and is not considered to be part of the log message itself.

-nname Assigns the symbolic name to the number of the checked-in revision. ci prints an error message if
that name is already assigned to another number.

-Nname Same as -n, except that it overrides a previous assignment of name.

-sstate Sets the state of the checked-in revision to the identifier state. The default state is Exp.

-tfile Writes descriptive text from the contents of the named file into the RCS file, deleting the existing
text. The file cannot begin with -.

-t-string Write descriptive text from the string into the RCS file, deleting the existing text.

The —t option, in both its forms, has effect only during an initial checkin; it is silently ignored otherwise.

During the initial checkin, if -t is not given, ci obtains the text from standard input, terminated by end-of-file or by a line
containing a dot (.) by itself. The user is prompted for the text if interaction is possible; see -1.

Part I: User Commands

For backwards compatibility with older versions of RCS, a bare -t option is ignored.

-T

-wlogin
-V

-Vn

-xsuffixes

-Zzone

FILE NAMING

Set the RCS file’s modification time to the new revision’s time if the former precedes the latter and
there is a new revision; preserve the RCS file’s modification time otherwise. If you have locked a
revision, ci usually updates the RCS file’s modification time to the current time, because the lock is
stored in the RCS file and removing the lock requires changing the RCS file. This can create an
RCS file newer than the working file in one of two ways: first, ci -M can create a working file with
a date before the current time; second, when reverting to the previous revision the RCS file can
change while the working file remains unchanged. These two cases can cause excessive
recompilation caused by a make(1) dependency of the working file on the RCS file. The -1 option
inhibits this recompilation by lying about the RCS file’s date. Use this option with care; it can
suppress recompilation even when a checkin of one working file should affect another working file
associated with the same RCS file. For example, suppose the RCS file’s time is 01:00, the (changed)
working file’s time is 02:00, some other copy of the working file has a time of 03:00, and the
current time is 04:00. Then ci —d —T sets the RCS file’s time to 02:00 instead of the usual 04:00;
this causes make(1) to think (incorrectly) that the other copy is newer than the RCS file.

Uses 1ogin for the author field of the deposited revision. Useful for lying about the author, and for
-k if no author is available.

Print RCS’s version humber.

Emulate RCS version n. See co(1) for details.

Specifies the suffixes for RCS files. A nonempty suffix matches any pathname ending in the suffix.
An empty suffix matches any pathname of the form Rcs/path or pathi/RcS/path2. The -x option
can specify a list of suffixes separated by /. For example, -x,v/ specifies two suffixes: ,v and the
empty suffix. If two or more suffixes are specified, they are tried in order when looking for an RCS
file; the first one that works is used for that file. If no RCS file is found but an RCS file can be
created, the suffixes are tried in order to determine the new RCS file’s name. The default for
suffixes is installation-dependent; normally it is ,v/ for hosts like UNIX that permit commas in
filenames, and is empty (that is, just the empty suffix) for other hosts.

Specifies the date output format in keyword substitution, and specifies the default time zone for
date in the -ddate option. The zone should be empty, a numeric UTC offset, or the special string
LT for local time. The default is an empty zone, which uses the traditional RCS format of UTC
without any time-zone indication and with slashes separating the parts of the date; otherwise, times
are output in 1SO 8601 format with time zone indication. For example, if local time is January 11,
1990, 8 p.m. Pacific Standard Time, eight hours west of UTC, then the time is output as follows:

Option Time Output

-z 1990/01/12 04:00:00 (default)
-zLT 1990-01-11 20:00:00-08
-2+05:30 1990-01-12 09:30:00+05:30

The -z option does not affect dates stored in RCS files, which are always UTC.

Pairs of RCS files and working files can be specified in three ways. (See also “Examples,” next.)

1. Both the RCS file and the working file are given. The RCS pathname is of the form path1/workfilex and the working
pathname is of the form path2/workfile where path1/ and path2/ are (possibly different or empty) paths, workfile is a
filename, and x is an RCS suffix. If x is empty, path1/ must start with rcs/ or must contain /Rcs/.

2. Only the RCS file is given. Then the working file is created in the current directory and its name is derived from the
name of the RCS file by removing path1/ and the suffix x.

- [E

3. Only the working file is given. Then ci considers each RCS suffix X in turn, looking for an RCS file of the form path2/
Rcs/workfilex or (if the former is not found and x is nonempty) path2/workfilexX.

If the RCS file is specified without a path in one of the first two preceding scenarios, ci looks for the RCS file first in the
directory ./rcs and then in the current directory.

ci reports an error if an attempt to open an RCS file fails for an unusual reason, even if the RCS file’s pathname is just one
of several possibilities. For example, to suppress use of RCS commands in a directory d, create a regular file named d/Rrcs so
that casual attempts to use RCS commands in d fail because d/Rrcs is not a directory.

EXAMPLES

Suppose ,v is an RCS suffix and the current directory contains a subdirectory RCS with an RCS file io.c,v. Then each of
the following commands checks in a copy of io.c into rcS/io.c,v as the latest revision, removing io.c:

ci io.c; ci RCS/io.c,v; ci io.c,v;

ci io.c RCS/io.c,v; ci io.c io.c,v;

ci RCS/io.c,v io.c; ci io.c,v io.c;

Suppose instead that the empty suffix is an RCS suffix and the current directory contains a subdirectory RCS with an RCS
file io.c. Then each of the following commands checks in a new revision:

ci io.c; ci RCS/io.c;

ci io.c RCS/io.c;

ci RCS/io.c io.c;

FILE MODES

An RCS file created by ci inherits the read and execute permissions from the working file. If the RCS file exists already, ci
preserves its read and execute permissions. ci always turns off all write permissions of RCS files.

FILES

Temporary files are created in the directory containing the working file, and also in the temporary directory. (See TMPDIR
under “Environment.”) A semaphore file or files are created in the directory containing the RCS file. With a nonempty
suffix, the semaphore names begin with the first character of the suffix; therefore, do not specify an suffix whose first
character could be that of a working filename. With an empty suffix, the semaphore names end with an underscore (_), so
working filenames should not end in _. ci never changes an RCS or working file. Normally, ci unlinks the file and creates a
new one; but instead of breaking a chain of one or more symbolic links to an RCS file, it unlinks the destination file instead.
Therefore, ci breaks any hard or symbolic links to any working file it changes; and hard links to RCS files are ineffective, but
symbolic links to RCS files are preserved.

The effective user must be able to search and write the directory containing the RCS file. Normally, the real user must be
able to read the RCS and working files and to search and write the directory containing the working file; however, some
older hosts cannot easily switch between real and effective users, so on these hosts the effective user is used for all accesses.
The effective user is the same as the real user unless your copies of ci and co have setuid privileges. These privileges yield
extra security if the effective user owns all RCS files and directories, and if only the effective user can write RCS directories.

Users can control access to RCS files by setting the permissions of the directory containing the files; only users with write
access to the directory can use RCS commands to change its RCS files. For example, in hosts that allow a user to belong to
several groups, one can make a group’s RCS directories writable to that group only. This approach suffices for informal
projects, but it means that any group member can arbitrarily change the group’s RCS files, and can even remove them
entirely. Hence, more formal projects sometimes distinguish between an RCS administrator, who can change the RCS files
at will, and other project members, who can check in new revisions but cannot otherwise change the RCS files.

setuid USE

To prevent anybody but their RCS administrator from deleting revisions, a set of users can employ setuid privileges as
follows:

Part I: User Commands

m Check that the host supports RCS setuid use. Consult a trustworthy expert if there are any doubts. It is best if the
setuid system calls works as described in POSIX 1003.1a Draft 5, because RCS can switch back and forth easily
between real and effective users, even if the real user is root. If not, the second best is if the setuid system call supports
saved setuid (the {_PosIx_savep_1Ds} behavior of POSIX 1003.1-1990); this fails only if the real or effective user is root.
If RCS detects any failure in setuid, it quits immediately.

m Choose a user A to serve as RCS administrator for the set of users. Only A can invoke the rcs command on the users’
RCS files. A should not be root or any other user with special powers. Mutually suspicious sets of users should use
different administrators.

Choose a pathname B to be a directory of files to be executed by the users.
Have A set up B to contain copies of ci and co that are setuid to A by copying the commands from their standard
installation directory D as follows:
mkdir B cp D/c[io] B chmod go-w,u+s B/c[io]
m Have each user prepend B to his/her path as follows:
PATH=B:$PATH; export PATH # ordinary shell
set path=(B $path) # C shell

m Have A create each RCS directory R with write access only to A as follows:
mkdir R chmod go-w R

= [f you want to let only certain users read the RCS files, put the users into a group G, and have A further protect the RCS
directory as follows:
chgrp G Rchmod g-w,o-rwx R
Have A copy old RCS files (if any) into R, to ensure that A owns them.

An RCS file’s access list limits who can check in and lock revisions. The default access list is empty, which grants
checkin access to anyone who can read the RCS file. If you want limit checkin access, have A invoke rcs -a on the file;
see rcs(1). In particular, rcs -e -aA limits access to just A.

m Have A initialize any new RCS files with rcs -i before initial checkin, adding the -a option if you want to limit checkin
access.

m Give setuid privileges only to ci, co, and rcsclean; do not give them to rcs or to any other command.

m Do not use other setuid commands to invoke RCS commands; setuid is trickier than you think!

ENVIRONMENT

RCSINIT Options prepended to the argument list, separated by spaces. A backslash escapes spaces within an option.
The RcSINIT options are prepended to the argument lists of most RCS commands. Useful RCSINIT options
include -q, -v, -x, and -z.

TMPDIR Name of the temporary directory. If not set, the environment variables Tur and TEMPs@ are inspected
instead and the first value found is taken; if none of them are set, a host-dependent default is used,
typically /tmp.

DIAGNOSTICS

For each revision, ci prints the RCS file, the working file, and the number of both the deposited and the preceding revision.
The exit status is zero if and only if all operations were successful.
IDENTIFICATION
Author: Walter F. Tichy.
Manual page revision: 5.17; Release date 16 June 1995
Copyright O 1982, 1988, 1989 Walter F. Tichy
Copyright O 1990, 1991, 1992, 1993, 1994, 1995 Paul Eggert

cidentd
SEE ALSO

co(1), emacs(1), ident(1), make(1), res(1), resclean(1), resdiff(1), resintro(l), rcsmerge(1), rlog(l), setuid(2), resfile(5)
Walter F. Tichy, “RCS—A System for Version Control,” Software Practice & Experience 15, 7 (July 1985), 637-654.
GNU, 16 June 1995

cidentd

cidentd—identd server

SYNOPSIS

cidentd [-usqvnah] [-f file] [-1 file] [-t seconds]

DESCRIPTION
cidentd gives authentication information.

cidentd is an RFC 1314- and 931-compliant identd daemon. It accepts connections on a port (113 default) and answers
queries for port owner of a connection. command;

cidentd normally terminates when the remote command does. The options are as follows:

-u Turns on the use of the .authlie file in the user’s home directory to give the requesting system whatever
information the user provides. This file is overridden by the -a option and the system file the format is as
follows:

mynameis name-to-be-given # give this userid
hideme # hide user id
host-ip name-to-be-given # userid for them
host-ip no-info # hide you to them

host-ip can be an ip in dot notation or a name. The file is set so that whatever comes last is what they get.

-s Closes the connection after a single query.

-q Quits the daemon after 1 connection (default in 1.0b).

-v Turns on verbose logging to the syslogs.

-n Makes cident act like the old school identd with nothing special.

-a Enables the /etc/cident.users file for options, which overrides the user files if -u is specified. The format

is as follows:

username name -to-send # send this for username
username # must send there username
all name -to-send # send for every query
all no-info # send nothing every query
host-ip name -to-send # send to that host
host-ip no-info # send nothing to them

host-ip can be an ip in dot notation or a name. The file is set so that whatever comes last is what they get.

-h Displays the help list to the screen you might not want to do this from some terminal types.

-f Sets the file to find the ports and ids of connections. Use this to specify a file other than /proc/net/tcp.

-1 Used to specify a file other than /etc/cident.users must be used with the -a option unless you like
redundancy.

-t Sets the time out of a connection in seconds. This does not work in this version to cidentd.

Part I: User Commands

If no arguments are specified, the program just runs as normal, almost like the -n.
cidentd -t 30 -a sets timer to 30 seconds and tells it to look at .authlie files.

FILES

/etc/cidentd.users
$(HOME) / .authlie

SEE ALSO
identd(1)

BUGS

None that | know of.

Linux/FreeBSD, May 1996

cksum

cksum—Checksum and count the bytes in a file

SYNOPSIS

cksum [—help] [—version] [file...]

DESCRIPTION

This manual page documents the GNU version of cksum. cksum computes a cyclic redundancy check (CRC) for each named
file, or the standard input if none are given or when a file named - is given. It prints the CRC for each file along with the
number of bytes in the file, and the filename unless no arguments were given.

cksum is typically used to make sure that files transferred by unreliable means (such as netnews) have not been corrupted. This
is accomplished by comparing the cksum output for the received files with the cksum output for the original files. The CRC

algorithm is specified by the POSIX.2 standard. It is not compatible with the BSD or System V sum programs; it is more
robust.

Available options are
—help Print a usage message and exit with a nonzero status.
—version Print version information on standard output then exit.

GNU Text Utilities

clear

clear—Clear terminal screen

SYNOPSIS

clear

DESCRIPTION

clear calls tput(1) with the clear argument. This causes tput to attempt to clear the screen, checking the data in /etc/termcap
(for the GNU or BSD tput) or in the terminfo database (for the ncurses tput) and sending the appropriate sequence to the
terminal. This command can be redirected to clear the screen of some other terminal.

- [

SEE ALSO
reset(1), stty(1), tput(1)

AUTHOR

Rik Faith (faithecs.unc.edu)
Linux 0.99, 10 October 1993

cmuwmtopbm

cmuwmtopbm—Convert a CMU window manager bitmap into a portable bitmap

SYNOPSIS

cmuwmtopbm [cmuwmfile]

DESCRIPTION

Reads a CMU window manager bitmap as input. Produces a portable bitmap as output.

SEE ALSO

pbmtocmuwm(1), pbm(5)

AUTHOR
Copyright O 1989 by Jef Poskanzer
15 April 1989

co

co—Check out RCS revisions

SYNOPSIS

co [options] file ...

DESCRIPTION
co retrieves a revision from each RCS file and stores it into the corresponding working file.
Pathnames matching an RCS suffix denote RCS files; all others denote working files. Names are paired as explained in ci(1).

Revisions of an RCS file can be checked out locked or unlocked. Locking a revision prevents overlapping updates. A revision
checked out for reading or processing (for example, compiling) need not be locked. A revision checked out for editing and
later checkin must normally be locked. Checkout with locking fails if the revision to be checked out is currently locked by
another user. (A lock can be broken with rcs(1).) Checkout with locking also requires the caller to be on the access list of the
RCS file, unless he is the owner of the file or the superuser, or the access list is empty. Checkout without locking is not
subject to access list restrictions, and is not affected by the presence of locks.

A revision is selected by options for revision or branch number, checkin date/time, author, or state. When the selection
options are applied in combination, co retrieves the latest revision that satisfies all of them. If none of the selection options is
specified, co retrieves the latest revision on the default branch, normally the trunk; see the -b option of res(1). A revision or
branch number can be attached to any of the options -, -1, -1, -M, -p, -q, -r, Or -u. The options -d (date), -s (state), and -w
(author) retrieve from a single branch, the selected branch (which is specified by -f or -u), or the default branch.

A co command applied to an RCS file with no revisions creates a zero-length working file. co always performs keyword
substitution.

OPTIONS

-rirev]

-1[rev]

-u[rev]

-flrev]

-kkv

-kkvl
-kk

-ko
-kb

-kv

-p[rev]

-q[rev]
-I[rev]
-ddate

Part I: User Commands

Retrieves the latest revision whose number is less than or equal to rev. If rev indicates a branch
rather than a revision, the latest revision on that branch is retrieved. If rev is omitted, the latest
revision on the default branch is retrieved; see the -b option of rcs(1). If rev is $, co determines the
revision number from keyword values in the working file. Otherwise, a revision is composed of one
or more numeric or symbolic fields separated by periods. If rev begins with a period, then the
default branch (normally the trunk) is prepended to it. If rev is a branch number followed by a
period, then the latest revision on that branch is used. The numeric equivalent of a symbolic field is
specified with the -n option of the commands ci(1) and res(1).

Same as -r, except that it also locks the retrieved revision for the caller.

Same as -r, except that it unlocks the retrieved revision if it was locked by the caller. If rev is
omitted, -u retrieves the revision locked by the caller, if there is one; otherwise, it retrieves the latest
revision on the default branch.

Forces the overwriting of the working file; useful in connection with -q. (See also “File Modes,”
later in this manual page.)

Generate keyword strings using the default form, for example, $Revision: 5.13 § for the Revision
keyword. A locker’s name is inserted in the value of the Header, 1d, and Locker keyword strings only
as a file is being locked, that is, by ci -1 and co -1. This is the default.

Like -kkv, except that a locker’s name is always inserted if the given revision is currently locked.
Generate only keyword names in keyword strings; omit their values. (See “Keyword Substitution,”
later in this manual page.) For example, for the Revision keyword, generate the string $Revision$
instead of $Revision: 5.13 $. This option is useful to ignore differences due to keyword substitu-
tion when comparing different revisions of a file. Log messages are inserted after Log keywords
even if -kk is specified, since this tends to be more useful when merging changes.

Generate the old keyword string, present in the working file just before it was checked in. For
example, for the Revision keyword, generate the string $Revision: 1.1 §$ instead of $Revision: 5.13
$ if that is how the string appeared when the file was checked in. This can be useful for file formats
that cannot tolerate any changes to substrings that happen to take the form of keyword strings.
Generate a binary image of the old keyword string. This acts like -ko, except it performs all
working file input and output in binary mode. This makes little difference on POSIX and UNIX
hosts, but on DOS-like hosts one should use rcs -i -kb to initialize an RCS file normally refuses
to merge files when -kb is in effect.

Generate only keyword values for keyword strings. For example, for the revision keyword, generate
the string 5.13 instead of $revision: 5.13 $. This can help generate files in programming languages
where it is hard to strip keyword delimiters like srevision: $ from a string. However, further
keyword substitution cannot be performed once the keyword names are removed, so this option
should be used with care. Because of this danger of losing keywords, this option cannot be
combined with -1, and the owner write permission of the working file is turned off; to edit the file
later, check it out again without -kv.

Prints the retrieved revision on the standard output rather than storing it in the working file. This
option is useful when co is part of a pipe.

Quiet mode; diagnostics are not printed.
Interactive mode; the user is prompted and questioned even if the standard input is not a terminal.

Retrieves the latest revision on the selected branch whose checkin date/time is less than or equal to
date. The date and time can be given in free format. The time zone LT stands for local time; other
common time zone names are understood. For example, the following dates are equivalent if local
time is January 11, 1990, 8 p.m. Pacific Standard Time, eight hours west of Coordinated Universal
Time (UTC):

8:00 PM It
4:00 AM, Jan. 12, 1990 Default is UTC

- =

1990-01-12 04:00:00+00 ISO 8601 (UTC)
1990-01-11 20:00:00-08 ISO 8601 (local time)
1990/01/12 04:00:00 Traditional RCS format
Thu Jan 11 20:00:00 1990 LT Output of ctime(3) + LT
Thu Jan 11 20:00:00 PST 1990 Output of date(1)

Fri Jan 12 04:00:00 GMT 1990
Thu, 11 Jan 1990 20:00:00 —0800 Internet RFC 822
12-January-1990, 04:00 WET

Most fields in the date and time can be defaulted. The default time zone is normally UTC, but this can be overridden by the
-z option. The other defaults are determined in the order year, month, day, hour, minute, and second (most to least
significant). At least one of these fields must be provided. For omitted fields that are of higher significance than the highest
provided field, the time zone’s current values are assumed. For all other omitted fields, the lowest possible values are
assumed. For example, without -z, the date 20, 10:30 defaults to 10:30:00 UTC of the 20th of the UTC time zone’s current
month and year. The date/time must be quoted if it contains spaces.

-M[rev]

-sstate
-T

-w[login]

-jjoinlist

-Vn

Sets the modification time on the new working file to be the date of the retrieved revision. Use this
option with care; it can confuse make(1).

Retrieves the latest revision on the selected branch whose state is set to state.

Preserves the modification time on the RCS file even if the RCS file changes because a lock is
added or removed. This option can suppress extensive recompilation caused by a make(1) depen-
dency of some other copy of the working file on the RCS file. Use this option with care; it can
suppress recompilation even when it is needed, in other words, when the change of lock would
mean a change to keyword strings in the other working file.

Retrieves the latest revision on the selected branch that was checked in by the user with login name
login. If the argument 1ogin is omitted, the caller’s login is assumed.

Generates a new revision which is the join of the revisions on jointist. This option is largely made
obsolete by rcsmerge(1), but is retained for backwards compatibility.

The jointist isa comma-separated list of pairs of the form rev2:rev3, where rev2 and rev3 are
(symbolic or numeric) revision numbers. For the initial such pair, revi denotes the revision selected
by the options -f, -w. For all other pairs, revi denotes the revision generated by the previous pair.
(Thus, the output of one join becomes the input to the next.)

For each pair, co joins revisions revi and rev3 with respect to rev2. This means that all changes that
transform rev2 into rev1 are applied to a copy of reva. This is particularly useful if revi and rev3
are the ends of two branches that have rev2 as a common ancestor. If revi<rev2<rev3 on the same
branch, joining generates a new revision which is like rev3, but with all changes that lead from rev1
to rev2 undone. If changes from rev2 to rev1 overlap with changes from rev2 to rev3, co reports
overlaps as described in merge(1).

For the initial pair, rev2 can be omitted. The default is the common ancestor. If any of the
arguments indicate branches, the latest revisions on those branches are assumed. The options -1
and -u lock or unlock revi.

Prints RCS’s version number.

Emulates RCS version n, where n can be 3, 4, or 5. This can be useful when interchanging RCS
files with others who are running older versions of RCS. To see which version of RCS your
correspondents are running, have them invoke rcs -v; this works with newer versions of RCS. If it
doesn’t work, have them invoke r1og on an RCS file; if none of the first few lines of output contain
the string branch:, it is version 3; if the dates’ years have just two digits, it is version 4; otherwise, it
is version 5. An RCS file generated while emulating version 3 loses its default branch. An RCS
revision generated while emulating version 4 or earlier has a timestamp that is off by up to 13
hours. A revision extracted while emulating version 4 or earlier contains abbreviated dates of the
form yy/mm/dd and can also contain different whitespace and line prefixes in the substitution for
Log.

Part I: User Commands

-xsuffixes Uses suffixes to characterize RCS files. See ci(1) for details.

-zzone Specifies the date output format in keyword substitution, and specifies the default time zone for
date in the -ddate option. The zone should be empty, a numeric UTC offset, or the special string
LT for local time. The default is an empty zone, which uses the traditional RCS format of UTC
without any time zone indication and with slashes separating the parts of the date; otherwise, times
are output in ISO 8601 format with time zone indication. For example, if local time is January 11,
1990, 8 p.m. Pacific Standard Time, eight hours west of UTC, then the time is output as follows:

Option Time Output

-z 1990/01/12 04:00:00 (default)
-zLT 1990-01-11 20:00:00-08
-2+05:30 1990-01-12 09:30:00+05:30

The -z option does not affect dates stored in RCS files, which are always UTC.

KEYWORD SUBSTITUTION

Strings of the form $ keyword $and $ keyword : ... $ embedded in the text are replaced with strings of the form $ keyword
: value $, where keyword and value are pairs in the following list. Keywords can be embedded in literal strings or comments
to identify a revision.

Initially, the user enters strings of the form $keyword$. On checkout, co replaces these strings with strings of the form
$keyword : value$. If a revision containing strings of the latter form is checked back in, the value fields will be replaced
during the next checkout. Thus, the keyword values are automatically updated on checkout. This automatic substitution can
be modified by the -k options.

Keywords and their corresponding values:

$Author$ The login name of the user who checked in the revision.

$Date$ The date and time the revision was checked in. With -zzone, a numeric time zone offset is
appended; otherwise, the date is UTC.

$Header$ A standard header containing the full pathname of the RCS file, the revision number, the date and

time, the author, the state, and the locker (if locked). With -zzone, a numeric time zone offset is
appended to the date; otherwise, the date is UTC.

$1d$ Same as $Header$, except that the RCS filename is without a path.
$Locker$ The login name of the user who locked the revision (empty if not locked).
Log The log message supplied during checkin, preceded by a header containing the RCS filename, the

revision number, the author, and the date and time. With -zzone a numeric time zone offset is
appended; otherwise, the date is UTC. Existing log messages are not replaced. Instead, the new log
message is inserted after $Log: ... $. This is useful for accumulating a complete change log in a
source file.

Each inserted line is prefixed by the string that prefixes the Log line. For example, if the Log line is // $Log: tan.cc $,
RCS prefixes each line of the log with //. This is useful for languages with comments that go to the end of the line. The
convention for other languages is to use a * prefix inside a multiline comment. For example, the initial log comment of a C
program conventionally is of the following form:

/*
* Log
*/
For backwards compatibility with older versions of RCS, if the log prefix is /* or (* surrounded by optional whitespace,
inserted log lines contain a space instead of / or (; however, this usage is obsolescent and should not be relied on.

$Name$ The symbolic name used to check out the revision, if any. For example, co -r Joe generates $Name:
Joe $. Plain co generates just $name: $.

- [E

$RCSFiles The name of the RCS file without a path.

$Revision$ The revision number assigned to the revision.

$Source$ The full pathname of the RCS file.

$State$ The state assigned to the revision with the -s option of rcs(1) or ci(1).

The following characters in keyword values are represented by escape sequences to keep keyword strings well-formed.

Character Escape Sequence
tab \t

newline \n

space \040

$ \044

\ \

FILE MODES

The working file inherits the read and execute permissions from the RCS file. In addition, the owner write permission is
turned on, unless -kv is set or the file is checked out unlocked and locking is set to strict; see rcs(1).

If a file with the name of the working file exists already and has write permission, co aborts the checkout, asking beforehand
if possible. If the existing working file is not writable or -f is given, the working file is deleted without asking.

FILES
co accesses files much as ci(1) does, except that it does not need to read the working file unless a revision number of $ is
specified.

ENVIRONMENT

RCSINIT Options prepended to the argument list, separated by spaces. See ci(1) for details.

DIAGNOSTICS
The RCS pathname, the working pathname, and the revision number retrieved are written to the diagnostic output. The exit
status is zero if and only if all operations were successful.

IDENTIFICATION
Author: Walter F. Tichy.
Manual Page Revision: 5.13; Release Date: 1995/06/01.
Copyright O 1982, 1988, 1989 Walter F. Tichy.
Copyright © 1990, 1991, 1992, 1993, 1994, 1995 Paul Eggert.

SEE ALSO
resintro(1), ci(l), ctime(3), date(1), ident(1), make(1), res(1), rcsclean(l), resdiff(1), rc-smerge(1), riog(1l), resfile(5)
Walter F. Tichy, “RCS—A System for Version Control,” Software Practice & Experience 15, 7 (July 1985), 637-654.
LIMITS
Links to the RCS and working files are not preserved.

There is no way to selectively suppress the expansion of keywords, except by writing them differently. In nroff and troff,
this is done by embedding the null-character \& into the keyword.

GNU, 1 June 1995

Part I: User Commands

col

col—Filter reverse line feeds from input

SYNOPSIS

col [-bfx] [-1 num]

DESCRIPTION

col filters out reverse (and half-reverse) line feeds so the output is in the correct order with only forward and half-forward
line feeds, and replaces whitespace characters with tabs where possible. This can be useful in processing the output of

nroff(1) and tb1(1). col reads from standard input and writes to standard output.

The options are as follows:

-b Do not output any backspaces, printing only the last character written to each column position.

-f Forward half-line feeds are permitted (fine mode). Normally characters printed on a half-line boundary
are printed on the following line.

-x Output multiple spaces instead of tabs.

-1num Buffer at least num lines in memory. By default, 128 lines are buffered.

The control sequences for carriage motion that col understands and their decimal values are listed in the following table:

Control Sequence Decimal Value

Esc+7 Reverse line feed (escape then 7)

Esc+8 Half-reverse line feed (escape then 8)

Esc+9 Half-forward line feed (escape then 9)
Backspace Moves back one column (8); ignored in the first column
Carriage return (13)

Newline Forward line feed (10); also does carriage return
Shiftin Shift to normal character set (15)

Shift out Shift to alternate character set (14)

Space Moves forward one column (32)

Tab Moves forward to next tab stop (9)

Vertical tab Reverse line feed (11)

All unrecognized control characters and escape sequences are discarded.

col keeps track of the character set as characters are read and makes sure the character set is correct when they are output.

If the input attempts to back up to the last flushed line, co1 will display a warning message.

SEE ALSO
expand(1), nroff(1), tb1(1)

HISTORY
A col command appeared in version 6 AT&T UNIX.

17 June 1991

colrm

colert

colert—Filter nroff output for CRT previewing

SYNOPSIS
colert [-] [-2] [File ...]
DESCRIPTION

colert provides virtual half-line and reverse-line feed sequences for terminals without such capability, and on which
overstriking is destructive. Half-line characters and underlining (changed to dashing -) are placed on new lines in between
the normal output lines.

Available options:

- Suppress all underlining. This option is especially useful for previewing all boxed tables from tb1(1).

-2 Causes all half-lines to be printed, effectively double spacing the output. Normally, a minimal space
output format is used which will suppress empty lines. The program never suppresses two consecutive
empty lines, however. The -2 option is useful for sending output to the line printer when the output
contains superscripts and subscripts that would otherwise be invisible.

EXAMPLES

A typical use of colcrt would be

tbl exum2.n | nroff -ms | colcrt - | more
SEE ALSO

nroff(1), troff(1), col(1), more(1), u1(1)
BUGS

Should fold underlines onto blanks even with the - option so that a true underline character would show.
Can'’t back up more than 102 lines.

General overstriking is lost; as a special case | overstruck with '* or underline becomes +. Lines are trimmed to 132
characters.

Some provision should be made for processing superscripts and subscripts in documents that are already double-spaced.
HISTORY

The colert command appeared in BSD 3.0.
BSD 3, 30 June 1993

colrm

colrm—Remove columns from a file

SYNOPSIS

colrm [startcol [endcol]]

DESCRIPTION
colrm removes selected columns from a file. Input is taken from standard input. Output is sent to standard output.

If called with one parameter, the columns of each line will be removed starting with the specified column. If called with two
parameters, the columns from the first column to the last column will be removed.

Column numbering starts with column 1.

Part I: User Commands

SEE ALSO
awk(1), column(1), expand(1), paste(1)

HISTORY

The colrm command appeared in BSD 3.0.
BSD 3, 14 March 1991

column

column—Columnate lists

SYNOPSIS
column [-tx] [-ccolumns] [-ssep] [...File]
DESCRIPTION

The column utility formats its input into multiple columns. Rows are filled before columns. Input is taken from file operands,
or, by default, from the standard input. Empty lines are ignored.

The options are as follows:

-c Output is formatted for a display columns wide.

-s Specify a set of characters to be used to delimit columns for the -t option.

-t Determine the number of columns the input contains and create a table. Columns are delimited with
whitespace, by default, or with the characters supplied using the -s option. Useful for pretty-printing
displays.

-X Fill columns before filling rows.

Column exits @ on success, >0 if an error occurred.

ENVIRONMENT

The environment variable coLumns is used to determine the size of the screen if no other information is available.

EXAMPLES

(printf "PERM LINKS OWNER SIZE MONTH DAY HH:MM/YEAR NAME'; 1s -1 j sed 1d) j column -t

SEE ALSO
colrm(1), 1s(1), paste(1), sort(1)

HISTORY

The colunn command appeared in BSD 4.3 Reno.
6 June 1993

comm

comm—Compare two sorted files line by line

SYNOPSIS

comm [-123] [—help] [—version] filel file2

convdate
DESCRIPTION

This manual page documents the GNU version of comm. comm prints lines that are common, and lines that are unique, to two
input files. The two files must be sorted before comm can be used. The filename - means the standard input.

With no options, comm produces three column output. Column one contains lines unique to file1, column two contains
lines unique to fite2, and column three contains lines common to both files.

OPTIONS
The options -1, -2, and -3 suppress printing of the corresponding columns.
—help Print a usage message and exit with a nonzero status.
—version Print version information on standard output then exit.

GNU Text Utilities

convdate

convdate—Convert time/date strings and numbers

SYNOPSIS

convdate [-¢]J[-n][-s] arg...

DESCRIPTION

convdate translates the date/time strings specified as arguments on its command line, outputting the results one to a line.

If the -s flag is used, then each argument is taken as a date string to be parsed by parse-date(3) and is output as a string
formatted by ctime(3). This is the default.

If the -n flag is used, then each argument is converted the same way but is output as a time t; see time(2).
If the -c flag is used, then each argument is taken to be a time t and is output in ctime format.

Here’s an example:

% convdate 'feb 10 10am'

Sun Feb 10 10:00:00 1991

% convdate 12pm 5/4/90
Fri Dec 13 00:00:00 1991
Fri May 4 00:00:00 1990

% convdate -n 'feb 10 1@am' '12pm 5/4/90'
666198000

641880000

% convdate -c 666198000

Sun Feb 10 10:00:00 1991

HISTORY

Written by Rich $alz (rsalz@uunet.uu.net).

SEE ALSO

parsedate(3)

Part I: User Commands
cp

cp—Copy files
SYNOPSIS

cp [options] source dest

cp [options] source... directory

Options:

[-abdfilprsuvxPR] [-S backup-suffix] [-V fnumbered,existing,simpleg] [—backup]
[—no-dereference] [—force] [—interactive] [—one-file-system] [—preserve]
[—recursive] [—update] [—verbose] [—suffix=backup-suffix]

[—version-control=fnumbered,existing,simpleg] [—archive] [—parents] [—1link]
[—symbolic-1link] [—help] [—version]

DESCRIPTION

This manual page documents the GNU version of cp. If the last argument names an existing directory, cp copies each other
given file into a file with the same name in that directory. Otherwise, if only two files are given, it copies the first onto the
second. It is an error if the last argument is not a directory and more than two files are given. By default, it does not copy

directories.

OPTIONS

-a, —archive

-b, —backup

-d, —no-dereference

-f, —force
-i, —interactive
-1, —1link

-P, —parents

-p, —preserve

-s, —symbolic-1link

-u, —update

-v, —verbose

-X, —one-file-system
-R, —recursive
—help

—version

-S, —suffix backup-suffix

Preserve as much as possible of the structure and attributes of the original files in the copy.
The same as -dpR.

Make backups of files that are about to be overwritten or removed.

Copy symbolic links as symbolic links rather than copying the files that they point to, and
preserve hard link relationships between source files in the copies.

Remove existing destination files.
Prompt whether to overwrite existing regular destination files.
Make hard links instead of copies of nondirectories.

Form the name of each destination file by appending to the target directory a slash and the
specified name of the source file. The last argument given to cp must be the name of an
existing directory. For example, the command cp —parents a/b/c existing_dir copies the
file a/b/c to existing_dir/a/b/c, creating any missing intermediate directories.

Preserve the original files’ owner, group, permissions, and timestamps.
Copy directories recursively, copying all nondirectories as if they were regular files.

Make symbolic links instead of copies of nondirectories. All source filenames must be
absolute (starting with /) unless the destination files are in the current directory. This
option produces an error message on systems that do not support symbolic links.

Do not copy a nondirectory that has an existing destination with the same or newer
modification time.

Print the name of each file before copying it.

Skip subdirectories that are on different filesystems from the one that the copy started on.
Copy directories recursively.

Print a usage message on standard output and exit successfully.

Print version information on standard output then exit successfully.

The suffix used for making simple backup files can be set with the SIMPLE_BACKUP_SUFFIX
environment variable, which can be overridden by this option. If neither of those is given,
the default is ~, as it is in emacs.

ceep, ¢pp

-V, —version-control The type of backups made can be set with the VERSION_CONTROL environment variable, which

{numbered,existing,simple} can be overridden by this option. If vERs1ON_CONTROL is not set and this option is not given,
the default backup type is existing. The value of the VERSION_CONTROL environment variable
and the argument to this option are like the GNU emacs version- control variable; they
also recognize synonyms that are more descriptive. The valid values are (unique abbrevia-
tions are accepted) the following:

t Of numbered Always make numbered backups

nil O existing Make numbered backups of files that already have them,
simple backups of the others

never Of simple Always make simple backups

ccep, cpp

ccep, cpp—The GNU C-compatible compiler preprocessor

SYNOPSIS

ccep [-$]1[-A predicate [(value)]] [-C 1[-D name [= definition]]
[-dD][-dM][-I\ directory][-H][-I-][-imacros file][-
include file][-idirafter dir][-iprefix prefix][-iwithprefix dir]
[-lang-c][-lang-c++][-lang-objc][-lang-objc++][-lint][-
M[-MG]] [-MM[-MG]] [-MD file][-MMD file][-nostdinc]
[-nostdinc++][-P][-pedantic][-pedantic-errors][-traditional]
[-trigraphs][-U name][-undef][-Wtrigraphs][-Wcomment]
[-Wall J[-Wtraditional]
[infile |-][outfile |-]

DESCRIPTION

The C preprocessor is a macro processor that is used automatically by the C compiler to transform your program before
actual compilation. It is called a macro processor because it allows you to define macros, which are brief abbreviations for
longer constructs.

The C preprocessor provides four separate facilities that you can use as you see fit:

Inclusion of header files. These are files of declarations that can be substituted into your program.
Macro expansion. You can define macros, which are abbreviations for arbitrary fragments of C code, and then the C
preprocessor will replace the macros with their definitions throughout the program.

= Conditional compilation. Using special preprocessing directives, you can include or exclude parts of the program
according to various conditions.

= Line control. If you use a program to combine or rearrange source files into an intermediate file which is then compiled,
you can use line control to inform the compiler of where each source line originally came from.

C preprocessors vary in some details. For a full explanation of the GNU C preprocessor, see the info file cpp.info, or the
manual The C Preprocessor . Both of these are built from the same documentation source file, cpp.texinfo. The GNU C
preprocessor provides a superset of the features of ANSI Standard C.

ANSI Standard C requires the rejection of many harmless constructs commonly used by today’s C programs. Such
incompatibility would be inconvenient for users, so the GNU C preprocessor is configured to accept these constructs by
default. Strictly speaking, to get ANSI Standard C, you must use the options -trigraphs, -undef, and -pedantic, but in
practice the consequences of having strict ANSI Standard C make it undesirable to do this.

When you use the C preprocessor, you will usually not have to invoke it explicitly: the C compiler will do so automatically.
However, the preprocessor is sometimes useful individually.

When you call the preprocessor individually, either name (cpp or cccp) will do; they are completely synonymous.

Part I: User Commands

The C preprocessor expects two filenames as arguments, infile and outfile. The preprocessor reads infile together with
any other files it specifies with #inc1ude. All the output generated by the combined input files is written in outfile. Either
infile Or outfile may be -, which as infile means to read from standard input and as outfile means to write to standard
output. Also, if outfile or both filenames are omitted, the standard output and standard input are used for the omitted

filenames.

OPTIONS

Here is a table of command options accepted by the C preprocessor. These options can also be given when compilinga C
program; they are passed along automatically to the preprocessor when it is invoked by the compiler.

-p

-C

-traditional

-trigraphs

—pedantic

-pedantic-errors
-Wtrigraphs
-Wcomment
-Wcomments

-Wall
-Wtraditional

-I directory

-nostdinc

-nostdinc++

-D name

-D name=definition

Inhibit generation of # lines with line-number information in the output from the preprocessor.
This might be useful when running the preprocessor on something that is not C code and will be
sent to a program which might be confused by the # lines.

Do not discard comments: pass them through to the output file. Comments appearing in
arguments of a macro call will be copied to the output before the expansion of the macro call.

Try to imitate the behavior of old-fashioned C, as opposed to ANSI C.

Process ANSI standard trigraph sequences. These are three-character sequences, all starting with 22,
that are defined by ANSI C to stand for single characters. For example, 22/ stands for \, so ?2/n isa
character constant for a newline. Strictly speaking, the GNU C preprocessor does not support all
programs in ANSI Standard C unless -trigraphs is used, but if you ever notice the difference, it
will be with relief. You don’t want to know any more about trigraphs.

Issue warnings required by the ANSI C standard in certain cases such as when text other than a
comment follows #else Or #endif.

Like -pedantic, except that errors are produced rather than warnings.
Warn if any trigraphs are encountered (assuming they are enabled).

Warn whenever a comment-start sequence /* appears in a comment. (Both forms have the
same effect.)

Requests both -wtrigraphs and -wcomment (but not -wtraditional).
Warn about certain constructs that behave differently in traditional and ANSI C.

Add the directory directory to the end of the list of directories to be searched for header files. This
can be used to override a system header file, substituting your own version, since these directories
are searched before the system header file directories. If you use more than one -1 option, the
directories are scanned in left-to-right order; the standard system directories come after.

Any directories specified with -1 options before the -1- option are searched only for the case of
#include " file *; they are not searched for #include < file >.

If additional directories are specified with -1 options after the -1-, these directories are searched for
all #include directives.

In addition, the -1- option inhibits the use of the current directory as the first search directory for
#include " file ". Therefore, the current directory is searched only if it is requested explicitly with
-1 followed by a period (.). Specifying both -1- and -1. allows you to control precisely which
directories are searched before the current one and which are searched after.

Do not search the standard system directories for header files. Only the directories you have
specified with -1 options (and the current directory, if appropriate) are searched.

Do not search for header files in the C++-specific standard directories, but do still search the other
standard directories. (This option is used when building 1ibg++.)

Predefine name as a macro, with definition 1.

Predefine name as a macro, with definition definition. There are no restrictions on the contents of
definition, but if you are invoking the preprocessor from a shell or shell-like program, you may
need to use the shell’s quoting syntax to protect characters such as spaces that have a meaning in
the shell syntax. If you use more than one -b for the same name, the rightmost definition takes
effect.

ceep, ¢pp

-U name Do not predefine name. If both -u and - are specified for one name, the -u beats the -p and the
name is not predefined.

-undef Do not predefine any nonstandard macros.

-A name (value) Assert (in the same way as the #assert directive) the predicate name with tokenlist value .

Remember to escape or quote the parentheses on shell command lines. You can use -A- to disable
all predefined assertions; it also undefines all predefined macros.

—dm Instead of outputting the result of preprocessing, output a list of #define directives for all the
macros defined during the execution of the preprocessor, including predefined macros. This gives
you a way of finding out what is predefined in your version of the preprocessor; assuming you have
no file foo.h, the command
touch foo.h; cpp -dM foo.h
will show the values of any predefined macros.

-dD Like -du except in two respects: it does not include the predefined macros, and it outputs both the
#define directives and the result of preprocessing. Both kinds of output go to the standard output
file.

-M[-MG] Instead of outputting the result of preprocessing, output a rule suitable for make describing the

dependencies of the main source file. The preprocessor outputs one make rule containing the
object filename for that source file, a colon, and the names of all the included files. If there are
many included files then the rule is split into several lines using \\ (newline).

-MG says to treat missing header files as generated files and assume they live in the same directory as
the source file. It must be specified in addition to -m.

This feature is used in automatic updating of makefiles.

~MM[-MG] Like -m but mention only the files included with #include * file ". System header files included
with #include < file > are omitted.
-MDfile Like -m but the dependency information is written to file. This is in addition to compiling the file

as specified. -mp does not inhibit ordinary compilation the way -m does.

When invoking gec, do not specify the fite argument. gcc will create filenames made by replacing
.c with .d at the end of the input filenames.

In Mach, you can use the utility md to merge multiple files into a single dependency file suitable for
using with the make command.

-MMDFile Like -m except mention only user header files, not system header files.
-H Print the name of each header file used, in addition to other normal activities.
-imacros file Process file as input, discarding the resulting output, before processing the regular input file.

Because the output generated from file is discarded, the only effect of -imacros file is to make the
macros defined in file available for use in the main input. The preprocessor evaluates any -p and -u
options on the command line before processing —imacros file.
-include file Process file as input, and include all the resulting output, before processing the regular input file.
-idirafter dir Add the directory dir to the second include path. The directories on the second include path are
searched when a header file is not found in any of the directories in the main include path (the one
that -1 adds to).

-iprefix prefix Specify prefix as the prefix for subsequent -iwithprefix options.

-iwithprefix dir Add a directory to the second include path. The directory’s name is made by concatenating prefix
and dir, where prefix was specified previously with -iprefix.

-lang-c Specify the source language. -1ang-c++ makes the preprocessor handle C++ comment syntax,

-lang-c++ and includes extra default include directories for C++, and -1ang-objc enables the Objective C

-lang-objc #import directive. -1ang-c explicitly turns off both of these extensions, and -1ang-objc++ enables

-lang-objc++ both. These options are generated by the compiler driver gcc, but not passed from the gcc
command line.

-lint Look for commands to the program checker 1int embedded in comments, and emit them preceded

by #pragma 1int. For example, the comment /* NOTREACHED */ becomes #pragma lint NOTREACHED.
This option is available only when you call cpp directly; gcc will not pass it from its command line.

Part I: User Commands

-$ Forbid the use of $ in identifiers. This is required for ANSI conformance. gcc automatically
supplies this option to the preprocessor if you specify -ansi, but gcc doesn’t recognize the -$
option itself; to use it without the other effects of -ansi, you must call the preprocessor directly.

SEE ALSO

cpp entry in info; The C Preprocessor, Richard M. Stallman.
gee(1); gee entry in info; Using and Porting GNU CC (for version 2.0), Richard M. Stallman.

COPYING

Copyright O 1991, 1992, 1993 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim
copies of this manual provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions
for modified versions, except that this permission notice may be included in translations approved by the Free Software
Foundation instead of in the original English.

GNU Tools, 30 April 1993

crontab

crontab—Manipulate per-user crontabs (Dillon’s Cron)

SYNOPSIS
crontab file [-u user] Replace crontab from file
crontab - [-u user] Replace crontab from stdin
crontab -1 [user] List crontab for user
crontab -e [user] Edit crontab for user
crontab -d [user] Delete crontab for user
crontab -c dir Specify crontab directory

DESCRIPTION

crontab manipulates the crontab for a particular user. Only the superuser may specify a different user and/or crontab
directory. Generally, the -e option is used to edit your crontab. crontab will use /usr/bin/vi or the editor specified by your
VISUAL environment variable to edit the crontab.

Unlike other crond/crontabs, this crontab does not try to do everything under the sun. Frankly, a shell script is much more
able to manipulate the environment than cron, and | see no particular reason to use the user’s shell (from his password entry)
to run cron commands when this requires special casing of nonuser crontabs, such as those for UUCP. When a crontab
command is run, this crontab runs it with /bin/sh and sets up only three environment variables: USER, HOME, and SHELL.

crond automatically detects changes in the time. Reverse-indexed time changes less then an hour old will NOT rerun crontab
commands already issued in the recovered period. Forward-indexed changes less then an hour into the future will issue
missed commands exactly once. Changes greater then an hour into the past or future cause crond to resynchronize and not
issue missed commands. No attempt will be made to issue commands lost due to a reboot, and commands are not reissued if
the previously issued command is still running. For example, if you have a crontab command sleep 70 that you wish to run
once a minute, cron will only be able to issue the command once every two minutes. If you do not like this feature, you can
run your commands in the background with an &.

csplit

The crontab format is roughly similar to that used by vixiecron, but without complex features. Individual fields may contain
a time, a time range, a time range with a skip factor, a symbolic range for the day of week and month in year, and additional
subranges delimited with commas. Blank lines in the crontab or lines that begin with a hash (#) are ignored. If you specify
both a day in the month and a day of week, the result is effectively ord; the crontab entry will be run on the specified day of
week and on the specified day in the month.

MIN HOUR DAY MONTH DAYOFWEEK COMMAND

at 6:10 a.m. every day
10 6 ***date

every two hours at the top of the hour
0 */2 ***date

=

every two hours from 11p.m. to 7a.m., and at 8a.m.
23-7/2,8 ***date

S

F*

at 11:00 a.m. on the 4th and on every mon, tue, wed
0 11 4 * mon-wed date

=

4:00 a.m. on january 1st
4 1 jan *date

S

once an hour, all output appended to log file
0 4 1 jan *date>>/var/log/messages 2>&1

The command portion of the line is run with /bin/sh -c <command>, and may therefore contain any valid Bourne shell
command. A common practice is to run your command with exec to keep the process table uncluttered. It is also common to
redirect output to a log file. If you do not, and the command generates output on stdout or stderr, the result will be mailed
to the user in question. If you use this mechanism for special users, such as UUCP, you may want to create an alias for the
user to direct the mail to someone else, such as root or postmaster.

Internally, this cron uses a quick indexing system to reduce CPU overhead when looking for commands to execute. Several
hundred crontabs with several thousand entries can be handled without using noticeable CPU resources.

BUGS

Ought to be able to have several crontab files for any given user, as an organizational tool.

AUTHOR

Matthew Dillon (dillon@apollo.west.oic.com)
1 May 1994

csplit

csplit—Split a file into sections determined by context lines

SYNOPSIS

csplit [-sqgkz] [-f prefix] [-b suffix] [-n digits] [—prefix=prefix]
[—suffix-format=suffix] [—digits=digits] [—quiet] [—silent]

[—keep-files] [—elide-empty-files] [—help] [—version]

file pattern...

DESCRIPTION

This manual page documents the GNU version of csplit. csplit creates zero or more output files containing sections of the
given input file, or the standard input if the name - is given. By default, csplit prints the number of bytes written to each
output file after it has been created.

Part I: User Commands

The contents of the output files are determined by the pattern arguments. An error occurs if a pattern argument refers to a
nonexistent line of the input file, such as if no remaining line matches a given regular expression. After all the given patterns
have been matched, any remaining output is copied into one last output file. The types of pattern arguments are

line

/regexp/[offset]

%sregexp%s[offset]

{repeat-count}

Create an output file containing the current line up to (but not including) line 1ine (a positive
integer) of the input file. If followed by a repeat count, also create an output file containing the
next line lines of the input file once for each repeat.

Create an output file containing the current line up to (but not including) the next line of the
input file that contains a match for regexp. The optional offset is a + or - followed by a positive
integer. If it is given, the input up to the matching line plus or minus offset is put into the output
file, and the line after that begins the next section of input.

Like the previous type, except that it does not create an output file, so that section of the input file
is effectively ignored.

Repeat the previous pattern repeat -count (a positive integer) additional times. An asterisk may be

given in place of the (integer) repeat count, in which case the preceding pattern is repeated as many
times as necessary until the input is exhausted.

The output filenames consist of a prefix followed by a suffix. By default, the suffix is merely an ascending linear sequence of
two-digit decimal numbers starting with 00 and ranging up to 99; however, this default may be overridden by either the —
digits option or by the —suffix-format option. (See “Options,” next.) In any case, concatenating the output files in sorted
order by filename produces the original input file, in order. The default output filename prefix is xx.

By default, if csplit encounters an error or receives a hangup, interrupt, quit, or terminate signal, it removes any output files
that it has created so far before it exits.

OPTIONS

-f, —prefix=prefix

Use prefix as the output filename prefix string.

-b, —suffix-format=suffix Use suffix as the output filename suffix string. When this option is specified, the suffix string

-n, —digits=digits
-k, —keep-files
-z, —elide-empty-files

-s, -q, —silent, —quiet
—help

—version

must include exactly one printf(3) style conversion specification (such as %d, possibly including
format specification flags, a field width, a precision specifications, or all of these kinds of
modifiers). The conversion specification must be suitable for converting a binary integer
argument to readable form. Thus, only d, i, u, o, x, and x format specifiers are allowed. The
entire suffix string is given (with the current output file number) to sprintf(3) to form the
filename suffixes for each of the individual output files in turn. Note that when this option is
used, the —digits option is ignored.

Use output filenames containing numbers that are digits digits long instead of the default 2.
Do not remove output files when errors are encountered.

Suppress the generation of zero-length output files. (In cases where the section delimiters of the
input file are supposed to mark the first lines of each of the sections, the first output file will
generally be a zero-1ength file unless you use this option.) Note that the output file sequence
numbers will always run consecutively, starting from 0, even in cases where zero-length output
sections are suppressed due to the use of this option.

Do not print counts of output file sizes.
Print a usage message and exit with a nonzero status.
Print version information on standard output, then exit.

GNU Text Utilities

-

ctags

ctags — Generates tags and (optionally) refs files

SYNOPSIS

ctags [-BSstvraT] filesnames...

DESCRIPTION

ctags generates the tags and refs files from a group of C source files. The tags file is used by the elvis :tag command,
control-] command, and -t option. The refs file is sometimes used by the ref(1) program.

Each C source file is scanned for #define statements and global function definitions. The name of the macro or function
becomes the name of a tag. For each tag, a line is added to the tags file that contains the following:

The name of the tag

A tab character

The name of the file containing the tag

A tab character

A way to find the particular line within the file

The filenames list will typically be the names of all C source files in the current directory, like this:
$ ctags -stv *.[ch]

OPTIONS

-B Normally, ctags encloses regular expressions in slashes (/regexp/), which causes elvis to search from the
top of the file. The -8 flag causes ctags to enclose the regular expressions in question marks (?regexp?) so
elvis will search backward from the bottom of the file. This rarely matters.

-t Include typedefs. A tag will be generated for each user-defined type. Also tags will be generated for struct
and enum names. Types are considered to be global if they are defined in a header file, and static if they are
defined in a C source file.

-v Include variable declarations. A tag will be generated for each variable, except for those that are declared
inside the body of a function.
-s Include static tags. ctags will normally put global tags in the tags file, and silently ignore the static tags.

This flag causes both global and static tags to be added. The name of a static tag is generated by prefixing
the name of the declared item with the name of the file where it is defined, with a colon in between. For
example, static foo(){} inbar.c results in a tag named bar.c:foo.

-S Include static tags, but make them look like global tags. Most tags-aware programs don’t like the
filename:tagname tags produced by the -s flag, so -s was added as an alternative. If elvis and ref are the
only programs that read the tags file, then you don’t need -s; otherwise, you do.

-r This causes ctags to generate both tags and refs. Without -r, it would only generate tags.

-a Append to tags, and maybe refs. Normally, ctags overwrites these files each time it is invoked. This flag is
useful when you have too many files in the current directory for you to list them on a single command
line; it allows you to split the arguments among several invocations.

-T This flag isn’t available on all systems. UNIX has it, but most others don’t. The -1 flag prevents ctags
from generating a tags file. This is useful when you want to generate a refs without changing tags.

FILES
tags A cross-reference that lists each tag name, the name of the source file that contains it, and a way to locate a
particular line in the source file.
refs The refs file contains the definitions for each tag in the tags file, and very little else. This file can be

useful, for example, when licensing restrictions prevent you from making the source code to the standard
C library readable by everybody, but you still want everybody to know what arguments the library
functions need.

Part I: User Commands

BUGS
ctags IS sensitive to indenting and line breaks. Consequently, it might not discover all of the tags in a file that is formatted in
an unusual way.

SEE ALSO
elvis(1), refs(1)

AUTHOR

Steve Kirkendall (kirkenda@cs.pdx.edu)

cu

cu—Call up another system

SYNOPSIS

cu [options] [system | phone | "dir"]

DESCRIPTION

The cu command is used to call up another system and act as a dial in terminal. It can also do simple file transfers with no
error checking.

cu takes a single argument, besides the options. If the argument is the string dir, cu will make a direct connection to the port.
This may only be used by users with write access to the port, as it permits reprogramming the modem.

Otherwise, if the argument begins with a digit, it is taken to be a phone number to call. Otherwise, it is taken to be the name
of a system to call. The -z or —system option may be used to name a system beginning with a digit, and the -c or —phone
option may be used to name a phone number that does not begin with a digit.

cu locates a port to use in the UUCP configuration files. If a simple system name is given, it will select a port appropriate for
that system. The -p, —port, -1, —1ine, -s, and —speed options may be used to control the port selection.

When a connection is made to the remote system, cu forks into two processes. One reads from the port and writes to the
terminal, while the other reads from the terminal and writes to the port.

cu provides several commands that may be used during the conversation. The commands all begin with an escape character,
initially - (tilde). The escape character is only recognized at the beginning of a line. To send an escape character to the
remote system at the start of a line, it must be entered twice. All commands are either a single character or a word beginning
with % (percent sign).

cu recognizes the following commands:

Terminate the conversation.

"1 command Run command in a shell. If command is empty, starts up a shell.

“$ command Run command, sending the standard output to the remote system.

! command Run command, taking the standard input from the remote system.

“+ command Run command, taking the standard input from the remote system and sending the standard
output to the remote system.

“#, “%break Send a break signal, if possible.

“c directory, “%cd directory Change the local directory.

"> file Send a file to the remote system. This just dumps the file over the communication line. It is
assumed that the remote system is expecting it.

< Receive a file from the remote system. This prompts for the local filename and for the

remote command to execute to begin the file transfer. It continues accepting data until the
contents of the eofread variable are seen.

“p from to, "%put from to

“t from to, "%take from to

“s variable value
“! variable

“z

“%nostop

“%stop

\

“?

escape

delay

eol

binary

binary-prefix

echo-check

echonl

timeout

kill
resend
eofwrite

eofread

verbose

OPTIONS

Cu

Send a file to a remote UNIX system. This runs the appropriate commands on the remote
system.

Retrieve a file from a remote UNIX system. This runs the appropriate commands on the
remote system.

Set a cu variable to the given value. If value is not given, the variable is set to True.
Set a cu variable to False.

Suspend the cu session. This is only supported on some systems. On systems for which "z
may be used to suspend a job, ~*z will also suspend the session.

Turn off xon/xoFF handling.

Turn on xon/xoFF handling.

List all the variables and their values.
List all commands.

cu also supports several variables. They may be listed with the “v command, and set with the
s or “! commands.

The escape character. Initially - (tilde).

If this variable is True, cu will delay for a second after recognizing the escape character before
printing the name of the local system. The default is True.

The list of characters which are considered to finish a line. The escape character is only
recognized after one of these is seen. The default is carriage return, “u, “c, "0, "D, S, "q, "R.

Whether to transfer binary data when sending a file. If this is False, then newlines in the file
being sent are converted to carriage returns. The default is False.

A string used before sending a binary character in a file transfer, if the binary variable is
True. The default is *z.

Whether to check file transfers by examining what the remote system echoes back. This
probably doesn’t work very well. The default is False.

The character to look for after sending each line in a file. The default is carriage return.

The timeout to use, in seconds, when looking for a character, either when doing echo
checking or when looking for the echonl character. The default is 3e.

The character to use to delete a line if the echo check fails. The default is “u.
The number of times to resend a line if the echo check continues to fail. The default is 10.
The string to write after sending a file with the “> command. The default is .

The string to look for when receiving a file with the “< command. The default is $, which is
intended to be a typical shell prompt.

Whether to print accumulated information during a file transfer. The default is True.

The following options may be given to cu:

-e, —parity=even
-0, —parity=odd
—parity=none

-h, —halfduplex

-z system, —system system

-c phone-number, —phone phone-number

-p port, —port port
-a port

-1 line, —1ine line

Use even parity.

Use odd parity.

Use no parity. No parity is also used if both -e and -o are given.
Echo characters locally (half-duplex mode).

The system to call.

The phone number to call.

Name the port to use.

Equivalent to —port port.

Name the line to use by giving a device name. This may be used to dial out on
ports that are not listed in the UUCP configuration files. Write access to the device
is required.

Part I: User Commands

-s speed, —speed speed The speed (baud rate) to use.

—# Where # is a number, equivalent to —speed #.

-n, —prompt Prompt for the phone number to use.

-d Enter debugging mode. Equivalent to -debug all.

-x type, —debug type Turn on particular debugging types. The following types are recognized: abnormal,

chat, handshake, uucpproto, proto, port, config, spooldir, execute, incoming,
outgoing. Only abnormal, chat, handshake, port, config, incoming and outgoing are
meaningful for cu. Multiple types may be given, separated by commas, and the —
debug option may appear multiple times. A number may also be given, which will
turn on that many types from the foregoing list; for example, —debug 2 is
equivalent to —debug abnormal,chat. —debug all may be used to turn on all
debugging options.

-1 file, —config file Set configuration file to use. This option may not be available, depending upon
how cu was compiled.
-v, —version Report version information and exit.
—help Print a help message and exit.
BUGS
This program does not work very well.
FILES
The filename may be changed at compilation time, so this is only an approximation. Configuration file:
/usr/1lib/uucp/config
AUTHOR

lan Lance Taylor (ianeairs.com)
Taylor UUCP 1.05

cut

cut—Remove sections from each line of files
SYNOPSIS
cut {-b byte-list, —bytes=byte-list} [-n] [—help] [—version] [file...]
cut {-c character-list, —characters=character-list} [—help] [—version] [file...]

cut {-f field-list, —fields=Ffield-list} [-d delim] [-s] [—delimiter=delim]
[—only-delimited] [—help] [—version] [file...]
DESCRIPTION

This manual page documents the GNU version of cut. cut prints sections of each line of each input file, or the standard
input if no files are given. A filename of - means standard input. The sections to be printed are selected by the options.

OPTIONS

The byte-list, character-list, and field-1ist options are one or more numbers or ranges (two numbers separated by a
dash) separated by commas. The first byte, character, and field are numbered 1. Incomplete ranges may be given: -n means 1-
m; n- means n through end of line or last field.

-b, —bytes byte-list Print only the bytes in positions listed in byte-1ist. Tabs and backspaces are treated like
any other character; they take up one byte.

, —characters character-list Print only characters in positions listed in character-list. The same as -b for now, but
internationalization will change that. Tabs and backspaces are treated like any other
character; they take up one character.

o

-f, —fields field-list Print only the fields listed in field-1ist. Fields are separated by TAB by default.
-d, —delimiter delim For -+, fields are separated by the first character in delim instead of by Tas.

-n Do not split multibyte characters (no-op for now).

-s, —only-delimited For -f, do not print lines that do not contain the field separator character.
—help Print a usage message and exit with a nonzero status.

—version Print version information on standard output then exit.

GNU Text Utilities

CVS

cvs—Concurrent Versions System

SYNOPSIS

cvs [cvs_options] cvs-command [command_options][command_args]

DESCRIPTION

cvs isa front end to the rcs(1) revision control system, which extends the notion of revision control from a collection of files
in a single directory to a hierarchical collection of directories consisting of revision controlled files. These directories and files
can be combined together to form a software release. cvs provides the functions necessary to manage these software releases
and to control the concurrent editing of source files among multiple software developers.

cvs keeps a single copy of the master sources. This copy is called the source repository; it contains all the information to
permit extracting previous software releases at any time based on either a symbolic revision tag, or a date in the past.

ESSENTIAL COMMANDS

cvs provides a rich variety of commands (cvs_command in the Synopsis), each of which often has a wealth of options, to satisfy
the many needs of source management in distributed environments. However, you don’t have to master every detail to do
useful work with cvs; in fact, five commands are sufficient to use (and contribute to) the source repository.

cvs checkout modules... A necessary preliminary for most cvs work: creates your private copy of the source for
modules (named collections of source; you can also use a path relative to the source
repository here). You can work with this copy without interfering with others’ work. At
least one subdirectory level is always created.

cvs update Execute this command from within your private source directory when you wish to
update your copies of source files from changes that other developers have made to the
source in the repository.

cvs add file... Use this command to enroll new files in cvs records of your working directory. The files
will be added to the repository the next time you run cvs commit. Note: You should use
the cvs import command to bootstrap new sources into the source repository. cvs add is
only used for new files to an already checked-out module.

cvs remove file... Use this command (after erasing any files listed) to declare that you wish to eliminate
files from the repository. The removal does not affect others until you run cvs commit.
cvs commit file. .. Use this command when you wish to “publish” your changes to other developers, by

incorporating them in the source repository.

Part I: User Commands

OPTIONS

The cvs command line can include cvs_options, which apply to the overall cvs program; a cvs_command, which specifies a
particular action on the source repository; and command_options and command_arguments to fully specify what the cvs_command
will do.

WARNING

You must be careful of precisely where you place options relative to the cvs_command. The same option can mean different
things depending on whether it is in the cvs_options position (to the left of a cvs command) or in the command_options
position (to the right of a cvs command).

There are only two situations where you may omit cvs_command: cvs -H Or cvs -help elicits a list of available commands, and
cvs -v Or cvs -version displays version information on cvs itself.

CVS OPTIONS

As of release 1.6, cvs supports GNU style long options as well as short options. Only a few long options are currently
supported; these are listed in brackets after the short options whose functions they duplicate.

Use these options to control the overall cvs program:

-H [-help] Display usage information about the specified cvs command (but do not actually execute the
command). If you don’t specify a command name, cvs -H displays a summary of all the
commands available.

-Q Causes the command to be really quiet; the command will generate output only for serious
problems.

-q Causes the command to be somewhat quiet; informational messages, such as reports of
recursion through subdirectories, are suppressed.

-b bindir Use bindir as the directory where RCS programs are located. Overrides the setting of the RcsBIN
environment variable. This value should be specified as an absolute pathname.

-d CVS_root_directory Use cvs_root_directory as the root directory pathname of the master RCS source repository.

Overrides the setting of the cvs-RrooT environment variable. This value should be specified as an
absolute pathname.

-e editor Use editor to enter revision log information. Overrides the setting of the cvsenITor and the
EDITOR environment variables.

-f Do not read the cvs startup file (*/.cvsrc).

-1 Do not log the cvs_command in the command history (but execute it anyway). See the descrip-
tion of the history command for information on command history.

-n Do not change any files. Attempt to execute the cvs_command, but only to issue reports; do
not remove, update, or merge any existing files, or create any new files.

-t Trace program execution; display messages showing the steps of cvs activity. Particularly useful
with -n to explore the potential impact of an unfamiliar command.

-r Makes new working files read-only. Same effect as if the cvs-ReAD environment variable is set.

-v [-version] Displays version and copyright information for cvs.

-w Makes new working files read-write (default). Overrides the setting of the cvsrReab environment
variable.

-z compression-level When transferring files across the network use gzip with compression level compression-level to

compress and decompress data as it is transferred. Requires the presence of the GNU gzip
program in the current search path at both ends of the link.

USAGE

Except when requesting general help with cvs -H, you must specify a cvs_command to cvs to select a specific release control
function to perform. Each cvs command accepts its own collection of options and arguments. However, many options are
available across several commands. You can display a usage summary for each command by specifying the -1 option with the
command.

CVS STARTUP FILE

Normally, when cvs starts up, it reads the .cvsrc file from the home directory of the user reading it. This startup procedure
can be turned off with the -f flag.

The .cvsrc file lists cvs commands with a list of arguments, one command per line. For example, the following line in
.cvsrc.

diff -c

will mean that the cvs diff command will always be passed the -c option in addition to any other options that are specified
in the command line (in this case, it will have the effect of producing context sensitive diffs for all executions of cvs diff).

CVS COMMAND SUMMARY
Here are brief descriptions of all the cvs commands:

add Add a new file or directory to the repository, pending a cvs commit on the same file. Can only be done
from within sources created by a previous cvs checkout invocation. Use cvs import to place whole new
hierarchies of sources under cvs control. (Does not directly affect repository; changes working

directory.)

admin Execute RCS control functions on the source repository. (Changes repository directly; uses working
directory without changing it.)

checkout Make a working directory of source files for editing. (Creates or changes working directory.)

commit Apply to the source repository changes, additions, and deletions from your working directory.
(Changes repository.)

diff Show differences between files in working directory and source repository, or between two revisions in
source repository. (Does not change either repository or working directory.)

export Prepare copies of a set of source files for shipment off site. Differs from cvs checkout in that no cvs

administrative directories are created (and therefore cvs commit cannot be executed from a directory
prepared with cvs export), and a symbolic tag must be specified. (Does not change repository; creates
directory similar to working directories).

history Show reports on cvs commands that you or others have executed on a particular file or directory in the
source repository. (Does not change repository or working directory.) History logs are kept only if
enabled by creation of the $cvsro0T/CVSROOT/history file; see cvs(5).

import Incorporate a set of updates from off-site into the source repository, as a “vendor branch.” (Changes
repository.)

log Display RCS log information. (Does not change repository or working directory.)

rdiff Prepare a collection of diffs as a patch file between two releases in the repository. (Does not change
repository or working directory.)

release Cancel a cvs checkout, abandoning any changes. (Can delete working directory; no effect on
repository.)

remove Remove files from the source repository, pending a cvs commit on the same files. (Does not directly
affect repository; changes working directory.)

rtag Explicitly specify a symbolic tag for particular revisions of files in the source repository. See also cvs
tag. (Changes repository directly; does not require or affect working directory.)

status Show current status of files: latest version, version in working directory, whether working version has

been edited and, optionally, symbolic tags in the RCS file. (Does not change repository or working
directory.)

Part I: User Commands

tag

update

Specify a symbolic tag for files in the repository. By default, tags the revisions that were last synchro-
nized with your working directory. (Changes repository directly; uses working directory without
changing it.)

Bring your working directory up to date with changes from the repository. Merges are performed
automatically when possible; a warning is issued if manual resolution is required for conflicting
changes. (Changes working directory; does not change repository.)

COMMON COMMAND OPTIONS

This section describes the command_options that are available across several cvs commands. Not all commands support all of
these options; each option is only supported for commands where it makes sense. However, when a command has one of
these options you can count on the same meaning for the option as in other commands. (Other command options, which
are listed with the individual commands, may have different meanings from one cvs command to another.)

WARNING

The history command is an exception; it supports many options that conflict even with these standard options.

-D date

-k kflag

Use the most recent revision no later than date_spec (a single argument, date description specifying a
date in the past). A wide variety of date formats are supported by the underlying RCS facilities, similar
to those described in co(1), but not exactly the same. The date_spec is interpreted as being in the local
time zone, unless a specific time zone is specified. The specification is “sticky” when you use it to make
a private copy of a source file; that is, when you get a working file using -p, cvs records the date you
specified, so that further updates in the same directory will use the same date (unless you explicitly
override it; see the description of the update command). - is available with the checkout, diff, history,
export, rdiff, rtag, and update commands. Examples of valid date specifications include the following:

1 month ago

2 hours ago

400000 seconds ago

last year

last Monday

yesterday

a fortnight ago

3/31/92 10:00:07 PST

January 23, 1987 10:05pm

22:.00 GMT

When you specify a particular date or tag to cvs commands, they normally ignore files that do not
contain the tag (or did not exist on the date) that you specified. Use the - option if you want files
retrieved even when there is no match for the tag or date. (The most recent version is used in this
situation.) -f is available with these commands: checkout, export, rdiff, rtag, and update.

Help; describe the options available for this command. This is the only option supported for all cvs
commands.

Alter the default RCS processing of keywords; all the -k options described in co(1) are available. The -k
option is available with the add, checkout, diff, export, rdiff, and update commands. Your kflag
specification is “sticky” when you use it to create a private copy of a source file; that is, when you use
this option with the checkout Or update commands, cvs associates your selected kflag with the file, and
continues to use it with future update commands on the same file until you specify otherwise.

Some of the more useful kflags are —ko and —kb (for binary files, only compatible with RCS version 5.7
or later), and —kv, which is useful for an export where you wish to retain keyword information after an
import at some other site.

-1 Local; run only in current working directory, rather than recurring through subdirectories. Available
with the following commands: checkout, commit, diff, export, remove, rdiff, rtag, status, tag, and
update.

WARNING

This is not the same as the overall cvs -1 option, which you can specify to the left of a cvs command.

-n Do not run any checkout/commit/tag/update program. (A program can be specified to run on each of
these activities, in the modules database; this option bypasses it.) Available with the checkout, commit,
export, and rtag commands.

WARNING

This is not the same as the overall cvs -n option, which you can specify to the left of a cvs command.

-P Prune (remove) directories that are empty after being updated, on checkout, or update. Normally, an
empty directory (one that is void of revision-controlled files) is left alone. Specifying -p will cause these
directories to be silently removed from your checked-out sources. This does not remove the directory
from the repository, only from your checked out copy. Note that this option is implied by the -r or -p
options of checkout and export.

-p Pipe the files retrieved from the repository to standard output, rather than writing them in the current
directory. Available with the checkout and update commands.
-r tag Use the revision specified by the tag argument instead of the default head revision. As well as arbitrary

tags defined with the tag or rtag command, two special tags are always available: HeaD refers to the
most recent version available in the repository, and Base refers to the revision you last checked out into
the current working directory. The tag specification is “sticky” when you use this option with cvs
checkout OF cvs update to make your own copy of a file: cvs remembers the tag and continues to use it
on future update commands, until you specify otherwise. tag can be either a symbolic or numeric tag,
in RCS fashion. Specifying the -q global option along with the -r command option is often useful, to
suppress the warning messages when the RCS file does not contain the specified tag. -r is available
with the checkout, commit, diff, history, export, rdiff, rtag, and update commands.

WARNING

This is not the same as the overall cvs -r option, which you can specify to the left of a cvs command.

cvs COMMANDS

Here (finally) are details on all the cvs commands and the options each accepts. The summary lines at the top of each
command’s description highlight three kinds of things:

Command Options and Arguments Special options are described in detail; common command options may appear only
in the summary line.

Working Directory, or Repository? Some cvs commands require a working directory to operate; some require a
repository. Also, some commands change the repository, some change the working
directory, and some change nothing.

Synonyms Many commands have synonyms, which you may find easier to remember (or type)
than the principal name.

Part I: User Commands

m add [-k kflag][-m 'message'] files...

Requires: Repository, working directory
Changes: Working directory
Synonym: new

Use the add command to create a new file or directory in the RCS source repository. The files or directories specified with
add must already exist in the current directory (which must have been created with the checkout command). To add a whole
new directory hierarchy to the source repository (for example, files received from a third-party vendor), use the cvs import
command instead.

If the argument to cvs add refers to an immediate subdirectory, the directory is created at the correct place in the RCS source
repository, and the necessary cvs administration files are created in your working directory. If the directory already exists in
the source repository, cvs add still creates the administration files in your version of the directory. This allows you to use cvs
add to add a particular directory to your private sources even if someone else created that directory after your checkout of the
sources. You can do the following:

example% mkdir new_directory

example% cvs add new_directory
example% cvs update new_directory

An alternate approach using cvs update might be:

example% cvs update -d new_directory
(To add any available new directories to your working directory, it's probably simpler to use cvs checkout Or cvs update -d.)

The added files are not placed in the RCS source repository until you use cvs commit to make the change permanent. Doing
acvs add on a file that was removed with the cvs remove command will resurrect the file, if no cvs commit command
intervened.

You will have the opportunity to specify a logging message, as usual, when you use cvs commit to make the new file
permanent. If you'd like to have another logging message associated with just creation of the file (for example, to describe the
file's purpose), you can specify it with the -m message option to the add command.

The -k kflag option specifies the default way that this file will be checked out. The kfiag argument is stored in the RCS file
and can be changed with cvs admin. Specifying -ko is useful for checking in binaries that shouldn’t have the RCS id strings

expanded.

m admin [rcs-options] files...
Requires: Repository, working directory
Changes: Repository
Synonym: rcs

This is the cvs interface to assorted administrative RCS facilities, documented in rcs(1). cvs admin simply passes all its
options and arguments to the rcs command; it does no filtering or other processing. This command does work recursively,
however, so extreme care should be used.

m checkout [options] modules...

Requires: Repository
Changes: Working directory
Synonyms: co, get

Make a working directory containing copies of the source files specified by modules. You must execute cvs checkout before
using most of the other cvs commands, since most of them operate on your working directory.

modules are either symbolic names [themselves defined as the module modules in the source repository; see cvs(5)] for some
collection of source directories and files, or paths to directories or files in the repository.

Depending on the modules you specify, checkout may recursively create directories and populate them with the appropriate
source files. You can then edit these source files at any time (regardless of whether other software developers are editing their

own copies of the sources); update them to include new changes applied by others to the source repository; or commit your
work as a permanent change to the RCS repository.

Note that checkout is used to create directories. The top-level directory created is always added to the directory where
checkout is invoked, and usually has the same name as the specified module. In the case of a module alias, the created
subdirectory may have a different name, but you can be sure that it will be a subdirectory, and that checkout will show the
relative path leading to each file as it is extracted into your private work area (unless you specify the -a global option).

Running cvs checkout on a directory that was already built by a prior checkout is also permitted, and has the same effect as
specifying the -d option to the update command described later.

The options permitted with cvs checkout include the standard command options -p, -f, -k kflag, -1, -n, -p, -r tag, and -b
date. In addition to those, you can use several special command options with checkout, as detailed in the following para-
graphs.

Use the -A option to reset any sticky tags, dates, or -k options. (If you get a working file using one of the -r, -, or -k
options, cvs remembers the corresponding tag, date, Or kflag and continues using it on future updates; use the -A option to
make cvs forget these specifications, and retrieve the head version of the file).

The -j branch option merges the changes made between the resulting revision and the revision that it is based on (for
example, if the tag refers to a branch, cvs will merge all changes made in that branch into your working file).

With two -j options, cvs will merge in the changes between the two respective revisions. This can be used to “remove” a
certain delta from your working file.

In addition, each -j option can contain on optional date specification which, when used with branches, can limit the chosen
revision to one within a specific date. An optional date is specified by adding a colon (:) to the tag. An example might be
what cvs import tells you to do when you have just imported sources that have conflicts with local changes:

example% cvs checkout -jTAG:yesterday -jTAG module

Use the -n option with -d dir to avoid shortening module paths in your working directory. (Normally, cvs shortens paths as
much as possible when you specify an explicit target directory.)

Use the -c option to copy the module file, sorted, to the standard output, instead of creating or modifying any files or
directories in your working directory.

Use the -d dir option to create a directory called dir for the working files, instead of using the module name. Unless you
also use -N, the paths created under dir will be as short as possible.

Use the -s option to display per-module status information stored with the -s option within the modules file.

m commit [-1nR][-m 'log_message' | -f file][-r revision][files...]
Requires: Working directory, repository
Changes: Repository
Synonym: ci

Use cvs commit when you want to incorporate changes from your working source files into the general source repository.

If you don’t specify particular files to commit, all of the files in your working current directory are examined. commit is
careful to change in the repository only those files that you have really changed. By default (or if you explicitly specify the -r
option), files in subdirectories are also examined and committed if they have changed; you can use the -1 option to limit
commit to the current directory only. Sometimes you may want to force a file to be committed even though it is unchanged,
this is achieved with the -f flag, which also has the effect of disabling recursion (you can turn it back on with -g, of course).

commit verifies that the selected files are up-to-date with the current revisions in the source repository; it will notify you, and
exit without committing, if any of the specified files must be made current first with cvs update. commit does not call the
update command for you, but rather leaves that for you to do when the time is right.

When all is well, an editor is invoked to allow you to enter a log message that will be written to one or more logging
programs and placed in the RCS source repository file. You can instead specify the log message on the command line with

Part I: User Commands

the -m option, thus suppressing the editor invocation, or use the -F option to specify that the argument file contains the log
message.

The -r option can be used to commit to a particular symbolic or numeric revision within the RCS file. For example, to bring
all your files up to the RCS revision 3.0 (including those that haven’t changed), you might use

example% cvs commit -r3.0

cvs will only allow you to commit to a revision that is on the main trunk (a revision with a single dot). However, you can
also commit to a branch revision (one that has an even number of dots) with the -r option. To create a branch revision, one
typically use the -b option of the rtag or tag commands. Then, either checkout Or update can be used to base your sources on
the newly created branch. From that point on, all commit changes made within these working sources will be automatically
added to a branch revision, thereby not perturbing mainline development in any way. For example, if you had to create a
patch to the 1.2 version of the product, even though the 2.0 version is already under development, you might use this:
example% cvs rtag -b -rFCS1_2 FCS1_2 Patch product_module

example% cvs checkout -rFCS1_2_Patch product module

example%s cd product module

[[hack away]]

example%s cvs commit

Say you have been working on some extremely experimental software, based on whatever revision you happened to checkout
last week. If others in your group would like to work on this software with you, but without disturbing mainline develop-
ment, you could commit your change to a new branch. Others can then check out your experimental stuff and utilize the full
benefit of cvs conflict resolution. The scenario might look like this:

example% cvs tag -b EXPR1

example% cvs update -rEXPR1

[[hack away]]
example% cvs commit

Others would simply do cvs checkout -rEXPR1 whatever_module to work with you on the experimental change.

m diff [-kl][rcsdiff_options][[-r revl | -D datel][-r rev2 | -D date2]] [files...]
Requires: Working directory, repository

Changes: Nothing

You can compare your working files with revisions in the source repository, with the cvs diff command. If you don’t specify
a particular revision, your files are compared with the revisions they were based on. You can also use the standard cvs
command option -r to specify a particular revision to compare your files with. Finally, if you use -r twice, you can see
differences between two revisions in the repository. You can also specify -b options to diff against a revision in the past. The
-r and -p options can be mixed together with at most two options ever specified.

See rcsdiff (1) for a list of other accepted options.

If you don’t specify any files, diff will display differences for all those files in the current directory (and its subdirectories,
unless you use the standard option -1) that differ from the corresponding revision in the source repository (that is, files that
you have changed), or that differ from the revision specified.

m export [-f INnQq] -r rev | -D date [-d dir][-k kflag] module...
Requires: Repository
Changes: Current directory

This command is a variant of cvs checkout; use it when you want a copy of the source for module without the cvs administra-
tive directories. For example, you might use cvs export to prepare source for shipment off-site. This command requires that
you specify a date or tag (with -p or -r), so that you can count on reproducing the source you ship to others.

The only nonstandard options are -d dir (write the source into directory dir) and -N (don’t shorten module paths). These
have the same meanings as the same options in cvs checkout.

The -kv option is useful when export is used. This causes any RCS keywords to be expanded such that an import done at
some other site will not lose the keyword revision information. Other kflag options may be used with cvs export and are
described in co(1).
m history [-report][-flags][-options args][files...]

Requires: The file $cvSRO0T/CVSROOT/history

Changes: Nothing

cvs keeps a history file that tracks each use of the checkout, commit, rtag, update, and release cOmmands. You can use cvs
history to display this information in various formats.

WARNING

cvs history USes -f, -1, -n, and -p in ways that conflict with the descriptions in “Common Command Options,” earlier
in this manual page.

Several options (shown as [-report] in the preceding bulleted code line) control what kind of report is generated:

-c Report on each time commit was used (that is, each time the repository was modified).

-m module Report on a particular module. (You can meaningfully use -m more than once on the command line.)
-0 Report on checked-out modules.

-T Report on all tags.

-x type Extract a particular set of record types x from the cvs history. The types are indicated by single letters,

which you may specify in combination. Certain commands have a single record type: check-out (type
0), release (type F), and rtag (type T). One of four record types may result from an update: w, when the
working copy of a file is deleted during update (because it was gone from the repository); u, when a
working file was copied from the repository; 6, when a merge was necessary and it succeeded; and c,
when a merge was necessary but collisions were detected (requiring manual merging). Finally, one of
three record types results from commit: m, when a file was modified; A, when a file is first added; and g,
when a file is removed.

-e Everything (all record types); equivalent to specifying -xMACFROGWUT.

-z zone Use time zone zone when outputting history records. The zone name LT stands for local time; numeric
offsets stand for hours and minutes ahead of UTC. For example, +0530 stands for 5 hours and 30
minutes ahead of (that is, east of) UTC.

The options shown as -flags constrain the report without requiring option arguments:

-a Show data for all users. (The default is to show data only for the user executing cvs history.)

-1 Show last modification only.

-w Show only the records for modifications done from the same working directory where cvs history is
executing.

The options shown as —options args constrain the report based on an argument:

-b str Show data back to a record containing the string str in either the module name, the filename, or the
repository path.

-D date Show data since date.

-p repository Show data for a particular source repository (you can specify several -p options on the same command
line).

-r rev Show records referring to revisions since the revision or tag named rev appears in individual RCS files.
Each RCS file is searched for the revision or tag.

-t tag Show records since tag tag was last added to the history file. This differs from the -r flag in that it

reads only the history file, not the RCS files, and is much faster.
-u name Show records for username.

100

Part I: User Commands

B import [-options] repository vendortag releasetag ...
Requires: Repository, source distribution directory
Changes: Repository

Use cvs import to incorporate an entire source distribution from an outside source (for example, a source vendor) into your
source repository directory. You can use this command both for initial creation of a repository, and for wholesale updates to
the module form the outside source.

The repository argument gives a directory name (or a path to a directory) under the CVS root directory for repositories; if
the directory did not exist, import creates it.

When you use import for updates to source that has been modified in your source repository (since a prior import), it will
notify you of any files that conflict in the two branches of development; use cvs checkout -j to reconcile the differences, as
import instructs you to do.

By default, certain filenames are ignored during cvs import: names associated with CVS administration, or with other
common source control systems; common names for patch files, object files, archive files, and editor backup files; and other
names that are usually artifacts of assorted utilities. Currently, the default list of ignored files includes files matching these
names:

RCSLOG RCS SCCS

CVS* cvslog.*

tags TAGS

.make.state .nse_depinfo

#* H#r

.0ld *.bak *.BAK *.orig *.rej .del-*

.a *.0 *.s0 *.Z *.elc *.ln core

The outside source is saved in a first-level RCS branch, by default 1.1.1. Updates are leaves of this branch; for example, files
from the first imported collection of source will be revision 1.1.1.1, then files from the first imported update will be revision
1.1.1.2,and so on.

At least three arguments are required. repository is needed to identify the collection of source. vendortag is a tag for the
entire branch (for example, for 1.1.1). You must also specify at least one releasetag to identify the files at the leaves created
each time you execute cvs import.

One of the standard cvs command options is available: -m message. If you do not specify a logging message with -m, your
editor is invoked (as with commit) to allow you to enter one.

There are three additional special options.
Use -d to specify that each file’s time of last modification should be used for the checkin date and time.
Use -b branch to specify a first-level branch other than 1.1.1.

Use -1 name to specify filenames that should be ignored during import. You can use this option repeatedly. To avoid
ignoring any files at all (even those ignored by default), specify -1 1.

m log [-1] rlog-options [files...]

Requires: Repository, working directory
Changes: Nothing
Synonym: rlog

Display log information for files. cvs log calls the RCS utility rlog; all the options described in r1og(1) are available.
Among the more useful rlog options are -h to display only the header (including tag definitions, but omitting most of the
full log); -r to select logs on particular revisions or ranges of revisions; and -d to select particular dates or date ranges. See
rlog(1) for full explanations. This command is recursive by default, unless the -1 option is specified.

(WA 101

m rdiff [-flags][-V vn][-r t;-D d [-r t2)-D d2]] modules...

Requires: Repository
Changes: Nothing
Synonym: patch

Builds a Larry Wall format patch(1) file between two releases that can be fed directly into the patch program to bring an old
release up-to-date with the new release. (This is one of the few cvs commands that operates directly from the repository and
doesn’t require a prior checkout.) The diff output is sent to the standard output device. You can specify (using the standard
-r and -p options) any combination of one or two revisions or dates. If only one revision or date is specified, the patch file
reflects differences between that revision or date and the current head revisions in the RCS file.

Note that if the software release affected is contained in more than one directory, then it may be necessary to specify the -p
option to the patch command when patching the old sources, so that patch is able to find the files that are located in other
directories.

If you use the option -v vn, RCS keywords are expanded according to the rules current in RCS version vn (the expansion
format changed with RCS version 5).

The standard option flags -f and -1 are available with this command. There are also several special options flags.

If you use the -s option, no patch output is produced. Instead, a summary of the changed or added files between the two
releases is sent to the standard output device. This is useful for finding out, for example, which files have changed between
two dates or revisions.

If you use the -t option, a diff of the top two revisions is sent to the standard output device. This is most useful for seeing
what the last change to a file was.

If you use the -u option, the patch output uses the newer unidiff format for context diffs.
You can use -c to explicitly specify the diff -c form of context difs (which is the default), if you like.

B release [-dQq] modules...
Requires: Working directory

Changes: Working directory, history log

This command is meant to safely cancel the effect of cvs checkout. Since cvs doesn’t lock files, it isn’t strictly necessary to use
this command. You can always simply delete your working directory, if you like; but you risk losing changes you may have
forgotten, and you leave no trace in the cvs history file that you've abandoned your checkout.

Use cvs release to avoid these problems. This command checks that no uncommitted changes are present; that you are
executing it from immediately above, or inside, a cvs working directory; and that the repository recorded for your files is the
same as the repository defined in the module database.

If all these conditions are true, cvs release leaves a record of its execution (attesting to your intentionally abandoning your
checkout) in the cvs history log.

You can use the -d flag to request that your working copies of the source files be deleted if the release succeeds.

m remove [-1R][Files...]

Requires: Working directory
Changes: Working directory
Synonymes: rm, delete

Use this command to declare that you wish to remove files from the source repository. Like most cvs commands, cvs remove
works on files in your working directory, not directly on the repository. As a safeguard, it also requires that you first erase the
specified files from your working directory.

The files are not actually removed until you apply your changes to the repository with commit; at that point, the correspond-
ing RCS files in the source repository are moved into the Attic directory (also within the source repository).

102

Part I: User Commands

This command is recursive by default, scheduling all physically removed files that it finds for removal by the next commit. Use
the -1 option to avoid this recursion, or just specify that actual files that you wish remove to consider.

m rtag [-f alnRQq][-b][-d][-r tag | -D date] symbolic_tag modules...

Requires: Repository
Changes: Repository
Synonym: rfreeze

You can use this command to assign symbolic tags to particular, explicitly specified source versions in the repository. cvs
rtag works directly on the repository contents (and requires no prior checkout). Use cvs tag instead, to base the selection of
versions to tag on the contents of your working directory.

In general, tags (often the symbolic names of software distributions) should not be removed, but the -d option is available as
a means to remove completely obsolete symbolic names if necessary (as might be the case for an Alpha release, say).

cvs rtag will not move a tag that already exists. With the -F option, however, cvs rtag will relocate any instance of
symbolic_tag that already exists on that file to the new repository versions. Without the -F option, attempting to use cvs
rtag to apply a tag that already exists on that file will produce an error message.

The -b option makes the tag a branch tag, allowing concurrent, isolated development. This is most useful for creating a patch
to a previously released software distribution.

You can use the standard -r and -p options to tag only those files that already contain a certain tag. This method would be
used to rename a tag: tag only the files identified by the old tag, then delete the old tag, leaving the new tag on exactly the
same files as the old tag.

rtag executes recursively by default, tagging all subdirectories of modules you specify in the argument. You can restrict its
operation to top-level directories with the standard -1 option; or you can explicitly request recursion with -r.

The modules database can specify a program to execute whenever a tag is specified; a typical use is to send electronic mail to
a group of interested parties. If you want to bypass that program, use the standard -n option.

Use the -a option to have rtag look in the attic for removed files that contain the specified tag. The tag is removed from
these files, which makes it convenient to reuse a symbolic tag as development continues (and files get removed from the
upcoming distribution).
® status [-1RqQ][-v][Files ...]

Requires: Working directory, repository

Changes: Nothing

Display a brief report on the current status of files with respect to the source repository, including any sticky tags, dates, or -k
options. (Sticky options will restrict how cvs update operates until you reset them; see the description of cvs update -A....

You can also use this command to anticipate the potential impact of a cvs update on your working source directory. If you
do not specify any files explicitly, reports are shown for all files that cvs has placed in your working directory. You can limit
the scope of this search to the current directory itself (not its subdirectories) with the standard -1 option flag; or you can
explicitly request recursive status reports with the -r option.

The -v option causes the symbolic tags for the RCS file to be displayed as well.

® tag [-1QgR][-F][-b][-d][-r tag | -D date][-f] symbolic_tag [files ...]

Requires: Working directory, repository
Changes: Repository
Synonym: freeze

Use this command to assign symbolic tags to the nearest repository versions to your working sources. The tags are applied
immediately to the repository, as with rtag. One use for tags is to record a “snapshot” of the current sources when the
software freeze date of a project arrives. As bugs are fixed after the freeze date, only those changed sources that are to be part
of the release need be retagged.

(WA 103

The symbolic tags are meant to permanently record which revisions of which files were used in creating a software distribu-
tion. The checkout, export, and update commands allow you to extract an exact copy of a tagged release at any time in the
future, regardless of whether files have been changed, added, or removed since the release was tagged.

You can use the standard -r and -p options to tag only those files that already contain a certain tag. This method would be
used to rename a tag: tag only the files identified by the old tag, then delete the old tag, leaving the new tag on exactly the
same files as the old tag.

Specifying the -f flag in addition to the -r or -p flags will tag those files named on the command line even if they do not
contain the old tag or did not exist on the specified date.

By default (without a -r or -p flag), the versions to be tagged are supplied implicitly by the cvs records of your working files’
history rather than applied explicitly.

If you use cvs tag -d symbolic tag..., the symbolic tag you specify is deleted instead of being added.

WARNING

Be very certain of your ground before you delete a tag; doing this effectively discards some historical information, which
may later turn out to have been valuable.

cvs tag will not move a tag that already exists. With the -r option, however, cvs tag will relocate any instance of symbolic
tag that already exists on that file to the new repository versions. Without the -F option, attempting to use cvs tag to apply a
tag that already exists on that file will produce an error message.

The -b option makes the tag a branch tag, allowing concurrent, isolated development. This is most useful for creating a patch
to a previously released software distribution.

Normally, tag executes recursively through subdirectories; you can prevent this by using the standard -1 option, or specify
the recursion explicitly by using -r.

m update [-Adf 1PpQgR][-d][-r tag|-D date] files...
Requires: Repository, working directory
Changes: Working directory

After you've run checkout to create your private copy of source from the common repository, other developers will continue
changing the central source. From time to time, when it is convenient in your development process, you can use the update
command from within your working directory to reconcile your work with any revisions applied to the source repository
since your last checkout or update.

update keeps you informed of its progress by printing a line for each file, prefaced with one of the characters u, A, R, , C, Or ?
to indicate the status of the file:

U file The file was brought up-to-date with respect to the repository. This is done for any file that exists in
the repository but not in your source, and for files that you haven’t changed but are not the most
recent versions available in the repository.

A file The file has been added to your private copy of the sources, and will be added to the RCS source
repository when you run cvs commit on the file. This is a reminder to you that the file needs to be
committed.

R file The file has been removed from your private copy of the sources, and will be removed from the RCS

source repository when you run cvs commit on the file. This is a reminder to you that the file needs to
be committed.

M file The file is modified in your working directory. m can indicate one of two states for a file you’re working
on: either there were no modifications to the same file in the repository, so that your file remains as
you last saw it; or there were modifications in the repository as well as in your copy, but they were
merged successfully, without conflict, in your working directory.

104

Part I: User Commands

C file A conflict was detected while trying to merge your changes to fite with changes from the source
repository. file (the copy in your working directory) is now the output of the rcsmerge(1) command
on the two versions; an unmodified copy of your file is also in your working directory, with the name
.#file.version, where version is the RCS revision that your modified file started from. (Note that
some systems automatically purge files that begin with .# if they have not been accessed for a few days.
If you intend to keep a copy of your original file, it is a very good idea to rename it.)

? file file is in your working directory, but does not correspond to anything in the source repository, and is
not in the list of files for cvs to ignore; see the description of the -1 option.

Use the -A option to reset any sticky tags, dates, or -k options. (If you get a working copy of a file by using one of the -r, -,
or -k options, cvs remembers the corresponding tag, date, Or kflag and continues using it on future updates; use the -A
option to make cvs forget these specifications, and retrieve the head version of the file).

The -jbranch option merges the changes made between the resulting revision and the revision that it is based on. (For
example, if the tag refers to a branch, cvs will merge all changes made in that branch into your working file.)

With two -j options, cvs will merge in the changes between the two respective revisions. This can be used to “remove” a
certain delta from your working file. For example, if the file foo.c is based on revision 1.6 and | want to remove the changes
made between 1.3 and 1.5, I might do this:

example% cvs update -j1.5 -j1.3 foo.c # note the order...

In addition, each -j option can contain on optional date specification which, when used with branches, can limit the chosen
revision to one within a specific date. An optional date is specified by adding a colon (:) to the tag:

-jSymbolic Tag:Date Specifier

Use the -d option to create any directories that exist in the repository if they’re missing from the working directory.
(Normally, update acts only on directories and files that were already enrolled in your working directory.) This is useful for
updating directories that were created in the repository since the initial checkout; but it has an unfortunate side effect. If you
deliberately avoided certain directories in the repository when you created your working directory (either through use of a
module name or by listing explicitly the files and directories you wanted on the command line), then updating with -d will
create those directories, which may not be what you want.

Use -1 name to ignore files whose names match name (in your working directory) during the update. You can specify -1 more
than once on the command line to specify several files to ignore. By default, update ignores files whose names match any of
the following:

RCSLOG RCS SCCS

CVs* cvslog.*

tags TAGS

.make.state .nse_depinfo

B A S

.0ld *.bak *.BAK *.orig *.rej .del-*
.a *.0 *.s0 *.Z *.elc *.1n core

Use -1 to avoid ignoring any files at all.

The standard cvs command options -f, -k, -1, -P, -p, and -r are also available with update.

FILES

For more detailed information on cvs supporting files, see cvs(5).
Files in home directories:

.CVSIC The cvs initialization file. Lines in this file can be used to specify default options for each cvs
command. For example, the line diff -c will ensure that cvs diff is always passed the -c option in
addition to any other options passed on the command line.

.cvswrappers Specifies wrappers to be used in addition to those specified in the cvsro0T/cvswrappers file in the
repository.

Files in working directories:

Cvs

CVS/Entries
CVS/Entries.Backup
CVS/Entries.Static
CVS/Root

CVS/Repository
CVS/Tag

CVS/Checkin.prog
CVS/Update.prog

Files in source repositories:
$CVSROOT/CVSROOT
CVSROOT/commitinfo,v
CVSROOT/cvswrappers, v

CVSROOT/editinfo,v
CVSROOT/history
CVSR0O0T/loginfo,v
CVSROOT/modules, v
CVSROOT/rcsinfo,v
CVSROOT/taginfo,v
MODULE/Attic
#cvs.lock
#cvs.tfl.pid
#cvs.rfl.pid
#cvs.wfl.pid

ENVIRONMENT VARIABLES

CVSROOT

CVSREAD
RCSBIN
CVSEDITOR

CVS_IGNORE_REMOTE_ROOT

(WA 105

A directory of cvs administrative files. Do not delete.
List and status of files in your working directory.

A backup of cvs/Entries.

Flag: do not add more entries on cvs update.

Pathname to the repository (cvsrooT) location at the time of checkout. This file is used instead
of the cvsrooT environment variable if the environment variable is not set. A warning message
will be issued when the contents of this file and the cvsrooT environment variable differ. The
file may be overridden by the presence of the cvS_IGNORE_REMOTE_R0OT environment variable.

Pathname to the corresponding directory in the source repository.

Contains the per-directory sticky tag or date information. This file is created/updated when you
specify -r or -D to the checkout Or update commands, and no files are specified.

Name of program to run on cvs commit.
Name of program to run on cvs update.

Directory of global administrative files for repository.
Records programs for filtering cvs commit requests.

Records cvs wrapper commands to be used when checking files into and out of the repository.
Wrappers allow the file or directory to be processed on the way in and out of cvs. The intended
uses are many; one possible use would be to reformat a C file before the file is checked in, so all
of the code in the repository looks the same.

Records programs for editing/validating cvs commit log entries.

Log file of cvs transactions.

Records programs for piping cvs commit log entries.

Definitions for modules in this repository.

Records pathnames to templates used during a cvs commit operation.
Records programs for validating/logging cvs tag and cvs rtag operations.
Directory for removed source files.

A lock directory created by cvs when doing sensitive changes to the RCS source repository.
Temporary lock file for repository.

A read lock.

A write lock.

Should contain the full pathname to the root of the cvs source repository (where the RCS files
are kept). This information must be available to cvs for most commands to execute; if cvsrooT
is not set, or if you wish to override it for one invocation, you can supply it on the command
line: cvs -d cvsroot cvs command.... You may not need to set cvsrooT if your cvs binary has the
right path compiled in; use cvs -v to display all compiled-in paths.

If this is set, checkout and update will try hard to make the files in your working directory read-
only. When this is not set, the default behavior is to permit modification of your working files.
Specifies the full pathname where to find RCS programs, such as co(1)and ci(1). If not set, a
compiled-in value is used; see the display from cvs -v.

Specifies the program to use for recording log messages during commit. If not set, the EDITOR
environment variable is used instead. If EDITOR is not set either, the default is /usr/ucb/vi.

If this variable is set, then cvs will ignore all references to remote repositories in the cvs/Root
file.

106 Part I: User Commands

CVS_RSH cvs uses the contents of this variable to determine the name of the remote shell command to use
when starting a cvs server. If this variable is not set then rsh is used.

CVS_SERVER cvs uses the contents of this variable to determine the name of the cvs server command. If this
variable is not set then cvs is used.

CVSWRAPPERS This variable is used by the cvswrappers script to determine the name of the wrapper file, in

addition to the wrappers defaults contained in the repository (cvSR00T/cvswrappers) and the
user’s home directory (~/.cvswrappers).

AUTHORS
Dick Grune Original author of the cvs shel1 script version posted to comp.sources.unix in the volume 6
release of December, 1986. Credited with much of the cvs conflict resolution algorithms.
Brian Berliner Coder and designer of the cvs program itself in April, 1989, based on the original work done by
Dick.
Jeff Polk Helped Brian with the design of the cvs module and vendor branch support and author of the
checkin(1) shell script (the ancestor of cvs import).
SEE ALSO

c¢i(1), co(1), cvs(5), cvsbug(8), diff(1), grep(1), patch(1), res(l), resdiff(1), resmerge(1), rlogbug(8)
13 March 1996

date

date—Show and set date and time

SYNOPSIS

date [-u]J[-c][-n][-d dsttype] [-t minutes-west] [-a [+}-]sss.fff][+format][
[yyyy Immddhhmm [yy][.ss]]

DESCRIPTION
Date without arguments writes the date and time to the standard output in the form:
Wed Mar 8 14:54:40 EST 1989

with esT replaced by the local time zone’s abbreviation (or by the abbreviation for the time zone specified in the Tz environ-
ment variable if set). The exact output format depends on the locale.

If a command-line argument starts with a plus sign (+), the rest of the argument is used as a format that controls what
appears in the output. In the format, when a percent sign (%) appears, it and the character after it are not output, but rather
identify part of the date or time to be output in a particular way (or identify a special character to output):

Argument Sample output Explanation

%a Wed Abbreviated weekday name*

%A Wednesday Full weekday name*

%b Mar Abbreviated month name*

%B March Full month name*

%C Wed Mar 08 14:54:40 1989 Date and time*

%C 19 Century

%d 08 Day of month (always two digits)

o°
o

03/08/89 Month/day/year (eight characters)

date

107

Argument Sample output Explanation

%e 8 Day of month (leading zero blanked)

%h Mar Abbreviated month name*

%H 14 24-hour-clock hour (two digits)

%1 02 12-hour-clock hour (two digits)

%] 067 Julian day number (three digits)

%k 2 12-hour-clock hour (leading zero blanked)
%1 14 24-hour-clock hour (leading zero blanked)
%m 03 Month number (two digits)

%M 54 Minute (two digits)

%n nn Newline character

%p PM AM/PM designation

%r 02:54:40 PM Hour:minute:second AM/PM designation
%R 14:54 Hour:minute

%S 40 Second (two digits)

%t nt Tab character

%T 14:54:40 Hour:minute:second

%U 10 Sunday-based week number (two digits)
W 3 Day number (one digit, Sunday is 0)

W 10 Monday-based week number (two digits)
%X 03/08/89 Date*

%X 14:54:40 Time*

%y 89 Last two digits of year

%Y 1989 Year in full

%Z EST Time zone abbreviation

%+ Wed Mar 8 14:54:40 EST 1989 Default output format*

* The exact output depends on the locale.

If a character other than one of those shown in the preceding table appears after a percent sign in the format, that following
character is output. All other characters in the format are copied unchanged to the output; a newline character is always

added at the end of the output.

In Sunday-based week numbering, the first Sunday of the year begins week 1; days preceding it are part of week 0. In

Monday-based week numbering, the first Monday of the year begins week 1.

To set the date, use a command-line argument with one of the following forms:

1454 24-hour-clock hours (first two digits) and minutes

081454
03081454
8903081454
0308145489
030814541989
198903081454

Month day (first two digits), hours, and minutes

Month (two digits, January is 01), month day, hours, minutes

Year, month, month day, hours, minutes

Month, month day, hours, minutes, year (on System V-compatible systems)
Month, month day, hours, minutes, four-digit year

Four-digit year, month, month day, hours, minutes

108 Part I: User Commands

If the century, year, month, or month day is not given, the current value is used. Any of the preceding forms may be
followed by a period and two digits that give the seconds part of the new time; if no seconds are given, zero is assumed.

These options are available:

-uor-c Use GMT when setting and showing the date and time.

-n Do not notify other networked systems of the time change.

-d dsttype Set the kernel-stored Daylight Saving Time type to the given value. (The kernel-stored DST type is
used mostly by “old” binaries.)

-t minutes-west Set the kernel-stored “minutes west of GMT"” value to the one given on the command line. (The
kernel-stored DST type is used mostly by “old” binaries.)

-a adjustment Change the time forward (or backward) by the number of seconds (and fractions thereof) specified

in the adjustment argument. Either the seconds part or the fractions part of the argument (but not
both) may be omitted. On BSD-based systems, the adjustment is made by changing the rate at
which time advances; on System-V—-based systems, the adjustment is made by changing the time.

FILES
/usr/lib/locale/L/LC TIME
/usr/local/etc/zoneinfo
Jusr/local/etc/zoneinfo/localtime
/usr/local/etc/zoneinfo/posixrules
Jusr/local/etc/zoneinfo/GMT

Description of time locale L
Time zone information directory
Local time zone file

Used with POSIX-style TZs

For UTC leap seconds

If /usr/local/etc/zoneinfo/GNT is absent, UTC leap seconds are loaded from /usr/local/etc/zoneinfo/posixrules.

dd

d¢—Convert a file while copying it (data dumper)

SYNOPSIS

dd [—help] [—version] [if=File] [of=File] [ibs=bytes] [obs=bytes] [bs=bytes]
[cbs=bytes] [skip=blocks] [seek=blocks] [count=blocks] [conv={ascii,
ebcdic, ibm, block, unblock, lcase, ucase, swab, noerror, notrunc, sync}]

DESCRIPTION

This manual page documents the GNU version of dd. dd copies a file (from the standard input to the standard output, by
default) with a user-selectable blocksize, while optionally performing conversions on it.

OPTIONS

Numbers can be followed by a multiplier:

b=512, c=1, k=1024, w=2, xm=number m

These options are available:
—help

—version

if=File

of=File

ibs=bytes
obs=bytes
bs=bytes

Print a usage message on standard output and exit successfully.
Print version information on standard output then exit successfully.
Read from file instead of the standard input.

Write to file instead of the standard output. Unless conv=notrunc is given, truncate
file to the size specified by seek= (0 bytes if seek= is not given).

Read bytes bytes at a time.
Write bytes bytes at a time.
Read and write bytes bytes at a time. Override ibs and obs.

depmod, modprobe 109

cbs=bytes Convert bytes bytes at a time.

skip=blocks Skip blocks ibs-sized blocks at start of input.

seek=blocks Skip blocks obs-sized blocks at start of output.

count=blocks Copy only blocks ibs-sized input blocks.

conv=conversion[,conversion...] Convert the file as specified by the conversion arguments.

Conversions:

ascii Convert EBCDIC to ASCII.

ebcdic Convert ASCII to EBCDIC.

ibm Convert ASCII to alternate EBCDIC.

block Pad newline-terminated records to size of cbs, replacing newline with trailing spaces.
unblock Replace trailing spaces in cbs-sized block with newline.

lcase Change uppercase characters to lowercase.

ucase Change lowercase characters to uppercase.

swab Swap every pair of input bytes. Unlike the UNIX dd, this works when an odd

number of bytes are read. If the input file contains an odd number of bytes, the last
byte is simply copied (since there is nothing to swap it with).

noerror Continue after read errors.
notrunc Do not truncate the output file.
sync Pad every input block to size of ibs with trailing NULLS.

GNU File Utilities

depmod, modprobe

depmod, modprobe—Handle loadable modules automatically

SYNOPSIS

depmod [-a]
depmod modulel.o module2.o ...

modprobe module.o [symbol=value ...]

modprobe -t tag pattern

modprobe -a -t tag pattern modprobe -1 [-t tag] pattern
modprobe -r module

modprobe -c

DESCRIPTION

These utilities are intended to make a Linux modular kernel manageable for all users, administrators, and distribution
maintainers.

depmod creates a makefile-like dependency file, based on the symbols it finds in the set of modules mentioned on the
command line (or in a default place). This dependency file can later be used by modprobe to automatically load the relevant
module(s).

modprobe is used to load a set of modules—either a single module, a stack of dependent modules, or all modules that are
marked with a specified tag.

modprobe Will automatically load all base modules needed in a module stack, as described by the dependency file modules.dep.
If the loading of one of these modules fails, the whole current stack of modules will be unloaded (by rmmod) automatically.

modprobe has two ways of loading modules. One way (the probe mode) will try to load a module out of a list (defined by
pattern). It stops loading as soon as one module load successfully. This can be used to autoload one Ethernet driver out of a
list, for example. The other way is to load all modules from a list. This can be used to load some modules at boot time.

110

Part I: User Commands

With the option -r, modprobe will automatically unload a stack of modules, similar to the way rmmod -r does.

Option -1 combined with option -t lists all available modules of a certain type. An enhanced mount command could use the
command:

modprobe -1 -t fs

to get the list of all file system drivers available and on request load the proper one. So, the mount command could become
more generic as well. (The kerneld solves this without changing the mount utility.)

Option -c will print all configuration (default + configuration file).

The normal use of depmod is to include the line /sbin/depmod -a in one of the rc-files in /etc/rc.d, so that the correct
module dependencies will be available immediately after booting the system.

Option -d puts depmod in debug mode. It outputs all commands it is issuing.

Option -e outputs the list of unresolved symbol for each module, Normally, depmod only outputs the list of unloadable
modules.

Option -v outputs the list of all processed modules.

Modules may be located at different place in the filesystem, but there will always be some need to override this, especially for
module developers. We expect some official standard will emerge, defined by the FSSTND. Until that time, you might as
well use this suggested directory structure.

CONFIGURATION

The behavior of depmod and modprobe can be adjusted by the (optional) configuration file /etc/conf.modules.

The configuration file consists of a set of lines. All empty lines, and all text on a line after a #, will be ignored. Lines may be
continued by ending the line with a \. The remaining lines should all conform to one of the following formats:

keep

parameter=value

options module symbol=value ...
alias module real_name
pre-install module command ...
install module command ...
post-install module command ...
pre-remove module command ...
remove module command ...
post-remove module command ...
parameter=value options module symbol=value ... alias module real_name

All values in the parameter lines will be processed by a shell, which means that shell tricks like wildcards and commands
enclosed in backquotes can be used:

path[misc]=/1ib/modules/1.1.5?/misc

path[net]=/1ib/modules/'uname -r'/net

Parameters may be repeated multiple times.

These are the legal parameters:

depfile=DEPFILE_PATH This is the path to the dependency file that will be created by depmod and used by modprobe.

path=SOME_PATH The path parameter specifies a directory to search for the modules.

path[tag]=SOME_PATH The path parameter can carry an optional tag. This tells us a little more about the purpose of the
modules in this directory and allows some automated operations by modprobe. The tag is appended
to the path keyword enclosed in square brackets. If the tag is missing, the tag misc is assumed. One
very useful tag is boot, which can be used to mark all modules that should be loaded at boot time.

If the configuration file /etc/conf.modules is missing, or if any parameter is not overridden, the following defaults are
assumed:

depmod, modprobe 11

depfile=/1lib/modules/'uname -r'/modules.dep
path[boot]=/1ib/modules/boot

path[fs]=/1ib/modules/'uname -r'/fs
path[misc]=/1ib/modules/'uname -r'/misc
path[net]=/1ib/modules/'uname -r'/net
path[scsi]=/1ib/modules/'uname -r'/scsi

path[fs]=/1lib/modules/default/fs
path[misc]=/1ib/modules/default/misc
path[net]=/1lib/modules/default/net
path[scsi]=/1ib/modules/default/scsi

path[fs]=/1ib/modules/fs

path[misc]=/1ib/modules/misc

path[net]=/1ib/modules/net

path[scsi]=/1lib/modules/scsi

All option lines specify the default options that are needed for a module, as in

modprobe de620 bnc=1
These options will be overridden by any options given on the modprobe command line.

The alias lines can be used to give alias names to modules. A line in /etc/conf.modules that looks like this:

alias 1509660 isofs

makes it possible to write modprobe is09660, although there is no such module available.

STRATEGY

The idea is that modprobe will look first at the directory containing modules compiled for the current release of the kernel. If
the module is not found there, modprobe will look in the directory containing modules for a default release.

When you install a new Linux, the modules should be moved to a directory related to the release (and version) of the kernel
you are installing. Then you should do a symlink from this directory to the default directory.

Each time you compile a new kernel, the command make modules_install will create a new directory, but won’t change the
default.

When you get a module unrelated to the kernel distribution, you should place it in one of the version-independent
directories under /1ib/modules.

This is the default strategy, which can be overridden in /etc/conf.modules.

EXAMPLES
modprobe -t net Load one of the modules that are stored in the directory tagged net. Each module is tried until one
succeeds. (Default: /1ib/modules/net).

modprobe -a -t boot All modules that are stored in the directory tagged boot will be loaded. (Default: /1ib/modules/
boot).

modprobe slip.o This will attempt to load the module s1hc.o if it was not previously loaded, since the slip module
needs the functionality in the sthc module. This dependency will be described in the file
modules.dep that was created automatically by depmod.

modprobe -r slip.o Will unload s1ip.o. It will also unload sihc.o automatically, unless it is used by some other module
as well (such as ppp.o).

FILES

/etc/conf.modules
/lib/modules/*/modules.dep
/1lib/modules/*

112 Part I: User Commands

SEE ALSO
1smod(1), kerneld(8), ksyms(1), modules(2)
REQUIRED UTILITIES
insmod(1), nm(1) rmmod(1)
NOTES
The pattern supplied to modprobe will often be escaped to ensure that it is evaluated in the proper context.
AUTHOR
Jacques Gelinas (jackesolucorp.qc.ca), Bjorn Ekwall (bjerneblox.se)
BUGS
Naah...

Linux, 14 May 1995

df

df—Summarize free disk space

SYNOPSIS

df [-aikPv] [-t fstype] [-x fstype] [—all] [—1inodes] [—type=Fstype]
[—exclude-type=fstype] [—kilobytes] [—portability] [—print-type]
[—help] [—version] [filename...]

DESCRIPTION

This manual page documents the GNU version of df. df displays the amount of disk space available on the filesystem
containing each filename argument. If no filename is given, the space available on all currently mounted filesystems is shown.
Disk space is shown in 1K blocks by default, unless the environment variable PoSIXLY_CORRECT is set, in which case 512-byte
blocks are used.

If an argument is the absolute filename of a disk device node containing a mounted filesystem, df shows the space available
on that filesystem rather than on the filesystem containing the device node (which is always the root filesystem). This version
of df cannot show the space available on unmounted filesystems, because on most kinds of systems doing so requires very
nonportable, intimate knowledge of filesystem structures.

OPTIONS

-a, —all Include in the listing filesystems that have 0 blocks, which are omitted by default. Such
filesystems are typically special-purpose pseudo-filesystems, such as automounter entries. On
some systems, filesystems of type ignore or auto are also omitted by default and included in the
listing by this option.

-i, —inodes List inode usage information instead of block usage. An inode (short for “index node™) is a
special kind of disk block that contains information about a file, such as its owner, permissions,
timestamps, and location on the disk.

-k, —kilobytes Print sizes in 1K blocks instead of 512-byte blocks. This overrides the environment variable
POSIXLY_CORRECT.
-P, —portability Use the posix output format. This is like the default format except that the information about

each filesystem is always printed on exactly one line; a mount device is never put on a line by
itself. This means that if the mount device name is more than 20 characters long (as for some
network mounts), the columns are misaligned.

dig

113
-T, —print-type Print a type string for each filesystem. Any such printed filesystem type name may be used as an
argument to either of the —type= or —exclude-type= options.
-t, —type=Fstype Limit the listing to filesystems of type fstype. Multiple filesystem types can be shown by giving

multiple -t options. By default, all filesystem types are listed.

-x, —exclude-type=fstype Limit the listing to filesystems not of type fstype. Multiple filesystem types can be eliminated by
giving multiple -x options. By default, all filesystem types are listed.

-v Ignored; for compatibility with System V versions of df.
—help Print a usage message on standard output and exit successfully.
—version Print version information on standard output then exit successfully.

GNU File Utilities

dig—Send domain name query packets to name servers

SYNOPSIS

dig [@server] domain [<query-type>][<query-class>][+<query-option>][-<dig-option>]
[%comment]

DESCRIPTION

dig (domain information groper) is a flexible command-line tool that can be used to gather information from the Domain
Name System servers. dig has two modes: simple interactive mode that makes a single query, and batch that executes a query
for each in a list of several query lines. All query options are accessible from the command line.

The usual simple use of dig takes the form:
dig @server domain query-type query-class
where

server May be either a domain name or a dot-notation Internet address. If this optional field is omitted,
dig will attempt to use the default name server for your machine.

NOTE

If a domain name is specified, this will be resolved using the domain name system resolver (BInD). If your system does not
support DNS, you may have to specify a dot-notation address. Alternatively, if there is a server at your disposal some-
where, all that is required is that /etc/resolv.conf be present and indicate where the default name servers reside, so that
server itself can be resolved. See resolver(5) for information on /etc/resolv.conf.

WARNING

Changing /etc/resolv.conf Will affect the standard resolver library and potentially several programs that use it.) As an
option, the user may set the environment variable LocALRES to name a file which is to be used instead of /etc/resolv.conf
(LocALREs is specific to the dig resolver and not referenced by the standard resolver). If the LocALRES variable is not set or
the file is not readable, then /etc/resolv.conf will be used.

domain The domain name for which you are requesting information. See “Options” [-x] for a convenient
way to specify inverse address query.

114 Part I: User Commands

query-type The type of information (DNS query type) that you are requesting. If omitted, the default isa (T_a
= address). The following types are recognized:
Type Example Description
a TA Network address
any T_ANY All/any information about specified domain
mx T_NX Mail exchanger for the domain
ns T_NS Name servers
soa T_SOA Zone of authority record
hinfo T_HINFO Host information
axfr T_AXFR Zone transfer (must ask an authoritative server)
txt T_TXT Arbitrary number of strings

(See RFC 1035 for the complete list.)

query-class The network class requested in the query. If omitted, the default is in (C_IN = Internet). The
following classes are recognized:
in C_IN Internet class domain
any C_ANY All/any class information

(See RFC 1035 for the complete list.)

NOTE

any can be used to specify a class and/or a type of query. dig will parse the first occurrence of any to mean query-type =
T_ANY.

To specify query-class = C_ANY you must either specify any twice, or set query-class using -c option. (See “Other Op-
tions,” next.)

OTHER OPTIONS
%ignored-comment % is used to include an argument that is simply not parsed. This may be useful if running dig in
batch mode. Instead of resolving every eserver-domain-name in a list of queries, you can avoid the
overhead of doing so, and still have the domain name on the command line as a reference.
Example:
dig @128.9.0.32 %venera.isi.edu mx isi.edu
-<dig option> - is used to specify an option that affects the operation of dig. The following options are currently

available (although not guaranteed to be useful):

-x dot-notation-address Convenient form to specify inverse address mapping. Instead of
dig 32.0.9.128.in-addr.arpa
one can simply use
dig -x 128.9.0.32

-f file File for dig batch mode. The file contains a list of query
specifications (dig command lines) which are to be executed
successively. Lines beginning with ;, #, or \n are ignored. Other

options may still appear on the command line, and will be in
effect for each batch query.

-T time Time in seconds between start of successive queries when running
in batch mode. Can be used to keep two or more batch dig
commands running roughly in sync. Default is zero.

-envsav

dig

115
-p port Port number. Query a name server listening to a nonstandard port
number. Default is 53.
-P[ping-string] After query returns, execute a ping(8) command for response time

comparison. This rather unelegantly makes a call to the shell. The
last three lines of statistics is printed for the command:

ping —s server_name 56 3

If the optional ping string is present, it replaces ping -s in the
shell command.

-t query-type Specify type of query. May specify either an integer value to be
included in the type field or use the abbreviated mnemonic as
discussed earlier (mx = T_mx).

-¢ query-class Specify class of query. May specify either an integer value to be
included in the class field or use the abbreviated mnemonic as
discussed earlier (in = C_IN).

This flag specifies that the dig environment (defaults, print options, and so on), after all of the
arguments are parsed, should be saved to a file to become the default environment. Useful if you do
not like the standard set of defaults and do not desire to include a large number of options each
time dig is used. The environment consists of resolver state variable flags, timeout, and retries as
well as the flags detailing dig output (see below). If the shell environment variable LOCALDEF is set to
the name of a file, this is where the default dig environment is saved. If not, the file piG.env is
created in the current working directory.

NOTE

LOCALDEF is specific to the dig resolver, and will not affect operation of the standard resolver library.

-envset

-[no]stick

+<query option>

Keyword Abbreviation

Each time dig is executed, it looks for ./piG.env or the file specified by the shell environment
variable LocALDEF. If such file exists and is readable, then the environment is restored from this file
before any arguments are parsed.

This flag only affects batch query runs. When -envset is specified on a line in a dig batch file, the
dig environment after the arguments are parsed, becomes the default environment for the duration
of the batch file, or until the next line which specifies -envset.

This flag only affects batch query runs. It specifies that the dig environment (as read initially or set
by -envset switch) is to be restored before each query (line) in a dig batch file. The default -nostick
means that the dig environment does not stick, hence options specified on a single line in a dig
batch file will remain in effect for subsequent lines (that is, they are not restored to the sticky
default).

+is used to specify an option to be changed in the query packet or to change dig output specifics.
Many of these are the same parameters accepted by ns1ookup(8). If an option requires a parameter,
the form is as follows:

+keyword[=value]

Most keywords can be abbreviated. Parsing of the + options is very simplistic—a value must not be
separated from its keyword by whitespace. The following keywords are currently available:

Meaning (Default)

[no]debug (deb)
[no]d2
[no]recurse (rec)

retry=# (ret)

Turn on/off debugging mode [deb]

Turn on/off extra debugging mode [nod2]
Use/don’t use recursive lookup [rec]

Set number of retries to # [4]

continues

116

Part I: User Commands

Keyword Abbreviation

Meaning (Default)

time=# (ti) Set timeout length to # seconds [4]
[noJko Keep open option (implies vc) [noko]
[no]ve Use/don’t use virtual circuit [novc]

[no]defname (def)
[no]search (sea)
domain=NAME (do)
[nolignore (i)
[nolprimary (pr)
[noJaaonly (aa)
[nolsort (sor)
[no]cmd
[no]stats (st)
[no]Header (H)
[no]header (he)
[nolttlid (tt)
[no]cl

[nolar
[no]reply (rep)
[nolques (qu)
[noJanswer (an)
[noJauthor (au)
[noladdit (ad)
pfdef

Use/don’t use default domain name [def]
Use/don’t use domain search list [sea]
Set default domain name to NAVE
Ignore/don’t ignore trunc. errors [noi]
Use/don’t use primary server [nopr]
Authoritative query only flag [noaa]
Sort resource records [nosor]

Echo parsed arguments [cmd]

Print query statistics [st]

Print basic header [H]

Print header flags [he]

Print TTLs [tt]

Print class info [noc1]

Print outgoing query [nogr]

Print reply [rep]

Print question section [qu]

Print answer section [an]

Print authoritative section [au]

Print additional section [ad]

Set to default print flags

pfmin Set to minimal default print flags

pfset=# Set print flags to # (# can be hex/octal/decimal)
pfand=# Bitwise and print flags with #

pfor=# Bitwise or print flags with #

The retry and time options affect the retransmission strategy used by resolver library when sending datagram queries. The
algorithm is as follows:

August 30, 1990

for i = 0 to retry - 1

for j =1 to num_servers
send_query

wait((time * (2**i)) / num_servers)
end

end

Note that dig always uses a value of 1 for num_servers.

DETAILS

dig once required a slightly modified version of the BIND resolver (3) library. BIND'S resolver has (as of BIND 4.9) been
augmented to work properly with dig. Essentially, dig is a straightforward (albeit not pretty) effort of parsing arguments and
setting appropriate parameters. dig uses resolver routines res_init(), res_mkquery(), res_send() as well as accessing _res
structure.

dnsquery 117

FILES

/etc/resolv.conf Initial domain name and name server addresses

ENVIRONMENT
LOCALRES file to use in place of /etc/resolv.conf

LOCALDEF default environment file

AUTHOR

Steve Hotz (hotzeisi.edu)

ACKNOWLEDGMENTS

dig uses functions from ns1lookup(8) authored by Andrew Cherenson.

BUGS

dig has a serious case of “creeping featurism,” the result of considering several potential uses during its development. It would
probably benefit from a rigorous diet. Similarly, the print flags and granularity of the items they specify make evident their
rather ad hoc genesis.

dig does not consistently exit nicely (with appropriate status) when a problem occurs somewhere in the resolver (Most of the
common exit cases are handled.) This is particularly annoying when running in batch mode. If it exits abnormally (and is not
caught), the entire batch aborts; when such an event is trapped, dig simply continues with the next query.

SEE ALSO

named(8), resolver(3), resolver(5), nslookup(8)
30 August 1990

dnsquery

dnsquery — Query domain name servers using resolver

SYNOPSIS

dnsquery [-n nameserver] [-t type] [-c class] [-r retry] [-p retry period]
[-d] [-s] [-v] host

DESCRIPTION

The dnsquery program is a general interface to nameservers via BIND resolver library calls. The program supports queries to the
nameserver with an opcode of auery. This program is intended to be a replacement or supplement to programs like nstest,
nsquery, and nslookup. All arguments except for host and ns are treated without case-sensitivity.

OPTIONS
-n The nameserver to be used in the query. Nameservers can appear as either Internet addresses of the form
w.x.y.z Or can appear as domain names. (default: as specified in /etc/resolv.conf)

-t The type of resource record of interest. Types include:
A Address
NS Nameserver
CNAME Canonical name
PTR Domain name pointer

SOA Start of authority

118 Part I: User Commands

WKS Well-known service
HINFO Host information
MINFO Mailbox information
MX Mail exchange

RP Responsible person
MG Mail group member
AFSDB DCE or AFS server
ANY Wildcard

NOTE

Any case may be used (the default is AnY)

-c The class of resource records of interest. Classes include the following:
IN Internet
HS Hesiod
CHAOS Chaos
ANY Wildcard

NOTE

Any case may be used (the default is In).

-r The number of times to retry if the nameserver is not responding. (default: 4)
-p Period to wait before timing out. (default: RES_TIMEOUT) options field. (default: any answer)
-d Turn on debugging. This sets the Res_beBUG bit of the resolver’s options field. (default: no debugging)
-s Use a stream rather than a packet. This uses a TCP stream connection with the nameserver rather than a
UDP datagram. This sets the Res_usevc bit of the resolver’s options field. (default: uop)
-v Synonym for the s flag.
host The name of the host (or domain) of interest.
FILES
/etc/resolv.conf To get the default ns and search lists.
<arpa/nameser.h> List of usable rr types and classes
<resolv.h> List of resolver flags
SEE ALSO
nslookup(8), nstest(1), nsquery(1), named(8), resolver(5)
DIAGNOSTICS

If the resolver fails to answer the query and debugging has not been turned on, dnsquery will simply print a message like this:

Query failed (rc = 1) : Unknown host

The value of the return code is supplied by h_errno.

dsplit 119

BUGS

Queries of a class other than 1n can have interesting results since ordinarily a nameserver only has a list of root nameservers
for class IN resource records.

Query uses a call to inet_addr() to determine if the argument for the -n option is a valid Internet address. Unfortunately,
inet_addr() seems to cause a segmentation fault with some (bad) addresses (for example, 1.2.3.4.5).

AUTHOR
Bryan Beecher
10 March 1990

domainname

domainname—Set or print domain of current host

SYNOPSIS

domainname [name]

DESCRIPTION

domainname prints the domain name of the current host, from the getdomainname(3) library call. If an argument is present and
the effective UID is o, domainname changes the name of the host, with the setdomainname(2) system call. This is usually done at
boot time in the /etc/rc.local script.

FILES

/etc/rc.local

SEE ALSO

getdomainname(3), setdomainname(2), uname(1), uname(2)

AUTHOR

Lars Wirzenius by substituting in hostname.c
Linux 0.98, 26 December 1992

dsplit

dsplit—Split a large file into pieces

SYNOPSIS
dsplit [-size nnn][input_file [output_base]]
DESCRIPTION
dsplit splits binary files into smaller chunks so that they may be placed on floppy disks.
OPTIONS
-size nnn Specifies the size of each output file, in bytes. The default is 1457000, which is enough to will a
1.44MB floppy disk.
input_file Specifies the name of the file to split up. A - indicates standard input. The default is standard

input.

120 Part I: User Commands

output_base Specifies the name of the output files to be written. dsp1it will append eoo, o1, ..., to the
output_base. The default is dsplit.

AUTHOR'S NOTES
Submitted by: David Arnstein (arnsteinenetcom.com)
Posting number: Volume 40, Issue 51
Archive name: dsplit/part01
Environment: MS-DOS, UNIX
Here is a portable binary file splitting program. It reads a binary file and splits it into pieces. | use this program to put large

binary files on floppy disks. For this reason, the default size of the output files is 1,457,000 bytes, which just about fills up a
1.44MB floppy disk.

Unlike other binary split programs I have seen, dsplit does not malloc a huge block of memory. dsplit is suitable for use
under MS-DOS and other primitive operating systems.

(The program came from gatekeeper.dec.com: /pub/usenet/comp.sources.misc/volume40/dsplit).
Linux 1.1, 5 July 1994

du

du—Summarize disk usage

SYNOPSIS
du [-abcklsxDLS] [—all] [—total] [—count-1links] [—summarize] [—bytes]
[—kilobytes] [—one-file-system] [—separate-dirs] [—dereference]
[—dereference-args] [—help] [—-version] [filename...]

DESCRIPTION

This manual page documents the GNU version of du. du displays the amount of disk space used by each argument and for
each subdirectory of directory arguments. The space is measured in 1K blocks by default, unless the environment variable
POSIXLY_CORRECT is set, in which case 512-byte blocks are used.

OPTIONS

-a, —all Display counts for all files, not just directories.

-b, —bytes Print sizes in bytes.

-c, —total Write a grand total of all of the arguments after all arguments have been processed. This can
be used to find out the disk usage of a directory, with some files excluded.

-k, —kilobytes Print sizes in kilobytes. This overrides the environment variable POSIXLY_CORRECT.

-1, —count-links Count the size of all files, even if they have appeared already in another hard link.

-s, —summarize Display only a total for each argument.

-x, —one-file-system Skip directories that are on different filesystems from the one that the argument being
processed is on.

-D, —dereference-args Dereference symbolic links that are command-line arguments. Does not affect other
symbolic links. This is helpful for finding out the disk usage of directories like /usr/tmp
where they are symbolic links.

-L, —dereference Dereference symbolic links (show the disk space used by the file or directory that the link
points to instead of the space used by the link).

-S, —separate-dirs Count the size of each directory separately, not including the sizes of subdirectories.

—help Print a usage message on standard output and exit successfully.

—version Print version information on standard output, then exit successfully.

editres 121

BUGS

On BSD systems, du reports sizes that are half the correct values for files that are NFS-mounted from HP-UX systems. On
HP-UX systems, it reports sizes that are twice the correct values for files that are NFS-mounted from BSD systems. This is
due to a flaw in HP-UX; it also affects the HP-UX du program.

GNU File Utilities

editres

editres—A dynamic resource editor for X Toolkit applications

SYNTAX

editres [-toolkitoption ...]

OPTIONS

editres accepts all of the standard X Toolkit command-line options (see x(1)). The order of the command-line options is not
important.

DESCRIPTION

editres IS a tool that allows users and application developers to view the full widget hierarchy of any X Toolkit application
that speaks the editres protocol. In addition, editres will help the user construct resource specifications, allow the user to
apply the resource to the application and view the results dynamically. Once the user is happy with a resource specification,
editres will append the resource string to the user’s X Resources file.

USING editres

editres provides a window consisting of the following four areas:

Menu Bar A set of pop-up menus that allow you full access to editres’s features.
Panner The panner provides a more intuitive way to scroll the application tree display.
Message Area Displays information to the user about the action that editres expects.

Application Widget Tree This area is used to display the selected application’s widget tree.

To begin an editres session, select the Get Widget Tree menu item from the Command menu. This will change the pointer
cursor to crosshair. You should now select the application you wish look at by clicking on any of its windows. If this
application understands the editres protocol, editres will display the application’s widget tree in its tree window. If the
application does not understand the editres protocol, editres will inform you of this fact in the message area after a few
seconds delay.

After you have a widget tree, you may select any of the other menu options. The effect of each of these is described in
“Commands,” next.

COMMANDS

Get Widget Tree Allows the user to click on any application that speaks the editres protocol and receive its
widget tree.

Refresh Current Widget Tree editres only knows about the widgets that exist at the present time. Many applications
create and destroy widgets on the fly. Selecting this menu item will cause editres to ask the
application to resend its widget tree, thus updating its information to the new state of the
application.

For example, xman only creates the widgets for its topbox when it starts up. None of the
widgets for the manual page window are created until the user actually clicks on the Manual
Page button. If you retrieved xman’s widget tree before the manual page is active, you may
wish to refresh the widget tree after the manual page has been displayed. This will allow you
to also edit the manual page’s resources.

122 Part I: User Commands

Dump Widget Tree to a File

Show Resource Box

Set Resource

Quit
TREE COMMANDS

When documenting applications it is often useful to be able to dump the entire application
widget tree to an ASCI| file. This file can then be included in the manual page. When this
menu item is selected, a pop-up dialog is activated. Type the name of the file in this dialog,
and either select Okay, or type a carriage-return. editres will dump the widget tree to this

file. To cancel the file dialog, select the Cancel button.

This command will pop up a resource box for the current application. This resource box
(described in detail later in this section) will allow the user to see exactly which resources
can be set for the widget that is currently selected in the widget tree display. Only one
widget may be currently selected; if greater or fewer are selected, editres will refuse to pop
up the resource box and put an error message in the Message Area.

This command will pop up a simple dialog box for setting an arbitrary resource on all
selected widgets. You must type in the resource name, as well as the value. You can use the
Tab key to switch between the resource name field and the resource value field.

Exits editres.

The Tree menu contains several commands that enable operations to be performed on the widget tree.

Select Widget in Client

Select All, Unselect All,
Invert All

Select Children,

Select Parents

Select Descendants,
Select Ancestors

Show Widget Names,
Show Class Names,
Show Widget Windows

Flash Active Widgets

This menu item allows you to select any widget in the application; editres will then
highlight the corresponding element the widget tree display. After this menu item is
selected, the pointer cursor will again turn to a crosshair, and you must click any pointer
button in the widget you wish to have displayed. Since some widgets are fully obscured by
their children, it is not possible to get to every widget this way, but this mechanism does
give very useful feedback between the elements in the widget tree and those in the actual
application.

These functions allow the user to select, unselect, or invert all widgets in the widget tree.

These functions select the immediate parent or children of each of the currently selected
widgets.

These functions select all parents or children of each of the currently selected widgets. This
is a recursive search.

When the tree widget is initially displayed, the labels of each widget in the tree correspond
to the widget names. These functions will cause the label of all widgets in the tree to be
changed to show the class name, IDs, or window associated with each widget in the
application. The widget IDs, and windows are shown as hex numbers.

In addition, there are keyboard accelerators for each of the Tree operations. If the input
focus is over an individual widget in the tree, then that operation will only affect that
widget. If the input focus is in the Tree background, it will have exactly the same effect as
the corresponding menu item.

The translation entries shown may be applied to any widget in the application. If that
widget is a child of the Tree widget, then it will only affect that widget; otherwise, it will
have the same effect as the commands in the Tree menu.

This command is the inverse of the Select Widget in Client command; it will show the user
each widget that is currently selected in the widget tree by flashing the corresponding widget
in the application nunF1ashes (three by default) times in the f1ash-Color.

Key Option Translation Entry
space Unselect Select(nothing)

w Select Select(widget)

S Select Select(all)

i Invert Select(invert)

editres 123

Key Option Translation Entry

o Select Children Select(children)
d Select Descendants Select(descendants)

p Select Parent Select(parent)

a Select Ancestors Select(ancestors)

N Show Widget Names Relabel(name)

C Show Class Names Relabel(class)

| Show Widget 1Ds Relabel(id)

w Show Widget Windows Relabel(window)

T Toggle Widget/Class Name Relabel(toggle)

Clicking button 1 on a widget adds it to the set of selected widgets. Clicking button 2 on a widget deselects all other widgets
and then selects just that widget. Clicking button 3 on a widget toggles its label between the widget's instance name the

widget’s class name.

USING THE RESOURCE BOX

The resource box contains five different areas. Each of the areas, as they appear on the screen from top to bottom, are

discussed in the following list:
The Resource Line

The Widget Names and Classes

Normal and Constraint Resources

Resource Value

This area at the top of the resource box shows the current resource name exactly as it
would appear if you were to save it to a file or apply it.

This area enables you to select exactly which widgets this resource will apply to. The
area contains four lines; the first contains the name of the selected widget and all its
ancestors, and the more restrictive dot (.) separator. The second line contains less
specific class names of each widget, as well as the less restrictive star (*) separator.
The third line contains a set of special buttons called Any Widget that will generalize
this level to match any widget. The last line contains a set of special buttons called
Any Widget Chain that will turn the single level into something that matches zero or
more levels.

The initial state of this area is the most restrictive, using the resource names and the
dot separator. By selecting the other buttons in this area, you can ease the restrictions
to allow more and more widgets to match the specification. The extreme case is to
select all the Any Widget Chain buttons, which will match every widget in the
application. As you select different buttons, the tree display will update to show you
exactly which widgets will be affected by the current resource specification.

The next area allows you to select the name of the normal or constraint resources
you wish to set. Some widgets may not have constraint resources, so that area will
not appear.

This next area allows you to enter the resource value. This value should be entered
exactly as you would type a line into your resource file. Thus, it should contain no
unescaped newlines. There are a few special character sequences for this file:

\n- This will be replaced with a newline.

\#H - Where # is any octal digit. This will be replaced with a single
byte that contains this sequence interpreted as an octal
number. For example, a value containing a NuLL byte can be
stored by specifying \eoo.

\<new-line>- This will compress to nothing.

\\- This will compress to a single backslash.

124 Part I: User Commands

Command Area

BLOCKING editres REQUESTS

This area contains several command buttons, described in the following list:

The Set Save File button allows the user to modify file that the resources will be
saved to. This button will bring up a dialog box that will ask you for a filename;
after the filename has been entered, either hit carriage-return or click on the
Okay button. To pop down the dialog box without changing the save file, click
the Cancel button.

The Save button will append the resource line already described to the end of the
current save file. If no save file has been set, the Set Save File dialog box will be
popped up to prompt the user for a filename.

The Apply button attempts to perform a xtSetvalues call on all widgets that
match the resource line described earlier. The value specified is applied directly
to all matching widgets. This behavior is an attempt to give a dynamic feel to the
resource editor. Since this feature allows users to put an application in states it
may not be willing to handle, a hook has been provided to allow specific
applications to block these setvalues requests. (See “Blocking editres Requests,”
following).

Unfortunately, due to design constraints imposed on the widgets by the X
Toolkit and the Resource Manager, trying to coerce an inherently static system
into dynamic behavior can cause strange results. There is no guarantee that the
results of an apply will be the same as what will happen when you save the value
and restart the application. This functionality is provided to try to give you a
rough feel for what your changes will accomplish, and the results obtained
should be considered suspect at best. Having said that, this is one of the neatest
features of editres, and | strongly suggest that you play with it, and see what it
can do.

The Save and Apply button combines the Save and Apply actions described
earlier into one button.

The Popdown Resource Box button will remove the resource box from the
display.

The editres protocol has been built into the Athena Widget set. This allows all applications that are linked against xaw to be
able to speak to the resource editor. Although this provides great flexibility, and is a useful tool, it can quite easily be abused.
It is therefore possible for any xaw application to specify a value for the editresBlock resource to keep editres from divulging
information about its internals, or to disable the setvalues part of the protocol.

editresBlock (Class Editresblock) specifies which type of blocking this application wishes to impose on the editres protocol.

The accepted values are as follows:

all Block all requests.

setvalues Block all setvalues requests. As this is the only editres request that actually modifies the application, this
is in effect stating that the application is read-only.

none Allow all editres requests.

Remember that these resources are set on any xaw application, not editres. They allow individual applications to keep all or
some of the requests editres makes from ever succeeding. Of course, editres is also an xaw application, so it may also be
viewed and modified by editres (rather recursive, I know); these commands can be blocked by setting the editresBlock

resource on editres itself.

RESOURCES

For editres, the available application resources are as follows:

nunFlashes (Class NumFlashes) specifies the number of times the widgets in the application will be flashed when the Show

Active Widgets command in invoked.

editres

flashTime (Class FlashTime) specifies the mount of time between the flashes described in the preceding entry.

flashColor (Class flashColor) specifies the color used to flash application widgets. A bright color should be used that will
immediately draw your attention to the area being flashed, such as red or yellow.

125

saveResourcesFile (Class SaveResourcesFile) is the file the resource line will be append to when the Save button activated in

the resource box.

WIDGETS

In order to specify resources, it is useful to know the hierarchy of the widgets that compose editres. In the following
notation, indentation indicates hierarchical structure. The widget class name is given first, followed by the widget instance

name.

Editres editres

Paned paned
Box box
MenuButton commands

SimpleMenu menu
SmeBSB sendTree
SmeBSB refreshTree
SmeBSB dumpTreeToFile

SmeLine line SmeBSB getResourcelList

SmeLine line
SmeBSB quit

MenuButton treeCommands

SimpleMenuumenu

SmeBSB showClientWidget
SmeBSB selectAll

SmeBSB unselectAll
SmeBSB invertAll

SmeLine line

SmeBSB selectChildren
SmeBSB selectParent
SmeBSB selectDescendants
SmeBSB selectAncestors
SmeLine line

SmeBSB showWidgetNames
SmeBSB showClassNames
SmeBSB showWidgetIDs
SmeBSB showWidgetWindows
SmeLine line

SmeBSB flashActiveWidgets

Paned hPane

Panner panner
Label userMessage
Grip grip

Porthole porthole

Tree tree
Toggle <name of widget in application>

TransientShell resourceBox

Paned pane

Label resourcelLabel
Form namesAndClasses
Toggle dot

Toggle star

Toggle any

Toggle name

126 Part I: User Commands

Toggle class

Label namesLabel
List namesList
Label constraintlLabel
List constraintList
Form valueForm
Label valuelLabel
Text valueText
Box commandBox
Command setFile
Command save
Command apply
Command saveAndApply
Command cancel
Grip grip

Grip grip

ENVIRONMENT

DISPLAY To get the default host and display number
XENVIRONMENT To get the name of a resource file that overrides the global resources stored in the RESOURCE_MANAGER
property.

FILES

<XRoot>/1ib/X11/app-defaults/Editres Specifies required resources.

SEE ALSO
X(1), xrdb(1), Athena Widget Set

RESTRICTIONS

This is a prototype. There are lots of nifty features | would love to add, but I hope this will give you some ideas about what a
resource editor can do.

AUTHOR
Chris D. Peterson (formerly MIT X Consortium)
X Version 11 Release 6

elvis, ex, vi, view, input
elvis, ex, vi, view, input—The editor

SYNOPSIS

elvis [flags][+cmd][files...]

DESCRIPTION
elvis is a text editor that emulates vi/ex.

On systems which pass the program name as an argument, such as UNIX and Minix, you may also install e1vis under the
names ex, vi, view, and input. These extra names would normally be links to elvis; see the 1n shell command.

eluis, ex, vi, niew, input 197

When elvis is invoked as vi, it behaves exactly as though it was invoked as elvis. However, if you invoke elvis as view, then
the readonly option is set as though you had given it the -r flag. If you invoke elvis as ex, then elvis will start up in the
colon command mode instead of the visual command mode, as though you had given it the -e flag. If you invoke elvis as
input Or edit, then elvis will start up in input mode, as though the -i flag was given.

OPTIONS

-r To the real vi, this flag means that a previous edit should be recovered. elvis, though, has a
separate program, called elvrec(1), for recovering files. When you invoke elvis with -r, elvis will
tell you to run elvrec.

-R This sets the readonly option, so you won't accidentally overwrite a file.

-s This sets the safer option, which disables many potentially harmful commands. It has not been
rigorously proven to be absolutely secure, however.

-t tag This causes elvis to start editing at the given tag.

-m [File] elvis will search through file for something that looks like an error message from a compiler. It
will then begin editing the source file that caused the error, with the cursor sitting on the line where
the error was detected. If you don’t explicitly name a file, then errlist is assumed.

-e elvis will start up in colon command mode.

-v elvis will start up in visual command mode.

-i elvis will start up in input mode.

-w winsize Sets the window option’s value to winsize.

+command OF -c¢ command I you use the +command parameter, then after the first file is loaded, command is executed as an ex
command. A typical example would be elvis +237 foo, which would cause elvis to start editing
foo and then move directly to line 237. The -c¢ command variant was added for UNIX SysV

compatibility.
FILES

/tmp/elv* During editing, elvis stores text in a temporary file. For UNIX, this file will usually be stored in
the /tmp directory, and the first three characters will be e1v. For other systems, the temporary files
may be stored someplace else; see the version-specific section of the documentation.

tags This is the database used by the :tags command and the -t option. It is usually created by the
ctags(1) program.

.exrc Of elvis.rc On UNIX-like systems, a file called .exrc in your home directory is executed as a series of ex
commands. A file by the same name may be executed in the current directory, too. On non-UNIX
systems, .exrc is usually an invalid filename; there, the initialization file is called elvis.rc instead.

ENVIRONMENT

TERM This is the name of your terminal’s entry in the termcap oOr terminfo database. The list of legal
values varies from one system to another.

TERMCAP Optional. If your system uses termcap, and the TERMCAP variable is unset, then elvis will read your

terminal’s definition from /etc/termcap. If TERMCAP is set to the full pathname of a file (starting with
a /) then elvis will look in the named file instead of /etc/termcap. If TERMCAP is set to a value which
doesn’t start with a /, then its value is assumed to be the full termcap entry for your terminal.

TERMINFO Optional. If your system uses terminfo, and the TERMINFO variable is unset, then elvis will read your
terminal’s definition from the database in the /usr/1ib/terminfo database. If TERMINFO is set, then its
value is used as the database name to use instead of /usr/lib/terminfo.

LINES, COLUMNS Optional. These variables, if set, will override the screen size values given in the termcap/terminfo
for your terminal. On windowing systems such as X, elvis has other ways of determining the
screen size, so you should probably leave these variables unset.

EXINIT Optional. This variable can hold ex commands which will be executed instead of the .exrc file in
your home directory.

128 Part I: User Commands

SHELL Optional. The sHELL variable sets the default value for the she1l option, which determines which
shell program is used to perform wildcard expansion in filenames, and also which is used to execute
filters or external programs. The default value on UNIX systems is /bin/sh.

Note: Under MS-DOS, this variable is called comspec instead of SHELL.

HOME This variable should be set to the name of your home directory. elvis looks for its initialization file
there; if HoME is unset, then the initialization file will not be executed.

TAGPATH Optional. This variable is used by the ref program, which is invoked by the shift-K, control-1,
and :tag commands. See ref for more information.

TMP, TEMP These optional environment variables are only used in non-UNIX versions of elvis. They allow

you to supply a directory name to be used for storing temporary files.

SEE ALSO
ctags(1), ref(1), elvprsv(1), elvrec(l)
Elvis—A Clone of Vi/Ex, the complete elvis documentation.

BUGS

There is no Lisp support. Certain other features are missing, too.

Auto-indent mode is not quite compatible with the real vi. Among other things, e°p and " *p don’t do what you might
expect.

Long lines are displayed differently. The real vi wraps long lines onto multiple rows of the screen, but elvis scrolls sideways.

AUTHOR
Steve Kirkendall (kirkenda@cs.pdx.edu)

Many other people have worked to port elvis to various operating systems. To see who deserves credit, run the :version
command from within elvis, or look in the system-specific section of the complete documentation.

elvprsv

elvprsv—Preserve the modified version of a file after a crash

SYNOPSIS

elvprsv ["-why elvis died"] /tmp/filename...
elvprsv -R /tmp/filename...

DESCRIPTION
elvprsv preserves your edited text after elvis dies. The text can be recovered later, via the elvprsv program.

For UNIX-like systems, you should never need to run this program from the command line. It is run automatically when
elvis is about to die, and it should be run (via /etc/rc) when the computer is booted. THAT'S ALL!

For non-UNIX systems such as MS-DOS or VMS, you can either use elvprsv the same way as under UNIX systems (by
running it from your AuToexec.BAT file), or you can run it separately with the -r flag to recover the files in one step.

If you're editing a file when elvis dies (due to a bug, system crash, power failure, and so on), then elvprsv will preserve the
most recent version of your text. The preserved text is stored in a special directory; it does not overwrite your text file
automatically. (If the preservation directory hasn’t been set up correctly, then elvprsv will simply send you a mail message
describing how to manually run elvprsv.)

elvprsv Will send mail to any user whose work it preserves, if your operating system normally supports mail.

elvrec

FILES
/tmp/elv* The temporary file that elvis was using when it died.
/usr/preserve/p* The text that is preserved by elvprsv.

/usr/preserve/Index A text file which lists the names of all preserved files, and the names of the /usr/preserve/p* files
that contain their preserved text.

BUGS

Due to the permissions on the /usr/preserve directory, on UNIX systems elvprsv must be run as superuser. This is
accomplished by making the elvprsv executable be owned by root and turning on its “set user id” bit.

If you're editing a nameless buffer when e1vis dies, then elvprsv will pretend that the file was named foo.

AUTHOR

Steve Kirkendall (kirkenda@cs.pdx.edu)

elvrec

elvrec— Recover the modified version of a file after a crash

SYNOPSIS

elvrec [preservedfile [newfile]]

DESCRIPTION

If you're editing a file when elvis dies, the system crashes, or power fails, the most recent version of your text will be
preserved. The preserved text is stored in a special directory; it does not overwrite your text file automatically.

The elvrec program locates the preserved version of a given file, and writes it over the top of your text file—or to a new file,
if you prefer. The recovered file will have nearly all of your changes.

To see a list of all recoverable files, run elvrec with no arguments.

NOTE

If you haven’t set up a directory for file preservation, you'll have to manually run the elvprsv program instead of elvrec.

FILES

/usr/preserve/p* The text that was preserved when elvis died.

usr/preserve/Index A text file that lists the names of all preserved files, and the names of the /usr/preserve/p+ files that
contain their preserved text.

BUGS

elvrec is very picky about filenames. You must tell it to recover the file using exactly the same pathname as when you were
editing it. The simplest way to do this is to go into the same directory that you were editing, and invoke elvrec with the
same filename as elvis. If that doesn’t work, then try running elvrec with no arguments, to see exactly which pathname it is
using for the desired file.

Due to the permissions on the /usr/preserve directory, on UNIX systems elvrec must be run as superuser. This is
accomplished by making the elvrec executable be owned by root and setting its “set user id” bit.

If you're editing a nameless buffer when elvis dies, then elvrec will pretend that the file was named foo.

129

130

Part I: User Commands

AUTHOR

Steve Kirkendall (kirkenda@cs.pdx.edu)

emacs

emacs—GNU project emacs

SYNOPSIS

emacs [command-line switches] [files ...]

DESCRIPTION

GNU enmacs is a version of emacs, written by the author of the original (PDP-10) emacs, Richard Stallman.

The primary documentation of GNU emacs is in the GNU Emacs Manual, which you can read online using info, a
subsystem of emacs. Please look there for complete and up-to-date documentation. This man page is updated only when
someone volunteers to do so; the emacs maintainers’ priority goal is to minimize the amount of time this man page takes
away from other more useful projects.

The user functionality of GNU emacs encompasses everything other emacs editors do, and it is easily extensible since its
editing commands are written in Lisp.

emacs has an extensive interactive help facility, but the facility assumes that you know how to manipulate emacs windows and
buffers. Ctrl+h (backspace or Ctrl+h) enters the Help facility. Help Tutorial (Ctrl+h t) requests an interactive tutorial that
can teach beginners the fundamentals of emacs in a few minutes. Help Apropos (Ctrl+h a) helps you find a command given
its functionality, Help Character (Ctrl+h c) describes a given character’s effect, and Help Function (Ctrl+h f) describes a
given Lisp function specified by name.

emacs’s Undo can undo several steps of modification to your buffers, so it is easy to recover from editing mistakes.

GNU emacs’s many special packages handle mail reading (ruail) and sending (Mail), outline editing (outline), compiling
(compile), running subshells within emacs windows (shell), running a Lisp read-eval-print loop (Lisp-Interaction-Mode), and
automated psychotherapy (poctor).

There is an extensive reference manual, but users of other emacses should have little trouble adapting even without a copy.
Users new to emacs will be able to use basic features fairly rapidly by studying the tutorial and using the self-documentation
features.

OPTIONS
The following options are of general interest:
file Edit file.
+number Go to the line specified by number (do not insert a space between the + sign and the number).
-q Do not load an init file.
-u user Load user’s init file.
-t file Use specified file as the terminal instead of using stdin/stdout. This must be the first argument specified

in the command line.

The following options are Lisp-oriented (these options are processed in the order encountered):
-f function Execute the Lisp function function.

-1 file Load the Lisp code in the file file.

The following options are useful when running emacs as a batch editor:

-batch Edit in batch mode. The editor will send messages to stdout. This option must be the first in the
argument list. You must use -1 and -f options to specify files to execute and functions to call.

-kill Exit emacs while in batch mode.

emacs

131
USING emacs WITH X
emacs has been tailored to work well with the X Window System. If you run emacs from under X windows, it will create its
own X window to display in. You will probably want to start the editor as a background process so that you can continue
using your original window.
emacs can be started with the following X switches:
-rn name Specifies the program name which should be used when looking up defaults in the
user’s X resources. This must be the first option specified in the command line.
-name name Specifies the name that should be assigned to the emacs window.
-r Display the emacs window in reverse video.
-i Use the “kitchen sink” bitmap icon when iconifying the emacs window.
—font font, -fn font Set the emacs window’s font to that specified by font. You will find the various X

fonts in the /usr/1ib/X11/fonts directory. Note that emacs will only accept fixed
width fonts. Under the X11 Release 4 font-naming conventions, any font with the
value m or ¢ in the eleventh field of the font name is a fixed width font. Furthermore,
fonts whose name are of the form width” height are generally fixed width, as is the
font fixed. See x1sfonts(1) for more information.

When you specify a font, be sure to put a space between the switch and the font

name.

-b pixels Set the emacs window’s border width to the number of pixels specified by pixels.
Defaults to one pixel on each side of the window.

-ib pixels Set the window’s internal border width to the number of pixels specified by pixels.
Defaults to one pixel of padding on each side of the window.

-geometry geometry Set the emacs window’s width, height, and position as specified. The geometry

specification is in the standard uformat; see x(1) for more information. The width
and height are specified in characters; the default is 80 by 24.

-fg color On color displays, sets the color of the text. See the file fusr/1ib/X11/rgb.txt for a
list of valid color names.

-bg color On color displays, sets the color of the window’s background.

-bd color On color displays, sets the color of the window’s border.

-cr color On color displays, sets the color of the window’s text cursor.

-ms color On color displays, sets the color of the window’s mouse cursor.

-d displayname, -display displayname Create the emacs window on the display specified by displayname. Must be the first
option specified in the command line.

-nw Tells emacs not to use its special interface to x. If you use this switch when invoking
emacs from an xterm(1) window, display is done in that window. This must be the
first option specified in the command line.

You can set x default values for your emacs windows in your xresources file; see xrdb(1). Use the following format:

emacs.keyword:value

where value specifies the default value of keyword. emacs lets you set default values for the following keywords:

font (class Font) Sets the window’s text font.

reverseVideo (Class Reversevideo) If reversevideo’s value is set to on, the window will be displayed in reverse video.
bitmapIcon (class BitmapIcon) If bitmaplcon’s value is set to on, the window will iconify into the “kitchen sink.”
borderWidth (class BorderWidth) Sets the window’s border width in pixels.

internalBorder (Class Borderwidth) Sets the window’s internal border width in pixels.

foreground (class Foreground) For color displays, sets the window’s text color.

background (class Background) For color displays, sets the window’s background color.

borderColor (class BorderColor) For color displays, sets the color of the window’s border.

132 Part I: User Commands

cursorColor (class Foreground) For color displays, sets the color of the window’s text cursor.
pointerColor (class Foreground) For color displays, sets the color of the window’s mouse cursor.
geometry (class Geometry) Sets the geometry of the emacs window.

title (class Title)
iconName (class Title)

Sets the title of the emacs window.
Sets the icon name for the emacs window icon.

If you try to set color values while using a black-and-white display, the window’s characteristics will default as follows: The
foreground color will be set to black, the background color will be set to white, the border color will be set to gray, and the
text and mouse cursors will be set to black.

USING THE MOUSE
The following lists the mouse button bindings for the emacs window under X11.
Mouse Button Function
left Set point.
middle Paste text.
right Cut text into X cut buffer.
Shift+middle Cut text into X cut buffer.
Shift+right Paste text.
Ctrl+middle Cut text into X cut buffer and kill it.
Ctrl+right Select this window, then split it into two windows. Same as typing Ctrl+x 2.

Ctrl+Shift+left

Ctrl+Shift+middle
Ctrl+Shift+right

X buffer menu; hold the buttons and keys down, wait for menu to appear, select buffer, and
release. Move mouse out of menu and release to cancel.

X help menu; pop up index card menu for emacs help.
Select window with mouse, and delete all other windows. Same as typing Ctrl+x 1.

MANUALS

You can order printed copies of the GNU Emacs Manual from the Free Software Foundation, which develops GNU
software. See the file oroers for ordering information.

Your local emacs maintainer might also have copies available. As with all software and publications from FSF, everyone is
permitted to make and distribute copies of the emacs manual. The TeX source to the manual is also included in the emacs

source distribution.

FILES

/usr/local/info Files for the info documentation browser (a subsystem of emacs) to
refer to. Currently not much of UNIX is documented here, but the
complete text of the emacs reference manual is included in a
convenient tree structured form.

/usr/local/lib/emacs/$VERSION/src C source files and object files.

/usr/local/lib/emacs/$VERSION/lisp Lisp source files and compiled files that define most editing com-
mands. Some are preloaded; others are autoloaded from this directory
when used.

/usr/local/lib/emacs/$VERSION/etc Various programs that are used with GNU emacs, and some files of
information.

/usr/local/lib/emacs/$VERSION/etc/DOC. * Contains the documentation strings for the Lisp primitives and

preloaded Lisp functions of GNU emacs. They are stored here to
reduce the size of emacs proper.

emacs

133
/usr/local/lib/emacs/$VERSION/etc/DIFF Discusses GNU emacs versus Twenex emacs.
/usr/local/lib/emacs/$VERSION/etc/CCADIFF Discusses GNU emacs versus CCA emacs.
/usr/local/lib/emacs/$VERSION/etc/GOSDIFF Discusses GNU emacs versus Gosling emacs.
/usr/local/lib/emacs/$VERSION/etc/SERVICE Lists people offering various services to assist users of GNU emacs,

including education, troubleshooting, porting, and customization.
These files also have information useful to anyone wanting to write
programs in the emacs Lisp extension language, which has not yet
been fully documented.

Jusr/local/lib/emacs/lock Holds lock files that are made for all files being modified in emacs, to
prevent simultaneous modification of one file by two users.

/usr/local/lib/emacs/$VERSION/$ARCHITECTURE/cpp The GNU cpp, needed for building emacs on certain versions of
UNIX where the standard cpp cannot handle long names for macros.

fusr/1ib/X11/rgb.txt List of valid x color names.

BUGS

There is a mailing list, bug-gnu-emacs@prep.ai.mit.edu on the Internet (ucbvax!prep.ai.mit.edu!bug-gnu-emacs ON
UUCPnet), for reporting emacs bugs and fixes. But before reporting something as a bug, please try to be sure that it really is a
bug, not a misunderstanding or a deliberate feature. We ask you to read the section “Reporting emacs Bugs” near the end of
the reference manual (or info system) for hints on how and when to report bugs. Also, include the version number of the
emacs YOU are running in every bug report that you send in.

Do not expect a personal answer to a bug report. The purpose of reporting bugs is to get them fixed for everyone in the next
release, if possible. For personal assistance, look in the service file for a list of people who offer it.

Please do not send anything but bug reports to this mailing list. Send requests to be added to mailing lists to the special list
info-gnu-emacs-request@prep.ai.mit.edu (Or the corresponding UUCP address). For more information about emacs mailing
lists, see the file /usr/local/emacs/etc/MAILINGLISTS. Bugs tend actually to be fixed if they can be isolated, so it is in your
interest to report them in such a way that they can be easily reproduced.

One bug that I know about: Shell will not work with programs running in Raw mode on some UNIX versions.

UNRESTRICTIONS

emacs is free; anyone may redistribute copies of emacs to anyone under the terms stated in the emacs General Public License, a
copy of which accompanies each copy of emacs and which also appears in the reference manual.

Copies of emacs may sometimes be received packaged with distributions of UNIX systems, but it is never included in the
scope of any license covering those systems. Such inclusion violates the terms on which distribution is permitted. In fact, the
primary purpose of the General Public License is to prohibit anyone from attaching any other restrictions to redistribution
of emacs.

Richard Stallman encourages you to improve and extend emacs, and urges that you contribute your extensions to the GNU
library. Eventually GNU (GNU’s Not UNIX) will be a complete replacement for Berkeley UNIX. Everyone will be free to
use, copy, study, and change the GNU system.

SEE ALSO
X(1), x1sfonts(1), xterm(1), xrdb(1)

AUTHORS

emacs Was written by Richard Stallman and the Free Software Foundation. Joachim Martillo and Robert Krawitz added the X
features.

19 April 1994

134 Part I: User Commands

emacstool

emacstool—Run emacs under Sun windows with function key and mouse support.

SYNOPSIS

emacstool [{window_args} {-rc run_command_path} args ...]

TYPICAL USAGE
In ~/.suntools Or ~/.rootmenu, include a line like this:

"Emacstool" emacstool -WI emacs.icon -f emacstool-init

DESCRIPTION

emacstool creates a SunView frame and a tty subwindow within which mouse events and function keys are translated to
ASCII sequences that emacs can parse. The translated input events are sent to the process running in the tty subwindow,
which is typically GNU emacs. emacstool thereby allows GNU emacs users to make full use of the mouse and function keys.
GNU enacs can be loaded with functions to interpret the mouse and function-key events to make a truly fine screen-oriented
editor for the Sun Workstation.

NOTE

GNU emacs has a special interface to the X Window System as well. The X Window System has many technical advan-
tages, it is an industry standard, and it is also free software. The Free Software Foundation urges you to try X Windows,
and distributes a free copy of x on emacs distribution tapes.

Function keys are translated to a sequence of the form ~x*[a-o][1rt]. The last character is 1, r, or t, corresponding to
whether the key is among the Left, Right, or Top function keys. The third character indicates which button of the group was
pressed. Thus, the function key in the lower-right corner will transmit the sequence ~x*or. In addition, the [1rt] is affected
by the Control, Meta, and Shift keys. Unshifted Ctrl keys will be nonalphabetic: C-lis [,1, C-ris [2], C-tis [4].

Mouse buttons are encoded as “x"@([124] x y)\n. "x"e is the standard GNU emacs mouse event prefix; it is followed by a list
indicating the button pressed and the character row and column of the point in the window where the mouse cursor is, and
followed by a newline character. In GNU emacs, the “x"@ dispatches to a mouse event handler which then reads the following
list.

OPTIONS
emacstool supports all the standard window arguments, including font and icon specifiers.

By default, emacstool runs the program emacs in the created subwindow. The value of the environment variable EmacsTOOL
can be used to override this if your version of emacs is not accessible on your search path by the name emacs. In addition, the
run command can be set by the pathname following the last occurrence of the -rc flag. This is convenient for using emacstool
to run on remote machines.

All other command-line arguments not used by the window system are passed as arguments to the program that runs in the
emacstool window.

For example,

local% (emacstool -rc rlogin remote -8 &)&

will create an emacstool window logged in to a machine named remote. If emacs is run from this window, emacstool will
encode mouse and function keys, and send them to rlogin. If emacs is run from this shell on the remote machine, it will see
the mouse and function keys properly. However, since the remote host does not have access to the screen, the cursor cannot
be changed, menus will not appear, and the selection buffer (STurF) is limited.

etags 135

USING WITH GNU emacs

The GNU emacs files 1isp/term/sun.el, lisp/sun-mouse.el, lisp/sun-fns.el, and src/sunfns.c provide emacs support

for the emacstool and function keys. emacstool will automatically set the TErM environment variable to be sun and unset

the environment variable TERMCAP. That is, these variables will not be inherited from the shell that starts emacstool. Since the
terminal type is Sun (that is, the environment variable TERM is set to SuN), emacs will automatically load the file 1isp/term/sun.
This, in turn, will ensure that sun-mouse. el is autoloaded when any mouse events are detected. It is suggested that sun-mouse
and sun-fns be loaded in your site-init.el file, so that they will always be loaded when running on a Sun workstation.

In addition, emacstool Sets the environment variable IN_EMACSTOOL = "t". Lisp code in your “/.emacs Can use (getenv
"IN_EMACSTOOL") to determine whether to do emacstool-specific initialization. sun.el uses this to automatically call emacstool-
init if (getenv "IN_EMACSTOOL") is defined.

The file src/sunfns.c defines several useful functions for emacs on the Sun. Among these are procedures to pop up SunView
menus, put and get from the SunView sTurr buffer, and a procedure for changing the cursor icon. If you want to define or
edit cursor icons, there is a rudimentary mouse-driven icon editor in the file 1isp/sun-cursors.el. Try invoking (sc:edit-
cursor).

BUGS

It takes a few milliseconds to create a menu before it pops up.

ENVIRONMENT VARIABLES

EMACSTOOL, IN_EMACSTOOL, TERM, TERMCAP

FILES

emacs

SEE ALSO

emacs(1), .../etc/SUN-SUPPORT, .../lisp/term/sun.el

etags
etags—Generate tag file for emacs

ctags—Generate tag file for vi

SYNOPSIS

etags [-aCDSVH] [-i file][-o0 tagfile]
[--ct+] [--no-defines] [--ignore-indentation] [--help] [--version]
[--include=file] [--output=tagfile] [--append] file ...

ctags [-aCdSVH] [-BtTuvwx] [-o tagfile]

[--c++] [--defines] [--ignore-indentation]

[--backward-search] [--forward-search] [--typedefs] [--typedefs-and-c++]
[--no-warn] [--cxref] [--help] [--version]

[--output=tagfile] [--append] [--update] file ...

DESCRIPTION

The etags program is used to create a tag table file, in a format understood by emacs(1); the ctags program is used to create a
similar table in a format understood by vi(1) . Both forms of the program understand the syntax of C, FORTRAN, Pascal,
LaTeX, Scheme, emacs Lisp/Common Lisp, and most assembler—like syntaxes. Both forms read the files specified on the
command line, and write a tag table (defaults: TaGs for etags, tags for ctags) in the current working directory. The programs
recognize the language used in an input file based on its filename and contents; there are no switches for specifying the
language.

136

Part I: User Commands

OPTIONS

Some options make sense only for the vi-style tag files produced by ctags; etags does not recognize them. The programs
accept unambiguous abbreviations for long option names.

-a,

_B

-d,

—D,

- -append

- -backward-search

S-ctt

--defines

--no-defines

file, --include=File

tagfile, - -output=tagfile

-S, --ignore-indentation
-t, --typedefs
-T, --typedefs-and-c++
-u, --update
-v, --vgrind
-W, --no-warn
-X, --cxref
-H, --help
-V, --version
SEE ALSO

Append to existing tag file. (For vi-format tag files, see also - -update.)

Tag files written in the format expected by vi contain regular expression search instructions;
the -8 option writes them using the delimiter 2, to search backwards through files. The
default is to use the delimiter / to search forwards through files. Only ctags accepts this
option.

Treat files with .c and .h extensions as C++ code, not C code. Files with .c, .H, .cxx, .hxx,
or .cc extensions are always assumed to be C++ code.

Create tag entries for C preprocessor definitions, too. This is the default behavior for etags,
so this option is only accepted by ctags.

Do not create tag entries for C preprocessor definitions. This may make the tags file much
smaller if many header files are tagged. This is the default behavior for ctags, so this option
is only accepted by etags.

Include a note in tag file indicating that, when searching for a tag, one should also consult
the tags file fite after checking the current file. Only etags accepts this option.

Explicit name of file for tag table; overrides default TaGs or tags. (But ignored with -v or
-x.)

Don't rely on indentation as much as we normally do. Currently, this means not to assume
that a closing brace in the first column is the final brace of a function or structure definition
in C and C++.

Record typedefs in C code as tags. Since this is the default behavior of etags, only ctags
accepts this option.

Generate tag entries for typedefs, struct, enum, and union tags, and C++ member functions.
Since this is the default behavior of etags, only ctags accepts this option.

Update tag entries for files specified on command line, leaving tag entries for other files in
place. Currently, this is implemented by deleting the existing entries for the given files and
then rewriting the new entries at the end of the tags file. It is often faster to simply rebuild
the entire tag file than to use this. Only ctags accepts this option.

Instead of generating a tag file, write index (in vgrind format) to standard output. Only
ctags accepts this option.

Suppress warning messages about duplicate entries. The etags program does not check for
duplicate entries, so this option is not allowed with it.

Instead of generating a tag file, write a cross-reference (in cxref format) to standard output.
Only ctags accepts this option.

Print usage information.

Print the current version of the program (same as the version of the emacs etags is shipped
with).

emacs entry in info; GNU Emacs Manual, Richard Stallman.
cxref(1), emacs(1), vgrind(1), vi(1).
COPYING

Copyright O 1992 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

find 137

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions
for modified versions, except that this permission notice may be included in translations approved by the Free Software
Foundation instead of in the original English.

GNU Tools, 19 April 1994

expand

expand—Convert tabs to spaces

SYNOPSIS
expand [-tabl[,tab2[,...]]] [-t tabl[,tab2[,...]]] [-i] [—tabs=tabl[,tab2[,...]]]
[--initial] [--help] [--version] [file...]

DESCRIPTION

This manual page documents the GNU version of expand. expand writes the contents of each given file, or the standard input
if none are given or when a file named - is given, to the standard output, with tab characters converted to the appropriate
number of spaces. By default, expand converts all tabs to spaces. It preserves backspace characters in the output; they
decrement the column count for tab calculations. The default action is equivalent to -8 (set tabs every 8 columns).

OPTIONS

-, -t, --tabs tabl[,tab2[,...]] If only one tab stop is given, set the tabs tab1 spaces apart instead of the default s.
Otherwise, set the tabs at columns tabi, tab2, and so forth (numbered from 0) and
replace any tabs beyond the tab stops given with single spaces. If the tab-stops are
specified with the -t or - -tabs option, they can be separated by blanks as well as by
commas.

-i, --initial Only convert initial tabs (those that precede all nonspace or tab characters) on each
line to spaces.

--help Print a usage message and exit with a nonzero status.

--version Print version information on standard output then exit.

GNU Text Utilities

find
find—Search for files in a directory hierarchy

SYNOPSIS

find [path...] [expression]

DESCRIPTION

This manual page documents the GNU version of find. find searches the directory tree rooted at each given filename by
evaluating the given expression from left to right, according to the rules of precedence (see “Operators,” later in this manual
page), until the outcome is known (the left side is False for AND operations, True for or), at which point find moves on to the
next filename.

The first argument that begins with -, (,), ,, or ! is taken to be the beginning of the expression; any arguments before it are
paths to search, and any arguments after it are the rest of the expression. If no paths are given, the current directory is used. If
no expression is given, the expression -print is used.

find exits with status o if all files are processed successfully, greater than e if errors occur.

138 Part I: User Commands

EXPRESSIONS

The expression is made up of options (which affect overall operation rather than the processing of a specific file, and always
return True), tests (which return a True or False value), and actions (which have side effects and return a True or False value),
all separated by operators. -and is assumed where the operator is omitted. If the expression contains no actions other than -
prune, -print is performed on all files for which the expression is true.

OPTIONS

All options always return True. They always take effect, rather than being processed only when their place in the expression is
reached. Therefore, for clarity, it is best to place them at the beginning of the expression.

-daystart
-depth
-follow

-help, —help
-maxdepth levels

-mindepth levels
-mount

-noleaf

-version, —version

-xdev

TESTS

Measure times (for -amin, -atime, -cmin, -ctime, -mmin, and -mtime) from the beginning of today
rather than from 24 hours ago.

Process each directory’s contents before the directory itself.
Dereference symbolic links. Implies -noleaf.
Print a summary of the command-line usage of find and exit.

Descend at most 1evels (a nonnegative integer) levels of directories below the command-line
arguments. -maxdepth @ means only apply the tests and actions to the command-line arguments.
Do not apply any tests or actions at levels less than 1evels (a nonnegative integer). -mindepth 1
means process all files except the command-line arguments.

Don't descend directories on other filesystems. An alternate name for -xdev, for compatibility with
some other versions of find.

Do not optimize by assuming that directories contain two fewer subdirectories than their hard link
count. This option is needed when searching filesystems that do not follow the UNIX directory-
link convention, such as CD-ROM or MS-DOS filesystems or AFS volume mount points. Each
directory on a normal UNIX filesystem has at least 2 hard links: its name and its . entry. Addition-
ally, its subdirectories (if any) each have a .. entry linked to that directory. When find is examining
a directory, after it has statted two fewer subdirectories than the directory’s link count, it knows
that the rest of the entries in the directory are nondirectories (1eaf files in the directory tree). If
only the files’ names need to be examined, there is no need to stat them; this gives a significant
increase in search speed.

Print the find version number and exit.

Don't descend directories on other filesystems.

Numeric arguments can be specified as

+n
-n
n
-amin n

-anewer file

-atime n
-cmin n

-cnewer file

-ctime n
-empty

-false

Greater than n.

Less than n.

Exactly n.

File was last accessed n minutes ago.

File was last accessed more recently than file was modified. -anewer is affected by -fol1low only if -
follow comes before -anewer on the command line.

File was last accessed n*24 hours ago.
File’s status was last changed n minutes ago.

File’s status was last changed more recently than file was modified. -cnewer is affected by -follow
only if -follow comes before -cnewer on the command line.

File’s status was last changed n*24 hours ago.
File is empty and is either a regular file or a directory.
Always false.

-fstype type

-gid n
-group gname
-ilname pattern

-iname pattern

-inum n

-ipath pattern
-iregex pattern
-links n

-lname pattern

-mmin n
-mtime n

-name pattern

-newer file

-nouser

-nogroup
-path pattern

-perm mode

-perm -mode
-perm +mode

-regex pattern

-size n[bckw]

-true

-type c

find 130

File is on a filesystem of type type. The valid filesystem types vary among different versions of
UNIX; an incomplete list of filesystem types that are accepted on some version of UNIX or another
is: ufs, 4.2, 4.3, nfs, tmp, nfs, S51K, S52K. YOu can use -printf with the %F directive to see the types
of your filesystems.

File’s numeric group ID is n.
File belongs to group gname (numeric group 1D allowed).
Like -1name, but the match is case-insensitive.

Like -name, but the match is case-insensitive. For example, the patterns fo* and F?2 match the
filenames Foo, F00, foo, f0o, and so on.

File has inode number n.

Like -path, but the match is case-insensitive.
Like -regex, but the match is case-insensitive.
File has n links.

File is a symbolic link whose contents match shell pattern pattern. The meta characters do not treat
/ or . specially.

File’s data was last modified n minutes ago.
File’s data was last modified n*24 hours ago.

Base of filename (the path with the leading directories removed) matches shell pattern pattern. The
meta characters (*, 2, and [1) do not match a . at the start of the base name. To ignore a directory
and the files under it, use -prune; see an example in the description of -path.

File was modified more recently than file. -newer is affected by -fol1low only if -fol1ow comes before
-newer on the command line.

No user corresponds to file’s numeric user ID.
No group corresponds to file’s numeric group ID.

Filename matches shell pattern pattern. The meta characters do not treat / or . specially; so, for
example,

find . —path “./sr*sc’

will print an entry for a directory called . /src/misc (if one exists). To ignore a whole directory tree,
use -prune rather than checking every file in the tree. For example, to skip the directory src/emacs
and all files and directories under it, and print the names of the other files found, do something like
this:

find . —path *./src/emacs’ -prune -o -print

File’s permission bits are exactly mode (octal or symbolic). Symbolic modes use mode o as a point
of departure.

All of the permission bits mode are set for the file.
Any of the permission bits mode are set for the file.

Filename matches regular expression pattern. This is a match on the whole path, not a search. For
example, to match a file named . /fubar3, you can use the regular expression . *bar. or .*b.*3, but
not b.*r3.

File uses n units of space. The units are 512-byte blocks by default or if b follows n, bytes if ¢
follows n, kilobytes if k follows n, or 2-byte words if w follows n. The size does not count indirect
blocks, but it does count blocks in sparse files that are not actually allocated.

Always true.
File is of type c. Possible types:
b Block (buffered) special
¢ Character (unbuffered) special
d Directory
p Named pipe (FIFO)

140 Part I: User Commands

-uid n
-used n
-user uname

-xtype c

ACTIONS

-exec command;

-fls file
-fprint file

-fprinto file
-fprintf file format

-0k command;

-print

-printo

-printf format

£ Regular file I symbolic link
s Socket

File’s numeric user ID is n.
File was last accessed n days after its status was last changed.
File is owned by user uname (numeric user 1D allowed).

The same as -type unless the file is a symbolic link. For symbolic links: if -fo11ow has not been
given, True if the file is a link to a file of type c; if -follow has been given, True if c is 1. In other
words, for symbolic links, -xtype checks the type of the file that -type does not check.

Execute command; True if @ status is returned. All following arguments to find are taken to be
arguments to the command until an argument consisting of ; is encountered. The string {} is
replaced by the current filename being processed everywhere it occurs in the arguments to the
command, not just in arguments where it is alone, as in some versions of find. Both of these
constructions might need to be escaped (with a \) nor quoted to protect them from expansion by
the shell. The command is executed in the starting directory.

True; like -1s but write to file like -fprint.

True; print the full filename into file fite. If file does not exist when find is run, it is created; if it
does exist, it is truncated. The filenames /dev/stdout and /dev/stderr are handled specially; they
refer to the standard output and standard error output, respectively.

True; like -printe but write to file like -fprint.
True; like -printf but write to file like -fprint.

Like -exec but ask the user first (on the standard input); if the response does not start with y or v,
do not run the command, and return False.

True; print the full filename on the standard output, followed by a newline.

True; print the full filename on the standard output, followed by a null character. This allows
filenames that contain newlines to be correctly interpreted by programs that process the find
output.

True; print format on the standard output, interpreting n escapes and s directives. Field widths and
precisions can be specified as with the printf C function. Unlike -print, -printf does not add a
newline at the end of the string. The escapes and directives are as follows:

\a Alarm bell

\b Backspace

\c Stop printing from this format immediately and flush the output
\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\\ Aliteral backslash (‘\')

A\ character followed by any other character is treated as an ordinary character, so they both are
printed:

s Aliteral percent sign.
a File’s last access time in the format returned by the C ctime function.

%Ak File’s last access time in the format specified by k, which is either e or a directive for the C
strftime function. The possible values for k are listed below; some of them might not be
available on all systems, due to differences in strftime between systems.

@ seconds since Jan. 1, 1970, 00:00 GMT.

o2

o2

® 9 R I I ° o o o o°
I ST O @ MM o+ o Q O

=

o°

—

find

Time fields:

=

Hour (0. .23)

Hour (01..12)

Hour (0. .23)

Hour (1..12)

Minute (0e..59)

Locale’s a.m. or p.m.

Time, 12-hour (hh:mm:ss [AP]M)
Second (0. .61)

Time, 24-hour (hh:mm:ss)

Locale’s time representation (H:M:s)

Time zone (for example, EDT), or nothing if no time zone is
determinable

c 3 T = = X H

N X< -

Date fields:

Locale’s abbreviated weekday name (Sun. .Sat)

Locale’s full weekday name, variable length (Sunday. .Saturday)
Locale’s abbreviated month name (Jan. .Dec)

Locale’s full month name, variable length (January.. December)
Locale’s date and time (Sat Nov 04 12:02:33 EST 1989)

Day of month (e1..31)

Date (mm/dd/yy)

Same as b

Day of year (0o1..366)

Month (e1..12)

Week number of year with Sunday as first day of week (0. .53)
Day of week (0. .6)

Week number of year with Monday as first day of week (0. .53)
Locale’s date representation (mm/dd/yy)

y Last two digits of year (00..99)

Y Year (1970...)

oD U 2 o W o P> o

= = (=

<

File’s size in 512-byte blocks (rounded up).

File’s last status change time in the format returned by the C ctime function.
File’s last status change time in the format specified by k, which is the same as for %A.
File’s depth in the directory tree; e means the file is a command-line argument.
File’s name with any leading directories removed (only the last element).

Type of the filesystem the file is on; this value can be used for -fstype.

File’s group name, or numeric group 1D if the group has no name.

File’s numeric group ID.

Leading directories of file’s name (all but the last element).

Command-line argument under which file was found.

File’s inode number (in decimal).

File’s size in 1K blocks (rounded up).

Object of symbolic link (empty string if file is not a symbolic link).

Part I: User Commands

142
%n File’s permission bits (in octal).
%n Number of hard links to file.
%p File’s name.
%P File’s name with the name of the command-line argument under which it was found
removed.
%s File’s size in bytes.
st File’s last modification time in the format returned by the C ctime function.
%Tk File’s last modification time in the format specified by k, which is the same as for %A.
su File’s username, or numeric user ID if the user has no name.
su File’s numeric user ID.
A s character followed by any other character is discarded (but the other character is
printed).
-prune If -depth is not given, True; do not descend the current directory.
If -depth is given, False; no effect.
-1s True; list current file in 1s -dils format on standard output. The block counts are of 1K blocks,
unless the environment variable PosIXLY_CORRECT is set, in which case 512- byte blocks are used.
OPERATORS
Listed in order of decreasing precedence:
(expr) Force precedence.
| expr True if expr is false.
-not expr Same as ! expr.
exprl expr2 And (implied); expr2 is not evaluated if expr1 is false.
exprl -a expr2 Same as exprl expr2.
exprl -and expr2 Same as exprl expr2.
exprl -o expr2 Or; expr2 is not evaluated if expr1 is true.
exprl -or expr2 Same as exprl -o expr2.
exprl, expr2 List; both expr1 and expr2 are always evaluated. The value of expr1 is discarded; the value of the list

is the value of expr2.

SEE ALSO
locate(1L), locatedb(5L), updatedo(1L), xargs(1L) Finding Files (online in info, or printed)
GNU File Utilities

fitstopnm

fitstopnm—Convert a FITS file into a portable anymap

SYNOPSIS

fitstopnm [-image N][-noraw][-scanmax][-printmax][-min f][-max f][FITSFile]

DESCRIPTION

Reads a FITS file as input. Produces a portable pixmap if the FITS file consists of 3 image planes (Nax1s = 3 and NAXIS3 = 3),
a portable graymap if the FITS file consists of 2 image planes (NAxIS = 2), or whenever the -image flag is specified. The
results may need to be flipped top for bottom; if so, just pipe the output through pnmflip -tb.

fold 143

OPTIONS

The -image option is for FITS files with three axes. The assumption is that the third axis is for multiple images, and this
option lets you select which one you want.

Flags -min and -max can be used to override the min and max values as read from the FITS header or the image data if no
DATAMIN and DATANMAX keywords are found. Flag -scanmax can be used to force the program to scan the data even when pATAMIN
and paTamax are found in the header. If -printmax is specified, the program will just print the min and max values and quit.
Flag -noraw can be used to force the program to produce an ASCII portable anymap.

The program will tell what kind of anymap is writing. All flags can be abbreviated to their shortest unique prefix.

REFERENCES

FITS stands for Flexible Image Transport System. A full description can be found in Astronomy & Astrophysics Supplement
Series 44 (1981), page 363.

SEE ALSO
pnmtofits(1), pgm(5), pnmflip(1)

AUTHOR

Copyright O 1989 by Jef Poskanzer, with modifications by Daniel Briggs (dbriggsenrao. edu) and Alberto Accomazzi
(alberto@cfa.harvard.edu)

20 September 1989

fmt

fmt—Adjust line-length for paragraphs of text
SYNOPSIS

fmt [-width][files]...

DESCRIPTION

fmt is a simple text formatter. It inserts or deletes newlines, as necessary, to make all lines in a paragraph be approximately the
same width. It preserves indentation and word spacing.

The default line width is 72 characters. You can override this with the -width flag. If you don’t name any files on the
command line, then fmt will read from stdin.

It is typically used from within vi to adjust the line breaks in a single paragraph. To do this, move the cursor to the top of
the paragraph, type tgfmt, and press Return.

AUTHOR

Steve Kirkendall (kirkenda@cs.pdx.edu)

fold

fold—Wrap each input line to fit in specified width

SYNOPSIS

fold [-bs] [-w width] [—bytes] [—spaces] [—width=width] [—help]
[—version] [file...]

144 Part I: User Commands

DESCRIPTION

This manual page documents the GNU version of fold. fold prints the specified files, or the standard input when no files are
given or the filename - is encountered, on the standard output. It breaks long lines into multiple shorter lines by inserting a
newline at column 80. It counts screen columns, so tab characters usually take more than one column, backspace characters
decrease the column count, and carriage return characters set the column count back to zero.

OPTIONS

-b, —bytes Count bytes rather than columns, so that tabs, backspaces, and carriage returns are each counted as
taking up one column, just like other characters.

-s, —spaces Break at word boundaries. If the line contains any blanks, the line is broken after the last blank that
falls within the maximum line length. If there are no blanks, the line is broken at the maximum
line length, as usual.

-w, —width width Use a maximum line length of width columns instead of 80.

—help Print a usage message and exit with a nonzero status.

—version Print version information on standard output then exit.

GNU Text Utilities

free

free—Display amount of free and used memory in the system

SYNOPSIS
free [-b | -k | -m] [-0] [-s delay] [-t]
DESCRIPTION

free displays the total amount of free and used physical and swap memory in the system, as well as the shared memory and
buffers used by the kernel.

OPTIONS

The -b switch displays the amount of memory in bytes; the -k switch (set by default) displays it in kilobytes; the -m switch
displays it in megabytes.

The -t switch displays a line containing the totals.

The -o switch disables the display of a “buffer adjusted” line. Unless specified free subtracts/adds buffer memory from/to the
used/free memory reports (respectively!).

The -s switch activates continuous polling delay seconds apart. You may actually specify any floating point number for
delay, usleep(3) is used for microsecond resolution delay times.

FILES

/proc/meminfo Memory information

SEE ALSO
ps(1), top(1)
AUTHORS
Brian Edmonds
Cobhesive Systems, 20 March 1993

fslsfonts

fsinfo

fsinfo—x font server information utility

SYNOPSIS
fsinfo [-server servername]
DESCRIPTION

fsinfo is a utility for displaying information about an X font server. It is used to examine the capabilities of a server, the
predefined values for various parameters used in communicating between clients and the server, and the font catalogues and
alternate servers that are available.

EXAMPLE
The following is a sample produced by fsinfo.

name of server: hansen:7100

version number: 1

vendor string: Font Server Prototype
vendor release number: 17

maximum request size: 16384 longwords (65536 bytes)
number of catalogues: 1

all

Number of alternate servers: 2

#0 hansen:7101

#1 hansen:7102

number of extensions: 0

ENVIRONMENT

FONTSERVER To get the default fontserver

SEE ALSO

xfs(1), fslsfonts(1)

AUTHOR
Dave Lemke (Network Computing Devices, Inc.)
X Version 11 Release 6

fslsfonts

fslsfonts—List fonts served by X font server

SYNOPSIS

fslsfonts [-options ...] [-fn pattern]

DESCRIPTION

fslsfonts lists the fonts that match the given pattern. The wildcard character * may be used to match any sequence of
characters (including none), and 2 to match any single character. If no pattern is given, = is assumed.

The * and 2 characters must be quoted to prevent them from being expanded by the shell.

OPTIONS

-server host:port This option specifies the X font server to contact.
-1 Lists some attributes of the font on one line in addition to its name.

145

Part I: User Commands

146
-11 Lists font properties in addition to -1 output.
-111 Supported for compatibility with x1sfonts, but output is the same as for -11.
-m This option indicates that long listings should also print the minimum and maximum bounds of
each font.
-C This option indicates that listings should use multiple columns. This is the same as -n 0.
-1 This option indicates that listings should use a single column. This is the same as -n 1.
-w width This option specifies the width in characters that should be used in figuring out how many
columns to print. The default is 79.
-n columns This option specifies the number of columns to use in displaying the output. The default is o,
which will attempt to fit as many columns of font names into the number of character specified by
-w width.
-u This option indicates that the output should be left unsorted.
SEE ALSO
xfs(1), showfont(1), x1sfonts(1)
ENVIRONMENT
FONTSERVER To get the default host and port to use
BUGS

Doing fslsfonts -1 can tie up your server for a very long time. This is really a bug with single-threaded nonpreemptable
servers, not with this program.

AUTHOR
Dave Lemke (Network Computing Devices, Inc.)
X Version 11 Release 6 1

fstobdf

fstobdf—Generate BDF font from X font server

SYNOPSIS

fstobdf [-server server] -fn fontname

DESCRIPTION

The fstobdf program reads a font from a font server and prints a BDF file on the standard output that may be used to
recreate the font. This is useful in testing servers, debugging font metrics, and reproducing lost BDF files.

OPTIONS

-server servername This option specifies the server from which the font should be read.

-fn fontname This option specifies the font for which a BDF file should be generated.
ENVIRONMENT

FONTSERVER Default server to use
SEE ALSO

xfs(1), bdftopcf(1), fslsfonts(1)

ftp

AUTHOR
Olaf Brandt (Network Computing Devices), Dave Lemke (Network Computing Devices), Jim Fulton (MIT X Consortium)
X Version 11 Release 6

fstopgm

fstopgm—Convert a Usenix FaceSaver file into a portable graymap

SYNOPSIS

fstopgm [fsfile]

DESCRIPTION
Reads a Usenix FaceSaver file as input. Produces a portable graymap as output.

FaceSaver files sometimes have rectangular pixels. Although fstopgm won't rescale them into square pixels for you, it will give
you the precise pnmscale command that will do the job. Because of this, reading a FaceSaver image is a two-step process.
First you do

fstopgm > /dev/null
This will tell you whether you need to use pnmscale. Then use one of the following pipelines:

fstopgm | pgmnorm
fstopgm | pnmscale -whatever | pgmnorm

To go to PBM, you want something more like one of these:

fstopgm
fstopgm

nmenlarge 3
nmenlarge 3

gmnorm | pgmtopbm

| |
I p I p
P | pnmscale <whatever> | pgmnorm | pgmtopbm

You want to enlarge when going to a bitmap because otherwise you lose information; but enlarging by more than 3 does not
look good.

FaceSaver is a registered trademark of Metron Computerware Ltd. of Oakland, CA.

SEE ALSO

pamtofs(1), pgm(5), pgmnorm(1), pnmenlarge(1l), pnmscale(1), pgmtopbm(1)
AUTHOR

Copyright O 1989 by Jef Poskanzer
6 April 1989

ftp—ARPAnet file transfer program

SYNOPSIS

ftp [-v] [-d] [-i] [-n] [-g] [host]

DESCRIPTION

ftp is the user interface to the ARPAnet standard File Transfer Protocol. The program allows a user to transfer files to and
from a remote network site.

Options may be specified at the command line, or to the command interpreter.

147

148

Part I: User Commands

-1
-d
-9

Verbose option forces ftp to show all responses from the remote server, as well as
report on data transfer statistics.

Restrains ftp from attempting auto-login upon initial connection. If auto-login is
enabled, ftp will check the (see below) file in the user’s home directory for an entry
describing an account on the remote machine. If no entry exists, ftp will prompt for
the remote machine login name (default is the user identity on the local machine),
and, if necessary, prompt for a password and an account with which to login.

Turns off interactive prompting during multiple file transfers.

Enables debugging.

Disables filename globbing.

The client host with which ftp is to communicate may be specified on the command line. If this is done, ftp will immedi-
ately attempt to establish a connection to an FTP server on that host; otherwise, ftp will enter its command interpreter and
await instructions from the user. When ftp is awaiting commands from the user, the prompt

ftp>

is provided to the user. The following commands are recognized by ftp :

! [command] [args]

$ macro-name [args]

account [passwd]

append local-file [remote-file]

ascii
bell
binary

bye

case

cd remote-directory

cdup

chmod mode file-name

close

cr

delete remote-file

Invoke an interactive shell on the local machine. If there are arguments, the first is
taken to be a command to execute directly, with the rest of the arguments as its
arguments.

Execute the macro macro-name that was defined with the macdef command.
Arguments are passed to the macro unglobbed.

Supply a supplemental password required by a remote system for access to resources
once a login has been successfully completed. If no argument is included, the user
will be prompted for an account password in a nonechoing input mode.

Append a local file to a file on the remote machine. If remote-file is left unspecified,
the local filename is used in naming the remote file after being altered by any ntrans
or nmap setting. File transfer uses the current settings for type, format, mode, and
structure.

Set the file transfer type to network ASCII. This is the default type.

Arrange that a bell be sounded after each file transfer command is completed.

Set the file transfer type to support binary image transfer.

Terminate the FTP session with the remote server and exit ftp. An end of file will
also terminate the session and exit.

Toggle remote computer filename case mapping during mget commands. When case
is on (default is off), remote computer filenames with all letters in upper case are
written in the local directory with the letters mapped to lowercase.

Change the working directory on the remote machine to remote-directory.

Change the remote machine working directory to the parent of the current remote
machine working directory.

Change the permission modes of the file file-name on the remote system to mode.

Terminate the FTP session with the remote server, and return to the command
interpreter. Any defined macros are erased.

Toggle carriage return stripping during ASCII type file retrieval. Records are
denoted by a carriage return/linefeed sequence during ASCII type file transfer.
When cr is on (the default), carriage returns are stripped from this sequence to
conform with the UNIX single linefeed record delimiter. Records on non-UNIX
remote systems may contain single linefeeds; when an ASCII type transfer is made,
these linefeeds may be distinguished from a record delimiter only when cr is off.

Delete the file remote-file on the remote machine.

debug [debug-value]

dir [remote-directory] [local-file]

disconnect
form format

get remote-file [local-file]

glob

hash

help [command]

idle [seconds]

lcd [directory]

1s [remote-directory] [local-file]

macdef macro-name

mdelete [remote-files]

ftp 149

Toggle debugging mode. If an optional debug-value is specified, it is used to set the
debugging level. When debugging is on, ftp prints each command sent to the
remote machine, preceded by the string —>.

Print a listing of the directory contents in the directory, remote-directory, and,
optionally, placing the output in 1ocal-file. If interactive prompting is on, ftp will
prompt the user to verify that the last argument is indeed the target local file for
receiving dir output. If no directory is specified, the current working directory on
the remote machine is used. If no local file is specified, or 1ocal-file is -, output
comes to the terminal.

A synonym for close.
Set the file transfer form to format. The default format is file.

Retrieve the remote-file and store it on the local machine. If the local filename is
not specified, it is given the same name it has on the remote machine, subject to
alteration by the current case, ntrans, and nmap settings. The current settings for
type, form, mode, and structure are used while transferring the file.

Toggle filename expansion for mdelete, mget, and mput. If globbing is turned off with
glob, the filename arguments are taken literally and not expanded. Globbing for mput
isdone as in csh 1. For mdelete and mget, each remote filename is expanded
separately on the remote machine and the lists are not merged. Expansion of a
directory name is likely to be different from expansion of the name of an ordinary
file: the exact result depends on the foreign operating system and FTP server, and
can be previewed by doing m1s remote-files Note: mget and mput are not meant to
transfer entire directory subtrees of files. That can be done by transferring a tar 1
archive of the subtree (in binary mode).

Toggle hash-sign (#) printing for each data block transferred. The size of a data block
is 1024 bytes.

Print an informative message about the meaning of command. If no argument is given,
ftp prints a list of the known commands.

Set the inactivity timer on the remote server to seconds seconds. If seconds is
omitted, the current inactivity timer is printed.

Change the working directory on the local machine. If no directory is specified, the
user’s home directory is used.

Print a listing of the contents of a directory on the remote machine. The listing
includes any system-dependent information that the server chooses to include; for
example, most systems will produce output from the command 1s 1. (See also
nlist.) If remote-directory is left unspecified, the current working directory is used.
If interactive prompting is on, ftp will prompt the user to verify that the last
argument is indeed the target local file for receiving 1s output. If no local file is
specified, or if 1ocal-file is -, the output is sent to the terminal.

Define a macro. Subsequent lines are stored as the macro macro-name; a null line
(consecutive newline characters in a file or carriage returns from the terminal)
terminates macro input mode. There is a limit of 16 macros and 4096 total
characters in all defined macros. Macros remain defined until a cLose command is
executed. The macro processor interprets $ and \ as special characters. A $ followed
by a number (or numbers) is replaced by the corresponding argument on the macro
invocation command line. A $ followed by an i signals that macro processor that the
executing macro is to be looped. On the first pass $i is replaced by the first argument
on the macro invocation command line, on the second pass it is replaced by the
second argument, and so on. A\ followed by any character is replaced by that
character. Use the \to prevent special treatment of the $.

Delete the remote-files on the remote machine.

150 Part I: User Commands

mdir remote-files local-file
mget remote-files

mkdir directory-name

mls remote-files local-file

mode [mode-name]
modtime file-name

mput local-files
newer file-name

nlist [remote-directory]
[local-file]

nmap [inpattern] outpattern

ntrans [inchars] [outchars]

Like dir, except multiple remote files may be specified. If interactive prompting is
on, ftp will prompt the user to verify that the last argument is indeed the target local
file for receiving mdir output.

Expand the remote-files on the remote machine and do a get for each filename thus
produced. See glob for details on the filename expansion. Resulting filenames will
then be processed according to case, ntrans, and nmap settings. Files are transferred
into the local working directory, which can be changed with 1cd directory ; new local
directories can be created with !mkdir directory.

Make a directory on the remote machine.

Like n1ist, except multiple remote files may be specified, and the 1ocal-file must
be specified. If interactive prompting is on, ftp will prompt the user to verify that
the last argument is indeed the target local file for receiving mis output.

Set the file transfer mode to mode-name. The default mode is stream mode.
Show the last modification time of the file on the remote machine.

Expand wildcards in the list of local files given as arguments and do a put for each
file in the resulting list. See g1ob for details of filename expansion. Resulting
filenames will then be processed according to ntrans and nmap settings.

Get the file only if the modification time of the remote file is more recent that the
file on the current system. If the file does not exist on the current system, the remote
file is considered newer. Otherwise, this command is identical to get.

Print a list of the files in a directory on the remote machine. If remote-directory is
left unspecified, the current working directory is used. If interactive prompting is on,
ftp will prompt the user to verify that the last argument is indeed the target local file
for receiving n1ist output. If no local file is specified, or if 1ocal-file is -, the
output is sent to the terminal.

Set or unset the filename mapping mechanism. If no arguments are specified, the
filename mapping mechanism is unset. If arguments are specified, remote filenames
are mapped during mput commands and put commands issued without a specified
remote target filename. If arguments are specified, local filenames are mapped during
mget commands and get commands issued without a specified local target filename.
This command is useful when connecting to a non-UNIX remote computer with
different file naming conventions or practices. The mapping follows the pattern set
by inpattern and outpattern. Inpattern is a template for incoming filenames (which
may have already been processed according to the ntrans and case settings). Variable
templating is accomplished by including the sequences $1, $2,..., $9 in inpattern.
Use \ to prevent this special treatment of the $ character. All other characters are
treated literally, and are used to determine the nmap inpattern variable values. For
example, given inpattern $1.$2 and the remote filename mydata.data, $1 would have
the value mydata, and $2 would have the value "data". The outpattern determines the
resulting mapped filename. The sequences $1, $2,...., $9 are replaced by any value
resulting from the inpattern template. The sequence $ is replaced by the original
filename. Additionally, the sequence seq1, seq2 is replaced by seq1 if seq1 is not a
null string; otherwise, it is replaced by seq2. For example, the command nmap
$1.$2.$3 [$1,$2].[$2,file] would yield the output filename myfile.data for
input filenames my-file. data and myfile.data.old, myfile.file for the input
filename my-file, and myfile.myfile for the input filename .myfile. Spaces may be
included in outpattern, as in the example: nmap $1 sed "s/ *$//" > $1. Use the \
character to prevent special treatment of the s, [, [, and , characters.

Set or unset the filename character translation mechanism. If no arguments are
specified, the filename character translation mechanism is unset. If arguments are
specified, characters in remote filenames are translated during mput commands and

open host [port]

prompt

proxy ftp-command

put local-file [remote-file]

pwd

quit

quote argl arg2...

recv remote-file [local-file]

reget remote-file [local-file]

remotehelp [command-name]
remotestatus [Ffile-name]
rename [from] [to]

reset

restart marker

ftp 151

put commands issued without a specified remote target filename. If arguments are
specified, characters in local filenames are translated during mget commands and get
commands issued without a specified local target filename. This command is useful
when connecting to a non-UNIX remote computer with different file naming
conventions or practices. Characters in a filename matching a character in inchars
are replaced with the corresponding character in outchars. If the character’s position
in inchars is longer than the length of outchars, the character is deleted from the
filename.

Establish a connection to the specified host FTP server. An optional port number
may be supplied, in which case, ftp will attempt to contact an FTP server at that
port. If the auto-login option is on (default), ftp will also attempt to automatically
log the user in to the FTP server (see below).

Toggle interactive prompting. Interactive prompting occurs during multiple file
transfers to allow the user to selectively retrieve or store files. If prompting is turned
off (default is on), any mget or mput will transfer all files, and any mdelete will delete
all files.

Execute an ftp command on a secondary control connection. This command allows
simultaneous connection to two remote FTP servers for transferring files between
the two servers. The first proxy command should be an open, to establish the
secondary control connection. Enter the command "proxy 2" to see other ftp
commands executable on the secondary connection. The following commands
behave differently when prefaced by proxy :, open will not define new macros during
the auto-login process, close will not erase existing macro definitions, get and mget
transfer files from the host on the primary control connection to the host on the
secondary control connection, and put, mput, and append transfer files from the host
on the secondary control connection to the host on the primary control connection.
Third-party file transfers depend upon support of the FTP protocol PAsv command
by the server on the secondary control connection.

Store a local file on the remote machine. If remote-file is left unspecified, the local
filename is used after processing according to any ntrans Or nmap settings in naming
the remote file. File transfer uses the current settings for type, format, mode, and
structure.

Print the name of the current working directory on the remote machine.

A synonym for bye.

The arguments specified are sent, verbatim, to the remote FTP server.

A synonym for get.

Reget acts like get, except that if 1ocal-file exists and is smaller than remote-file,
local-file is presumed to be a partially transferred copy of remote-file and the
transfer is continued from the apparent point of failure. This command is useful
when transferring very large files over networks that are prone to dropping
connections.

Request help from the remote FTP server. If a command-name is specified, it is supplied
to the server as well.

With no arguments, show status of remote machine. If file-name is specified, show
status of file-name On remote machine.

Rename the file from on the remote machine, to the file to.

Clear reply queue. This command resynchronizes command/reply sequencing with
the remote FTP server. Resynchronization may be necessary following a violation of
the FTP protocol by the remote server.

Restart the immediately following get or put at the indicated marker. On UNIX
systems, marker is usually a byte offset into the file.

Part I: User Commands

rmdir directory-name

runique

send local-file [remote-file]

sendport

site argl arg2...

size file-name
status
struct [struct-name]

sunique

system
tenex
trace

type [type-name]

umask [newmask]

user user-name [password] [account]

verbose

? [command]

Delete a directory on the remote machine.

Toggle storing of files on the local system with unique filenames. If a file already
exists with a name equal to the target local filename for a get or mget command, a .1
is appended to the name. If the resulting name matches another existing file, a .2 is
appended to the original name. If this process continues up to .99, an error message
is printed, and the transfer does not take place. The generated unique filename will
be reported. Note that runique will not affect local files generated from a shell
command. The default value is off.

A synonym for put.

Toggle the use of PoRT commands. By default, ftp will attempt to use a PorT
command when establishing a connection for each data transfer. The use of PorT
commands can prevent delays when performing multiple file transfers. If the PorT
command fails, ftp will use the default data port. When the use of PorT commands is
disabled, no attempt will be made to use PorT commands for each data transfer. This
is useful for certain FTP implementations which do ignore PorRT commands but,
incorrectly, indicate they’ve been accepted.

The arguments specified are sent, verbatim, to the remote FTP server as a SITE
command.

Return size of file-name on remote machine.

Show the current status of ftp.

Set the file transfer structure to struct-name. By default stream structure is used.
Toggle storing of files on remote machine under unique filenames. Remote FTP
server must support ftp protocol stou command for successful completion. The
remote server will report unique name. Default value is off.

Show the type of operating system running on the remote machine.

Set the file transfer type to that needed to talk to TENEX machines.

Toggle packet tracing.

Set the file transfer type to type-name. If no type is specified, the current type is
printed. The default type is network Asc1I.

Set the default umask on the remote server to newmask. If newmask is omitted, the
current umask is printed.

Identify yourself to the remote FTP server. If the password is not specified and the
server requires it, ftp will prompt the user for it (after disabling local echo). If an
account field is not specified, and the FTP server requires it, the user will be
prompted for it. If an account field is specified, an account command will be relayed
to the remote server after the login sequence is completed if the remote server did
not require it for logging in. Unless ftp is invoked with auto-login disabled, this
process is done automatically on initial connection to the FTP server.

Toggle verbose mode. In verbose mode, all responses from the FTP server are
displayed to the user. In addition, if verbose is on, when a file transfer completes,
statistics regarding the efficiency of the transfer are reported. By default, verbose is
on.

A synonym for help.

Command arguments which have embedded spaces may be quoted with quotation marks (*).

ABORTING A FILE TRANSFER

To abort a file transfer, use the terminal interrupt key (usually Ctrl-C). Sending transfers will be immediately halted.
Receiving transfers will be halted by sending an FTP protocol ABor command to the remote server, and discarding any
further data received. The speed at which this is accomplished depends upon the remote server’s support for ABoR processing.

ftp

If the remote server does not support the ABor command, an ftp> prompt will not appear until the remote server has
completed sending the requested file.

The terminal interrupt key sequence will be ignored when ftp has completed any local processing and is awaiting a reply

from the remote server. A long delay in this mode may result from the ABor processing described earlier in this section, or
from unexpected behavior by the remote server, including violations of the FTP protocol. If the delay results from unex-

pected remote server behavior, the local ftp program must be killed by hand.

FILE NAMING CONVENTIONS
Files specified as arguments to ftp commands are processed according to the following rules:
If the filename - is specified, the stdin (for reading) or stdout (for writing) is used.

If the first character of the filename is j, the remainder of the argument is interpreted as a shell command. ftp then forks a
shell, using popen 3 with the argument supplied, and reads (writes) from the stdout (stdin). If the shell command includes
spaces, the argument must be quoted; for example, 1s -1t. A particularly useful example of this mechanism is: dir more.

Failing the preceding checks, if “globbing” is enabled, local filenames are expanded according to the rules used in the csh 1;
c.f. the g1ob command. If the ftp command expects a single local file (for example, put), only the first filename generated by
the “globbing” operation is used.

For mget commands and get commands with unspecified local filenames, the local filename is the remote filename, which
may be altered by a case, ntrans, Or nmap setting. The resulting filename may then be altered if runique is on.

For mput commands and put commands with unspecified remote filenames, the remote filename is the local filename, which
may be altered by an ntrans or nmap setting. The resulting filename may then be altered by the remote server if sunique is on.

FILE TRANSFER PARAMETERS

The FTP specification specifies many parameters that may affect a file transfer. The type may be one of ASCII, image
(binary), ebcdic, and local byte size (for PDP Ns -10s and PDP Ns -20s mostly). ftp supports the ASCII and image types of
file transfer, plus local byte size 8 for tenex mode transfers.

ftp supports only the default values for the remaining file transfer parameters: mode, form, and struct.

THE .netrcFILE

The file contains login and initialization information used by the auto-login process. It resides in the user’s home directory.
The following tokens are recognized; they may be separated by spaces, tabs, or newlines:

machine name Identify a remote machine name. The auto-login process searches the file for a machine token that
matches the remote machine specified on the ftp command line or as an open command argument.
When a match is made, the subsequent tokens are processed, stopping when the end of file is
reached or another machine or a default token is encountered.

default This is the same as machine name except that default matches any name. There can be only one
default token, and it must be after all machine tokens. This is normally used as default login
anonymous password user@site, thereby giving the user automatic anonymous ftp login to machines
not specified. This can be overridden by using the -n flag to disable auto-login.

login name Identify a user on the remote machine. If this token is present, the auto-login process will initiate a
login using the specified name.
password string Supply a password. If this token is present, the auto-login process will supply the specified string if

the remote server requires a password as part of the login process. Note that if this token is present
in the file for any user other than anonymous, ftp will abort the auto-login process if the is readable
by anyone besides the user.

account string Supply an additional account password. If this token is present, the auto-login process will supply
the specified string if the remote server requires an additional account password, or the auto-login
process will initiate an Acct command if it does not.

153

154 Part I: User Commands

macdef name Define a macro. This token functions like the ftp macdef command functions. A macro is defined
with the specified name; its contents begin with the next line and continue until a null line
(consecutive newline characters) is encountered. If a macro named init is defined, it is automati-
cally executed as the last step in the auto-login process.
ENVIRONMENT

ftp utilizes the following environment variables:

HOME For default location of a file, if one exists
SHELL For default shell

SEE ALSO
ftpd(8)

HISTORY
The ftp command appeared in BSD 4.2.

BUGS
Correct execution of many commands depends upon proper behavior by the remote server.

An error in the treatment of carriage returns in the BSD 4.2 ASCII-mode transfer code has been corrected. This correction
may result in incorrect transfers of binary files to and from BSD 4.2 servers using the ASCII type. Avoid this problem by
using the binary image type.

BSD 4.2, 30 July 1991

fuser

fuser—Identify processes using files

SYNOPSIS

fuser [-a}-s][-signal][-kmuv] filename ... [-][-signal][-kmuv] filename ...
fuser [-1]

DESCRIPTION

fuser displays the PIDs of processes using the specified files or file systems. In the default display mode, each filename is
followed by a letter denoting the type of access:

c Current directory.

e Executable being run.

f Open file. is omitted in default display mode.
r Root directory.

m mmap’ed file or shared library.

fuser returns a nonzero return code if none of the specified files is accessed or in case of a fatal error. If at least one access has
been found, fuser returns zero.

OPTIONS
-a Show all files specified on the command line. By default, only files that are accessed by at least one process
are shown.
-k Kill processes accessing the file. Unless changed with -signal, SIGKILL is sent. A fuser process never Kills

itself, but may kill other fuser processes.

g++

u List all known signal names.

-m filename Specifies a file on a mounted file system or a block device that is mounted. All processes accessing
files on that file system are listed. If a directory file is specified, it is automatically changed to filename/. to
use any file system that might be mounted on that directory.

-s Silent operation. -a, -u, and -v are ignored in this mode.

-signal Use the specified signal instead of s1akiLL when killing processes. Signals can be specified either by name
(for example, -HuP) or by number (for example, -1).

-u Append the username of the process owner to each PID.

-v Verbose mode. Processes are shown in a ps-like style. The fields p1p, USER, and coumanD are similar to ps.

ACCESS shows how the process accesses the file.
- Reset all options and set the signal back to s16KILL.

FILES

/proc Location of the proc file system

EXAMPLES
fuser -km /home Kills all processes accessing the file system /home in any way.
In this example:
if fuser -s /dev/ttyS1; then :; else something

fi invokes something if no other process is using /dev/ttys1.

RESTRICTIONS

Processes accessing the same file or filesystem several times in the same way are only shown once.

AUTHOR

Werner Almesberger (<almesber@di.epfl.ch>U)
SEE ALSO

kil1(1), killa11(1), ps(1), kil1(2)

Linux, 11 October 1994

gt
g++—GNU project C++ Compiler
SYNOPSIS
g++ [option | filename]. ..
DESCRIPTION

The C and C++ compilers are integrated; g++ is a script to call gcc with options to recognize C++. gcc processes input files
through one or more of four stages: preprocessing, compilation, assembly, and linking. This man page contains full
descriptions for only C++ specific aspects of the compiler, though it also contains summaries of some general-purpose
options. For a fuller explanation of the compiler, see gcc(1).

C++ source files use one of the suffixes .c, .cc, .cxx, .cpp, O .c++; preprocessed C++ files use the suffix .ii.

OPTIONS

There are many command-line options, including options to control details of optimization, warnings, and code generation,
which are common to both gcc and g++. For full information on all options, see gcc(1).

155

156 Part I: User Commands

Options must be separate: -dr is quite different from -d -r.

Most -f and -w options have two contrary forms: -fname and -fno-name (Or —Wname and -Wno-name). Only the nondefault

forms are shown here.

-C

-Dmacro
-Dmacro=defn
-E

-fall-virtual

-fdollars-in-identifiers

-felide-constructors

-fenum-int-equiv

-fexternal-templates

-fno-gnu-linker

-fmemoize-lookups-fsave-memorized

Compile or assemble the source files, but do not link. The compiler output is an
object file corresponding to each source file.

Define macro macro with the string 1 as its definition.

Define macro macro as defn.

Stop after the preprocessing stage; do not run the compiler proper. The output is
preprocessed source code, which is sent to the standard output.

Treat all possible member functions as virtual, implicitly. All member functions
(except for constructor functions and new or delete member operators) are treated as
virtual functions of the class where they appear.

This does not mean that all calls to these member functions will be made through
the internal table of virtual functions. Under some circumstances, the compiler can
determine that a call to a given virtual function can be made directly; in these cases
the calls are direct in any case.

Permit the use of $ in identifiers. Traditional C allowed the character $ to form part
of identifiers; by default, GNU C also allows this. However, ANSI C forbids $ in
identifiers, and GNU C++ also forbids it by default on most platforms (though on
some platforms it’s enabled by default for GNU C++ as well).

Use this option to instruct the compiler to be smarter about when it can elide
constructors. Without this flag, GNU C++ and cfront both generate effectively the
same code for

A foo ();
A x (foo ()); // x initialized by 'foo ()', no ctor called

Ay = foo (); // call to 'foo ()' heads to temporary, // y is initial-
ized from the temporary.

Note the difference. With this flag, GNU C++ initializes y directly from the call to
foo() without going through a temporary.

Normally GNU C++ allows conversion of enum to int, but not the other way
around. Use this option if you want GNU C++ to allow conversion of int to enum as
well.

Produce smaller code for template declarations, by generating only a single copy of
each template function where it is defined. To use this option successfully, you must
also mark all files that use templates with either #pragma implementation (the
definition) or #pragma interface (declarations).

When your code is compiled with -fexternal-templates, all template instantiations
are external. You must arrange for all necessary instantiations to appear in the
implementation file; you can do this with a typedef that references each instantiation
needed. Conversely, when you compile using the default option -fno- external-
templates, all template instantiations are explicitly internal.

Do not output global initializations (such as C++ constructors and destructors) in
the form used by the GNU linker (on systems where the GNU linker is the standard
method of handling them). Use this option when you want to use a non-GNU
linker, which also requires using the collect2 program to make sure the system
linker includes constructors and destructors. (collect2 is included in the GNU CC
distribution.) For systems which must use collect2, the compiler driver gcc is
configured to do this automatically.

These flags are used to get the compiler to compile programs faster using heuristics.
They are not on by default since they are only effective about half the time. The
other half of the time programs compile more slowly (and take more memory).

-fno-default-inline

-fno-strict-prototype

-fhandle-signatures-
fno-handle-signatures

-fthis-is-variable

g+ 157

The first time the compiler must build a call to a member function (or reference to a
data member), it must (1) determine whether the class implements member
functions of that name; (2) resolve which member function to call (which involves
figuring out what sorts of type conversions need to be made); and (3) check the
visibility of the member function to the caller. All of this adds up to slower
compilation. Normally, the second time a call is made to that member function (or
reference to that data member), it must go through the same lengthy process again.
This means that code like this:

cout << "This " << p << "has'"<< n << " legs.\n";

makes six passes through all three steps. By using a software cache, a “hit” signifi-
cantly reduces this cost. Unfortunately, using the cache introduces another layer of
mechanisms which must be implemented, and so incurs its own overhead. -
fmemorize- lookups enables the software cache.

Because access privileges (visibility) to members and member functions may differ
from one function context to the next, g++ may need to flush the cache. With the -
fmemoize-lookups flag, the cache is flushed after every function that is compiled. The
-fsave-memorized flag enables the same software cache, but when the compiler
determines that the context of the last function compiled would yield the same
access privileges of the next function to compile, it preserves the cache. This is most
helpful when defining many member functions for the same class: with the
exception of member functions which are friends of other classes, each member
function has exactly the same access privileges as every other, and the cache need not
be flushed.

Do not make member functions inline by default merely because they are defined
inside the class scope. Otherwise, when you specify -0, member functions defined
inside class scope are compiled inline by default; that is, you don’t need to add
inline in front of the member function name.

Consider the declaration int foo; (). In C++, this means that the function foo takes
no arguments. In ANSI C, this is declared int foo(void) ;. With the flag -fno-
strict-prototype, declaring functions with no arguments is equivalent to declaring
its argument list to be untyped, that is, int foo(); is equivalent to saying int foo
(...);.-fnonnull-objects. Normally, GNU C++ makes conservative assumptions
about objects reached through references. For example, the compiler must check that
a is not null in code like the following:

obj &a =g ();

a.f (2);

Checking that references of this sort have non-null values requires extra code,
however, and it is unnecessary for many programs. You can use -fnonnull-objects to
omit the checks for null, if your program doesn’t require the default checking.

These options control the recognition of the signature and sigof constructs for
specifying abstract types. By default, these constructs are not recognized.

The incorporation of user-defined free store management into C++ has made
assignment to this an anachronism. Therefore, by default GNU C++ treats the type
of this in a member function of class X to be x *const. In other words, it is illegal to
assign to this within a class member function. However, for backwards compatibil-
ity, you can invoke the old behavior by using -fthis-is-variable.

Produce debugging information in the operating system’s native format (for DBX or
SDB or DWARF). GDB also can work with this debugging information. On most
systems that use DBX format, -g enables use of extra debugging information that
only GDB can use.

Unlike most other C compilers, GNU CC allows you to use -g with -0. The
shortcuts taken by optimized code may occasionally produce surprising results: some

158

Part I: User Commands

-Idir
-Ldir
-1llibrary

-nostdinc

-nostdinc++

-traditional

-Umacro

-Wall

-Wenum-clash

-Woverloaded-virtual

variables you declared may not exist at all; flow of control may briefly move where
you did not expect it; some statements may not be executed because they compute
constant results or their values were already at hand; some statements may execute in
different places because they were moved out of loops.

Nevertheless, it proves possible to debug optimized output. This makes it reasonable
to use the optimizer for programs that might have bugs.

Append directory dir to the list of directories searched for include files.

Add directory dir to the list of directories to be searched for -1.

Use the library named ribrary when linking. (C++ programs often require -1g++ for
successful linking.)

Do not search the standard system directories for header files. Only the directories
you have specified with -1 options (and the current directory, if appropriate) are
searched.

Do not search for header files in the standard directories specific to C++, but do still
search the other standard directories. (This option is used when building 1ibg++.)
Optimize. Optimizing compilation takes somewhat more time, and a lot more
memory for a large function.

Place output in file file.

Stop after the stage of compilation proper; do not assemble. The output is an
assembler code file for each nonassembler input file specified.

Attempt to support some aspects of traditional C compilers. Specifically, for both C
and C++ programs:

In the preprocessor, comments convert to nothing at all, rather than to a space. This
allows traditional token concatenation.

In the preprocessor, macro arguments are recognized within string constants in a
macro definition (and their values are stringified, though without additional quote
marks, when they appear in such a context). The preprocessor always considers a
string constant to end at a newline.

The preprocessor does not predefine the macro sToc when you use -traditional, but
still predefines anuc (since the GNU extensions indicated by Gnuc are not affected by
-traditional). If you need to write header files that work differently depending on
whether -traditional is in use, by testing both of these predefined macros you can
distinguish four situations: GNU C, traditional GNU C, other ANSI C compilers,
and other old C compilers.

In the preprocessor, comments convert to nothing at all, rather than to a space. This
allows traditional token concatenation.

String “constants” are not necessarily constant; they are stored in writable space, and
identical looking constants are allocated separately. For C++ programs only (not C),
-traditional has one additional effect: assignment to this is permitted. This is the
same as the effect of -fthis-is-variable.

Undefine macro macro.

Issue warnings for conditions that pertain to usage that we recommend avoiding and
that we believe is easy to avoid, even in conjunction with macros.

Warn when converting between different enumeration types.

In a derived class, the definitions of virtual functions must match the type signature
of a virtual function declared in the base class. Use this option to request warnings
when a derived class declares a function that may be an erroneous attempt to define
a virtual function; that is, warn when a function with the same name as a virtual
function in the base class, but with a type signature that doesn’t match any virtual
functions from the base class.

-Wtemplate-debugging

-w

+eN

PRAGMAS

g+ 159

When using templates in a C++ program, warn if debugging is not yet fully
available.

Inhibit all warning messages.

Control how virtual function definitions are used, in a fashion compatible with
cfront 1.x.

Two #pragma directives are supported for GNU C++, to permit using the same header file for two purposes: as a definition of
interfaces to a given object class, and as the full definition of the contents of that object class.

#pragma interface

#pragma implementation

#pragma implementation !objects.h!

FILES
file.h
file.1
file file.C
file.cc
file.cxx
file.s
file.o
a.out
TMPDIR/cc
LIBDIR/cpp
LIBDIR/cci1plus
LIBDIR/collect
LIBDIR/libgcc.a
/lib/crt[01n].0
LIBDIR/ccrt0@
/1lib/1libc.a

Use this directive in header files that define object classes, to save space in most of
the object files that use those classes. Normally, local copies of certain information
(backup copies of inline member functions, debugging information, and the internal
tables that implement virtual functions) must be kept in each object file that
includes class definitions. You can use this pragma to avoid such duplication. When
a header file containing #pragma interface is included in a compilation, this auxiliary
information will not be generated (unless the main input source file itself uses
#pragma implementation). Instead, the object files will contain references to be
resolved at link time.

Use this pragma in a main input file, when you want full output from included
header files to be generated (and made globally visible). The included header file, in
turn, should use #pragma interface. Backup copies of inline member functions,
debugging information, and the internal tables used to implement virtual functions
are all generated in implementation files.

If you use #pragma implementation with no argument, it applies to an include file
with the same basename as your source file; for example, in allclass.cc, #pragma
implementation by itself is equivalent to #pragma implementation "allclass.h". Use
the string argument if you want a single implementation file to include code from
multiple header files.

There is no way to split up the contents of a single header file into multiple
implementation files.

C header (preprocessor) file
Preprocessed C source

C++ source file

C++ source file

C++ source file

Assembly language file

Object file

Link edited output

Temporary files

Preprocessor

Compiler

Linker front end needed on some machines
GCC subroutine library

Start-up routine

Additional start-up routine for C++
Standard C library; see intro(3)

160 Part I: User Commands

/usr/include Standard directory for #include files
LIBDIR/include Standard gcc directory for #include files
LIBDIR/g++-include Additional g++ directory for #include

LIBDIR is usually /usr/local/lib/machine/version.

TMPDIR comes from the environment variable TuppIR (default /usr/tmp if available, else /tmp).

SEE ALSO
gee(l), epp(1), as(1), 1d(1), gdb(1), adb(1), dbx(1), sdb(1), gec, cpp, as, 1d, and gdb entries in info
Using and Porting GNU CC (for version 2.0), Richard M. Stallman; The C Preprocessor, Richard M. Stallman; Debugging
with GDB: the GNU Source-Level Debugger, Richard M. Stallman and Roland H. Pesch; Using as: the GNU Assembler, Dean
Elsner, Jay Fenlason and friends; gld: the GNU linker, Steve Chamberlain and Roland Pesch.

BUGS

For instructions on how to report bugs, see the GCC manual.

COPYING

Copyright O 1991, 1992, 1993 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim
copies of this manual provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions
for modified versions, except that this permission notice may be included in translations approved by the Free Software
Foundation instead of in the original English.

AUTHORS
See the GNU CC Manual for the contributors to GNU CC.
GNU Tools, 30 April 1993

g3topbm

g3topbm—Convert a Group 3 fax file into a portable bitmap

SYNOPSIS
g3topbm [-kludge][-reversebits][-stretch][g3file]
DESCRIPTION
Reads a Group 3 fax file as input. Produces a portable bitmap as output.
OPTIONS
-kludge Tells g3topbm to ignore the first few lines of the file; sometimes fax files have some junk at the beginning.

-reversebits Tells g3topbm to interpret bits least-significant first, instead of the default most-significant first.
Apparently, some fax modems do it one way and others do it the other way. If you get a whole bunch of
“bad code word” messages, try using this flag.

-stretch Tells gatopbm to stretch the image vertically by duplicating each row. This is for the low-quality transmis-
sion mode.

All flags can be abbreviated to their shortest unique prefix.

gawk

REFERENCES
The standard for Group 3 fax is defined in CCITT Recommendation T.4.

BUGS
Probably.

SEE ALSO

pbmtog3(1), pom(5)

AUTHOR
Copyright O 1989 by Paul Haeberli (paulemanray.sgi.com)

2 October 1989

gawk

gawk—nPattern scanning and processing language

SYNOPSIS
gawk [POSIX or GNU style options] -f program-file [--] file ...
gawk [POSIX or GNU style options] [--] program-text file ...
DESCRIPTION

gawk is the GNU Project’s implementation of the awk programming language. It conforms to the definition of the language

in the 1003.2 Command Language and Utilities Standard. This version in turn is based on the description in The AWK

161

Programming Language, by Aho, Kernighan, and Weinberger, with the additional features defined in the System V Release 4

version of awk. gawk also provides some GNU-specific extensions.

The command line consists of options to gawk itself, the awk program text (if not supplied via the -f or —file options), and

values to be made available in the Arac and ARGy predefined awk variables.

OPTIONS

gawk options may be either the traditional one-letter options, or the GNU-style long options. Traditional style options start

with a single -, while GNU long options start with --. GNU-style long options are provided for both GNU-specific features

and for mandated features. Other implementations of the awk language are likely to only accept the traditional one-letter
options.

Following the standard, gawk-specific options are supplied via arguments to the -w option. Multiple -w options may be
supplied, or multiple arguments may be supplied together if they are separated by commas, or enclosed in quotes and

separated by whitespace. Case is ignored in arguments to the -w option. Each -w option has a corresponding GNU-style long

option, as detailed below. Arguments to GNU-style long options are either joined with the option by an = sign, with no
intervening spaces, or they may be provided in the next command-line argument.
gawk accepts the following options:

-F fs, --field-separator=fs Use fs for the input field separator (the value of the Fs-predefined variable).

-v var=val, --assign=var=val Assign the value val, to the variable var, before execution of the program begins. Such
variable values are available to the BecIN block of an awk program.

-f program-file, Read the awk program source from the file program-file, instead of from the first
--file=program-file command-line argument. Multiple -f (or --file) options may be used.
-mf=NNN, -mr=NNN Set various memory limits to the value Nw. The f flag sets the maximum number of fields,

and the r flag sets the maximum record size. These two flags and the -m option are from the

AT&T Bell Labs research version of awk. They are ignored by gawk, since gawk has no
predefined limits.

162

Part I: User Commands

-W compat, --compat Run in compatibility mode. In compatibility mode, gawk behaves identically to awk; none of
the GNU-specific extensions are recognized. See “GNU Extensions,” later in this manual
page, for more information.

-W copyleft, -W copyright, Print the short version of the GNU copyright information message on the error output.

--copyleft, --copyright

-W help, —W usage Print a relatively short summary of the available options on the error output. Per the GNU

--help, --usage Coding Standards, these options cause an immediate, successful exit.

-W lint, --lint Provide warnings about constructs that are dubious or nonportable to other awk implemen-
tations.

-W posix, --posix This turns on compatibility mode, with the following additional restrictions:\x escape

sequences are not recognized.
The synonym func for the keyword function is not recognized.
The operators ** and **= cannot be used in place of * and "=.

-W source=program-text, Use program-text as awk program source code. This option allows the easy intermixing of

--source=program-text library functions (used via the -f and --file options) with source code entered on the
command line. It is intended primarily for medium to large awk programs used in shell
scripts.

The -w source= form of this option uses the rest of the command-line argument for
program-text; N0 other options to -w will be recognized in the same argument.

-W version, --version Print version information for this particular copy of gawk on the error output. This is useful
mainly for knowing if the current copy of gawk on your system is up-to-date with respect to
whatever the Free Software Foundation is distributing. Per the GNU Coding Standards,
these options cause an immediate, successful exit.

-- Signal the end of options. This is useful to allow further arguments to the awk program itself
to start with a -. This is mainly for consistency with the argument-parsing convention used
by most other programs.

In compatibility mode, any other options are flagged as illegal, but are otherwise ignored. In normal operation, as long as
program text has been supplied, unknown options are passed on to the awk program in the ArGv array for processing. This is
particularly useful for running awk programs via the #! executable interpreter mechanism.

awk PROGRAM EXECUTION

An awk program consists of a sequence of pattern-action statements and optional function definitions:

pattern { action statements }
function name (parameter list) { statements }

gawk first reads the program source from the program-file(s) if specified, from arguments to -w source=, or from the first
nonoption argument on the command line. The -f and -w source= options may be used multiple times on the command
line. gawk will read the program text as if all the program-files and command-line source texts had been concatenated
together. This is useful for building libraries of awk functions, without having to include them in each new awk program that
uses them. It also provides the ability to mix library functions with command-line programs.

The environment variable AwkpATH specifies a search path to use when finding source files named with the - option. If this
variable does not exist, the default path is .:/usr/lib/awk: /usr/local/lib/awk.

If a filename given to the -f option contains a / character, no path search is performed.

gawk executes awk programs in the following order. First, all variable assignments specified via the -v option are performed.
Next, gawk compiles the program into an internal form. Then, gawk executes the code in the BecIn block(s) (if any), and then
proceeds to read each file named in the Arav array. If there are no files named on the command line, gawk reads the standard
input.

If a filename on the command line has the form var=vall, it is treated as a variable assignment. The variable var will be
assigned the value val. (This happens after any BeGIN block(s) have been run.) Command-line variable assignment is most

gawk 163

useful for dynamically assigning values to the variables awk uses to control how input is broken into fields and records. It is
also useful for controlling state if multiple passes are needed over a single data file.

If the value of a particular element of ArGv is empty (**), gawk skips over it.
For each line in the input, gawk tests to see if it matches any pattern in the awk program. For each pattern that the line
matches, the associated action is executed. The patterns are tested in the order they occur in the program.

Finally, after all the input is exhausted, gawk executes the code in the enp block(s) (if any).

VARIABLES AND FIELDS

awk variables are dynamic; they come into existence when they are first used. Their values are either floating-point numbers
or strings, or both, depending upon how they are used. awk also has one-dimensional arrays; arrays with multiple dimensions
may be simulated. Several predefined variables are set as a program runs; these will be described as needed and summarized
in the “Built-In Variables” subsection.

FIELDS

As each input line is read, gawk splits the line into fields, using the value of the Fs variable as the field separator. If Fs is a
single character, fields are separated by that character. Otherwise, Fs is expected to be a full regular expression. In the special
case that rs is a single blank, fields are separated by runs of blanks or tabs. Note that the value of 16NORECASE (see the
following) will also affect how fields are split when Fs is a regular expression.

If the FIELDWIDTHS Vvariable is set to a space separated list of numbers, each field is expected to have fixed width, and gawk will
split up the record using the specified widths. The value of s is ignored. Assigning a new value to Fs overrides the use of
FIELDWIDTHS, and restores the default behavior.

Each field in the input line may be referenced by its position, $1, $2, and so on. se is the whole line. The value of a field may
be assigned to as well. Fields need not be referenced by constants:

n =5

print $n

prints the fifth field in the input line. The variable NF is set to the total number of fields in the input line.

References to nonexistent fields (that is, fields after snF) produce the null-string. However, assigning to a nonexistent field
(for example, $(NF+2) = 5) will increase the value of NF, create any intervening fields with the null string as their value, and
cause the value of $e to be recomputed, with the fields being separated by the value of ors. References to negative-numbered
fields cause a fatal error.

BUILT-IN VARIABLES
awk’s built-in variables are the following:

ARGC The number of command-line arguments (does not include options to gawk, or the program source).

ARGIND The index in Arav of the current file being processed.

ARGV Array of command-line arguments. The array is indexed from o to ArGc - 1. Dynamically changing the
contents of Arav can control the files used for data.

CONVFMT The conversion format for numbers, “s.6g”, by default.

ENVIRON An array containing the values of the current environment. The array is indexed by the environment

variables, each element being the value of that variable (for example, ENVIRON["HOME "] might be /u/arnold).
Changing this array does not affect the environment seen by programs which gawk spawns via redirection
or the system() function. (This may change in a future version of gawk.)

ERRNO If a system error occurs either doing a redirection for getline, during a read for getline, or during a
close(), then ErRrNO will contain a string describing the error.
FIELDWIDTHS A whitespace-separated list of fieldwidths. When set, gawk parses the input into fields of fixed width,

instead of using the value of the Fs variable as the field separator. The fixed field width facility is still
experimental; expect the semantics to change as gawk evolves over time.

Part I: User Commands

164

FILENAME The name of the current input file. If no files are specified on the command line, the value of FILENANE is -.
However, FILENAME is undefined inside the BeaINn block.

FNR The input record number in the current input file.

FS The input field separator, a blank by default.

IGNORECASE Controls the case-sensitivity of all regular expression operations. If 1GNORECASE has a nonzero value, then
pattern matching in rules, field splitting with Fs, regular expression matching with - and ! -, and the
gsub(), index(), match(), split(),and sub() predefined functions will all ignore case when doing regular
expression operations. Thus, if IGNORECASE is not equal to zero, /aB/ matches all of the strings ab, aB, Ab,
and AB. As with all awk variables, the initial value of IGNORECASE is zero, so all regular expression operations
are normally case-sensitive.

NF The number of fields in the current input record.

NR The total number of input records seen so far.

OFMT The output format for numbers, *%.6g", by default.

OFS The output field separator, a blank by default.

ORS The output record separator, by default a newline.

RS The input record separator, by default a newline. rs is exceptional in that only the first character of its
string value is used for separating records. (This will probably change in a future release of gawk.) If RS is set
to the null string, then records are separated by blank lines. When gs is set to the null string, then the
newline character always acts as a field separator, in addition to whatever value Fs may have.

RSTART The index of the first character matched by match(); @ if no match.

RLENGTH The length of the string matched by match(); -1 if no match.

SUBSEP The character used to separate multiple subscripts in array elements, by default ne34.

ARRAYS

Arrays are subscripted with an expression between square brackets. If the expression is an expression list (expr, expr ...)
then the array subscript is a string consisting of the concatenation of the (string) value of each expression, separated by the
value of the sussep variable. This facility is used to simulate multiply dimensioned arrays. For example,

i="A"; j="B"; k="C"

x[i, j, k] = "hello, world\n"

assigns the string hello, world\n to the element of the array x which is indexed by the string "A\0348\034c". All arrays in awk
are associative, that is indexed by string values.

The special operator in may be used in an if or while statement to see if an array has an index consisting of a particular
value:

if (val in array)
print array[val]

If the array has multiple subscripts, use (i,j)in array.
The in construct may also be used in a for loop to iterate over all the elements of an array.

An element may be deleted from an array using the delete statement. The delete Statement may also be used to delete the
entire contents of an array.

VARIABLE TYPING AND CONVERSION

Variables and fields may be floating-point numbers, or strings, or both. How the value of a variable is interpreted depends
upon its context. If used in a numeric expression, it will be treated as a number; if used as a string, it will be treated as a
string.

To force a variable to be treated as a number, add o to it; to force it to be treated as a string, concatenate it with the null
string.

gawk 165

When a string must be converted to a number, the conversion is accomplished using atof(3). A number is converted to a
string by using the value of conveuT as a format string for sprintf(3), with the numeric value of the variable as the argument.
However, even though all numbers in awk are floating-point, integral values are always converted as integers. Thus, given this:
CONVFMT = "%2.2f"

a =12

b =a""

the variable b has a string value of 12 and not 12.¢e.

gawk performs comparisons as follows: If two variables are numeric, they are compared numerically. If one value is numeric
and the other has a string value that is a “numeric string,” then comparisons are also done numerically. Otherwise, the
numeric value is converted to a string and a string comparison is performed. Two strings are compared, of course, as strings.
According to the standard, even if two strings are numeric strings, a numeric comparison is performed. However, this is
clearly incorrect, and gawk does not do this.

Uninitialized variables have the numeric value @ and the string value ** (the null, or empty, string).

PATTERNS AND ACTIONS

awk is a line-oriented language. The pattern comes first, and then the action. Action statements are enclosed in and .BR.
Either the pattern may be missing, or the action may be missing, but, of course, not both. If the pattern is missing, the action
will be executed for every single line of input. A missing action is equivalent to

{ print }
which prints the entire line.

Comments begin with the # character, and continue until the end of the line. Blank lines may be used to separate state-
ments. Normally, a statement ends with a newline, however, this is not the case for lines ending ina ,, {, 2, :, &&, or ! . Lines
ending in do or else also have their statements automatically continued on the following line. In other cases, a line can be
continued by ending it with a \, in which case the newline will be ignored.

Multiple statements may be put on one line by separating them with a semicolon. This applies to both the statements within
the action part of a pattern-action pair (the usual case), and to the pattern-action statements themselves.

PATTERNS
awk patterns may be one of the following:

BEGIN

END

/regular expression/
relational expression
pattern && pattern

pattern jj pattern

pattern ? pattern : pattern
(pattern)

! pattern

patternl, pattern2

BEGIN and END are two special kinds of patterns that are not tested against the input. The action parts of all BEGIN patterns are
merged as if all the statements had been written in a single BeaIN block. They are executed before any of the input is read.
Similarly, all the eno blocks are merged, and executed when all the input is exhausted (or when an exit statement is
executed). BEGIN and END patterns cannot be combined with other patterns in pattern expressions. BEGIN and END patterns
cannot have missing action parts.

For /regular expression/ patterns, the associated statement is executed for each input line that matches the regular
expression. Regular expressions are the same as those in egrep(1), and are summarized as follows:

166

Part I: User Commands

A relational expression may use any of the operators defined later in the section on actions. These generally test whether
certain fields match certain regular expressions.

The &&, |1, and | operators are logical anp, logical or, and logical NoT, respectively, as in C. They do short-circuit evaluation,
also as in C, and are used for combining more primitive pattern expressions. As in most languages, parentheses may be used
to change the order of evaluation.

The 2: operator is like the same operator in C. If the first pattern is true, then the pattern used for testing is the second
pattern; otherwise, it is the third. Only one of the second and third patterns is evaluated.

The pattern1, pattern2 form of an expression is called a range pattern. It matches all input records starting with a line that
matches pattern1, and continuing until a record that matches pattern2, inclusive. It does not combine with any other sort of
pattern expression.

REGULAR EXPRESSIONS

Regular expressions are the extended kind found in egrep. They are composed of characters as follows:

c Matches the non-meta-character c.

\c Matches the literal character c.
Matches any character except newline.
Matches the beginning of a line or a string.

$ Matches the end of a line or a string.

[abc...] Character class, matches any of the characters abec. . ..

["abc...] Negated character class, matches any character except abc. .. and newline.
riir2 Alternation: matches either r1 or r2.

rir2 Concatenation: matches r1, and then r2.

r+ Matches one or more rs.

r* Matches zero or more rs.

r? Matches zero or one rs.

(r) Grouping: matches r.

The escape sequences that are valid in string constants are also legal in regular expressions.

ACTIONS

Action statements are enclosed in braces, { and }. Action statements consist of the usual assignment, conditional, and looping
statements found in most languages. The operators, control statements, and input/output statements available are patterned
after those in C.

OPERATORS
The operators in awk, in order of increasing precedence, are
=+=_= Assignment. Both absolute assignment (var = value) and operator-assignment (the other forms) are
*= = %= = supported.
?: The C conditional expression. This has the form expri ? expr2 : expr3 .If expr1 is true, the value of the
expression is expr2; otherwise, it is expr3. Only one of expr2 and expr3 is evaluated.
o Logical or.
&& Logical Anp.

L Regular expression match, negated match. NOTE: Do not use a constant regular expression (/foo/) to the
left of a - or 1=. Only use one on the right side. The expression /foo/ ~ exp has the same meaning as (($0

" /foo/) " exp). This is usually not what was intended.
<>, <=>= The regular relational operators.
blank String concatenation.

+- Addition and subtraction.

gawk

167
* % Multiplication, division, and modulus.
+-1 Unary plus, unary minus, and logical negation.
. Exponentiation (** may also be used, and **= for the assignment operator).
- Increment and decrement, both prefix and postfix.
$ Field reference.
CONTROL STATEMENTS

The control statements are as follows:

if (condition) statement [else statement]
while (condition) statement
do statement while (condition)
for (expri; expr2; expr3) statement
for (var in array) statementbreak
continue
delete array[index]
delete array
exit [expression]
{ statements }

I/O STATEMENTS
The input/output statements are as follows:

close(filename)
getline

getline <file
getline var
getline var <file

next

next file

print

print expr-list

print expr-list >file

printf fmt, expr-list

printf fmt, expr-list >file

system(cmd-line)

Close file (or pipe, see paragraph following this list).

Set $o from next input record; set NF, NR, FNR.

Set $o from next record of file; set NF.

Set var from next input record; set NF, FNR.

Set var from next record of file.

Stop processing the current input record. The next input record is read and processing starts
over with the first pattern in the awk program. If the end of the input data is reached, the
END block(s), if any, are executed.

Stop processing the current input file. The next input record read comes from the next
input file. FILENANE is updated, FNR is reset to 1, and processing starts over with the first
pattern in the awk program. If the end of the input data is reached, the enp block(s), if any,
are executed.

Prints the current record.

Prints expressions. Each expression is separated by the value of the oFs variable. The output
record is terminated with the value of the ors variable.

Prints expressions on file. Each expression is separated by the value of the oFs variable. The
output record is terminated with the value of the ors variable.

Format and print.

Format and print on filte.

Execute the command cmd-1ine, and return the exit status. (This may not be available on -
POSIX systems.)

Other input/output redirections are also allowed. For print and printf, >>file appends output to the file, while | command
writes on a pipe. In a similar fashion, command | getline pipes into getline. The getline command will return @ on end of

file, and -1 on an error.

THE printf STATEMENT
The awk versions of the printf statement and sprintf() function accept the following conversion specification formats:

%C An ASCII character. If the argument used for %c is numeric, it is treated as a character and printed.
Otherwise, the argument is assumed to be a string, and the only first character of that string is printed.

168 Part I: User Commands

9 I ° ® o o o o o
X X ® O @ —Hh ®© H o

o°
o°

A decimal number (the integer part).

Just like sd.

A floating-point number of the form [-]d.ddddddE[+-]dd.

A floating-point number of the form [-1ddd. dddddd.

Use e or f conversion, whichever is shorter, with nonsignificant zeros suppressed.
An unsigned octal number (again, an integer).

A character string.

An unsigned hexadecimal number (an integer).

Like %x, but using ABCDEF instead of abcdef.

Assingle % character; no argument is converted.

There are optional, additional parameters that may lie between the % and the control letter:

width

.prec

The expression should be left-justified within its field.

The field should be padded to this width. If the number has a leading zero, then the field will be padded
with zeros. Otherwise, it is padded with blanks. This applies even to the nonnumeric output formats.

A number indicating the maximum width of strings or digits to the right of the decimal point.

The dynamic width and prec capabilities of the C printf() routines are supported. A * in place of either the width or prec
specifications will cause their values to be taken from the argument list to printf or sprintf().

SPECIAL FILENAMES

When doing 1/O redirection from either print or printf into a file, or via getline from a file, gawk recognizes certain special
filenames internally. These filenames allow access to open file descriptors inherited from gawk’s parent process (usually the
shell). Other special filenames provide access information about the running gawk process. The filenames are

/dev/pid
/dev/ppid

/dev/pgrpid

/dev/user

/dev/stdin
/dev/stdout
/dev/stderr
/dev/fd/n

Reading this file returns the process ID of the current process, in decimal, terminated with a newline.

Reading this file returns the parent process ID of the current process, in decimal, terminated with a
newline.

Reading this file returns the process group 1D of the current process, in decimal, terminated with a
newline.

Reading this file returns a single record terminated with a newline. The fields are separated with blanks. $1
is the value of the getuid(2) system call, $2 is the value of the geteuid(2) system call, $3 is the value of the
getgid(2) system call, and $4 is the value of the getegid(2) system call. If there are any additional fields,
they are the group IDs returned by getgroups(2). Multiple groups may not be supported on all systems.

The standard input.

The standard output.

The standard error output.

The file associated with the open file descriptor n.

These are particularly useful for error messages. For example, you could use

print "You blew it!" > "/dev/stderr"

whereas you would otherwise have to use

print "You blew it!" j "cat 1>&2"

These filenames may also be used on the command line to name data files.

NUMERIC FUNCTIONS

awk has the following predefined arithmetic functions:

atan2(y, x)

cos (expr)

Returns the arctangent of y/x in radians.
Returns the cosine in radians.

gawk

169

exp (expr) The exponential function.

int (expr) Truncates to integer.

log(expr) The natural logarithm function.

rand() Returns a random number between 0 and 1.

sin(expr) Returns the sine in radians.

sqrt(expr) The square root function.

srand (expr) Use expr as a new seed for the random number generator. If no expr is provided, the time of day will be

used. The return value is the previous seed for the random number generator.
STRING FUNCTIONS

awk has the following predefined string functions:

gsub(r, s, t) For each substring matching the regular expression r in the string t, substitute the string s,
and return the number of substitutions. If t is not supplied, use $o.

index(s, t) Returns the index of the string t in the string s,or o if t is not present.

length(s) Returns the length of the string s, or the length of se if s is not supplied.

match(s, r) Returns the position in s where the regular expression r occurs, or o if u is not present, and
sets the values of RSTART and RLENGTH.

split(s, a, r) Splits the string s into the array a on the regular expression r, and returns the number of
fields. If r is omitted, Fs is used instead. The array a is cleared first.

sprintf(fmt, expr-list) Prints expr-1ist according to fmt, and returns the resulting string.

sub(r, s, t) Just like gsub(), but only the first matching substring is replaced.

substr(s, i, n) Returns the n-character substring of s starting at i. If n is omitted, the rest of s is used.

tolower(str) Returns a copy of the string str, with all the uppercase characters in str translated to their
corresponding lowercase counterparts. Nonalphabetic characters are left unchanged.

toupper(str) Returns a copy of the string str, with all the lowercase characters in str translated to their

corresponding uppercase counterparts. Nonalphabetic characters are left unchanged.

TIME FUNCTIONS

Since one of the primary uses of awk programs is processing log files that contain time stamp information, gawk provides the
following two functions for obtaining time stamps and formatting them.

systime() Returns the current time of day as the number of seconds since the Epoch (Midnight UTC,
January 1, 1970 on systems).

strftime(format, timestamp) Formats timestamp according to the specification in format. The timestamp should be of the
same form as returned by systime(). If timestamp is missing, the current time of day is used.
See the specification for the strftime () function in C for the format conversions that are
guaranteed to be available. A public-domain version of strftime(3) and a man page for it are
shipped with gawk; if that version was used to build gawk, then all of the conversions
described in that man page are available to gawk.

STRING CONSTANTS

String constants in awk are sequences of characters enclosed between double quotes (). Within strings, certain escape
sequences are recognized, as in C. These are

\\ A literal backslash.

\a The “alert” character; usually the ASCII BEL character.
\b Backspace.

\f Formfeed.

\n Newline.

170

Part I: User Commands

\r Carriage return.
\t Horizontal tab.
\v Vertical tab.

\xhex digits The character represented by the string of hexadecimal digits following the \x. As in C, all following
hexadecimal digits are considered part of the escape sequence. (This feature should tell us something about
language design by committee.) For example, "\x18" is the ASCII ESC (escape) character.

\ddd The character represented by the 1-, 2-, or 3-digit sequence of octal digits. For example, "\033" is the
ASCII ESC (escape) character.
\c The literal character c.

The escape sequences may also be used inside constant regular expressions (for example, /[\\t\f\n\r\v]/ matches whitespace
characters).

FUNCTIONS

Functions in awk are defined as follows:

function name (parameter list) { statements }

Functions are executed when called from within the action parts of regular pattern-action statements. Actual parameters
supplied in the function call are used to instantiate the formal parameters declared in the function. Arrays are passed by
reference, other variables are passed by value.

Functions were not originally part of the awk language, so the provision for local variables is rather clumsy: They are declared
as extra parameters in the parameter list. The convention is to separate local variables from real parameters by extra spaces in
the parameter list. For example

function f(p, q, a, b) { # a & b are local

Jabe/ { ... ; f(1, 2) ; ...}

The left parenthesis in a function call is required to immediately follow the function name, without any intervening
whitespace. This is to avoid a syntactic ambiguity with the concatenation operator. This restriction does not apply to the
built-in functions listed earlier.

Functions may call each other and may be recursive. Function parameters used as local variables are initialized to the null
string and the number zero upon function invocation.

The word func may be used in place of function.

EXAMPLES

Print and sort the login names of all users:

BEGIN { FS = ":" }
{ print $1 j "sort" }

Count lines in a file:

{ nlines++ }
END { print nlines }

Precede each line by its number in the file:

{ print FNR, $0 }

Concatenate and line number (a variation on a theme):
{ print NR, $0 }

gawk 171

SEE ALSO
egrep(1), getpid(2), getppid(2), getpgrp(2), getuid(2), geteuid(2), getgid(2), getegid(2), get-groups(2)
The AWK Programming Language, Alfred V. Aho, Brian W. Kernighan, Peter J. Weinberger, Addison-Wesley, 1988. ISBN
0-201-07981-X.

The GAWK Manual, Edition 0.15, published by the Free Software Foundation, 1993.
POSIX COMPATIBILITY

A primary goal for gawk is compatibility with the standard, as well as with the latest version of awk. To this end, gawk
incorporates the following user-visible features that are not described in the awk book, but are part of awk in System V
Release 4, and are in the standard.

The -v option for assigning variables before program execution starts is new. The book indicates that command-line variable
assignment happens when awk would otherwise open the argument as a file, which is after the BecIn block is executed.
However, in earlier implementations, when such an assignment appeared before any filenames, the assignment would happen
before the BeaIN block was run. Applications came to depend on this “feature.” When awk was changed to match its
documentation, this option was added to accommodate applications that depended upon the old behavior. (This feature was
agreed on by both the AT&T and GNU developers.)

The -w option for implementation-specific features is from the standard.

When processing arguments, gawk uses the special option -- to signal the end of arguments. In compatibility mode, it will
warn about, but otherwise ignore, undefined options. In normal operation, such arguments are passed on to the awk program
for it to process.

The awk book does not define the return value of srand(). The System V Release 4 version of awk (and the standard) has it
return the seed it was using, to allow keeping track of random number sequences. Therefore, srand() in gawk also returns its
current seed.

Other new features are: the use of multiple - options (from MKS awk); the ENvIRON array; the \a, and \v escape sequences
(done originally in gawk and fed back into AT&T'’s version); the tolower() and toupper() built-in functions (from AT&T);
and the C conversion specifications in printf (done first in AT&T’s version).

GNU EXTENSIONS

gawk has some extensions to awk. They are described in this section. All the extensions described here can be disabled by
invoking gawk with the -w compat option.

The following features of gawk are not available in awk:

The \x escape sequence.

The systime() and strftime() functions.

The special filenames available for I/O redirection are not recognized.

The ArGIND and ERRNO variables are not special.

The 1GNORECASE variable and its side effects.

The F1ELDWIDTHS variable and fixed width field splitting.

No path search is performed for files named via the -f option. Therefore, the AwkPATH environment variable is not special.
The use of next file to abandon processing of the current input file.

The use of delete array to delete the entire contents of an array.

The awk book does not define the return value of the close() function. gawk’s close() returns the value from fclose(3), or
pclose(3), when closing a file or pipe, respectively.

When gawk is invoked with the -w compat option, if the fs argument to the -F option is t, then Fs will be set to the tab
character. Since this is a rather ugly special case, it is not the default behavior. This behavior also does not occur if -wposix
has been specified.

172 Part I: User Commands

HISTORICAL FEATURES

There are two features of historical awk implementations that gawk supports. First, it is possible to call the 1ength() built-in
function not only with no argument, but even without parentheses! Thus, this:

a = length

is the same as either of these:
a = length()

a = length($0)

This feature is marked as “deprecated” in the standard, and gawk will issue a warning about its use if -w 1int is specified on
the command line.

The other feature is the use of either the continue or the break statements outside the body of awhile, for, or do loop.
Traditional awk implementations have treated such usage as equivalent to the next statement. gawk will support this usage
if -w compat has been specified.

ENVIRONMENT VARIABLES

If POSIXLY_CORRECT exists in the environment, then gawk behaves exactly as if — -posix had been specified on the command
line. If —-1int has been specified, gawk will issue a warning message to this effect.

BUGS

The -F option is not necessary given the command-line variable assignment feature; it remains only for backwards compat-
ibility.

If your system actually has support for /dev/fd and the associated /dev/stdin, /dev/stdout, and /dev/stderr files, you may get
different output from gawk than you would get on a system without those files. When gawk interprets these files internally, it
synchronizes output to the standard output with output to /dev/stdout, while on a system with those files, the output is
actually to different open files. Caveat emptor.

VERSION INFORMATION

This man page documents gawk, version 2.15.

Starting with the 2.15 version of gawk, the -c, -v, -C, -D, -a, and -e options of the 2.11 version are no longer recognized. This
fact will not even be documented in the manual page for the next major version.

AUTHORS

The original version of awk was designed and implemented by Alfred Aho, Peter Weinberger, and Brian Kernighan of AT&T
Bell Labs. Brian Kernighan continues to maintain and enhance it.

Paul Rubin and Jay Fenlason, of the Free Software Foundation, wrote gawk, to be compatible with the original version of awk
distributed in the seventh edition. John Woods contributed a number of bug fixes. David Trueman, with contributions from
Arnold Robbins, made gawk compatible with the new version of awk. Arnold Robbins is the current maintainer.

The initial DOS port was done by Conrad Kwok and Scott Garfinkle. Scott Deifik is the current DOS maintainer. Pat
Rankin did the port to VMS, and Michal Jaegermann did the port to the Atari ST. The port to OS/2 was done by Kai Uwe
Rommel, with contributions and help from Darrel Hankerson.

BUG REPORTS
If you find a bug in gawk, please send electronic mail to

bug-gnu-utils@prep.ai.mit.edu,

with a copy to arnoldegnu.ai.mit.edu. Please include your operating system and its revision, the version of gawk, what C
compiler you used to compile it, and a test program and data that are as small as possible for reproducing the problem.

geal 173

Before sending a bug report, please do two things. First, verify that you have the latest version of gawk. Many bugs (usually
subtle ones) are fixed at each release, and if yours is out of date, the problem may already have been solved. Second, please
read this man page and the reference manual carefully to be sure that what you think is a bug really is, instead of just a quirk
in the language.

ACKNOWLEDGMENTS
Brian Kernighan of Bell Labs provided valuable assistance during testing and debugging.
We thank him.

Free Software Foundation, 24 November 1994

gcal—Displays month/year calendar sheets, eternal holiday lists for Julian and Gregorian years, and fixed date warning

lists—all in a variety of ways.

SYNOPSIS

gcal [[Option...][%Date J[@File...]] [Command]

DESCRIPTION
gcal is a program similar the standard calendar programs Bsb-'cal' and calendar.
gcal displays Gregorian calendars, Julian calendars (before September 1752).
If gcal is started without any options or commands, a calendar of the current month is displayed.

If the calendar of a definite year is wanted, the year must be fully specified. For example, gcal 94 displays a year calendar of
the year 94, not of the year 1994.

If two arguments are given in the command part, the first argument denotes the month and the second argument denotes the
year. In case any illegal commands are given running geal, the program will use internal defaults.

The Gregorian Reformation is assumed to have occurred in 1752 on the 3rd of September. Ten days following that date
were eliminated by the reformation, so the calendar for that month is a bit unusual.

MORE PROGRAM INFORMATION
You get more program information if you start gcal as follows:

gcal -h gcal -? gcal -help
resp.,
gcal -hh gcal -?? gcal -long-help[=ARG]j[=?] gcal -usage[=ARG]j[=7]

A hypertext file gcal.info containing detailed online information should be available, which you can inspect using your
GNU Infobrowser.

COPYRIGHT

geal copyright O 1994, 1995, 1996 by Thomas Esken. This software doesn’t claim completeness, correctness, or usability.
On principle, I will not be liable for any damages or losses (implicit or explicit), which result from using or handling my
software. If you use this software, you agree without any exception to this agreement, which binds you legally.

gcal is free software and distributed under the terms of the GNU General Public License; published by the Free Software
Foundation; version 2 or (at your option) any later version.

Any suggestions, improvements, extensions, bug reports, donations, proposals for contract work, and so forth are welcome!
If you like this tool, I'd appreciate a postcard from youl!

Enjoy it =8")

174

Part I: User Commands

AUTHOR

Thomas Esken (esken@uni-muenster.de)
Im Hagenfeld 84

D-48147 Muenster; Germany

Phone : +49 251 232585

SEE ALSO

cal(l), calendar(l)
16 July 1996

gcc, g++

gec, g++—GNU project C and C++ Compiler (v2.7)

SYNOPSIS

gce [option j filename]. . .
g++ [option j filename]...

WARNING

The information in this man page is an extract from the full documentation of the GNU C compiler and is limited to the
meaning of the options.

This man page is not kept up-to-date except when volunteers want to maintain it. If you find a discrepancy between the man
page and the software, please check the info file, which is the authoritative documentation.

If we find that the things in this man page that are out of date cause significant confusion or complaints, we will stop
distributing the man page. The alternative, updating the man page when we update the info file, is impossible because the
rest of the work of maintaining GNU CC leaves us no time for that. The GNU project regards man pages as obsolete and
should not let them take time away from other things.

For complete and current documentation, refer to the info file gcc or the manual Using and Porting GNU CC (for version
2.0). Both are made from the Texinfo source file gcc. texinfo.

DESCRIPTION

The C and C++ compilers are integrated. Both process input files through one or more of four stages: preprocessing,
compilation, assembly, and linking. Source filename suffixes identify the source language, but which name you use for the
compiler governs default assumptions:

gce Assumes preprocessed (.1i) files are C and assumes C-style linking.
g++ Assumes preprocessed (.1i) files are C++ and assumes C++-style linking.

Suffixes of source filenames indicate the language and kind of processing to be done:

.c C source; preprocess, compile, assemble

.C C++ source; preprocess, compile, assemble

.cc C++ source; preprocess, compile, assemble

.CXX C++ source; preprocess, compile, assemble

.m Objective-C source; preprocess, compile, assemble
i Preprocessed C; compile, assemble

Lid Preprocessed C++; compile, assemble

.s Assembler source; assemble

.S Assembler source; preprocess, assemble

.h Preprocessor file; not usually named on command line

Files with other suffixes are passed to the linker. Common cases include

.0 Object file
.a Archive file

Linking is always the last stage unless you use one of the -c, -s, or -E options to avoid it (or unless compilation errors stop

gee, g++

175

the whole process). For the link stage, all .o files corresponding to source files, -1 libraries, unrecognized filenames (including
named .o object files, and .a archives) are passed to the linker in command-line order.

OPTIONS

Options must be separate: -dr is quite different from -d -r.

Most -t and -w options have two contrary forms: -fname and -fno-name (Or -Wname and -wno-name). Only the nondefault forms

are shown here.

Here is a summary of all the options, grouped by type. Explanations are in the following sections.

Overall Options

-¢c -S -E -0 file-pipe -v -x language

Language Options

-ansi -fall-virtual
-fdollars-in-identifiers -fenum-int-equiv
-fno-asm -fno-builtin
-fsigned-bitfields -fsigned-char
-funsigned-bitfields -funsigned-char
-traditional -traditional-cpp

Warning Options

-fsyntax-only -pedantic

-w -W -Wall -Waggregate-return
-Wecast-qual -Wchar-subscript
-Wconversion -Wenum-clash
-Wformat -Wid-clash-1len
-Winline -Wmissing-prototypes
-Wnested-externs -Wno-import
-Wpointer-arith -Wredundant-decls
-Wshadow -Wstrict-prototypes
-Wtemplate-debugging -Wtraditional
-Wuninitialized -Wunused

Debugging Options

-a -dletters -fpretend-float -g -glevel -gcoff -gxcoff -gxcoff+ -gdwarf -gdwarf+ -gstabs -gstabs+ -ggdb -p -pg -

-fcond-mismatch
-fexternal-templates
-fno-strict-prototype
-fthis-is-variable
-fwritable-strings

-trigraphs

-pedantic-errors
-Wcast-align

-Wcomment

-Werror

-Wimplicit
-Wmissing-declarations
-Wparentheses
-Wreturn-type

-Wswitch

-Wtrigraphs

-Wwrite-strings

save- temps -print-file-name=library -print-libgcc-file-name - print-prog-name=program

Optimization Options

-fcaller-saves -fcse-follow-jumps
-fdelayed-branch -felide-constructors
-ffast-math -ffloat-store
-fforce-mem -finline-functions

-fcse-skip-blocks
-fexpensive-optimizations
-fforce-addr

-fkeep-inline-functions

176 Part I: User Commands

-fmemorize-lookups -fno-default-inline -fno-defer-pop
-fno-function-cse -fno-inline -fno-peephole
-fomit-frame-pointer -frerun-cse-after-loop -fschedule-insns
-fschedule-insns2 -fstrength-reduce -fthread-jumps
-funroll-all-loops -funroll-loops -0 -02

Preprocessor Options

—Aassertion -C -dD -dM -dN -Dmacro[=defn]-E -H- idirafter dir -include file -imacros file -iprefix file-
iwithprefix dir -M -MD -MM -MMD -nostdinc -P -Umacro -undef

Assembler Option
-Wa,option
Linker Options
-llibrary -nostartfiles -nostdlib -static -shared -symbolic -Xlinkernoption-Wl,option -u symbol
Directory Options
-Bprefix -Idir -I- -Ldir
Target Options
-b machine -V version

Configuration-Dependent Options
M680x0 Options

-m68000-m68020 -m68020-40-m68030-m68040-m68881 -mbitfield -mc68000 -mc68020 -mfpa -mnobitfield -mrtd -mshort -msoft-
float

VAX Options
-mg -mgnu -munix
SPARC Options
-mepilogue -mfpu -mhard-float -mno-fpu -mno-epilogue -msoft-float -msparclite -mv8 -msupersparc -mcypress

Convex Options

-margcount -mc1 -mc2 -mnoargcount

AMD29K Options
-m29000-m29050 -mbw -mdw -mkernel-registers -mlarge -mnbw -mnodw -msmall -mstack-check -muser-registers
M88K Options
-m88000 -m88100 -m88110 -mbig-pic
-mcheck-zero-division -mhandle-large-shift
-midentify-revision -mno-check-zero-division
-mno-ocs-debug-info -mno-ocs-frame-position
-mno-optimize-arg-area -mno-serialize-volatile
-mno-underscores -mocs-debug-info
-mocs-frame-position -moptimize-arg-area
-mserialize-volatile -mshort-data-num
-msvr3 -msvr4 -mtrap-large-shift
-muse-div-instruction -mversion-03.00

-mwarn-passed-structs

RS6000 Options
-mfp-in-toc -mno-fop-in-toc

RT Options
-mcall-lib-mul -mfp-arg-in-fpregs
-mfull-fp-blocks -mhc-struct-return

-mminimum-fp-blocks

MIPS Options

-mcpu=cpu type -mips2 -mips3

-mlonglong128

-mno-rnames

-mno-stats -mm