Maximum Security: A Hacker's Guide to
Protecting Your Internet Site and
Network

Table of Contents:

e Introduction

I Setting the Stage

e Chapter 1 - Why Did I Write This Book?

e Chapter 2 - How This Book Will Help You

e Chapter 3 - Hackers and Crackers

e Chapter 4 - Just Who Can Be Hacked, Anyway?

II Understanding the Terrain

e Chapter 5 - Is Security a Futile Endeavor?

e Chapter 6 - A Brief Primer on TCP/IP

e Chapter 7 - Birth of a Network: The Internet

e Chapter 8 - Internet Warfare

III Tools

e Chapter 9 - Scanners

e Chapter 10 - Password Crackers

e Chapter 11 - Trojans

e Chapter 12 - Sniffers

e Chapter 13 - Techniques to Hide One's Identity

e Chapter 14 - Destructive Devices

IV Platforms and Security

e Chapter 15 - The Hole

e Chapter 16 - Microsoft

e Chapter 17 - UNIX: The Big Kahuna

e Chapter 18 - Novell

e Chapter 19 - VAX/VMS

e Chapter 20 - Macintosh

e Chapter 21 - Plan 9 from Bell Labs

V Beginning at Ground Zero

e Chapter 22 - Who or What Is Root?

e Chapter 23 - An Introduction to Breaching a Server Internally

e Chapter 24 - Security Concepts

VI The Remote Attack

e Chapter 25 - The Remote Attack

e Chapter 26 - Levels of Attack

e Chapter 27 - Firewalls

e Chapter 28 - Spoofing Attacks

e Chapter 29 - Telnet-Based Attacks

e Chapter 30 - Language, Extensions, and Security

VII The Law

e Chapter 31 - Reality Bytes: Computer Security and the Law

VIII Appendixes

e Appendix A - How to Get More Information

e Appendix B - Security Consultants

e Appendix C - A Hidden Message About the Internet

e Appendix D - What's on the CD-ROM

© Copyright, Angel722 Computer Publishing. All rights reserved.

Maximum Security:
A Hacker's Guide to Protecting Your
Internet Site and Network

Dedication

This book is dedicated to Michelle, whose presence has rendered me a prince among
men.

Acknowledgments

My acknowledgments are brief. First, [would like to acknowledge the folks at Sams,
particularly Randi Roger, Scott Meyers, Mark Taber, Blake Hall, Eric Murray, Bob
Correll, and Kate Shoup. Without them, my work would resemble a tangled, horrible
mess. They are an awesome editing team and their expertise is truly extraordinary.

Next, I extend my deepest gratitude to Michael Michaleczko, and Ron and Stacie
Latreille. These individuals offered critical support, without which this book could not
have been written.

Also, I would like to recognize the significant contribution made by John David Sale, a
network security specialist located in Van Nuys, California. His input was invaluable. A
similar thanks is also extended to Peter Benson, an Internet and EDI Consultant in Santa
Monica, California (who, incidentally, is the current chairman of ASC X12E). Peter's
patience was (and is) difficult to fathom. Moreover, I forward a special acknowledgment
to David Pennells and his merry band of programmers. Those cats run the most robust
and reliable wire in the southwestern United States.

About the Author

The author describes himself as a "UNIX propeller head" and is a dedicated advocate of
the Perl programming language, Linux, and FreeBSD.

After spending four years as a system administrator for two California health-care firms,
the author started his own security-consulting business. Currently, he specializes in
testing the security of various networking platforms (breaking into computer networks
and subsequently revealing what holes lead to the unauthorized entry) including but not
limited to Novell NetWare, Microsoft Windows NT, SunOS, Solaris, Linux, and
Microsoft Windows 95. His most recent assignment was to secure a wide area network
that spans from Los Angeles to Montreal.

The author now lives quietly in southern California with a Sun SPARCStation, an IBM
RS/6000, two Pentiums, a Macintosh, various remnants of a MicroVAX, and his wife.

In the late 1980s, the author was convicted of a series of financial crimes after developing
a technique to circumvent bank security in Automatic Teller Machine systems. He
therefore prefers to remain anonymous.

Tell Us What You Think!

As a reader, you are the most important critic and commentator of our books. We value
your opinion and want to know what we're doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to
pass our way. You can help us make strong books that meet your needs and give you the
computer guidance you require.

Do you have access to the World Wide Web? Then check out our site at
http://www.mcp.comn.

NOTE: If you have a technical question about this book, call the technical support line at
317-581-3833 or send e-mail to suppor@mcp . com.

As the team leader of the group that created this book, I welcome your comments. You
can fax, e-mail, or write me directly to let me know what you did or didn't like about this
book--as well as what we can do to make our books stronger. Here's the information:

FAX: 317-581-4669
E-mail:

Mark Taber

newtech mgr@sams.mcp.com

Mail:

Mark Taber
Comments Department
Sams Publishing

201 W. 103rd Street
Indianapolis, IN 46290

Introduction

I want to write a few words about this book and how it should be used. This book is not
strictly an instructional, or "How To" book. Its purpose is to get you started on a solid
education in Internet security. As such, it is probably constructed differently from any
computer book you have ever read.

Although this book cannot teach you everything you need to know, the references
contained within this book can. Therefore, if you know very little about Internet security,
you will want to maximize the value of this book by adhering to the following procedure:

Each chapter (except early ones that set the stage) contains intermittent references that
might point to white papers, technical reports, or other sources of solid, reliable
information of substance (pertaining to the topic at hand). Those references appear in
boxes labeled XREF. As you encounter each source, stop for a moment to retrieve that
source from the Net. After you retrieve the source, read it, then continue reading the
book. Throughout the book, perform this operation whenever and wherever applicable. If
you do so, you will finish with a very solid basic education on Internet security.

I have constructed this book in this manner because Internet security is not a static field,
it changes rapidly. Nonetheless, there are certain basics that every person interested in
security must have. Those basics are not contained (in their entirety) in any one book
(perhaps not even in dozens of them). The information is located on the Internet in the
form of documents written by authorities on the subject. These are the people who either
designed and developed the Internet or have designed and developed its security features.
The body of their work is vast, but each paper or technical report is, at most, 40 pages in
length (most are fewer than 10).

Those readers who want only a casual education in Internet security may read the book
without ever retrieving a single document from the Internet. But if you are searching for
something more, something deeper, you can obtain it by adhering to this procedure.

If you choose to use the book as a reference tool in the manner I have described, there are
certain conventions that you need to know. If the resource you have been directed to is a
tool, consider downloading it even if it is not for your platform. With a proper archive
tool (like Winzip), you can extract the documents that accompany the distribution of that
tool. Such documents often contain extremely valuable information. For example, the
now famous scanner named SATAN (made expressly for UNIX) contains security
tutorials in HTML. These do not require that you have UNIX (in fact, all they require is a
browser). Likewise, many other tools contain documents in PDF, TXT, DOC, PS, and
other formats that are readable on any platform.

TIP: SATAN is a special case. Some of the tutorials are in HTML but have * . PL
extensions. These extensions are used to signify documents that are written in Perl. If you
do not have Perl installed, convert these documents to raw HTML. To do so, open them
in a text editor and replace the first line (<< HTML) with <HTML>. Then rename the file
with either an * . HTM or an * . HTML extension. From that point on, your browser will
load the pages perfectly.

Also, note that many of the Internet documents referenced in this book are available in
PostScript form only. PostScript is a wonderful interpreted language that draws graphics
and text. It is used primarily in technical fields. To view some of these documents,
therefore, you will require a PostScript reader (or interpreter). If you do not already have
Adobe Illustrator or some other proprietary PostScript package, there are two leading
utilities:

e Rops

e Ghostscript/Ghostview

Both are freely available for download on the Internet. Rops is available here:

e ftp://ftp.winsite.com/pub/pc/winnt/txtutil/rops3244.zip

Ghostscript and Ghostview are available here:

e ftp://ftp.cs.wisc.edu/ghost/aladdin/gs353w32.zip

e http://www.cs.wisc.edu/%7Eghost/gsview/index.html

I should point out that Rops is shareware, while Ghostscript and Ghostview (hereafter,
the GS utilities) are free. The chief differences between these two distributions are that
Rops is smaller, easier to configure, and faster. In fact, it is probably one of the best
shareware products I have ever seen; it is incredibly small for the job that it does and
requires minimal memory resources. It was coded by Roger Willcocks, a software
engineer in London, England.

In contrast, the GS utilities are slower, but support many more fonts and other subtle
intricacies you will likely encounter in PostScript documents produced on disparate
platforms. In other words, on documents that Rops fails to decode, the GS utilities will
probably still work. The GS utilities also have more tolerance for faults within a
PostScript document. If you have never used a PostScript interpreter, there are certain
situations you may encounter that seem confusing. One such situation is where the
interpreter cannot find evidence of page numbering. If you encounter this problem, you
will only be able to move forward in the document (you will not be able to go back to
page 1 after you have progressed to page 2). In such instances, it's best to print the
document.

To avoid this problem, I have purposefully (and by hand) searched out alternate formats.
That is, for each PostScript document I encountered, I tried to find the identical paper in
PDF, TXT, DOC, WPG, or HTML. In some cases, I'm afraid, I could not find the
document in any other form (this was especially so with early classic papers on Internet
security). In cases where I did successfully find another format, I have pointed you there
instead of to the PostScript version. I did this because the majority of PC users (with the
exception of Mac users) do not routinely have PostScript facilities on their machines.

Next I need to say several things about the hyperlinks in this book. Each one was tested
by hand. In certain instances, I have offered links overseas to papers that are also
available here in the United States. This is because I tried to pick the most reliable links
possible. By reliable links, I mean the links most easily retrieved in the shortest time
possible. Although you wouldn't think so, some overseas links are much faster. Also, in
some instances, I could only find a verified link to a document overseas (verified links
means that when I tested the link, the requested item actually existed at the URL in
question). To provide you with maximum value, I have attempted to reduce the
incidences of Object Not Found to practically nil. Naturally, however, your mileage
may vary. Sites often change their structure, so expect a few links to be no longer valid
(even though most were checked just a month or two before the book's printing.)

Also, many hyperlink paths are expressed in their totality, meaning that wherever
possible, I have extracted the fotal address of an object and not simply the server on
which it resides. In reference to downloadable files (tools, usually), these links will not
bring you to a page. Instead, they will initiate a download session to your machine,
bringing the file directly to you. This will save you time, but might first be confusing to
less experienced users. Don't be surprised when a dialog box appears, asking you to save
a file.

Wherever I specify what language a tool or software program was written in, pay careful
attention. Many tools mentioned require either a compiler or an interpreter before they
can be built and used. If you do not currently have the language or interpreter necessary
(or if your platform is different from that for which the tool was designed), re-examine
the reference. Unless it seems that the distribution contains documents that are of value to
you, you should probably refrain from downloading it. Moreover, many utilities come in
source code form only. Although I have examined much of the source code myself, I
cannot vouch for each and every line of it. If you intend to download source code and
compile it on your own architecture, be aware that neither I nor Sams can be responsible
for trojans or other malicious code that may exist in these files. The majority of files
referenced are actually from reliable sources and many are accompanied by digital
signatures, PGP keys, or other co-signing assurances of authenticity and integrity.
However, code that originated on cracker sites may or may not be clean. Use your
judgment in these instances.

NOTE: Special note to Windows and Mac users: if you have no idea what I am talking
about, fear not. You will by the time you reach Chapter 6, "A Brief Primer on TCP/IP." I
made every possible attempt to make this book easily read and understood for all users. 1
have taken great pains to explain many terms and procedures along the way. If you are
already aware of the definitions, skip these passages. If you are not, read them carefully.

The majority of the sites referenced are easily viewed by anyone. There may be a few
sites that use extensive table structures or maintain an all-graphic interface. Those with
noncompliant browsers may not be able to view these sites. Nonetheless, there are very
few such sites. Wherever possible, I have attempted to find alternate pages (that support
non-table browsers) so almost all of the pages are viewable using any browser. However,
I am not perfect; my efforts may fail in some cases. For this, I apologize.

In reference to sites mentioned that [deem "very good," a word of caution: This is my
opinion only. I classify sites as "good" if they impart information that is technically
sound or point you in many valuable directions. But simply because I say one site is good
and say nothing about another does not mean the other site is bad. I have hand-picked
every site here, and each offers good information on security. Those I single out as
particularly good are so identified usually because the maintainer of that site has done an
exemplary job of presenting the information.

With respect to hyperlinks, I will say this: At the end of Appendix A, "Where to Get
More Information," I offer an uncommented, bare list of hyperlinks. This is the
equivalent of a huge bookmark file. There is a purpose for this, which I discuss in detail
within that Appendix, but I will briefly address that purpose now. That list (which will

also appear on the CD-ROM) is provided for serious students of security. By loading that
list into a personal robot (Clearweb is one good example), you can build a huge security
library on your local machine. Such personal robots rake the pages on the list, retrieving
whatever file types you specify. For companies that have adequate disk space and are
looking to build a security library, this can be done automatically. Most robots will clone
a remote site within a few minutes.

Be aware, however, that the majority of links offered lead to pages with many links
themselves. Thus, if you are running such a robot, you'd better have adequate disk space
for the output. Printed in their native form, all retrievable documents in that list (if
retrieved with a robot that goes out one level for each link) would print a stack of paper
approximately seven feet tall. I know this because I have done it. In Appendix A, I
describe the procedure to do so. If you decide to retrieve and print written information
and binaries from all the sites listed, you will have the majority of written security
knowledge available on the Internet within two weeks. In organizations doing serious
security research, this could have significant value, particularly if all documents are
reformatted to a single file format (you could do special indexing and so forth).

Certain books or other documents have been referenced that are not available online.
These documents are obtainable, however. In all cases, I have included as much
information on them as possible. Sometimes, the ISBN or ISSN is included, and
sometimes not. ISBNs were not always obtainable. In these instances (which are
admittedly rare), I have included the Library of Congress catalog number or other,
identifying features that may help you find the referenced material offline. Any sources
that could not be traced down (either on the Net or elsewhere) were omitted from the
book.

Moreover, I have made every possible effort to give credit to individuals who authored or
otherwise communicated information that is of technical value. This includes postings in
Usenet newsgroups, mailing lists, Web pages, and other mediums. In almost all cases
(with the exception of the list of vendors that appears in Appendix B, "Security
Consultants"), I have omitted the e-mail addresses of the parties. True, you can obtain
those addresses by going to various sites, but I refrained from printing them within this
book. I have made every effort to respect the privacy of these individuals.

The list of vendors that appears in Appendix B was not taken from the local telephone
book. In March 1997, I issued a bulletin to several key security groups requesting that
vendors place a listing in this book. The people (and companies) who replied are all
qualified security vendors and consultants. These vendors and individuals provide
security products and services every day. Many deal in products that have been evaluated
for defense-level systems or other typically secure environments. They represent one
small portion of the cream of the crop. If a vendor does not appear on this list, it does not
mean that it is not qualified; it simply means that the vendor did not want to be listed in a
book written by an anonymous author. Security people are naturally wary, and rightly so.

In closing, I have some final words of advice. Appendix C, "A Hidden Message," points
to a block of encrypted text located on the CD-ROM. The encryption used was Pretty
Good Privacy (PGP). When (or rather, if) you decrypt it, you will find a statement that

reveals an element of the Internet that is not widely understood. However, within five
years, that element will become more clear to even the average individual. There are
several things that you need to know about that encrypted statement.

First, the encrypted text contains my opinion only. It is not the opinion of Sams.net. In
fact, to ensure that Sams.net is not associated with that statement, I have taken the
precaution of refusing to provide employees of Sams.net with the private passphrase.
Therefore, they have absolutely no idea what the statement is. Equally, I assure you (as I
have assured Sams.net) that the statement does not contain profanity or any other material
that could be deemed unsuitable for readers of any age. It is a rather flat, matter-of-fact
statement that warns of one facet of the Internet that everyone, including security
specialists, have sorely missed. This facet is of extreme significance, not simply to
Americans, but to all individuals from every nation. At its most basic, the statement is a
prognostication.

Now for a little note on how to decrypt the statement. The statement itself is very likely
uncrackable, because I have used the highest grade encryption possible. However, you
can determine the passphrase through techniques once common to the spy trade.
Contained in Appendix C are several lines of clear text consisting of a series of characters
separated by semi-colons (semi-colons are the field separator character). After you
identify the significance of these characters, you are presented with some interesting
possibilities. After trying them all, you will eventually crack that statement (the
significance of the clear text fields will reveal the passphrase). If you are clever, cracking
the message is easier than it looks (certainly, those wild and crazy characters at NSA will
have no problem, as long as the folks doing it are vintage and not kids; that is about the
only clue I will give). The public key for the message is root@netherworld.net.

If you crack the message, you should forward it to all members of Congress. For them, a
group largely uneducated about the Internet, the message within that encrypted text is of
critical importance.

Good luck.

Maximum Security: A Hacker's Guide to
Protecting Your Internet Site and
Network

©Copyright, Angel722 Inc. Computer Publishing. All rights reserved.

No part of this book may be used or reproduced in any form or by any means, or stored in a
database or retrieval system without prior written permission of the publisher except in the case of
brief quotations embodied in critical articles and reviews.

For information, address Angel722 Publishing, 1800 Engel Rd. 3 Floor,
Lawrence, Kansas, 66044

This material is provided "as is'" without any warranty of any kind.

© Copyright, Angel722 Inc. Computer Publishing. All rights reserved.

1
Why Did I Write This Book?

Hacking and cracking are activities that generate intense public interest. Stories of hacked
servers and downed Internet providers appear regularly in national news. Consequently,
publishers are in a race to deliver books on these subjects. To its credit, the publishing
community has not failed in this resolve. Security books appear on shelves in ever-
increasing numbers. However, the public remains wary. Consumers recognize driving
commercialism when they see it, and are understandably suspicious of books such as this
one. They need only browse the shelves of their local bookstore to accurately assess the
situation.

Books about Internet security are common (firewall technology seems to dominate the
subject list). In such books, the information is often sparse, confined to a narrow range of
products. Authors typically include full-text reproductions of stale, dated documents that
are readily available on the Net. This poses a problem, mainly because such texts are
impractical. Experienced readers are already aware of these reference sources, and
inexperienced ones are poorly served by them. Hence, consumers know that they might
get little bang for their buck. Because of this trend, Internet security books have sold
poorly at America's neighborhood bookstores.

Another reason that such books sell poorly is this: The public erroneously believes that to
hack or crack, you must first be a genius or a UNIX guru. Neither is true, though
admittedly, certain exploits require advanced knowledge of the target's operating system.
However, these exploits can now be simplified through utilities that are available for a
wide range of platforms. Despite the availability of such programs, however, the public
remains mystified by hacking and cracking, and therefore, reticent to spend forty dollars
for a hacking book.

So, at the outset, Sams.net embarked on a rather unusual journey in publishing this book.
The Sams.net imprint occupies a place of authority within the field. Better than two thirds
of all information professionals I know have purchased at least one Sams.net product. For
that reason, this book represented to them a special situation.

Hacking, cracking, and Internet security are all explosive subjects. There is a sharp
difference between publishing a primer about C++ and publishing a hacking guide. A
book such as this one harbors certain dangers, including

e The possibility that readers will use the information maliciously
e The possibility of angering the often-secretive Internet-security community

e The possibility of angering vendors that have yet to close security holes within their software

If any of these dangers materialize, Sams.net will be subject to scrutiny or perhaps even
censure. So, again, if all of this is true, why would Sams.net publish this book?

Sams.net published this book (and I agreed to write it) because there is a real need. I'd
like to explain that need for a moment, because it is a matter of some dispute within the
Internet community. Many people feel that this need is a manufactured one, a device
dreamt up by software vendors specializing in security products. This charge--as the
reader will soon learn--is unfounded.

Today, thousands of institutions, businesses, and individuals are going online. This
phenomenon--which has been given a dozen different names--is most commonly referred
to as the Internet explosion. That explosion has drastically altered the composition of the
Internet. By composition of the Internet, I refer to the cyberography of the Net, or the
demography of cyberspace. This quality is used to express the now diverse mixture of
users (who have varying degrees of online expertise) and their operating systems.

A decade ago, most servers were maintained by personnel with at least basic knowledge
of network security. That fact didn't prevent break-ins, of course, but they occurred rarely
in proportion to the number of potential targets. Today, the Internet's population is
dominated by those without strong security knowledge, many of whom establish direct
links to the backbone. The number of viable targets is staggering.

Similarly, individual users are unaware that their personal computers are at risk of
penetration. Folks across the country surf the Net using networked operating systems,
oblivious to dangers common to their platform. To be blunt, much of America is going
online unarmed and unprepared.

You might wonder even more why Sams would publish a book such as this. After all,
isn't the dissemination of such information likely to cause (rather than prevent) computer
break-ins?

In the short run, yes. Some readers will use this book for dark and unintended purposes.
However, this activity will not weaken network security; it will strengthen it. To
demonstrate why, I'd like to briefly examine the two most common reasons for security
breaches:

e Misconfiguration of the victim host

e System flaws or deficiency of vendor response

Misconfiguration of the Victim Host

The primary reason for security breaches is misconfiguration of the victim host. Plainly
stated, most operating systems ship in an insecure state. There are two manifestations of
this phenomenon, which I classify as active and passive states of insecurity in shipped
software.

The Active State

The active state of insecurity in shipped software primarily involves network utilities.
Certain network utilities, when enabled, create serious security risks. Many software
products ship with these options enabled. The resulting risks remain until the system
administrator deactivates or properly configures the utility in question.

A good example would be network printing options (the capability of printing over an
Ethernet or the Internet). These options might be enabled in a fresh install, leaving the
system insecure. It is up to the system administrator (or user) to disable these utilities.
However, to disable them, the administrator (or user) must first know of their existence.

You might wonder how a user could be unaware of such utilities. The answer is simple:
Think of your favorite word processor. Just how much do you know about it? If you
routinely write macros in a word-processing environment, you are an advanced user, one
member of a limited class. In contrast, the majority of people use only the basic functions
of word processors: text, tables, spell check, and so forth. There is certainly nothing
wrong with this approach. Nevertheless, most word processors have more advanced
features, which are often missed by casual users.

For example, how many readers who used DOS-based WordPerfect knew that it included
a command-line screen-capture utility? It was called Grab. It grabbed the screen in any
DOS-based program. At the time, that functionality was unheard of in word processors.
The Grab program was extremely powerful when coupled with a sister utility called
Convert, which was used to transform other graphic file formats into * . wpg files, a
format suitable for importation into a WordPerfect document. Both utilities were called
from a command line in the c: \wp directory. Neither were directly accessible from within
the WordPerfect environment. So, despite the power of these two utilities, they were not
well known.

Similarly, users might know little about the inner workings of their favorite operating
system. For most, the cost of acquiring such knowledge far exceeds the value. Oh, they
pick up tidbits over the years. Perhaps they read computer periodicals that feature
occasional tips and tricks. Or perhaps they learn because they are required to, at a job or
other official position where extensive training is offered. No matter how they acquire the
knowledge, nearly everyone knows something cool about their operating system.
(Example: the Microsoft programming team easter egg in Windows 95.)

The Microsoft programming team easter egg: The Microsoft programming team easter
egg is a program hidden in the heart of Windows 95. When you enter the correct
keystrokes and undertake the correct actions, this program displays the names of each
programmer responsible for Windows 95. To view that easter egg, perform the following
steps:

1. Right-click the Desktop and choose New|Folder.

2. Name that folder and now the moment you've all been waiting for.
3. Right-click that folder and choose Rename.
4. Rename the folder we proudly present for your viewing pleasure.

5. Right-click the folder and choose Rename.

5. Rename the folder The Microsoft Windows 95 Product Team!.
6. Open that folder by double-clicking it.

The preceding steps will lead to the appearance of a multimedia
presentation about the folks who coded Windows 95. (A word of caution:
The presentation is quite long.)

Unfortunately, keeping up with the times is difficult. The software industry is a dynamic
environment, and users are generally two years behind development. This lag in the
assimilation of new technology only contributes to the security problem. When an
operating-system- development team materially alters its product, a large class of users is
suddenly left knowing less. Microsoft Windows 95 is a good example of this
phenomenon. New support has been added for many different protocols: protocols with
which the average Windows user might not be familiar. So, it is possible (and probable)
that users might be unaware of obscure network utilities at work with their operating
systems.

This is especially so with UNIX-based operating systems, but for a slightly different
reason. UNIX is a large and inherently complex system. Comparing it to other operating
systems can be instructive. DOS contains perhaps 30 commonly used commands. In
contrast, a stock distribution of UNIX (without considering windowed systems) supports
several hundred commands. Further, each command has one or more command-line
options, increasing the complexity of each utility or program.

In any case, in the active state of insecurity in shipped software, utilities are enabled and
this fact is unknown to the user. These utilities, while enabled, can foster security holes of
varying magnitude. When a machine configured in this manner is connected to the Net, it
is a hack waiting to happen.

Active state problems are easily remedied. The solution is to turn off (or properly
configure) the offending utility or service. Typical examples of active state problems
include

e Network printing utilities
e File-sharing utilities
e Default passwords

e Sample networking programs

Of the examples listed, default passwords is the most common. Most multiuser operating
systems on the market have at least one default password (or an account requiring no
password at all).

The Passive State

The passive state involves operating systems with built-in security utilities. These utilities
can be quite effective when enabled, but remain worthless until the system administrator
activates them. In the passive state, these utilities are never activated, usually because the
user is unaware that they exist. Again, the source of the problem is the same: The user or
system administrator lacks adequate knowledge of the system.

To understand the passive state, consider logging utilities. Many networked operating
systems provide good logging utilities. These comprise the cornerstone of any
investigation. Often, these utilities are not set to active in a fresh installation. (Vendors
might leave this choice to the system administrator for a variety of reasons. For example,
certain logging utilities consume space on local drives by generating large text or
database files. Machines with limited storage are poor candidates for conducting heavy
logging.) Because vendors cannot guess the hardware configuration of the consumer's
machine, logging choices are almost always left to the end-user.

Other situations that result in passive-state insecurity can arise: Situations where user
knowledge (or lack thereof) is not the problem. For instance, certain security utilities are
simply impractical. Consider security programs that administer file-access privileges
(such as those that restrict user access depending on security level, time of day, and so
forth). Perhaps your small network cannot operate with fluidity and efficiency if
advanced access restrictions are enabled. If so, you must take that chance, perhaps
implementing other security procedures to compensate. In essence, these issues are the
basis of security theory: You must balance the risks against practical security measures,
based on the sensitivity of your network data.

You will notice that both active and passive states of insecurity in software result from
the consumer's lack of knowledge (not from any vendor's act or omission). This is an
education issue, and education is a theme that will recur throughout this book.

NOTE: Education issues are matters entirely within your control. That is, you can
eliminate these problems by providing yourself or your associates with adequate
education. (Put another way, crackers can gain most effectively by attacking networks
where such knowledge is lacking.) That settled, I want to examine matters that might not
be within the end-user's control.

System Flaws or Deficiency of Vendor Response

System flaws or deficiency of vendor response are matters beyond the end-user's control.
Although vendors might argue this point furiously, here's a fact: These factors are the
second most common source of security problems. Anyone who subscribes to a bug
mailing list knows this. Each day, bugs or programming weaknesses are found in network
software. Each day, these are posted to the Internet in advisories or warnings.
Unfortunately, not all users read such advisories.

System flaws needn't be classified into many subcategories here. It's sufficient to say that
a system flaw is any element of a program that causes the program to

e Work improperly (under either normal or extreme conditions)

e Allow crackers to exploit that weakness (or improper operation) to damage or gain control of a
system

I am concerned with two types of system flaws. The first, which I call a pure flaw, is a
security flaw nested within the security structure itself. It is a flaw inherent within a
security-related program. By exploiting it, a cracker obtains one-step, unauthorized
access to the system or its data.

The Netscape secure sockets layer flaw: In January, 1996, two students in the
Computer Science department at the University of California, Berkeley highlighted a
serious flaw in the Netscape Navigator encryption scheme. Their findings were published
in Dr. Dobb's Journal. The article was titled Randomness and the Netscape Browser by
Ian Goldberg and David Wagner. In it, Goldberg and Wagner explain that Netscape's
implementation of a cryptographic protocol called Secure Sockets Layer (SSL) was
inherently flawed. This flaw would allow secure communications intercepted on the
WWW to be cracked. This is an excellent example of a pure flaw. (It should be noted
here that the flaw in Netscape's SSL implementation was originally discovered by an
individual in France. However, Goldberg and Wagner were the first individuals in the
United States to provide a detailed analysis of it.)

Conversely, there are secondary flaws. A secondary flaw is any flaw arising in a program
that, while totally unrelated to security, opens a security hole elsewhere on the system. In
other words, the programmers were charged with making the program functional, not
secure. No one (at the time the program was designed) imagined cause for concern, nor
did they imagine that such a flaw could arise.

Secondary flaws are far more common than pure flaws, particularly on platforms that
have not traditionally been security oriented. An example of a secondary security flaw is
any flaw within a program that requires special access privileges in order to complete its
tasks (in other words, a program that must run with root or superuser privileges). If that
program can be attacked, the cracker can work through that program to gain special,
privileged access to files. Historically, printer utilities have been problems in this area.
(For example, in late 1996, SGI determined that root privileges could be obtained through
the Netprint utility in its IRIX operating system.)

Whether pure or secondary, system flaws are especially dangerous to the Internet
community because they often emerge in programs that are used on a daily basis, such as
FTP or Telnet. These mission-critical applications form the very heart of the Internet and
cannot be suddenly taken away, even if a security flaw exists within them.

To understand this concept, imagine if Microsoft Word were discovered to be totally
insecure. Would people stop using it? Of course not. Millions of offices throughout the
world rely on Word. However, there is a vast difference between a serious security flaw
in Microsoft Word and a serious security flaw in NCSA HTTPD, which is a popular
Web-server package. The serious flaw in HTTPD would place hundreds of thousands of
servers (and therefore, millions of accounts) at risk. Because of the Internet's size and the
services it now offers, flaws inherent within its security structure are of international
concern.

So, whenever a flaw is discovered within sendmail, FTP, Gopher, HTTP, or other
indispensable elements of the Internet, programmers develop patches (small programs or
source code) to temporarily solve the problem. These patches are distributed to the world
at large, along with detailed advisories. This brings us to vendor response.

Vendor Response

Vendor response has traditionally been good, but this shouldn't give you a false sense of
security. Vendors are in the business of selling software. To them, there is nothing
fascinating about someone discovering a hole in the system. At best, a security hole
represents a loss of revenue or prestige. Accordingly, vendors quickly issue assurances to
allay users' fears, but actual corrective action can sometimes be long in coming.

The reasons for this can be complex, and often the vendor is not to blame. Sometimes,
immediate corrective action just isn't feasible, such as the following:

e When the affected application is comprehensively tied to the operating-system source
e When the application is very widely in use or is a standard

e When the application is third-party software and that third party has poor support, has gone out of
business, or is otherwise unavailable

In these instances, a patch (or other solution) can provide temporary relief. However, for
this system to work effectively, all users must know that the patch is available. Notifying
the public would seem to be the vendor's responsibility and, to be fair, vendors post such
patches to security groups and mailing lists. However, vendors might not always take the
extra step of informing the general public. In many cases, it just isn't cost effective.

Once again, this issue breaks down to knowledge. Users who have good knowledge of
their network utilities, of holes, and of patches are well prepared. Users without such
knowledge tend to be victims. That, more than any other reason, is why I wrote this book.
In a nutshell, security education is the best policy.

Why Education in Security Is Important

Traditionally, security folks have attempted to obscure security information from the
average user. As such, security specialists occupy positions of prestige in the computing
world. They are regarded as high priests of arcane and recondite knowledge that is
unavailable to normal folks. There was a time when this approach had merit. After all,
users should be afforded such information only on a need-to-know basis. However, the
average American has now achieved need-to-know status.

So, I pose the question again: Who needs to be educated about Internet security? The
answer is: We all do. I hope that this book, which is both a cracker's manual and an
Internet security reference, will force into the foreground issues that need to be discussed.
Moreover, I wrote this book to increase awareness of security among the general public.
As such, this book starts with basic information and progresses with increasing

complexity. For the absolute novice, this book is best read cover to cover. Equally, those
readers familiar with security will want to quickly venture into later chapters.

The answer to the question regarding the importance of education and Internet security
depends on your station in life. If you are a merchant or business person, the answer is
straightforward: In order to conduct commerce on the Net, you must be assured of some
reasonable level of data security. This reason is also shared by consumers. If crackers are
capable of capturing Net traffic containing sensitive financial data, why buy over the
Internet? And of course, between the consumer and the merchant stands yet another class
of individual concerned with data security: the software vendor who supplies the tools to
facilitate that commerce. These parties (and their reasons for security) are obvious.
However, there are some not so obvious reasons.

Privacy is one such concern. The Internet represents the first real evidence that an
Orwellian society can be established. Every user should be aware that nonencrypted
communication across the Internet is totally insecure. Likewise, each user should be
aware that government agencies--not crackers--pose the greatest threat. Although the
Internet is a wonderful resource for research or recreation, it is not your friend (at least,
not if you have anything to hide).

There are other more concrete reasons to promote security education. I will focus on
these for a moment. The Internet is becoming more popular. Each day, development
firms introduce new and innovative ways to use the Network. It is likely that within five
years, the Internet will become an important and functional part of our lives.

The Corporate Sector

For the moment, set aside dramatic scenarios such as corporate espionage. These subjects
are exciting for purposes of discussion, but their actual incidence is rare. Instead, I'd like
to concentrate on a very real problem: cost.

The average corporate database is designed using proprietary software. Licensing fees for
these big database packages can amount to tens of thousands of dollars. Fixed costs of
these databases include programming, maintenance, and upgrade fees. In short,
development and sustained use of a large, corporate database is costly and labor
intensive.

When a firm maintains such a database onsite but without connecting it to the Internet,
security is a limited concern. To be fair, an administrator must grasp the basics of
network security to prevent aspiring hackers in this or that department from gaining
unauthorized access to data. Nevertheless, the number of potential perpetrators is limited
and access is usually restricted to a few, well-known protocols.

Now, take that same database and connect it to the Net. Suddenly, the picture is
drastically different. First, the number of potential perpetrators is unknown and unlimited.
An attack could originate from anywhere, here or overseas. Furthermore, access is no
longer limited to one or two protocols.

The very simple operation of connecting that database to the Internet opens many
avenues of entry. For example, database access architecture might require the use of one
or more foreign languages to get the data from the database to the HTML page. I have
seen scenarios that were incredibly complex. In one scenario, I observed a six-part
process. From the moment the user clicked a Submit button, a series of operations were
undertaken:

1. The variable search terms submitted by the user were extracted and parsed by a Perl script.

2. The Perl script fed these variables to an intermediate program designed to interface with a
proprietary database package.

3. The proprietary database package returned the result, passing it back to a Perl script that
formatted the data into HTML.

Anyone legitimately employed in Internet security can see that this scenario was a
disaster waiting to happen. Each stage of the operation boasted a potential security hole.

For exactly this reason, the development of database security techniques is now a hot
subject in many circles.

Administrative personnel are sometimes quick to deny (or restrict) funding for security
within their corporation. They see this cost as unnecessary, largely because they do not
understand the dire nature of the alternative. The reality is this: One or more talented
crackers could--in minutes or hours--destroy several years of data entry.

Before business on the Internet can be reliably conducted, some acceptable level of
security must be reached. For companies, education is an economical way to achieve at
least minimal security. What they spend now may save many times that amount later.

Government

Folklore and common sense both suggest that government agencies know something
more, something special about computer security. Unfortunately, this simply isn't true
(with the notable exception of the National Security Agency). As you will learn,
government agencies routinely fail in their quest for security.

In the following chapters, I will examine various reports (including one very recent one)
that demonstrate the poor security now maintained by U.S. government servers. The
sensitivity of data accessed by hackers is amazing.

These arms of government (and their attending institutions) hold some of the most
personal data on Americans. More importantly, these folks hold sensitive data related to
national security. At the minimum, this information needs to be protected.

Operating Systems

There is substantial rivalry on the Internet between users of different operating systems.
Let me make one thing clear: It does not matter which operating system you use. Unless
it is a secure operating system (that is, one where the main purpose of its design is
network security), there will always be security holes, apparent or otherwise. True,
studies have shown that to date, fewer holes have been found in Mac and PC-based

operating systems (as opposed to UNIX, for example), at least in the context to the
Internet. However, such studies are probably premature and unreliable.

Open Systems

UNIX is an open system. As such, its source is available to the public for examination. In
fact, many common UNIX programs come only in source form. Others include binary
distributions, but still include the source. (An illustrative example would be the Gopher
package from the University of Minnesota.) Because of this, much is known about the
UNIX operating system and its security flaws. Hackers can inexpensively establish Linux
boxes in their homes and hack until their faces turn blue.

Closed and Proprietary Systems

Conversely, the source of proprietary and closed operating systems is unavailable. The
manufacturers of such software furiously protect their source, claiming it to be a trade
secret. As these proprietary operating systems gravitate to the Net, their security flaws
will become more readily apparent. To be frank, this process depends largely on the
cracking community. As crackers put these operating systems (and their newly
implemented TCP/IP) to the test, interesting results will undoubtedly emerge. But, to my
point.

We no longer live in a world governed exclusively by a single operating system. As the
Internet grows in scope and size, all operating systems known to humankind will become
integral parts of the network. Therefore, operating-system rivalry must be replaced by a
more sensible approach. Network security now depends on having good, general security
knowledge. (Or, from another angle, successful hacking and cracking depends on
knowing all platforms, not just one.) So, I ask my readers to temporarily put aside their
bias. In terms of the Internet at least, the security of each one of us depends on us all and
that is no trivial statement.

How Will This Book Affect the Internet Community?

This section begins with a short bedtime story. It is called The Loneliness of the Long-
Distance Net Surfer.

The Information Superhighway is a dangerous place. Oh, the main highway isn't so bad.
Prodigy, America Online, Microsoft Network...these are fairly clean thoroughtfares. They
are beautifully paved, with colorful signs and helpful hints on where to go and what to
do. But pick a wrong exit, and you travel down a different highway: one littered with
burned-out vehicles, overturned dumpsters, and graffiti on the walls. You see smoke
rising from fires set on each side of the road. If you listen, you can hear echoes of a
distant subway mixed with strange, exotic music.

You pull to a stop and roll down the window. An insane man stumbles from an alley, his
tattered clothes blowing in the wind. He careens toward your vehicle, his weathered
shoes scraping against broken glass and concrete. He is mumbling as he approaches your
window. He leans in and you can smell his acrid breath. He smiles--missing two front

teeth--and says "Hey, buddy...got a light?" You reach for the lighter, he reaches for a
knife. As he slits your throat, his accomplices emerge from the shadows. They descend
on your car as you fade into unconsciousness. Another Net Surfer bites the dust. Others
decry your fate. He should have stayed on the main road! Didn't the people at the pub tell
him so? Unlucky fellow.

This snippet is an exaggeration; a parody of horror stories often posted to the Net. Most
commonly, they are posted by commercial entities seeking to capitalize on your fears and
limited understanding of the Internet. These stories are invariably followed by
endorsements for this or that product. Protect your business! Shield yourself now! This is
an example of a phenomenon I refer to as Internet voodoo. To practitioners of this secret
art, the average user appears as a rather gullible chap. A sucker.

If this book accomplishes nothing else, I hope it plays a small part in eradicating Internet
voodoo. It provides enough education to shield the user (or new system administrator)
from unscrupulous forces on the Net. Such forces give the Internet-security field a bad
name.

I am uncertain as to what other effects this book might have on the Internet community. I
suspect that these effects will be subtle or even imperceptible. Some of these effects
might admittedly be negative and for this, I apologize. I am aware that Chapter 9,
"Scanners," where I make most of the known scanners accessible to and easily
understood by anyone, will probably result in a slew of network attacks (probably
initiated by youngsters just beginning their education in hacking or cracking).
Nevertheless, I am hoping that new network administrators will also employ these tools
against their own networks. In essence, I have tried to provide a gateway through which
any user can become security literate. I believe that the value of the widespread
dissemination of security material will result in an increased number of hackers (and
perhaps, crackers).

Summary

I hope this chapter clearly articulates the reasons I wrote this book:

e To provide inexperienced users with a comprehensive source about security
e To provide system administrators with a reference book

e To generally heighten public awareness of the need for adequate security

There is also another, one that is less general: [wanted to narrow the gap between the
radical and conservative information now available about Internet security. It is
significant that many valuable contributions to Internet security have come from the
fringe (a sector seldom recognized for its work). To provide the Internet community with
a book of value, these fringe elements had to be included.

The trouble is, if you examine security documents from the fringe, they are very grass
roots and revolutionary. This style--which is uniquely American if nothing else--is often

a bit much for square security folks. Likewise, serious security documents can be stuffy,
academic, and, to be frank, boring. I wanted to deliver a book of equal value to readers
aiming for either camp. I think that I have.

2
How This Book Will Help You

Prior to writing this book, I had extensive discussions with the Sams.net editorial staff. In
those discussions, one thing became immediately clear: Sams.net wanted a book that was
valuable to all users, not just to a special class of them. An examination of earlier books
on the subject proved instructive. The majority were well written and tastefully presented,
but appealed primarily to UNIX or NT system administrators. I recognized that while this
class of individuals is an important one, there are millions of average users yearning for
basic knowledge of security. To accommodate that need, I aimed at creating an all-
purpose Internet security book.

To do so, I had to break some conventions. Accordingly, this book probably differs from
other Sams.net books in both content and form. Nevertheless, the book contains copious
knowledge, and there are different ways to access it. This chapter briefly outlines how the
reader can most effectively access and implement that knowledge.

Is This Book of Practical Use?

Is this book of practical use? Absolutely. It can serve both as a reference book and a
general primer. The key for each reader is to determine what information is most
important to him or her. The book loosely follows two conventional designs common to
books by Sams.net:

e Evolutionary ordering (where each chapter arises, in some measure, from information in an earlier
one)

e Developmental ordering (where you travel from the very simple to the complex)

This book is a hybrid of both techniques. For example, the book examines services in the
TCP/IP suite, then quickly progresses to how those services are integrated in modern
browsers, how such services are compromised, and ultimately, how to secure against
such compromises. In this respect, there is an evolutionary pattern to the book.

At the same time, the book begins with a general examination of the structure of the
Internet and TCP/IP (which will seem light in comparison to later analyses of sniffing,
where you examine the actual construct of an information packet). As you progress, the
information becomes more and more advanced. In this respect, there is a developmental
pattern to the book.

Using This Book Effectively: Who Are You?

Different people will derive different benefits from this book, depending on their
circumstances. [urge each reader to closely examine the following categories. The
information will be most valuable to you whether you are

e A system administrator
e A hacker

e A cracker

e A business person

e A journalist

e A casual user

e A security specialist

I want to cover these categories and how this book can be valuable to each. If you do not
fit cleanly into one of these categories, try the category that best describes you.

System Administrator

A system administrator is any person charged with managing a network or any portion of
a network. Sometimes, people might not realize that they are a system administrator. In
small companies, for example, programming duties and system administration are
sometimes assigned to a single person. Thus, this person is a general, all-purpose
technician. They keep the system running, add new accounts, and basically perform any
task required on a day-to-day basis. This, for your purposes, is a system administrator.

What This Book Offers the System Administrator

This book presumes only basic knowledge of security from its system administrators, and
I believe that this is reasonable. Many capable system administrators are not well versed
in security, not because they are lazy or incompetent but because security was for them
(until now) not an issue. For example, consider the sysad who lords over an internal
LAN. One day, the powers that be decree that the LAN must establish a connection to the
Net. Suddenly, that sysad is thrown into an entirely different (and hostile) environment.
He or she might be exceptionally skilled at internal security but have little practical
experience with the Internet. Today, numerous system administrators are faced with this
dilemma. For many, additional funding to hire on-site security specialists is not available
and thus, these people must go it alone. Not anymore. This book will serve such system
administrators well as an introduction to Internet security.

Likewise, more experienced system administrators can effectively use this book to learn--
or perhaps refresh their knowledge about--various aspects of Internet security that have
been sparsely covered in books mass-produced for the general public.

For either class of sysad, this book will serve a fundamental purpose: It will assist them
in protecting their network. Most importantly, this book shows the attack from both sides
of the fence. It shows both how to attack and how to defend in a real-life, combat
situation.

Hacker

The term hacker refers to programmers and not to those who unlawfully breach the
security of systems. A hacker is any person who investigates the integrity and security of
an operating system. Most commonly, these individuals are programmers. They usually
have advanced knowledge of both hardware and software and are capable of rigging (or
hacking) systems in innovative ways. Often, hackers determine new ways to utilize or
implement a network, ways that software manufacturers had not expressly intended.

What This Book Offers the Hacker

This book presumes only basic knowledge of Internet security from its hackers and
programmers. For them, this book will provide insight into the Net's most common
security weaknesses. It will show how programmers must be aware of these weaknesses.
There is an ever-increasing market for those who can code client/server applications,
particularly for use on the Net. This book will help programmers make informed
decisions about how to develop code safely and cleanly. As an added benefit, analysis of
existing network utilities (and their deficiencies) may assist programmers in developing
newer and perhaps more effective applications for the Internet.

Cracker

A cracker is any individual who uses advanced knowledge of the Internet (or networks)
to compromise network security. Historically, this activity involved cracking encrypted
password files, but today, crackers employ a wide range of techniques. Hackers also
sometimes test the security of networks, often with the identical tools and techniques
used by crackers. To differentiate between these two groups on a trivial level, simply
remember this: Crackers engage in such activities without authorization. As such, most
cracking activity is unlawful, illegal, and therefore punishable by a term of imprisonment.

What This Book Offers the Cracker

For the budding cracker, this book provides an incisive shortcut to knowledge of cracking
that is difficult to acquire. All crackers start somewhere, many on the famous Usenet
group alt.2600. As more new users flood the Internet, quality information about cracking
(and security) becomes more difficult to find. The range of information is not well
represented. Often, texts go from the incredibly fundamental to the excruciatingly
technical. There is little material that is in between. This book will save the new cracker
hundreds of hours of reading by digesting both the fundamental and the technical into a
single (and I hope) well-crafted presentation.

Business Person

For your purposes, business person refers to any individual who has established (or will
establish) a commercial enterprise that uses the Internet as a medium. Hence, a business
person--within the meaning employed in this book--is anyone who conducts commerce

over the Internet by offering goods or services.

NOTE: It does not matter whether these goods or services are offered free as a
promotional service. I still classify this as business.

What This Book Offers the Business Person

Businesses establish permanent connections each day. If yours is one of them, this book
will help you in many ways, such as helping you make informed decisions about security.
It will prepare you for unscrupulous security specialists, who may charge you thousands
of dollars to perform basic, system-administration tasks. This book will also offer a basic
framework for your internal security policies. You have probably read dozens of dramatic
accounts about hackers and crackers, but these materials are largely sensationalized.
(Commercial vendors often capitalize on your fear by spreading such stories.) The
techniques that will be employed against your system are simple and methodical. Know
them, and you will know at least the basics about how to protect your data.

Journalist

A journalist is any party who is charged with reporting on the Internet. This can be
someone who works for a wire news service or a college student writing for his or her
university newspaper. The classification has nothing to do with how much money is paid
for the reporting, nor where the reporting is published.

What This Book Offers the Journalist

If you are a journalist, you know that security personnel rarely talk to the media. That is,
they rarely provide an inside look at Internet security (and when they do, this usually
comes in the form of assurances that might or might not have value). This book will
assist journalists in finding good sources and solid answers to questions they might have.
Moreover, this book will give the journalist who is new to security an overall view of the
terrain. Technology writing is difficult and takes considerable research. My intent is to
narrow that field of research for journalists who want to cover the Internet. In coming
years, this type of reporting (whether by print or broadcast media) will become more
prevalent.

Casual User

A casual user is any individual who uses the Internet purely as a source of entertainment.
Such users rarely spend more than 10 hours a week on the Net. They surf subjects that are
of personal interest.

What This Book Offers the Casual User

For the casual user, this book will provide an understanding of the Internet's innermost
workings. It will prepare the reader for personal attacks of various kinds, not only from
other, hostile users, but from the prying eyes of government. Essentially, this book will
inform the reader that the Internet is not a toy, that one's identity can be traced and bad
things can happen while using the Net. For the casual user, this book might well be
retitled How to Avoid Getting Hijacked on the Information Superhighway.

Security Specialist

A security specialist is anyone charged with securing one or more networks from attack.
It is not necessary that they get paid for their services in order to qualify in this category.
Some people do this as a hobby. If they do it, they are a specialist.

What This Book Offers the Security Specialist
If your job is security, this book can serve as one of two things:

e A reference book

e An in-depth look at various tools now being employed in the void

NOTE: In this book, the void refers to that portion of the Internet that exists beyond your
router or modem. It is the dark, swirling mass of machines, services, and users beyond
your computer or network. These are quantities that are unknown to you. This term is
commonly used in security circles to refer to such quantities.

Much of the information covered here will be painfully familiar to the security specialist.
Some of the material, however, might not be so familiar. (Most notably, some cross-
platform materials for those maintaining networks with multiple operating systems.)
Additionally, this book imparts a comprehensive view of security, encapsulated into a
single text. (And naturally, the materials on the CD-ROM will provide convenience and
utility.)

The Good, the Bad, and the Ugly

How you use this book is up to you. If you purchased or otherwise procured this book as
a tool to facilitate illegal activities, so be it. You will not be disappointed, for the
information contained within is well suited to such undertakings. However, note that this
author does not suggest (nor does he condone) such activities. Those who unlawfully
penetrate networks seldom do so for fun and often pursue destructive objectives.
Considering how long it takes to establish a network, write software, configure hardware,
and maintain databases, it is abhorrent to the hacking community that the cracking
community should be destructive. Still, that is a choice and one choice--even a bad one--
is better than no choice at all. Crackers serve a purpose within the scheme of security,
too. They assist the good guys in discovering faults inherent within the network.

Whether you are good, bad, or ugly, here are some tips on how to effectively use this
book:

e Ifyou are charged with understanding in detail a certain aspect of security, follow the notes
closely. Full citations appear in these notes, often showing multiple locations for a security
document, RFC, FYI, or IDraft. Digested versions of such documents can never replace having the
original, unabridged text.

e The end of each chapter contains a small rehash of the information covered. For extremely handy
reference, especially for those already familiar with the utilities and concepts discussed, this
"Summary" portion of the chapter is quite valuable.

Certain examples contained within this book are available on the CD-ROM. Whenever
you see the CD-ROM icon on the outside margin of a page, the resource is available on
the CD. This might be source code, technical documents, an HTML presentation, system
logs, or other valuable information.

The Book's Parts

The next sections describe the book's various parts. Contained within each description is
a list of subjects covered within that chapter.

Part I: Setting the Stage

Part I of this book will be of the greatest value to users who have just joined the Internet
community. Topics include

e Why I wrote this book

e Why you need security

e Definitions of hacking and cracking
e Who is vulnerable to attack

Essentially, Part I sets the stage for the remaining parts of this book. It will assist readers
in understanding the current climate on the Net.

Part II: Understanding the Terrain

Part II of this book is probably the most critical. It illustrates the basic design of the
Internet. Each reader must understand this design before he or she can effectively grasp
concepts in security. Topics include

e Who created the Internet and why

e How the Internet is designed and how it works

e Poor security on the Internet and the reasons for it

e Internet warfare as it relates to individuals and networks

In short, you will examine why and how the Internet was established, what services are
available, the emergence of the WWW, why security might be difficult to achieve, and
various techniques for living in a hostile computing environment.

Part I11: Tools

Part III of this book examines the average toolbox of the hacker or cracker. It familiarizes
the reader with Internet munitions, or weapons. It covers the proliferation of such

weapons, who creates them, who uses them, how they work, and how the reader can use
them. Some of the munitions covered are

e Password crackers

e Trojans

e Sniffers

e Tools to aid in obscuring one's identity

e Scanners

e Destructive devices, such as e-mail bombs and viruses

The coverage necessarily includes real-life examples. This chapter will be most useful to
readers engaging in or about to engage in Internet security warfare.

Part IV: Platforms and Security

Part IV of this book ventures into more complex territory, treating vulnerabilities inherent
in certain operating systems or applications. At this point, the book forks, concentrating
on issues relevant to particular classes of users. (For example, if you are a Novell user,
you will naturally gravitate to the Novell chapter.)

Part IV begins with basic discussion of security weaknesses, how they develop, and
sources of information in identifying them. Part IV then progresses to platforms,
including

e Microsoft

e UNIX
e Novell
e VAX/VMS

e Macintosh

e Plan 9 from Bell Labs
Part V: Beginning at Ground Zero

Part V of this book examines who has the power on a given network. I will discuss the
relationship between these authoritarian figures and their users, as well as abstract and
philosophical views on Internet security. At this point, the material is most suited for
those who will be living with security issues each day. Topics include

e Root, supervisor, and administrator accounts
e Techniques of breaching security internally

e Security concepts and philosophy

Part VI: The Remote Attack

Part VI of this book concerns attacks: actual techniques to facilitate the compromise of a
remote computer system. In it, [will discuss levels of attack, what these mean, and how
one can prepare for them. You will examine various techniques in depth: so in depth that
the average user can grasp--and perhaps implement--attacks of this nature. Part VI also
examines complex subjects regarding the coding of safe CGI programs, weaknesses of
various computer languages, and the relative strengths of certain authentication
procedures. Topics discussed in this part include

e Definition of a remote attack

e Various levels of attack and their dangers
e Sniffing techniques

e Spoofing techniques

e Attacks on Web servers

e Attacks based on weaknesses within various programming languages

Part VII: The Law

Part VII confronts the legal, ethical, and social ramifications of Internet security and the
lack, compromise, and maintenance thereof.

This Book's Limitations

The scope of this book is wide, but there are limitations on the usefulness of the
information. Before examining these individually, I want to make something clear:
Internet security is a complex subject. If you are charged with securing a network, relying
solely upon this book is a mistake. No book has yet been written that can replace the
experience, gut feeling, and basic savvy of a good system administrator. It is likely that
no such book will ever be written. That settled, some points on this book's limitations
include the following:

e Timeliness
e Utility
Timeliness

I commenced this project in January, 1997. Undoubtedly, hundreds of holes have
emerged or been plugged since then. Thus, the first limitation of this book relates to
timeliness.

Timelines might or might not be a huge factor in the value of this book. I say might or
might not for one reason only: Many people do not use the latest and the greatest in
software or hardware. Economic and administrative realities often preclude this. Thus,
there are LANs now operating on Windows for Workgroups that are permanently

connected to the Net. Similarly, some individuals are using SPARCstation 1s running
SunOS 4.1.3 for access. Because older software and hardware exist in the void, much of
the material here will remain current. (Good examples are machines with fresh installs of
an older operating system that has now been proven to contain numerous security bugs.)

Equally, I advise the reader to read carefully. Certain bugs examined in this book are
common to a single version of software only (for example, Windows NT Server 3.51).
The reader must pay particular attention to version information. One version of a given
software might harbor a bug, whereas a later version does not. The security of the
Internet is not a static thing. New holes are discovered at the rate of one per day.
(Unfortunately, such holes often take much longer to fix.)

Be assured, however, that at the time of this writing, the information contained within
this book was current. If you are unsure whether the information you need has changed,
contact your vendor.

Utility

Although this book contains many practical examples, it is not a how-to for cracking
Internet servers. True, I provide many examples of how cracking is done and even
utilities with which to accomplish that task, but this book will not make the reader a
master hacker or cracker. There is no substitute for experience, and this book cannot
provide that.

What this book can provide is a strong background in Internet security, hacking, and
cracking. A reader with little knowledge of these subjects will come away with enough
information to crack the average server (by average, [mean a server maintained by
individuals who have a working but somewhat imperfect knowledge of security).

Also, journalists will find this book bereft of the pulp style of sensationalist literature
commonly associated with the subject. For this, I apologize. However, sagas of tiger
teams and samurais are of limited value in the actual application of security. Security is a
serious subject, and should be reported as responsibly as possible. Within a few years,
many Americans will do their banking online. Upon the first instance of a private citizen
losing his life savings to a cracker, the general public's fascination with pulp hacking
stories will vanish and the fun will be over.

Lastly, bona fide security specialists might find that for them, only the last quarter of the
book has significant value. As noted, I developed this book for all audiences. However,
these gurus should keep their eyes open as they thumb through this book. They might be
pleasantly surprised (or even downright outraged) at some of the information revealed in
the last quarter of the text. Like a sleight-of-hand artist who breaks the magician's code, I
have dropped some fairly decent baubles in the street.

Summary

In short, depending on your position in life, this book will help you

e Protect your network

It is of value to hackers, crackers, system administrators, business people, journalists,
security specialists, and casual users. There is a high volume of information, the chapters
move quickly, and (I hope) the book imparts the information in a clear and concise

Learn about security

Crack an Internet server

Educate your staff

Write an informed article about security
Institute a security policy

Design a secure program

Engage in Net warfare

Have some fun

manncr.

Equally, this book cannot make the reader a master hacker or cracker, nor can it suffice as
your only source for security information. That said, let's move forward, beginning with a

small primer on hackers and crackers.

3

Hackers and Crackers

The focus of this chapter is on hackers, crackers, and the differences between them.

What Is the Difference Between a Hacker and a
Cracker?

There have been many articles written (particularly on the Internet) about the difference
between hackers and crackers. In them, authors often attempt to correct public
misconceptions. This chapter is my contribution in clarifying the issue.

For many years, the American media has erroneously applied the word hacker when it
really means cracker. So the American public now believe that a hacker is someone who
breaks into computer systems. This is untrue and does a disservice to some of our most
talented hackers.

There are some traditional tests to determine the difference between hackers and
crackers. I provide these in order of their acceptance. First, I want to offer the general
definitions of each term. This will provide a basis for the remaining portion of this
chapter. Those definitions are as follows:

e A hacker is a person intensely interested in the arcane and recondite workings of any computer
operating system. Most often, hackers are programmers. As such, hackers obtain advanced
knowledge of operating systems and programming languages. They may know of holes within
systems and the reasons for such holes. Hackers constantly seek further knowledge, freely share
what they have discovered, and never, ever intentionally damage data.

e A cracker is a person who breaks into or otherwise violates the system integrity of remote
machines, with malicious intent. Crackers, having gained unauthorized access, destroy vital data,
deny legitimate users service, or basically cause problems for their targets. Crackers can easily be
identified because their actions are malicious.

These definitions are good and may be used in the general sense. However, there are
other tests. One is the legal test. It is said that by applying legal reasoning to the equation,
you can differentiate between hackers (or any other party) and crackers. This test requires
no extensive legal training. It is applied simply by inquiring as to mens rea.

Mens Rea

Mens rea is a Latin term that refers to the guilty mind. It is used to describe that mental
condition in which criminal intent exists. Applying mens rea to the hacker-cracker
equation seems simple enough. If the suspect unwittingly penetrated a computer system--
and did so by methods that any law-abiding citizen would have employed at the time--
there is no mens rea and therefore no crime. However, if the suspect was well aware that
a security breach was underway--and he knowingly employed sophisticated methods of

implementing that breach--mens rea exists and a crime has been committed. By this
measure, at least from a legal point of view, the former is an unwitting computer user
(possibly a hacker) and the latter a cracker. In my opinion, however, this test is too rigid.

At day's end, hackers and crackers are human beings, creatures too complex to sum up
with a single rule. The better way to distinguish these individuals would be to understand
their motivations and their ways of life. I want to start with the hacker.

To understand the mind-set of the hacker, you must first know what they do. To explain
that, I need to briefly discuss computer languages.

Computer Languages

A computer language is any set of libraries or instructions that, when properly arranged
and compiled, can constitute a functional computer program. The building blocks of any
given computer language never fundamentally change. Therefore, each programmer
walks to his or her keyboard and begins with the same basic tools as his or her fellows.
Examples of such tools include

e Language libraries--These are pre-fabbed functions that perform common actions that are usually
included in any computer program (routines that read a directory, for example). They are provided
to the programmer so that he or she can concentrate on other, less generic aspects of a computer
program.

e Compilers--These are software programs that convert the programmer's written code to an
executable format, suitable for running on this or that platform.

The programmer is given nothing more than languages (except a few manuals that
describe how these tools are to be used). It is therefore up to the programmer what
happens next. The programmer programs to either learn or create, whether for profit or
not. This is a useful function, not a wasteful one. Throughout these processes of learning
and creating, the programmer applies one magical element that is absent within both the
language libraries and the compiler: imagination. That is the programmer's existence in a
nutshell.

Modern hackers, however, reach deeper still. They probe the system, often at a
microcosmic level, finding holes in software and snags in logic. They write programs to
check the integrity of other programs. Thus, when a hacker creates a program that can
automatically check the security structure of a remote machine, this represents a desire to
better what now exists. It is creation and improvement through the process of analysis.

In contrast, crackers rarely write their own programs. Instead, they beg, borrow, or steal
tools from others. They use these tools not to improve Internet security, but to subvert it.
They have technique, perhaps, but seldom possess programming skills or imagination.
They learn all the holes and may be exceptionally talented at practicing their dark arts,
but they remain limited. A true cracker creates nothing and destroys much. His chief
pleasure comes from disrupting or otherwise adversely effecting the computer services of
others.

This is the division of hacker and cracker. Both are powerful forces on the Internet, and
both will remain permanently. And, as you have probably guessed by now, some
individuals may qualify for both categories. The very existence of such individuals assists
in further clouding the division between these two odd groups of people. Now, I know
that real hackers reading this are saying to themselves "There is no such thing as this
creature you are talking about. One is either a hacker or a cracker and there's no more to
it."

Randal Schwartz

If you had asked me five years ago, I would have agreed. However, today, it just isn't
true. A good case in point is Randal Schwartz, whom some of you know from his
weighty contributions to the programming communities, particularly his discourses on
the Practical Extraction and Report Language (Perl). With the exception of Perl's creator,
Larry Wall, no one has done more to educate the general public on the Perl programming
language. Schwartz has therefore had a most beneficial influence on the Internet in
general. Additionally, Schwartz has held positions in consulting at the University of
Buffalo, Silicon Graphics (SGI), Motorola Corporation, and Air Net. He is an extremely
gifted programmer.

NOTE: Schwartz has authored or co-authored quite a few books about Perl, including
Learning Perl, usually called "The Llama Book," published by O'Reilly & Associates
(ISBN 1-56592-042-2).

His contributions notwithstanding, Schwartz remains on the thin line between hacker and
cracker. In fall 1993 (and for some time prior), Schwartz was employed as a consultant at
Intel in Oregon. In his capacity as a system administrator, Schwartz was authorized to
implement certain security procedures. As he would later explain on the witness stand,
testifying on his own behalf:
Part of my work involved being sure that the computer systems were secure, to pay attention to
information assets, because the entire company resides--the product of the company is what's
sitting on those disks. That's what the people are producing. They are sitting at their work stations.
So protecting that information was my job, to look at the situation, see what needed to be fixed,

what needed to be changed, what needed to be installed, what needed to be altered in such a way
that the information was protected.

The following events transpired:

e On October 28, 1993, another system administrator at Intel noticed heavy processes being run
from a machine under his control.

¢ Upon examination of those processes, the system administrator concluded that the program being
run was Crack, a common utility used to crack passwords on UNIX systems. This utility was
apparently being applied to network passwords at Intel and at least one other firm.

e Further examination revealed that the processes were being run by Schwartz or someone using his
login and password.

e The system administrator contacted a superior who confirmed that Schwartz was not authorized to
crack the network passwords at Intel.

e On November 1, 1993, that system administrator provided an affidavit that was sufficient to
support a search warrant for Schwartz's home.

e The search warrant was served and Schwartz was subsequently arrested, charged under an obscure
Oregon computer crime statute. The case is bizarre. You have a skilled and renowned programmer
charged with maintaining internal security for a large firm. He undertakes procedures to test the
security of that network and is ultimately arrested for his efforts. At least, the case initially appears
that way. Unfortunately, that is not the end of the story. Schwartz did not have authorization to
crack those password files. Moreover, there is some evidence that he violated other network
security conventions at Intel.

For example, Schwartz once installed a shell script that allowed him to access the Intel
network from other locations. This script reportedly opened a hole in Intel's firewall.
Another system administrator discovered this program, froze Schwartz's account, and
confronted him. Schwartz agreed that installing the script was not a good idea and further
agreed to refrain from implementing that program again. Some time later, that same
system administrator found that Schwartz had re-installed the program. (Schwartz
apparently renamed the program, thus throwing the system administrator off the trail.)
What does all this mean? From my point of view, Randal Schwartz probably broke Intel
policy a number of times. What complicates the situation is that testimony reveals that
such policy was never explicitly laid out to Schwartz. At least, he was given no document
that expressly prohibited his activity. Equally, however, it seems clear that Schwartz
overstepped his authority.

Looking at the case objectively, some conclusions can immediately be made. One is that
most administrators charged with maintaining network security use a tool like Crack.
This is a common procedure by which to identify weak passwords or those that can be
easily cracked by crackers from the void. At the time of the Schwartz case, however, such
tools were relatively new to the security scene. Hence, the practice of cracking your own
passwords was not so universally accepted as a beneficial procedure. However, Intel's
response was, in my opinion, a bit reactionary. For example, why wasn't the matter
handled internally?

The Schwartz case angered many programmers and security experts across the country.
As Jeffrey Kegler wrote in his analysis paper, "Intel v. Randal Schwartz: Why Care?" the
Schwartz case was an ominous development:

Clearly, Randal was someone who should have known better. And in fact, Randal would be the
first Internet expert already well known for legitimate activities to turn to crime. Previous
computer criminals have been teenagers or wannabes. Even the relatively sophisticated Kevin
Mitnick never made any name except as a criminal. Never before Randal would anyone on the
“light side of the force' have answered the call of the 'dark side.'

Cross Reference: You can find Kegler's paper online at
http://www.lightlink.com/spacenka/fors/intro.html.

I want you to think about the Schwartz case for a moment. Do you have or administrate a
network? If so, have you ever cracked passwords from that network without explicit
authorization to do so? If you have, you know exactly what this entails. In your opinion,
do you believe this constitutes an offense? If you were writing the laws, would this type
of offense be a felony?

In any event, as stated, Randal Schwartz is unfortunate enough to be the first legitimate
computer security expert to be called a cracker. Thankfully, the experience proved
beneficial, even if only in a very small way. Schwartz managed to revitalize his career,
touring the country giving great talks as Just Another Convicted Perl Hacker. The
notoriety has served him well as of late.

TIP: The transcripts of this trial are available on the Internet in zipped format. The entire
distribution is 13 days of testimony and argument. It is available at
http://www.lightlink.com/spacenka/fors/court/court.html.

Why Do Crackers Exist?

Crackers exist because they must. Because human nature is just so, frequently driven by a
desire to destroy instead of create. No more complex explanation need be given. The only
issue here is what type of cracker we are talking about.

Some crackers crack for profit. These may land on the battlefield, squarely between two
competing companies. Perhaps Company A wants to disable the site of Company B.
There are crackers for hire. They will break into almost any type of system you like, for a
price. Some of these crackers get involved with criminal schemes, such as retrieving lists
of TRW profiles. These are then used to apply for credit cards under the names of those
on the list. Other common pursuits are cell-phone cloning, piracy schemes, and garden-
variety fraud. Other crackers are kids who demonstrate an extraordinary ability to
assimilate highly technical computer knowledge. They may just be getting their kicks at
the expense of their targets.

Where Did This All Start?

A complete historical account of cracking is beyond the scope of this book. However, a
little background couldn't hurt. It started with telephone technology. Originally, a handful
of kids across the nation were cracking the telephone system. This practice was referred
to as phreaking. Phreaking is now recognized as any act by which to circumvent the
security of the telephone company. (Although, in reality, phreaking is more about
learning how the telephone system works and then manipulating it.)

Telephone phreaks employed different methods to accomplish this task. Early
implementations involved the use of ratshack dialers, or red boxes. (Ratshack was a term
to refer to the popular electronics store Radio Shack.) These were hand-held electronic
devices that transmitted digital sounds or tones. Phreakers altered these off-the-shelf tone
dialers by replacing the internal crystals with Radio Shack part #43-146.

NOTE: Part #43-146 was a crystal, available at many neighborhood electronics stores
throughout the country. One could use either a 6.5MHz or 6.5536 crystal. This was used
to replace the crystal that shipped with the dialer (3.579545MHz). The alteration process
took approximately 5 minutes.

Having made these modifications, they programmed in the sounds of quarters being
inserted into a pay telephone. From there, the remaining steps were simple. Phreaks went
to a pay telephone and dialed a number. The telephone would request payment for the
call. In response, the phreak would use the red box to emulate money being inserted into
the machine. This resulted in obtaining free telephone service at most pay telephones.

Schematics and very precise instructions for constructing such devices are at thousands of
sites on the Internet. The practice became so common that in many states, the mere
possession of a tone dialer altered in such a manner was grounds for search, seizure, and
arrest. As time went on, the technology in this area became more and more advanced.
New boxes like the red box were developed. The term boxing came to replace the term
phreaking, at least in general conversation, and boxing became exceedingly popular. This
resulted in even further advances, until an entire suite of boxes was developed. Table 3.1
lists a few of these boxes.

Table 3.1. Boxes and their uses.

|Box |What It Does

Blue Seizes trunk lines using a 2600MHz tone, thereby granting the boxer the same privileges as the

average operator

|Dayglo |Allows the user to connect to and utilize his or her neighbor's telephone line

|Aqua |Rep0rtedly circumvents FBI taps and traces by draining the voltage on the line

|Mauve |Used to tap another telephone line

|Chr0me |Seizes control of traffic signals

There are at least 40 different boxes or devices within this class. Each was designed to
perform a different function. Many of the techniques employed are no longer effective.
For example, blue boxing has been seriously curtailed because of new electronically
switched telephone systems. (Although reportedly, one can still blue box in parts of the
country where older trunk lines can be found.) At a certain stage of the proceedings,
telephone phreaking and computer programming were combined; this marriage produced
some powerful tools. One example is BlueBEEP, an all-purpose phreaking/hacking tool.
BlueBEEP combines many different aspects of the phreaking trade, including the red
box. Essentially, in an area where the local telephone lines are old style, BlueBEEP
provides the user with awesome power over the telephone system. Have a look at the
opening screen of BlueBEEP in Figure 3.1.

Figure 3.1.
The BlueBEEP opening screen.

It looks a lot like any legitimate application, the type anyone might buy at his or her local
software outlet. To its author's credit, it operates as well as or better than most
commercial software. BlueBEEP runs in a DOS environment, or through a DOS shell

window in either Windows 95 or Windows NT. I should say this before continuing: To
date, BlueBEEP is the most finely programmed phreaking tool ever coded. The author,
then a resident of Germany, reported that the application was written primarily in
PASCAL and assembly language. In any event, contained within the program are many,
many options for control of trunk lines, generation of digital tones, scanning of telephone
exchanges, and so on. It is probably the most comprehensive tool of its kind. However, I
am getting ahead of the time. BlueBEEP was actually created quite late in the game. We
must venture back several years to see how telephone phreaking led to Internet cracking.
The process was a natural one. Phone phreaks tried almost anything they could to find
new systems. Phreaks often searched telephone lines for interesting tones or connections.
Some of those connections turned out to be modems.

No one can tell when it was--that instant when a telephone phreak first logged on to the
Internet. However, the process probably occurred more by chance than skill. Years ago,
Point- to-Point Protocol (PPP) was not available. Therefore, the way a phreak would have
found the Internet is debatable. It probably happened after one of them, by direct-dial
connection, logged in to a mainframe or workstation somewhere in the void. This
machine was likely connected to the Internet via Ethernet, a second modem, or another
port. Thus, the targeted machine acted as a bridge between the phreak and the Internet.
After the phreak crossed that bridge, he or she was dropped into a world teeming with
computers, most of which had poor or sometimes no security. Imagine that for a moment:
an unexplored frontier.

What remains is history. Since then, crackers have broken their way into every type of
system imaginable. During the 1980s, truly gifted programmers began cropping up as
crackers. It was during this period that the distinction between hackers and crackers was
first confused, and it has remained so every since. By the late 1980s, these individuals
were becoming newsworthy and the media dubbed those who breached system security
as hackers.

Then an event occurred that would forever focus America's computing community on
these hackers. On November 2, 1988, someone released a worm into the network. This
worm was a self-replicating program that sought out vulnerable machines and infected
them. Having infected a vulnerable machine, the worm would go into the wild, searching
for additional targets. This process continued until thousands of machines were infected.
Within hours, the Internet was under heavy siege. In a now celebrated paper that provides
a blow-by-blow analysis of the worm incident ("Tour of the Worm"), Donn Seeley, then
at the Department of Computer Science at the University of Utah, wrote:
November 3, 1988 is already coming to be known as Black Thursday. System administrators
around the country came to work on that day and discovered that their networks of computers
were laboring under a huge load. If they were able to log in and generate a system status listing,
they saw what appeared to be dozens or hundreds of "shell" (command interpreter) processes. If

they tried to kill the processes, they found that new processes appeared faster than they could kill
them.

The worm was apparently released from a machine at the Massachusetts Institute of
Technology. Reportedly, the logging system on that machine was either working
incorrectly or was not properly configured and thus, the perpetrator left no trail. (Seely
reports that the first infections included the Artificial Intelligence Laboratory at MIT, the

University of California at Berkeley, and the RAND Corporation in California.) As one
might expect, the computing community was initially in a state of shock. However, as
Eugene Spafford, a renowned computer science professor from Purdue University,
explained in his paper "The Internet Worm: An Analysis," that state of shock didn't last
long. Programmers at both ends of the country were working feverishly to find a solution:
By late Wednesday night, personnel at the University of California at Berkeley and at
Massachusetts Institute of Technology had “captured' copies of the program and began to analyze
it. People at other sites also began to study the program and were developing methods of
eradicating it.
An unlikely candidate would come under suspicion: a young man studying computer
science at Cornell University. This particular young man was an unlikely candidate for
two reasons. First, he was a good student without any background that would suggest
such behavior. Second, and more importantly, the young man's father, an engineer with
Bell Labs, had a profound influence on the Internet's design. Nevertheless, the young
man, Robert Morris Jr., was indeed the perpetrator. Reportedly, Morris expected his
program to spread at a very slow rate, its effects being perhaps even imperceptible.
However, as Brendan Kehoe notes in his book Zen and the Art of the Internet:
Morris soon discovered that the program was replicating and reinfecting machines at a much faster
rate than he had anticipated--there was a bug. Ultimately, many machines at locations around the
country either crashed or became “catatonic.' When Morris realized what was happening, he
contacted a friend at Harvard to discuss a solution. Eventually, they sent an anonymous message

from Harvard over the network, instructing programmers how to kill the worm and prevent
reinfection.

Morris was tried and convicted under federal statutes, receiving three years probation and
a substantial fine. An unsuccessful appeal followed. (I address this case in detail in Part
VII of this book, "The Law.")

The introduction of the Morris Worm changed many attitudes about Internet security. A
single program had virtually disabled hundreds (or perhaps thousands) of machines. That
day marked the beginning of serious Internet security. Moreover, the event helped to
forever seal the fate of hackers. Since that point, legitimate programmers have had to
rigorously defend their hacker titles. The media has largely neglected to correct this
misconception. Even today, the national press refers to crackers as hackers, thus
perpetuating the misunderstanding. That will never change and hence, hackers will have
to find another term by which to classify themselves.

Does it matter? Not really. Many people charge that true hackers are splitting hairs, that
their rigid distinctions are too complex and inconvenient for the public. Perhaps there is
some truth to that. For it has been many years since the terms were first used
interchangeably (and erroneously). At this stage, it is a matter of principle only.

The Situation Today: A Network at War

The situation today is radically different from the one 10 years ago. Over that period of
time, these two groups of people have faced off and crystallized into opposing teams. The
network is now at war and these are the soldiers. Crackers fight furiously for recognition
and often realize it through spectacular feats of technical prowess. A month cannot go by

without a newspaper article about some site that has been cracked. Equally, hackers work
hard to develop new methods of security to ward off the cracker hordes. Who will
ultimately prevail? It is too early to tell. The struggle will likely continue for another
decade or more.

The crackers may be losing ground, though. Because big business has invaded the Net,
the demand for proprietary security tools has increased dramatically. This influx of
corporate money will lead to an increase in the quality of such security tools. Moreover,
the proliferation of these tools will happen at a much faster rate and for a variety of
platforms. Crackers will be faced with greater and greater challenges as time goes on.
However, as I explain in Chapter 5, "Is Security a Futile Endeavor?" the balance of
knowledge maintains a constant, with crackers only inches behind. Some writers assert
that throughout this process, a form of hacker evolution is occurring. By this they mean
that crackers will ultimately be weeded out over the long haul (many will go to jail, many
will grow older and wiser, and so forth). This is probably unrealistic. The exclusivity
associated with being a cracker is a strong lure to up-and-coming teenagers. There is a
mystique surrounding the activities of a cracker.

There is ample evidence, however, that most crackers eventually retire. They later crop
up in various positions, including system administrator jobs. One formerly renowned
cracker today runs an Internet salon. Another works on systems for an airline company in
Florida. Still another is an elected official in a small town in Southern California.
(Because all these individuals have left the life for a more conservative and sane
existence, I elected not to mention their names here.)

The Hackers

I shall close this chapter by giving real-life examples of hackers are crackers. That seems
to be the only reliable way to differentiate between them. From these brief descriptions,
you can get a better understanding of the distinction. Moreover, many of these people are
discussed later at various points in this book. This section prepares you for that as well.

Richard Stallman Stallman joined the Artificial Intelligence Laboratory at MIT in 1971.
He received the 250K McArthur Genius award for developing software. He ultimately
founded the Free Software Foundation, creating hundreds of freely distributable utilities
and programs for use on the UNIX platform. He worked on some archaic machines,
including the DEC PDP-10 (to which he probably still has access somewhere). He is a
brilliant programmer.

Dennis Ritchie, Ken Thompson, and Brian Kernighan Ritchie, Thompson, and
Kernighan are programmers at Bell Labs, and all were instrumental in the development of
the UNIX operating system and the C programming language. Take these three
individuals out of the picture, and there would likely be no Internet (or if there were, it
would be a lot less functional). They still hack today. (For example, Ritchie is busy
working on Plan 9 from Bell Labs, a new operating system that will probably supplant
UNIX as the industry-standard super-networking operating system.)

Paul Baran, Rand Corporation Baran is probably the greatest hacker of them all for
one fundamental reason: He was hacking the Internet before the Internet even existed. He
hacked the concept, and his efforts provided a rough navigational tool that served to
inspire those who followed him.

Eugene Spafford Spafford is a professor of computer science, celebrated for his work at
Purdue University and elsewhere. He was instrumental in creating the Computer Oracle
Password and Security System (COPS), a semi-automated system of securing your
network. Spafford has turned out some very prominent students over the years and his
name is intensely respected in the field.

Dan Farmer Farmer worked with Spafford on COPS (Release 1991) while at Carnegie
Mellon University with the Computer Emergency Response Team (CERT). For real
details, see Purdue University Technical Report CSD-TR-993, written by Eugene
Spafford and Daniel Farmer. (Yes, Dan, the byline says Daniel Farmer.) Farmer later
gained national notoriety for releasing the System Administrator Tool for Analyzing
Networks (SATAN), a powerful tool for analyzing remote networks for security
vulnerabilities.

Wietse Venema Venema hails from the Eindhoven University of Technology in the
Netherlands. He is an exceptionally gifted programmer who has a long history of writing
industry-standard security tools. He co-authored SATAN with Farmer and wrote TCP
Wrapper, one of the commonly used security programs in the world. (This program
provides close control and monitoring of information packets coming from the void.)

Linus Torvalds A most extraordinary individual, Torvalds enrolled in classes on UNIX
and the C programming language in the early 1990s. One year later, he began writing a
UNIX-like operating system. Within a year, he released this system to the Internet (it was
called Linux). Today, Linux has a cult following and has the distinction of being the only
operating system ever developed by software programmers all over the world, many of
whom will never meet one another. Linux is free from copyright restrictions and is
available free to anyone with Internet access.

Bill Gates and Paul Allen From their high school days, these men from Washington
were hacking software. Both are skilled programmers. Starting in 1980, they built the
largest and most successful software empire on Earth. Their commercial successes
include MS-DOS, Microsoft Windows, Windows 95, and Windows NT.

The Crackers

Kevin Mitnik Mitnik, also known as Condor, is probably the world's best-known
cracker. Mitnik began his career as a phone phreak. Since those early years, Mitnik has
successfully cracked every manner of secure site you can imagine, including but not
limited to military sites, financial corporations, software firms, and other technology
companies. (When he was still a teen, Mitnik cracked the North American Aerospace
Defense Command.) At the time of this writing, he is awaiting trial on federal charges
stemming from attacks committed in 1994-1995.

Kevin Poulsen Having followed a path quite similar to Mitnik, Poulsen is best known for
his uncanny ability to seize control of the Pacific Bell telephone system. (Poulsen once
used this talent to win a radio contest where the prize was a Porsche. He manipulated the
telephone lines so that his call would be the wining one.) Poulsen has also broken nearly
every type of site, but has a special penchant for sites containing defense data. This
greatly complicated his last period of incarceration, which lasted five years. (This is the
longest period ever served by a hacker in the United States.) Poulsen was released in
1996 and has apparently reformed.

Justin Tanner Peterson Known as Agent Steal, Peterson is probably most celebrated for
cracking a prominent consumer credit agency. Peterson appeared to be motivated by
money instead of curiosity. This lack of personal philosophy led to his downfall and the
downfall of others. For example, once caught, Peterson ratted out his friends, including
Kevin Poulsen. Peterson then obtained a deal with the FBI to work undercover. This
secured his release and he subsequently absconded, going on a crime spree that ended
with a failed attempt to secure a six-figure fraudulent wire transfer.

Summary

There are many other hackers and crackers, and you will read about them in the following
chapters. Their names, their works, and their Web pages (when available) are
meticulously recorded throughout this book. If you are one such person of note, you will
undoubtedly find yourself somewhere within this book. The criterion to be listed here is
straightforward: If you have done something that influenced the security of the Internet,
your name likely appears here. If I missed you, I extend my apologies.

For the remaining readers, this book serves not only as a general reference tool, but a
kind of directory of hackers and crackers. For a comprehensive listing, see Appendix A,
"How to Get More Information." That appendix contains both establishment and
underground resources.

4
Just Who Can Be Hacked, Anyway?

The Internet was born in 1969. Almost immediately after the network was established,
researchers were confronted with a disturbing fact: The Internet was not secure and could
easily be cracked. Today, writers try to minimize this fact, reminding you that the
security technologies of the time were primitive. This has little bearing. Today, security
technology is quite complex and the Internet is still easily cracked.

I would like to return to those early days of the Internet. Not only will this give you a
flavor of the time, it will demonstrate an important point: The Internet is no more secure
today than it was twenty years ago.

My evidence begins with a document: a Request for Comments, or RFC. Before you
review the document, let me explain what the RFC system is about. This is important
because I refer to many RFC documents throughout this book.

The Request For Comments (RFC) System

Requests for Comments (RFC) documents are special. They are written (and posted to the
Net) by individuals engaged in the development or maintenance of the Internet. RFC
documents serve the important purpose of requesting Internet-wide comments on new or
developing technology. Most often, RFC documents contain proposed standards.

The RFC system is one of evolution. The author of an RFC posts the document to the
Internet, proposing a standard that he or she would like to see adopted network-wide. The
author then waits for feedback from other sources. The document (after more
comments/changes have been made) goes to draft or directly to Internet standard status.
Comments and changes are made by working groups of the Internet Engineering Task
Force (IETF).

Cross Reference: The Internet Engineering Task Force (IETF) is "... a large, open,
international community of network designers, operators, vendors, and researchers
concerned with the evolution of the Internet architecture and the smooth operation of the
Internet." To learn more about the IETF, go to its home page at
http://www.ietf.cnri.reston.va.us/.

RFC documents are numbered sequentially (the higher the number, the more recent the
document) and are distributed at various servers on the Internet.

Cross Reference: One central server from which to retrieve RFC documents is at
http://ds0.internic.net/ds/dspg0intdoc.html. This address (URL) is located at InterNIC,
or the Network Information Center.

InterNIC

InterNIC provides comprehensive databases on networking information. These databases
contain the larger portion of collected knowledge on the design and scope of the Internet.
Some of those databases include

e The WHOIS Database--This database contains all the names and network numbers of hosts (or

machines) permanently connected to the Internet in the United States (except * . mi1 addresses,
which must be obtained at nic.ddn.mil).

e The Directory of Directories--This is a massive listing of nearly all resources on the Internet,
broken into categories.

e The RFC Index--This is a collection of all RFC documents.

Cross Reference: All these documents are centrally available at http://rs.internic.net.

A Holiday Message

As I mentioned earlier, I refer here to an early RFC. The document in question is RFC
602: The Stockings Were Hung by the Chimney with Care. RFC 602 was posted by Bob
Metcalfe in December, 1973. The subject matter concerned weak passwords. In it,
Metcalfe writes: The ARPA Computer Network is susceptible to security violations for at
least the three following reasons:

1. Individual sites, used to physical limitations on machine access, have not yet taken sufficient
precautions toward securing their systems against unauthorized remote use. For example, many
people still use passwords which are easy to guess: their fist [sic] names, their initials, their host
name spelled backwards, a string of characters which are easy to type in sequence (such as
ZXCVBNM).

2. The TIP allows access to the ARPANET to a much wider audience than is thought or intended.
TIP phone numbers are posted, like those scribbled hastily on the walls of phone booths and men's
rooms. The TIP required no user identification before giving service. Thus, many people,
including those who used to spend their time ripping off Ma Bell, get access to our stockings in a
most anonymous way.

3. There is lingering affection for the challenge of breaking someone's system. This affection
lingers despite the fact that everyone knows that it's easy to break systems, even easier to crash
them.

All of this would be quite humorous and cause for raucous eye winking and elbow
nudging, if it weren't for the fact that in recent weeks at least two major serving hosts
were crashed under suspicious circumstances by people who knew what they were
risking; on yet a third system, the system wheel password was compromised--by two high
school students in Los Angeles no less. We suspect that the number of dangerous security
violations is larger than any of us know is growing. You are advised not to sit "in hope
that Saint Nicholas would soon be there." That document was posted well over 20 years
ago. Naturally, this password problem is no longer an issue. Or is it? Examine this
excerpt from a Defense Data Network Security Bulletin, written in 1993:

Host Administrators must assure that passwords are kept secret by their users. Host Administrators
must also assure that passwords are robust enough to thwart exhaustive attack by password

cracking mechanisms, changed periodically and that password files are adequately protected.
Passwords should be changed at least annually.

Take notice. In the more than 25 years of the Internet's existence, it has never been
secure. That's a fact. Later in this book, I will try to explain why. For now, however, I
confine our inquiry to a narrow question: Just who can be cracked?

The short answer is this: As long as a person maintains a connection to the Internet
(permanent or otherwise), he or she can be cracked. Before treating this subject in depth,
however, I want to define cracked.

What Is Meant by the Term Cracked?

For our purposes, cracked refers to that condition in which the victim network has
suffered an unauthorized intrusion. There are various degrees of this condition, each of
which is discussed at length within this book. Here, I offer a few examples of this
cracked condition:

e The intruder gains access and nothing more (access being defined as simple entry; entry that is
unauthorized on a network that requires--at a minimum--a login and password).

e The intruder gains access and destroys, corrupts, or otherwise alters data.

e The intruder gains access and seizes control of a compartmentalized portion of the system or the
whole system, perhaps denying access even to privileged users.

e The intruder does NOT gain access, but instead implements malicious procedures that cause that
network to fail, reboot, hang, or otherwise manifest an inoperable condition, either permanently or
temporarily.

To be fair, modern security techniques have made cracking more difficult. However, the
gorge between the word difficult and the word impossible is wide indeed. Today, crackers
have access to (and often study religiously) a wealth of security information, much of
which is freely available on the Internet. The balance of knowledge between these
individuals and bona-fide security specialists is not greatly disproportionate. In fact, that
gap is closing each day.

The purpose of this chapter is to show you that cracking is a common activity: so
common that assurances from anyone that the Internet is secure should be viewed with
extreme suspicion. To drive that point home, I will begin with governmental entities.
After all, defense and intelligence agencies form the basis of our national security
infrastructure. They, more than any other group, must be secure.

Government

Throughout the Internet's history, government sites have been popular targets among
crackers. This is due primarily to press coverage that follows such an event. Crackers
enjoy any media attention they can get. Hence, their philosophy is generally this: If
you're going to crack a site, crack one that matters.

Are crackers making headway in compromising our nation's most secure networks?
Absolutely. To find evidence that government systems are susceptible to attack, one
needn't look far. A recent report filed by the Government Accounting Office (GAO)
concerning the security of the nation's defense networks concluded that:

Defense may have been attacked as many as 250,000 times last year...In addition, in testing its
systems, DISA attacks and successfully penetrates Defense systems 65 percent of the time.
According to Defense officials, attackers have obtained and corrupted sensitive information--they
have stolen, modified, and destroyed both data and software. They have installed unwanted files
and "back doors" which circumvent normal system protection and allow attackers unauthorized
access in the future. They have shut down and crashed entire systems and networks, denying
service to users who depend on automated systems to help meet critical missions. Numerous
Defense functions have been adversely affected, including weapons and supercomputer research,
logistics, finance, procurement, personnel management, military health, and payroll.'

Information Security: Computer Attacks at Department of Defense Pose Increasing
Risks (Chapter Report, 05/22/96, GAO/AIMD-96-84); Chapter 0:3.2, Paragraph 1.

Cross Reference: Information Security: Computer Attacks at Department of Defense
Pose Increasing Risks is available online at
http://www.securitymanagement.com/library/000215.html.

That same report revealed that although more than one quarter of a million attacks occur
annually, only 1 in 500 attacks are actually detected and reported. (Note that these sites
are defense oriented and therefore implement more stringent security policies than many
commercial sites. Many government sites employ secure operating systems that also
feature advanced, proprietary security utilities.)

Government agencies, mindful of the public confidence, understandably try to minimize
these issues. But some of the incidents are difficult to obscure. For example, in 1994,
crackers gained carte-blanche access to a weapons-research laboratory in Rome, New
York. Over a two-day period, the crackers downloaded vital national security
information, including wartime- communication protocols.

Such information is extremely sensitive and, if used improperly, could jeopardize the
lives of American service personnel. If crackers with relatively modest equipment can
access such information, hostile foreign governments (with ample computing power)
could access even more.

SATAN and Other Tools

Today, government sites are cracked with increasing frequency. The authors of the GAO
report attribute this largely to the rise of user-friendly security programs (such as
SATAN). SATAN is a powerful scanner program that automatically detects security
weaknesses in remote hosts. It was released freely on the Net in April, 1995. Its authors,
Dan Farmer and Weitse Venema, are legends in Internet security. (You will learn more
about these two gentlemen in Chapter 9, "Scanners.")

Because SATAN is conveniently operated through an HTML browser (such as Netscape
Navigator or NCSA Mosaic), a cracker requires less practical knowledge of systems.

Instead, he or she simply points, clicks, and waits for an alert that SATAN has found a
vulnerable system (at least this is what the GAO report suggests). Is it true?

No. Rather, the government is making excuses for its own shoddy security. Here is why:
First, SATAN runs only on UNIX platforms. Traditionally, such platforms required
expensive workstation hardware. Workstation hardware of this class is extremely
specialized and isn't sold at the neighborhood Circuit City store. However, those quick to
defend the government make the point that free versions of UNIX now exist for the IBM-
compatible platform. One such distribution is a popular operating system named Linu.x.

Linux is a true 32-bit, multi-user, multi-tasking, UNIX-like operating system. It is a
powerful computing environment and, when installed on the average PC, grants the user
an enormous amount of authority, particularly in the context of the Internet. For example,
Linux distributions now come stocked with every manner of server ever created for
TCP/IP transport over the Net.

Cross Reference: Linux runs on a wide range of platforms, not just IBM compatibles.
Some of those platforms include the Motorola 68k, the Digital Alpha, the Motorola
PowerPC, and even the Sun Microsystems SPARC architecture. If you want to learn
more about Linux, go to the ultimate Linux page at http://www.linux.org/.

Distributions of Linux are freely available for download from the Net, or can be obtained
at any local bookstore. CD-ROM distributions are usually bundled with books that
instruct users on using Linux. In this way, vendors can make money on an otherwise,
ostensibly free operating system. The average Linux book containing a Linux installation
CD-ROM sells for forty dollars.

Furthermore, most Linux distributions come with extensive development tools. These
include a multitude of language compilers and interpreters:

e A Clanguage compiler

e A C++ language compiler

e A SmallTalk interpreter

e A BASIC interpreter

e A Perl interpreter

e Tools for FORTRAN

e Tools for Pascal

e A common LISP interpreter

Yet, even given these facts, the average kid with little knowledge of UNIX cannot
implement a tool such as SATAN on a Linux platform. Such tools rarely come prebuilt in
binary form. The majority are distributed as source code, which may then be compiled
with options specific to the current platform. Thus, if you are working in AIX (IBM's

proprietary version of UNIX), the program must be compiled for AIX. If working in
Ultrix (DEC), it must be compiled for Ultrix, and so on.

NOTE: A port was available for Linux not long after SATAN was released. However,
the bugs were not completely eliminated and the process of installing and running
SATAN would still remain an elusive and frustrating experience for many Linux users.
The process of developing an easily implemented port was slow in coming.

Most PC users (without UNIX experience) are hopelessly lost even at the time of the
Linux installation. UNIX conventions are drastically different from those in DOS. Thus,
before a new Linux user becomes even moderately proficient, a year of use will likely
pass. This year will be spent learning how to use MIT's X Window System, how to
configure TCP/IP settings, how to get properly connected to the Internet, and how to
unpack software packages that come in basic source-code form.

Even after the year has passed, the user may still not be able to use SATAN. The SATAN
distribution doesn't compile well on the Linux platform. For it to work, the user must
have installed the very latest version of Perl. Only very recent Linux distributions (those
released within one year of the publishing of this book) are likely to have such a version
installed. Thus, the user must also know how to find, retrieve, unpack, and properly
install Perl.

In short, the distance between a non-UNIX literate PC user and one who effectively uses
SATAN is very long indeed. Furthermore, during that journey from the former to the
latter, the user must have ample time (and a brutal resolve) to learn. This is not the type
of journey made by someone who wants to point and click his or her way to super-
cracker status. It is a journey undertaken by someone deeply fascinated by operating
systems, security, and the Internet in general.

So the government's assertion that SATAN, an excellent tool designed expressly to
improve Internet security, has contributed to point-and-click cracking is unfounded. True,
SATAN will perform automated scans for a user. Nonetheless, that user must have strong
knowledge of Internet security, UNIX, and several programming languages.

There are also collateral issues regarding the machine and connection type. For example,
even if the user is seasoned, he or she must still have adequate hardware power to use
SATAN effectively.

Cross Reference: You will examine SATAN (and programs like it) in greater detail in
Chapter 9. In that chapter, you will be familiarized with many scanners, how they work,
how they are designed, and the type of information they can provide for users.

SATAN is not the problem with government sites. Indeed, SATAN is not the only
diagnostic tool that can automatically identify security holes in a system. There are
dozens of such tools available:

e Internet Security Scanner (ISS)

e Strobe

e Network Security Scanner (NSS)
e identTCPscan
e Jakal

Chapter 9 examines these automated tools and their methods of operation. For now, I will
simply say this: These tools operate by attacking the available TCP/IP services and ports
open and running on remote systems.

Whether available to a limited class of users or worldwide, these tools share one common
attribute: They check for known holes. That is, they check for security vulnerabilities that
are commonly recognized within the security community. The chief value of such tools is
their capability to automate the process of checking one or more machines (hundreds of
machines, if the user so wishes). These tools accomplish nothing more than a
knowledgeable cracker might by hand. They simply automate the process.

Education and Awareness About Security

The problem is not that such tools exist, but that education about security is poor.
Moreover, the defense information networks are operating with archaic internal security
policies. These policies prevent (rather than promote) security. To demonstrate why, |
want to refer to the GAO report I mentioned previously. In it, the government concedes:

...The military services and Defense agencies have issued a number of information security
policies, but they are dated, inconsistent and incomplete...

The report points to a series of Defense Directives as examples. It cites (as the most
significant DoD policy document) Defense Directive 5200.28. This document, Security
Requirements for Automated Information Systems, is dated March 21, 1988.

In order to demonstrate the real problem here, let's examine a portion of that Defense
Directive. Paragraph 5 of Section D of that document is written as follows:

Computer security features of commercially produced products and Government-developed or -
derived products shall be evaluated (as requested) for designation as trusted computer products for
inclusion on the Evaluated Products List (EPL). Evaluated products shall be designated as meeting
security criteria maintained by the National Computer Security Center (NCSC) at NSA defined by
the security division, class, and feature (e.g., B, B1, access control) described in DoD 5200.28-
STD (reference (K)).

Cross Reference: Security Requirements for Automated Information Systems is available
on the Internet at
http://140.229.1.16:9000/htdocs/teinfo/directives/soft/5200.
28.html

It is within the provisions of that paragraph that the government's main problem lies. The
Evaluated Products List (EPL) is a list of products that have been evaluated for security
ratings, based on DoD guidelines. (The National Security Agency actually oversees the
evaluation.) Products on the list can have various levels of security certification. For
example, Windows NT version 3.51 has obtained a certification of C2. This is a very
limited security certification.

Cross Reference: Before you continue, you should probably briefly view the EPL for
yourself. Check it out at
http://www.radium.ncsc.mil/tpep/epl/index.html.

The first thing you will notice about this list is that most of the products are old. For
example, examine the EPL listing for Trusted Information Systems' Trusted XENIX, a
UNIX-based operating system.

Cross Reference: The listing for Trusted XENIX can be found at
http://www.radium.ncsc.mil/tpep/epl/entries/CSC-EPL-92-001-
A.html

If you examine the listing closely, you will be astonished. TIS Trusted XENIX is indeed
on the EPL. It is therefore endorsed and cleared as a safe system, one that meets the
government's guidelines (as of September 1993). However, examine even more closely
the platforms on which this product has been cleared. Here are a few:

e AST 386/25 and Premium 386/33
e HP Vectra 386

e NCR PC386sx

e Zenith Z-386/33

These architectures are ancient. They are so old that no one would actually use them,
except perhaps as a garage hacking project on a nice Sunday afternoon (or perhaps if they
were legacy systems that housed software or other data that was irreplaceable). In other
words, by the time products reach the EPL, they are often pathetically obsolete. (The
evaluation process is lengthy and expensive not only for the vendor, but for the American
people, who are footing the bill for all this.) Therefore, you can conclude that much of the
DoD's equipment, software, and security procedures are likewise obsolete.

Now, add the question of internal education. Are Defense personnel trained in (and
implementing) the latest security techniques? No. Again, quoting the GAO report:
Defense officials generally agreed that user awareness training was needed, but stated that

installation commanders do not always understand computer security risk and thus, do not always
devote sufficient resources to the problem.

High-Profile Cases

Lack of awareness is pervasive, extending far beyond the confines of a few isolated
Defense sites. It is a problem that affects many federal agencies throughout the country.
Evidence of it routinely appears on the front pages of our nation's most popular
newspapers. Indeed, some very high-profile government sites were cracked in 1996,
including the Central Intelligence Agency (CIA) and the Department of Justice (DoJ).

e Inthe CIA case, a cracker seized control on September 18, 1996, replacing the welcome banner
with one that read The Central Stupidity Agency. Accompanying this were links to a hacker group
in Scandinavia.

Cross Reference: To see the CIA site in its hacked state, visit
http://www.skeeve.net/cia/.

NOTE: skeeve.net was one of many sites that preserved the hacked CIA page,
primarily for historical purposes. It is reported that after skeeve .net put the hacked
CIA page out for display, its server received hundreds of hits from government sites,
including the CIA. Some of these hits involved finger queries and other snooping
utilities.

e Inthe Dol incident (Saturday, August 17, 1996), a photograph of Adolf Hitler was offered as the
Attorney General of the United States.

Cross Reference: The Dol site, in its hacked state, can be viewed at http://river-
city.clever.net/hacked/doj/.

As of this writing, neither case has been solved; most likely, neither will ever be. Both
are reportedly being investigated by the FBI.

Typically, government officials characterize such incidents as rare. Just how rare are
they? Not very. In the last year, many such incidents have transpired:

e During a period spanning from July, 1995 to March 1996, a student in Argentina compromised
key sites in the United States, including those maintained by the Armed Forces and NASA.

e In August, 1996, a soldier at Fort Bragg reportedly compromised an "impenetrable" military
computer system and widely distributed passwords he obtained.

e In December, 1996, hackers seized control of a United States Air Force site, replacing the site's
defense statistics with pornography. The Pentagon's networked site, DefenseLINK, was shut down
for more than 24 hours as a result.

The phenomenon was not limited to federal agencies. In October, 1996, the home page of
the Florida State Supreme Court was cracked. Prior to its cracking, the page's intended
use was to distribute information about the court, including text reproductions of recent
court decisions. The crackers removed this information and replaced it with pornography.
Ironically, the Court subsequently reported an unusually high rate of hits.

In 1996 alone, at least six high-profile government sites were cracked. Two of these (the
CIA and FBI) were organizations responsible for maintaining departments for
information warfare or computer crime. Both are charged with one or more facets of
national security. What does all this mean? Is our national security going down the tubes?
It depends on how you look at it.

In the CIA and FBI cases, the cracking activity was insignificant. Neither server held
valuable information, and the only real damage was to the reputation of their owners.
However, the Rome, New York case was far more serious (as was the case at Fort
Bragg). Such cases demonstrate the potential for disaster.

There is a more frightening aspect to this: The sites mentioned previously were WWW
sites, which are highly visible to the public. Therefore, government agencies cannot hide
when their home pages have been cracked. But what about when the crack involves some
other portion of the targeted system (a portion generally unseen by the public)? It's likely
that when such a crack occurs, the press is not involved. As such, there are probably
many more government cracks that you will never hear about.

To be fair, the U.S. government is trying to keep up with the times. In January 1997, a
reporter for Computerworld magazine broke a major story concerning Pentagon efforts to
increase security. Apparently, the Department of Defense is going to establish its own
tiger team (a group of individuals whose sole purpose will be to attack DoD computers).
Such attacks will reveal key flaws in DoD security.

Other stories indicate that defense agencies have undertaken new and improved
technologies to protect computers holding data vital to national security. However, as
reported by Philip Shenon, a prominent technology writer for the New York Times:
While the Pentagon is developing encryption devices that show promise in defeating computer
hackers, the accounting office, which is the investigative arm of Congress, warned that none of the

proposed technical solutions was foolproof, and that the military's current security program was
“dated, inconsistent and incomplete.'

The Pentagon's activity to develop devices that "show promise in defeating computer
hackers" appears reassuring. From this, one could reasonably infer that something is
being done about the problem. However, the reality and seriousness of the situation is
being heavily underplayed.

If Defense and other vital networks cannot defend against domestic attacks from
crackers, there is little likelihood that they can defend from hostile foreign powers. I
made this point earlier in the chapter, but now I want to expand on it.

Can the United States Protect the National Information Infrastructure?

The United States cannot be matched by any nation for military power. We have
sufficient destructive power at our disposal to eliminate the entire human race. So from a
military standpoint, there is no comparison between the United States and even a handful
of third-world nations. The same is not true, however, in respect to information warfare.

The introduction of advanced minicomputers has forever changed the balance of power in
information warfare. The average Pentium processor now selling at retail computer
chains throughout the country is more powerful than many mainframes were five years
ago (it is certainly many times faster). Add the porting of high-performance UNIX-based
operating systems to the IBM platform, and you have an entirely new environment.

A third-world nation could pose a significant threat to our national information
infrastructure. Using the tools described previously (and some high-speed connections), a
third-world nation could effectively wage a successful information warfare campaign
against the United States at costs well within their means. In fact, it is likely that within
the next few years, we'll experience incidents of bona-fide cyberterrorism.

To prepare for the future, more must be done than simply allocating funds. The federal
government must work closely with security organizations and corporate entities to
establish new and improved standards. If the new standards do not provide for quicker
and more efficient means of implementing security, we will be faced with very dire
circumstances.

Who Holds the Cards?

This (not legitimate security tools such as SATAN) is the problem: Thirty years ago, the
U.S. government held all the cards with respect to technology. The average U.S. citizen
held next to nothing. Today, the average American has access to very advanced
technology. In some instances, that technology is so advanced that it equals technology
currently possessed by the government. Encryption technology is a good example.

Many Americans use encryption programs to protect their data from others. Some of
these encryption programs (such as the very famous utility PGP, created by Phil
Zimmermann) produce military-grade encryption. This level of encryption is sufficiently
strong that U.S. intelligence agencies cannot crack it (at least not within a reasonable
amount of time, and often, time is of the essence).

For example, suppose one individual sends a message to another person regarding the
date on which they will jointly blow up the United Nations building. Clearly, time is of
the essence. If U.S. intelligence officials cannot decipher this message before the date of
the event, they might as well have not cracked the message at all.

This principle applies directly to Internet security. Security technology has trickled down
to the masses at an astonishing rate. Crackers (and other talented programmers) have
taken this technology and rapidly improved it. Meanwhile, the government moves along
more slowly, tied down by restrictive and archaic policies. This has allowed the private
sector to catch up (and even surpass) the government in some fields of research.

This is a matter of national concern. Many grass-roots radical cracker organizations are
enthralled with these circumstances. They often heckle the government, taking pleasure
in the advanced knowledge that they possess. These are irresponsible forces in the
programming community, forces that carelessly perpetuate the weakening of the national
information infrastructure. Such forces should work to assist and enlighten government
agencies, but they often do not, and their reasons are sometimes understandable.

The government has, for many years, treated crackers and even hackers as criminals of
high order. As such, the government is unwilling to accept whatever valuable information
these folks have to offer. Communication between these opposing forces is almost always
negative. Bitter legal disputes have developed over the years. Indeed, some very
legitimate security specialists have lost time, money, and dignity at the hands of the U.S.
government. On more than one occasion, the government was entirely mistaken and
ruined (or otherwise seriously disrupted) the lives of law-abiding citizens. In the next
chapter, I will discuss a few such cases. Most arise out of the government's poor
understanding of the technology.

New paths of communication should be opened between the government and those in
possession of advanced knowledge. The Internet marginally assists in this process,
usually through devices such as mailing lists and Usenet. However, there is currently no
concerted effort to bring these opposing forces together on an official basis. This is
unfortunate because it fosters a situation where good minds in America remain pitted
against one another. Before we can effectively defend our national information
infrastructure, we must come to terms with this problem. For the moment, we are at war
with ourselves.

The Public Sector

I realize that a category such as the public sector might be easily misunderstood. To
prevent that, I want to identify the range of this category. Here, the public sector refers to
any entity that is not a government, an institution, or an individual. Thus, I will be
examining companies (public and private), Internet service providers, organizations, or
any other entity of commercial or semi-commercial character.

Before forging ahead, one point should be made: Commercial and other public entities do
not share the experience enjoyed by government sites. In other words, they have not yet
been cracked to pieces. Only in the past five years have commercial entities flocked to
the Internet. Therefore, some allowances must be made. It is unreasonable to expect these
folks to make their sites impenetrable. Many are smaller companies and for a moment, I
want to address these folks directly: You, more than any other group, need to acquire
sound security advice.

Small companies operate differently from large ones. For the little guy, cost is almost
always a strong consideration. When such firms establish an Internet presence, they
usually do so either by using in-house technical personnel or by recruiting an Internet
guru. In either case, they are probably buying quality programming talent. However, what
they are buying in terms of security may vary.

Large companies specializing in security charge a lot of money for their services. Also,
most of these specialize in UNIX security. So, small companies seeking to establish an
Internet presence may avoid established security firms. First, the cost is a significant
deterrent. Moreover, many small companies do not use UNIX. Instead, they may use
Novell NetWare, LANtastic, Windows NT, Windows 95, and so forth.

This leaves small businesses in a difficult position. They must either pay high costs or
take their programmers' word that the network will be secure. Because such small
businesses usually do not have personnel who are well educated in security, they are at
the mercy of the individual charged with developing the site. That can be a very serious
matter.

The problem is many "consultants" spuriously claim to know all about security. They
make these claims when, in fact, they may know little or nothing about the subject.
Typically, they have purchased a Web-development package, they generate attractive
Web pages, and know how to set up a server. Perhaps they have a limited background in
security, having scratched the surface. They take money from their clients, rationalizing

that there is only a very slim chance that their clients' Web servers will get hacked. For
most, this works out well. But although their clients' servers never get hacked, the servers
may remain indefinitely in a state of insecurity.

Commercial sites are also more likely to purchase one or two security products and call it
a day. They may pay several thousand dollars for an ostensibly secure system and leave it
at that, trusting everything to that single product.

For these reasons, commercial sites are routinely cracked, and this trend will probably
continue. Part of the problem is this: There is no real national standard on security in the
private sector. Hence, one most often qualifies as a security specialist through hard
experience and not by virtue of any formal education. It is true that there are many
courses available and even talks given by individuals such as Farmer and Venema. These
resources legitimately qualify an individual to do security work. However, there is no
single piece of paper that a company can demand that will ensure the quality of the
security they are getting.

Because these smaller businesses lack security knowledge, they become victims of
unscrupulous "security specialists." I hope that this trend will change, but I predict that
for now, it will only become more prevalent. I say this for one reason: Despite the fact
that many thousands of American businesses are now online, this represents a mere
fraction of commercial America. There are millions of businesses that have yet to get
connected. These millions are all new fish, and security charlatans are lined up waiting to
catch them.

The Public Sector Getting Cracked

In the last year, a series of commercial sites have come under attack. These attacks have
varied widely in technique. Earlier in this chapter, I defined some of those techniques and
the attending damage or interruption of service they cause. Here, I want to look at cases
that more definitively illustrate these techniques. Let's start with the recent attack on
Panix.com.

Panix.com

Panix.com (Public Access Networks Corporation) is a large Internet service provider
(ISP) that provides Internet access to several hundred thousand New York residents. On
September 6, 1996, Panix came under heavy attack from the void.

The Panix case was very significant because it demonstrates a technique known as the
Denial of Service (DoS) attack. This type of attack does not involve an intruder gaining
access. Instead, the cracker undertakes remote procedures that render a portion (or
sometimes all) of a target inoperable.

The techniques employed in such an attack are simple. As you will learn in Chapter 6, "A
Brief Primer on TCP/IP," connections over the Internet are initiated via a procedure
called the three-part handshake. In this process, the requesting machine sends a packet
requesting connection. The target machine responds with an acknowledgment. The
requesting machine then returns its own acknowledgment and a connection is established.

In a syn_flooder attack, the requesting (cracker's) machine sends a series of connection
requests but fails to acknowledge the target's response. Because the target never receives
that acknowledgment, it waits. If this process is repeated many times, it renders the
target's ports useless because the target is still waiting for the response. These connection
requests are dealt with sequentially; eventually, the target will abandon waiting for each
such acknowledgment. Nevertheless, if it receives tens or even hundreds of these
requests, the port will remain engaged until it has processed--and discarded--each
request.

NOTE: The term syn_flooder is derived from the activity undertaken by such tools. The
TCP/IP three-way handshake is initiated when one machine sends another a SYN packet.
In a typical flooding attack, a series of these packets are forwarded to a target, purporting
to be from an address that is nonexistent. The target machine therefore cannot resolve the
host. In any event, by sending a flurry of these SYN packets, one is flooding the target
with requests that cannot be fulfilled.

Syn_flooder attacks are common, but do no real damage. They simply deny other users
access to the targeted ports temporarily. In the Panix case, though, temporarily was a
period lasting more than a week.

Syn flooders are classified in this book as destructive devices. They are covered
extensively in Chapter 14, "Destructive Devices." These are typically small programs
consisting of two hundred lines of code or fewer. The majority are written in the C
programming language, but [know of at least one written in BASIC.

Crack dot Com

ISPs are popular targets for a variety of reasons. One reason is that crackers use such
targets as operating environments or a home base from which to launch attacks on other
targets. This technique assists in obscuring the identity of the attacker, an issue we will
discuss. However, DoS attacks are nothing special. They are the modern equivalent of
ringing someone's telephone repeatedly to keep the line perpetually engaged. There are
far more serious types of cracks out there. Just ask Crack dot Com, the manufacturers of
the now famous computer game Quake.

In January, 1997, crackers raided the Crack dot Com site. Reportedly, they cracked the
Web server and proceeded to chip away at the firewall from that location. After breaking
through the firewall, the crackers gained carte-blanche access to the internal file server.
From that location, they took the source code for both Quake and a new project called
Golgotha. They posted this source code on the Net.

NOTE: For those of you who are not programmers, source code is the programming
code of an application in its raw state. This is most often in human-readable form, usually
in plain English. After all testing of the software is complete (and there are no bugs
within it), this source code is sent a final time through a compiler. Compilers interpret the
source code and from it fashion a binary file that can be executed on one or more
platforms. In short, source code can be though of as the very building blocks of a
program. In commerecial circles, source code is jealously guarded and aggressively

proclaimed as proprietary material. For someone to take that data from a server and post
it indiscriminately to the Internet is probably a programmer's worst nightmare.

For Crack dot Com, the event could have far-reaching consequences. For example, it's
possible that during the brief period that the code was posted on the Net, its competitors
may have obtained copies of (at least some of) the programming routines. In fact, the
crackers could have approached those competitors in an effort to profit from their
activities. This, however, is highly unlikely. The crackers' pattern of activity suggests that
they were kids. For example, after completing the crack, they paraded their spoils on
Internet Relay Chat. They also reportedly left behind a log (a recording of someone's
activity while connected to a given machine). The Crack dot Com case highlights the
seriousness of the problem, however.

Kriegsman Furs

Another interesting case is that of Kriegsman Furs of Greensborough, North Carolina.

This furrier's Web site was cracked by an animal-rights activist. The cracker left behind a

very strong message, which I have reproduced in part:
Today's consumer is completely oblivious to what goes on in order for their product to arrive at
the mall for them to buy. It is time that the consumer be aware of what goes on in many of today's
big industries. Most importantly, the food industries. For instance, dairy cows are injected with a
chemical called BGH that is very harmful to both humans and the cows. This chemical gives the
cows bladder infections. This makes the cows bleed and guess what? It goes straight in to your
bowl of cereal. Little does the consumer know, nor care. The same kind of thing goes on behind
the back of fur wearers. The chemicals that are used to process and produce the fur are extremely
bad for our earth. Not only that, but millions of animals are slaughtered for fur and leather coats. I
did this in order to wake up the blind consumers of today. Know the facts.

Following this message were a series of links to animal-rights organizations and
resources.

Kevin Mitnik

Perhaps the most well-known case of the public sector being hacked, however, is the
1994/1995 escapades of famed computer cracker Kevin Mitnik. Mitnik has been gaining
notoriety since his teens, when he cracked the North American Aerospace Defense
Command (NORAD). The timeline of his life is truly amazing, spanning some 15 years
of cracking telephone companies, defense sites, ISPs, and corporations. Briefly, some of
Mitnik's previous targets include

e Pacific Bell, a California telephone company

e The California Department of Motor Vehicles
e A Pentagon system

e The Santa Cruz Operation, a software vendor

e Digital Equipment Corporation

e TRW

On December 25, 1994, Mitnik reportedly cracked the computer network of Tsutomu
Shimomura, a security specialist at the San Diego Supercomputer Center. What followed
was a press fiasco that lasted for months. The case might not have been so significant
were it not for three factors:

e The target was a security specialist who had written special security tools not available to the
general public.

e The method employed in the break-in was extremely sophisticated and caused a stir in security
circles.

e The suspicion was, from the earliest phase of the case, that Mitnik (then a wanted man) was
involved in the break-in.

First, Shimomura, though never before particularly famous, was known in security
circles. He, more than anyone, should have been secure. The types of tools he was
reportedly developing would have been of extreme value to any cracker. Moreover,
Shimomura has an excellent grasp of Internet security. When he got caught with his pants
down (as it were), it was a shock to many individuals in security. Naturally, it was also a
delight to the cracker community. For some time afterward, the cracking community was
enthralled by the achievement, particularly because Shimomura had reportedly assisted
various federal agencies on security issues. Here, one of the government's best security
advisors had been cracked to pieces by a grass-roots outlaw (at least, that was the hype
surrounding the case).

Second, the technique used, now referred to as /P spoofing, was complex and not often
implemented. IP spoofing is significant because it relies on an exchange that occurs
between two machines at the system level. Normally, when a user attempts to log in to a
machine, he or she is issued a login prompt. When the user provides a login ID, a
password prompt is given. The user issues his or her password and logs in (or, he or she
gives a bad or incorrect password and does not log in). Thus, Internet security breaches
have traditionally revolved around getting a valid password, usually by obtaining and
cracking the main password file.

IP spoofing differs from this radically. Instead of attempting to interface with the remote
machine via the standard procedure of the login/password variety, the IP-spoofing
cracker employs a much more sophisticated method that relies in part on trust. 7rust is
defined and referred to in this book (unless otherwise expressly stated) as the "trust” that
occurs between two machines that identify themselves to one another via IP addresses.

In IP spoofing, a series of things must be performed before a successful break-in can be
accomplished:

e One must determine the trust relationships between machines on the target network.

e One must determine which of those trust relationships can be exploited (that is, which of those
machines is running an operating system susceptible to spoofing).

e One must exploit the hole.

(Be mindful that this brief description is bare bones. I treat this subject extensively in its
own chapter, Chapter 28, "Spoofing Attacks.")

In the attack, the target machine trusted the other. Whenever a login occurred between
these two machines, it was authenticated through an exchange of numbers. This number
exchange followed a forward/challenge scenario. In other words, one machine would
generate a number to which the other must answer (also with a number). The key to the
attack was to forge the address of the trusted machine and provide the correct responses
to the other machine's challenges. And, reportedly, that is exactly what Mitnik did.

In this manner, privileged access is gained without ever passing a single password or
login ID over the network. All exchanges happen deep at the system level, a place where
humans nearly never interact with the operating system.

Curiously, although this technique has been lauded as new and innovative, it is actually
quite antiquated (or at least, the concept is quite antiquated). It stems from a security
paper written by Robert T. Morris in 1985 titled A Weakness in the 4.2BSD UNIX TCP/IP
Software. In this paper, Morris (then working for AT&T Bell Laboratories) concisely
details the ingredients to make such an attack successful. Morris opens the paper with this
statement:

The 4.2 Berkeley Software Distribution of the UNIX operating system (4.2BSD for short) features

an extensive body of software based on the "TCP/IP" family of protocols. In particular, each

4.2BSD system "trusts" some set of other systems, allowing users logged into trusted systems to

execute commands via a TCP/IP network without supplying a password. These notes describe

how the design of TCP/IP and the 4.2BSD implementation allow users on untrusted and possibly

very distant hosts to masquerade as users on trusted hosts. Bell Labs has a growing TCP/IP

network connecting machines with varying security needs; perhaps steps should be taken to reduce
their vulnerability to each other.

Morris then proceeds to describe such an attack in detail, some ten years before the first
widely reported instance of such an attack had occurred. One wonders whether Mitnik
had seen this paper (or even had it sitting on his desk whilst the deed was being done).

In any event, the break-in caused a stir. The following month, the New York Times
published an article about the attack. An investigation resulted, and Shimomura was
closely involved. Twenty days later, Shimomura and the FBI tracked Mitnik to an
apartment in North Carolina, the apparent source of the attack. The case made national
news for weeks as the authorities sorted out the evidence they found at Mitnik's abode.
Again, America's most celebrated computer outlaw was behind bars.

In my view, the case demonstrates an important point, the very same point we started
with at the beginning of this chapter: As long as they are connected to the Net, anyone
can be cracked. Shimomura is a hacker and a good one. He is rumored to own 12
machines running a variety of operating systems. Moreover, Shimomura is a talented
telephone phreak (someone skilled in manipulating the technology of the telephone
system and cellular devices). In essence, he is a specialist in security. If he fell victim to
an attack of this nature, with all the tools at his disposal, the average business Web site is
wide open to assault over the Internet.

In defense of Shimomura: Many individuals in security defend Shimomura. They
earnestly argue that Shimomura had his site configured to bait crackers. In Chapter 26,
"Levels of Attack," you will learn that Shimomura was at least marginally involved in
implementing this kind of system in conjunction with some folks at Bell Labs. However,
this argument in Shimomura's defense is questionable. For example, did he also intend to
allow these purportedly inept crackers to seize custom tools he had been developing? If
not, the defensive argument fails. Sensitive files were indeed seized from Shimomura's
network. Evidence of these files on the Internet is now sparse. No doubt, Shimomura has
taken efforts to hunt them down. Nevertheless, I have personally seen files that Mitnik
reportedly seized from many networks, including Netcom. Charles Platt, in his scathing
review of Shimomura's book Takedown, offers a little slice of reality:

Kevin Mitnick...at least he shows some irreverence, taunting Shimomura
and trying to puncture his pomposity. At one point, Mitnick bundles up all
the data he copied from Shimomura's computer and saves it onto the
system at Netcom where he knows that Shimomura will find it....Does
Shimomura have any trouble maintaining his dignity in the face of these
pranks? No trouble at all. He writes: "This was getting personal. ... none of
us could believe how childish and inane it all sounded."

It is difficult to understand why Shimomura would allow crackers (coming
randomly from the void) to steal his hard work and excellent source code.
My opinion (which may be erroneous) is that Shimomura did indeed have
his boxes configured to bait crackers; he simply did not count on anyone
cutting a hole through that baited box to his internal network. In other
words, I believe that Shimomura (who I readily admit is a brilliant
individual) got a little too confident. There should have been no
relationship of trust between the baited box and any other workstation.

Cross Reference: Charles Platt's critique of Takedown, titled 4 Circumlocuitous review
of Takedown by Tsutomu Shimomura and John Markoff, can be found at
http://rom.oit.gatech.edu/~willday/mitnick/takedown.review.h
tml.

Summary

These cases are all food for thought. In the past 20 or so years, there have been several
thousand such cases (of which we are aware). The military claims that it is attacked over
250,000 times a year. Estimates suggest it is penetrated better than half of the time. It is
likely that no site is entirely immune. (If such a site exists, it is likely AT&T Bell
Laboratories; it probably knows more about network security than any other single
organization on the Internet.)

All this having been established, I'd like to get you started. Before you can understand
how to hack (or crack), however, you must first know a bit about the network. Part II of
this book, "Understanding the Terrain," deals primarily with the Internet's development
and design.

S

Is Security a Futile Endeavor?

Since Paul Baran first put pen to paper, Internet security has been a concern. Over the
years, security by obscurity has become the prevailing attitude of the computing
community.

o Speak not and all will be well.
e Hide and perhaps they will not find you.

e The technology is complex. You are safe.

These principles have not only been proven faulty, but they also go against the original
concepts of how security could evolve through discussion and open education. Even at
the very birth of the Internet, open discussion on standards and methodology was strongly
suggested. It was felt that this open discussion could foster important advances in the
technology. Baran was well aware of this and articulated the principle concisely when, in
The Paradox of the Secrecy About Secrecy: The Assumption of A Clear Dichotomy
Between Classified and Unclassified Subject Matter, he wrote:

Without the freedom to expose the system proposal to widespread scrutiny by clever minds of

diverse interests, is to increase the risk that significant points of potential weakness have been
overlooked. A frank and open discussion here is to our advantage.

Security Through Obscurity

Security through obscurity has been defined and described in many different ways. One
rather whimsical description, authored by a student named Jeff Breidenbach in his lively
and engaging paper, Network Security Throughout the Ages, appears here:
The Net had a brilliant strategy called "Security through Obscurity." Don't let anyone fool you into
thinking that this was done on purpose. The software has grown into such a tangled mess that

nobody really knows how to use it. Befuddled engineers fervently hoped potential meddlers would
be just as intimidated by the technical details as they were themselves.

Mr. Breidenbach might well be correct about this. Nevertheless, the standardized
definition and description of security through obscurity can be obtained from any archive
of the Jargon File, available at thousands of locations on the Internet. That definition is
this:
alt. 'security by obscurity' n. A term applied by hackers to most OS vendors' favorite way of
coping with security holes--namely, ignoring them, documenting neither any known holes nor the

underlying security algorithms, trusting that nobody will find out about them and that people who
do find out about them won't exploit them.

Regardless of which security philosophy you believe, three questions remain constant:

e Why is the Internet insecure?

e Does it need to be secure?

e Can it be secure?

Why Is the Internet Insecure?

The Internet is insecure for a variety of reasons, each of which I will discuss here in
detail. Those factors include

e Lack of education

e The Internet's design

e Proprietarism (yes, another ism)
e The trickling down of technology

e Human nature

Each of these factors contributes in some degree to the Internet's current lack of security.

Lack of Education

Do you believe that what you don't know can't hurt you? If you are charged with the
responsibility of running an Internet server, you had better not believe it. Education is the
single, most important aspect of security, one aspect that has been sorely wanting.

I am not suggesting that a lack of education exists within higher institutions of learning or
those organizations that perform security-related tasks. Rather, I am suggesting that
security education rarely extends beyond those great bastions of computer-security
science.

The Computer Emergency Response Team (CERT) is probably the Internet's best-known
security organization. CERT generates security advisories and distributes them
throughout the Internet community. These advisories address the latest known security
vulnerabilities in a wide range of operating systems. CERT thus performs an extremely
valuable service to the Internet. The CERT Coordination Center, established by ARPA in
1988, provides a centralized point for the reporting of and proactive response to all major
security incidents. Since 1988, CERT has grown dramatically, and CERT centers have
been established at various points across the globe.

Cross Reference: You can contact CERT at its WWW page
(http://www.cert.org). There resides a database of vulnerabilities, various
research papers (including extensive documentation on disaster survivability), and links
to other important security resources.

CERT's 1995 annual report shows some very enlightening statistics. During 1995, CERT
was informed of some 12,000 sites that had experienced some form of network-security
violation. Of these, there were at least 732 known break-ins and an equal number of
probes or other instances of suspicious activity.

Cross Reference: You can access CERT's 1995 annual report at
http://www.cert.org/cert.report.95.html.

12,000 incidents with a reported 732 break-ins. This is so, even though the GAO report
examined earlier suggested that Defense computers alone are attacked as many as
250,000 times each year, and Dan Farmer's security survey reported that over 60 percent
of all critical sites surveyed were vulnerable to some technique of network security
breach. How can this be? Why aren't more incidents reported to CERT?

Cross Reference: Check out Dan Farmer's security survey at
http://www.trouble.org/survey.

It might be because the better portion of the Internet's servers are now maintained by
individuals who have less-than adequate security education. Many system administrators
have never even heard of CERT. True, there are many security resources available on the
Internet (many that point to CERT, in fact), but these may initially appear intimidating
and overwhelming to those new to security. Moreover, many of the resources provide
links to dated information.

An example is RFC 1244, the Site Security Handbook. At the time 1244 was written, it
comprised a collection of state-of-the-art information on security. As expressed in that
document's editor's note: This FYI RFC is a first attempt at providing Internet users
guidance on how to deal with security issues in the Internet. As such, this document is
necessarily incomplete. There are some clear shortfalls; for example, this document
focuses mostly on resources available in the United States. In the spirit of the Internet's
‘Request for Comments' series of notes, we encourage feedback from users of this
handbook. In particular, those who utilize this document to craft their own policies and
procedures.

This handbook is meant to be a starting place for further research and should be viewed as a useful

resource, but not the final authority. Different organizations and jurisdictions will have different

resources and rules. Talk to your local organizations, consult an informed lawyer, or consult with

local and national law enforcement. These groups can help fill in the gaps that this document
cannot hope to cover.

From 1991 until now, the Site Security Handbook has been an excellent place to start.
Nevertheless, as Internet technology grows in leaps and bounds, such texts become
rapidly outdated. Therefore, the new system administrator must keep up with the security
technology that follows each such evolution. To do so is a difficult task.

Cross Reference: RFC 1244 is still a good study paper for a user new to security. It is
available at many places on the Internet. One reliable server is at
http://www.net.ohio-state.edu/hypertext/rfcl244/toc.html.

The Genesis of an Advisory

Advisories comprise the better part of time-based security information. When these come
out, they are immediately very useful because they usually relate to an operating system

or popular application now widely in use. As time goes on, however, such advisories
become less important because people move on to new products. In this process, vendors
are constantly updating their systems, eliminating holes along the way. Thus, an advisory
is valuable for a set period of time (although, to be fair, this information may stay
valuable for extended periods because some people insist on using older software and
hardware, often for financial reasons).

An advisory begins with discovery. Someone, whether hacker, cracker, administrator, or
user, discovers a hole. That hole is verified, and the resulting data is forwarded to security
organizations, vendors, or other parties deemed suitable. This is the usual genesis of an
advisory (a process explained in Chapter 2, "How This Book Will Help You").
Nevertheless, there is another way that holes are discovered.

Often, academic researchers discover a hole. An example, which you will review later, is
the series of holes found within the Java programming language. These holes were
primarily revealed--at least at first--by those at Princeton University's computer science
labs. When such a hole is discovered, it is documented in excruciating detail. That is,
researchers often author multipage documents detailing the hole, the reasons for it, and
possible remedies.

Cross Reference: Java is a compiled language used to create interactive applications for
use on the World Wide Web. The language was created by efforts at Sun Microsystems.

It vaguely resembles C++. For more information about Java, visit the Java home page at

http://java.sun.com/.

This information gets digested by other sources into an advisory, which is often no more
than 100 lines. By the time the average, semi-security literate user lays his or her hands
on this information, it is limited and watered-down.

Thus, redundancy of data on the Internet has its limitations. People continually rehash
these security documents into different renditions, often highlighting different aspects of
the same paper. Such digested revisions are available all over the Net. This helps
distribute the information, true, but leaves serious researchers hungry. They must hunt,
and that hunt can be a struggle. For example, there is no centralized place to acquire all
such papers.

Equally, as I have explained, end-user documentation can be varied. Although there
should be, there is no 12-set volume (with papers by Farmer, Venema, Bellovin,
Spafford, Morris, Ranum, Klaus, Muffet, and so on) about Internet security that you can
acquire at a local library or bookstore. More often, the average bookstore contains brief
treatments of the subject (like this book, I suppose).

Couple with these factors the mind-set of the average system administrator. A human
being only has so much time. Therefore, these individuals absorb what they can on-the-
fly, applying methods learned through whatever sources they encounter.

The Dissemination of Information

For so many reasons, education in security is wanting. In the future, specialists need to
address this need in a more practical fashion. There must be some suitable means of
networking this information. To be fair, some organizations have attempted to do so, but
many are forced to charge high prices for their hard-earned databases. The National
Computer Security Association (NCSA) is one such organization. Its RECON division
gathers some 70MB per day of hot and heavy security information. Its database is
searchable and is available for a price, but that price is substantial.

Cross Reference: To learn more about NCSA RECON, examine its FAQ. NCSA's
database offers advanced searching capabilities, and the information held there is
definitely up-to-date. In short, it is a magnificent service. The FAQ is at
http://www.isrecon.ncsa.com/public/faqg/isrfaqg.htm. You can also
get a general description of what the service is by visiting
http://www.isrecon.ncsa.com/docz/Brochure Pages/effect.htm

Many organizations do offer superb training in security and firewall technology. The
price for such training varies, depending on the nature of the course, the individuals
giving it, and so on. One good source for training is Lucent Technologies, which offers
many courses on security.

Cross Reference: Lucent Technologies' WWW site can be found at
http://www.attsa.com/.

NOTE: Appendix A, "How to Get More Information," contains a massive listing of
security training resources as well as general information about where to acquire good
security information.

Despite the availability of such training, today's average company is without a clue. In a
captivating report (Why Safeguard Information?) from Abo Akademi University in
Finland, researcher Thomas Finne estimated that only 15 percent of all Finnish
companies had an individual employed expressly for the purpose of information security.
The researcher wrote:
The result of our investigation showed that the situation had got even worse; this is very alarming.
Pesonen investigated the security in Finnish companies by sending out questionnaires to 453
companies with over 70 employees. The investigation showed that those made responsible for
information security in the companies spent 14.5 percent of their working time on information

security. In an investigation performed in the UK over 80 percent of the respondents claimed to
have a department or individual responsible for information technology (IT) security.

The Brits made some extraordinary claims! "Of course we have an information security
department. Doesn't everyone?" In reality, the percentage of companies that do is likely
far less. One survey conducted by the Computer Security Institute found that better than
50 percent of all survey participants didn't even have written security policies and
procedures.

The Problems with PC-Based Operating Systems

It should be noted that in America, the increase in servers being maintained by those new
to the Internet poses an additional education problem. Many of these individuals have
used PC-based systems for the whole of their careers. PC-based operating systems and
hardware were never designed for secure operation (although, that is all about to change).
Traditionally, PC users have had less-than close contact with their vendors, except on
issues relating to hardware and software configuration problems. This is not their fault.
The PC community is market based and market driven. Vendors never sold the concept
of security; they sold the concept of user friendliness, convenience, and standardization
of applications. In these matters, vendors have excelled. The functionality of some PC-
based applications is extraordinary.

Nonetheless, programmers are often brilliant in their coding and design of end-user
applications but have poor security knowledge. Or, they may have some security
knowledge but are unable to implement it because they cannot anticipate certain
variables. Foo (the variable) in this case represents the innumerable differences and
subtleties involved with other applications that run on the same machine. These will
undoubtedly be designed by different individuals and vendors, unknown to the
programmer. It is not unusual for the combination of two third-party products to result in
the partial compromise of a system's security. Similarly, applications intended to provide
security can, when run on PC platforms, deteriorate or otherwise be rendered less secure.
The typical example is the use of the famous encryption utility Pretty Good Privacy
(PGP) when used in the Microsoft Windows environment.

PGP PGP operates by applying complex algorithms. These operations result in very
high-level encryption. In some cases, if the user so specifies, using PGP can provide
military-level encryption to a home user. The system utilizes the public key/private key
pair scenario. In this scenario, each message is encrypted only after the user provides a
passphrase, or secret code. The length of this passphrase may vary. Some people use the
entire first line of a poem or literary text. Others use lines in a song or other phrases that
they will not easily forget. In any event, this passphrase must be kept completely secret.
If it is exposed, the encrypted data can be decrypted, altered, or otherwise accessed by
unauthorized individuals.

In its native state, compiled for MS-DOS, PGP operates in a command-line interface or
from a DOS prompt. This in itself presents no security issue. The problem is that many
people find this inconvenient and therefore use a front-end, or a Microsoft Windows-
based application through which they access the PGP routines. When the user makes use
of such a front-end, the passphrase gets written into the Windows swap file. If that swap
file is permanent, the passphrase can be retrieved using fairly powerful machines. I've
tried this on several occasions with machines differently configured. With a 20MB swap
file on an IBM compatible DX66 sporting 8-16MB of RAM, this is a formidable task that
will likely freeze the machine. This, too, depends on the utility you are using to do the
search. Not surprisingly, the most effective utility for performing such a search is GREP.

NOTE: GRERP is a utility that comes with many C language packages. It also comes
stock on any UNIX distribution. GREP works in a way quite similar to the FIND . EXE
command in DOS. Its purpose is to search specified files for a particular string of text.

For example, to find the word SEARCH in all files with a * . C extension, you would issue
the following command:
GREP SEARCH *.C

There are free versions of GREP available on the Internet for a variety of
operating systems, including but not limited to UNIX, DOS, OS/2, and 32-
bit Microsoft Windows environments.

In any event, the difficulty factor drops drastically when you use a machine with
resources in excess of I00MHz and 32MB of RAM.

My point is this: It is by no fault of the programmer of PGP that the passphrase gets
caught in the swap. PGP is not flawed, nor are those platforms that use swapped memory.
Nevertheless, platforms that use swapped memory are not secure and probably never will
be.

Cross Reference: For more information about PGP, visit
http://web.mit.edu/network/pgp.html. This is the MIT PGP distribution
site for U.S. residents. PGP renders sufficiently powerful encryption that certain versions
are not available for export. Exporting such versions is a crime. The referenced site has
much valuable information about PGP, including a FAQ, a discussion of file formats,
pointers to books, and of course, the free distribution of the PGP software.

Thus, even when designing security products, programmers are often faced with
unforeseen problems over which they can exert no control.

TIP: Techniques of secure programming (methods of programming that enhance security
on a given platform) are becoming more popular. These assist the programmer in
developing applications that at least won't weaken network security. Chapter 30,
"Language, Extensions, and Security," addresses some secure programming techniques as
well as problems generally associated with programming and security.

The Internet's Design

When engineers were put to the task of creating an open, fluid, and accessible Internet,
their enthusiasm and craft were, alas, too potent. The Internet is the most remarkable
creation ever erected by humankind in this respect. There are dozens of ways to get a job
done on the Internet; there are dozens of protocols with which to do it.

Are you having trouble retrieving a file via FTP? Can you retrieve it by electronic mail?
What about over HTTP with a browser? Or maybe a Telnet-based BBS? How about
Gopher? NFS? SMB? The list goes on.

Heterogeneous networking was once a dream. It is now a confusing, tangled mesh of
internets around the globe. Each of the protocols mentioned forms one aspect of the
modern Internet. Each also represents a little network of its own. Any machine running
modern implementations of TCP/IP can utilize all of them and more. Security experts
have for years been running back and forth before a dam of information and protocols,

plugging the holes with their fingers. Crackers, meanwhile, come armed with icepicks,
testing the dam here, there, and everywhere.

Part of the problem is in the Internet's basic design. Traditionally, most services on the
Internet rely on the client/server model. The task before a cracker, therefore, is a limited
one: Go to the heart of the service and crack that server.

I do not see that situation changing in the near future. Today, client/server programming
is the most sought-after skill. The client/server model works effectively, and there is no
viable replacement at this point.

There are other problems associated with the Internet's design, specifically related to the
UNIX platform. One is access control and privileges. This is covered in detail in Chapter
17, "UNIX: The Big Kahuna," but [want to mention it here.

In UNIX, every process more or less has some level of privilege on the system. That is,
these processes must have, at minimum, privilege to access the files they are to work on
and the directories into which those files are deposited. In most cases, common processes
and programs are already so configured by default at the time of the software's shipment.
Beyond this, however, a system administrator may determine specific privilege schemes,
depending on the needs of the situation. The system administrator is offered a wide
variety of options in this regard. In short, system administrators are capable of restricting
access to one, five, or 100 people. In addition, those people (or groups of people) can also
be limited to certain types of access, such as read, write, execute, and so forth.

In addition to this system being complex (therefore requiring experience on the part of
the administrator), the system also provides for certain inherent security risks. One is that
access privileges granted to a process or a user may allow increased access or access
beyond what was originally intended to be obtained. For example, a utility that requires
any form of root access (highest level of privilege) should be viewed with caution. If
someone finds a flaw within that program and can effectively exploit it, that person will
gain a high level of access. Note that strong access-control features have been integrated
into the Windows NT operating system and therefore, the phenomenon is not exclusively
related to UNIX. Novell NetWare also offers some very strong access-control features.

All these factors seriously influence the state of security on the Internet. There are clearly
hundreds of little things to know about it. This extends into heterogeneous networking as
well. A good system administrator should ideally have knowledge of at least three
platforms. This brings us to another consideration: Because the Internet's design is so
complex, the people who address its security charge substantial prices for their services.
Thus, the complexity of the Internet also influences more concrete considerations.

There are other aspects of Internet design and composition that authors often cite as
sources of insecurity. For example, the Net allows a certain amount of anonymity; this
issue has good and bad aspects. The good aspects are that individuals who need to
communicate anonymously can do so if need be.

Anonymity on the Net

There are plenty of legitimate reasons for anonymous communication. One is that people
living in totalitarian states can smuggle out news about human rights violations. (At least,
this reason is regularly tossed around by media people. It is en vogue to say such things,
even though the percentage of people using the Internet for this noble activity is
incredibly small.) Nevertheless, there is no need to provide excuses for why anonymity
should exist on the Internet. We do not need to justify it. After all, there is no reason why
Americans should be forbidden from doing something on a public network that they can
lawfully do at any other place. If human beings want to communicate anonymously, that
is their right.

Most people use remailers to communicate anonymously. These are servers configured to
accept and forward mail messages. During that process, the header and originating
address are stripped from the message, thereby concealing its author and his or her
location. In their place, the address of the anonymous remailer is inserted.

Cross Reference: To learn more about anonymous remailers, check out the FAQ at
http://www.well.com/user/abacard/remail.html. This FAQ provides
many useful links to other sites dealing with anonymous remailers.

Anonymous remailers (hereafter anon remailers) have been the subject of controversy in
the past. Many people, particularly members of the establishment, feel that anon
remailers undermine the security of the Internet. Some portray the situation as being
darker than it really is:
By far the greatest threat to the commercial, economic and political viability of the Global
Information Infrastructure will come from information terrorists... The introduction of Anonymous

Re-mailers into the Internet has altered the capacity to balance attack and counter-attack, or crime
and punishment.'

'Paul A. Strassmann, U.S. Military Academy, West Point; Senior Advisor, SAIC and
William Marlow, Senior Vice President, Science Applications International Corporation
(SAIC). January 28-30, 1996. Symposium on the Global Information Infrastructure:
Information, Policy & International Infrastructure.

I should explain that the preceding document was delivered by individuals associated
with the intelligence community. Intelligence community officials would naturally be
opposed to anonymity, for it represents one threat to effective, domestic intelligence-
gathering procedures. That is a given. Nevertheless, one occasionally sees even
journalists making similar statements, such as this one by Walter S. Mossberg:
In many parts of the digital domain, you don't have to use your real name. It's often impossible to
figure out the identity of a person making political claims...When these forums operate under the

cloak of anonymity, it's no different from printing a newspaper in which the bylines are admittedly
fake, and the letters to the editor are untraceable.

This is an interesting statement. For many years, the U.S. Supreme Court has been
unwilling to require that political statements be accompanied by the identity of the
author. This refusal is to ensure that free speech is not silenced. In early American
history, pamphlets were distributed in this manner. Naturally, if everyone had to sign
their name to such documents, potential protesters would be driven into the shadows.
This is inconsistent with the concepts on which the country was founded.

To date, there has been no convincing argument for why anon remailers should not exist.
Nevertheless, the subject remains engaging. One amusing exchange occurred during a
hearing in Pennsylvania on the constitutionality of the Communications Decency Act, an
act brought by forces in Congress that were vehemently opposed to pornographic images
being placed on the Internet. The hearing occurred on March 22, 1996, before the
Honorable Dolores K. Sloviter, Chief Judge, United States Court of Appeals for the Third
Circuit. The case was American Civil Liberties Union, et al (plaintiffs) v. Janet Reno, the
Attorney General of the United States. The discussion went as follows:

Q: Could you explain for the Court what Anonymous Remailers are?

A: Yes, Anonymous Remailers and their -- and a related service called Pseudonymity Servers are
computer services that privatize your identity in cyberspace. They allow individuals to, for
example, post content for example to a Usenet News group or to send an E-mail without knowing
the individual's true identity.

The difference between an anonymous remailer and a pseudonymity server is very important
because an anonymous remailer provides what we might consider to be true anonymity to the
individual because there would be no way to know on separate instances who the person was who
was making the post or sending the e-mail.

But with a pseudonymity server, an individual can have what we consider to be a persistent
presence in cyberspace, so you can have a pseudonym attached to your postings or your e-mails,
but your true identity is not revealed. And these mechanisms allow people to communicate in
cyberspace without revealing their true identities.

Q: I just have one question, Professor Hoffman, on this topic. You have not done any study
or survey to sample the quantity or the amount of anonymous remailing on the Internet,
correct?

A: That's correct. I think by definition it's a very difficult problem to study because these are
people who wish to remain anonymous and the people who provide these services wish to remain
anonymous.

Indeed, the court was clearly faced with a catch-22. In any case, whatever one's position
might be on anonymous remailers, they appear to be a permanent feature of the Internet.
Programmers have developed remailer applications to run on almost any operating
system, allowing the little guy to start a remailer with his PC.

Cross Reference: If you have more interest in anon remailers, visit
http://www.cs.berkeley.edu/~raph/remailer-1list.html. This site
contains extensive information on these programs, as well as links to personal anon
remailing packages and other software tools for use in implementing an anonymous
remailer.

In the end, e-mail anonymity on the Internet has a negligible effect on real issues of
Internet security. The days when one could exploit a hole by sending a simple e-mail
message are long gone. Those making protracted arguments against anonymous e-mail
are either nosy or outraged that someone can implement a procedure that they cannot. If
e-mail anonymity is an issue at all, it is for those in national security. I readily admit that
spies could benefit from anonymous remailers. In most other cases, however, the
argument expends good energy that could be better spent elsewhere.

Proprietarism

Yes, another ism. Before I start ranting, [want to define this term as it applies here.
Proprietarism is a practice undertaken by commercial vendors in which they attempt to
inject into the Internet various forms of proprietary design. By doing so, they hope to
create profits in an environment that has been previously free from commercial reign. It
is the modern equivalent of Colonialism plus Capitalism in the computer age on the
Internet. It interferes with Internet security structure and defeats the Internet's capability
to serve all individuals equally and effectively.

ActiveX

A good example of proprietarism in action is Microsoft Corporation's ActiveX
technology.

Cross Reference: Those users unfamiliar with ActiveX technology should visit
http://www.microsoft.com/activex/. Users who already have some
experience with ActiveX should go directly to the Microsoft page that addresses the
security features: http://www.microsoft.com/security/.

To understand the impact of ActiveX, a brief look at HTML would be instructive. HTML
was an incredible breakthrough in Internet technology. Imagine the excitement of the
researchers when they first tested it! It was (and still is) a protocol by which any user, on
any machine, anywhere in the world could view a document and that document, to any
other user similarly (or not similarly) situated, would look pretty much the same. What an
extraordinary breakthrough. It would release us forever from proprietary designs.
Whether you used a Mac, an Alpha, an Amiga, a SPARC, an IBM compatible, or a tire
hub (TRS-80, maybe?), you were in. You could see all the wonderful information
available on the Net, just like the next guy. Not any more.

ActiveX technology is a new method of presenting Web pages. It is designed to interface
with Microsoft's Internet Explorer. If you don't have it, forget it. Most WWW pages
designed with it will be nonfunctional for you either in whole or in part.

That situation may change, because Microsoft is pushing for ActiveX extensions to be
included within the HTML standardization process. Nevertheless, such extensions
(including scripting languages or even compiled languages) do alter the state of Internet
security in a wide and encompassing way.

First, they introduce new and untried technologies that are proprietary in nature. Because
they are proprietary, the technologies cannot be closely examined by the security
community. Moreover, these are not cross platform and therefore create limitations to the
Net, as opposed to heterogeneous solutions. To examine the problem firsthand you may
want to visit a page established by Kathleen A. Jackson, Team Leader, Division Security
Office, Computing, Information, and Communications Division at the Los Alamos
National Laboratory. Jackson points to key problems in ActiveX. On her WWW page,
she writes:

...The second big problem with ActiveX is security. A program that downloads can do anything
the programmer wants. It can reformat your hard drive or shut down your computer...

This issue is more extensively covered in a paper delivered by Simon Garfinkel at Hot
Wired. When Microsoft was alerted to the problem, the solution was to recruit a company
that created digital signatures for ActiveX controls. This digital signature is supposed to
be signed by the control's programmer or creator. The company responsible for this
digital signature scheme has every software publisher sign a software publisher's pledge,
which is an agreement not to sign any software that contains malicious code. If a user
surfs a page that contains an unsigned control, Microsoft's Internet Explorer puts up a
warning message box that asks whether you want to accept the unsigned control.

Cross Reference: Find the paper delivered by Simon Garfinkel at Hot Wired at
http://www.packet.com/packet/garfinkel/.

You cannot imagine how absurd this seems to security professionals. What is to prevent a
software publisher from submitting malicious code, signed or unsigned, on any given
Web site? If it is signed, does that guarantee that the control is safe? The Internet at large
is therefore resigned to take the software author or publisher at his or her word. This is
impractical and unrealistic. And, although Microsoft and the company responsible for the
signing initiative will readily offer assurances, what evidence is there that such signatures
cannot be forged? More importantly, how many small-time programmers will bother to
sign their controls? And lastly, how many users will refuse to accept an unsigned control?
Most users confronted with the warning box have no idea what it means. All it represents
to them is an obstruction that is preventing them from getting to a cool Web page.

There are now all manner of proprietary programs out there inhabiting the Internet. Few
have been truly tested for security. I understand that this will become more prevalent and,
to Microsoft's credit, ActiveX technology creates the most stunning WWW pages
available on the Net. These pages have increased functionality, including drop-down
boxes, menus, and other features that make surfing the Web a pleasure. Nevertheless,
serious security studies need to be made before these technologies foster an entirely new
frontier for those pandering malicious code, viruses, and code to circumvent security.

Cross Reference: To learn more about the HTML standardization process, visit the site
of the World Wide Web Consortium (http://www.w3 .org). If you already know a
bit about the subject but want specifics about what types of HTML tags and extensions
are supported, you should read W3C's activity statement on this issue
(http://www.w3.org/pub/WWW/MarkUp/Activity). One interesting area of
development is W3C's work on support for the disabled.

Proprietarism is a dangerous force on the Internet, and it's gaining ground quickly. To
compound this problem, some of the proprietary products are excellent. It is therefore
perfectly natural for users to gravitate toward these applications. Users are most
concerned with functionality, not security. Therefore, the onus is on vendors, and this is a
problem. If vendors ignore security hazards, there is nothing anyone can do. One cannot,
for example, forbid insecure products from being sold on the market. That would be an
unreasonable restraint of interstate commerce and ground for an antitrust claim. Vendors

certainly have every right to release whatever software they like, secure or not. At
present, therefore, there is no solution to this problem.

Extensions, languages, or tags that probably warrant examination include
e JavaScript
e VBScript
e ActiveX

JavaScript is owned by Netscape, and VBScript and ActiveX are owned by Microsoft.
These languages are the weapons of the war between these two giants. I doubt that either
company objectively realizes that there's a need for both technologies. For example,
Netscape cannot shake Microsoft's hold on the desktop market. Equally, Microsoft cannot
supply the UNIX world with products. The Internet would probably benefit greatly if
these two titans buried the hatchet in something besides each other.

The Trickling Down of Technology

As discussed earlier, there is the problem of high-level technology trickling down from
military, scientific, and security sources. Today, the average cracker has tools at his or
her disposal that most security organizations use in their work. Moreover, the machines
on which crackers use these tools are extremely powerful, therefore allowing faster and
more efficient cracking.

Government agencies often supply links to advanced security tools. At these sites, the
tools are often free. They number in the hundreds and encompass nearly every aspect of
security. In addition to these tools, government and university sites also provide very
technical information regarding security. For crackers who know how to mine such
information, these resources are invaluable. Some key sites are listed in Table 5.1.

Table 5.1. Some major security sites for information and tools.

|Sl'te |Address

|Purdue University |http ://www.cs.purdue.edu//coast/archive/

|Raptor Systems |http ://www.raptor.com/library/library.html

|The Risks Forum |http ://catless.ncl.ac.uk/Risks
|FIRST |http://www.first.org/
|DEFCON |http://www.defcon.org/

The level of technical information at such sites is high. This is in contrast to many fringe
sites that provide information of little practical value to the cracker. But not all fringe
sites are so benign. Crackers have become organized, and they maintain a wide variety of
servers on the Internet. These are typically established using free operating systems such
as Linux or FreeBSD. Many such sites end up establishing a permanent wire to the Net.
Others are more unreliable and may appear at different times via dynamic IP addresses. I
should make it clear that not all fringe sites are cracking sites. Many are legitimate
hacking stops that provide information freely to the Internet community as a service of

sorts. In either case, both hackers and crackers have been known to create excellent Web
sites with voluminous security information.

The majority of cracking and hacking sites are geared toward UNIX and IBM-compatible
platforms. There is a noticeable absence of quality information for Macintosh users. In
any event, in-depth security information is available on the Internet for any interested
party to view.

So, the information is trafficked. There is no solution to this problem, and there shouldn't
be. It would be unfair to halt the education of many earnest, responsible individuals for
the malicious acts of a few. So advanced security information and tools will remain
available.

Human Nature

We have arrived at the final (and probably most influential) force at work in weakening
Internet security: human nature. Humans are, by nature, a lazy breed. To most users, the
subject of Internet security is boring and tedious. They assume that the security of the
Internet will be taken care of by experts.

To some degree, there is truth to this. If the average user's machine or network is
compromised, who should care? They are the only ones who can suffer (as long as they
are not connected to a network other than their own). The problem is, most will be
connected to some other network. The Internet is one enterprise that truly relies on the
strength of its weakest link. I have seen crackers work feverishly on a single machine
when that machine was not their ultimate objective. Perhaps the machine had some trust
relationship with another machine that was their ultimate objective. To crack a given
region of cyberspace, crackers may often have to take alternate or unusual routes. If one
workstation on the network is vulnerable, they are all potentially vulnerable as long as a
relationship of trust exists.

Also, you must think in terms of the smaller businesses because these will be the great
majority. These businesses may not be able to withstand disaster in the same way that
larger firms can. If you run a small business, when was the last time you performed a
complete backup of all information on all your drives? Do you have a disaster-recovery
plan? Many companies do not. This is an important point. I often get calls from
companies that are about to establish permanent connectivity. Most of them are
unprepared for emergencies.

Moreover, there are still two final aspects of human nature that influence the evolution of
security on the Internet. Fear is one. Most companies are fearful to communicate with
outsiders regarding security. For example, the majority of companies will not tell anyone
if their security has been breached. When a Web site is cracked, it is front-page news; this
cannot be avoided. When a system is cracked in some other way (with a different point of
entry), press coverage (or any exposure) can usually be avoided. So, a company may
simply move on, denying any incident, and secure its network as best it can. This
deprives the security community of much-needed statistics and data.

The last human factor here is curiosity. Curiosity is a powerful facet of human nature that
even the youngest child can understand. One of the most satisfying human experiences is
discovery. Investigation and discovery are the things that life is really made of. We learn
from the moment we are born until the moment that we die, and along that road, every
shred of information is useful. Crackers are not so hard to understand. It comes down to
basics: Why is this door is locked? Can I open it? As long as this aspect of human
experience remains, the Internet may never be entirely secure. Oh, it will be ultimately be
secure enough for credit-card transactions and the like, but someone will always be there
to crack it.

Does the Internet Really Need to Be Secure?

Yes. The Internet does need to be secure and not simply for reasons of national security.
Todays, it is a matter of personal security. As more financial institutions gravitate to the
Internet, America's financial future will depend on security. Many users may not be
aware of the number of financial institutions that offer online banking. One year ago, this
was a relatively uncommon phenomenon. Nevertheless, by mid-1996, financial
institutions across the country were offering such services to their customers. Here are a
few:

e Wells Fargo Bank

e Sanwa Bank

e Bank of America

e City National Bank of Florida

e Wilber National Bank of Oneonta, New York

e The Mechanics Bank of Richmond, California

e COMSTAR Federal Credit Union of Gaithersburg, Maryland

The threat from lax security is more than just a financial one. Banking records are
extremely personal and contain revealing information. Until the Internet is secure, this
information is available to anyone with the technical prowess to crack a bank's online
service. It hasn't happened yet (I assume), but it will.

Also, the Internet needs to be secure so that it does not degenerate into one avenue of
domestic spying. Some law-enforcement organizations are already using Usenet spiders
to narrow down the identities of militia members, militants, and other political
undesirables. The statements made by such people on Usenet are archived away, you can
be sure. This type of logging activity is not unlawful. There is no constitutional protection
against it, any more than there is a constitutional right for someone to demand privacy
when they scribble on a bathroom wall.

Private e-mail is a different matter, though. Law enforcement agents need a warrant to tap
someone's Internet connection. To circumvent these procedures (which could become
widespread), all users should at least be aware of the encryption products available, both

free and commercial (I will discuss this and related issues in Part VII of this book, "The
Law™).

For all these reasons, the Internet must become secure.

Can the Internet Be Secure?

Yes. The Internet can be secure. But in order for that to happen, some serious changes
must be made, including the heightening of public awareness to the problem. Most users
still regard the Internet as a toy, an entertainment device that is good for a couple of hours
on a rainy Sunday afternoon. That needs to change in coming years.

The Internet is likely the single, most important advance of the century. Within a few
years, it will be a powerful force in the lives of most Americans. So that this force may be
overwhelmingly positive, Americans need to be properly informed.

Members of the media have certainly helped the situation, even though media coverage
of the Internet isn't always painfully accurate. I have seen the rise of technology columns
in newspapers throughout the country. Good technology writers are out there, trying to
bring the important information home to their readers. I suspect that in the future, more
newspapers will develop their own sections for Internet news, similar to those sections
allocated for sports, local news, and human interest.

Equally, many users are security-aware, and that number is growing each day. As public
education increases, vendors will meet the demand of their clientele.

Summary

In this chapter, I have established the following:

e The Internet is not secure.
e Education about security is lacking.
e Proprietary designs are weakening Internet security.

e The availability of high-grade technological information both strengthens and weakens Net
security.

e There is a real need for Internet security.

e Internet security relies as much on public as private education.

Those things having been established, I want to quickly examine the consequences of
poor Internet security. Thus, in the next chapter, I will discuss Internet warfare. After
covering that subject, I will venture into entirely new territory as we begin to explore the
tools and techniques that are actually applied in Internet security.

6
A Brief Primer on TCP/IP

This chapter examines the Transmission Control Protocol (TCP) and the Internet Protocol
(IP). These two protocols (or networked methods of data transport) are generally referred
to together as TCP/IP.

You can read this chapter thoroughly to gain an in-depth understanding of how
information is routed across the Internet or you can use this chapter as an extended
glossary, referring to it only when encountering unfamiliar terms later in this book.

The chapter begins with fundamental concepts and closes with a comprehensive look at
TCP/IP. The chapter is broken into three parts. The first part answers some basic
questions you might have, including

e What is TCP/IP?
e What is the history of TCP/IP?

e What platforms support TCP/IP?

The second portion of the chapter addresses how TCP/IP actually works. In that portion, I
will focus on the most popular services within the TCP/IP suite. These services (or modes
of transport) comprise the greater portion of the Internet as we know it today.

The final portion of this chapter explores key TCP/IP utilities with which each user must
become familiar. These utilities are of value in maintenance and monitoring of any
TCP/IP network.

Note that this chapter is not an exhaustive treatment of TCP/IP. It provides only the
minimum knowledge needed to continue reading this book. Throughout this chapter,
however, I supply links to documents and other resources from which the reader can gain
an in-depth knowledge of TCP/IP.

TCP/IP: The Basics

This section is a quick overview of TCP/IP. It is designed to prepare you for various
terms and concepts that arise within this chapter. It assumes no previous knowledge of IP
protocols.

What Is TCP/IP?

TCP/IP refers to two network protocols (or methods of data transport) used on the
Internet. They are Transmission Control Protocol and Internet Protocol, respectively.
These network protocols belong to a larger collection of protocols, or a protocol suite.
These are collectively referred to as the TCP/IP suite.

Protocols within the TCP/IP suite work together to provide data transport on the Internet.
In other words, these protocols provide nearly all services available to today's Net surfer.
Some of those services include

e Transmission of electronic mail
e File transfers
e Usenet news delivery

e Access to the World Wide Web

There are two classes of protocol within the TCP/IP suite, and I will address both in the
following pages. Those two classes are

e The network-level protocol

e The application-level protocol
Network-Level Protocols

Network-level protocols manage the discrete mechanics of data transfer. These protocols
are typically invisible to the user and operate deep beneath the surface of the system. For
example, the IP protocol provides packet delivery of the information sent between the
user and remote machines. It does this based on a variety of information, most notably
the IP address of the two machines. Based on this and other information, IP guarantees
that the information will be routed to its intended destination. Throughout this process, IP
interacts with other network-level protocols engaged in data transport. Short of using
network utilities (perhaps a sniffer or other device that reads IP datagrams), the user will
never see [P's work on the system.

Application-Level Protocols

Conversely, application-level protocols are visible to the user in some measure. For
example, File Transfer Protocol (FTP) is visible to the user. The user requests a
connection to another machine to transfer a file, the connection is established, and the
transfer begins. During the transfer, a portion of the exchange between the user's machine
and the remote machine is visible (primarily error messages and status reports on the
transfer itself, for example, how many bytes of the file have been transferred at any given
moment).

For the moment, this explanation will suffice: TCP/IP refers to a collection of protocols
that facilitate communication between machines over the Internet (or other networks
running TCP/IP).

The History of TCP/IP

In 1969, the Defense Advanced Research Projects Agency (DARPA) commissioned
development of a network over which its research centers might communicate. Its chief

concern was this network's capability to withstand a nuclear attack. In short, if the Soviet
Union launched a nuclear attack, it was imperative that the network remain intact to
facilitate communication. The design of this network had several other requisites, the
most important of which was this: It had to operate independently of any centralized
control. Thus, if 1 machine was destroyed (or 10, or 100), the network would remain
impervious.

The prototype for this system emerged quickly, based in part on research done in 1962
and 1963. That prototype was called ARPANET. ARPANET reportedly worked well, but
was subject to periodic system crashes. Furthermore, long-term expansion of that
network proved costly. A search was initiated for a more reliable set of protocols; that
search ended in the mid-1970s with the development of TCP/IP.

TCP/IP had significant advantages over other protocols. For example, TCP/IP was
lightweight (it required meager network resources). Moreover, TCP/IP could be
implemented at much lower cost than the other choices then available. Based on these
amenities, TCP/IP became exceedingly popular. In 1983, TCP/IP was integrated into
release 4.2 of Berkeley Software Distribution (BSD) UNIX. Its integration into
commercial forms of UNIX soon followed, and TCP/IP was established as the Internet
standard. It has remained so (as of this writing).

As more users flock to the Internet, however, TCP/IP is being reexamined. More users
translates to greater network load. To ease that network load and offer greater speeds of
data transport, some researchers have suggested implementing TCP/IP via satellite
transmission. Unfortunately, such research has thus far produced dismal results. TCP/IP
is apparently unsuitable for this implementation.

Today, TCP/IP is used for many purposes, not just the Internet. For example, intranets are
often built using TCP/IP. In such environments, TCP/IP can offer significant advantages
over other networking protocols. One such advantage is that TCP/IP works on a wide
variety of hardware and operating systems. Thus, one can quickly and easily create a
heterogeneous network using TCP/IP. Such a network might have Macs, IBM
compatibles, Sun Sparcstations, MIPS machines, and so on. Each of these can
communicate with its peers using a common protocol suite. For this reason, since it was
first introduced in the 1970s, TCP/IP has remained extremely popular. In the next section,
I will discuss implementation of TCP/IP on various platforms.

What Platforms Support TCP/IP?

Most platforms support TCP/IP. However, the quality of that support can vary. Today,
most mainstream operating systems have native TCP/IP support (that is, TCP/IP support
that is built into the standard operating system distribution). However, older operating
systems on some platforms lack such native support. Table 6.1 describes TCP/IP support
for various platforms. If a platform has native TCP/IP support, it is labeled as such. If not,
the name of a TCP/IP application is provided.

Table 6.1. Platforms and their support for TCP/IP.

|Pla_tf0rm |T CP/IP Support

[UNIX Native

|DOS |Piper/IP By Ipswitch

|Windows |TCPMAN by Trumpet Software
|Wind0ws 95 |Native

|Windows NT |Native

|Macint0sh |MacTCP or OpenTransport (Sys 7.5+)
|0S/2 Native

|AS/400 OS/400 |Native

Platforms that do not natively support TCP/IP can still implement it through the use of
proprietary or third-party TCP/IP programs. In these instances, third-party products can
offer varied functionality. Some offer very good support and others offer marginal
support.

For example, some third-party products provide the user with only basic TCP/IP. For
most users, this is sufficient. (They simply want to connect to the Net, get their mail, and
enjoy easy networking.) In contrast, certain third-party TCP/IP implementations are
comprehensive. These may allow manipulation of compression, methods of transport,
and other features common to the typical UNIX TCP/IP implementation.

Widespread third-party support for TCP/IP has been around for only a few years. Several
years ago, for example, TCP/IP support for DOS boxes was very slim.

TIP: There is actually a wonderful product called Minuet that can be used in conjunction
with a packet driver on LANs. Minuet derived its name from the term Minnesota Internet
Users Essential Tool. Minuet offers quick and efficient access to the Net through a DOS-
based environment. This product is still available free of charge at many locations,
including ftp://minuet.micro.umn.edu/pub/minuet/.

One interesting point about non-native, third-party TCP/IP implementations is this: Most
of them do not provide servers within their distributions. Thus, although a user can
connect to remote machines to transfer a file, the user's machine cannot accept such a
request. For example, a Windows 3.11 user using TCPMAN cannot--without installing
additional software--accept a file-transfer request from a remote machine. Later in this
chapter you'll find a list of a few names of such additional software for those who are
interested in providing services via TCP/IP.

How Does TCP/IP Work?

TCP/IP operates through the use of a protocol stack. This stack is the sum total of all
protocols necessary to complete a single transfer of data between two machines. (It is
also the path that data takes to get out of one machine and into another.) The stack is
broken into layers, five of which are of concern here. To grasp this layer concept,
examine Figure 6.1.

Figure 6.1.
The TCP/IP stack.

After data has passed through the process illustrated in Figure 6.1, it travels to its
destination on another machine or network. There, the process is executed in reverse (the
data first meets the physical layer and subsequently travels its way up the stack).
Throughout this process, a complex system of error checking is employed both on the
originating and destination machine.

Each layer of the stack can send data to and receive data from its adjoining layer. Each
layer is also associated with multiple protocols. At each tier of the stack, these protocols
are hard at work, providing the user with various services. The next section of this
chapter examines these services and the manner in which they are associated with layers
in the stack. You will also examine their functions, the services they provide, and their
relationship to security.

The Individual Protocols

You have examined how data is transmitted via TCP/IP using the protocol stack. Now I
want to zoom in to identify the key protocols that operate within that stack. I will begin
with network-level protocols.

Network-Level Protocols

Network protocols are those protocols that engage in (or facilitate) the transport process
transparently. These are invisible to the user unless that user employs utilities to monitor
system processes.

TIP: Sniffers are devices that can monitor such processes. A sniffer is a device--either
hardware or software--that can read every packet sent across a network. Sniffers are
commonly used to isolate network problems that, while invisible to the user, are
degrading network performance. As such, sniffers can read all activity occurring between
network-level protocols. Moreover, as you might guess, sniffers can pose a tremendous
security threat. You will examine sniffers in Chapter 12, "Sniffers."

Important network-level protocols include
e The Address Resolution Protocol (ARP)
e The Internet Control Message Protocol (ICMP)
e The Internet Protocol (IP)
e The Transmission Control Protocol (TCP)

I will briefly examine each, offering only an overview.

Cross Reference: For more comprehensive information about protocols (or the stack in
general), I highly recommend Teach Yourself TCP/IP in 14 Days by Timothy Parker,
Ph.D (Sams Publishing).

The Address Resolution Protocol

The Address Resolution Protocol (ARP) serves the critical purpose of mapping Internet
addresses into physical addresses. This is vital in routing information across the Internet.
Before a message (or other data) is sent, it is packaged into IP packets, or blocks of
information suitably formatted for Internet transport. These contain the numeric Internet
(IP) address of both the originating and destination machines. Before this package can
leave the originating computer, however, the hardware address of the recipient
(destination) must be discovered. (Hardware addresses differ from Internet addresses.)
This is where ARP makes its debut.

An ARP request message is broadcast on the subnet. This request is received by a router
that replies with the requested hardware address. This reply is caught by the originating
machine and the transfer process can begin.

ARP's design includes a cache. To understand the ARP cache concept, consider this:
Most modern HTML browsers (such as Netscape Navigator or Microsoft's Internet
Explorer) utilize a cache. This cache is a portion of the disk (or memory) in which
elements from often-visited Web pages are stored (such as buttons, headers, and common
graphics). This is logical because when you return to those pages, these tidbits don't have
to be reloaded from the remote machine. They will load much more quickly if they are in
your local cache.

Similarly, ARP implementations include a cache. In this manner, hardware addresses of
remote machines or networks are remembered, and this memory obviates the need to
conduct subsequent ARP queries on them. This saves time and network resources.

Can you guess what type of security risks might be involved in maintaining such an ARP
cache? At this stage, it is not particularly important. However, address caching (not only
in ARP but in all instances) does indeed pose a unique security risk. If such address-
location entries are stored, it makes it easier for a cracker to forge a connection from a
remote machine, claiming to hail from one of the cached addresses.

Cross Reference: Readers seeking in-depth information on ARP should see RFC 826
(http://www.freesoft.org/Connected/RFC/826).

Cross Reference: Another good reference for information on ARP is Margaret K.
Johnson's piece about details of TCP/IP (excerpts from Microsoft LAN Manager TCP/IP
Protocol)
(http://www.alexia.net.au/~www/yendor/internetinfo/index.htm
1).

The Internet Control Message Protocol

The Internet Control Message Protocol handles error and control messages that are
passed between two (or more) computers or hosts during the transfer process. It allows
those hosts to share that information. In this respect, ICMP is critical for diagnosis of
network problems. Examples of diagnostic information gathered through ICMP include

e When a host is down

e When a gateway is congested or inoperable

e Other failures on a network

TIP: Perhaps the most widely known ICMP implementation involves a network utility
called ping. Ping is often used to determine whether a remote machine is alive. Ping's
method of operation is simple: When the user pings a remote machine, packets are
forwarded from the user's machine to the remote host. These packets are then echoed
back to the user's machine. If no echoed packets are received at the user's end, the ping
program usually generates an error message indicating that the remote host is down.

Cross Reference: I urge those readers seeking in-depth information about ICMP to
examine RFC 792 (http://sunsite.auc.dk/RFC/rfc/rfc792.html).

The Internet Protocol

IP belongs to the network layer. The Internet Protocol provides packet delivery for all
protocols within the TCP/IP suite. Thus, IP is the heart of the incredible process by which
data traverses the Internet. To explore this process, I have drafted a small model of an IP
datagram (see Figure 6.2).

Figure 6.2.
The IP datagram.

As illustrated, an IP datagram is composed of several parts. The first part, the header, is
composed of miscellaneous information, including originating and destination IP address.
Together, these elements form a complete header. The remaining portion of a datagram
contains whatever data is then being sent.

The amazing thing about IP is this: If IP datagrams encounter networks that require
smaller packages, the datagrams bust apart to accommodate the recipient network. Thus,
these datagrams can fragment during a journey and later be reassembled properly (even if
they do not arrive in the same sequence in which they were sent) at their destination.

Even further information is contained within an IP datagram. Some of that information
may include identification of the protocol being used, a header checksum, and a time-to-
live specification. This specification is a numeric value. While the datagram is traveling
the void, this numeric value is constantly being decremented. When that value finally
reaches a zero state, the datagram dies. Many types of packets have time-to-live
limitations. Some network utilities (such as Traceroute) utilize the time-to-live field as a
marker in diagnostic routines.

In closing, IP's function can be reduced to this: providing packet delivery over the
Internet. As you can see, that packet delivery is complex in its implementation.

Cross Reference: I refer readers seeking in-depth information on Internet protocol to
RFC 760 (http://sunsite.auc.dk/RFC/rfc/rfc760.html).

The Transmission Control Protocol

The Transmission Control Protocol is the chief protocol employed on the Internet. It
facilitates such mission-critical tasks as file transfers and remote sessions. TCP
accomplishes these tasks through a method called reliable data transfer. In this respect,
TCP differs from other protocols within the suite. In unreliable delivery, you have no
guarantee that the data will arrive in a perfect state. In contrast, TCP provides what is
sometimes referred to as reliable stream delivery. This reliable stream delivery ensures
that the data arrives in the same sequence and state in which it was sent.

The TCP system relies on a virtual circuit that is established between the requesting
machine and its target. This circuit is opened via a three-part process, often referred to as
the three-part handshake. The process typically follows the pattern illustrated in Figure
6.3.

Figure 6.3.
The TCP/IP three-way handshake.

After the circuit is open, data can simultaneously travel in both directions. This results in
what is sometimes called a full-duplex transmission path. Full-duplex transmission
allows data to travel to both machines at the same time. In this way, while a file transfer
(or other remote session) is underway, any errors that arise can be forwarded to the
requesting machine.

TCP also provides extensive error-checking capabilities. For each block of data sent, a
numeric value is generated. The two machines identify each transferred block using this
numeric value. For each block successfully transferred, the receiving host sends a
message to the sender that the transfer was clean. Conversely, if the transfer is
unsuccessful, two things may occur:

e The requesting machine receives error information
e The requesting machine receives nothing

When an error is received, the data is retransmitted unless the error is fatal, in which case
the transmission is usually halted. A typical example of a fatal error would be if the
connection is dropped. Thus, the transfer is halted for no packets.

Similarly, if no confirmation is received within a specified time period, the information is
also retransmitted. This process is repeated as many times as necessary to complete the
transfer or remote session.

You have examined how the data is transported when a connect request is made. It is now
time to examine what happens when that request reaches its destination. Each time one
machine requests a connection to another, it specifies a particular destination. In the
general sense, this destination is expressed as the Internet (IP) address and the hardware
address of the target machine. However, even more detailed than this, the requesting
machine specifies the application it is trying to reach at the destination. This involves two
elements:

e A program called inetd

e A system based on ports

inetd: The Mother of All Daemons

Before you explore the inetd program, I want to briefly define daemons. This will help
you more easily understand the inetd program.

Daemons are programs that continuously listen for other processes (in this case, the
process listened for is a connection request). Daemons loosely resemble terminate and
stay resident (TSR) programs in the Microsoft platform. These programs remain alive at
all times, constantly listening for a particular event. When that event finally occurs, the
TSR undertakes some action.

inetd is a very special daemon. It has been called many things, including the super-server
or granddaddy of all processes. This is because inetd is the main daemon running on a
UNIX machine. It is also an ingenious tool.

Common sense tells you that running a dozen or more daemon processes could eat up
machine resources. So rather than do that, why not create one daemon that could listen
for all the others? That is what inetd does. It listens for connection requests from the void.
When it receives such a request, it evaluates it. This evaluation seeks to determine one
thing only: What service does the requesting machine want? For example, does it want
FTP? If so, inetd starts the FTP server process. The FTP server can then process the
request from the void. At that point, a file transfer can begin. This all happens within the
space of a second or so.

TIP: inetd isn't just for UNIX anymore. For example, Hummingbird Communications
has developed (as part of its Exceed 5 product line) a version of inetd for use on any
platform that runs Microsoft Windows or OS/2. There are also non- commercial versions
of inetd, written by students and other software enthusiasts. One such distribution is
available from TFS software and can be found at
http://www.trumpton.demon.co.uk/software/inetd.html.

In general, inetd is started at boot time and remains resident (in a listening state) until the
machine is turned off or until the root operator expressly terminates that process.

The behavior of inetd is generally controlled from a file called inetd.conf, located in
the /etc directory on most UNIX platforms. The inetd.conf file is used to specify what
services will be called by inetd. Such services might include FTP, Telnet, SMTP, TFTP,
Finger, Systat, Netstat, or any other processes that you specify.

The Ports

Many TCP/IP programs can be initiated over the Internet. Most of these are client/server
oriented. As each connection request is received, inetd starts a server program, which
then communicates with the requesting client machine.

To facilitate this process, each application (FTP or Telnet, for example) is assigned a
unique address. This address is called a port. The application in question is bound to that
particular port and, when any connection request is made to that port, the corresponding
application is launched (inetd is the program that launches it).

There are thousands of ports on the average Internet server. For purposes of convenience
and efficiency, a standard framework has been developed for port assignment. (In other
words, although a system administrator can bind services to the ports of his or her choice,
services are generally bound to recognized ports. These are commonly referred to as well-
known ports.)

Please peruse Table 6.2 for some commonly recognized ports and the applications
typically bound to them.

Table 6.2. Common ports and their corresponding services or applications.

|Service or Application |P0rt
|File Transfer Protocol (FTP) |21
|Telnet |23
|Simple Mail Transfer Protocol (SMTP) |25
|G0pher |70
|Finger |79
|Hypertext Transfer Protocol (HTTP) |80
|Network News Transfer Protocol (NNTP) |1 19

I will examine each of the applications described in Table 6.2. All are application-level
protocols or services (that is, they are visible to user and the user can interact with them
at the console).

Cross Reference: For a comprehensive list of all port assignments, visit
ftp://ftp.isi.edu/in-notes/iana/assignments/port-numbers. This
document is extremely informative and exhaustive in its treatment of commonly assigned
port numbers.

Telnet

Telnet is best described in RFC 854, the Telnet protocol specification:

The purpose of the Telnet protocol is to provide a fairly general, bi-directional, eight-bit byte-
oriented communications facility. Its primary goal is to allow a standard method of interfacing
terminal devices and terminal-oriented processes to each other.

Telnet not only allows the user to log in to a remote host, it allows that user to execute
commands on that host. Thus, an individual in Los Angeles can Telnet to a machine in
New York and begin running programs on the New York machine just as though the user
were actually in New York.

For those of you who are unfamiliar with Telnet, it operates much like the interface of a
bulletin board system (BBS). Telnet is an excellent application for providing a terminal-

based front end to databases. For example, better than 80 percent of all university library
catalogs can be accessed via Telnet. Figure 6.4 shows an example of a Telnet library
catalog screen.

Figure 6.4.
A sample Telnet session.

Even though GUI applications have taken the world by storm, Telnet--which is
essentially a text-based application--is still incredibly popular. There are many reasons
for this. First, Telnet allows you to perform a variety of functions (retrieving mail, for
example) at a minimal cost in network resources. Second, implementing secure Telnet is
a pretty simple task. There are several programs to implement this, the most popular of
which is Secure Shell (which I will explore later in this book).

To use Telnet, the user issues whatever command necessary to start his or her Telnet
client, followed the name (or numeric IP address) of the target host. In UNIX, this is done
as follows:

#telnet internic.net

This command launches a Telnet session, contacts internic.net, and requests a
connection. That connection will either be honored or denied, depending on the
configuration at the target host. In UNIX, the Telnet command has long been a native
one. That is, Telnet has been included with basic UNIX distributions for well over a
decade. However, not all operating systems have a native Telnet client. Table 6.3 shows
Telnet clients for various operating systems.

Table 6.3. Telnet clients for various operating systems.

|0pemting System |Client

[UNIX Native

|Microsoft Windows 95 |Native (command line), ZOC, NetTerm, Zmud, WinTel32, Yawtelnet
|Microsoft Windows NT |Native (command line), CRT, and all listed for 95

|Microsoft Windows 3.x |Trumptel Telnet, Wintel, Ewan

|Macintosh |NCSA Telnet, NiftyTelnet, Comet

VAX Native

File Transfer Protocol

File Transfer Protocol is the standard method of transferring files from one system to
another. Its purpose is set forth in RFC 0765 as follows:
The objectives of FTP are 1) to promote sharing of files (computer programs and/or data), 2) to
encourage indirect or implicit (via programs) use of remote computers, 3) to shield a user from

variations in file storage systems among Hosts, and 4) to transfer data reliably and efficiently.
FTP, though usable directly by a user at a terminal, is designed mainly for use by programs.

For over two decades, researchers have investigated a wide variety of file-transfer
methods. The development of FTP has undergone many changes in that time. Its first
definition occurred in April 1971, and the full specification can be read in RFC 114.

Cross Reference: RFC 114 contains the first definition of FTP, but a more practical
document might be RFC 959
(http://www.freesoft.org/Connected/RFC/959/index.html).

Mechanical Operation of FTP

File transfers using FTP can be accomplished using any suitable FTP client. Table 6.4
defines some common clients used, by operating system.

Table 6.4. FTP clients for various operating systems.

|0perating System |Client

[UNIX INative, LLNLXDIR2.0, FTPtool

Microsoft Windows 95 [Native, WS_FTP, Netload, Cute-FTP, Leap FTP, SDFTP, FTP Explorer
|Microsoft Windows NT |See listings for Windows 95

Microsoft Windows 3.x |Win_FTP, WS_FTP, CU-FTP, WSArchie

|Macintosh |Anarchie, Fetch, Freetp

|0S/2 \Gibbon FTP, FTP-IT, Lynn's Workplace FTP
IVAX Native

How Does FTP Work?

FTP file transfers occur in a client/server environment. The requesting machine starts one
of the clients named in Table 6.4. This generates a request that is forwarded to the
targeted file server (usually a host on another network). Typically, the request is sent by
inetd to port 21. For a connection to be established, the targeted file server must be
running an FTP server or FTP daemon.

FTPD FTPD is the standard FTP server daemon. Its function is simple: to reply to
connect requests received by inetd and to satisfy those requests for file transfers. This
daemon comes standard on most distributions of UNIX (for other operating systems, see
Table 6.5).

Table 6.5. FTP servers for various operating systems.

|0perating System |Client

[UNIX Native (FTPD)

|Microsoft Windows 95 |WFTPD, Microsoft FrontPage, WAR FTP Daemon, Vermilion

Microsoft Windows Serv-U, OmniFSPD, Microsoft Internet Information Server
NT

Microsoft Windows WinQVT, Serv-U, Beames & Whitside BW Connect, WFTPD FTP Server,
3x WinHTTPD

|Macintosh |Netpresenz, FTPD

|OS/2 |Penguin

FTPD waits for a connection request. When such a request is received, FTPD requests the
user login. The user must either provide his or her valid user login and password or may
log in anonymously.

Once logged in, the user may download files. In certain instances and if security on the
server allows, the user may also upload files.

Simple Mail Transfer Protocol

The objective of Simple Mail Transfer protocol is stated concisely in RFC 821:
The objective of Simple Mail Transfer protocol (SMTP) is to transfer mail reliably and efficiently.

SMTP is an extremely lightweight and efficient protocol. The user (utilizing any SMTP-
compliant client) sends a request to an SMTP server. A two-way connection is
subsequently established. The client forwards a MAIL instruction, indicating that it wants
to send mail to a recipient somewhere on the Internet. If the SMTP allows this operation,
an affirmative acknowledgment is sent back to the client machine. At that point, the
session begins. The client may then forward the recipient's identity, his or her IP address,
and the message (in text) to be sent.

Despite the simple character of SMTP, mail service has been the source of countless
security holes. (This may be due in part to the number of options involved.
Misconfiguration is a common reason for holes.) I will discuss these security issues later
in this book.

SMTP servers are native in UNIX. Most other networked operating systems now have
some form of SMTP, so I'll refrain from listing them here.

Cross Reference: Further information on this protocol is available in RFC 821
(http://sunsite.auc.dk/RFC/rfc/rfc821.html).

Gopher

The Gopher service is a distributed document-retrieval system. It was originally
implemented as the Campus Wide Information System at the University of Minnesota. It
is defined in a March 1993 FYI from the University of Minnesota as follows:

The Internet Gopher protocol is designed primarily to act as a distributed document-delivery
system. While documents (and services) reside on many servers, Gopher client software presents
users with a hierarchy of items and directories much like a file system. In fact, the Gopher
interface is designed to resemble a file system since a file system is a good model for locating
documents and services.

Cross Reference: The complete documentation on the Gopher protocol can be obtained
in RFC 1436 (http://sunsite.auc.dk/RFC/rfc/rfcl436.html).

The Gopher service is very powerful. It can serve text documents, sounds, and other
media. It also operates largely in text mode and is therefore much faster than HTTP
through a browser. Undoubtedly, the most popular Gopher client is for UNIX.
(Gopher2_3 is especially popular, followed by Xgopher.) However, many operating
systems have Gopher clients. See Table 6.6 for a few.

Table 6.6. Gopher clients for various operating systems.

|Operating System |Client
|Microsoft Windows (all) |Hgopher, Ws_Gopher

|Macint0sh |Mac Turbo Gopher
|AS/400 The AS/400 Gopher Client
|0S/2 |0s2Gofer

Typically, the user launches a Gopher client and contacts a given Gopher server. In turn,
the Gopher server forwards a menu of choices. These may include search menus, pre-set
destinations, or file directories. Figure 6.5 shows a client connection to the University of
Mlinois.

Figure 6.5.
A sample gopher session.

Note that the Gopher model is completely client/server based. The user never logs on per
se. Rather, the client sends a message to the Gopher server, requesting all documents (or
objects) currently available. The Gopher server responds with this information and does
nothing else until the user requests an object.

Hypertext Transfer Protocol

Hypertext Transfer Protocol is perhaps the most renowned protocol of all because it is
this protocol that allows users to surf the Net. Stated briefly in RFC 1945, HTTP is

...an application-level protocol with the lightness and speed necessary for distributed,
collaborative, hypermedia information systems. It is a generic, stateless, object-oriented protocol
which can be used for many tasks, such as name servers and distributed object management
systems, through extension of its request methods (commands). A feature of HTTP is the typing of
data representation, allowing systems to be built independently of the data being transferred.

NOTE: RFC 1945 has been superseded by RFC 2068, which is a more recent
specification of HTTP and is available at
ftp://ds.internic.net/rfc/rfc2068.txt.

HTTP has forever changed the nature of the Internet, primarily by bringing the Internet to
the masses. In some ways, its operation is much like Gopher. For example, it too works
via a request/response scenario. And this is an important point. Whereas applications
such as Telnet require that a user remain logged on (and while they are logged on, they
consume system resources), protocols such as Gopher and HTTP eliminate this
phenomenon. Thus, the user is pushed back a few paces. The user (client) only consumes
system resources for the instant that he or she is either requesting or receiving data.

Using a common browser like Netscape Navigator or Microsoft Internet Explorer, you
can monitor this process as it occurs. For each data element (text, graphic, sound) on a
WWW page, your browser will contact the server one time. Thus, it will first grab text,
then a graphic, then a sound file, and so on. In the lower-left corner of your browser's
screen is a status bar. Watch it for a few moments when it is loading a page. You will see
this request/response activity occur, often at a very high speed.

HTTP doesn't particularly care what type of data is requested. Various forms of
multimedia can be either embedded within or served remotely via HTML-based WWW
pages. In short, HTTP is an extremely lightweight and effective protocol. Clients for this
protocol are enumerated in Table 6.7.

Table 6.7. HTTP clients for various operating systems.

|0perating System |H TTP Client

Microsoft Windows |[Netscape Navigator, WinWeb, Mosaic, Microsoft Internet Explorer, WebSurfer,
(all) NetCruiser, AOL, Prodigy

|Macint0sh |Netscape Navigator, MacMosaic, MacWeb, Samba, Microsoft Internet Explorer
|UNIX |Xmosaic, Netscape Navigator, Grail, Lynx, TkWWW, Arena
|OS/2 |Web Explorer, Netscape Navigator

Until recently, UNIX alone supported an HTTP server. (The standard was NCSA
HTTPD. Apache has now entered the race, giving HTTPD strong competition in the
market.) The application is extremely small and compact. Like most of its counterparts, it
runs as a daemon. Its typically assigned port is 80. Today, there are HTTP servers for
nearly every operating system. Table 6.8 lists those servers.

Table 6.8. HTTP server for various operating systems.

|0perating System |HT TP Server

Microsoft Website, WinHTTPD

Windows 3.x

Microsoft OmniHTTPD, Server 7, Nutwebcam, Microsoft Personal Web Server, Fnord, ZB

Windows 95 Server, Website, Folkweb

Microsoft HTTPS, Internet Information Server, Alibaba, Espanade, Expresso, Fnord, Folkweb,

Windows NT Netpublisher, Weber, OmniHTTPD, WebQuest, Website, Wildcat

|Macint0sh |MacHTTP, Webstar, Phantom, Domino, Netpresenz

[UNIX IHTTPD, Apache

0S/2 GoServe, OS2HTTPD, OS2WWW, IBM Internet Connection Server, Bearsoft, Squid &
Planetwood

Network News Transfer Protocol

The Network News Transfer Protocol is one of the most widely used protocols. It
provides modern access to the news service commonly known as USENET news. Its
purpose is defined in RFC 977:

NNTP specifies a protocol for the distribution, inquiry, retrieval, and posting of news articles
using a reliable stream-based transmission of news among the ARPA-Internet community. NNTP
is designed so that news articles are stored in a central database allowing a subscriber to select
only those items he wishes to read. Indexing, cross-referencing, and expiration of aged messages
are also provided.

NNTP shares characteristics with both Simple Mail Transfer Protocol and TCP.
Similarities to SMTP consist of NNTP's acceptance of plain-English commands from a
prompt. It is similar to TCP in that stream-based transport and delivery is used. NNTP
typically runs from Port 119 on any UNIX system.

Cross Reference: I refer readers seeking in-depth information on NNTP to RFC 977
(http://andrew2.andrew.cmu.edu/rfc/rfc977.html).

You may also wish to obtain RFC 850 for examination of earlier implementations of the
standard (http://sunsite.auc.dk/RFC/rfc/rfc850.html).

Concepts

You have examined TCP/IP services and protocols individually, in their static states. You
have also examined the application-level protocols. This was necessary to describe each
protocol and what they accomplish. Now it is time to examine the larger picture.

TCP/IP Is the Internet

By now, it should be apparent that TCP/IP basically comprises the Internet itself. It is a
complex collection of protocols, many of which remain invisible to the user. On most
Internet servers, a minimum of these protocols exist:

e Transmission Control Protocol

e Internet Protocol

e Internet Control Message Protocol
e Address Resolution Protocol

e File Transfer Protocol

e The Telnet protocol

e The Gopher protocol

e Network News Transfer Protocol
e Simple Mail Transfer Protocol

e Hypertext Transfer Protocol

Now, prepare yourself for a shock. These are only a handful of protocols run on the
Internet. There are actually hundreds of them. Better than half of the primary protocols
have had one or more security holes.

In essence, the point I would like to make is this: The Internet was designed as a system
with multiple avenues of communication. Each protocol is one such avenue. As such,
there are hundreds of ways to move data across the Net.

Until recently, utilizing these protocols called for accessing them one at a time. That is, to
arrest a Gopher session and start a Telnet session, the user had to physically terminate the
Gopher connection.

The HTTP browser changed all that and granted the average user much greater power and
functionality. Indeed, FTP, Telnet, NTTP, and HTTP are all available at the click of a
button.

Summary

In this chapter, you learned about TCP/IP. Relevant points about TCP/IP include

e The TCP/IP protocol suite contains all protocols necessary to facilitate data transfer over the
Internet

e The TCP/IP protocol suite provides quick, reliable networking without consuming heavy network
resources

e TCP/IP is implemented on almost all computing platforms

Now that know the fundamentals of TCP/IP, you can progress to the next chapter. In it,
you will explore some of the reasons why the Internet is not secure. As you can probably
guess, there will be references to TCP/IP throughout that chapter.

7
Birth of a Network: The Internet

Readers already familiar with the Internet's early development may wish to bypass this
little slice of history. The story has been told many times.

Our setting is the early 1960s: 1962, to be exact. Jack Kennedy was in the White House,
the Beatles had just recorded their first hit single (Love Me Do), and Christa Speck, a
knock-out brunette from Germany, made Playmate of the Year. Most Americans were
enjoying an era of prosperity. Elsewhere, however, Communism was spreading, and with
it came weapons of terrible destruction.

In anticipation of impending atomic disaster, The United States Air Force charged a small
group of researchers with a formidable task: creating a communication network that
could survive a nuclear attack. Their concept was revolutionary: a network that had no
centralized control. If 1 (or 10, or 100) of its nodes were destroyed, the system would
continue to run. In essence, this network (designed exclusively for military use) would
survive the apocalypse itself (even if we didn't).

The individual largely responsible for the creation of the Internet is Paul Baran. In 1962,
Baran worked at RAND Corporation, the think tank charged with developing this
concept. Baran's vision involved a network constructed much like a fishnet. In his now-
famous memorandum titled On Distributed Communications: I. Introduction to
Distributed Communications Network, Baran explained:

The centralized network is obviously vulnerable as destruction of a single central node destroys
communication between the end stations. In practice, a mixture of star and mesh components is
used to form communications networks. Such a network is sometimes called a “decentralized'
network, because complete reliance upon a single point is not always required.

Cross Reference: The RAND Corporation has generously made this memorandum and
the report delivered by Baran available via the World Wide Web. The documents can be
found at http://www.rand.org/publications/electronic/.

Baran's model was complex. His presentation covered every aspect of the proposed
network, including routing conventions. For example, data would travel along the
network by whatever channels were available at that precise moment. In essence, the data
would dynamically determine its own path at each step of the journey. If it encountered
some sort of problem at one crossroads of the Net, the data would find an alternate route.
Baran's proposed design provided for all sorts of contingencies. For instance, a network
node would only accept a message if that node had adequate space available to store it.
Equally, if a data message determined that all nodes were currently unavailable (the all
lines busy scenario), the message would wait at the current node until a data path became
available. In this way, the network would provide intelligent data transport. Baran also
detailed other aspects of the network, including

e Security

e Priority schemes (and devices to avoid network overload)
e Hardware

o (Cost

In essence, Baran eloquently articulated the birth of a network in painstaking detail.
Unfortunately, however, his ideas were ahead of their time. The Pentagon had little faith
in such radical concepts. Baran delivered to defense officials an 11-volume report that
was promptly shelved.

The Pentagon's shortsightedness delayed the birth of the Internet, but not by much. By
1965, the push was on again. Funding was allocated for the development of a

decentralized computer network, and in 1969, that network became a reality. That system
was called ARPANET.

As networks go, ARPANET was pretty basic, not even closely resembling the Internet of
today. Its topology consisted of links between machines at four academic institutions
(Stanford Research Institute, the University of Utah, the University of California at Los
Angeles, and the University of California at Santa Barbara).

One of those machines was a DEC PDP-10. Only those more mature readers will
remember this model. These are massive, ancient beasts, now more useful as furniture
than computing devices. I mention the PDP-10 here to briefly recount another legend in
computer history (one that many of you have never heard). By taking this detour, I hope
to give you a frame of reference from which to measure how incredibly long ago this was
in computer history.

It was at roughly that time that a Seattle, Washington, company began providing
computer time sharing. The company reportedly took on two bright young men to test its
software. These young men both excelled in computer science, and were rumored to be
skilled in the art of finding holes within systems. In exchange for testing company
software, the young men were given free dial-up access to a PDP-10 (this would be the
equivalent of getting free access to a private bulletin board system). Unfortunately for the
boys, the company folded shortly thereafter, but the learning experience changed their
lives. At the time, they were just old enough to attend high school. Today, they are in
their forties. Can you guess their identities? The two boys were Bill Gates and Paul
Allen.

In any event, by 1972, ARPANET had some 40 hosts (in today's terms, that is smaller
than many local area networks, or LANSs). It was in that year that Ray Tomlinson, a
member of Bolt, Beranek, and Newman, Inc., forever changed the mode of
communication on the network. Tomlinson created electronic mail.

Tomlinson's invention was probably the single most important computer innovation of
the decade. E-mail allowed simple, efficient, and inexpensive communication between
various nodes of the network. This naturally led to more active discussions and the open
exchange of ideas. Because many recipients could be added to an e-mail message, these

ideas were more rapidly implemented. (Consider the distinction between e-mail and the
telephone. How many people can you reach with a modern conference call? Compare that
to the number of people you can reach with a single e-mail message. For group-oriented
research, e-mail cannot be rivaled.) From that point on, the Net was alive.

In 1974, Tomlinson contributed to another startling advance. He (in parallel with Vinton
Cerf and Robert Khan) invented the Transmission Control Protocol (TCP). This protocol
was a new means of moving data across the network bit by bit and then later assembling
these fragments at the other end.

NOTE: TCP is the primary protocol used on the Internet today. It was developed in the
early 1970s and was ultimately integrated into Berkeley Software Distribution UNIX. It
has since become an Internet standard. Today, almost all computers connected to the
Internet run some form of TCP. In Chapter 6, "A Brief Primer on TCP/IP," I closely
examine TCP as well as its sister protocols.

By 1975, ARPANET was a fully functional network. The groundwork had been done and
it was time for the U.S. government to claim its prize. In that year, control of ARPANET
was given to an organization then known as the United States Defense Communications
Agency (this organization would later become the Defense Information Systems
Agency).

To date, the Internet is the largest and most comprehensive structure ever designed by
humankind. Next, I will address some peripheral technological developments that helped
form the network and bring it to its present state of complexity. To do this, I will start
with C.

What Is C?

C is a popular computer programming language, often used to write language compilers
and operating systems. I examine C here because its development (and its relationship to
the UNIX operating system) is directly relevant to the Internet's development.

Nearly all applications designed to facilitate communication over the Internet are written
in C. Indeed, both the UNIX operating system (which forms the underlying structure of
the Internet) and TCP/IP (the suite of protocols used to traffic data over the Net) were
developed in C. It is no exaggeration to say that if C had never emerged, the Internet as
we know it would never have existed at all.

For most non-technical users, programming languages are strange, perplexing things.
However, programming languages (and programmers) are the very tools by which a
computer program (commonly called an application) is constructed. It may interest you
to know that if you use a personal computer or workstation, better than half of all
applications you now use were written in the C language. (This is true of all widely used
platforms, including Macintosh.) In this section, I want to briefly discuss C and pay some
homage to those who helped develop it. These folks, along with Paul Baran, Ken
Thompson, and a handful of others, are the grandparents of the Internet.

C was created in the early 1970s by Dennis M. Ritchie and Brian W. Kernighan. These
two men are responsible for many technological advancements that formed the modern
Internet, and their names appear several times throughout this book.

Let's discuss a few basic characteristics of the C programming language. To start, C is a
compiled as opposed to an interpreted language. I want to take a moment to explain this
critical distinction because many of you may lack programming experience.

Interpreted Programming Languages

Most programs are written in plain, human-readable text. This text is made up of various
commands and blocks of programming code called functions. In interpreted languages,
this text remains in human-readable form. In other words, such a program file can be
loaded into a text editor and read without event.

For instance, examine the program that follows. It is written for the Practical Extraction
and Report Language (Perl). The purpose of this Perl program is to get the user's first
name and print it back out to the screen.

NOTE: Perl is strictly defined as an interpreted language, but it does perform a form of
compilation. However, that compilation occurs in memory and never actually changes the
physical appearance of the programming code.

This program is written in plain English:

#!/usr/bin/perl

print "Please enter your first name:";
Suser firstname = <STDIN>;

chop ($user_ firstname) ;

print "Hello, Suser firstname\n"

print "Are you ready to hack?\n"

Its construction is designed to be interpreted by Perl. The program performs five
functions:

e Start the Perl interpreter

e Print a message to the user, asking for his or her first name
e Get the user's first name

e Remove the carriage return at the end of the user input

e Print a new message to the user, identifying him or her by name

Interpreted languages are commonly used for programs that perform trivial tasks or tasks
that need be done only once. These are sometimes referred to as throwaway programs.
They can be written quickly and take virtually no room on the local disk.

Such interpreted programs are of limited use. For example, in order to run, they must be
executed on a machine that contains the command interpreter. If you take a Perl script
and install it on a DOS-based machine (without first installing the Perl interpreter), it will
not run. The user will be confronted with an error message (Bad command or file
name). Thus, programs written in Perl are dependent on the interpreter for execution.

Microsoft users will be vaguely familiar with this concept in the context of applications
written in Visual Basic (VB). VB programs typically rely on runtime libraries such as
VBRUN400 .DLL. Without such libraries present on the drive, VB programs will not run.

Cross Reference: Microsoft users who want to learn more about such library
dependencies (but don't want to spend the money for VB) should check out Envelop.
Envelop is a completely free 32-bit programming environment for Windows 95 and
Windows NT. It very closely resembles Microsoft Visual Basic and generates attractive,
fully functional 32-bit programs. It, too, has a set of runtime libraries and extensive
documentation about how those libraries interface with the program. You can get it at
ftp:/ftp.cso.uiuc.edu/pub/systems/pe/winsite/win95/programr/envip14.exe

The key advantages of interpreted languages include

e Their programs are easily altered and edited.
e Their programs take little disk space.

e Their programs require little memory.

Interpreted languages are popular, particularly in the UNIX community. Here is a brief
list of some well-known interpreted languages:

e Perl

e REXX
e Forth

e Python
e TCL

The pitfall of using an interpreted language is that programs written in interpreted
languages are generally much slower than those written in compiled languages.

Compiled Languages

Compiled languages (such as C) are much different. Programs written in compiled
languages must be converted into binary format before they can be executed. In many
instances, this format is almost pure machine-readable code. To generate this code, the

programmer sends the human-readable program code (plain text) through a compilation
process. The program that performs this conversion is called a compiler.

After the program has been compiled, no interpreter is required for its execution. It will
run on any machine that runs the target operating system for which the program was
written. Exceptions to this rule may sometimes apply to certain portions of a compiled
program. For example, certain graphical functions are dependent on proprietary graphics
libraries. When a C program is written using such graphical libraries, certain library
components must be shipped with the binary distribution. If such library components are
missing when the program is executed, the program will exit on error.

The first interesting point about compiled programs is that they are fast. Because the
program is loaded entirely into memory on execution (as opposed to being interpreted
first), a great deal of speed is gained. However, as the saying goes, there is no such thing
as a free lunch. Thus, although compiled programs are fast, they are also much larger
than programs written in interpreted languages.

Examine following the C program. It is identical in function to the Perl program listed
previously. Here is the code in its yet-to-be-compiled state:

#include <stdio.h>
int main()

{

char name[20] ;

printf ("Please enter your first name: ") ;
scanf ("%$s", &name) ;

printf ("Hello, %s\n", name) ;

printf ("Are you ready to hack?\n") ;

return 0;

}

Using a standard C compiler, I compiled this code in a UNIX operating system
environment. The difference in size between the two programs (the one in Perl and the
one in C) was dramatic. The Perl program was 150 bytes in size; the C program, after
being compiled, was 4141 bytes.

This might seem like a huge liability on the part of C, but in reality, it isn't. The C
program can be ported to almost every operating system. Furthermore, it will run on any
operating system of a certain class. If compiled for DOS, it will work equally well under
all DOS-like environments (such as PC-DOS or NDOS), not just Microsoft DOS.

Modern C: The All-Purpose Language

C has been used over the years to create all manner of programs on a variety of platforms.
Many Microsoft Windows applications have been written in C. Similarly, as [will
explain later in this chapter, nearly all basic UNIX utilities are written in C.

To generate programs written in C, you must have a C compiler. C compilers are
available for most platforms. Some of these are commercial products and some are free to
the public. Table 7.1 lists common C compilers and the platforms on which they are
available.

Table 7.1. C compilers and their platforms.

|C0mpiler |Plazform

IGNU C (free) [UNIX, Linux, DOS, VAX

Borland C IDOS, Windows, Windows NT
|Microsoft C |DOS, Windows, Windows NT
|Watcom C |DOS, Windows, Windows NT, OS/2
|Metrowerks CodeWarrior |Mac, Windows, BeOS

|Symantec |Macintosh, Microsoft platforms
Advantages of C

One primary advantage of the C language is that it is smaller than many other languages.
The average individual can learn C within a reasonable period of time. Another
advantage is that C now conforms to a national standard. Thus, a programmer can learn C
and apply that knowledge on any platform, anywhere in the country.

C has direct relevance to the development of the Internet. As I have explained, most
modern TCP/IP implementations are written in C, and these form the basis of data
transport on the Internet. More importantly, C was used in the development of the UNIX
operating system. As [will explain in the next section of this chapter, the UNIX
operating system has, for many years, formed the larger portion of the Internet.

C has other advantages: One is portability. You may have seen statements on the Internet
about this or that program being ported to another operating system or platform, and
many of you might not know exactly what that means. Portability refers to the capability
of a program to be re-worked to run on a platform other than the one for which it was
originally designed (that is, the capability to take a program written for Microsoft
Windows and port it to the Macintosh platform). This aspect of portability is very
important, especially in an environment like the Internet, because the Internet has many
different types of systems running on it. In order to make a program available
networkwide, that program must be easily conformable to all platforms.

Unlike code in other languages, C code is highly portable. For example, consider Visual
Basic. Visual Basic is a wonderful rapid application development tool that can build
programs to run on any Microsoft-based platform. However, that is the extent of it. You
cannot take the raw code of a VB application and recompile it on a Macintosh or a Sun
Sparcstation.

In contrast, the majority of C programs can be ported to a wide variety of platforms. As
such, C-based programs available for distribution on the Internet are almost always
distributed in source form (in other words, they are distributed in plain text code form, or
in a form that has not yet been compiled). This allows the user to compile the program
specifically for his or her own operating system environment.

Limitations of C and the Creation of C++

Despite these wonderful features, C has certain limitations. C is not, for example, an
object-oriented language. Managing very large programs in C (where the code exceeds
100,000 lines) can be difficult. For this, C++ was created. C++ lineage is deeply rooted in
C, but works differently. Because this section contains only brief coverage of C, I will not
discuss C++ extensively. However, you should note that C++ is generally included as an
option in most modern C compilers.

C++ is an extremely powerful programming language and has led to dramatic changes in
the way programming is accomplished. C++ allows for encapsulation of complex
functions into entities called objects. These objects allow easier control and organization
of large and complex programs.

In closing, C is a popular, portable, and lightweight programming language. It is based on
a national standard and was used in the development of the UNIX operating system.

Cross Reference: Readers who want to learn more about the C programming language
should obtain the book The C Programming Language by Brian W. Kernighan and
Dennis M. Ritchie. (Prentice Hall, ISBN 0-13-110370-9). This book is a standard. It is
extremely revealing; after all, it is written by two men who developed the language.

Other popular books on C include

C: A Reference Manual. Samuel P. Harbison and Guy L. Steele. Prentice-
Hall. ISBN 0-13-109802-0. 1987.

Teach Yourself C in 21 Days. Peter Aitkin and Bradley Jones. Sams
Publishing. ISBN 0-672-30448-1.

Teach Yourself C. Herbert Schildt. Osborne McGraw-Hill. ISBN 0-07-
881596-7.

UNIX

The UNIX operating system has a long and rich history. Today, UNIX is one of the most
widely used operating systems, particularly on the Internet. In fact, UNIX actually
comprises much of the Net, being the number one system used on servers in the void.

Created in 1969 by Ken Thompson of Bell Labs, the first version of UNIX ran on a
Digital Equipment Corporation (DEC) PDP-7. Of course, that system bore no
resemblance to modern UNIX. For example, UNIX has been traditionally known as a
multiuser system (in other words, many users can work simultaneously on a single UNIX
box). In contrast, the system created by Thompson was reportedly a single-user system,
and a bare bones one at that.

When users today think of an operating system, they imagine something that includes
basic utilities, text editors, help files, a windowing system, networking tools, and so forth.
This is because the personal computer has become a household item. As such, end-user
systems incorporate great complexity and user-friendly design. Alas, the first UNIX
system was nothing like this. Instead, it was composed of only the most necessary

utilities to operate effectively. For a moment, place yourself in Ken Thompson's position.
Before you create dozens of complex programs like those mentioned previously, you are
faced with a more practical task: getting the system to boot.

In any event, Thompson and Dennis Ritchie ported UNIX to a DEC PDP-11/20 a year
later. From there, UNIX underwent considerable development. Between 1970 and 1973,
UNIX was completely reworked and written in the C programming language. This was
reportedly a major improvement and eliminated many of the bugs inherent to the original
implementation.

In the years that followed, UNIX source code was distributed to universities throughout
the country. This, more than any other thing, contributed to the success of UNIX.

First, the research and academic communities took an immediate liking to UNIX. Hence,
it was used in many educational exercises. This had a direct effect on the commercial
world. As explained by Mike Loukides, an editor for O'Reilly & Associates and a UNIX
guru:

Schools were turning out loads of very competent computer users (and systems programmers) who

already knew UNIX. You could therefore "buy" a ready-made programming staff. You didn't have
to train them on the intricacies of some unknown operating system.

Also, because the source was free to these universities, UNIX was open for development
by students. This openness quickly led to UNIX being ported to other machines, which
only increased the UNIX user base.

NOTE: Because UNIX source is widely known and available, more flaws in the system
security structure are also known. This is in sharp contrast to proprietary systems. Such
proprietary software manufacturers refuse to disclose their source except to very select
recipients, leaving many questions about their security as yet unanswered.

Several years passed, and UNIX continued to gain popularity. It became so popular, in
fact, that in 1978, AT&T decided to commercialize the operating system and demand
licensing fees (after all, it had obviously created a winning product). This caused a major
shift in the computing community. As a result, the University of California at Berkeley
created its own version of UNIX, thereafter referred to as the Berkeley Software
Distribution or BSD. BSD was (and continues to be) extremely influential, being the
basis for many modern forms of commercial UNIX.

An interesting development occurred during 1980. Microsoft released a new version of
UNIX called XENIX. This was significant because the Microsoft product line was already
quite extensive. For example, Microsoft was selling versions of BASIC, COBOL, Pascal,
and FORTRAN. However, despite a strong effort by Microsoft to make its XENIX
product fly (and even an endorsement by IBM to install the XENIX operating system on
its new PCs), XENIX would ultimately fade into obscurity. Its popularity lasted a mere
five years. In contrast, MS-DOS (released only one year after XENIX was introduced)
took the PC world by storm.

Today, there are many commercial versions of UNIX. I have listed a few of the them in
Table 7.2.

Table 7.2. Commercial versions of UNIX and their manufacturers.

|UN]X Version |Software Company

|SunOS & Solaris |Sun Microsystems

|HP—UX |Hewlett Packard
|AIX IBM
IRIX 'Silicon Graphics (SGI)

|DEC UNIX |Digita1 Equipment Corporation

These versions of UNIX run on proprietary hardware platforms, on high-performance
machines called workstations. Workstations differ from PC machines in several ways.
For one thing, workstations contain superior hardware and are therefore more expensive.
This is due in part to the limited number of workstations built. PCs are manufactured in
large numbers, and manufacturers are constantly looking for ways to cut costs. A
consumer buying a new PC motherboard has a much greater chance of receiving faulty
hardware. Conversely, workstation buyers enjoy more reliability, but may pay five or
even six figures for their systems.

The trade-off is a hard choice. Naturally, for average users, workstations are both
impractical and cost prohibitive. Moreover, PC hardware and software are easily
obtainable, simple to configure, and widely distributed.

Nevertheless, workstations have traditionally been more technologically advanced than
PCs. For example, onboard sound, Ethernet, and SCSI were standard features of
workstations in 1989. In fact, onboard ISDN was integrated not long after ISDN was
developed.

Differences also exist depending upon manufacturer. For example, Silicon Graphics
(SGI) machines contain special hardware (and software) that allows them to generate
eye-popping graphics. These machines are commonly used in the entertainment industry,
particularly in film. Because of the extraordinary capabilities of the SGI product line, SGI
workstations are unrivaled in the graphics industry.

However, we are only concerned here with the UNIX platform as it relates to the Internet.
As you might guess, that relationship is strong. As I noted earlier, the U.S. government's
development of the Internet was implemented on the UNIX platform. As such, today's
UNIX system contains within it the very building blocks of the Net. No other operating
system had ever been so expressly designed for use with the Internet. (Although Bell
Labs is currently developing a system that may even surpass UNIX in this regard. It is
called Plan 9 from Bell Labs; Plan 9 is covered in Chapter 21, "Plan 9 from Bell Labs.")

Modern UNIX can run on a wide variety of platforms, including IBM-compatible and
Macintosh. Installation is typically straightforward and differs little from installation of
other operating systems. Most vendors provide CD-ROM media. On workstations,
installation is performed by booting from a CD-ROM. The user is given a series of
options and the remainder of the installation is automatic. On other hardware platforms,
the CD-ROM medium is generally accompanied by a boot disk that loads a small
installation routine into memory.

Likewise, starting a UNIX system is similar to booting other systems. The boot routine
makes quick diagnostics of all existing hardware devices, checks the memory, and starts
vital system processes. In UNIX, some common system processes started at boot include

e Sendmail (electronic mail services)
e RPC (remote procedure calls)

e TCP/IP (networking protocols)

After the system boots successfully, a login prompt is issued to the user. Here, the user
provides his or her login username and password. When login is complete, the user is
generally dropped into a shell environment. A shell is an environment in which
commands can be typed and executed. In this respect, at least in appearance, basic UNIX
marginally resembles MS-DOS. Navigation of directories is accomplished by changing
direction from one to another. DOS users can easily navigate a UNIX system using the
conversion information in Table 7.3.

Table 7.3. Command conversion table: UNIX to DOS.

|DOS Command |UNIX Equivalent
|cd <directorys> |cd <directorys>
ldir 1s -1

|type | more |more

|help <command > |man <command >

|edit |vi

Cross Reference: Readers who wish to know more about basic UNIX commands should
point their WWW browser to http://www.geek-girl.com/Unixhelp/. This archive is one
of the most comprehensive collections of information about UNIX currently online.
Equally, more serious readers may wish to have a handy reference at their immediate
disposal. For this, I recommend UNIX Unleashed (Sams Publishing). The book was
written by several talented UNIX wizards and provides many helpful tips and tricks on
using this popular operating system.

Say, What About a Windowing System?

UNIX supports many windowing systems. Much depends on the specific platform. For
example, most companies that have developed proprietary UNIX systems have also
developed their own windowing packages, either partially or completely. In general,
however, all modern UNIX systems support the X Window System from the
Massachusetts Institute of Technology (MIT). Whenever I refer to the X Window System
in this book (which is often), I refer to it as X. I want to quickly cover X because some
portions of this book require you to know about it.

In 1984, the folks at MIT founded Project Athena. Its purpose was to develop a system of
graphical interface that would run on workstations or networks of disparate design.
During the initial stages of research, it immediately became clear that in order to

accomplish this task, X had to be hardware independent. It also had to provide
transparent network access. As such, X is not only a windowing system, but a network
protocol based on the client/server model.

The individuals primarily responsible for early development of X were Robert Scheifler
and Ron Newman, both from MIT, and Jim Gettys of DEC. X vastly differs from other
types of windowing systems (for example, Microsoft Windows), even with respect to the
user interface. This difference lies mainly in a concept sometimes referred to as
workbench or toolkit functionality. That is, X allows users to control every aspect of its
behavior. It also provides an extensive set of programming resources. X has often been
described as the most complex and comprehensive windowing system ever designed. X
provides for high-resolution graphics over network connections at high speed and
throughput. In short, X comprises some of the most advanced windowing technology
currently available. Some users characterize the complexity of X as a disadvantage, and
there is probably a bit of merit to this. So many options are available that the casual user
may quickly be overwhelmed.

Cross Reference: Readers who wish to learn more about X should visit the site of the X
Consortium. The X Consortium comprises the authors of X. This group constantly sets
and improves standards for the X Window System. Its site is at http://www.x.org/.

NOTE: Certain versions of X can be run on IBM-compatible machines in a
DOS/Windows Environment.

Users familiar with the Microsoft platform can grasp the use of X in UNIX by likening it
to the relationship between DOS and Microsoft Windows 3.11. The basic UNIX system
is always available as a command-line interface and remains active and accessible, even
when the user enters the X environment. In this respect, X runs on top of the basic UNIX
system. While in the X environment, a user can access the UNIX command-line interface
through a shell window (this at least appears to function much like the MS-DOS prompt
window option available in Microsoft Windows). From this shell window, the user can
perform tasks, execute commands, and view system processes at work.

Users start the X Window System by issuing the following command:

startx

X can run a series of window managers. Each window manager has a different look and
feel. Some of these (such as twm) appear quite bare bones and technical, while others are
quite attractive, even fancy. There is even one X window manager available that emulates
the Windows 95 look and feel. Other platforms are likewise emulated, including the
NeXT window system and the Amiga Workbench system. Other windowing systems
(some based on X and some proprietary) are shown in Table 7.4.

Table 7.4. Common windowing systems in UNIX.

|Wind0w System |C0mpany

|OpenWind0ws |Sun Microsystems ‘
[AIXWindows [IBM |

|HPVUE |Hewlett Packard
|Indigo Magic |Silicon Graphics ‘

What Kinds of Applications Run on UNIX?

Many types of applications run on UNIX. Some of these are high-performance
applications for use in scientific research and artificial intelligence. I have already
mentioned that certain high-level graphics applications are also common, particularly to
the SGI platform. However, not every UNIX application is so specialized or eclectic.
Perfectly normal applications run in UNIX, and many of them are recognizable names
common to the PC and Mac communities (such as Adobe Photoshop, WordPerfect, and
other front-line products).

Equally, I don't want readers to get the wrong idea. UNIX is by no means a platform that
lacks a sense of humor or fun. Indeed, there are many games and amusing utilities
available for this unique operating system.

Essentially, modern UNIX is much like any other platform in this respect. Window
systems tend to come with suites of applications integrated into the package. These
include file managers, text editors, mail tools, clocks, calendars, calculators, and the usual
fare.

There is also a rich collection of multimedia software for use with UNIX, including
movie players, audio CD utilities, recording facilities for digital sound, two-way camera
systems, multimedia mail, and other fun things. Basically, just about anything you can
think of has been written for UNIX.

UNIX in Relation to Internet Security

Because UNIX supports so many avenues of networking, securing UNIX servers is a
formidable task. This is in contrast to servers implemented on the Macintosh or IBM-
compatible platforms. The operating systems most common to these platforms do not
support anywhere close to the number of network protocols natively available under
UNIX.

Traditionally, UNIX security has been a complex field. In this respect, UNIX is often at
odds with itself. UNIX was developed as the ultimate open system (that is, its source
code has long been freely available, the system supports a wide range of protocols, and
its design is uniquely oriented to facilitate multiple forms of communication). These
attributes make UNIX the most popular networking platform ever devised. Nevertheless,
these same attributes make security a difficult thing to achieve. How can you allow every
manner of open access and fluid networking while still providing security?

Over the years, many advances have been made in UNIX security. These, in large part,
were spawned by governmental use of the operating system. Most versions of UNIX have
made it to the Evaluated Products List (EPL). Some of these advances (many of which
were implemented early in the operating system's history) include

e Encrypted passwords

e Strong file and directory-access control
e System-level authentication procedures
e Sophisticated logging facilities

UNIX is used in many environments that demand security. As such, there are hundreds of
security programs available to tune up or otherwise improve the security of a UNIX
system. Many of these tools are freely available on the Internet. Such tools can be
classified into two basic categories:

e Security audit tools
e System logging tools

Security audit tools tend to be programs that automatically detect holes within systems.
These typically check for known vulnerabilities and common misconfigurations that can
lead to security breaches. Such tools are designed for wide-scale network auditing and,
therefore, can be used to check many machines on a given network. These tools are
advantageous because they reveal inherent weaknesses within the audited system.
However, these tools are also liabilities because they provide powerful capabilities to
crackers in the void. In the wrong hands, these tools can be used to compromise many
hosts.

Conversely, system logging tools are used to record the activities of users and system
messages. These logs are recorded to plain text files or files that automatically organize
themselves into one or more database formats. Logging tools are a staple resource in any
UNIX security toolbox. Often, the logs generated by such utilities form the basis of
evidence when you pursue an intruder or build a case against a cracker. However, deep
logging of the system can be costly in terms of disk space. Moreover, many of these tools
work flawlessly at collecting data, but provide no easy way to interpret it. Thus, security
personnel may be faced with writing their own programs to perform this task.

UNIX security is a far more difficult field than security on other platforms, primarily
because UNIX is such a large and complicated operating system. Naturally, this means
that obtaining personnel with true UNIX security expertise may be a laborious and costly
process. For although these people aren't rare particularly, most of them already occupy
key positions in firms throughout the nation. As a result, consulting in this area has
become a lucrative business.

One good point about UNIX security is that because UNIX has been around for so long,
much is known about its inherent flaws. Although new holes crop up on a fairly regular
basis, their sources are quickly identified. Moreover, the UNIX community as a whole is
well networked with respect to security. There are many mailing lists, archives, and
online databases of information dealing with UNIX security. The same cannot be so
easily said for other operating systems. Nevertheless, this trend is changing, particularly
with regard to Microsoft Windows NT. There is now strong support for NT security on
the Net, and that support is growing each day.

The Internet: How Big Is It?

This section requires a bit more history, and I am going to run through it rapidly. Early in
the 1980s, the Internet as we now know it was born. The number of hosts was in the
hundreds, and it seemed to researchers even then that the Internet was massive. Sometime
in 1986, the first freely available public access server was established on the Net. It was
only a matter of time--a mere decade, as it turned out--before humanity would storm the
beach of cyberspace; it would soon come alive with the sounds of merchants peddling
their wares.

By 1988, there were more than 50,000 hosts on the Net. Then a bizarre event took place:
In November of that year, a worm program was released into the network. This worm
infected numerous machines (reportedly over 5,000) and left them in various stages of
disrupted service or distress (I will discuss this event in Chapter 5, "Is Security a Futile
Endeavor?"). This brought the Internet into the public eye in a big way, plastering it
across the front pages of our nation's newspapers.

By 1990, the number of Internet hosts exceeded 300,000. For a variety of reasons, the
U.S. government released its hold on the network in this year, leaving it to the National
Science Foundation (NSF). The NSF had instituted strong restrictions against commercial
use of the Internet. However, amidst debates over cost considerations (operating the
Internet backbone required substantial resources), NSF suddenly relinquished authority
over the Net in 1991, opening the way for commercial entities to seize control of network
bandwidth.

Still, however, the public at large did not advance. The majority of private Internet users
got their access from providers like Delphi. Access was entirely command-line based and
far too intimidating for the average user. This changed suddenly when revolutionary
software developed at the University of Minnesota was released. It was called Gopher.
Gopher was the first Internet navigation tool for use in GUI environments. The World
Wide Web browser followed soon thereafter.

In 1995, NSF retired entirely from its long-standing position as overseer of the Net. The
Internet was completely commercialized almost instantly as companies across America
rushed to get connected to the backbone. The companies were immediately followed by
the American public, which was empowered by new browsers such as NCSA Mosaic,
Netscape Navigator, and Microsoft Internet Explorer. The Internet was suddenly
accessible to anyone with a computer, a windowing system, and a mouse.

Today, the Internet sports more than 10 million hosts and reportedly serves some 40
million individuals. Some projections indicate that if Internet usage continues along its
current path of growth, the entire Western world will be connected by the year 2001.
Barring some extraordinary event to slow this path, these estimates are probably correct.

Today's Internet is truly massive, housing hundreds of thousands of networks. Many of
these run varied operating systems and hardware platforms. Well over 100 countries
besides the United States are connected, and that number is increasing every year. The
only question is this: What does the future hold for the Internet?

The Future

There have been many projections about where the Internet is going. Most of these
projections (at least those of common knowledge to the public) are cast by marketeers
and spin doctors anxious to sell more bandwidth, more hardware, more software, and
more hype. In essence, America's icons of big business are trying to control the Net and
bend it to their will. This is a formidable task for several reasons.

One is that the technology for the Internet is now moving faster than the public's ability
to buy it. For example, much of corporate America is intent on using the Internet as an
entertainment medium. The network is well suited for such purposes, but implementation
is difficult, primarily because average users cannot afford the necessary hardware to
receive high-speed transmissions. Most users are getting along with modems at speeds of
28.8Kbps. Other options exist, true, but they are expensive. ISDN, for example, is a
viable solution only for folks with funds to spare or for companies doing business on the
Net. It is also of some significance that ISDN is more difficult to configure--on any
platform--than the average modem. For some of my clients, this has been a significant
deterrent. I occasionally hear from people who turned to ISDN, found the configuration
problems overwhelming, and found themselves back at 28.8Kbps with conventional
modems. Furthermore, in certain parts of the country, the mere use of an ISDN telephone
line costs money per each minute of connection time.

NOTE: Although telephone companies initially viewed ISDN as a big money maker, that
projection proved to be somewhat premature. These companies envisioned huge profits,
which never really materialized. There are many reasons for this. One is that ISDN
modems are still very expensive compared to their 28.8Kbps counterparts. This is a
significant deterrent to most casual users. Another reason is that consumers know they
can avoid heavy-duty phone company charges by surfing at night. (For example, many
telephone companies only enforce heavy charges from 8:00 a.m. to 5:00 p.m.) But these
are not the only reasons. There are other methods of access emerging that will probably
render ISDN technology obsolete. Today's consumers are keenly aware of these trends,
and many have adopted a wait-and-see attitude.

Cable modems offer one promising solution. These new devices, currently being tested
throughout the United States, will reportedly deliver Net access at 100 times the speed of
modems now in use. However, there are deep problems to be solved within the cable
modem industry. For example, no standards have yet been established. Therefore, each
cable modem will be entirely proprietary. With no standards, the price of cable modems
will probably remain very high (ranging anywhere from $300 to $600). This could
discourage most buyers. There are also issues as to what cable modem to buy. Their
capabilities vary dramatically. Some, for example, offer extremely high throughput while
receiving data but only meager throughput when transmitting it. For some users, this
simply isn't suitable. A practical example would be someone who plans to video-
conference on a regular basis. True, they could receive the image of their video-
conference partner at high speed, but they would be unable to send at that same speed.

NOTE: There are other more practical problems that plague the otherwise bright future
of cable modem connections. For example, consumers are told that they will essentially
have the speed of a low-end T3 connection for $39 a month, but this is only partially true.
Although their cable modem and the coax wire it's connected to are capable of such
speeds, the average consumer will likely never see the full potential because all

inhabitants in a particular area (typically a neighborhood) must share the bandwidth of
the connection. For example, in apartment buildings, the 10mps is divided between the
inhabitants patched into that wire. Thus, if a user in apartment 1A is running a search
agent that collects hundreds of megabytes of information each day, the remaining
inhabitants in other apartments will suffer a tremendous loss of bandwidth. This is clearly
unsuitable.

Cross Reference: Cable modem technology is an aggressive climate now, with several
dozen big players seeking to capture the lion's share of the market. To get in-depth
information about the struggle (and what cable modems have to offer), point your Web
browser to http://rpcp.mit.edu/~gingold/cable/.

Other technologies, such as WebTV, offer promise. WebTV is a device that makes
surfing the Net as easy as watching television. These units are easily installed, and the
interface is quite intuitive. However, systems such as WebTV may bring an unwanted
influence to the Net: censorship. Many of the materials on the Internet could be
characterized as highly objectionable. In this category are certain forms of hard-core
pornography and seditious or revolutionary material. If WebTV were to become the
standard method of Internet access, the government might attempt to regulate what type
of material could appear. This might undermine the grass-roots, free-speech environment
of the Net.

NOTE: Since the writing of this chapter, Microsoft Corporation has purchased WebTV
(even though the sales for WebTV proved to be far less than industry experts had
projected). Of course, this is just my personal opinion, but I think the idea was somewhat
ill-conceived. The Internet is not yet an entertainment medium, nor will it be for some
time, largely due to speed and bandwidth constraints. One wonders whether Microsoft
didn't move prematurely in making its purchase. Perhaps Microsoft bought WebTV
expressly for the purpose of shelving it. This is possible. After all, such a purchase would
be one way to eliminate what seemed (at least at the time) to be some formidable
competition to MSN.

Cross Reference: WebTV does have interesting possibilities and offers one very simple
way to get acquainted with the Internet. If you are a new user and find Net navigation
confusing, you might want to check out WebTV's home page at http://www.webtv.net/.

Either way, the Internet is about to become an important part of every American's life.
Banks and other financial institutions are now offering banking over the Internet. Within
five years, this will likely replace the standard method of banking. Similarly, a good deal
of trade has been taken to the Net.

Summary

This chapter briefly examines the birth of the Internet. Next on the agenda are the
historical and practical points of the network's protocols, or methods of data transport.
These topics are essential for understanding the fundamentals of Internet security.

8

Internet Warfare

The Internet is an amazing resource. As you sit before your monitor, long after your
neighbors are warm and cozy in their beds, I want you to think about this: Beyond that
screen lies 4,000 years of accumulated knowledge. At any time, you can reach out into
the void and bring that knowledge home.

There is something almost metaphysical about this. It's as though you can fuse yourself to
the hearts and minds of humanity, read its innermost inspirations, its triumphs, its
failures, its collective contributions to us all. With the average search engine, you can
even do this incisively, weeding out the noise of things you deem nonessential.

For this reason, the Internet will ultimately revolutionize education. I'm not referring to
home study or classes that save time by virtue of teaching 1,000 students simultaneously.
Although these are all useful techniques of instruction that will undoubtedly streamline
many tasks for teachers and students alike, I am referring to something quite different.

Today, many people have forgotten what the term education really means. Think back to
your days at school. In every life there is one memorable teacher: One person who took a
subject (history, for example) and with his or her words, brought that subject to life in an
electrifying display. Through whatever means necessary, that person transcended the
identity of instructor and entered the realm of the educator. There is a difference: One
provides the basic information needed to effectively pass the course; the other inspires.

The Internet can serve as a surrogate educator, and users can now inspire themselves. The
other night, I had dinner with a heavy-equipment operator. Since his childhood, he has
been fascinated with deep space. Until recently, his knowledge of it was limited,
primarily because he didn't have enough resources. He had a library card, true, but this
never provided him with more than those books at his local branch. Only on two
occasions had he ever ordered a book through inter-library loan. At dinner, he explained
that he had just purchased a computer and gone online. There, he found a river of
information. Suddenly, I realized I was no longer having dinner with a heavy-equipment
operator; I was dining with an avid student of Einstein, Hawking, and Sagan. His talk was
so riveting that [went away hungry for lack of having eaten.

So this much is true: The Internet is a an incredible resource for information. However, it
is also an incredible resource for communication and basic human networking.
Networking from a human standpoint is different from computer networking; human
networking contains an added ingredient called action. Thus, individuals from all over
the world are organizing (or I should say, crystallizing) into groups with shared interests.
Women are organizing for equality, voters are organizing for representation, and parents
are organizing for legislation to protect their children.

Inherent within this process is the exchange of opinions, or more aptly put, ideology.
Ideology of any sort is bound to bring controversy, and controversy brings disagreement.
Whether that disagreement occurs between two nations or between two individuals is
irrelevant. When it occurs on the Internet, it often degenerates into warfare. That is what
this chapter is about.

Much like the term information warfare, the term Internet warfare is often
misunderstood. To understand Internet warfare, you must know that there are different
classifications of it. Let's start with those classifications. From there, we can discuss
warfare at its most advanced levels. The classifications are

e Personal Internet warfare
e Public Internet warfare
e Corporate Internet warfare

e Government Internet warfare

More generally, Internet warfare is activity in which one or more participants utilize
tools over the Internet to attack another or the information of another. The objective of
the attack may be to damage information, hardware, or software, or to deny service.
Internet warfare also involves any defensive action taken to repel such an attack.

Such warfare may be engaged in by anyone, including individuals, the general public,
corporations, or governments. Between these groups, the level of technology varies (by
technology, 1 am referring to all aspects of the tools required, including high-speed
connections, software, hardware, and so forth). In general, the level of technology
follows an upward path, as expressed in Figure 8.1.

Figure 8.1.
The level of technology in Internet warfare.

NOTE: The categories Public and Individual may seem confusing. Why are they not
included together? The reason is this: A portion of the public fails to meet the
requirements for either corporate forces or individuals. This portion is composed of
middle-level businesses, ISPs, universities, and so on. These groups generally have more
technologically advanced tools than individuals, and they conduct warfare in a different
manner.

As you might guess, there are fundamental reasons for the difference between these
groups and the tools that they employ. These reasons revolve around economic and
organizational realities. The level of technology increases depending upon certain risks
and demands regarding security. This is graphically illustrated in Figure 8.2.

Figure 8.2.
Risks and demands as they relate to various levels of technology.

Naturally, government and corporate entities are going to have more financial resources
to acquire tools. These tools will be extremely advanced, created by vendors who

specialize in high-performance, security-oriented applications. Such applications are
generally more reliable than average tools, having been tested repeatedly under a variety
of conditions. Except in extreme cases (those where the government is developing
methods of destructive data warfare for use against foreign powers), nearly all of these
tools will be defensive in character.

Public organizations tend to use less powerful tools. These tools are often shareware or
freeware, which is freely available on the Internet. Much of this software is designed by
graduate students in computer science. Other sources include companies that also sell
commercial products, but are giving the Internet community a little taste of the quality of
software available for sale. (Many companies claim to provide these tools out of the
goodness of their hearts. Perhaps. In any event, provide them they do, and that is
sufficient.) Again, nearly all of these tools are defensive in character.

Private individuals use whatever they come across. This may entail shareware or
freeware, programs they use at work, or those that have been popularly reviewed at sites
of public interest.

The Private Individual

The private individual doesn't usually encounter warfare (at least, not the average user).
When one does, it generally breaks down to combat with another user. This type of
warfare can be anticipated and, therefore, avoided. When a debate on the Net becomes
heated, you may wish to disengage before warfare erupts. Although it has been said a
thousand times, I will say it again: Arguments appear and work differently on the Internet
than in person. E-mail or Usenet news messages are delivered in their entirety, without
being interrupted by points made from other individuals. That is, you have ample time to
write your response. Because you have that time, you might deliver a more scathing reply
than you would in person. Moreover, people say the most outrageous things when hiding
behind a computer, things they would never utter in public. Always consider these
matters. That settled, I want to examine a few tools of warfare between individuals.

The E-Mail Bomb

The e-mail bomb is a simple and effective harassment tool. A bomb attack consists of
nothing more than sending the same message to a targeted recipient over and over again.
It is a not-so-subtle form of harassment that floods an individual's mailbox with junk.

Depending upon the target, a bomb attack could be totally unnoticeable or a major
problem. Some people pay for their mail service (for example, after exceeding a certain
number of messages per month, they must pay for additional e-mail service). To these
individuals, an e-mail bomb could be costly. Other individuals maintain their own mail
server at their house or office. Technically, if they lack storage, one could flood their
mailbox and therefore prevent other messages from getting through. This would
effectively result in a denial-of-service attack. (A denial-of-service attack is one that
degrades or otherwise denies computer service to others. This subject is discussed in
Chapter 14, "Destructive Devices.") In general, however, a bomb attack (which is, by the

way, an irresponsible and childish act) is simply annoying. Various utilities available on
the Internet will implement such an attack.

One of the most popular utilities for use on the Microsoft Windows platform is Mail
Bomber. It is distributed in a file called bombo2 . zip and is available at many cracker
sites across the Internet. The utility is configured via a single screen of fields into which
the user enters relevant information, including target, mail server, and so on (see Figure
8.3).

Figure 8.3.
The Mail Bomber application.

The utility works via Telnet. It contacts port 25 of the specified server and generates the
mail bomb. Utilities like this are commonplace for nearly every platform. Some are for
use anywhere on any system that supports SMTP servers. Others are more specialized,
and may only work on systems like America Online. One such utility is Doomsday,
which is designed for mass mailings over AOL but is most commonly used as an e-mail
bomber. The entire application operates from a single screen interface, shown in Figure
8.4.

Figure 8.4.
The Doomsday mail bomber.

NOTE: For several years, the key utility for AOL users was AOHELL, which included
in its later releases a mail-bomb generator. AOHELL started as a utility used to
unlawfully access America Online. This, coupled with other utilities such as credit-card
number generators, allowed users to create free accounts using fictitious names. These
accounts typically expired within two to three weeks.

On the UNIX platform, mail bombing is inanely simple; it can be accomplished with just
a few lines. However, one wonders why someone skilled in UNIX would even entertain
the idea. Nevertheless, some do; their work typically looks something like this:

#!/bin/perl

Smailprog = ~/usr/lib/sendmail’;

Srecipient = “victimetargeted site.com';

Svariable initialized to 0 = 0;

while ($Svariable initialized to 0 < 1000) {

open (MAIL, "|$mailprog Srecipient") || die "Can't open S$mailprog!\n";

print MAIL "You Suck!";

close (MAIL) ;

sleep 3;

Svariable initialized to O++;

}

The above code is fairly self-explanatory. It initializes a variable to o, then specifies that
as long as that variable is less than the value 1000, mail should be sent to the targeted
recipient. For each time this program goes through the while loop, the variable called

$variable initialized to_0 is incremented. In short, the mail message is sent 999
times.

Mail bombing is fairly simple to defend against: Simply place the mailer's identity in a
kill or bozo file. This alerts your mail package that you do not want to receive mail from
that person. Users on platforms other than UNIX may need to consult their mail
applications; most of them include this capability.

UNIX users can find a variety of sources online. I also recommend a publication that
covers construction of intelligent kill file mechanisms: Teach Yourself the UNIX Shell in
14 Days by David Ennis and James Armstrong Jr. (Sams Publishing). Chapter 12 of that
book contains an excellent script for this purpose. If you are a new user, that chapter (and
in fact, the whole book) will serve you well. (Moreover, users who are new to UNIX but
have recently been charged with occasionally using a UNIX system will find the book
very informative.)

Oh yes. For those of you who are seriously considering wholesale e-mail bombings as a
recreational exercise, you had better do it from a cracked mail server. A cracked mail
server is one that the cracker currently has control of; it is a machine running sendmail
that is under the control of the cracker.

If not, you may spend some time behind bars. One individual bombed Monmouth
University in New Jersey so aggressively that the mail server temporarily died. This
resulted in a FBI investigation, and the young man was arrested. He is reportedly facing
several years in prison.

I hope that you refrain from this activity. Because e-mail bombing is so incredibly
simple, even crackers cast their eyes down in embarrassment and disappointment if a
comrade implements such an attack.

List Linking

List linking is becoming increasingly common. The technique yields the same basic
results as an e-mail bomb, but it is accomplished differently. List linking involves
enrolling the target in dozens (sometimes hundreds) of e-mail lists.

E-mail lists (referred to simply as lists) are distributed e-mail message systems. They
work as follows: On the server that provides the list service, an e-mail address is
established. This e-mail address is really a pointer to an executable program. This
program is a script or binary file that maintains a database (usually flat file) of e-mail
addresses (the members of the list). Whenever a mail message is forwarded to this special
e-mail address, the text of that message is forwarded to all members on the list (all e-mail
addresses held in the database). These are commonly used to distribute discussions on
various topics of interest to members.

E-mail lists generate a lot of mail. For example, the average list generates 30 or so
messages per day. These messages are received by each member. Some lists digest the
messages into a single-file format. This works as follows: As each message comes in, it is
appended to a plain text file of all messages forwarded on that day. When the day ends
(this time is determined by the programmer), the entire file--with all appended messages-
-is mailed to members. This way, members get a single file containing all messages for
the day.

Enrolling a target in multiple mailing lists is accomplished in one of two ways. One is to
do it manually. The harassing party goes to the WWW page of each list and fills in the
registration forms, specifying the target as the recipient or new member. This works for
most lists because programmers generally fail to provide an authentication routine. (One
wonders why. It is relatively simply to get the user's real address and compare it to the
one he or she provides. If the two do not match, the entire registration process could be
aborted.)

Manually entering such information is absurd, but many individuals do it. Another and
more efficient way is to register via fakemail. You see, most lists allow for registration
via e-mail. Typically, users send their first message to an e-mail address such as this one:

list registrationelistmachine.com

Any user who wants to register must send a message to this address, including the word
subscribe in either the subject line or body of the message. The server receives this
message, reads the provided e-mail address in the From field, and enrolls the user. (This
works on any platform because it involves nothing more than sending a mail message
purporting to be from this or that address.)

To sign up a target to lists en masse, the harassing party first generates a flat file of all
list- registration addresses. This is fed to a mail program. The mail message--in all cases--
is purportedly sent from the target's address. Thus, the registration servers receive a
message that appears to be from the target, requesting registration to the list.

This technique relies on the forging of an e-mail message (or generating fakemail).
Although this is explained elsewhere, I should relate something about it here. To forge
mail, one sends raw commands to a sendmail server. This is typically found on port 25 of
the target machine. Forging techniques work as follows: You Telnet to port 25 of a UNIX
machine. There, you begin a mail session with the command HELO. After you execute that
command, the session is open. You then specify the FROM address, providing the mail
server with a bogus address (in this case, the target to be list-linked). You also add your
recipient and the message to be sent. For all purposes, mail list archives believe that the
message came from its purported author.

It takes about 30 seconds to register a target with 10, 100, or 500 lists. What is the result?
Ask the editorial offices of 7Time magazine.

On March 18, 1996, Time published an article titled "I''VE BEEN SPAMMED!" The
story concerned a list-linking incident involving the President of the United States, two
well-known hacking magazines, and a senior editor at 7ime. Apparently, a member of
Time's staff was list-linked to approximately 1,800 lists. Reportedly, the mail amounted
to some 16MB. It was reported that House Leader Newt Gingrich had also been linked to
the lists. Gingrich, like nearly all members of Congress, had an auto-answer script on his
e-mail address. These trap e-mail addresses contained in incoming messages and send
automated responses. (Congressional members usually send a somewhat generic
response, such as "I will get back to you as soon as possible and appreciate your
support.") Thus, Gingrich's auto-responder received and replied to each and every
message. This only increased the number of messages he would receive, because for each

time he responded to a mailing list message, his response would be appended to the
outgoing messages of the mailing list. In effect, the Speaker of the House was e-mail
bombing himself.

For inexperienced users, there is no quick cure for list linking. Usually, they must send a
message containing the string unsubscribe to each list. This is easily done in a UNIX
environment, using the method I described previously to list-link a target wholesale.
However, users on other platforms require a program (or programs) that can do the
following:

e Extract e-mail addresses from messages

e Mass mail

There are other ways to make a target the victim of an e-mail bomb, even without using
an e-mail bomb utility or list linking. One is particularly insidious. It is generally seen
only in instances where there is extreme enmity between two people who publicly spar on
the Net. It amounts to this: The attacker posts to the Internet, faking his target's e-mail
address. The posting is placed into a public forum in which many individuals can see it
(Usenet, for example). The posting is usually so offensive in text (or graphics) that other
users, legitimately and genuinely offended, bomb the target. For example, Bob posts to
the Net, purporting to be Bill. In "Bill's" post, an extremely racist message appears. Other
users, seeing this racist message, bomb Bill.

Finally, there is the garden-variety case of harassment on the Internet. This doesn't
circumvent either security or software, but I could not omit mention of it. Bizarre cases of
Internet harassment have arisen in the past. Here are a few:

e A California doctoral candidate was expelled for sexually harassing another via e-mail.

e Another California man was held by federal authorities on $10,000 bail after being accused of
being an "international stalker."

e A young man in Michigan was tried in federal court for posting a rape-torture fantasy about a girl
with whom he was acquainted. The case was ultimately dismissed on grounds of insufficient
evidence and free speech issues.

These cases pop up with alarming frequency. Some have been racially motivated, others
have been simple harassment. Every user should be aware that anyone and everyone is a
potential target. If you use the Internet, even if you haven't published your real name, you
are a viable target, at least for threatening e-mail messages.

Internet Relay Chat Utilities

Many Internet enthusiasts are unfamiliar with Internet Relay Chat (IRC). IRC is an
arcane system of communication that resembles bulletin board systems (BBSs). IRC is an
environment in which many users can log on and chat. That is, messages typed on the
local machine are transmitted to all parties within the chat space. These scroll down the
screen as they appear, often very quickly.

This must be distinguished from chat rooms that are provided for users on systems such
as AOL. IRC is Internet-wide and is free to anyone with Internet access. It is also an
environment that remains the last frontier of the lawless Internet.

The system works as follows: Using an IRC client, the user connects to an IRC server,
usually a massive and powerful UNIX system in the void. Many universities provide IRC
servers.

Cross Reference: The ultimate list of the world's IRC servers can be found at
http://www.webmaster.com/webstrands/resources/irc/#List of Servers.

Once attached to an IRC server, the individual specifies the channel to which he or she
wishes to connect. The names of IRC channels can be anything, although the established
IRC channels often parallel the names of Usenet groups. These names refer to the
particular interest of the users that frequent the channel. Thus, popular channels are

e sex
e hack

There are thousands of established IRC channels. What's more, users can create their
own. In fact, there are utilities available for establishing a totally anonymous IRC server
(this is beyond the scope of this discussion). Such programs do not amount to warfare,
but flash utilities do. Flash utilities are designed to do one of two things:

e Knock a target off the IRC channel

e Destroy the target's ability to continue using the channel

Flash utilities are typically small programs written in C, and are available on the Internet
at many cracking sites. They work by forwarding a series of special-character escape
sequences to the target . These character sequences flash, or incapacitate, the terminal of
the target. In plain talk, this causes all manner of strange characters to appear on the
screen, forcing the user to log off or start another session. Such utilities are sometimes
used to take over an IRC channel. The perpetrator enters the channel and flashes all
members who are deemed to be vulnerable. This temporarily occupies the targets while
they reset their terminals.

By far, the most popular flash utility is called flash. It is available at hundreds of sites on
the Internet. For those curious about how the code is written, enter one or all of these
search strings into any popular search engine:

flash.c

flash.c.gz

flash.gz
megaflash

Another popular utility is called nuke. This utility is far more powerful than any flash
program. Rather than fiddle with someone's screen, it simply knocks the user from the
server altogether. Note that using nuke on a wholesale basis to deny computer service to

others undoubtedly amounts to unlawful activity. After some consideration, I decided that
nuke did not belong on the CD-ROM that accompanies this book. However, for those
determined to get it, it exists in the void. It can be found by searching for the filename
nuke.c.

There are few other methods by which one can easily reach an individual. The majority
of these require some actual expertise on the part of the attacker. In this class are the
following methods of attack:

e Virus infection and malicious code

e Cracking

Although these are extensively covered later in this book, I want to briefly treat them
here. They are legitimate concerns and each user should be aware of these actual dangers
on the Net.

Virus Infections and Trojan Horses

Virus attacks over the Internet are rare but not unheard of. The primary place that such
attacks occur is the Usenet news network. You will read about Usenet in the next section.
Here, I will simply say this: Postings to Usenet can be done relatively anonymously.
Much of the information posted in Usenet these days involves pornography, files on
cracking, or other potentially unlawful or underground material. This type of material
strongly attracts many users and as such, those with malicious intent often choose to drop
their virus in this network.

Commonly, viruses or malicious code masquerade as legitimate files or utilities that have
been zipped (compressed) and released for general distribution. It happens. Examine this
excerpt from a June 6, 1995 advisory from the Computer Incident Advisory Capability
Team at the U.S. Department of Energy:

A trojaned version of the popular, DOS file-compression utility PKZIP is
circulating on the networks and on dial-up BBS systems. The trojaned
files are Pxz300B.EXE and pPkz300B.zI1P. CIAC verified the following
warning from PKWARE:

"Some joker out there is distributing a file called pkz300B.EXE and
pkz300B.ZzIP. This is NOT a version of PKZIP and will try to erase your
hard drive if you use it. The most recent version is 2.04G. Please tell all
your friends and favorite BBS stops about this hack.

"PKZ300B.EXE appears to be a self extracting archive, but actually
attempts to format your hard drive. PKzZ300B. ZIP is an archive, but the
extracted executable also attempts to format your hard drive. While
PKWARE indicated the trojan is real, we have not talked to anyone who
has actually touched it. We have no reports of it being seen anywhere in
the DOE.

"According to PKWARE, the only released versions of PKZIP are 1.10, 1.93, 2.04c, 2.04e and
2.04g. All other versions currently circulating on BBSs are hacks or fakes. The current version of
PKZIP and PKUNZIP is 2.04g."

That advisory was issued very quickly after the first evidence of the malicious code was
discovered. At about the same time, a rather unsophisticated (but nevertheless
destructive) virus called Caibua was released on the Internet. Many users were infected.
The virus, under certain conditions, would overwrite the default boot drive.

Cross Reference: Virus attacks and defenses against them are discussed in Chapter 14,
"Destructive Devices." However, I highly recommend that all readers bookmark
http://ciac.llnl.gov/ciac/CIACVirusDatabase.html. This site is one of the most
comprehensive virus databases on the Internet and an excellent resource for learning
about various viruses that can affect your platform.

Here's an interesting bit of trivia: If you want to be virus-free, use UNIX as your
platform. According to the CIAC, there has only been one recorded instance of a UNIX
virus, and it was created purely for research purposes. It was called the AT&T Attack
Virus.

Cross Reference: If you want to see an excellent discussion about UNIX and viruses,
check out "The Plausibility of UNIX Virus Attacks" by Peter V. Radatti at
http://www.cyber.com/papers/plausibility.html.

Radatti makes a strong argument for the plausibility of a UNIX virus. However, it should
be noted that virus authors deem UNIX a poor target platform because of access-control
restrictions. It is felt that such access-control restrictions prevent the easy and fluid spread
of the virus, containing it in certain sectors of the system. Therefore, for the moment
anyway, UNIX platforms have little to fear from virus authors around the world.

Nonetheless, as I discuss in Chapter 14, at least one virus for Linux has been confirmed.
This virus is called Bliss. Reports on Bliss at the time of this writing are sketchy. There is
some argument on the Internet as to whether Bliss qualifies more as a trojan, but the
majority of reports suggest otherwise. Furthermore, it is reported that it compiles cleanly
on other UNIX platforms.

Cross Reference: The only known system tool that checks for Bliss infection was
written by Alfred Huger and is located at ftp://ftp.secnet.com/pub/tools/abliss.tar.gz.

NOTE: There is some truth to the assertion that many viruses are written overseas. The
rationale for this is as follows: Many authorities feel that authors overseas may not be
compensated as generously for their work and they therefore feel disenfranchised. Do
you believe it? I think it's possible.

In any event, all materials downloaded from a nontrusted source should be scanned for
viruses. The best protection is a virus scanner; there are many for all personal computer
platforms. Even though this subject is covered extensively later, Table 8.1 shows a few.

Table 8.1. Virus scanners by platform.

|Platform | Virus

\Windows/DOS | Thunderbyte, F-PROT, McAfee's Virus Scan, TBAV

|Windows 95 |McAfee’s Virus Scan, Thunderbyte, Dr. Antivirus

|Windows NT |N0rt0n Antivirus, Sweep, NTAV, NT ViruScan, McAfee's Virus Scan
|Macintosh |Gatekeeper, Disinfectant, McAfee's Virus Scan

|OS/2 |McAfee’s Virus Scan

Malicious code is slightly different from a virus, but I want to mention it briefly (even
though I cover malicious code extensively in Chapter 14). Malicious code can be defined
as any programming code that is not a virus but that can do some harm, however
insignificant, to a user's software.

Today, the most popular form of malicious code involves the use of black widow apps, or
small, portable applications in use on the WWW that can crash or otherwise incapacitate
your WWW browser. These are invariably written in scripting languages like JavaScript
or VBScript. These tiny applications are embedded within the HTML code that creates
any Web page. In general, they are fairly harmless and do little more than force you to
reload your browser. However, there is some serious talk on the Net of such applications
being capable of:

e Circumventing security and stealing passwords
e Formatting hard disk drives
e Creating a denial-of-service situation

These claims are not fictional. The programming expertise required to wreak this havoc is
uncommon in prankster circles. However, implementing such apps is difficult and risky
because their origin can be easily traced in most instances. Moreover, evidence of their
existence is easily obtained simply by viewing the source code of the host Web page.
However, if such applications were employed, they would be employed more likely with
Java, or some other compiled language.

In any event, such applications do exist. They pose more serious risks to those using
networked operating systems, particularly if the user is browsing the Web while logged
into an account that has special privileges (such as root, supervisor, or administrator).
These privileges give one great power to read, write, alter, list, delete, or otherwise
tamper with special files. In these instances, if the code bypasses the browser and
executes commands, the commands will be executed with the same privileges as the user.
This could be critical and perhaps fatal to the system administrator. (Not physically fatal,
of course. That would be some incredible code!)

Cracking

Cracking an individual is such a broad subject that I really cannot cover it here.
Individuals use all kinds of platforms, and to insert a "cracking the individual" passage
here would defeat the purpose of this book (or rather, the whole book would have to
appear in this chapter). I say this because throughout this book, I discuss cracking

different platforms with different techniques and so on. However, I will make a general
statement here:

Users who surf using any form of networked operating system are viable targets. So there
is no misunderstanding, let me identify those operating systems:

e Windows 95

e Windows NT

e Novell NetWare

e Any form of UNIX

e Some versions of AS/400
e VAX/VMS

If you are connected to the Net with such an operating system, you are a potential target
of an online crack. Much depends on what services you are running, but be assured: If
you are running TCP/IP as a protocol, you are a target. Equally, those Windows 95 users
who share out directories are also targets. (I discuss this in detail in Chapter 16,
"Microsoft," but briefly, shared out directories are those that allow file sharing across a
network.)

The Public and Corporations

This section starts with the general public. The general public is often a target of Internet
warfare, though most Internet users may remain unaware of this. Attacks against the
general public most often occur on the Usenet news network. I want to briefly describe
what Usenet is, for many users fail to discover Usenet news even after more than a year
of Internet use. In that respect, Usenet news is much like IRC. It is a more obscure area of
the Internet, accessible through browsers, but more commonly accessed through
newsreaders. Some common newsreaders for various platforms are shown in Table 8.2.

Table 8.2. Newsreaders by platform.

|Platf0rm |Newsreader

Windows Free Agent, WinVn, Smart Newsreader, Virtual Access, 32 bit News, SB Newsbot, News
Xpress, Microsoft News

|UNIX |TRN, TIN, Pine, Xnews, Netscape Navigator, INN

Windows 95 |Free Agent, WinVn, Smart Newsreader, Virtual Access, 32 bit News, SB Newsbot, News
Xpress, Microsoft News

Windows Free Agent, WinVn, Smart Newsreader, Virtual Access, 32 bit News, SB Newsbot, News
NT Xpress, Microsoft News

|Macintosh |Netscape Navigator, NewsWatcher, Cyberdog, Internews, Nuntius,

|OS/2 |Newsbeat, Postroad,

The interface of a typical browser includes a listing of newsgroup messages currently
posted to the selected newsgroup. These messages are displayed for examination in the

newsreader. For example, examine Figure 8.5, which shows a Free Agent Usenet session
reviewing posted messages (or articles) to the Usenet group.

Figure 8.5.
A typical Usenet session using Free Agent by Forte.

Usenet news is basically a massive, public bulletin board system. On it, users discuss
various topics of interest. They do this by posting messages to the system. These
messages are saved and indexed with all messages on that topic. The totality of messages
posted on a particular topic form a discussion thread. This thread is generally arranged
chronologically. The typical progression is this:

1. One user starts a thread by posting a message.
2. Another user sees this message, disagrees with the original poster, and posts a rebuttal.

3. More users see this exchange and jump in on the action, either supporting or rebutting the
original posts (and all subsequent ones.)

If this sounds adversarial, it's because it is. Although peaceful Usenet discussions are
common, it is more common to see arguments in progress.

In any event, Usenet messages are probably the most graphic example of free speech in
America. One can openly express opinions on any subject. It is a right of all Internet
users. Sometimes, however, others directly interfere with that right. For example, in
September, 1996, someone erased approximately 27,000 messages posted by various
ethnic groups and other interested parties. As Rory J. O'Connor of the Mercury News
reported:

One of the more popular mass communication forms on the Internet was sabotaged last weekend,

wiping clean dozens of public bulletin boards with tens of thousands of messages frequented by
Jews, Muslims, feminists, and gays, among others.

This type of activity, called canceling, is common and, to date, there is no clear
application of U.S. law to deal with it. For example, some legal experts are still debating
whether this constitutes an offense as defined under current law. Offense under criminal
law or not, it would appear that such activity could constitute a tort or civil wrong of
some classification. For example, the Internet has not yet been the target of any lawsuit
based on antitrust law. However, it would seem reasonable that antitrust claims (those
alleging attempted restraint of interstate commerce) could apply. This is a question that
will undoubtedly take a decade to sort out. For although the technology of the Internet
moves quickly indeed, the legal system grinds ahead at a slow pace.

Canceling refers to that activity where a user generates a cancel command for a given
Usenet message. By sending this cancel command, the user erases the Usenet message
from the Internet. This feature was added to the Usenet system so that a user could cancel
a message if he or she suddenly decided it wasn't appropriate or had lost its value. This is
discussed more in Chapter 13, "Techniques to Hide One's Identity."

Cross Reference: If you are interested in cancel techniques and want to know more,
there are several resources. First, the definitive document on what types of cancels are
permitted is at http://www.math.uiuc.edu/~tskirvin/home/rfc1036b.

The FAQ about cancel messages is at
http://www.lib.ox.ac.uk/internet/news/faqg/archive/usenet.cancel-
faqg.partl.html.

Cancel techniques are often used against advertisers who attempt to flood the Usenet
network with commercial offerings (this activity is referred to as spamming). Such
advertisers typically use commercial software designed to make Usenet postings en
masse. This is required for the task, as there are over 20,000 Usenet groups to date. To
target each one would be no less laborious than mailing 20,000 e-mail messages. Thus,
mass-posting utilities are becoming the latest hot item for commercial advertisers. Alas,
they may be wasting their money.

Several individuals skilled in Internet programming have created cancelbots. These are
programs that go onto the Usenet network and search for messages that fit programmer-
defined criteria. When these messages are identified, they are canceled. This can be done
by anyone on a small scale. However, this technique is impractical to generate cancels en
masse. For this, you use a cancelbot. Cancelbots are robots, or automated programs that
can automatically cancel thousands of messages.

In the past, these utilities have been used primarily by purists who disapprove of
commercialization of the Net. They chiefly target advertisers who fail to observe good
Netiquette. The Usenet community has traditionally supported such efforts. However, a
new breed of canceler is out there: This breed cancels out of hatred or intolerance, and
the phenomenon is becoming more prevalent. In fact, cancelbots are just the tip of the
iceberg.

Many special-interest groups take their battles to the Net, and cancel messaging is one
weapon the often use. For example, consider the debate over Scientology. The Church of
Scientology is a large and influential organization. Many people question the validity of
the Scientologist creed and belief. In the past few years, several open wars have erupted
on the Usenet network between Scientologists and their critics. (The Usenet group in
question here is alt.religion.scientology.) These wars were attended by some fairly
mysterious happenings. At one stage of a particularly ugly struggle, when the
Scientologists seemed overwhelmed by their sparring partners, a curious thing happened:

And thus it was that in late 1994, postings began to vanish from alt.religion.scientology,
occasionally with an explanation that the postings had been "canceled because of copyright
infringement." To this day, it is not known who was behind the deployment of these "cancelbots,"
as they are known. Again, the CoS disclaimed responsibility, and the anti-Scientology crowd
began to refer to this anonymous participant simply as the "Cancel-bunny," a tongue-in-cheek
reference to both the Energizer bunny and to a well-known Net inhabitant, the Cancelmoose, who
has taken it upon himself (itself?, themselves?) to set up a cancelbot-issuing process to deal with
other kinds of spamming incidents. But whoever or whatever the Cancelbunny may be, its efforts
were quickly met by the development of yet another software weapon, appropriately dubbed
"Lazarus," that resurrects canceled messages (or, more accurately, simply alerts the original
poster, and all other participants in the newsgroup, that a specific message has been canceled,
leaving it up to the original poster to reinstate the message if he or she were not the party that
issued the cancel command).'

""The First Internet War; The State of Nature and the First Internet War: Scientology, its
Critics, Anarchy, and Law in Cyberspace." David G. Post, Reason magazine. April, 1996.
(Copyright trailer follows: (¢) 1996 David G. Post. Permission granted to redistribute
freely, in whole or in part, with this notice attached.)

The controversy between the Scientologists and their critics was indeed the first war on
the Internet. That war isn't over yet, either. Unfortunately for all parties concerned, the
war wafted out of cyberspace and into courts in various parts of the world. In short,
warring in cyberspace simply wasn't satisfying enough. The combatants have therefore
taken to combat in the real world.

Cross Reference: If you are genuinely interested in this war, which is truly brutal, visit
http://www.cybercom.net/~rnewman/scientology/home.html.

The Internet is an odd place, and there are many people there who want to harm each
other. In this respect, the Internet is not radically different from reality. The problem is
that on the Internet, these people can find each other without much effort. Furthermore,
violent exchanges are almost always a public spectacle, and the Internet has no riot
police. You have choices, and here they are:

e Don't get involved
e Speak softly and carry a big stick
e Geta UNIX box and some serious hacking experience

I recommend a combination of the first and last options. That way, you are out of the line
of fire. And if, for some inexplicable reason, someone pulls you into the line of fire, you
can blow them right out of cyberspace.

Internet Service Providers

Internet service providers (ISPs) are the most likely to engage in warfare, immediately
followed by universities. I want to address ISPs first. For our purposes, an ISP is any
organization that provides Internet access service to the public or even to a limited class
of users. This definition includes freenets, companies that provide access to their
employees, and standard ISPs that provide such services for profit. Internet access
service means any service that allows the recipient of such service to access any portion
of the Internet, including but not limited to mail, Gopher, HTTP, Telnet, FTP, or other
access by which the recipient of such services may traffic data of any kind to or from the
Internet.

ISPs are in a unique position legally, commercially, and morally. They provide service
and some measure of confidentiality to their users. In that process, they undertake a
certain amount of liability. Unfortunately, the parameters of that liability have not yet
been adequately defined in law. Is an ISP responsible for the content of its users'
messages?

Suppose users are utilizing the ISP's drives to house a pirated software site. Is the ISP
liable for helping facilitate criminal activity by failing to implement action against
pirates?

If a cracker takes control of an ISP and uses it to attack another, is the first ISP liable?
(Did it know or should it have known its security was lax and thus the damages of the
victim were foreseeable?)

If a user retouches trademarked, copyrighted cartoon characters into pornographic
representations and posts them on a Web page, is the ISP at fault?

These are questions that have yet to be answered. And from the first case where a
plaintiff's attorneys manage to hoist that liability onto ISPs, the freedom of the Internet
will begin to wither and die. These are not the only problems facing ISPs.

Because they provide Internet access services, they have one or more (usually thousands
of) individuals logged into their home network. This presents a terrific problem: No
matter how restrictive the policies of an ISP might be, its users will always have some
level of privilege on the network. That is, its users must, at a minimum, have access to
log in. Frequently, they have more.

Granted, with the advent of HTML browsers, the level of access of most users is now
lower than in the past. In earlier years, users of an ISP's services would log in via Telnet.
Thus, users were logged directly to the server and received shell access. From this point,
such users were capable of viewing many different files and executing a variety of
programs. Thus, for ISPs of the old days, internal threats were substantial. In contrast,
most users access today using some dial-up program that provides a PPP link between
them and the ISP. The remaining navigation of the Internet is done through a browser,
which often obviates the need for the user to use Telnet. Nevertheless, internal threats
remain more common than any other type.

The majority of these threats are from small-time crackers looking to steal the local
password files and gain some leverage on the system. However, there exists a real risk of
attacks from the outside. Sometimes, for no particular reason, crackers may suddenly
attack an ISP. Here are some recent examples:

e A cracker repeatedly attacked an ISP in Little Rock, Arkansas, at one point taking down its servers
for a period of more than four hours. The FBI picked up that case in a heartbeat.

e Panix.com was subjected to an onslaught of denial-of-service attacks that lasted for more than a
week.

Cybertown, a popular spot for Net surfers, was cracked. Crackers apparently seized
control and replaced the attractive, friendly Web pages with their own. This same group
of crackers reportedly later seized control of Rodney Dangerfield's site. Mr. Dangerfield,
it seems, cannot get any respect, even on the Internet.

Universities are in exactly the same position. The only major difference is that
universities have some extremely talented security enthusiasts working in their computer

science labs. (Some of the higher-quality papers about security posted to the Internet have
come from such students.)

These entities are constantly under attack and in a state of war. So what types of tools are
they using to protect themselves? Not surprisingly, most of these tools are defensive in
character. The majority, in fact, may do less to protect than to gather evidence. In other
words, Big Brother is watching because crackers have forced him to do so.

The key utilities currently in use are logging utilities. These are relatively low-profile
weapons in Internet warfare. They are the equivalent of security guards, and generally
either alert the supervisor to suspicious activity or record the suspicious activity for later
use. A few such utilities are listed in Table 8.3.

Table 8.3. Various logging and snooping utilities of interest.

|Utility |Functi0n

L5 Scans either UNIX or DOS directory structures, recording all information about files there. Is
used to determine suspicious file changes, files in restricted areas, or changes in file sizes. (For
use in detecting trojans.)

Clog Listens to determine whether crackers (from the outside) are trying to find holes in the system.

LogCheck |Automates log file analysis to determine whether system violations have occurred. It does this
by scanning existing log files.

Netlog Listens and logs TCP/IP connections, searching for suspicious activity therein. This package is
from Texas A&M University.

DumpACL |Windows NT utility that formats important access-control information into convenient,
readable formats for quick analysis of the system's security.

Later in this book, I will examine dozens of utilities like those in Table 8.3. The majority
of utilities mentioned so far are either freeware, shareware, or relatively inexpensive.
They are used chiefly by public entities such as ISPs and universities. However, an entire
world of corporate sources is available. As you might expect, American corporations are
concerned about their security.

Corporations often maintain sensitive information. When they get cracked, the crackers
usually know what they are looking for. For example, the famous cracker Kevin Mitnik
reportedly attempted to steal software from Santa Cruz Operation (SCO) and Digital
Equipment Corporation (DEC). These two companies manufactured high-performance
operating systems. Mitnik was allegedly interested in obtaining the source code of both.
Undoubtedly, Mitnik had intentions of examining the internal workings of these systems,
perhaps to identify flaws within their structures.

Corporations operate a little bit differently from other entities, largely because of their
organizational structure. Management plays a strong role in the security scheme of any
corporation. This differs from universities or ISPs where those with actual security
knowledge are handling the situation.

Corporate entities are going to have to come to terms with Internet warfare very soon. For
although corporations have the resources to keep penetration of their networks secret, this
practice is not advisable. Corporate America wants the Internet badly. In the Internet,

they see potential for profit as well as networking. (Several banks have already begun
preparing to provide online banking. How effectively they can implement this remains to
be seen.)

Some excellent research has proven that a large portion of corporate America is not
secure. In Chapter 9, "Scanners," you will learn about scanners, which conduct automated
security surveys of remote sites. One such utility is SATAN. This tool was created for the
benefit of Internet security by Dan Farmer and Weitse Venema. In December, 1996, Dan
Farmer conducted a survey of approximately 2,000 randomly chosen networks in the
void.

The survey was called "Shall We Dust Moscow? Security Survey of Key Internet Hosts
& Various Semi-Relevant Reflections." A significant number of the sampled hosts were
corporate sites, including banks, credit unions, and other financial institutions:
organizations that are charged with keeping the nation's finances secure. Farmer's
findings were shocking. Large numbers of corporate sites could be cracked by attackers
with minimal to complex knowledge of the target host's operating system.

Cross Reference: Rather than parade Mr. Farmer's hard-earned statistics here, I will
point you to the site where the survey is publicly available:
http://www.trouble.org/survey/.

If you examine the survey, you will find that almost 60 percent of those sites surveyed
are in some way vulnerable to remote attack. Many of those are institutions on which the
American public relies.

Today, corporate entities are rushing to the Net in an effort to establish a presence. If
such organizations are to stay, they must find resources for adequate security. Again, the
problem boils down to education. While I was writing this chapter, I received an e-mail
message from a firm on the east coast, requesting an estimate on a security audit. That
site maintained no firewall and had three possible entry points. Two of these machines
were easily crackable by any average cracker. The remaining machine could be cracked
after running just one SATAN scan against it.

If there is any group of individuals that needs to obtain books like this one (and, the
wealth of all security information now available on the Net), it is America's corporate
community. I have had consultations with information managers that have an uphill battle
in convincing their superiors that security is a major issue. Many upper-level
management officers do not adequately grasp the gravity of the situation. Equally, these
folks stand a good chance of being taken, or fleeced, by so-called security specialists. All
in all, a dirty war is being fought out there.

Before I close with some reflections about government, I would like to impart this:
Internet warfare occurs between all manners of individual and organization on the
Internet. This trend will only continue to increase in the near future. There are bandits,
charlatans, gunslingers, and robbers...the Internet is currently just slightly less lawless
than the stereotypical image of the Old West. Until laws become more concrete and
focused, my suggestion to you, no matter what sector you may occupy, is this: Absorb

much of the voluminous security literature now available on the Internet. Throughout this
book, I provide many references to assist you in that quest.

The Government

Government Internet warfare refers to that warfare conducted between the U.S.
government and foreign powers. (Though, to be honest, the majority of Internet warfare
that our government has waged has been against domestic hackers. I will briefly discuss
that issue a little later on in this section.)

One would imagine that the U.S. government is amply prepared for Internet warfare.
Well, it isn't. Not yet. However, recent research suggests that it is gearing up for it. In a
1993 paper, specialists from Rand Corporation posed the question of whether the United
States was prepared for a contingency it labeled cyberwar. The authors of that paper
posed various questions about the U.S.'s readiness and made recommendations for
intensive study on the subject:

We suggest analytical exercises to identify what cyberwar, and the different modalities of
cyberwar, may look like in the early twenty-first century when the new technologies should be
more advanced, reliable, and internetted than at present. These exercises should consider
opponents that the United States may face in high- and low-intensity conflicts. CYBERWAR IS
COMING!®

*John Arquilla and David Ronfeldt, International Policy Department, RAND. 1993.
Taylor & Francis. ISSN: 0149-5933/93.

Indeed, the subject of cyberwar is a popular one. Many researchers are now involved in
assessing the capability of U.S. government agencies to successfully repel or survive a
comprehensive attack from foreign powers. John Deutch, head of the CIA, recently
addressed the U.S. Senate regarding attacks against our national information
infrastructure. In that address, the nation's chief spy told of a comprehensive assessment
of the problem:

We have a major national intelligence estimate underway which will bring together all parts of the

community, including the Department of Justice, the Defense Information Systems Agency, the

military, the FBI, criminal units from the Department of Justice in providing a formal intelligence

estimate of the character of the threats from foreign sources against the U.S. and foreign
infrastructure. We plan to have this estimate complete by December 1 of this year.

How likely is it that foreign powers will infiltrate our national information infrastructure?
That is difficult to say because the government now, more than ever, is getting quiet
about its practices of security on the Net. However, [would keep a close eye in the near
future. Recent events have placed the government on alert and it has intentions, at least,
of securing that massive (and constantly changing) entity called the Internet. I do know
this: There is a substantial movement within the government and within research
communities to prepare for Internet warfare on an international scale.

Cross Reference: I want to point you to an excellent starting point for information about
Internet warfare. It is a site that contains links to many other sites dealing with Internet
and information warfare. These links provide a fascinating and often surprising view. The
site can be found at http://www.fas.org/irp/wwwinfo.html.

Within the next five years, we will likely begin engaging in real Internet warfare with real
enemies. And, for all we know, these real enemies may have already started warring with
us.

Summary

As more and more users flock to the Internet, Internet warfare will increase in prevalence
whether at the governmental, corporate, or personal level. For this reason, each user
should have a minimum of knowledge about how to defend (if not attack) using standard
Internet warfare techniques. This is especially so for those who have networks connected
24 hours a day. Sooner or later, whether you want to fight or not, someone will probably
subject you to attack. The key is knowing how to recognize such an attack.

Various chapters throughout this book (most notably Chapter 9, "Scanners") discuss
attacks from both viewpoints: aggressor and victim. In fact, Part III of this book is
devoted specifically to tools (or munitions) used in Internet warfare. I will discuss some
of these in the next chapter.

9

Scanners

In this chapter, I examine scanners. The structure of this chapter is straightforward and
very similar to previous chapters. It begins by answering some basic questions, including

e What is a scanner?

e What does a scanner do?

e On what platforms are scanners available?

e What system requirements are involved to run a scanner?
e Is it difficult to create a scanner?

e What will a scanner tell me?

e What won't a scanner tell me?

e Are scanners legal?

e Why are scanners important to Internet security?
After answering these questions, I will examine the historical background of scanners.

From there, I cover the scanner from a more practical viewpoint. I will differentiate
between true scanners are other diagnostic network tools. I will examine different types
of scanners, especially very popular ones (such as SATAN and Strobe). At that point, you
will gain understanding of what constitutes a scan and what ingredients are necessary to
create a scanner.

Finally, you will conduct a scan and analyze what information has been gained from it. In
this way, you will derive an inside look at scanner functionality. By the end of this
chapter, you will know what a scanner is, how to deploy one, and how to interpret the
results from a scan. In short, I will prepare you for actual, network combat using
scanners.

Scanners

In Internet security, no hacking tool is more celebrated than the scanner. It is said that a
good TCP port scanner is worth a thousand user passwords. Before I treat the subject of
scanners in depth, I want to familiarize you with scanners.

What Is a Scanner?

A scanner is a program that automatically detects security weaknesses in a remote or
local host. By deploying a scanner, a user in Los Angeles can uncover security
weaknesses on a server in Japan without ever leaving his or her living room.

How Do Scanners Work?

True scanners are TCP port scanners, which are programs that attack TCP/IP ports and
services (Telnet or FTP, for example) and record the response from the target. In this
way, they glean valuable information about the target host (for instance, can an
anonymous user log in?).

Other so-called scanners are merely UNIX network utilities. These are commonly used to
discern whether certain services are working correctly on a remote machine. These are
not true scanners, but might also be used to collect information about a target host. (Good
examples of such utilities are the rusers and host commands, common to UNIX
platforms.) Such utilities are discussed later in this chapter.

Cross Reference: rusers gathers information about users currently logged to the
targeted host and in this way, closely resembles the UNIX utility finger. host is also
a UNIX utility, designed to interactively query name servers for all information held on
the targeted host.

On What Platforms Are Scanners Available?

Although they are commonly written for execution on UNIX workstations, scanners are
now written for use on almost any operating system. Non-UNIX scanning tools are
becoming more popular now that the rest of the world has turned to the Internet. There is
a special push into the Microsoft Windows NT market, because NT is now becoming
more popular as an Internet server platform.

What System Requirements Are Necessary to Run a Scanner?

System requirements depend on the scanner, your operating system, and your connection
to the Internet. Certain scanners are written only for UNIX, making UNIX a system
requirement. There are, however, more general requirements of which to be aware:

¢ You might encounter problems if you are running an older Macintosh or IBM compatible with a
slow Internet connection (as would be the case if you used Windows 3.11 running TCPMAN as a
TCP/IP stack, via a 14.4 modem). These configurations might cause stack overflows or general
protection faults, or they might simply cause your machine to hang. Generally, the faster your
connection, the better off you are. (And naturally, a true 32-bit system contributes greatly to
performance.)

e RAM is another issue, mainly relevant to window-system-based scanners. Command-line
scanning utilities typically require little memory. Windowed scanners can require a lot. (For a
comparison, I suggest running ISS. First, try the older, command-line version. Then run the new
Xiss, which operates through MIT's X Window System, OpenWindows, or any compatible UNIX-
based windowing system. The difference is very noticeable.)

Bottom line, you must have a compatible operating system, a modem (or other
connection to the Net), and some measure of patience. Not all scanners work identically
on different platforms. On some, this or that option might be disabled; on others,
sometimes very critical portions of the application might not work.

Is It Difficult to Create a Scanner?

No. However, you will require strong knowledge of TCP/IP routines and probably C,
Perl, and/or one or more shell languages. Developing a scanner is an ambitious project
that would likely bring the programmer much satisfaction. Even so, there are many
scanners available (both free and commercial), making scanners a poor choice as a for-
profit project.

You will also require some background in socket programming, a method used in the
development of client/server applications.

Cross Reference: There are many resources online to help you get started; I list two
here. The first is a bare-bones introduction to socket programming generated by Reg
Quinton at The University of Western Ontario. It can be found at
http://tecstar.cv.com/~dan/tec/primer/socket programming.html.

Another excellent source for information about socket programming is
provided by Quarterdeck Office Systems as an online programming
resource. It addresses all supported BSD 4.3 socket routines and is very
comprehensive. It is located at http://149.17.36.24/prog/sockets.html.

What Will a Scanner Tell Me?

A scanner might reveal certain inherent weaknesses within the target host. These might
be key factors in implementing an actual compromise of the target's security. In order to
reap this benefit, however, you must know how to recognize the hole. Most scanners do
not come with extensive manuals or instructions. Interpretation of data is very important.

What Won't a Scanner Tell Me?

A scanner won't tell you the following:

e A step-by-step method of breaking in

e The degree to which your scanning activity has been logged
Are Scanners Legal?

Yes. Scanners are most often designed, written, and distributed by security personnel and
developers. These tools are usually given away, via public domain, so that system
administrators can check their own systems for weaknesses. However, although scanners
are not illegal to possess or use, employing one if you are not a system administrator
would meet with brutal opposition from the target host's administrator. Moreover, certain
scanners are so intrusive in their probing of remote services that the unauthorized use of

them may violate federal or state statutes regarding unauthorized entry of computer
networks. This is a matter of some dispute and one not yet settled in law. Therefore, be
forewarned.

WARNING: Do not take scanning activity lightly. If you intend to scan wide ranges of
domains, check the laws in your state. Certain states have extremely particular
legislation. The wording of such statutes is (more often than not) liberally construed in
favor of the prosecution. For example, the state of Washington has provisions for
computer trespass. (Wash. Rev. Code Sec. 9A.52 110-120.) If you deploy a scanner that
attempts to steal the passwd file (a password file on the UNIX platform located in the
directory /ETC), you might actually have committed an offense. I will discuss legal
issues of hacking and cracking in Chapter 31, "Reality Bytes: Computer Security and the
Law."

Why Are Scanners Important to Internet Security?

Scanners are important to Internet security because they reveal weaknesses in the
network. Whether this information is used by hackers or crackers is immaterial. If used
by system administrators, scanners help strengthen security in the immediate sense. If
employed by crackers, scanners also help strengthen security. This is because once a hole
has been exploited, that exploitation will ultimately be discovered. Some system
administrators argue that scanners work against Internet security when in the hands of
crackers. This is not true. If a system administrator fails to adequately secure his or her
network (by running a scanner against it), his or her negligence will come to light in the
form of a network security breach.

Historical Background

Scanners are the most common utilities employed by today's cracker. There is no mystery
as to why: These programs, which automatically detect weaknesses within a server's
security structure, are fast, versatile, and accurate. More importantly, they are freely
available on the Internet. For these reasons, many sources insist that the scanner is the
most dangerous tool in the cracking suite.

To understand what scanners do and how they are employed, you must look to the dawn
of computer hacking. Transport yourself to the 1980s, before the personal computer
became a household item. The average machine had a 10MB hard disk drive and a
whopping 640K memory. In fact, our more mature readers will remember a time when
hard disk drives did not exist. In those early days, work was done by rotating through a
series of 5" floppy diskettes; one for the operating system, one for the current program,
and one to save your work.

Those early days are rather amusing in retrospect. Communications were conducted, if at
all, with modems ranging in speed from 300 to 1200bps. Incredibly, we got along rather
well with these meager tools.

The majority of users had never heard of the Internet. It existed, true, but was populated
primarily by military, research, and academic personnel. Its interface--if we could call it

that--was entirely command-line based. But these were not the only limitations
preventing America from flocking to the Net. Machines that could act as servers were
incredibly expensive. Consider that Sun Microsystems workstations were selling for five
and six figures. Today, those same workstations--which are scarcely more powerful than
a 25MHz 386--command less than $800 on Usenet.

We're talking frontier material here. Civilians with Internet access were generally
students with UUCP accounts. Dial-up was bare-bones, completely unlike today's more
robust SLIP, PPP, and ISDN access. In essence, the Internet was in its infancy, its
existence largely dependent on those early software authors concerned with developing
the system.

Security at that point was so lax that some readers will wonder why the Internet was not
completely overtaken by crackers. The answer is simple. Today, there are massive online
databases and mailing lists that broadcast weaknesses of a dozen different operating
systems. Table 9.1 lists a few examples.

Table 9.1. Online mailing lists of security holes.

|Resource |Location

|Firewalls mailing list IFirewallse@GreatCircle.COM

|Sneakers mailing list |SneakerseCs.Yale.EDU

|The WWW security list |WWW— security@ns2.rutgers.edu
|The NT security list |Ntsecurity@ISS
Bugtraq IBUGTRAQ@NETSPACE . ORG

Dozens of such mailing lists now exist on the Internet (for a comprehensive list, see
Appendix A, "How to Get More Information"). These lists operate almost completely

free of human interaction or maintenance. List members forward their reports via e-mail,
and this e-mail is distributed to the entire list, which can sometimes be many thousands of
people worldwide. In addition, such lists are usually archived at one or more sites, which
feature advanced search capabilities. These search capabilities allow any user, list
member, or otherwise to search for inherent vulnerabilities in every operating system
known to humankind.

Joining a list: Joining such a list is generally a simple process. Most lists require that you
send an e-mail message to a special address. This address accepts commands from your
first line of the e-mail message. The structure of this command may vary. In some cases,
that command is as simple as subscribe. In other cases, you may be required to issue
arguments to the command. One such argument is the name of the list. For example, the
Firewalls mailing list at GreatCircle . com requires that you send subscribe
firewalls as the first line of your e-mail.

Please note that this must be the first line of the e-mail message, and not
the subject line. This message is then sent to
majordomo@greatcircle.com. The address majordomo is a very common
one for processing mailing list subscription requests. Of course, each list is
different. To quickly determine the requirements for each security list, I
suggest you use Eugene Spafford's Web page as a springboard. Mr.

Spafford lists links on his page to most of the well-known security mailing
lists.

Cross Reference: Spafford's page is at
http://www.cs.purdue.edu/homes/spaf/hotlists/csec-top.html. From Spafford's page,
you can get to instructions on how to subscribe to any of the linked lists.

In the beginning, however, there were no such databases. The databases did not exist
largely because the knowledge did not exist. The process by which holes get discovered
inherently involves the exploitation of such weaknesses. More simply put, crackers crack
a machine here and a machine there. By and by, the weaknesses that were exploited in
such attacks were documented (and in certain instances, eradicated by later, superior
code). This process, as you might expect, took many years. The delay was based in part
on lack of knowledge and in part on the unwillingness of many system administrators to
admit their sites had been penetrated. (After all, no one wants to publicize that he
implements poor security procedures.)

So the stage is set. Picture a small, middle-class community with stately homes and
nicely trimmed lawns. It is near midnight. The streets are empty; most of the windows in
the neighborhood are dark, their shades drawn tight. One window is brightly lit, though,
and behind it is a young man of 15 years; before him is a computer (for the sake of
atmosphere, let's label it an old portable CoreData).

The boy is dialing a list of telephone numbers given to him by a friend. These are known
UNIX boxes sprinkled throughout a technology park a few miles away. Most of them
accept a connection. The common response is to issue a login prompt. Each time the boy
connects to such a machine, he tries a series of login names and passwords. He goes
through a hundred or more before finally, he obtains a login shell. What happens then is
up to him.

It is hard to believe that early cracking techniques involved such laborious tasks.
Depending on the operating system and the remote access software, one might have to
type dozens of commands to penetrate a target. But, as much as crackers are industrious,
they are also lazy. So, early on, the war dialer was developed.

A war dialer consists of software that dials a user-specified range of telephone numbers
searching for connectables (machines that will allow a remote user to log in). Using these
tools, a cracker can scan an entire business exchange in several hours, identifying all
hosts within that range. In this way, the task of locating targets was automated.

Better yet, war dialers record the response they receive from each connect. This data is
then exported to a human-readable file. Thus, in neatly written tables, one can tell not
only which numbers connected, but also what type of connection was initiated (such as
modem, 2400 baud or fax machine).

NOTE: The term war dialer reportedly originated from the film WarGames. The film's
plot centered around a young man who cracked his way into American military networks.

Some people believe that the film was inspired by the antics of the now-famous cracker,
Kevin Mitnik. Mitnik was a young teen when he cracked a key military network.

Cross Reference: If you want to check out a war dialer in action, I suggest getting
Toneloc. It is freely available on the Internet and is probably the best war dialer ever
made. It was written to run in DOS, but it also runs in Windows 95 via command prompt
(though perhaps not as smoothly as it should). It is available at
ftp://ftp.fc.net/pub/defcon/TONELOC/t1110.zip.

In essence, scanners operate much like war dialers with two exceptions:

e Scanners are used only on the Internet or other TCP/IP networks.

e Scanners are more intelligent than war dialers.

Early scanners were probably very simplistic. I say probably because such programs

were not released to the Internet community the way scanning tools are today (I therefore
have no way of knowing what they looked like). Thus, when I write of early scanners, I
mean basic programs written by system administrators for the purposes of checking their
own networks. These were most likely UNIX shell scripts that attempted to connect on
various ports, capturing whatever information was directed to the console or sTDOUT.
sTpouT refers to the output that one sees on the console or at a command prompt. In other
words, it is the output of a given command. The sTD refers to standard, and the ouT refers
to output. sSTDOUT, therefore, is the standard output of any given command. The sTpouT
result of a directory listing, for example, is a list of filenames and their sizes.

The Attributes of a Scanner

The primary attributes of a scanner are

e The capability to find a machine or network
e The capability, once having found a machine, to find out what services are being run on the host

e The capability to test those services for known holes

This process is not incredibly complex. At its most basic, it involves capturing the
messages generated when one tries to connect to a particular service. To illustrate the
process step by step, let's address these attributes one at a time.

Locating a Potential Target

The Internet is vast. There are literally millions of potential targets in the void. The
problem facing modern crackers is how to find those targets quickly and effectively.
Scanners are well suited for this purpose. To demonstrate how a scanner can find a
potential target, determine what services it is running, and probe for weaknesses, let's
pick on Silicon Graphics (SGI) for the remainder of this section. Here, you will see how
scanners are regularly employed to automate human cracking tasks.

A Hole Is Discovered

In late 1995, Silicon Graphics (SGI) shipped a large number of WebForce models. These
were extremely powerful machines, containing special software to generate media-rich
WWW pages. They ran IRIX, a proprietary form of UNIX, specifically designed for use
with SGI graphics workstations.

Certain versions of IRIX retained a default login for the line printer. That is, if a user
initiated a Telnet session to one of these SGI boxes and logged in as 1p, no password
would be required.

Typically, the cracker would be dropped to a shell prompt from which he or she could
execute a limited number of commands. Most of these were standard shell commands,
available to any user on the system. These did not require special privileges and
performed only basic functions, such as listing directories, displaying the contents of
files, and so forth. Using these commands, crackers could print the contents of the
passwd file to the screen. Once they had obtained this display, they would highlight the
screen, clip the contents, and paste them into a text editor on their local machine. They
would save this information to a local file and subsequently crack the encrypted
passwords from the SGI system.

TIP: A number of automated password-cracking utilities exist. Most often, these are
designed to crack DES-encrypted passwords, common to UNIX systems. I will cover
these utilities in Chapter 10, "Password Crackers."

News of this vulnerability spread quickly. Within days, the word was out: SGI WebForce
machines could be attacked (and their security compromised) with little effort. For
crackers, the next step was to find these machines.

Looking for WebForce Models

To exploit this hole, crackers needed to find WebForce models. One way to do so was
manually. For a time, search engines such as altavista.digital.com could be used to
locate such machines en masse. This is because many of the WebForce models were
administrated by those with strong knowledge of graphic arts and weak knowledge of
security. These administrators often failed to institute even the most basic security
measures. As such, many of these machines retained world-readable FTP directories.
These directories were therefore visible to search engines across the Internet.

The FTP directories of these SGI models contained standard, factory-default
/etc/passwd files. Contained within these were the login names of system users. The
majority of these login names were common to almost any distribution of UNIX.
However, these passwd files also included unique login names. Specifically, they
contained login names for several utilities and demo packages that shipped with the
software. One of these was a login called Ezsetup. Thus, a cracker needed only to issue
the following search string into any well known search engine:

EzSetup + root: lp:

This would return a list of WebForce models. The cracker would then take that list and
attempt to crack each machine. It was a quick and dirty way to collect a handful of
potential targets. However, that trend didn't last long (about a month or so). Advisories
were posted to the Net, explaining that world-readable directories were responsible for
the compromise of SGI security. So crackers turned elsewhere.

Some used the InterNIC database to find such machines (the WHOIS service). The
WHOIS service, housed at internic.net, is a database of all registered machines
currently on the Internet. One can query this database (to find out the network numbers or
the owner's address of a given machine) by issuing a wHOIS instruction at a UNIX
command prompt. The structure of such a command is whois mci.net. For those who
do not use UNIX, one can either Telnet directly to InterNIC (internic.net) or use one
of the utilities described later in this chapter.

Many hosts included words within their registered names that suggested at least a fleeting
probability that they owned an SGI, such as

e Graphics

e Art
e Indy
e TIndigo

The terms Indy and Indigo commonly appear on either the Web site or the directory
structure of an SGI workstation. That is because the product line is based on the Indigo
model, which is often referred to as the /ndy product line.

Some InterNIC entries also include the operating system type being run on the host.
Thus, a search for the string TrR1x could reveal a few machines. However, these methods
were unreliable. For example, many versions of IRIX did not suffer from the Ip bug
(neither did every WebForce model). So, instead, many crackers employed scanners.

Using Scanners to Uncover WebForce Models

Finding WebForce models using a scanner was an easy task. A range of addresses (such
as$199.171.190.0t0 199.171.200.0) would be picked out, perhaps randomly, perhaps
not. The cracker would specify certain options. For example, the scan didn't need to have
great depth (an issue we will be discussing momentarily). All it needed to do was check
each address for a Telnet connection. For each successful connection, the scanner would
capture the resulting text. Thus, a typical entry might look something like this:

Trying 199.200.0.0

Connected to 199.200.0.0
Escape Character is "]"

IRIX 4.1
Welcome to Graphics Town!
Login:

The resulting information would be written to a plain text file for later viewing.

Talented crackers would write an ancillary program to automate the entire process. Here
are the minimum functions that such a program would require:

e Start the scan, requesting the option to test Telnet connections for the 1p login.
e Wait until a signal indicating that the scan is completed is received.
e Access the result file, exporting only those results that show successful penetration.

e Format these results into flat-file, database format for easy management.

The scan would run for several hours, after which the cracker would retrieve a list of
compromised Indy machines. Later, perhaps at night (relative to the geographical
location of the target host), the cracker would log in and being the process of grabbing
the password files.

TIP: If you know of an SGI machine and you want to view the IP address of the last
person who exploited this vulnerability, finger lp@the . sgi . box. This author traced
down a person at Texas A&M University who was compromising machines from Los
Angeles to New York using this technique. This young man's originating address
appeared on 22 machines. (Some of these were of well- known institutions. While we
cannot identify them here, one was a graphic design school in New York City. Another
was a prominent gay rights organization in Los Angeles. To this day, these machines may
well be vulnerable to such an attack. Alas, many SGI users are gifted graphic artists but
have little background in security. A renowned university in Hawaii missed this hole and
had an entire internal network torn to pieces by a cracker. He changed the root passwords
and destroyed valuable data.)

NOTE: If you currently have a WebForce model, you can test whether it is vulnerable to
this simple attack. First, Telnet to the machine. When confronted with a login prompt,
enter the string 1p and press Enter. If you are immediately logged into a shell, your
machine is vulnerable. If so, this can be quickly remedied by opening the file
/etc/passwd and inserting an asterisk between the first and second fields for the user
1p. Thus, the leading portion of the line would look like this:
lp:*:4:7:1p:/var/spool/lpd:

instead of like this:
lp::4:7:1p:/var/spool/lpd:
The idea is to create a locked login. If you fail to do so, the problem will

remain because the system is configured to accept a line printer login
without requesting a password.

Of course, this is a very primitive example, but it illustrates how potential targets are
sometimes found with scanners. Now I want to get more specific. Momentarily, you will
examine various scanners currently available on the Internet. Before that, however, you
need to distinguish between actual scanners and network utilities that are not scanners.

Network Utilities

Sometimes people erroneously refer to network utilities as scanners. It is an easy mistake
to make. In fact, there are many network utilities that perform one or more functions that
are also performed during a bona fide scan. So, the distinction is significant only for
purposes of definition.

Because we are focusing on scanners, | would like to take a moment to illustrate the
distinction. This will serve two purposes: First, it will more clearly define scanners.
Second, it will familiarize you with the rich mixture of network resources available on
the Internet.

The network utilities discussed next run on a variety of platforms. Most of them are
ported from UNIX environments. Each utility is valuable to hackers and crackers.
Surprisingly, garden-variety network utilities can tell the user quite a bit, and these
utilities tend to arouse less suspicion. In fact, many of them are totally invisible to the
target host. This is in sharp contrast to most scanners, which leave a large footprint, or
evidence of their existence, behind. In this respect, most of these utilities are suitable for
investigating a single target host. (In other words, the majority of these utilities are not
automated and require varying levels of human interaction in their operation.)

host

host is a UNIX-specific utility that performs essentially the same operation as a standard
nslookup inquiry. The only real difference is that host is more comprehensive. Note,
too, that various non-UNIX utilities discussed in the following pages also perform similar
or equivalent tasks.

host ranks as one of the ten most dangerous and threatening commands in the gamut. To
demonstrate why, I pulled a host query on Boston University (BU.EDU). The command
line given was

host -1 -v -t any bu.edu

The output you are about to read is astonishing. A copious amount of information is
available, including data on operating systems, machines, and the network in general.
(Also, if you are deep into security, some preliminary assumptions might be made about
trust relationships.) Examine a few lines. First, let's look at the basic information:

Found 1 addresses for BU.EDU

Found 1 addresses for RSO.INTERNIC.NET
Found 1 addresses for SOFTWARE.BU.EDU
Found 5 addresses for RS.INTERNIC.NET
Found 1 addresses for NSEGC.BU.EDU
Trying 128.197.27.7
bu.edu 86400 IN SOA BU.EDU HOSTMASTER.BU.EDU (
961112121 ;serial (version)
900 ;refresh period
900 ;retry refresh this often
604800 ;expiration period

86400 ;minimum TTL
)

bu.edu 86400 IN NS SOFTWARE .BU.EDU

bu.edu 86400 IN NS RS.INTERNIC.NET
bu.edu 86400 IN NS NSEGC.BU.EDU
bu.edu 86400 IN A 128.197.27.7

This in itself is not damaging. It identifies a series of machines and their name servers.
Most of this information could be collected with a standard WHOIS lookup. But what
about the following lines:

bu.edu 86400 IN HINFO SUN-SPARCSTATION-10/41 UNIX
PPP-77-25.bu.edu 86400 IN A 128.197.7.237
PPP-77-25.bu.edu 86400 IN HINFO PPP-HOST PPP-SW
PPP-77-26.bu.edu 86400 IN A 128.197.7.238
PPP-77-26.bu.edu 86400 IN HINFO PPP-HOST PPP-SW
ODIE.bu.edu 86400 IN A 128.197.10.52

ODIE.bu.edu 86400 IN MX 10 CS.BU.EDU

ODIE.bu.edu 86400 IN HINFO DEC-ALPHA-3000/300LX OSF1

Here, we are immediately aware that a DEC Alpha running OSF/1 is available
(ODIE.bu.edu). And then:

STRAUSS .bu.edu 86400 IN HINFO PC-PENTIUM DOS/WINDOWS
BURULLUS . bu.edu 86400 IN HINFO SUN-3/50 UNIX (Ouch)
GEORGETOWN . bu.edu 86400 IN HINFO MACINTOSH MAC-0S
CHEEZWIZ.bu.edu 86400 IN HINFO SGI-INDIGO-2 UNIX
POLLUX.bu.edu 86400 IN HINFO SUN-4/20-SPARCSTATION-SLC UNIX
SFA109-PC201.bu.edu 86400 IN HINFO PC MS-DOS/WINDOWS
UH-PC002-CT.bu.edu 86400 IN HINFO PC-CLONE MS-DOS

SOFTWARE . Dbu.edu 86400 IN HINFO SUN-SPARCSTATION-10/30 UNIX
CABMAC.Dbu.edu 86400 IN HINFO MACINTOSH MAC-0S
VIDUAL.bu.edu 86400 IN HINFO SGI-INDY IRIX

KIOSK-GB.bu.edu 86400 IN HINFO GATORBOX GATORWARE
CLARINET.Dbu.edu 86400 IN HINFO VISUAL-X-19-TURBO X-SERVER
DUNCAN.bu.edu 86400 IN HINFO DEC-ALPHA-3000/400 OSF1
MILHOUSE.bu.edu 86400 IN HINFO VAXSTATION-II/GPX UNIX
PSY81-PC150.bu.edu 86400 IN HINFO PC WINDOWS-95
BUPHYC.bu.edu 86400 IN HINFO VAX-4000/300 OpenVMS

I have omitted the remaining entries for sake of brevity. The inquiry produced a plain text
file of some 70KB (over 1500 lines in all).

The point here is this: Anyone, with a single command-line, can gather critical
information on all machines within a domain. When crackers looks at the preceding
information, they are really seeing this:

e ODIE.bu.edu is a possible target for the mount -d -s bug, where if two successive mount
-d -s commands are sent within seconds of one another (and before another host has issued such
a request), the request will be honored.

e CHEEZEWIZ.Dbu.edu is a potential target for either the 1p login bug or the Telnet bug. Or
maybe, if we're on site, we can exploit the floppy mounter bug in /usr/etc/msdos.

e POLLUX.bu.edu is an old machine. Perhaps Sun Patch-ID# 100376-01 hasn't been applied.
Maybe they put in a fresh install of SunOS 4.1.x and the SPARC integer division is shredded.

e Iseethat PSY81-PC150.bu.edu is running Windows 95. I wonder whether the SMB protocol
is running and if so, are any local directories shared out? Using Samba on a Linux box, perhaps |
can attach one of the shared out directories from anywhere on the Internet simply by specifying
myself as a guest.

As you can easily see, even minor information about the operating system can lead to
problems. In reality, the staff at Bu. EDU has likely plugged all the holes mentioned here.
But that doesn't mean that every host has. Most haven't.

A host lookup takes less than three seconds, even when the network is under heavy
system load. It is quick, legal, and extremely revealing.

CAUTION: There are various ways to protect against this. One way is to run a firewall.
Another is to restrict queries of name servers to a particular set of addresses. Another is
to completely disallow outside access to your name servers.

Traceroute

Traceroute's name is quite descriptive. In short, it traces the route between two machines.
As explained in the man (manual) page:
Tracking the route one's packets follow (or finding the miscreant gate way that's discarding your

packets) can be difficult. Traceroute utilizes the IP protocol "time to live' field and attempts to
elicit an ICMP TIME EXCEEDED response from each gateway along the path to some host.

NOTE: Man pages are manual pages on the UNIX platform. These are the equivalent of
help files. They can be called from a command prompt or from a windowed system. On a
full install of UNIX, these man pages cover help on all commands one can issue from a
prompt. They also cover most programming calls in C and C++.

This utility can be used to identify the location of a machine. Suppose, for example, that
you are trying to track down an individual who posted from a box connected to his or her
ISP via PPP. Suppose that the posting revealed nothing more than an IP address that,
when run through a WHOIS search, produces nothing (that is, the address is not the
address of a registered domain). You can find that machine by issuing Traceroute
requests. The second to last entry is generally the network from which the activity
originated. For example, examine this Traceroute trace going from a machine in France
(freenix. fr) to mine:

1 193.49.144.224 (193.49.144.224) 3ms 2 ms 2 ms

2 gw-ft.net.univ-angers.fr (193.49.161.1) 3 ms 3 ms 3 ms

3 angers.or-pl.ft.net (193.55.153.41) 5 ms 5 ms 5 ms

4 nantesl.or-pl.ft.net (193.55.153.9) 13 ms 10 ms 10 ms

5 stamandl.renater.ft.net (192.93.43.129) 25 ms 44 ms 67 ms
6 7rbsl.renater.ft.net (192.93.43.186) 45 ms 30 ms 24 ms

7 raspail-ip2.eurogate.net (194.206.207.18) 51 ms 50 ms 58

8 raspail-ip.eurogate.net (194.206.207.58) 288 ms31l ms 287 ms
9 * Reston.eurogate.net (194.206.207.5) 479 ms 469 ms
10 gsl-sl-dc-fddi.gsl.net (204.59.144.199) 486 ms 490 ms 489 ms
11 sl-dc-8-F/T.sprintlink.net (198.67.0.8) 475 ms * 479 ms
12 sl-mae-e-H2/0-T3.sprintlink.net (144.228.10.42)498 ms 478 ms
13 mae-east.agis.net (192.41.177.145) 391 ms 456 ms 444 ms
14 hO0-0.losangelesl.agis.net (204.130.243.45)714 ms 556 ms714 ms

15 pbil0.losangeles.agis.net (206.62.12.10) 554 ms 543 ms 505 ms
16 1lsan03-agisl.pbi.net (206.13.29.2) 536 ms 560 ms *

17 * * %

18 pml.pacificnet.net (207.171.0.51) 556 ms 560 ms 561 ms

19 pml-24.pacificnet.net (207.171.17.25) 687 ms 677 ms 714 ms

From this, it is clear that I am located in Los Angeles, California:
pbil0.losangeles.agis.net (206.62.12.10) 554 ms 543 ms 505 ms

and occupy a place at pacificnet .net:
pml.pacificnet.net (207.171.0.51) 556 ms 560 ms 561 ms

Traceroute can be used to determine the relative network location of a machine in the
void.

Note that you needn't have UNIX (or a UNIX variant) to run Traceroute queries. There
are Traceroute gateways all over the Internet. And, although these typically trace the
route only between the Traceroute gateway and your target, they can at least be used to
pin down the local host of an IP address.

Cross Reference: Try the Traceroute gateway at
http://www.beach.net/traceroute.html.

rusers and finger

rusers and finger can be used together to glean information on individual users on a
network. For example, a rusers query on the domain wizard.com returns this:

gajake snark.wizard.com:ttypl ©Nov 13 15:42 7:30 (remote)
root snark.wizard.com:ttyp2 Nov 13 14:57 7:21 (remote)
robo snark.wizard.com:ttyp3 Nov 15 01:04 01 (remote)

angellll snark.wizard.com:ttyp4 Novld 23:09 (remote)

pippen snark.wizard.com:ttypé Nov 14 15:05 (remote)
root snark.wizard.com:ttyp5 Nov 13 16:03 7:52 (remote)
gajake snark.wizard.com:ttyp7 Nov 14 20:20 2:59 (remote)
dafr snark.wizard.com:ttypl5Nov 3 20:09 4:55 (remote)
dafr snark.wizard.com:ttypl Nov 14 06:12 19:12 (remote)
dafr snark.wizard.com:ttypl9Nov 14 06:12 19:02 (remote)

As an interesting exercise, compare this with finger information collected immediately
after:

user S00 PPP ppp-122-pml.wiza Thu Nov 14 21:29:30 - still logged in
user S15 PPP ppp-119-pml.wiza Thu Nov 14 22:16:35 - still logged in
user S04 PPP ppp-121-pml.wiza Fri Nov 15 00:03:22 - still logged in
user S03 PPP ppp-112-pml.wiza Thu Nov 14 22:20:23 - still logged in
user S26 PPP ppp-124-pml.wiza Fri Nov 15 01:26:49 - still logged in
user S25 PPP ppp-102-pml.wiza Thu Nov 14 23:18:00 - still logged in
user S17 PPP ppp-115-pml.wiza Thu Nov 14 07:45:00 - still logged in
user S-1 0.0.0.0 Sat Aug 10 15:50:03 - still logged in

user S23 PPP ppp-103-pml.wiza Fri Nov 15 00:13:53 - still logged in
user S12 PPP ppp-1lll-pml.wiza Wed Nov 13 16:58:12 - still logged in

Initially, this information might not seem valuable. However, it is often through these
techniques that you can positively identify a user. For example, certain portions of the

Internet offer varying degrees of anonymity. Internet Relay Chat (IRC) is one such
system. A person connecting with a UNIX-based system can effectively obscure his or
her identity on IRC but cannot easily obscure the IP address of the machine in use.
Through sustained use of both the finger and rusers commands, you can pin down who
that user really is.

NOTE: finger and rusers are extensively discussed in Chapter 13, "Techniques to
Hide One's Identity." Nonetheless, I'd like to provide a brief introduction here: finger
and rusers are used to both identify and check the current status of users logged on to a
particular machine. For example, you can find out the user's real name (if available), his
or her last time of login, and what command shell he or she uses. Not all sites support
these functions. In fact, most PC-based operating systems do not without the installation
of special server software. However, even many UNIX sites no longer support these
functions because they are so revealing. £ inger and rusers are now considered
security risks in themselves.

Nevertheless, this explanation doesn't reveal the value of these utilities in relation to
cracking. In the same way that one can finger a user, one can also finger several key
processes. Table 9.2 contains some examples.

Table 9.2. Processes that can be fingered.

|Process |Purpose

|lp |The Line Printer daemon
|UUCP |UNIX to UNIX copy

|root |Root operator

|mai 1 |The Mail System daemon

By directing finger inquiries on these accounts, you can glean valuable information
about them, such as their base directory as well as the last time they were used or logged
in.

Thus, rusers, when coupled with finger, can produce interesting and often revealing
results. I realize, of course, that you might trivialize this information. For, what value is
there in knowing when and where logins take place?

In fact, there are many instances in which such information has value. For example, if
you are truly engaged in cracking a specific system, this information can help you build a
strong database of knowledge about your target. By watching logins, you can effectively
identify trust relationships between machines. You can also reliably determine the habits
of the local users. All these factors could have significant value.

Showmount

Showmount reveals some very interesting information about remote hosts. Most
importantly, invoked with the -e command line option, showmount can provide a list of
all exported directories on a given target. These directories might or might not be
mountable from anywhere on the Internet.

On Other Platforms

None of the mentioned UNIX utilities are scanners. However, they do reveal important
information about the target machine. And not surprisingly, the computing community
has ported quite a few of these utilities to other platforms (not everyone has a UNIX
workstation in their living room). It wouldn't be fair to continue without briefly covering
those ported utilities here.

On Windows 95

Windows 95 now supports many network analysis utilities. Some of these are straight
ports from UNIX commands, and others are programs built from the ground up. In both
cases, the majority of these tools are shareware or freeware. You can use these tools to
learn much about networking.

NetScan Tools The NetScan Tools suite contains a series of UNIX utilities ported to
Windows 95. Its development team claims that by utilizing ping, network administrators
can identity unauthorized machines utilizing IP addresses on their subnets. The program
also contains ports of WHOIS, finger, ping, and Traceroute.

Cross Reference: The Netscan Tools suite is shareware and is available at
http://www.eskimo.com/~nwps/index.html.

Network Toolbox Network Toolbox is very similar to the Netscan Tools suite. It consists
of a port of nine separate UNIX utilities. This utility has an interesting feature called /P
Address Search, which allows the user to search for machines within a given range of IP
addresses. Otherwise, it has the usual fare: finger, DNS, WHOIS, and so on. One special
amenity of this suite is that it is exceedingly fast. This utility is discussed in greater detail
later in this chapter.

Cross Reference: You can find Network Toolbox at
http://www.jriver.com/netbox.html.

TCP/IP Surveyor This tool is quite impressive; not only does it gather information about
networks and reachable machines, it formats it into a graphical representation that maps
routers, workstations, and servers.

Cross Reference: TCP/IP Surveyor is shareware and can be found at
ftp://wuarchive.wustl.edu/systems/ibmpc/win95/netutil/wssrv32n.zip.

On Macintosh

There has been a sharp increase in development of network analysis tools on the
Macintosh platform. Many of these applications are first rate and, in traditional Mac
platform style, are extremely easy to use.

MacTCP Watcher This utility provides ping, DNS lookups, and general monitoring of
connections initiated by protocols within the TCP/IP suite.

Cross Reference: As of version 1.12, this utility has been designated freeware. However,
by the time this book is printed, that situation might change. Get it at
http://www.share.com/share/peterlewis/mtcpw/.

Query It! Query It! is a solid utility that performs basic ns1ookup inquiries. It generates
information that is very similar to that generated using the host command.

Cross Reference: Get Query It! at
http://www.cyberatl.net/~mphillip/index.html#Query It!.

WhatRoute WhatRoute is a port of the popular UNIX utility Traceroute.

Cross Reference: WhatRoute is a freeware program and is available at various locations
on the Internet, including http://homepages.ihug.co.nz/~bryanc/.

On AS/400

The AS/400 platform, as of AS/400 V3R1 (and Client Access/400), has excellent internal
support for most TCP/IP utilities, including ping and netstat.

Cross Reference: For those interested in studying the fine points of TCP/IP
implementation on AS/400, I highly recommend the white paper "TCP/IP Connectivity in
an AS/400 Environment" by David Bernard. (News/400. February 1996.) It can be found
at http://204.56.55.10/Education/WhitePapers/tcpip/tcpip.htm.

These utilities will always be available to users, even if scanners are not. Moreover,
because the Internet is now traveled by more and more new users, utilities to analyze
network connections will be commonplace on all platforms.

The Scanners

Having discussed various network analysis utilities, we can now move on to bona fide
scanners. Let's take a look at today's most popular scanners.

NSS (Network Security Scanner)

NSS (Network Security scanner) is a very obscure scanner. If you search for it using a
popular search engine, you will probably find fewer than 20 entries. This doesn't mean
NSS isn't in wide use. Rather, it means that most of the FTP sites that carry it are
shadowed or simply unavailable via archived WWW searches.

NSS differs from its counterparts in several ways, the most interesting of which is that it's
written in Perl. (SATAN is also partially written in Perl. ISS and Strobe are not.) This is
interesting because it means that the user does not require a C compiler. This might seem
like a small matter, but it's not. Crackers and hackers generally start out as students.
Students may acquire shell accounts on UNIX servers, true, but not every system
administrator allows his or her users access to a C compiler. On the other hand, Perl is so

widely used for CGI programming that most users are allowed access to Perl. This makes
NSS a popular choice. (I should explain that most scanners come in raw, C source. Thus,
a C compiler is required to use them.)

Also, because Perl is an interpreted (as opposed to compiled) language, it allows the user
to make changes with a few keystrokes. It is also generally easier to read and understand.
(Why not? It's written in plain English.) To demonstrate the importance of this, consider
the fact that many scanners written in C allow the user only minimal control over the scan
(if the scanner comes in binary form, that is). Without the C source code, the user is
basically limited to whatever the programmer intended. Scanners written in Perl do not
generally enforce such limitations and are therefore more easily extensible (and perhaps
portable to any operating system running Perl 4 or better).

NSS was reportedly written on the DEC platform (DecStation 5000 and Ultrix 4.4). It
generally works out the box on SunOS 4.1.3 and IRIX 5.2. On other platforms, it may
require basic or extensive porting.

The basic value of NSS is its speed. It is extremely fast. Routine checks that it can
perform include the following:

e sendmail

e Anon FTP

e NFS Exports
e TFTP

e Hosts.equiv

e Xhost

NOTE: NSS will not allow you to perform Hosts.equiv unless you have root privileges.
If this is a critical issue and you do not currently have root, you might want to acquire a
copy of Linux, Solaris X86, or FreeBSD. By getting one of these operating systems and
installing it at home, you can become root. This is a common problem with several
scanners, including SATAN and certain implementations of Internet Security Scanner.

As you might guess, some or most of these checks (except the Hosts.equiv query) can be
conducted by hand by any user, even without root privileges. Basically, NSS serves the
same function as most scanners: It automates processes that might otherwise take a
human weeks to complete.

NSS comes (most often) as a tarred, g'zipped file. (In other words, it is a zipped archive
created with gzip.exe, a popular compression tool similar to pkzip.exe.) With the original
distribution, the author discussed the possibility of adding greater functionality, including
the following features:

e AppleTalk scanning

e Novell scanning

e LAN manager networks

e The capability to scan subnets

e Briefly, the processes undertaken by NSS include

e Getting the domain listing or reporting that no such listing exists
e Pinging the host to determine whether it's alive

e Scanning the ports of the target host

e Reporting holes at that location

Although this is not an exhaustive treatment of NSS, there are some minor points I can
offer here:

e NSS does not run immediately after you unzip and untar it. Several changes must be made to the
file. The environment variables must be set to those applicable to your machine's configuration.
The key variables are

o $TmpDir--The temporary directory used by NSS
o $YPX--The directory where the ypx utility is located

o $PING--The directory where the executable ping is located

0 S$XWININFO--The directory where xwininfo is located

TIP: If your Perl include directory (where the Perl include files are located) is
obscure and not included within your PATH environment variable, you will have to
remedy that. Also, users should note that NSS does require the ftplib.pl library
package.

e NSS has parallel capabilities and can distribute the scan among a number of workstations.
Moreover, it can fork processes. Those running NSS on machines with limited resources (or
running it without permission) will want to avoid these capabilities. These are options that can set
within the code.

Cross Reference: You can find a copy of NSS, authored by Douglas O'Neal (released
March 28, 1995) at http://www.giga.or.at/pub/hacker/unix. This location
was reliable as of November 20, 1996.

Strobe

Strobe (The Super Optimized TCP Port Surveyor) is a TCP port scanner that logs all
open ports on a given machine. Strobe is fast (its author claims that an entire small
country can be scanned within a reasonable period of time).

The key feature of Strobe is that it can quickly identify what services are being run on a
given target (so quickly, in fact, that it takes less than 30 seconds to pin down a server,
even with a 28.8 modem connection to the Internet). The key drawback of Strobe is that
such information is limited. At best, a Strobe attack provides the cracker with a rough

guideline, a map of what services can be attacked. Typical output from a Strobe scan
looks like this:

localhost echo 7/tcp Echo [95,JBP]

localhost discard 9/tcp Discard [94,JBP]

localhost systat 11/tcp Active Users [89,JBP]
localhost daytime 13/tcp Daytime [93,JBP]

localhost netstat 15/tcp Netstat

localhost chargen 19/tcp Character Generator [92,JBP]

localhost ftp 21/tcp File Transfer [Control] [96,JBP]
localhost telnet 23/tcp Telnet [112,JBP]

localhost smtp 25/tcp Simple Mail Transfer [102,JBP]
localhost time 37/tcp Time [108,JBP]

localhost finger 79/tcp Finger [52,KLH]

localhost pop3 0/tcp Post Office Protocol-Version 3 122
localhost sunrpc 111/tcp SUN Remote Procedure Call [DXG]
localhost auth 113/tcp Authentication Service [130,MCSJ]
localhost nntp 119/tcp Network News Transfer Protocol 65,PL4

As you can see, the information is purely diagnostic in character (for example, there are
no probes for particular holes). However, Strobe makes up for this with extensive
command-line options. For example, in scanning hosts with large numbers of assigned
ports, you can disable all duplicate port descriptions. (Only the first definition is printed.)
Other amenities include

e Command-line option to specify starting and ending ports

e Command-line option to specify time after which a scan will terminate if it receives no response
from a port or host

e Command-line option to specify the number of sockets to use
e Command-line option to specify a file from which Strobe will take its target hosts

Combining all these options produces a very controllable and configurable scan. Strobe
generally comes as a tarred and g'zipped file. Contained within that distribution is a full
man page and the binary.

Cross Reference: You can find a copy of Strobe, authored by Julian Assange (released
1995), at http://sunsite.kth.se/Linux/system/Network/admin/.

Pointers

In the unlikely event you acquire Strobe without also acquiring the man page, there is a
known problem with Solaris 2.3. To prevent problems (and almost certainly a core
dump), you must disable the use of getpeername (). This is done by adding the -g flag
on the command line.

Also, although Strobe does not perform extensive tests on remote hosts, it leaves just as
large a footprint as early distributions of ISS. A host that is scanned with Strobe will
know it (this will most likely appear as a run of connect requests in the
/var/adm/messagesfﬂe)

SATAN (Security Administrator's Tool for Analyzing Networks)

SATAN is a computing curiosity, as are its authors. SATAN was released (or unleashed)
on the Internet in April, 1995. Never before had a security utility caused so much
controversy. Newspapers and magazines across the country featured articles about it.
National news broadcasts warned of its impending release. An enormous amount of hype
followed this utility up until the moment it was finally posted to the Net.

SATAN is, admittedly, quite a package. Written for UNIX workstations, SATAN was--at
the time of its release--the only X Window System-based security program that was truly
user friendly. It features an HTML interface, complete with forms to enter targets, tables
to display results, and context-sensitive tutorials that appear when a hole has been found.
It is--in a word--extraordinary.

SATAN's authors are equally extraordinary. Dan Farmer and Weitse Venema have both
been deeply involved in security. Readers who are unfamiliar with SATAN might
remember Dan Farmer as the co-author of COPS, which has become a standard in the
UNIX community for checking one's network for security holes. Venema is the author of
TCP_Wrapper. (Some people consider TCP_Wrapper to be the grandfather of firewall
technology. It replaces inetd as a daemon, and has strong logging options.) Both men are
extremely gifted programmers, hackers (not crackers), and authorities on Internet
security.

SATAN was designed only for UNIX. It is written primarily in C and Perl (with some
HTML thrown in for user friendliness). It operates on a wide variety of UNIX flavors,
some with no porting at all and others with moderate to intensive porting.

NOTE: There is a special problem with running SATAN on Linux. The original
distribution applies certain rules that result in flawed operation on the Linux platform.
There is also a problem with the way the select () call is implemented in the

tcp scan module. Lastly, if one scans an entire subnet at one time, this will result in a
reverse fping bomb. That is, socket buffers will overflow. Nevertheless, one site contains
not only a nicely hacked SATAN binary for Linux, but also the diff file. (A dif£ file
is a file that is close but not identical to another file. Using the di £ £ utility, one
compares the two files. The resulting output consists of the changes that must be made.)
These items can be found at ftp . 1od. com or one can obtain the diff file directly
from Sunsite (sunsite.unc.edu)at
/pub/Linux/system/Network/admin/satan-linux.1.1.1.diff.gz.

The package comes tarred and zipped and is available all over the world. As the name of
the program (Security Administrator's Tool for Analyzing Networks) suggests, it was
written for the purpose of improving network security. As such, not only must one run it
in a UNIX environment, one must run it with root privileges.

e SATAN scans remote hosts for most known holes, including but not limited to these:
e FTPD vulnerabilities and writable FTP directories

e NFS vulnerabilities

e NIS vulnerabilities

e RSH vulnerability

e sendmail

e X server vulnerabilities

Once again, these are known holes. That is, SATAN doesn't do anything that a cracker
could not ultimately do by hand. However, SATAN does perform these probes
automatically and what's more, it provides this information in an extremely easy-to-use
package.

Cross Reference: You can obtain your copy of SATAN, written by Dan Farmer and
Weitse Venema (released April, 1995), at http://www.fish.com.

The Process: Installation

SATAN unarchives like any other utility. Each platform may differ slightly, but in
general, the SATAN directory will extract to /satan-1.1.1. The first step (after reading
the documentation) is to run the Perl script reconfig. This script searches for various
components (most notably, Perl) and defines directory paths. The script reconfig will
fail if it cannot identify/define a browser. Those folks who have installed their browser in
a nonstandard directory (and have failed to set that variable in the paTH) will have to set
that variable manually. Also, those who do not have DNS available (they are not running
DNS on their own machine) must set this in /satan-1.1.1/conf/satan.cf as follows:

$dont use nslookup = 1;

Having resolved all the pPATH issues, the user can run a make on the distribution (make
IRIX or make SunoOS). I suggest watching the compile very closely for errors.

TIP: SATAN requires a little more resources than the average scanner, especially in the
area of RAM and processor power. If you are experiencing sluggish performance, there
are several solutions you can try. One of the most obvious is to get more RAM and
greater processor power. However, if that isn't feasible, I suggest a couple things: One is
to kill as many other processes as possible. Another is to limit your scans to 100 hosts or
fewer per scan. Lastly, it is of some significance that SATAN has a command-line
interface for those without strong video support or with limited memory resources.

Jakal

Jakal is a stealth scanner. That is, it will scan a domain (behind a firewall) without
leaving any trace of the scan. According to its authors, all alpha test sites were unable to
log any activity (although it is reported in the documentation from the authors that "Some
firewalls did allow SYNJFIN to pass through").

Stealth scanners are a new phenomenon, their incidence rising no doubt with the
incidence of firewalls on the Net. It's a relatively new area of expertise. So if you test
Jakal and find that a few logs appear, don't be unforgiving.

Stealth scanners work by conducting Aalf scans, which start (but never complete) the
entire SYN|ACK transaction with the target host. Basically, stealth scans bypass the
firewall and evade port scanning detectors, thus identifying what services are running
behind that firewall. (This includes rather elaborate scan detectors such as Courtney and
Gabriel. Most of these detection systems respond only to fully established connections.)

Cross Reference: Obtain a copy of Jakal, written by Halflife, Jeff (Phiji) Fay, and
Abdullah Marafie at http://www.giga.or.at/pub/hacker/unix.

IdentTCPscan

IdentTCPscan is a more specialized scanner. It has the added functionality of picking out
the owner of a given TCP port process. That is, it determines the UID of the process. For
example, running IdentTCPscan against my own machine produced the following output:

Port: 7 Service: (?) Userid: root
Port: 9 Service: (?) Userid: root
Port: 11 Service: (?) Userid: root
Port: 13 Service: (?) Userid: root
Port: 15 Service: (?) Userid: root
Port: 19 Service: (?) Userid: root
Port: 21 Service: (?) Userid: root
Port: 23 Service: (?) Userid: root
Port: 25 Service: (?) Userid: root
Port: 37 Service: (?) Userid: root
Port: 79 Service: (?) Userid: root
Port: 80 Service: (?) Userid: root
Port: 110 Service: (?) Userid: root
Port: 111 Service: (?) Userid: root
Port: 113 Service: (?) Userid: root
Port: 119 Service: (?) Userid: root
Port: 139 Service: (?) Userid: root
Port: 513 Service: (?) Userid: root
Port: 514 Service: (?) Userid: root
Port: 515 Service: (?) Userid: root
Port: 540 Service: (?) Userid: root
Port: 672 Service: (?) Userid: root
Port: 2049 Service: (?) Userid: root
Port: 6000 Service: (?) Userid: root

This utility has a very important function. By finding the UID of the process,
misconfigurations can be quickly identified. For example, examine this output. Seasoned
security professionals will know that line 12 of the scan shows a serious
misconfiguration. Port 80 is running a service as root. It happens that it is running
HTTPD. This is a security problem because any attacker who exploits weaknesses in
your CGI can run his or her processes as root as well.

I have tried many scanners. IdentTCPscan is extremely fast and as such, it is a powerful
and incisive tool (a favorite of crackers). The utility works equally well on a variety of
platforms, including Linux, BSDI, and SunOS. It generally comes as a compressed file
containing the source code. It is written in C and is very compact. It also requires
minimal network resources to run. It will build without event using most any C compiler.

Cross Reference: Obtain a copy of IdentTCPscan, written by David Goldsmith (released
February 11, 1996), at http://www.giga.or.at/pub/hacker/unix.

CONNECT

CONNECT is a bin/sh script. Its purpose is to scan subnets for TFTP servers. (As you
might surmise, these are difficult to find. TFTP is almost always disabled these days.)
This scanner scans trailing IP addresses recursively. For this reason, you should send the
process into the background (or go get yourself a beer, have some lunch, play some golf).

This scanner is of relatively little importance because TFTP is a lame protocol. There
isn't much to gain. (Although, if the sysad at that location is negligent, you might be able
to obtain the /etc/passwd file. Don't count on it, however. These days, the odds of
finding both an open TFTP server and a non-shadowed passwd file on the same machine
are practically nil.)

Cross Reference: The documentation of CONNECT is written by Joe Hentzel;
according to Hentzel, the script's author is anonymous, and the release date is unknown.
Obtain a copy at http://www.giga.or.at/pub/hacker/unix/.

FSPScan

FSPScan scans for FSP servers. FSP stands for File Service Protocol, an Internet protocol
much like FTP. It provides for anonymous file transfers and reportedly has protection
against network overloading (for example, FSP never forks). Perhaps the most security-
aware feature of FSP is that it logs the incoming user's hostname. This is considered
superior to FTP, which requests the user's e-mail address (which, in effect, is no logging
at all). FSP was popular enough, now sporting GUI clients for Windows and OS/2.

What's extraordinary about FSPScan is that it was written by one of the co-authors of
FSP! But then, who better to write such a utility?

Cross Reference: Obtain a copy of FSPScan, written by Wen-King Su (released in
1991), at http://www.giga.or.at/pub/hacker/unix.

XSCAN

XSCAN scans a subnet (or host) for X server vulnerabilities. At first glance, this doesn't
seem particularly important. After all, most other scanners do the same. However,
XSCAN includes an additional functionality: If it locates a vulnerable target, it
immediately starts logging the keystrokes at that terminal.

Other amenities of XSCAN include the capability to scan multiple hosts in the same scan.
These can be entered on the command line as arguments. (And you can specify both hosts
and subnets in a kind of mix-and-match implementation.) The source for this utility is
included on the CD-ROM that accompanies this book.

Cross Reference: Obtain a copy of XSCAN (release unknown) at
http://www.giga.or.at/pub/hacker/unix.

Our Sample Scan

Our sample scan will be generated using a product called SAFEsuite. Many of you might
be familiar with this product, which was developed by Internet Security Systems. ISS is
extremely well known on the Net for a product called ISS. This product (the Internet
Security Scanner) was among the first automated scanners to sell commercially.

From ISS to SAFEsuite

The first release of ISS stirred some controversy. Many people felt that releasing such a
tool free to the Internet community would jeopardize the network's already fragile
security. (The reaction to Dan Farmer's SATAN was very similar.) After all, why release
a product that automatically detects weaknesses in a remote target? In the manual pages
for ISS, the author (Christopher Klaus) addressed this issue by writing:
...To provide this to the public or at least to the security-conscious crowd may cause people to
think that it is too dangerous for the public, but many of the (cr/h)ackers are already aware of these
security holes and know how to exploit them. These security holes are not deep in some OS

routines, but standard misconfigurations that many domains on Internet tend to show. Many of
these holes are warned about in CERT and CIAC advisories...

In early distributions of ISS, the source code for the program was included in the
package. (This sometimes came as a shar or shell archive file and sometimes not.) For
those interested in examining the components that make a successful and effective
scanner, the full source for the older ISS is included on the CD-ROM that accompanies
this book.

ISS has the distinction of being one of the mainstays of Internet security. It can now be
found at thousands of sites in various forms and versions. It is a favorite of hackers and
crackers alike, being lightweight and easy to compile on almost any UNIX-based
platform. Since the original release of ISS, the utility has become incredibly popular. The
development team at ISS has carried this tradition of small, portable security products
onward, and SAFEsuite is its latest effort. It is a dramatic improvement over earlier
versions.

SAFEsuite consists of several scanners:
e The intranet scanner
e The Web scanner
e The firewall scanner

SAFEsuite is similar to SATAN in that the configuration, management, implementation,
and general use of the program can be done in a GUI environment. This saves enormous
time and effort. It also allows resulting information to be viewed quickly and
conveniently. However, SAFEsuite has an additional attribute that will make it quite

popular: It runs on a Microsoft platform. SAFEsuite has been developed for use on
Microsoft Windows NT.

This is of some significance. Only recently has NT been recognized by the UNIX
community as an acceptable server platform. This may in part be attributed to NT's new
C2 security rating. In any event, ISS has broken through the barrier by providing a tested
security tool for a large portion of the Microsoft-based community. I consider this a
rather far-sighted undertaking on the part of the development team at ISS.

SAFEsuite performs a wide variety of attacks on the specified network. These include
diagnostic routines on all of the following services:

e sendmail

e FTP
e NNTP
e Telnet
e RPC
e NFS

Curiously, the ISS development team also managed to add support for analysis of a host's
vulnerability to IP spoofing and denial-of-service attacks. (This is impressive, although
one wonders what significance there is in knowing that you're vulnerable to a DoS attack.
Few platforms are immune to this type of attack.)

According to the folks at ISS:

SAFEsuite is the fastest, most comprehensive, proactive UNIX network security scanner
available. It configures easily, scans quickly, and produces comprehensive reports. SAFEsuite
probes a network environment for selected security vulnerabilities, simulating the techniques of a
determined hacker. Depending on the reporting options you select, SAFEsuite gives you the
following information about each vulnerability found: location, in-depth description, and
suggested corrective actions.

In any case, those of you who have used earlier versions of ISS will find that the
SAFEsuite distribution is slightly different. For example, earlier versions (with the
exception of one trial distribution) were not for use in a GUL For that reason, [will
quickly cover the scan preparation in this tool. Perhaps the most dramatic change from
the old ISS to the new SAFEsuite is that SAFEsuite is a commercial product.

Notes on the Server Configuration

For the purposes of demonstrating both target and attacker views of a scan, I established a
server with the hostname samsHack. It was configured as follows:

e Machine: 486 DX-4 120 AT IBM compatible
e Memory: 32 MB

e Operating system: Linux 1.2.13 (Slackware)

e Modem: 28.8
e Network connection: PPP (pppd)

I chose Linux because it provides strong logging capabilities. Default logging in Linux in
done via a file called /var/adm/messages. (This might differ slightly, depending on the
Linux distribution. Red Hat Linux, for example, has a slightly different directory
structure from Slackware. In that distribution, you will probably be focusing on the file

/var/logs/messages.)

The /var/adm/messages file records status reports and messages from the system. These
naturally include the boot routine and any problems found there, as well as dozens of
other processes the user might initiate. (In this case, the /var/adm/messages file will log
our server's responses to the SAFEsuite scan.)

NOTE: On some versions of Linux (and indeed, on the majority of UNIX distributions),

more valuable logging information can generally be found in /var/adm/syslog than

in /var/adm/messages. This is especially so with regard to attempts by users to gain
unauthorized access from inside the system.

System Requirements

At the time this chapter was written, the Windows NT version of SAFEsuite was still in
development. Therefore, NT users should contact the development team at ISS for details
on how to install on that platform. The system requirements are shown in Table 9.3.

Table 9.3. Installation requirements for SAFEsuite.

|Element |Requirement

|Processor Speed |N0t defined

|RAM |16MB or better

|Networking |TCP/IP

|Privileges |Root or administrator
|Storage |Approximately SMB
|Browser |Any HTML-3 browser client

|Miscellaneous |Solaris boxes require Motif 1.22+

SAFEsuite runs on many platforms, including but not limited to the following:
e Sun OS 4.1.3 or above
e Solaris 2.3 or above
e HP/UX 9.05 or above
e IBM AIX 3.2.5 or above
e Linux 1.2.x (with kernel patch)

e Linux 1.3.x prior to 1.3.75 (with patch)

e Linux 1.3.76+ (no patch required)

Installing the suite is straightforward. It unpacks like any standard UNIX utility. It should
be copied to a directory of your choice. Go to that directory and extract the archive, using
the following command:

tar -xvf iss-xxx.tar

After you untar the archive, you will see a file labeled iss.install. This is a Bourne
shell script that will perform the installation. (This mainly involves extracting the
distribution disks and the help documentation, which is in HTML format.) Run this file to
complete the basic installation process by executing the command sh iss.install. The
chief executable is the xiss file, which will launch SAFEsuite in the X Window System,
OpenWindows, or any compatible windowing system for UNIX.

Configuration

In this scan, I used the defaults to simplify the interpretation of output (by output, I mean
not only the information that the scan gleans from our server, but also the footprint, or
trail, that the scanner leaves behind). Nevertheless, the configuration options in
SAFEsuite are very incisive.

If you decide to use SAFEsuite, you might want to take advantage of those incisive
options. If so, you need to call the Scanner Configuration window (see Figure 9.1). Some
of the options here are similar to options formerly expressed with the command-line
interface (such as the outfile, or log file, which contains all information recorded during
the scan; this was formerly assigned with the -o option). Other options are entirely new,
such as the option for specifying a Web browser.

Figure 9.1.
The SAFEsuite configuration screen.

NOTE: The Web browser option isn't really an option. To read the unabridged manual
that comes with SAFEsuite, you must specify a browser. That is, if the user does not
specify a browser, the Help option in the main menu window will not work. (An error
message is produced, informing you that you have not chosen a browser.) If there is a
reason why you don't want to specify a browser at that point--or if the machine you are
using does not have one--you can still view the entire tutorial and manual on another
machine. Simply transport all HTML files into a directory of your choice, start a browser,
and open index.html. The links will work fine locally.

Special Features The options to specify additional ports is particularly interesting. So is
the capability to add modules. SAFEsuite appears to be quite extensible. Thus, if you
hack specialized code for probing parts of the system not covered by SAFEsuite, you can
include these modules into the scan (as you can with Farmer and Venema's SATAN).

TIP: Even if you don't write your own security tools, you can patch in the code of others.
For example, there are many nonestablishment scanners out there that perform
specialized tasks. There is no reason why these tools cannot be solidly integrated into the
SAFEsuite scan.

NOTE: The SAFEsuite program includes network maps, which are an ingenious creation
(one that Farmer and Venema had intentions of adding to SATAN). The network map is a
wonderful way to quickly isolate problem machines or configurations on your network.
These maps provide a graphical representation of your network, visually highlighting
potential danger spots. Used in conjunction with other network architecture tools (many
which are not particularly related to security), products like SAFEsuite can help you to
quickly design safe network topology.

Cross Reference: For more information about the purchase, use, or configuration of
SAFEsuite, contact ISS at its Web page (http://ISS).

The Scan

The scan took approximately two minutes. For those of you who are interested, the
network resources consumed were relatively slim. For example, while the scan occurred,
I was also running several other applications. The scan's activity was hardly noticeable.
The results of the scan were enlightening. The SamsHack server was found to be
vulnerable in several areas. These vulnerabilities ranged from trivial to serious.

NOTE: For the truly curious, I was running SAFEsuite through a standard configuration
of MIT's X Window System. The X Window manager was FVWM.

The rlogin Bug

One of the tests SAFEsuite runs is for a bug in the remote login program called rlogin.
Was the SamsHack server vulnerable to r1ogin attack? No.

Rlogin Binding to Port

Connected to Rlogin Port

Trying to gain access via Rlogin

127.0.0.1: ---- rlogin begin output ----

127.0.0.1: ---- rlogin end output ----
Rlogin check complete, not vulnerable.

In other arecas, however, the SamsHack server was vulnerable to attack. These
vulnerabilities were critical. Take a close look at the following log entry:

Time Stamp (555): Rsh check: (848027962) Thu Nov 14 19:19:22

Checking Rsh For Vulnerabilities

Rsh Shell Binding to Port

Sending command to Rsh

127.0.0.1: bin/bin logged in to rsh

127.0.0.1: Files grabbed from rsh into ~./127.0.0.1.rsh.files’
127.0.0.1: Rsh vulnerable in hosts.equiv

Completed Checking Rsh for Vulnerability

You'll see that line 6 suggests that some files were grabbed and saved. Their output was
sent to a file called 127.0.0.1.rsh.files. Can you guess what file or files were saved

to that file? If you guessed the /etc/passwd file, you are quite correct. Here are the
contents of 127.0.0.1.rsh.files:

root :bBndEhmQlYwTc:0:0:root:/root: /bin/bash
bin:*:1:1:bin:/bin:
daemon:*:2:2:daemon:/sbin:

adm:*:3:4:adm: /var/adm:
lp:*:4:7:1p:/var/spool/lpd:
sync:*:5:0:8ync:/sbin:/bin/sync
shutdown:*:6:0:shutdown:/sbin:/sbin/shutdown
halt:*:7:0:halt:/sbin:/sbin/halt
mail:*:8:12:mail:/var/spool/mail:
news:*:9:13:news:/usr/lib/news:
uucp:*:10:14:uucp:/var/spool/uucppublic:
operator:*:11:0:o0perator: /root:/bin/bash
games:*:12:100:games: /usr/games:
man:*:13:15:man:/usr/man:
postmaster:*:14:12:postmaster:/var/spool/mail: /bin/bash
nobody:*:-1:100:nobody:/dev/null:
ftp:*:404:1::/home/ftp:/bin/bash
guest:*:405:100:guest:/dev/null:/dev/null

FTP also proved to be vulnerable (although the importance of this is questionable):

127.0.0.1: ---- FTP version begin output ----

SamsHack FTP server (Version wu-2.4(1) Tue Aug 8 15:50:43 CDT 1995)
ready.

127.0.0.1: ---- FTP version end output ----

127.0.0.1: Please login with USER and PASS.
127.0.0.1: Guest login ok, send your complete e-mail address as

password.

127.0.0.1: Please login with USER and PASS.

127.0.0.1: ANONYMOUS FTP ALLOWED

127.0.0.1: Guest login ok, access restrictions apply.
127.0.0.1: "/" is current directory.

127.0.0.1: iss.test: Permission denied.

127.0.0.1: 1iss.test: Permission denied. (Delete)
127.0.0.1: Entering Passive Mode (127,0,0,1,4,217)
127.0.0.1: Opening ASCII mode data connection for /bin/ls.
127.0.0.1: Transfer complete.

127.0.0.1: Entering Passive Mode (127,0,0,1,4,219)
127.0.0.1: Opening ASCII mode data connection for /etc/passwd (532
bytes) .

127.0.0.1: Transfer complete.
127.0.0.1: Files grabbed via FTP into ./127.0.0.1.anonftp.files
127.0.0.1: Goodbye.

As you might have surmised, the passwd file for FTP was grabbed into a file. Thus, in
this chapter, we have identified at least three serious security weaknesses in
SamsHack .net:

e Inan earlier scan, HTTPD was being run as root, thereby making SamsHack . net vulnerable to
WWW attacks.

e SamsHack.net is vulnerable to RSH attacks.

e SamsHack.net's FTP directory allows anonymous users to access the passwd file.

These weaknesses are common to many operating systems in their out-of-the-box state.
In fact, the Linux distribution used to demonstrate this scan was out of the box. I made no
modifications to the installation whatsoever. Therefore, you can conclude that out-of-the-
box Slackware distributions are not secure.

I have included the entire scan log on the CD-ROM that accompanies this book. Printing
it here would be unreasonable, as it amounts to over 15 pages of information.

You have just seen the basics of scanning a single host. But in reality, a cracker might
scan as many as 200 hosts in a single evening. For such widespread activity, more
resources are required (greater bandwidth, more RAM, and a more powerful processor).
But resources are not the cracker's only concern; such a scan leaves a huge footprint.
We've seen this scan from the cracker's perspective. Now, let's look at it from the victim's
perspective.

The Other Side of the Fence

As I noted earlier, logging capabilities are extremely important. Logs can often determine
not only when and how an attack took place, but also from where the attack originated.

On November 10, 1996, I conducted a scan identical to the one shown previously, which
was performed on November 14, 1996. The only difference between the two scans is that
on the November 10th scan, I employed not one but several scanners against the
SamsHack server. Those scans and their activities were reported to the system to the file
/var/adm/messages. Take a look at the output:

Nov 10 21:29:38 SamsHack ps[159]: connect from localhost

Nov 10 21:29:38 SamsHack netstat[160]: connect from localhost

Nov 10 21:29:38 SamsHack in.fingerd[166]: connect from localhost
Nov 10 21:29:38 SamsHack wu.ftpd[162]: connect from localhost

Nov 10 21:29:38 SamsHack in.telnetd[163]: connect from localhost
Nov 10 21:29:39 SamsHack ftpd[1l62]: FTP session closed

Nov 10 21:29:39 SamsHack in.pop3d[169]: connect from localhost
Nov 10 21:29:40 SamsHack in.nntpd[170]: connect from localhost
Nov 10 21:29:40 SamsHack uucico[174]: connect from localhost

Nov 10 21:29:40 SamsHack in.rlogind[171]: connect from localhost
Nov 10 21:29:40 SamsHack in.rshd[172]: connect from localhost

Nov 10 21:29:40 SamsHack telnetd[163]: ttloop: read: Broken pipe
Nov 10 21:29:41 SamsHack nntpd[170]: localhost connect

Nov 10 21:29:41 SamsHack nntpd[170]: localhost refused connection
Nov 10 21:29:51 SamsHack ps[179]: connect from localhost

Nov 10 21:29:51 SamsHack netstat[180]: connect from localhost

Nov 10 21:29:51 SamsHack wu.ftpd[182]: connect from localhost

Nov 10 21:29:51 SamsHack in.telnetd[183]: connect from localhost
Nov 10 21:29:51 SamsHack in.fingerd[186]: connect from localhost
Nov 10 21:29:51 SamsHack in.pop3d[187]: connect from localhost
Nov 10 21:29:52 SamsHack ftpd[182]: FTP session closed

Nov 10 21:29:52 SamsHack in.nntpd[189]: connect from localhost
Nov 10 21:29:52 SamsHack nntpd[189]: localhost connect

Nov 10 21:29:52 SamsHack nntpd[189]: localhost refused connection
Nov 10 21:29:52 SamsHack uucico[192]: connect from localhost

Nov 10 21:29:52 SamsHack in.rshd[194]: connect from localhost

Nov 10 21:29:52 SamsHack in.rlogind[193]: connect from localhost

Nov 10 21:29:53 SamsHack login: ROOT LOGIN ON tty2

Nov 10 21:34:17 SamsHack ps[265]: connect from pm7-6.pacificnet.net

Nov 10 21:34:17 SamsHack netstat[266]: connect from pm7-6.pacificnet.net
Nov 10 21:34:17 SamsHack wu.ftpd[268]: connect from pm7-6.pacificnet.net
Nov 10 21:34:22 SamsHack ftpd[268]: FTP session closed

Nov 10 21:34:22 SamsHack in.telnetd[269]: connect from pm7-
6.pacificnet.net

Nov 10 21:34:23 SamsHack in.fingerd[271]: connect from pm7-
6.pacificnet.net

Nov 10 21:34:23 SamsHack uucico[275]: connect from pm7-6.pacificnet.net
Nov 10 21:34:23 SamsHack in.pop3d[276]: connect from pm7-
6.pacificnet.net

Nov 10 21:34:23 SamsHack in.rlogind[277]: connect from pm7-
6.pacificnet.net

Nov 10 21:34:23 SamsHack in.rshd[278]: connect from pm7-6.pacificnet.net
Nov 10 21:34:23 SamsHack in.nntpd[279]: connect from pm7-
6.pacificnet.net

Nov 10 21:34:28 SamsHack telnetd[269]: ttloop: read: Broken pipe

Nov 10 21:34:28 SamsHack nntpd[279]: pm7-6.pacificnet.net connect

Nov 10 21:34:28 SamsHack nntpd[279]: pm7-6.pacificnet.net refused
connection

Nov 10 21:34:33 SamsHack rlogind[277]: Connection from 207.171.17.199 on
illegal port

The first thing I want you to notice is the time. The first line of this log excerpt reports
the time as 21:29:38. The last line of the scan reports 21:34:33. Thus, the entire range of
activity occurred within a five-minute period. Next, I want you to take a good look at
what's happening here. You will see that nearly every open, available port has been
attacked (some of them more than once). And, on at least one occasion, the IP address
from which the attack originated appears clearly within the log (specifically, on the last
line of the small snippet of log I have provided). The line appears as

Nov 10 21:34:33 SamsHack rlogind[277]: Connection from 207.171.17.199 on
illegal port

It is quite obvious that any system administrator looking for attacks like this one needn't
look far. Keep in mind that in this example, I was not running any special logging utilities
or wrappers. Just plain, old logging, which is on by default in a factory install.

So the average system administrator needn't do more than search the /var/adm/message
file (or its equivalent) for runs of connection requests. However, you will be surprised to
know that an overwhelming number of system administrators do not do this on a regular
basis.

Other Platforms

Scanners have traditionally been designed for UNIX. But what about other operating
systems? There are two aspects to consider about scanners with regard to operating
system. The first is what operating system the target machine runs. The second is what
operating system the attacking machine runs. I want to discuss these in relation to
platforms other than UNIX.

The Target Machine As Another Platform

Scanning platforms other than UNIX might or might not be of significant value. At least,
this is true with respect to deployment of TCP port scanners. This is because the majority
of non-UNIX platforms that support TCP/IP support only portions of TCP/IP. In fact,
some of those TCP/IP implementations are quite stripped down. Frankly, several TCP/IP
implementations have support for a Web server only. (Equally, even those that have
support for more might not evidence additional ports or services because these have been
disabled.)

This is the main reason that certain platforms, like the Macintosh platform, have thus far
seen fewer intrusions than UNIX-based operating systems. The fewer services you
actually run, the less likely it is that a hole will be found. That is common sense.

Equally, many platforms other than UNIX do support extensive TCP/IP. AS/400 is one
such platform. Microsoft Windows NT (with Internet Information Server) is another.
Certainly, any system that runs any form of TCP/IP could potentially support a wide
range of protocols. Novell NetWare, for example, has long had support for TCP/IP.

It boils down to this: The information you will reap from scanning a wide variety of
operating systems depends largely on the construct of the /etc/services file or the
targeted operating system's equivalent. This file defines what ports and services are
available. This subject will discussed later, as it is relevant to (and implemented
differently on) varied operating systems. In Chapter 18, "Novell," for example, I examine
this file and its uses on the Novell NetWare platform.

The Scanning Machine on Another Platform

Using a platform other than UNIX to perform a scan is another matter. Port scanning
utilities for other platforms are available and, as you might surmise, we're going to use
one momentarily. The product I will be using to demonstrate this process runs in
Windows 95. It is called Network Toolbox.

Network Toolbox

Network Toolbox is a TCP/IP utility for Windows 95. (This program was discussed
earlier in this chapter in the section on network analysis utilities.) It was developed by J.
River Co. of Minneapolis, Minnesota (it can be reached at infoejriver.com). The
utility includes a port scanner. I will not conduct an exhaustive analysis of other utilities
available within the application (though there are many, including ping). Instead, I would
like to give you a quick start. Figure 9.2 shows opening screen of the application.

1. Before conducting a scan with Network Toolbox, you must first set the scan properties. By

default, the Network Toolbox port scan only queries 14 TCP/IP ports. This is insufficient for a
complete scan. The output of a default scan would look like this:

port: 9 discard Service available
port: 13 daytime Service available
port: 21 ftp Service available
port: 23 telnet Service available
port: 25 smtp Service available
port: 37 time Service available
port: 79 finger Service available

port: 80 http Service available

port:110 pop3 Service available

port:111 portmap Service available
port:512 exec Service available
port:513 login Service available
port:514 shell Service available
port:540 uucp Service available

2. To obtain a more comprehensive scan, you must first set the scan's properties. To do so, click
the Options button to call the Options panel (see Figure 9.3).

Figure 9.2.
The Network Toolbox opening screen.

Figure 9.3.
The Network Toolbox Options panel.

3. After you open the Network Toolbox Options panel, select the tab marked Port Scanner. This
will bring you to options and settings for the scan (see Figure 9.4).

Figure 9.4.
The Network Toolbox Port Scanner Option tab.

4. The Port Scanner Option tab provides a series of options regarding ports. One is to specify a
range of ports by number. This is very useful, though I would probably scan all available ports.

5. The last step is to actually scan the targeted host. This is done by choosing the Scan button
shown in Figure 9.5.

Figure 9.5.
Select the Scan button to scan the targeted host.

The port scanner in Network Toolbox is fast and accurate. The average scan takes less
than a minute. I would characterize this as a good product. Moreover, it provides ports of
several other UNIX utilities of interest.

The information gleaned using this utility is quite similar to that obtained using Strobe. It
will not tell you the owner of a process, nor does the Network Toolbox port scanner try
doors or windows. (In other words, it makes no attempt to penetrate the target network.)
However, it is valuable because it can quickly determine what processes are now running
on the target.

Summary

In this chapter, you have learned a little bit about scanners, why they were developed, and
how they work. But education about scanners doesn't stop there. You might be surprised
to know that new scanners crop up every few months or so, and these are usually more
functional than their predecessors.

Internet security is a constantly changing field. As new holes are discovered, they are
posted to various mailing lists, alert rosters, and newsgroups. Most commonly, such alerts
end up at CERT or CIAC. Crackers and hackers alike belong to such mailing lists and
often read CERT advisories. Thus, these new holes become common knowledge often
minutes or hours after they are posted.

As each new hole is uncovered, capabilities to check for the new hole are added to
existing scanners. The process is not particularly complex. In most cases, the cracker
need only write a small amount of additional code, which is then pasted into the existing
source code of his or her scanner. The scanner is then recompiled and voila! The cracker
is ready to exploit a new hole on a wide scale. This is a never-ending process.

System administrators must learn about and implement scanners. It is a fact of life. Those
who fail to do so will suffer the consequences, which can be very grave. I believe
scanners can educate new system administrators as to potential security risks. If for no
other reason than this, scanners are an important element of Internet security. I
recommend trying out as many as possible.

10

Password Crackers

This chapter examines password crackers. Because these tools are of such significance in
security, I will cover many different types, including those not expressly designed to
crack Internet-related passwords.

What Is a Password Cracker?

The term password cracker can be misinterpreted, so [want to define it here. A password
cracker is any program that can decrypt passwords or otherwise disable password
protection. A password cracker need not decrypt anything. In fact, most of them don't.
Real encrypted passwords, as you will shortly learn, cannot be reverse-decrypted.

A more precise way to explain this is as follows: encrypted passwords cannot be
decrypted. Most modern, technical encryption processes are now one-way (that is, there
is no process to be executed in reverse that will reveal the password in plain text).

Instead, simulation tools are used, utilizing the same algorithm as the original password
program. Through a comparative analysis, these tools try to match encrypted versions of
the password to the original (this is explained a bit later in this chapter). Many so-called
password crackers are nothing but brute-force engines--programs that try word after
word, often at high speeds. These rely on the theory that eventually, you will encounter
the right word or phrase. This theory has been proven to be sound, primarily due to the
factor of human laziness. Humans simply do not take care to create strong passwords.
However, this is not always the user's fault:
Users are rarely, if ever, educated as to what are wise choices for passwords. If a password is in
the dictionary, it is extremely vulnerable to being cracked, and users are simply not coached as to
"safe" choices for passwords. Of those users who are so educated, many think that simply because
their password is not in /usr/dict/words, it is safe from detection. Many users also say that
because they do not have private files online, they are not concerned with the security of their

account, little realizing that by providing an entry point to the system they allow damage to be
wrought on their entire system by a malicious cracker.'

'Daniel V. Klein, 4 Survey of, and Improvements to, Password Security. Software
Engineering Institute, Carnegie Mellon University, Pennsylvania. (PostScript creation
date reported: February 22, 1991.)

The problem is a persistent one, despite the fact that password security education

demands minimal resources. It is puzzling how such a critical security issue (which can

easily be addressed) is often overlooked. The issue goes to the very core of security:
...exploiting ill-chosen and poorly-protected passwords is one of the most common attacks on
system security used by crackers. Almost every multi-user system uses passwords to protect

against unauthorized logons, but comparatively few installations use them properly. The problem
is universal in nature, not system-specific; and the solutions are simple, inexpensive, and

applicable to any computer, regardless of operating system or hardware. They can be understood
by anyone, and it doesn't take an administrator or a systems programmer to implement them.

’K. Coady. Understanding Password Security For Users on & offline. New England
Telecommuting Newsletter, 1991.

In any event, I want to define even further the range of this chapter. For our purposes,
people who provide registration passwords or CD keys are not password crackers, nor are
they particularly relevant here. Individuals who copy common registration numbers and
provide them over the Internet are pirates. I discuss these individuals (and yes, I point to
some sites) at the end of this chapter. Nevertheless, these people (and the files they
distribute, which often contain thousands of registration numbers) do not qualify as
password crackers.

NOTE: These registration numbers and programs that circumvent password protection
are often called cracks. A Usenet newsgroup has actually been devoted to providing such
passwords and registration numbers. Not surprisingly, within this newsgroup, many
registration numbers are routinely trafficked, and the software to which they apply is also
often posted there. That newsgroup is appropriately called alt .cracks.

The only exception to this rule is a program designed to subvert early implementations of
the Microsoft CD key validation scheme (although the author of the source code did not
intend that the program be used as a piracy tool). Some explanation is in order.

As part of its anti-piracy effort, Microsoft developed a method of consumer
authentication that makes use of the CD key. When installing a Microsoft product for the
first time, users are confronted by a dialog box that requests the CD key. This is a
challenge to you; if you have a valid key, the software continues to install and all is well.
If, however, you provide an invalid key, the installation routine exits on error, explaining
that the CD key is invalid.

Several individuals examined the key validation scheme and concluded that it was poorly
designed. One programmer, Donald Moore, determined that through the following
procedure, a fictional key could be tested for authenticity. His formula is sound and
basically involves these steps:

1. Take all numbers that are trivial and irrelevant to the key and discard them.o
2. Add the remaining numbers together.

3. Divide the result by 7.

The number that you derive from this process is examined in decimal mode. If the
number has no fractional part (there are no numeric values to the right of the decimal
point), the key is valid. If the number contains a fractional part (there are numbers to the
right of the decimal), the key is invalid. Moore then designed a small program that would
automate this process.

Cross Reference: Moore's complete explanation and analysis of the CD key validation
routine is located at http://www.apexsc.com/vb/1ib/1ib3.html.

The programmer also posted source code to the Internet, written in garden-variety C. I
have compiled this code on several platforms and it works equally well on all. (The
platforms I have compiled it on include DOS, NT, Linux, and AIX.) The utility is quite
valuable, I have found, for I often lose my CD keys.

Cross Reference: The source code is located at
http://www.futureone.com/~damaged/PC/Microsoft CD Key/mscdsr
c.html.

This type of utility, I feel, qualifies in this chapter as a form of password cracker. I
suspect that some of you will use this utility to subvert the CD key validation. However,
in order to do so, you must first know a bit of C (and have a compiler available). My
feeling is, if you have these tools, your level of expertise is high indeed, and you are
probably beyond stealing software from Microsoft. (I hope.)

NOTE: Microsoft's method of protecting upgrade packages is also easily bypassed.
Upgrades install as long as you have the first disk of a previous version of the specified
software. Therefore, a user who obtains the first disk of Microsoft Visual Basic
Professional 3.0, for example, can install the 4.0 upgrade. For this reason, some pirate
groups distribute images of that first disk, which are then written to floppies. (In rare
instances when the exact image must appear on the floppy, some people use
rawrite.exe or dd.exe, two popular utilities that write an image directly to a
floppy. This technique differs from copying it to a floppy.) In addition, it is curious to
note that certain upgrade versions of VB will successfully install even without the floppy
providing that Microsoft Office has been installed first.

I should make it clear that I do not condone piracy (even though I feel that many
commercial software products are criminally overpriced). [use Linux and GNU. In that
respect, I owe much to Linus Torvalds and Richard Stallman. I have no fear of violating
the law because most of the software I use is free to be redistributed to anyone. (Also, I
have found Linux to be more stable than many other operating systems that cost hundreds
of dollars more.)

Linux is an entirely copy-free operating system, and the GNU suite of programs is under
the general public license. That is, you are free to redistribute these products to anyone at
any time. Doing so does not violate any agreement with the software authors. Many of
these utilities are free versions of popular commercial packages, including C and C++
compilers, Web-development tools, or just about anything you can dream of. These
programs are free to anyone who can download them. They are, quite frankly, a godsend
to anyone studying development.

In any event, the password crackers I will be examining here are exactly that: they crack,
destroy, or otherwise subvert passwords. I provide information about registration cracks
at the end of the chapter. That established, let's move forward.

How Do Password Crackers Work?

To understand how password crackers work, you need only understand how password
generators work. Most password generators use some form of cryptography.
Cryptography is the practice of writing in some form of code.

Cryptography

This definition is wide, and I want to narrow it. The etymological root of the word
cryptography can help in this regard. Crypto stems from the Greek word kryptos. Kryptos
was used to describe anything that was hidden, obscured, veiled, secret, or mysterious.
Graph is derived from graphia, which means writing. Thus, cryptography is the art of
secret writing. An excellent and concise description of cryptography is given by Yaman
Akdeniz in his paper Cryptography & Encryption:

Cryptography defined as "the science and study of secret writing," concerns the ways in which

communications and data can be encoded to prevent disclosure of their contents through

eavesdropping or message interception, using codes, ciphers, and other methods, so that only
certain people can see the real message.’

*Yaman Akdeniz, Cryptography & Encryption August 1996, Cyber-Rights & Cyber-
Liberties (UK) at
http://www.leeds.ac.uk/law/pgs/yaman/cryptog.htm. (Criminal
Justice Studies of the Law Faculty of University of Leeds, Leeds LS2 9JT.)

Most passwords are subjected to some form of cryptography. That is, passwords are
encrypted. To illustrate this process, let me reduce it to its most fundamental. Imagine
that you created your own code, where each letter of the alphabet corresponded to a
number (see Figure 10.1).

FIGURE 10.1.
A primitive example of a code.

In Figure 10.1, there is a table, or legend, to the left. Below each letter is a corresponding
number. Thus, A =7, B=2, and so forth. This is a code of sorts, similar to the kind seen
in secret-decoder kits found by children in their cereal boxes. You probably remember
them: They came with decoder rings and sometimes even included a tiny code book for
breaking the code manually.

Unfortunately, such a code can be easily broken. For example, if each letter has a fixed
numeric counterpart (that is, that counterpart never changes), it means that you will only
be using 26 different numbers (presumably 1 through 26, although you could choose
numbers arbitrarily). Assume that the message you are seeking to hide contains letters but
no numbers. Lexical analysis would reveal your code within a few seconds. There are
software programs that perform such analysis at high speed, searching for patterns
common to your language.

ROT-13

Another method (slightly more complex) is where each letter becomes another letter,
based on a standard, incremental (or decremental) operation. To demonstrate this
technique, I will defer to ROT-13 encoding. ROT-13 is a method whereby each letter is

replaced by a substitute letter. The substitute letter is derived by moving 13 letters ahead
(see Figure 10.2).

FIGURE 10.2.
The ROT-13 principle of letter substitution.

This, too, is an ineffective method of encoding or encrypting a message (although it
reportedly worked in Roman times for Caesar, who used a shift-by-three formula). There
are programs that quickly identify this pattern. However, this does not mean that
techniques like ROT-13 are useless. I want to illustrate why and, in the process, I can
demonstrate the first important point about passwords and encryption generally:
Any form of encryption may be useful, given particular circumstances. These circumstances may
depend upon time, the sensitivity of the information, and from whom you want to hide data.
In other words, techniques like the ROT-13 implementation may be quite useful under
certain circumstances. Here is an example: Suppose a user wants to post a cracking
technique to a Usenet group. He or she has found a hole and wants to publicize it while it
is still exploitable. Fine. To prevent bona-fide security specialists from discovering that
hole as quickly as crackers, ROT-13 can be used.

Remember how I pointed out that groups like NCSA routinely download Usenet traffic
on a wholesale basis? Many groups also use popular search engines to ferret out cracker
techniques. These search engines primarily employ regex (regular expression) searches
(that is, they search by word or phrase). For example, the searching party (perhaps
NCSA, perhaps any interested party) may enter a combination of words such as

e crack

e hack

e vulnerability
e hole

When this combination of words is entered correctly, a wealth of information emerges.
Correctly might mean many things; each engine works slightly differently. For example,
some render incisive results if the words are enclosed in quotation marks. This sometimes
forces a search that is case sensitive. Equally, many engines provide for the use of
different Boolean expressions. Some even provide fuzzy-logic searches or the capability
to mark whether a word appears adjacent, before, or after another word or expression.

When the cracker applies the ROT-13 algorithm to a message, such search engines will
miss the post. For example, the message

Guvf zrffntr jnf rapbqrq va EBG-13 pbqvat. Obl, qvq vg ybbx fperjl hagvy jr haeniryrq vg!
is clearly beyond the reach of the average search engine. What it really looks like is this:
This message was encoded in ROT-13 coding. Boy, did it look screwy until we unraveled it!

Most modern mail and newsreaders support ROT-13 encoding and decoding (Free Agent
by Forte is one; Netscape Navigator's Mail package is another). Again, this is a very

simple form of encoding something, but it demonstrates the concept. Now, let's get a bit
more specific.

DES and Crypt

Many different operating systems are on the Internet. The majority of servers, however,
run some form of UNIX. On the UNIX platform, all user login IDs and passwords are
stored in a central location. That location, for many years, was in the directory /etc
within a file passwd (/etc/passwd). The format of this file contains various fields. Of
those, we are concerned with two: the login ID and the password.

The login ID is stored plain text, or in perfectly readable English. (This is used as a key
for encryption.) The password is stored in an encrypted form. The encryption process is
performed using Crypt(3), a program based on the data encryption standard (DES). IBM
developed the earliest version of DES; today, it is used on all UNIX platforms for
password encryption. DES is endorsed jointly by the National Bureau of Standards and
the National Security Agency. In fact, since 1977, DES has been the generally accepted
method for safeguarding sensitive data. Figure 10.3 contains a brief timeline of DES
development.

FIGURE 10.3.
Brief timeline of the development of DES.

DES was developed primarily for the protection of certain nonclassified information that
might exist in federal offices. As set forth in Federal Information Processing Standards
Publication 74, Guidelines for Implementing and Using the NBS Data Encryption
Standard:

Because of the unavailability of general cryptographic technology outside the national security
arena, and because security provisions, including encryption, were needed in unclassified
applications involving Federal Government computer systems, NBS initiated a computer security
program in 1973 which included the development of a standard for computer data encryption.
Since Federal standards impact on the private sector, NBS solicited the interest and cooperation of
industry and user communities in this work.

Information about the original mechanical development of DES is scarce. Reportedly, at
the request of the National Security Agency, IBM caused certain documents to be
classified. (They will likely remain so for some years to come.) However, the source code
for Crypt(3) (the currently implementation of DES in UNIX) is widely available. This is
significant, because in all the years that source has been available for Crypt, no one has
yet found a way to easily reverse-encode information encrypted with it.

TIP: Want to try your luck at cracking Crypt? Get the source! It comes with the standard
GNU distribution of C libraries, which can be found at
ftp://gatekeeper.dec.com/glibc-1.09.1.tar.gz. (Please note that if
you are not on U.S. soil or within U.S. jurisdiction, you must download the source for
Crypt from a site outside the United States. The site usually given for this is
ftp://ftp.uni-c.dk./glibc-1.09-crypt.tar.z.

Certain implementations of Crypt work differently. In general, however, the process is as
follows:

1. Your password is taken in plain text (or, in cryptographic jargon, clear text).

2. Your password is then utilized as a key to encrypt a series of zeros (64 in all). The resulting
encoded text is thereafter referred to as cipher text, the unreadable material that results after plain
text has been encrypted.

Certain versions of Crypt, notably Crypt(3), take additional steps. For example, after
going through this process, it encrypts the already encrypted text, again using your
password as a key. This a fairly strong method of encryption; it is extremely difficult to
break.

In brief, DES takes submitted data and encodes it using a one-way operation sometimes
referred to as a hash. This operation is special from a mathematical point of view for one
reason: While it is relatively simple to encode data this way, decoding it is
computationally complex and resource intensive. It is estimated, for example, that the
same password can be encoded in 4,096 different ways. The average user, without any
knowledge of the system, could probably spend his or her entire life attempting to crack
DES and never be successful. To get that in proper perspective, examine an estimate from
the National Institute of Standards and Technology:
The cryptographic algorithm [DES] transforms a 64-bit binary value into a unique 64-bit binary
value based on a 56-bit variable. If the complete 64-bit input is used (i.e., none of the input bits
should be predetermined from block to block) and if the 56-bit variable is randomly chosen, no
technique other than trying all possible keys using known input and output for the DES will
guarantee finding the chosen key. As there are over 70,000,000,000,000,000 (seventy quadrillion)
possible keys of 56 bits, the feasibility of deriving a particular key in this way is extremely
unlikely in typical threat environments.*

‘NIST, December 30, 1993. "Data Encryption Standard (DES)," Federal Information
Processing Standards Publication 46-2.
http://csrc.nist.gov/fips/fips46-2.txt.

One would think that DES is entirely infallible. It isn't. Although the information cannot
be reverse-encoded, passwords encrypted via DES can be revealed through a comparative
process. The process works as follows:

1. You obtain a dictionary file, which is really no more than a flat file (plain text) list of words
(these are commonly referred to as wordlists).

2. These words are fed through any number of programs that encrypt each word. Such encryption
conforms to the DES standard.

3. Each resulting encrypted word is compared with the target password. If a match occurs, there is
better than a 90 percent chance that the password was cracked.

This in itself is amazing; nevertheless, password-cracking programs made for this
purpose are even more amazing than they initially appear. For example, such cracking
programs often subject each word to a list of rules. A rule could be anything, any manner
in which a word might appear. Typical rules might include

Alternate upper- and lowercase lettering.

Spell the word forward and then backward, and then fuse the two

results (for example: cannac).
Add the number 1 to the beginning and/or end of each word.

Naturally, the more rules one applies to the words, the longer the cracking process takes.
However, more rules also guarantee a higher likelihood of success. This is so for a
number of reasons:

The UNIX file system is case sensitive (WORKSTATION is
interpreted differently than Workstation or workstation). That alone
makes a UNIX password infinitely more complex to crack than a password
generated on a DOS/Windows
machine.

Alternating letters and numbers in passwords is a common
practice by those aware of security issues. When cracking passwords from
such a source, many rules should be applied.

The emergence of such programs has greatly altered the security of the Internet. The
reasons can be easily understood by anyone. One reason is because such tools are
effective:

Crypt uses the resistance of DES to known plain text attack and make it computationally
unfeasible to determine the original password that produced a given encrypted password by
exhaustive search. The only publicly known technique that may reveal certain passwords is
password guessing: passing large wordlists through the crypt function to see if any match the
encrypted password entries in an /etc/passwd file. Our experience is that this type of attack is
successful unless explicit steps are taken to thwart it. Generally we find 30 percent of the
passwords on previously unsecured systems.’

‘David Feldmeier and Philip R. Karn. UNIX Password Security--Ten Years Later.
(Bellcore).

Another reason is that the passwords on many systems remain available. In other words,
for many years, the task of the cracker was nearly over if he or she could obtain that
/etc/passwd file. When in possession of the encrypted passwords, a suitably powerful
machine, and a cracking program, the cracker was ready to crack (provided, of course,
that he or she had good wordlists).

Wordlists are generally constructed with one word per line, in plain text, and using no
carriage returns. They average at about 1MB each (although one could feasibly create a
wordlist some 20MB in size). As you may have guessed, many wordlists are available on
the Internet; these come in a wide variety of languages (thus, an American cracker can
crack an Italian machine and vice versa).

Cross Reference: There are a few popular depositories for wordlists. These collections
contain every imaginable type of wordlist. Some are simply dictionaries and others
contain hyphenated words, upper and lower case, and so on. One exceptionally good
source isat http://sdg.ncsa.uiuc.edu/~mag/Misc/Wordlists.html.
However, perhaps the most definitive collection is available at the COAST project at
Purdue. Its page is located at http: //www.cs.purdue.edu/coast/.

The Password-Cracking Process

Before I get even more specific, [want to graphically illustrate the password-cracking
process (see Figure 10.4).

The graphical representation in Figure 10.4 will serve you well. I want to explain a bit
about each portion of the process. First, I should briefly cover the hardware issues.

Hardware Issues

As noted in Figure 10.4, a 66MHz machine or higher is typical. Indeed, it is a basic
requirement. Without delving deep into an argument for this or that processor (or this or
that platform), I should at least state this: In actual practice, cracking a large password
file is a CPU- and memory-intensive task. It can often take days. Whether you are a
hobbyist, cracker, or system administrator, you would be well advised to take note of this
point. Before actually cracking a large password file, you might want to inventory your
equipment and resources.

I have found that to perform a successful (and comfortable) crack of a large password
file, one should have 66MHz of processing power and 32MB of RAM (or better). It can
be done with less, even a 25SMHz processor and 8MB of RAM. However, if you use a
machine so configured, you cannot expect to use it for any other tasks. (At least, this is
true of any IBM AT compatible. I have seen this done on a Sun SPARCstation 1 and the
user was still able to run other processes, even in OpenWindows.)

FIGURE 104.
The process of cracking, graphically illustrated.

Equally, there are techniques for overcoming this problem. One is the parlor trick of
distributed cracking. Distributed cracking is where the cracker runs the cracking program
in parallel, on separate processors. There are a few ways to do this. One is to break the
password file into pieces and crack those pieces on separate machines. In this way, the
job is distributed among a series of workstations, thus cutting resource drain and the time
it takes to crack the entire file.

The problem with distributed cracking is that it makes a lot of noise. Remember the
Randal Schwartz case? Mr. Schwartz probably would never have been discovered if he
were not distributing the CPU load. Another system administrator noticed the heavy
processor power being eaten. (He also noted that one process had been running for more
than a day.) Thus, distributed cracking really isn't viable for crackers unless they are the
administrator of a site or they have a network at home (which is not so unusual these
days; I have a network at home that consists of Windows 95, Windows NT, Linux, Sun,
and Novell boxes).

The Mechanics of Password Cracking

In any event, as Figure 10.4 shows, the wordlist is sent through the encryption process,
generally one word at a time. Rules are applied to the word and, after each such
application, the word is again compared to the target password (which is also encrypted).
If no match occurs, the next word is sent through the process.

Some password crackers perform this task differently. Some take the entire list of words,
apply a rule, and from this derive their next list. This list is then encrypted and matched

against the target password. The difference is not academic. The second technique is
probably much faster.

In the final stage, if a match occurs, the password is then deemed cracked. The plain-text
word is then piped to a file (recorded in a plain-text file for later examination).

It is of some significance that the majority of password cracking utilities are not user
friendly. In fact, when executed, some of them forward nothing more than a cryptic
message, such as

File?

Most also do not have extensive documentation with them. There are a few reasons for
this phenomenon:

e There is very little left to say. The program cracks passwords and does nothing more.

e The majority are authored by crackers from the underground. Thus, the programs were developed
on the fly, and these individuals have little time to generate complex help files and tutorials. It is
assumed that when you unpack such a tool, you know what you are doing. (The exceptions to this
rule are, of course, those cracking utilities that are written by bona fide security professionals.
These usually include release notes, explaining pitfalls, bugs, and possible solutions. Some even
come with a few sample wordlists. These generally consist of several hundred words and proper
names.)

The Password Crackers

The remainder of this chapter is devoted to individual password crackers. Some are made
for cracking UNIX passwd files, and some are not. Some of the tools here are not even
password crackers; instead, they are auxiliary utilities that can be used in conjunction
with (or for the improvement of) existing password crackers.

Crack by Alec Muffett

Crack is probably the most celebrated tool for cracking encrypted UNIX passwords. It is
now the industry standard for checking networks for characteristically weak passwords. It
was written by Alec D. E. Muffet, a UNIX software engineer in Wales. In the docs
provided with the distribution, Mr. Muffett concisely articulates the program's purpose:
Crack is a freely available program designed to find standard UNIX eight-character DES
encrypted passwords by standard guessing techniques...It is written to be flexible, configurable
and fast, and to be able to make use of several networked hosts via the Berkeley rsh program (or
similar), where possible.
Crack is for use on UNIX platforms only. It comes as a tarred, g'zipped file and is
available at so many sites, I will refrain from listing them here (use the search string
crack-4.1.tar.gz Of crack-4.1.tar.Z). After downloaded to the local disk, it is
unzipped and untarred into a suitable directory (I prefer putting it into the /root/
directory tree). After you finish that process, your directory (crack-4.1) will look
similar to the one shown in Figure 10.5.

FIGURE 10.5.
The Crack directory structure.

To get up and running, you need only set the root directory for crack (this is the
directory beneath which all the Crack resources can be found). This value is assigned to a
variable (Crack_ Home) in the configuration files. This is merely an environment variable
that, when set, tells the Crack program where the remaining resources reside. To set this
variable, edit the file crack, which is a /bin/sh script that starts up the Crack engine.
After editing this file, you can begin. This file, which consists of plain-text commands,
code, and variables, can be edited in any text editor or word processor. However, it must
be saved to plain text.

NOTE: You may or may not need to quickly acquire a wordlist. As it happens, many
distributions of Crack are accompanied by sample wordlist (or dictionary) files. Your
mileage may vary in this respect. I would suggest getting your copy of Crack from
established (as opposed to underground) sites. This will make it more likely that you will
get a sample wordlist (although to do any serious password cracking, you will need to
acquire bigger and more suitable wordlists).

You initiate a Crack session by calling the program and providing the name of a
password file and any command-line arguments, including specifications for using
multiple workstations and such. If you refer to the Xterm snapshot in Figure 10.5, you
will see a file there named my password file. This is a sample passwd file that I
cracked to generate an example. To crack that file, I issued the following command:

Crack my password file

Crack started the process and wrote the progress of the operation to files with an out
prefix. In this case, the file was called outsamsHack300. Following is an excerpt from
that file; examine it closely.

pwc: Jan 30 19:26:49 Crack v4.1f: The Password Cracker, (c) Alec D.E.
Muffett, 1992

pwc: Jan 30 19:26:49 Loading Data, host=SamsHack pid=300

pwc: Jan 30 19:26:49 Loaded 2 password entries with 2 different (salts:
100%

pwc: Jan 30 19:26:49 Loaded 240 rules from ~Scripts/dicts.rules’'.

pwc: Jan 30 19:26:49 Loaded 74 rules from ~Scripts/gecos.rules'.

pwc: Jan 30 19:26:49 Starting pass 1 - password information

pwc: Jan 30 19:26:49 FeedBack: 0 users done, 2 users left to crack.
pwc: Jan 30 19:26:49 Starting pass 2 - dictionary words

pwc: Jan 30 19:26:49 Applying rule ~I!?Al' to file “Dicts/bigdict’

pwc: Jan 30 19:26:50 Rejected 12492 words on loading, 89160 words (left
to sort

pwc: Jan 30 19:26:51 Sort discarded 947 words; FINAL DICTIONARY (SIZE:
88213

pwc: Jan 30 19:27:41 Guessed ROOT PASSWORD root (/bin/bash (in

my password file) [laura] EYFu7c842Bcus

pwc: Jan 30 19:27:41 Closing feedback file.

As you can see, Crack guessed the correct password for root. This process took just
under a minute. Line 1 reveals the time at which the process was initiated (Jan 30

19:26:49); line 12 reveals that the password--Laura--was cracked at 19:27:41. This was
done using a 133MHz processor and 32MB of RAM.

Because the password file I used was so small, neither time nor resources was an issue. In
practice, however, if you are cracking a file with hundreds of entries, Crack will eat
resources voraciously. This is especially so if you are using multiple wordlists that are in
compressed form. (Crack will actually identify these as compressed files and will
uncompress them.)

As mentioned earlier, Crack can distribute the work to different workstations on a UNIX
network. Even more extraordinary than this, the machines can be of different
architectures. Thus, you might have an IBM-compatible running Linux, a RS/6000
running AIX, and a Macintosh running A/UX.

Crack is extremely lightweight and is probably the most reliable password cracker
available.

TIP: To perform a networked cracking session, you must build a network. conf file.
This is used by the program to identify which hosts to network, their architecture, and
other key variables. One can also specify command-line options that are invoked as
Crack is unleashed on each machine. In other words, each machine may be running Crack
and using different command-line options. This can be conveniently managed from one
machine.

Cross Reference: Macintosh users can also enjoy the speed and efficiency of Crack by
using the most recent port of it, called MacKrack v2.01b1. 1t is available at
http://www.borg.com/~docrain/mac-hack.html.

CrackerJack by Jackal

CrackerJack is a renowned UNIX password cracker designed expressly for the DOS
platform. Contrary to popular notions, CrackerJack is not a straight port of Crack (not
even close). Nevertheless, CrackerJack is an extremely fast and easy-to-use cracking
utility. For several years, CrackerJack has been the choice for DOS users; although many
other cracker utilities have cropped up, CrackerJack remains quite popular (it's a cult
thing). Later versions were reportedly compiled using GNU C and C++. CrackerJack's
author reports that through this recompiling process, the program gained noticeable
speed.

TIP: CrackerJack also now works on the OS/2 platform.

The are some noticeable drawbacks to CrackerJack, including

e Users can only specify one dictionary file at a time.

e Memory-allocation conventions prevent CrackerJack from running in Windows 95.

Despite these snags, CrackerJack is reliable and, for moderate tasks, requires only limited
resources. It takes sparse processor power, doesn't require a windowed environment, and
can run from a floppy.

Cross Reference: CrackerJack is widely available, although not as widely as one would
expect. Here are a few reliable sites:

e http://www.fc.net/phrack/under/misc.html

e http://www.ilf.net/~toast/files/

e http://www.paranoia.com/~steppin/misc.html

e http://www.interware.net/~jcooper/cracks.htm

e http://globalkos.org/files.html

PaceCrack95 (pacemkr@bluemoon . net)

PaceCrack95 is designed to work on the Windows 95 platform in console mode, in a shell
window. Its author reports that PaceCrack95 was prompted by deficiencies in other DOS-
based crackers. He writes:
Well you might be wondering why I have written a program like this when there already is [sic]
many out there that do the same thing. There are many reasons, I wanted to challenge myself and
this was a useful way to do it. Also there was this guy (Borris) that kept bugging me to make this
for him because Cracker Jack (By Jackal) doesn't run in Win95/NT because of the weird way it

uses the memory. What was needed was a program that runs in Win95 and the speed of the
cracking was up there with Cracker Jack.

To the author's credit, he created a program that does just that. It is fast, compact, and
efficient. Unfortunately, however, PaceCrack95 is a new development not yet widely
available (I believe it was distributed in July 1996).

Cross Reference: There is a shortage of reliable sites from which to retrieve
PaceCrack95, but it can be found at
http://tms.netrom.com/~cassidy/crack.htm.

Qcrack by the Crypt Keeper

Qcrack was originally designed for use on the Linux platform. It has recently been ported
to the MS-DOS/Windows platform (reportedly sometime in July 1996). Qcrack is
therefore among the newest wave of password crackers that have cropped up in the last
year or so. This has increased the number of choices in the void. This utility is extremely
fast, but there are some major drawbacks. One relates to storage. As the author, the Crypt
Keeper, explains:

QInit [one of several binaries in the distribution] generates a hash table where each entry

corresponds to a salt value and contains the first two bytes of the hash. Each password becomes
about 4KB worth of data, so this file gets large quickly. A file with 5000 words can be expected to

be 20MB of disk. This makes it important to have both a lot of disk space, and a very select
dictionary. Included, a file called cpw is a list containing what I consider to be "good" words for
the typical account. I have had zero hits with this file on some password files, and I have also had
almost a 30 percent hit rate on others.

NOTE: Note that Qcrack is a bit slower than some other utilities of this nature, but is
probably worth it. Parallelizing is possible, but not in the true sense. Basically, one can
use different machines and use different dictionaries (as Qcrack's author suggests).
However, this is not the same form of parallelizing that can be implemented with
Muffett's Crack. (Not to split hairs, but using Qcrack in this fashion will greatly speed up
the process of the crack.)

Just one more interesting tidbit: The author of Qcrack, in a stroke of vision, suggested
that someone create a CD-ROM of nothing but wordlist dictionaries (granted, this would
probably be of less use to those with slow CD-ROMs; repeated access across drives could
slow the system a bit).

Cross Reference: Qcrack can be found in the following places:

e http://lix.polytechnique.fr/~delaunay/bookmarks/linux/
gcrack.html

e http://klon.ipr.nl/underground/underground.html

e http://tms.netrom.com/~cassidy/crack.htm

John the Ripper by Solar Designer

John the Ripper is a relatively new UNIX password cracker that runs on the
DOS/Windows 95 platform. The binary distribution suggests that the coding was finished
in December 1996. Early distributions of this program were buggy. Those of you
working with less than 4MB of RAM might want to avoid this utility. Its author suggests
that the program can run with less than 4MB, but a lot of disk access will be going on.

Cross Reference: John the Ripper runs on Linux as well. The Linux version is currently
in beta and is being distributed as an ELF binary. It can be found by searching for the
string john-1linux.tar.zip.

Undoubtedly, these early efforts were flawed because the author attempted to include so
many functions. Although John the Ripper may not yet be perfect, it is sizing up as quite
a program. It runs in DOS (or in Windows 95 via a shell window) and has extensive
options. Rather than list those here, I have provided a screenshot of the opening screen
that appears if you start John without any arguments (see Figure 10.6).

FIGURE 10.6.
The John the Ripper opening screen.

In this respect, John incorporates many of the amenities and necessities of other, more
established programs. I fully expect that within six months of this writing, John the
Ripper will be among the most popular cracking utilities.

Cross Reference: The DOS version of John the Ripper, which is relatively large in terms
of password crackers, can be found at
http://tms.netrom.com/~cassidy/crack.htm.

Pcrack (PerlCrack; Current Version Is 0.3) by Offspring and Naive

Pcrack is a Perl script for use on the UNIX platform (this does not mean that Pcrack
couldn't be implemented on the NT platform; it simply means that some heavy-duty
porting would be in order). This utility has its advantages because it is quite compact and,
when loaded onto the interpreter, fast. Nonetheless, one must obviously have not only
some form of UNIX, but also access to Perl. As I have already pointed out, such utilities
are best employed by someone with root access to a UNIX box. Many system
administrators have undertaken the practice of restricting Perl access these days.

Cross Reference: Pcrack is not widely available, but
http://tms.netrom.com/~cassidy/crack.htm appears to be a reliable
source.

Hades by Remote and Zabkar (?)

Hades is yet another cracking utility that reveals UNIX /etc/passwd passwords. Or is it?
Hades is very fast, faster than Muffett's Crack and far faster than CrackerJack (at least in
tests I have performed).

The distribution comes with some source code and manual pages, as well as an advisory,
which I quote here:
We created the Hades Password Cracker to show that world-readable encrypted passwords in
/etc/passwd are a major vulnerability of the UNIX operating system and its derivatives. This

program can be used by system operators to discover weak passwords and disable them, in order
to make the system more secure.

With the exception of Muffett's Crack, Hades is the most well-documented password
cracker available. The authors have taken exceptional care to provide you with every
possible amenity. The Hades distribution consists of a series of small utilities that, when
employed together, formulate a powerful cracking suite. For each such utility, a man
(manual) page exists. The individual utilities included with the distribution perform the
following functions:

e The Merge utility merges two dictionaries (wordlists) into a third, the name of which is specified
by you.

e The Optimize utility cleans dictionary (wordlists) files by formatting them; all duplicate entries
can be conveniently deleted and long words are truncated.

e The Hits utility archives all passwords cracked in a previous section, outputting the data to a user-
specified file. From this file, Hades can derive another dictionary.

Cross Reference: Hades is so widely available that I will refrain from giving a list of
sites here. Users who wish to try out this well-crafted utility should search for one or both
of the following search terms:

e hades.zip

e hades.arj

Star Cracker by the Sorcerer

Star Cracker was designed to work under the DOS4GW environment. Okay...this
particular utility is a bit of a curiosity. The author was extremely thorough, and although
the features he or she added are of great value and interest, one wonders when the author
takes out time to have fun. In any event, here are some of the more curious features:

e Fail-safe power outage provision--If there is a blackout in your city and your computer goes down,
your work is not lost. (Is that a kicker or what?) Upon reboot, Star Cracker recovers all the work
previously done (up until the point of the power outage) and keeps right on going.

e Time-release operation--You can establish time windows when the program is to do its work. That
means you could specify, "Crack this file for 11 hours. When the 11 hours are up, wait 3 hours
more. After the 3 hours more, start again."

To UNIX users, this second amenity doesn't mean much. UNIX users have always had
the ability to time jobs. However, on the DOS platform, this capability has been varied
and scarce (although there are utilities, such as tm, that can schedule jobs).

Moreover, this cracking utility has a menu of options: functions that make the cracking
process a lot easier. You've really got to see this one to believe it. A nicely done job.

Cross Reference: Star Cracker is available at
http://citus.speednet.com.au/~ramms/.

Killer Cracker by Doctor Dissector

Killer Cracker is another fairly famous cracking engine. It is distributed almost always as
source code. The package compiles without event on a number of different operating
systems, although I would argue that it works best under UNIX.

NOTE: Unless you obtain a binary release, you will need a C compiler.

Killer Cracker has so many command-line options, it is difficult to know which ones to
mention here. Nonetheless, here are a few highlights of this highly portable and efficient
cracking tool:

e Manipulation of some rules at the command prompt, including case sensitivity.

e Command-line specification for method of operation, including in what order the words are tested
(for example, test each word completely before moving on to the next).

e Under BSD, Killer Crack can be instructed to monopolize the processor altogether, forcing the
maximum amount of CPU power available for the crack.

e The program can check for nonprintable and control characters as possible keystrokes within the
current target password file.

In all, this program is quite complete. Perhaps that is why it remains so popular. It has
been ported to the Macintosh operating system, it works on a DOS system, and it was
designed under UNIX. It is portable and easily compiled.

Cross Reference: Killer Cracker can be obtained at these locations:

e http://hack.box.sk/stuff/linuxl/kc9.zip (DOS 16 bit)

e http://hack.box.sk/stuff/linuxl/kc9 32.zip (DOS 32 bit)

e http://www.ilf.net/Toast/files/unix/kc9 11.tgz (UNIX)

e http://www.netaxs.com/~hager/mac/hack/KillerCrackervs.
sit.bin (Mac)

Hellfire Cracker by the Racketeer and the Presence

Another grass-roots work, Hellfire Cracker is a utility for cracking UNIX password files
using the DOS platform. It was developed using the GNU compiler. This utility is quite
fast, although not by virtue of the encryption engine. Its major drawback is that user-
friendly functions are practically nonexistent. Nevertheless, it makes up for this in speed
and efficiency.

One amenity of Hellfire is that it is now distributed almost exclusively in binary form,
which obviates the need for a C compiler.

Cross Reference: This utility can be found on many sites, but I have encountered
problems finding reliable ones. This one, however is reliable:
http://www.ilf .net/~toast/files/.

XIT by Roche'Crypt

XIT is yet another UNIX /etc/passwd file cracker, but it is a good one. Distinguishing
characteristics include

e The capability to recover from power failure or sudden reboot

e Full C source code available for analysis

e The capability to provide up-to-the-second status reports
e Full support for (get this!) 286 machines

e The capability to exploit the existence of a disk cache for speed and increased performance

The Claymore utility has been around for several years. However, it is not as widely
available as one would expect. It also comes in different compressed formats, although
the greater number are zipped.

Cross Reference: One reliable place to find XIT is
http://www.ilf .net/~toast/files/xit20.zip.

Claymore by the Grenadier

The Claymore utility is slightly different from its counterparts. It runs on any Windows
platform, including 95 and NT.

NOTE: Claymore does not work in DOS or even a DOS shell window.

Figure 10.7 shows Claymore's opening window.

FIGURE 10.7.
The Claymore opening screen.

There is not a lot to this utility, but some amenities are worth mentioning. First, Claymore
can be used as a brute force cracker for many systems. It can be used to crack UNIX
/etc/passwd files, but it can also be used to crack other types of programs (including
those requiring a login/password pair to get in).

One rather comical aspect of this brute force cracker is its overzealousness. According to
the author:
Keep an eye on the computer. Claymore will keep entering passwords even after it has broken
through. Also remember that many times a wrong password will make the computer beep so you
may want to silence the speaker. Sometimes Claymore will throw out key strokes faster than the
other program can except them. In these cases tell Claymore to repeat a certain key stroke, that has

no other function in the target program, over and over again so that Claymore is slowed down and
the attacked program has time to catch up.

This is what I would classify as a true, brute-force cracking utility! One interesting aspect
is this: You can specify that the program send control and other nonprintable characters
during the crack. The structure of the syntax to do so suggests that Claymore was written
in Microsoft Visual Basic. Moreover, one almost immediately draws the conclusion that
the VB function sendkeys plays a big part of this application. In any event, it works
extremely well.

Cross Reference: Claymore is available at many locations on the Internet, but
http://www.ilf .net/~toast/files/clayml0.zip is almost guaranteed to
be available.

Guess by Christian Beaumont

Guess is a compact, simple application designed to attack UNIX /etc/passwd files. It is
presented with style but not much pomp. The interface is designed for DOS, but will
successfully run through a DOS windowed shell. Of main interest is the source, which is
included with the binary distribution. Guess was created sometime in 1991, it seems. For
some reason, it has not yet gained the notoriety of its counterparts; this is strange, for it
works well.

Cross Reference: Guess is available widely, so I will refrain from listing locations here.
It is easy enough to find; use the search string guess. zip.

PC UNIX Password Cracker by Doctor Dissector

I have included the PC UNIX Password Cracker utility (which runs on the DOS platform)
primarily for historical reasons. First, it was released sometime in 1990. As such, it
includes support not only for 386 and 286 machines, but for 8086 machines. (That's right.
Got an old XT lying around the house? Put it to good use and crack some passwords!) I
won't dwell on this utility, but I will say this: The program is extremely well designed
and has innumerable command-line options. Naturally, you will probably want something
a bit more up to date (perhaps other work of the good Doctor's) but if you really do have
an old XT, this is for you.

Cross Reference: PC UNIX Cracker can be found at
http://www.ilf.net/~toast/files/pwcrackers/pcupc201l.zip.

Merlin by Computer Incident Advisory Capability (CIAC) DOE

Merlin is not a password cracker. Rather, it is a tool for managing password crackers as
well as scanners, audit tools, and other security-related utilities. In short, it is a fairly
sophisticated tool for holistic management of the security process. Figure 10.8 shows
Merlin's opening screen.

Merlin is for UNIX platforms only. It has reportedly been tested (with positive results) on
a number of flavors, including but not limited to IRIX, Linux, SunOS, Solaris, and HP-
UX.

One of the main attractions of Merlin is this: Although it has been specifically designed
to support only five common security tools, it is highly extensible (it is written in Perl
almost exclusively). Thus, one could conceivably incorporate any number of tools into
the scheme of the program.

Merlin is a wonderful tool for integrating a handful of command-line tools into a single,
easily managed package. It addresses the fact that the majority of UNIX-based security
programs are based in the command-line interface (CLI). The five applications supported
are

e COPS

e Tiger
e Crack
e TripWire

e SPI (government contractors and agencies only)

FIGURE 10.8.
Merlin's opening screen.

Note that Merlin does not supply any of these utilities in the distribution. Rather, you
must acquire these programs and then configure Merlin to work with them (similar to the
way one configures external viewers and helpers in Netscape's Navigator). The concept
may seem lame, but the tool provides an easy, centralized point from which to perform
some fairly common (and grueling) security tasks. In other words, Merlin is more than a
bogus front-end. In my opinion, it is a good contribution to the security trade.

TIP: Those who are new to the UNIX platform may have to do a little hacking to get
Merlin working. For example, Merlin relies on you to have correctly configured your
browser to properly handle * . p1 files (it goes without saying that Perl is one requisite).
Also, Merlin apparently runs an internal HTTP server and looks for connections from the
local host. This means you must have your system properly configured for loopback.

Merlin (and programs like it) are an important and increasing trend (a trend kicked off by
Farmer and Venema). Because such programs are designed primarily in an HTML/Perl
base, they are highly portable to various platforms in the UNIX community. They also
tend to take slim network resources and, after the code has been loaded into the
interpreter, they move pretty fast. Finally, these tools are easier to use, making security
less of an insurmountable task. The data is right there and easily manipulated. This can
only help strengthen security and provide newbies with an education.

Other Types of Password Crackers

Now you'll venture into more exotic areas. Here you will find a wide variety of password
crackers for almost any type of system or application.

ZipCrack by Michael A. Quinlan

ZipCrack does just what you would think it would: It is designed to brute-force
passwords that have been applied to files with a * . zip extension (in other words, it
cracks the password on files generated with PKZIP).

No docs are included in the distribution (at least, not the few files that [have examined),
but I am not sure there is any need. The program is straightforward. You simply provide
the target file, and the program does the rest.

The program was written in Turbo Pascal, and the source code is included with the
distribution. ZipCrack will work on any IBM-compatible that is a 286 or higher. The file
description reports that ZipCrack will crack all those passwords generated by PKZIP 2.0.
The author also warns that although short passwords can be obtained within a reasonable
length of time, long passwords can take "centuries." Nevertheless, I sincerely doubt that
many individuals provide passwords longer than five characters. ZipCrack is a useful
utility for the average toolbox; it's one of those utilities that you think you will never need
and later, at 3:00 in the morning, you swear bitterly because you don't have it.

Cross Reference: ZipCrack is widely available; use the search string zipcrk10. zip.

Fast Zip 2.0 (Author Unknown)

Fast Zip 2.0 is, essentially, identical to ZipCrack. It cracks zipped passwords.

Cross Reference: To find Fast Zip 2.0, use the search string £zc101.zip.

Decrypt by Gabriel Fineman

An obscure but nonetheless interesting utility, Decrypt breaks WordPerfect passwords. It
is written in BASIC and works well. The program is not perfect, but it is successful a
good deal of the time. The author reports that Decrypt checks for passwords with keys
from 1 through 23. The program was released in 1993 and is widely available.

Cross Reference: To find Decrypt, use the search string decrypt . zip.

Glide (Author Unknown)

There is not a lot of documentation with the Glide utility. This program is used
exclusively to crack PWL files, which are password files generated in Microsoft
Windows for Workgroups and later versions of Windows. The lack of documentation, I
think, is forgivable. The C source is included with the distribution. For anyone who hacks
or cracks Microsoft Windows boxes, this utility is a must.

Cross Reference: Glide is available at these locations:

e http://www.iaehv.nl/users/rvdpeet/unrelate/glide.zip

e http://hack.box.sk/stuff/glide.zip

e http://www.ilf.net/~toast/files/pwcrackers/glide.zip

AMI Decode (Author Unknown)

The AMI Decode utility is designed expressly to grab the CMOS password from any
machine using an American Megatrends BIOS. Before you go searching for this utility,

you might try the factory-default CMOS password. It is, oddly enough, am1. In any event,
the program works, and that is what counts.

Cross Reference: To find AMI Decode, use the search string amidecod. zip.

NetCrack by James O'Kane

NetCrack is an interesting utility for use on the Novell NetWare platform. It applies a
brute-force attack against the bindery. It's slow, but still quite reliable.

Cross Reference: To find NetCrack, use the search string netcrack. zip.

PGPCrack by Mark Miller

Before readers who use PGP get worked up, a bit of background is in order. Pretty Good
Privacy (PGP) is probably the strongest and most reliable encryption utility available to
the public sector. Its author, Phil Zimmermann, sums it up as follows:
PGP™ uses public-key encryption to protect e-mail and data files. Communicate securely with
people you've never met, with no secure channels needed for prior exchange of keys. PGP is well

featured and fast, with sophisticated key management, digital signatures, data compression, and
good ergonomic design.

PGP can apply a series of encryption techniques. One of these, which is discussed in
Chapter 13, "Techniques to Hide One's Identity," is IDEA. To give you an idea of how
difficult IDEA is to crack, here is an excerpt from the PGP Attack FAQ, authored by
Route (an authority on encryption and a member of "The Guild," a hacker group):
If you had 1,000,000,000 machines that could try 1,000,000,000 keys/sec, it would still take all
these machines longer than the universe as we know it has existed and then some, to find the key.
IDEA, as far as present technology is concerned, is not vulnerable to brute-force attack, pure and
simple.
In essence, a message encrypted using a 1024-bit key generated with a healthy and long
passphrase is, for all purposes, unbreakable. So, why did Mr. Miller author this
interesting tool? Because passphrases can be poorly chosen and, if a PGP-encrypted
message is to be cracked, the passphrase is a good place to start. Miller reports:
On a 486/66DX, I found that it takes about 7 seconds to read in a 1.2 megabyte passphrase file and
try to decrypt the file using every passphrase. Considering the fact that the NSA, other government

agencies, and large corporations have an incredible amount of computing power, the benefit of
using a large, random passphrase is quite obvious.

Is this utility of any use? It is quite promising. Miller includes the source with the
distribution as well as a file of possible passphrases (I have found at least one of those
passphrases to be one I have used). The program is written in C and runs in the DOS,
UNIX, and OS/2 environments.

Cross Reference: PGPCrack is available at several, reliable locations, including

e http://www.voicenet.com/~markm/pgpcrack.html (DOS
version)

e http://www.voicenet.com/~markm/pgpcrack-os2.zip (0S/2
version)

e http://www.voicenet.com/~markm/pgpcrack.v99b.tar.gz
(UNIX version)

The ICS Toolkit by Richard Spillman

The ICS Toolkit utility is an all-purpose utility for studying Cryptanalysis. It runs well in
Microsoft Windows 3.11 but is more difficult to use in Windows 95 or Windows NT. It
uses an older version of vBRUN300 . DLL and therefore, users with later versions would be
wise to move the newer copy to a temporary directory. (The ICS application will not
install unless it can place its version of VBRUN300.DLL into the c: \windows\system
directory.) This utility will help you learn how ciphers are created and how to break
them. It is really quite comprehensive, although it takes some ingenuity to set up. It was
programmed for older versions of Microsoft Windows. The interface is more utilitarian
than attractive.

EXCrack by John E. Kuslich

The EXCrack utility recovers passwords applied in the Microsoft Excel environment. Mr.
Kuslich is very clear that this software is not free but licensable (and copyrighted);
therefore, I have neglected to provide screenshots or quoted information. It's safe to say
the utility works well.

Cross Reference: To find EXCrack, use the search string excrak. zip.

CP.EXE by Lyal Collins

CP.EXE recovers or cracks passwords for CompuServe that are generated in CISNAV
and WINCIM. It reportedly works on DOSCIM passwords as well. It a fast and reliable
way to test whether your password is vulnerable to attack.

Cross Reference: This utility has been widely distributed and can be found by issuing
the search string cis pw.zip.

Password NT by Midwestern Commerce, Inc.

The Password NT utility recovers, or cracks, administrator password files on the
Microsoft Windows NT 3.51 platform. In this respect, it is the NT equivalent of any
program that cracks the root account in UNIX. Note that some hacking is required to use
this utility; if the original drive on which the target password is located is NTFS (and
therefore access-control options are enabled), you will need to move the password to a
drive that is not access-control protected. To do this, you must move the password to a
drive also running 3.51 workstation or server. Therefore, this isn't really an instant
solution. Nevertheless, after everything is properly set, it will take no time at all.

Cross Reference: A nicely done utility, Password NT is always available at the
company's home page
(http://www.omna.com/yes/AndyBaron/recovery.htm).

There are well over 100 other utilities of a similar character. I will refrain from listing
them here. I think that the previous list is sufficient to get you started studying password
security. At least you can use these utilities to test the relative strength of your passwords.

Resources

At this stage, [would like to address some concepts in password security, as well as give
you sources for further education.

I hope that you will go to the Net and retrieve each of the papers I am about to cite. If you
are serious about learning security, you will follow this pattern throughout this book. By
following these references in the order they are presented, you will gain an instant
education in password security. However, if your time is sparse, the following paragraphs
will at least provide you with some insight into password security.

About UNIX Password Security

UNIX password security, when implemented correctly, is fairly reliable. The problem is
that people pick weak passwords. Unfortunately, because UNIX is a multi-user system,
every user with a weak password represents a risk to the remaining users. This is a
problem that must be addressed:
It is of utmost importance that all users on a system choose a password that is not easy to guess.
The security of each individual user is important to the security of the whole system. Users often

have no idea how a multi-user system works and don't realize that they, by choosing an easy-to-
remember password, indirectly make it possible for an outsider to manipulate the entire system.’

Walter Belgers, UNLX Password Security. December 6, 1993.

TIP: The above-mentioned paper, UNLX Password Security, gives an excellent overview
of exactly how DES works into the UNIX password scheme. This includes a schematic
that shows the actual process of encryption using DES. For users new to security, this is
an excellent starting point.

Cross Reference: Locate UNLX Password Security by entering the search string
password.ps.

What are weak passwords? Characteristically, they are anything that might occur in a
dictionary. Moreover, proper names are poor choices for passwords. However, there is no
need to theorize on what passwords are easily cracked. Safe to say, if the password
appears in a password cracking wordlist available on the Internet, the password is no
good. So, instead of wondering, get yourself a few lists.

Cross Reference: Start your search for wordlists at
http://sdg.ncsa.uiuc.edu/~mag/Misc/Wordlists.html.

By regularly checking the strength of the passwords on your network, you can ensure that
crackers cannot penetrate it (at least not through exploiting bad password choices). Such
a regimen can greatly improve your system security. In fact, many ISPs and other sites
are now employing tools that check a user's password when it is first created. This
basically implements the philosophy that
...the best solution to the problem of having easily guessed passwords on a system is to prevent
them from getting on the system in the first place. If a program such as a password cracker reacts
by guessing detectable passwords already in place, then although the security hole is found, the
hole existed for as long as the program took to detect it...If however, the program which changes

users' passwords...checks for the safety and guessability before that password is associated with
the user's account, then the security hole is never put in place.’

"Matthew Bishop, UC Davis, California, and Daniel Klein, LoneWolf Systems Inc.
"Improving System Security via Proactive Password Checking." (Appeared in Computers
and Security [14, pp. 233-249], 1995.)

TIP: This paper is probably one of the best case studies and treatments of easily-
guessable passwords. It treats the subject in depth, illustrating real-life examples of
various passwords that one would think are secure but actually are not.

Cross Reference: Locate Improving System Security via Proactive Password Checking
by entering the search string bk 95 . ps.

NOTE: As you go along, you will see many of these files have a * . ps extension. This
signifies a PostScript file. PostScript is a language and method of preparing documents. It
was created by Adobe, the makers of Acrobat and Photoshop.

To read a PostScript file, you need a viewer. One very good one is Ghostscript, which is
shareware and can be found at http://www.cs.wisc.edu/~ghost/.

Another good package (and a little more lightweight) is a utility called
Rops. Rops is available for Windows and is located here:

e http://www5.zdnet.com/ (the ZDNet software library)

e http://oak.oakland.edu (the Oak software repository)

Other papers of importance include the following:

"Observing Reusable Password Choices"
Purdue Technical Report CSD-TR 92-049
Eugene H. Spafford

Department of Computer Sciences, Purdue University

Date: July 3, 1992
Search String: observe.ps
"Password Security: A Case History"
Robert Morris and Ken Thompson
Bell Laboratories
Date: Unknown
Search String: pwstudy.ps
"Opus: Preventing Weak Password Choices"
Purdue Technical Report CSD-TR 92-028
Eugene H. Spafford
Department of Computer Sciences, Purdue University
Date: June 1991
Search String: opus.PS.gz
"Federal Information Processing Standards Publication 181"
Announcing the Standard for Automated Password Generator
Date: October 5, 1993
URL:

http://www.alw.nih.gov/Security/FIRST/papers/password/fipsl8
1.txt

"Augmented Encrypted Key Exchange: A Password-Based Protocol Secure Against
Dictionary Attacks and Password File Compromise"

Steven M. Bellovin and Michael Merrit
AT&T Bell Laboratories
Date: Unknown
Search String: aeke.ps

"A High-Speed Software Implementation of DES"
David C. Feldmeier
Computer Communication Research Group

Bellcore

Date: June 1989
Search String: des.ps
"Using Content Addressable Search Engines to Encrypt and Break DES"
Peter C. Wayner
Computer Science Department
Cornell University
Date: Unknown
Search String: desbreak.ps

"Encrypted Key Exchange: Password-Based Protocols Secure Against Dictionary
Attacks"

Steven M. Bellovin and Michael Merrit
AT&T Bell Laboratories
Date: Unknown
Search String: neke.ps
"Computer Break-ins: A Case Study"
Leendert Van Doorn
Vrije Universiteit, The Netherlands
Date: Thursday, January 21, 1993
Search String: holland case.ps
"Security Breaches: Five Recent Incidents at Columbia University"
Fuat Baran, Howard
Kaye, and Margarita Suarez
Center for Computing Activities
Colombia University
Date: June 27, 1990
Search String: columbia incidents.ps

Other Sources and Documents

Following is a list of other resources. Some are not available on the Internet. However,
there are articles that can be obtained through various online services (perhaps Uncover)
or at your local library through interlibrary loan or through microfiche. You may have to
search more aggressively for some of these, perhaps using the Library of Congress
(locis.loc.gov) or perhaps an even more effective tool, like WorldCat
(www.oclc.org).

"Undetectable Online Password Guessing Attacks"
Yun Ding and Patrick Horster,
OSR, 29(4), pp. 77-86
Date: October 1995
"Optimal Authentication Protocols Resistant to Password Guessing Attacks"
Li Gong
Stanford Research Institute
Computer Science Laboratory
Men Park, CA
Date: Unknown
Search String: optimal-pass.dvi Or optimal-pass.ps
"A Password Authentication Scheme Based on Discrete Logarithms"
Tzong Chen Wu and Chin Chen Chang

International Journal of Computational Mathematics; Vol. 41, Number 1-
2, pp. 31-37

1991
"Differential Cryptanalysis of DES-like Cryptosystems"
Eli Biham and Adi Shamir
Journal of Cryptology, 4(1), pp. 3-72
1990
"A Proposed Mode for Triple-DES Encryption"
Don Coppersmith, Don B. Johnson, and Stephen M. Matyas
IBM Journal of Research and Development, 40(2), pp. 253-262
March 1996

""An Experiment on DES Statistical Cryptanalysis"
Serve Vaudenay
Conference on Computer and Communications Security, pp. 139-147
ACM Press
March 1996
"Department of Defense Password Management Guideline"

If you want to gain a more historical perspective regarding password security, start with
the Department of Defense Password Management Guideline. This document was
produced by the Department of Defense Computer Security Center at Fort Meade,
Maryland.

Cross Reference: You can find the Department of Defense Password Management
Guideline at
http://www.alw.nih.gov/Security/FIRST/papers/password/dodpwm
an.txt.

Summary

You have reached the end of this chapter, and I have only a few things left to say in
closing. One point [want to make is this: password crackers are growing in number.
Because these tools often take significant processing power, it is not unusual for crackers
to crack a large and powerful site just so they can use the processor power available
there. For example, if you can crack a network with, say, 800 workstations, you can use
at least some of those machines to perform high-speed cracking. By distributing the
workload to several of these machines, you can ensure a much quicker result.

Many people argue that there is no legitimate reason persuasive enough to warrant the
creation of such tools. That view is untenable. Password crackers provide a valuable
service to system administrators by alerting them of weak passwords on the network. The
problem is not that password crackers exist; the problem is that they aren't used
frequently enough by the good guys. I hope that this book heightens awareness of that
fact.

11

Trojans

This chapter examines one of the more insidious devices used to circumvent Internet
security: the trojan horse, or trojan. No other device is more likely to lead to total
compromise of a system, and no other device is more difficult to detect.

What Is a Trojan?

Before I start, I want to offer a definition of what a trojan is because these devices are
often confused with other malicious code. A trojan horse is

e Anunauthorized program contained within a legitimate program. This unauthorized program
performs functions unknown (and probably unwanted) by the user.

e A legitimate program that has been altered by the placement of unauthorized code within it; this
code performs functions unknown (and probably unwanted) by the user.

e Any program that appears to perform a desirable and necessary function but that (because of
unauthorized code within it that is unknown to the user) performs functions unknown (and
probably unwanted) by the user.

The unauthorized functions that the trojan performs may sometimes qualify it as another
type of malicious device as well. For example, certain viruses fit into this category. Such
a virus can be concealed within an otherwise useful program. When this occurs, the
program can be correctly referred to as both a trojan and a virus. The file that harbors
such a trojan/virus has effectively been trojaned. Thus, the term trojan is sometimes used
as a verb, as in "He is about to trojan that file."

Classic Internet security documents define the term in various ways. Perhaps the most
well known (and oddly, the most liberal) is the definition given in RFC 1244, the Site
Security Handbook:

A trojan horse program can be a program that does something useful, or merely something
interesting. It always does something unexpected, like steal passwords or copy files without your
knowledge.

Another definition that seems quite suitable is that given by Dr. Alan Solomon, an
internationally renowned virus specialist, in his work titled A/l About Viruses:

A trojan is a program that does something more than the user was expecting, and that extra
function is damaging. This leads to a problem in detecting trojans. Suppose I wrote a program that
could infallibly detect whether another program formatted the hard disk. Then, can it say that this
program is a trojan? Obviously not if the other program was supposed to format the hard disk (like
Format does, for example), then it is not a trojan. But if the user was not expecting the format,
then it is a trojan. The problem is to compare what the program does with the user's expectations.
You cannot determine the user's expectations for a program.

Cross Reference: A/l About Viruses by Dr. Alan Solomon can be found at
http://www.drsolomon.com/vircen/allabout.html.

Anyone concerned with viruses (or who just wants to know more about
virus technology) should visit Dr. Solomon's site at
http://www.drsolomon.com/.

At day's end, you can classify a trojan as this: any program that performs a hidden and
unwanted function. This may come in any form. It might be a utility that purports to
index file directories or one that unlocks registration codes on software. It might be a
word processor or a network utility. In short, a trojan could be anything (and could be
found in anything) that you or your users introduce to the system.

Where Do Trojans Come From?

Trojans are created strictly by programmers. One does not get a trojan through any means
other than by accepting a trojaned file that was prepared by a programmer. True, it might
be possible for a thousand monkeys typing 24 hours a day to ultimately create a trojan,
but the statistical probability of this is negligible. Thus, a trojan begins with human intent
or mens rea. Somewhere on this planet, a programmer is creating a trojan right now. That
programmer knows exactly what he or she is doing, and his or her intentions are malefic
(or at least, not altruistic).

The trojan author has an agenda. That agenda could be almost anything, but in the
context of Internet security, a trojan will do one of two things:

e Perform some function that either reveals to the programmer vital and privileged information
about a system or compromises that system.

e Conceal some function that either reveals to the programmer vital and privileged information
about a system or compromises that system.

Some trojans do both. Additionally, there is another class of trojan that causes damage to
the target (for example, one that encrypts or reformats your hard disk drive). So trojans
may perform various intelligence tasks (penetrative or collective) or tasks that amount to
sabotage.

One example that satisfies the sabotage-tool criteria is the PC CYBORG trojan horse. As
explained in a December 19, 1989 CIAC bulletin ("Information about the PC CYBORG
(AIDS) Trojan Horse"):

There recently has been considerable attention in the news media about a new trojan horse which
advertises that it provides information on the AIDS virus to users of IBM PC computers and PC
clones. Once it enters a system, the trojan horse replaces AUTOEXEC . BAT, and may count the
number of times the infected system has booted until a criterion number (90) is reached. At this
point PC CYBORG hides directories, and scrambles (encrypts) the names of all files on drive C:.
There exists more than one version of this trojan horse, and at least one version does not wait to
damage drive C:, but will hide directories and scramble file names on the first boot after the trojan
horse is installed.

Cross Reference: You can find the CIAC bulletin "Information about the PC CYBORG
(AIDS) Trojan Horse" at http: //www.sevenlocks.com/CIACA-10.htm.

Another example (one that caused fairly widespread havoc) is the AOLGOLD trojan
horse. This was distributed primarily over the Usenet network and through e-mail. The
program was purported to be an enhanced package for accessing America Online (AOL).
The distribution consisted of a single, archived file. Unzipping the archive revealed two
files, one of which was a standard 1NsTALL . BAT file. Executing the INSTALL . BAT file
resulted in 18 files being expanded to the hard disk. As reported in a security advisory
("Information on the AOLGOLD Trojan Program") dated Sunday, February 16, 1997:

The trojan program is started by running the INSTALL.BAT file. The
INSTALL.BAT file is a simple batch file that renames the vipEo. DRV file to
VIRUS.BAT and then runs it. vIDEO.DRV is an amateurish DOS batch file
that starts deleting the contents of several critical directories on your C:
drive, including

2\
:\dos

:\windows

:\windows\system

: \gemm

:\stacker

:\norton

When the batch file completes, it prints a crude message on the screen and attempts to run a
program named DOOMDAY . EXE. Bugs in the batch file prevent the DOOMDAY . EXE program
from running. Other bugs in the file cause it to delete itself if it is run from any drive but the C:
drive. The programming style and bugs in the batch file indicates that the trojan writer appears to
have little programming experience.

Qo000

Cross Reference: You can find the security advisory titled "Information on the
AOLGOLD Trojan Program" at http: //www.emergency.com/aolgold.htm.

These trojans were clearly the work of amateur programmers: kids who had no more
complex an agenda than causing trouble. These were both destructive trojans and
performed no sophisticated collective or penetrative functions. Such trojans are often
seen, and usually surface, on the Usenet news network.

However, trojans (at least in the UNIX world) have been planted by individuals that are
also involved in the legitimate development of a system. These are inside jobs, where
someone at a development firm inserts the unauthorized code into an application or utility
(or, in rare instances, the core of the operating system itself). These can be far more
dangerous for a number of reasons:

e These trojans are not destructive (they collect intelligence on systems); their discovery is usually
delayed until they are revealed by accident.

e Because most servers that matter run UNIX, some highly trusted (and sensitive) sites can be
compromised. By servers that matter, I mean those that provide hundreds or even thousands of
users access to the Internet and other key networks within the Internet. These are generally
governmental or educational sites, which differ from sites maintained, for example, by a single

company. With a single company, the damage can generally travel only so far, placing the
company and all its users at risk. This is a serious issue, to be sure, but is relevant only to that
company. In contrast, the compromise of government or educational sites can place thousands of
computers at risk.

There are also instances where key UNIX utilities are compromised (and trojaned) by
programmers who have nothing to do with the development of the legitimate program.
This has happened many times and, on more than one occasion, has involved security-
related programs. For example, following the release of SATAN, a trojan found its way
into the SATAN 1.0 distribution for Linux.

NOTE: This distribution was not the work of Farmer or Venema. Instead, it was a
precompiled set of binaries intended solely for Linux users, compiled at Temple
University. Moreover, the trojan was confined to a single release, that being 1.0.

Reportedly, the file affected was a program called fping. The story goes as follows: A
programmer obtained physical access to a machine housing the program. He modified the
main () function and altered the fping file so that when users ran SATAN, a special
entry would be placed in their /etc/passwd file. This special entry was the addition of a
user named suser. Through this user ID, the perpetrator hoped to compromise many
hosts. As it happened, only two recorded instances of such compromise emerged. Flatly
stated, the programming was of poor quality. For example, the trojan provided no
contingency for those systems that made use of shadowed passwords.

NOTE: The slackware distribution of Linux defaults to a nonshadowed password
scheme. This may be true of other Linux distributions as well. However, the programmer
responsible for the trojan in question should not have counted on that. It would have been
only slightly more complicated to add a provision for this.

As you can see, a trojan might crop up anywhere. Even a file originating from a
reasonably trusted source could be trojaned.

Where Might One Find a Trojan?

Technically, a trojan could appear almost anywhere, on any operating system or platform.
However, with the exception of the inside job mentioned previously, the spread of trojans
works very much like the spread of viruses. Software downloaded from the Internet,
especially shareware or freeware, is always suspect. Similarly, materials downloaded
from underground servers or Usenet newsgroups are also candidates.

Sometimes, one need not travel down such dark and forbidden alleys to find a trojan.
Trojans can be found in major, network-wide distributions. For example, examine this
excerpt from a CIAC security advisory ("E-14: Wuarchive Ftpd Trojan Horse"), posted to
the Net in 1994:

CIAC has received information that some copies of the wuarchive FTP daemon (ftpd) versions 2.2

and 2.1f have been modified at the source code level to contain a trojan horse. This trojan allows
any user, local or remote, to become root on the affected UNIX system. CIAC strongly

recommends that all sites running these or older versions of the wuarchive ftpd retrieve and install
version 2.3. It is possible that versions previous to 2.2 and 2.1f contain the trojan as well.

witpd is one of the most widely used FTP servers in the world. This advisory affected
thousands of sites, public and private. Many of those sites are still at risk, primarily
because the system administrators at those locations are not as security conscious as they
should be.

TIP: Pick 100 random hosts in the void and try their FTP servers. I would wager that out
of those hosts, more than 80% are using wftpd. In addition, another 40% of those are
probably using older versions that, although they may not be trojaned, have security
flaws of some kind.

C'mon! How Often Are Trojans Really Discovered?

Trojans are discovered often enough that they are a major security concern. What makes
trojans so insidious is that even after they are discovered, their influence is still felt.
Trojans are similar to sniffers in that respect. No one can be sure exactly how deep into
the system the compromise may have reached. There are several reasons for this, but I
will limit this section to only one.

As you will soon read, the majority of trojans are nested within compiled binaries. That is
to say: The code that houses the trojan is no longer in human-readable form but has been

compiled. Thus, it is in machine language. This language can be examined in certain raw

editors, but even then, only printable character strings are usually comprehensible. These

most often are error messages, advisories, option flags, or other data printed to sTpouT at
specified points within the program:

my function/()

{

cout << "The value you have entered is out of range!\n";
cout << "Please enter another:"

}

Because the binaries are compiled, they come to the user as (more or less) point-and-
shoot applications. In other words, the user takes the file or files as is, without intimate
knowledge of their structure.

When authorities discover that such a binary houses a trojan, security advisories are
immediately issued. These tend to be preliminary and are later followed by more
comprehensive advisories that may briefly discuss the agenda and method of operation of
the trojan code. Unless the user is a programmer, these advisories spell out little more
than "Get the patch now and replace the bogus binary." Experienced system
administrators may clearly understand the meaning of such advisories (or even clearly
understand the purpose of the code, which is usually included with the comprehensive
advisory). However, even then, assessment of damages can be difficult.

In some cases, the damage seems simple enough to assess (for example, instances where
the trojan's purpose was to mail out the contents of the passwd file). The fix is pretty
straightforward: Replace the binary with a clean version and have all users change their

passwords. This being the whole of the trojan's function, no further damage or
compromise is expected. Simple.

But suppose the trojan is more complex. Suppose, for example, that its purpose is to open
a hole for the intruder, a hole through which he gains root access during the wee hours. If
the intruder was careful to alter the logs, there might be no way of knowing the depth of
the compromise (especially if you discover the trojan months after it was installed). This
type of case might call for reinstallation of the entire operating system.

NOTE: Reinstallation may be a requisite. Many more of your files might have been
trojaned since the initial compromise. Rather than attempt to examine each file (or each
file's behavior) closely, it might make better sense to start over. Equally, even if more
files haven't been trojaned, it's likely that passwords, personal data, or other sensitive
materials have been compromised.

Conversely, trojans may be found in executable files that are not compiled. These might
be shell scripts, or perhaps programs written in Perl, JavaScript, VBScript, Tcl (a popular
scripting language), and so forth. There have been few verified cases of this type of
trojan. The cracker who places a trojan within a noncompiled executable is risking a great
deal. The source is in plain, human-readable text. In a small program, a block of trojan
code would stand out dramatically. However, this method may not be so ludicrous when
dealing with larger programs or in those programs that incorporate a series of compiled
binaries and executable shell scripts nested within several subdirectories. The more
complex the structure of the distribution, the less likely it is that a human being, using
normal methods of investigation, would uncover a trojan.

Moreover, one must consider the level of the user's knowledge. Users who know little
about their operating system are less likely to venture deep into the directory structure of
a given distribution, looking for mysterious or suspicious code (even if that code is
human readable). The reverse is true if the user happens to be a programmer. However,
the fact that a user is a programmer does not mean he or she will instantly recognize a
trojan. I know many BASIC programmers who have a difficult time reading code written
in Perl. Thus, if the trojan exists in a scripting language, the programmer must first be
familiar with that language before he or she can identify objectionable code within it. It is
equally true that if the language even slightly resembles a language that the programmer
normally uses, he or she may be able to identify the problem. For example, Perl is
sufficiently similar to C that a C programmer who has never written a line of Perl could
effectively identify malicious code within a Perl script. And of course, anyone who writes
programs in a shell language or awk would likewise recognize questionable code in a Perl
program.

NOTE: Many Perl programs (or other scripted shell programs) are dynamic; that is, they
may change according to certain circumstances. For example, consider a program that, in
effect, rewrites itself based on certain conditions specif